Argumentation Based Machine Learning for Inconsistent Knowledge Bases
Abstract
Knowledge integration in distributed data mining has received widespread attention that aims to integrate inconsistent information locating on distributed sites. Traditional integration methods become ineffective since they are unable to generate global knowledge, support advanced integration strategy, or make prediction without individual classifiers. In this paper, we propose an argumentation based reinforcement learning method to handle this problem. To this end, a constructive model to merge possiblistic belief bases built based on the famous general argumentation framework is proposed. An axiomatic model, including a set of rational and intuitive postulates to characterize the merging result is introduced and several logical properties are mentioned and discussed.DOI:
https://doi.org/10.31449/inf.v48i9.3448Downloads
Published
How to Cite
Issue
Section
License
Authors retain copyright in their work. By submitting to and publishing with Informatica, authors grant the publisher (Slovene Society Informatika) the non-exclusive right to publish, reproduce, and distribute the article and to identify itself as the original publisher.
All articles are published under the Creative Commons Attribution license CC BY 3.0. Under this license, others may share and adapt the work for any purpose, provided appropriate credit is given and changes (if any) are indicated.
Authors may deposit and share the submitted version, accepted manuscript, and published version, provided the original publication in Informatica is properly cited.







