Text Segmentation in Online Health Consultation Using Multi Layer Perceptron with Sentence Embedding and Sentence Features
Abstract
The six aspects of doctor-patient communication are universal and relevant to various medical contexts and are the basis for structuring and analyzing doctors' answer texts in online health care. Identifying each aspect of communication in the doctor's answers is important to ensure effective communication. There are three critical challenges in segmenting the doctor’s answers, i.e. limited public dataset, extreme imbalance data, and implicit semantic variations between aspects. This study proposed a novel approach to text segmentation, focusing on communication aspects, particularly doctor-patient interactions. Unlike classical segmentation methods, which relied on topic similarity, the proposed method segmented text based on the communicative function of each sentence, offering a more accurate reflection of the interaction structure in Online Health Consultation (OHC). The model developed, MLPSentFeat, integrated sentence features directly into its architecture and demonstrated effectiveness in handling data with highly imbalanced label distributions without the need for synthetic data or complex balancing techniques.
Sentence features were formed using a combined approach: the Likelihood Ratio (LR) algorithm filtered words relevant to a label, and Information Gain (InfoGain) selected the most informative features. Experimental results showed that integrating these sentence features significantly enhanced the model's sensitivity to variations in linguistic structure, especially in recognizing non-standard sentence types, such as questions, which were prevalent in the information-gathering aspect of medical communication.
The best model produced, MLPSentFeat+DS2+Features3, was optimized to achieve the lowest segment error percentage of 8.18%, despite a slight performance decline in some labels after optimization. The use of text normalization, along with appropriate data size, cleanliness, and alignment of sentence features with the sentences' semantic structure, proved crucial in preventing overfitting. The MLPSentFeat model was successfully applied across various domains, demonstrating cross-domain adaptability, including in doctor's answer in online medical consultation systems, with potential for further development to identify questions with diverse sentence structures.
Full Text:
PDFReferences
X. Kou, “Personalized Doctor Recommendation Method Based on Patient Online Consultation Text,” 2021 IEEE Int. Conf. Comput. Sci. Electron. Inf. Eng. Intell. Control Technol. CEI 2021, pp. 31–34, Sep. 2021, doi: 10.1109/CEI52496.2021.9574585.
M. Tanis, T. Hartmann, and F. te Poel, “Online Health Anxiety and Consultation Satisfaction: A Quantitative Exploratory Study on Their Relations,” Patient Educ. Couns., vol. 99, no. 7, pp. 1227–1232, Jul. 2016, doi: 10.1016/J.PEC.2016.01.021.
Y. Rahmawati, D. Siahaan, and D. Purwitasari, “Text Segmentation Methods for Annotation on eHealth Consultation with Interview Function Labels: A Comparative Study,” 8th Int. Conf. Softw. Eng. Comput. Syst. ICSECS 2023, pp. 72–77, 2023, doi: 10.1109/ICSECS58457.2023.10256340.
S. Hobma, P. Ram, A. Muijtjens, C. van der Vleuten, and R. Grol, “Effective Improvement of Doctor-Patient Communication: A Randomised Controlled Trial,” Br. J. Gen. Pract., vol. 56, no. 529, pp. 580–586, 2006.
Y. Rahmawati, D. Siahaan, D. Purwitasari, R. A. Wijayanti, and Violita Elsha Salshabillah, “Text Classification based on Sentence Features and Preprocessing Settings for Labeling eHealth Consultation Answer,” in 7th International Seminar on Research of Information Technology and Intelligent Systems, Yogyakarta: Institute of Electrical and Electronics Engineers Inc., 2024, pp. 1065–1070. doi: 10.1109/ISRITI64779.2024.10963536.
M. Hadryan and J. Rutecka-Góra, “Readability and Clarity of Individual Pension Product Contracts,” Int. J. Semiot. Law, vol. 36, no. 4, pp. 1749–1777, Aug. 2023, doi: 10.1007/S11196-023-09997-8/TABLES/12.
A. van den Brink-Muinen et al., “Doctor-Patient Communication in Different European Health Care Systems: Relevance and Performance from the Patients’ Perspective,” Patient Educ. Couns. 39, vol. 39, no. 1, pp. 115–127, 2000.
J. W. Y. Kee, H. S. Khoo, I. Lim, and M. Y. H. Koh, “Communication Skills in Patient-Doctor Interactions: Learning from Patient Complaints,” Heal. Prof. Educ., vol. 4, no. 2, pp. 97–106, Jun. 2018, doi: 10.1016/J.HPE.2017.03.006.
G. Ferraro, H. Suominen, and J. Nualart, “Segmentation of Patent Claims for Improving Their Readability,” Assoc. Comput. Linguist., vol. 3, pp. 66–73, Apr. 2014, doi: 10.3115/v1/W14-1208.
