Optimized Task Scheduling and VM Allocation in Cloud Computing Using PPMMcNE and RSMBO Algorithms
Abstract
This paper presents an optimized approach for task scheduling and virtual machine (VM) allocation in cloud computing environments, leveraging two novel algorithms. The proposed Phasmatodea Population Modified McNaughton Evolution (PPMMcNE) algorithm enhances the Phasmatodea Population Evolution (PPE) method by integrating Modified McNaughton’s rule to generate a highquality initial task schedule and minimize delays. Complementarily, the Rat Swarm Modified Brucker Optimization (RSMBO) algorithm is introduced to refine VM allocation by reducing migration overhead and lowering energy consumption. The methods aim to optimize key cloud performance parameters— including turnaround time, waiting time, completion time, response time, makespan, cost, load balancing, and energy efficiency—thereby enhancing overall resource utilization and fairness. Comprehensive computational experiments were performed in Matlab using the publicly accessible GoCJ dataset, which comprises one month of resource utilization data, recording 123 million incidents across 1250 computers. The proposed method achieves a throughput of 0.942, exhibits a minimal task scheduling delay of 58.22 milliseconds, and maintains a queue waiting time of 43.66 milliseconds—all while reducing energy consumption to an average of 120 joules per task. Furthermore, energy consumption was quantitatively evaluated, with RSMBO consistently demonstrating significant reductions in energy usage compared to traditional baselines. These results validate that the integrated approach of PPMcNE and RSMBO offers superior scalability and efficiency, making it highly suitable for dynamic and large-scale cloud environments.
Full Text:
PDFReferences
S.M. Mirmohseni, C. Tang, A. Javadpour. Using Markov learning utilization model for resource allocation in cloud of thing network. Wirel. Pers. Commun., 115, 653-677, (2020). https://doi.org/10.1007/s11277-020-07591-w
Katal, S. Dahiya, T. Choudhury. Energy efficiency in cloud computing data centers: a survey on software technologies. Cluster Comput., 26, 3, 1845-1875, (2023). https://doi.org/10.1007/s10586-022-03713-0
Sharma, V. K., Singh, A., Jaya, K. R., Bairwa, A. K., & Srivastava, D. K. (2022). Introduction to Virtualization in Cloud Computing. Machine Learning and Optimization Models for Optimization in Cloud, 1–14. https://doi.org/10.1201/9781003185376-1
Shukur, H., Zeebaree, S., Zebari, R., Zeebaree, D., Ahmed, O., & Salih, A. (2020). Cloud Computing Virtualization of Resources Allocation for Distributed Systems. Journal of Applied Science and Technology Trends, 1(2), 98–105. https://doi.org/10.38094/jastt1331
Zolfaghari, R., Sahafi, A., Rahmani, A. M., & Rezaei, R. (2021). Application of virtual machine consolidation in cloud computing systems. Sustainable Computing: Informatics and Systems, 30, 100524. https://doi.org/10.1016/j.suscom.2021.100524
Abualigah, L., Hussein, A. M., Almomani, M. H., Zitar, R. A., Daoud, M. Sh., Migdady, H., Alzahrani, A. I., & Alwadain, A. (2024). GIJA:Enhanced geyser‐inspired Jaya algorithm for task scheduling optimization in cloud computing. Transactions on Emerging Telecommunications Technologies, 35(7). Portico. https://doi.org/10.1002/ett.5019
Alsubaei, F. S., Hamed, A. Y., Hassan, M. R., Mohery, M., & Elnahary, M. Kh. (2024). Machine learning approach to optimal task scheduling in cloud communication. Alexandria Engineering Journal, 89, 1–30. https://doi.org/10.1016/j.aej.2024.01.040
Sudheer Mangalampalli, S., Reddy Karri, G., Nandan Mohanty, S., Ali, S., Alamri, A. M., & Alqahtani, S. A. (2024). Efficient Hybrid DDPG Task Scheduler for HPC and HTC in Cloud Environment. IEEE Access, 12, 108897–108920. https://doi.org/10.1109/access.2024.3435914
Sharma, V., & Bala, M. (2020). An Improved Task Allocation Strategy in Cloud using Modified K-means Clustering Technique. Egyptian Informatics Journal, 21(4), 201–208. https://doi.org/10.1016/j.eij.2020.02.001
Abdel-Aty, A.-H., Kadry, H., Zidan, M., Al-Sbou, Y., Zanaty, E. A., & Abdel-Aty, M. (2020). A quantum classification algorithm for classification incomplete patterns based on entanglement measure. Journal of Intelligent & Fuzzy Systems, 38(3), 2809–2816. https://doi.org/10.3233/jifs-179566
Hung, T. C., Hieu, L. N., Hy, P. T., & Phi, N. X. (2019). MMSIA. Proceedings of the 3rd International Conference on Machine Learning and Soft Computing, 60–64. https://doi.org/10.1145/3310986.3311017
Alghamdi, M. I. (2022). Optimization of Load Balancing and Task Scheduling in Cloud Computing Environments Using Artificial Neural Networks-Based Binary Particle Swarm Optimization (BPSO). Sustainability, 14(19), 11982. https://doi.org/10.3390/su141911982
Chandrashekar, C., Krishnadoss, P., Kedalu Poornachary, V., Ananthakrishnan, B., & Rangasamy, K. (2023). HWACOA Scheduler: Hybrid Weighted Ant Colony Optimization Algorithm for Task Scheduling in Cloud Computing. Applied Sciences, 13(6), 3433. https://doi.org/10.3390/app13063433
Selvapandian, R. Santosh. A Hybrid Optimized Resource Allocation Model for Multi-Cloud Environment Using Bat and Particle Swarm Optimization Algorithms. Comput. Assist. Methods Eng. Sci., 29, 1–2, 87-103, 2022.