R. Ramdani, A. F. Huda, and M. A. Bijaksana, “Text Segmentation Based on Word Embedding on Indonesian Quran Translation by Greedy with Window Approaching,” Int. Conf. Inf. Commun. Technol., vol. 7, Jul. 2019, doi: 10.1109/ICOICT.2019.8835338.
S. Martikainen, L. K. Aho, and N. Seittenranta, “Text-based Patient-Doctor Discourse Online And Patients’ Experiences of Empathy,” Comput. Support. Coop. Work, vol. 33, pp. 1151–1175, 2023.
A. King and R. B. Hoppe, “‘Best Practice’ for Patient-Centered Communication: A Narrative Review,” J. Grad. Med. Educ., vol. 5, no. 3, pp. 385–393, Sep. 2013, doi: 10.4300/JGME-D-13-00072.1.
M. Mostafapour, J. D. Smith, J. H. Fortier, and G. E. Garber, “Beyond Medical Errors: Exploring the Interpersonal Dynamics in Physician-Patient Relationships Linked to Medico-Legal Complaints,” BMC Health Serv. Res., vol. 24, no. 1, pp. 1–11, Dec. 2024, doi: 10.1186/S12913-024-11457-3/TABLES/2.
N. A. Mohd Salim, N. S. Roslan, R. Hod, S. F. Zakaria, and S. K. Adam, “Exploring Critical Components of Physician-Patient Communication: A Qualitative Study of Lay and Professional Perspectives,” Healthcare, vol. 11, no. 2, p. 162, Jan. 2023, doi: 10.3390/HEALTHCARE11020162.
J. F. Ha and N. Longnecker, “Doctor-Patient Communication: A Review,” Ochsner J., vol. 10, no. 1, p. 38, 2010, doi: 10.3329/jbcps.v32i2.26036.
E. Bindels, C. Verberg, A. Scherpbier, S. Heeneman, and K. Lombarts, “Reflection revisited: How physicians conceptualize and experience reflection in professional practice - A qualitative study,” BMC Med. Educ., vol. 18, no. 1, pp. 1–10, May 2018, doi: 10.1186/S12909-018-1218-Y/TABLES/1.
F. B. Romeiro, V. G. Pais, G. Humphris, and M. Figueiredo-Braga, “Patients’ Emotional Expressions and Clinicians’ Responses in Oncology – From Recognition to Exploration of Concerns,” PEC Innov., vol. 6, p. 100374, Jun. 2025, doi: 10.1016/J.PECINN.2025.100374.
Y. Luo et al., “How about Trust in Physician-Patient Relationship? A Concept Analysis of Physicians’ Perspectives,” Patient Educ. Couns., vol. 112, p. 107709, Jul. 2023, doi: 10.1016/J.PEC.2023.107709.
W. Wallace, C. Chan, S. Chidambaram, L. Hanna, F. M. Iqbal, and A. Acharya, “The Diagnostic and Triage Accuracy of Digital and Online Symptom Checker Tools : a Systematic Review,” pp. 1–9.
W. Wallace et al., “The Diagnostic and Triage Accuracy of Digital and Online Symptom Checker Tools: a Systematic Review”, doi: 10.1038/s41746-022-00667-w.
V. R. Hananto, U. Serdült, and V. Kryssanov, “A Text Segmentation Approach for Automated Annotation of Online Customer Reviews, Based on Topic Modeling,” Appl. Sci. 2022, Vol. 12, Page 3412, vol. 12, no. 7, p. 3412, Mar. 2022, doi: 10.3390/APP12073412.
A. Tagarelli and G. Karypis, “A Segment-based Approach to Clustering Multi-Topic Documents,” Knowl. Inf. Syst., vol. 34, no. 3, pp. 563–595, 2013, doi: 10.1007/s10115-012-0556-z.
B. Qolomany, M. Maabreh, A. Al-Fuqaha, A. Gupta, and D. Benhaddou, “Parameters Optimization of Deep Learning Models using Particle Swarm Optimization,” 2017 13th Int. Wirel. Commun. Mob. Comput. Conf. IWCMC 2017, pp. 1285–1290, Jul. 2017, doi: 10.1109/IWCMC.2017.7986470.
C. Bi et al., “Optimizing a Multi-Layer Perceptron Based on an Improved Gray Wolf Algorithm to Identify Plant Diseases,” Math. 2023, Vol. 11, Page 3312, vol. 11, no. 15, p. 3312, Jul. 2023, doi: 10.3390/MATH11153312.
F. Z. El-Hassani, M. Amri, N. E. Joudar, and K. Haddouch, “A New Optimization Model for MLP Hyperparameter Tuning: Modeling and Resolution by Real-Coded Genetic Algorithm,” Neural Process. Lett., vol. 56, no. 2, pp. 1–31, Apr. 2024, doi: 10.1007/S11063-024-11578-0/FIGURES/13.
J. Li, B. Chiu, S. Shang, and L. Shao, “Neural Text Segmentation and its Application to Sentiment Analysis,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 2, pp. 828–842, Feb. 2022, doi: 10.1109/TKDE.2020.2983360.
H. Misra, F. Yvon, O. Cappé, and J. Jose, “Text Segmentation: A Topic Modeling Perspective,” Inf. Process. Manag., vol. 47, no. 4, pp. 528–544, Jul. 2011, doi: 10.1016/J.IPM.2010.11.008.
T. Brants, F. Chen, and I. Tsochantaridis, “Topic-Based Document Segmentation with Probabilistic Latent Semantic Analysis,” in International Conference on Information and Knowledge Management, Proceedings, Association for Computing Machinery (ACM), 2002, pp. 211–218. doi: 10.1145/584792.584829;TAXONOMY:TAXONOMY:CONFERENCE-COLLECTIONS;WGROUP:STRING:ACM.
F. Y. Y. Y. Choi, P. Wiemer-Hastings, J. Moore, F. Y. Y. Choi., P. Wiemer-Hastings, and J. Moore, “Latent Semantic Analysis for Text Segmentation,” Proc. 2001 Conf. Empir. Methods Nat. Lang. Process., vol. 102, no. 7, pp. 109–117, 2001.
S. R. Joty, G. Carenini, and R. T. Ng, “Topic Segmentation and Labeling in Asynchronous Conversations,” J. Artif. Intell. Res., vol. 47, pp. 521–573, Feb. 2014, doi: 10.1613/jair.3940.
M. Jeong and I. Titov, “Multi-Document Topic Segmentation,” in International Conference on Information and Knowledge Management, Proceedings, 2010, pp. 1119–1128. doi: 10.1145/1871437.1871579;SUBPAGE:STRING:ABSTRACT;CSUBTYPE:STRING:CONFERENCE.
D. Marutho, S. Hendra Handaka, E. Wijaya, and Muljono, “The Determination of Cluster Number at k-Mean Using Elbow Method and Purity Evaluation on Headline News,” Proc. - 2018 Int. Semin. Appl. Technol. Inf. Commun. Creat. Technol. Hum. Life, iSemantic 2018, pp. 533–538, Nov. 2018, doi: 10.1109/ISEMANTIC.2018.8549751.
M. A. Hearst, “TextTiling : Segmenting Text into Multi-Paragraph Subtopic Passages,” 1997 Assoc. Comput. Linguist., vol. 23, no. 1, pp. 33–64, 1997.
F. Y. Y. Y. Choi, “Advances in Domain Independent Linear Text Segmentation,” 1st Meet. North Am. Chapter Assoc. Comput. Linguist., vol. 1, pp. 26–33, 2000.
G. Glavaš, F. Nanni, and S. P. Ponzetto, “Unsupervised Text Segmentation Using Semantic Relatedness Graphs,” Assoc. Comput. Linguist., pp. 125–130, Aug. 2016, doi: 10.18653/v1/S16-2016.
S. Zhafiirah, S. Zhafira, Y. Rahmawati, D. O. Siahaan, and D. Purwitasari, “Semantic Relatedness Graph for Text Segmentation of Patient-Centered Communications in Question- Answer Data,” ICIC 2024 – Ninth Int. Conf. Informatics Comput., vol. 9, pp. 213–218, 2024.
A. A. Alemi and P. Ginsparg, “Text Segmentation based on Semantic Word Embeddings,” Mar. 2015. doi: https://doi.org/10.48550/arXiv.1503.05543.
A. Yu, V. Gupta, G. Zhu, A. Yu, and D. E. Brown, “A Comparative Study of the Performance of Unsupervised Text Segmentation Techniques on Dialogue Transcripts,” 2020 Syst. Inf. Eng. Des. Symp., vol. 1, pp. 1–6, 2020.
B. S. Wiguna, D. Purwitasari, and D. O. Siahaan, “Deep Learning Approach for Health Question and Answer Text Segmentation based on Physician-Patient Communication Aspect,” (ISICO 2023) Seventh Inf. Syst. Int. Conf., vol. 234, pp. 213–221, 2024.
A. King and R. B. Hoppe, “‘“ Best Practice ”’ for Patient-Centered Communication : A Narrative Review,” J. Grad. Med. Educ. Sept. 2013, pp. 385–393, 2013.
I. Pak and P. L. Teh, “Text Segmentation Techniques: A Critical Review,” Stud. Comput. Intell., vol. 741, no. 1, pp. 167–181, 2018.
I. Ghinassi, “Unsupervised Text Segmentation via Deep Sentence Encoders: a First Step Towards a Common Framework for Text-Based Segmentation, Summarization and Indexing of Media Content,” Proc. 2nd Int. Work. Data-driven Pers. Telev. ACM Int. Conf. Interact. Media Exp. (IMX 2021), June 2021, vol. 2, no. September, pp. 1–15, 2021.