Ramasamy, V., & Thalavai Pillai, S. (2020). An effective HPSO-MGA optimization algorithm for dynamic resource allocation in cloud environment. Cluster Computing, 23(3), 1711–1724. https://doi.org/10.1007/s10586-020-03118-x
Shao, K., Fu, H., & Wang, B. (2023). An Efficient Combination of Genetic Algorithm and Particle Swarm Optimization for Scheduling Data-Intensive Tasks in Heterogeneous Cloud Computing. Electronics, 12(16), 3450. https://doi.org/10.3390/electronics12163450
Hafsi, H., Gharsellaoui, H., & Bouamama, S. (2022). Genetically-modified Multi-objective Particle Swarm Optimization approach for high-performance computing workflow scheduling. Applied Soft Computing, 122, 108791. https://doi.org/10.1016/j.asoc.2022.108791
Alfakih, T., Hassan, M. M., & Al-Razgan, M. (2021). Multi-Objective Accelerated Particle Swarm Optimization With Dynamic Programing Technique for Resource Allocation in Mobile Edge Computing. IEEE Access, 9, 167503–167520. https://doi.org/10.1109/access.2021.3134941
Mirmohseni, S. M., Javadpour, A., & Tang, C. (2021). LBPSGORA: Create Load Balancing with Particle Swarm Genetic Optimization Algorithm to Improve Resource Allocation and Energy Consumption in Clouds Networks. Mathematical Problems in Engineering, 2021, 1–15. https://doi.org/10.1155/2021/5575129
Pirozmand, P., Jalalinejad, H., Hosseinabadi, A. A. R., Mirkamali, S., & Li, Y. (2023). An improved particle swarm optimization algorithm for task scheduling in cloud computing. Journal of Ambient Intelligence and Humanized Computing, 14(4), 4313–4327. https://doi.org/10.1007/s12652-023-04541-9
Yadav, M., & Mishra, A. (2023). An enhanced ordinal optimization with lower scheduling overhead based novel approach for task scheduling in cloud computing environment. Journal of Cloud Computing, 12(1). https://doi.org/10.1186/s13677-023-00392-z
Saravanan, G., Neelakandan, S., Ezhumalai, P., & Maurya, S. (2023). Improved wild horse optimization with levy flight algorithm for effective task scheduling in cloud computing. Journal of Cloud Computing, 12(1). https://doi.org/10.1186/s13677-023-00401-1
Badri, S., Alghazzawi, D. M., Hasan, S. H., Alfayez, F., Hasan, S. H., Rahman, M., & Bhatia, S. (2023). An Efficient and Secure Model Using Adaptive Optimal Deep Learning for Task Scheduling in Cloud Computing. Electronics, 12(6), 1441. https://doi.org/10.3390/electronics12061441
Chaudhary, S., Sharma, V. K., Thakur, R. N., Rathi, A., Kumar, P., & Sharma, S. (2023). Modified Particle Swarm Optimization Based on Aging Leaders and Challengers Model for Task Scheduling in Cloud Computing. Mathematical Problems in Engineering, 2023(1). Portico. https://doi.org/10.1155/2023/3916735
Y. Hamed, A., Kh. Elnahary, M., S. Alsubaei, F., & H. El-Sayed, H. (2023). Optimization Task Scheduling Using Cooperation Search Algorithm for Heterogeneous Cloud Computing Systems. Computers, Materials & Continua, 74(1), 2133–2148. https://doi.org/10.32604/cmc.2023.032215
Y. Hamed, A., & H. Alkinani, M. (2021). Task Scheduling Optimization in Cloud Computing Based on Genetic Algorithms. Computers, Materials & Continua, 69(3), 3289–3301. https://doi.org/10.32604/cmc.2021.018658
Huang, X., Li, C., Chen, H., & An, D. (2019). Task scheduling in cloud computing using particle swarm optimization with time varying inertia weight strategies. Cluster Computing, 23(2), 1137–1147. https://doi.org/10.1007/s10586-019-02983-5
Younes, A., Kh. Elnahary, M., H. Alkinani, M., & H. El-Sayed, H. (2022). Task Scheduling Optimization in Cloud Computing by Rao Algorithm. Computers, Materials & Continua, 72(3), 4339–4356. https://doi.org/10.32604/cmc.2022.022824N.
Manikandan, N., Gobalakrishnan, N., & Pradeep, K. (2022). Bee optimization based random double adaptive whale optimization model for task scheduling in cloud computing environment. Computer Communications, 187, 35–44. https://doi.org/10.1016/j.comcom.2022.01.016
Fayed, A. R., Khalifa, N. E. M., Taha, M. H. N., & Kotb, A. (2023). Optimization of Task Scheduling in Cloud Computing Using the RAO-3 Algorithm. The 3rd International Conference on Artificial Intelligence and Computer Vision (AICV2023), March 5–7, 2023, 508–523. https://doi.org/10.1007/978-3-031-27762-7_47
DOI: https://doi.org/10.31449/inf.v49i26.7970

This work is licensed under a Creative Commons Attribution 3.0 License.