J. Zhu, C. Zhang, M. Y. Ma, and S. Member, “Multi-Aspect Rating Inference with Aspect-Based Segmentation,” IEEE Trans. Affect. Comput., vol. 3, no. 4, pp. 469–481, 2012.
S. Chowdhury, H. Yerebakan, Y. Shinagawa, and P. S. Yu, “MedTextSeg: A Deep Dual Sequential Model for Section Segmentation in Medical Reports,” IEEE Big Data, 2021.
J. Eisenstein, “Hierarchical Text Segmentation from Multi-Scale Lexical Cohesion,” NAACL HLT 2009 - Hum. Lang. Technol. 2009 Annu. Conf. North Am. Chapter Assoc. Comput. Linguist. Proc. Conf., vol. 1, no. June, pp. 353–361, 2009, doi: 10.3115/1620754.1620806.
K. Ganesan and M. Subotin, “A General Supervised Approach to Segmentation of Clinical Texts,” Proc. - 2014 IEEE Int. Conf. Big Data, IEEE Big Data 2014, pp. 33–40, 2014, doi: 10.1109/BIGDATA.2014.7004390.
E. Apostolova, D. S. Channin, D. Demner-Fushman, J. Furst, S. Lytinen, and D. Raicu, “Automatic Segmentation of Clinical Texts,” 2009, doi: 10.1109/IEMBS.2009.5334831.
T. Edinger, D. Demner-Fushman, A. M. Cohen, S. Bedrick, and W. Hersh, “Evaluation of Clinical Text Segmentation to Facilitate Cohort Retrieval,” AMIA Annu. Symp. Proc., vol. 2017, p. 660, 2018.
N. Sadoughi et al., “Detecting Section Boundaries in Medical Dictations: Toward Real-Time Conversion of Medical Dictations to Clinical Reports,” in International Conference on Speech and Computer, Springer Verlag, 2018, pp. 563–573. doi: 10.1007/978-3-319-99579-3_58/TABLES/5.
F. Ginter, H. Suominen, S. Pyysalo, and T. Salakoski, “Combining Hidden Markov Models and Latent Semantic Analysis for Topic Segmentation and Labeling: Method and Clinical Application,” Int. J. Med. Inform., vol. 78, no. 12, pp. 1–6, 2009, doi: 10.1016/j.ijmedinf.2009.02.003.
A. J. C. Trappey, C. V. Trappey, M. H. Chao, and C. T. Wu, “VR-Enabled Engineering Consultation Chatbot For Integrated And Intelligent Manufacturing Services,” J. Ind. Inf. Integr., vol. 26, p. 100331, Mar. 2022, doi: 10.1016/J.JII.2022.100331.
X. Luo, X. Li, Y. M. Goh, X. Song, and Q. Liu, “Application of Machine Learning Technology for Occupational Accident Severity Prediction in the Case of Construction Collapse Accidents,” Saf. Sci., vol. 163, p. 106138, Jul. 2023, doi: 10.1016/J.SSCI.2023.106138.
R. Sun, X. Li, J. Shen, and W. Jin, “An Effective Hybrid Automated Chinese Scoring System for Medical Education,” Expert Syst. Appl., vol. 234, p. 121114, Dec. 2023, doi: 10.1016/J.ESWA.2023.121114.
D. Yokokawa, K. Noda, T. Uehara, Y. Yanagita, Y. Ohira, and M. Ikusaka, “Do Japanese Word-Embedded Representations Obtained in the Academic Corpus Retain the Medical Concepts of ‘Infarction’?,” Artif. Intell. Med., vol. 143, p. 102604, Sep. 2023, doi: 10.1016/J.ARTMED.2023.102604.
Z. Zhu, J. Li, Q. Zhao, and F. Akhtar, “A Dictionary-Guided Attention Network for Biomedical Named Entity Recognition in Chinese Electronic Medical Records,” Expert Syst. Appl., vol. 231, p. 120709, Nov. 2023, doi: 10.1016/J.ESWA.2023.120709.
P. Wen, Y. Ma, and R. Wang, “Systematic Knowledge Modeling and Extraction Methods for Manufacturing Process Planning Based on Knowledge Graph,” Adv. Eng. Informatics, vol. 58, p. 102172, Oct. 2023, doi: 10.1016/J.AEI.2023.102172.
C. Y. Wang and J. J. H. Lin, “Utilizing Artificial Intelligence to Support Analyzing Self-Regulated Learning: A Preliminary Mixed-Methods Evaluation from a Human-Centered Perspective,” Comput. Human Behav., vol. 144, p. 107721, Jul. 2023, doi: 10.1016/J.CHB.2023.107721.
M. Y. Landolsi, L. Ben Romdhane, and L. Hlaoua, “Medical Named Entity Recognition using Surrounding Sequences Matching,” Procedia Comput. Sci., vol. 207, pp. 674–683, Jan. 2022, doi: 10.1016/J.PROCS.2022.09.122.
M. Mirzapour, A. Abdaoui, A. Tchechmedjiev, W. Digan, S. Bringay, and C. Jonquet, “French FastContext: A publicly accessible system for detecting negation, temporality and experiencer in French clinical notes,” J. Biomed. Inform., vol. 117, no. December 2020, p. 103733, 2021, doi: 10.1016/j.jbi.2021.103733.
A. A. Shaikina and A. A. Funkner, “Medical Corpora Comparison Using Topic Modeling,” Procedia Comput. Sci., vol. 178, no. 2019, pp. 244–253, 2020, doi: 10.1016/j.procs.2020.11.026.
A. Zehe et al., “Detecting Scenes in Fiction: A New Segmentation Task,” pp. 3167–3177, Apr. 2021, doi: 10.18653/v1/2021.eacl-main.276.
J. Abbas, C. Zhang, and B. Luo, “EnsCL-CatBoost: A Strategic Framework for Software Requirements Classification,” IEEE Access, vol. 12, no. August, pp. 127614–127628, 2024.
F. Alzamzami, M. Hoda, and A. El Saddik, “Light Gradient Boosting Machine for General Sentiment Classification on Short Texts: A Comparative Evaluation,” IEEE Access, vol. 8, pp. 101840–101858, 2020, doi: 10.1109/ACCESS.2020.2997330.
K. He, R. Mao, T. Gong, C. Li, and E. Cambria, “Meta-Based Self-Training and Re-Weighting for Aspect-Based Sentiment Analysis,” IEEE Trans. Affect. Comput., vol. 14, no. 3, pp. 1731–1742, Jul. 2023, doi: 10.1109/TAFFC.2022.3202831.
J. Li et al., “KRA: K-Nearest Neighbor Retrieval Augmented Model for Text Classification,” Electron. 2024, vol. 13, no. 16, p. 3237, Aug. 2024, doi: 10.3390/ELECTRONICS13163237.
E. Elsaeed, O. Ouda, M. M. Elmogy, A. Atwan, and E. El-Daydamony, “Detecting Fake News in Social Media Using Voting Classifier,” IEEE Access, vol. 9, pp. 161909–161925, 2021, doi: 10.1109/ACCESS.2021.3132022.
R. Mahadeva, M. Kumar, S. P. Patole, and G. Manik, “Desalination Plant Performance Prediction Model Using Grey Wolf Optimizer Based ANN Approach,” IEEE Access, vol. 10, pp. 34550–34561, 2022, doi: 10.1109/ACCESS.2022.3162932.
A. Al Bataineh, D. Kaur, and S. M. J. Jalali, “Multi-Layer Perceptron Training Optimization Using Nature Inspired Computing,” IEEE Access, vol. 10, pp. 36963–36977, 2022.
M. Alazab, R. A. Khurma, A. Awajan, and M. Wedyan, “Digital Forensics Classification Based on a Hybrid Neural Network and the Salp Swarm Algorithm,” Electron., vol. 11, pp. 1–17, 2022.
M. S. Khan, F. Jabeen, S. Ghouzali, Z. Rehman, S. Naz, and W. Abdul, “Metaheuristic Algorithms in Optimizing Deep Neural Network Model for Software Effort Estimation,” IEEE Access, vol. 9, pp. 60309–60327, 2021.
S. Udaiyakumar, C. L. Chinnadurrai, C. Anandhakumar, and S. Ravindran, “Electricity Price Forecasting using Multilayer Perceptron Optimized by Particle Swarm Optimization,” Proc. - 2nd Int. Conf. Smart Technol. Commun. Robot. 2022, STCR 2022, vol. 2, no. 12, pp. 1–6, 2022.
N. Zlobinsky, D. L. Johnson, A. K. Mishra, and A. A. Lysko, “Comparison of Metaheuristic Algorithms for Interface-Constrained Channel Assignment in a Hybrid Dynamic Spectrum Access - Wi-Fi Infrastructure WMN,” IEEE Access, vol. 10, pp. 26654–26680, 2022, doi: 10.1109/ACCESS.2022.3155642.
A. Melman and O. Evsutin, “Comparative Study of Metaheuristic Optimization Algorithms for Image Steganography Based on Discrete Fourier Transform Domain,” Appl. Soft Comput., vol. 132, p. 109847, Jan. 2023, doi: 10.1016/J.ASOC.2022.109847.
T. Nagadurga, R. Devarapalli, and Ł. Knypiński, “Comparison of Meta-Heuristic Optimization Algorithms for Global Maximum Power Point Tracking of Partially Shaded Solar Photovoltaic Systems,” Algorithms 2023, Vol. 16, Page 376, vol. 16, no. 8, p. 376, Aug. 2023, doi: 10.3390/A16080376.
E. ; Bayona et al., “Comparative Analysis of Metaheuristic Optimization Methods for Trajectory Generation of Automated Guided Vehicles,” Electron. 2024, Vol. 13, Page 728, vol. 13, no. 4, p. 728, Feb. 2024, doi: 10.3390/ELECTRONICS13040728.
G. Innocenti, F. Corinto, and E. Kaya, “A Comprehensive Comparison of the Performance of Metaheuristic Algorithms in Neural Network Training for Nonlinear System Identification,” Math. 2022, Vol. 10, Page 1611, vol. 10, no. 9, p. 1611, May 2022, doi: 10.3390/MATH10091611.
S. Ghaemifard and A. Ghannadiasl, “A Comparison of Metaheuristic Algorithms for Structural Optimization: Performance and Efficiency Analysis,” Adv. Civ. Eng., vol. 2024, no. 1, p. 2054173, Jan. 2024, doi: 10.1155/2024/2054173.
S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer,” Adv. Eng. Softw., vol. 69, pp. 46–61, 2014, doi: 10.1016/j.advengsoft.2013.12.007.
J. Kennedy and R. Eberhart, “Particle Swarm Optimization,” in Proceedings of ICNN’95 - International Conference on Neural Networks, IEEE, Aug. 1995, pp. 1942–1948. doi: 10.1109/ICNN.1995.488968.
S. Mirjalili and A. Lewis, “The Whale Optimization Algorithm,” Adv. Eng. Softw., vol. 95, pp. 51–67, May 2016, doi: 10.1016/J.ADVENGSOFT.2016.01.008.
S. Saremi, S. Mirjalili, and A. Lewis, “Grasshopper Optimisation Algorithm: Theory and application,” Adv. Eng. Softw., vol. 105, pp. 30–47, Mar. 2017, doi: 10.1016/J.ADVENGSOFT.2017.01.004.
S. Arora and S. Singh, “Butterfly Optimization Algorithm: a Novel Approach for Global Optimization,” Soft Comput., vol. 23, no. 3, pp. 715–734, Feb. 2019, doi: 10.1007/S00500-018-3102-4/FIGURES/10.
X.-S. Yang, “Firefly Algorithm, Lévy Flights and Global Optimization,” 2010, doi: https://doi.org/10.48550/arXiv.1003.1464.
X.-S. Yang, “A New Metaheuristic Bat-Inspired Algorithm,” vol. 284, pp. 65–74, 2010, doi: https://doi.org/10.48550/arXiv.1004.4170.
G. Dhiman and V. Kumar, “Seagull Optimization Algorithm: Theory and its Applications for Large-Scale Industrial Engineering Problems,” Knowledge-Based Syst., vol. 165, pp. 169–196, Feb. 2019, doi: 10.1016/J.KNOSYS.2018.11.024.
P. Bajpai, “Genetic Algorithm – an Approach to Solve Global Optimization Problems,” Indian J. Comput. Sci. Eng., vol. 1, no. 3, pp. 199–206, 2016.
D. Karaboga and B. Akay, “Artificial Bee Colony (ABC) Algorithm on Training Artificial Neural Networks,” 2007 IEEE 15th Signal Process. Commun. Appl. SIU, 2007, doi: 10.1109/SIU.2007.4298679.
S. Juanita, D. Purwitasari, I. K. E. Purnama, A. F. Abdillah, and M. H. Purnomo, “Multi-Label Classification for Doctor’s Behavioral Pattern Matching During Online Medical Interview using Machine Learning,” Int. J. Electr. Eng. Informatics, vol. 15, no. 3, pp. 435–452, 2023, doi: 10.15676/ijeei.2023.15.3.5.
R. C. Morales-Hernández, J. G. Juagüey, and D. Becerra-Alonso, “A Comparison of Multi-Label Text Classification Models in Research Articles Labeled with Sustainable Development Goals,” IEEE Access, vol. 10, pp. 123534–123548, 2022, doi: 10.1109/ACCESS.2022.3223094.
M. K. Dahouda and I. Joe, “A Deep-Learned Embedding Technique for Categorical Features Encoding,” IEEE Access, vol. 9, pp. 114381–114391, 2021, doi: 10.1109/ACCESS.2021.3104357.
S. Qiu, Q. Liu, S. Zhou, and W. Huang, “Adversarial Attack and Defense Technologies in Natural Language Processing: A Survey,” Neurocomputing, vol. 492, pp. 278–307, Jul. 2022, doi: 10.1016/j.neucom.2022.04.020.
W. Yang, R. Zhang, J. Chen, L. Wang, and J. Kim, “Prototype-Guided Pseudo Labeling for Semi-Supervised Text Classification,” vol. 1, pp. 16369–16382, doi: 10.18653/v1/2023.acl-long.904.
D. Jiménez, O. J. Gambino, H. Calvo, D. Jiménez, O. J. Gambino, and H. Calvo, “Pseudo-Labeling Improves News Identification and Categorization with Few Annotated Data,” Comput. y Sist., vol. 26, no. 1, pp. 183–193, 2022, doi: 10.13053/CYS-26-1-4163.
H. L. Vu, K. T. W. Ng, A. Richter, and C. An, “Analysis of Input Set Characteristics and Variances on K-Fold Cross Validation for a Recurrent Neural Network Model on Waste Disposal Rate Estimation,” J. Environ. Manage., vol. 311, p. 114869, Jun. 2022, doi: 10.1016/J.JENVMAN.2022.114869.
L. Chen et al., “SSD Drive Failure Prediction on Alibaba Data Center Using Machine Learning,” 2022 IEEE Int. Mem. Work. IMW 2022 - Proc., 2022, doi: 10.1109/IMW52921.2022.9779284.
S. Muhamad Isa, G. Nico, and M. Permana, “Indobert for Indonesian Fake News Detection,” ICIC Express Lett., vol. 16, no. 3, pp. 289–297, 2022, doi: 10.24507/icicel.16.03.289.
A. R. Baskara, M. A. S. Jati, M. Maulida, Y. Sari, N. F. Mustamin, and E. S. Wijaya, “Classification of User Reviews for Software Maintenance in Indonesian Language Using IndoBERT-BiLSTM (Case Study: MyPertamina),” 2023 8th Int. Conf. Informatics Comput. ICIC 2023, 2023, doi: 10.1109/ICIC60109.2023.10381946.
A. B. Y. A. Putra, Y. Sibaroni, and A. F. Ihsan, “Disinformation Detection on 2024 Indonesia Presidential Election using IndoBERT,” 2023 Int. Conf. Data Sci. Its Appl. ICoDSA 2023, pp. 350–355, 2023, doi: 10.1109/ICODSA58501.2023.10277572.
Z. Liu, Q. Zhang, and L. Gao, “Optimizing Sentence Embedding with Pseudo-Labeling and Model Ensembles: A Hierarchical Framework for Enhanced NLP Tasks,” Jan. 2025, doi: https://doi.org/10.48550/arXiv.2501.15876.
A. Kag, L. M. Jenila Livingston, L. M. Livingston Merlin, and L. G. X. Agnel Livingston, “Multiclass Single Label Model for Web Page Classification,” 2019 Int. Conf. Recent Adv. Energy-Efficient Comput. Commun. ICRAECC 2019, Mar. 2019, doi: 10.1109/ICRAECC43874.2019.8995087.
D. Kim, J. Koo, and U. M. Kim, “OSP-Class: Open Set Pseudo-labeling with Noise Robust Training for Text Classification,” Proc. - 2022 IEEE Int. Conf. Big Data, Big Data 2022, pp. 5520–5529, 2022, doi: 10.1109/BIGDATA55660.2022.10020273.
G. Patel, J. Allebach, and Q. Qiu, “Seq-UPS: Sequential Uncertainty-aware Pseudo-label Selection for Semi-Supervised Text Recognition,” Proc. - 2023 IEEE Winter Conf. Appl. Comput. Vision, WACV 2023, pp. 6169–6179, 2023, doi: 10.1109/WACV56688.2023.00612.
N. Reimers and I. Gurevych, “Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks,” Association for Computational Linguistics, Nov. 2019, pp. 3982–3992. doi: 10.18653/v1/D19-1410.
I. Hussain, O. Ormandjieva, and L. Kosseim, “Automatic QQuality Assessment of SRS Text by Means of a Decision-Tree-Based Text Classifier,” Proc. - Int. Conf. Qual. Softw., pp. 209–218, 2007, doi: 10.1109/QSIC.2007.4385497.
F. Halim and D. Siahaan, “Detecting Non-Atomic Requirements in Software Requirements Specifications Using Classification Methods,” 2019 1st Int. Conf. Cybern. Intell. Syst. ICORIS 2019, pp. 269–273, Aug. 2019, doi: 10.1109/ICORIS.2019.8874888.
S. Lei, “A feature selection method based on information gain and genetic algorithm,” Proc. - 2012 Int. Conf. Comput. Sci. Electron. Eng. ICCSEE 2012, vol. 2, pp. 355–358, 2012, doi: 10.1109/ICCSEE.2012.97.
S. Manchanda and G. Karypis, “Text Segmentation on Multilabel Documents: A Distant-Supervised Approach,” Proc. - IEEE Int. Conf. Data Mining, ICDM, vol. 2018-November, pp. 1170–1175, Dec. 2018, doi: 10.1109/ICDM.2018.00154.
R. Fauzan, D. Siahaan, S. Rochimah, and E. Triandini, “Class Diagram Similarity Measurement: A Different Approach,” pp. 215–219, May 2019, doi: 10.1109/ICITISEE.2018.8721021.
A. Saad, A. P. Engelbrecht, and S. A. Khan, “An Analysis of Differential Evolution Population Size,” Appl. Sci. 2024, Vol. 14, Page 9976, vol. 14, no. 21, p. 9976, Oct. 2024, doi: 10.3390/APP14219976.
J. Schlauwitz and P. Musilek, “Dimension-Wise Particle Swarm Optimization: Evaluation and Comparative Analysis,” Appl. Sci. 2021, vol. 11, no. 13, p. 6201, Jul. 2021, doi: 10.3390/APP11136201.
B. Li and R. Y. Xiao, “The Particle Swarm Optimization Algorithm: How to Select the Number of Iteration,” in International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIHMSP), 2007, pp. 191–193. doi: 10.1109/IIH-MSP.2007.298.
D. Chicco and G. Jurman, “The Advantages of the Matthews Correlation Coefficient (MCC) Over F1 Score and Accuracy in Binary Classification Evaluation,” BMC Genomics, vol. 21, no. 1, pp. 1–13, Jan. 2020, doi: 10.1186/S12864-019-6413-7/TABLES/5.
P. Stoica and P. Babu, “Pearson–Matthews correlation Coefficients for Binary and Multinary Classification,” Signal Processing, vol. 222, pp. 1–15, 2024.
D. M. Blei, A. Y. Ng, and M. T. Jordan, “Latent Dirichlet Allocation,” Adv. Neural Inf. Process. Syst., vol. 3, pp. 993–1022, 2002.
M. K. Chegeni, A. Rashno, and S. Fadaei, “Convolution-Layer Parameters Optimization in Convolutional Neural Networks,” Knowledge-Based Syst., vol. 261, p. 110210, Feb. 2023, doi: 10.1016/J.KNOSYS.2022.110210.
E. Scheihing, M. Vernier, J. Guerra, J. Born, and L. Cárcamo, “Understanding the Role of Micro-Blogging in B-Learning Activities: Kelluwen Experiences in Chilean Public Schools,” IEEE Trans. Learn. Technol., vol. 11, no. 3, pp. 280–293, Jul. 2018, doi: 10.1109/TLT.2017.2714163.
H. G. Daniel Thamrin and T. E. Widagdo, “Natural Language Interface to Database (NLIDB) for Interrogative Sentences with Temporal Elements in Indonesian Language,” in Proceedings of 2022 International Conference on Data and Software Engineering, ICoDSE 2022, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 120–125. doi: 10.1109/ICODSE56892.2022.9971944.
N. Fadhil Abbas, T. Ali Qasim, and H. Abdul-Salam Jasim, “Request Constructions in Classical Arabic versus Modern Arabic,” J. Ethn. Cult. Stud., vol. 10, no. 5, pp. 1–15, 2023, doi: 10.2307/48756354.
E. Cahyaningtyas and D. Arifianto, “HMM-Based Indonesian Speech Synthesis System with Declarative and Question Sentences Intonation,” in 2015 International Symposium on Intelligent Signal Processing and Communication Systems, ISPACS 2015, Institute of Electrical and Electronics Engineers Inc., Mar. 2016, pp. 153–158. doi: 10.1109/ISPACS.2015.7432756.
N. F. Nabila et al., “Using Probability Theory to Identify the Unsure Value of an Incomplete Sentence,” in Proceedings - UKSim-AMSS 17th International Conference on Computer Modelling and Simulation, UKSim 2015, Institute of Electrical and Electronics Engineers Inc., Sep. 2016, pp. 497–501. doi: 10.1109/UKSIM.2015.90.
Y. Lv, “Negative Rhetoric Based on the Error Sentences of Foreign Chinese Learners from the Perspective of Computer Aided Syntax Recognition Algorithms,” in Proceedings of the 2nd International Conference on Artificial Intelligence and Smart Energy, ICAIS 2022, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 704–707. doi: 10.1109/ICAIS53314.2022.9743002.
E. C. Montiel-Vazquez, C. A. Cruz, J. A. R. Uresti, and R. Gomez, “EmpatheticExchanges: Towards Understanding the Cues for Empathy in Dyadic Conversations,” IEEE Access, 2024, doi: 10.1109/ACCESS.2024.3520000.
J. M. Müller, “Sympathy, Interpersonal Awareness and Acknowledgment,” Topoi, vol. 41, no. 5, pp. 849–858, Nov. 2022, doi: 10.1007/S11245-022-09803-3/METRICS.
DOI: https://doi.org/10.31449/inf.v49i19.9271
This work is licensed under a Creative Commons Attribution 3.0 License.








