Design of an Intelligent Classification Model for Interior Design Knowledge Graph Based on Simulated Annealing Algorithm
Abstract
In real life, interior design is a complex and challenging job. Interior design solutions need to consider factors such as spatial layout, color matching, etc., and the emergence of knowledge graph provides a new method of summarizing design ideas for the interior design industry. However, in the face of a large number of knowledge graphs, how to achieve high-quality classification of knowledge graphs has become a hot topic of discussion in related industries. The work builds a knowledge graph intelligent classification model based on machine learning, simulated annealing, and genetic algorithms to accomplish effective knowledge graph classification. The global optimization of convolutional neural network parameters is accomplished by merging the model using the simulated annealing approach and the genetic algorithm. The experimental results indicated that the proposed model converged to an F1 score of about 95.03%, while the control model converged to an average F1 score of 94.37% and 94.26%. The average recall of the proposed model was 91.71% while the average recall of the control model was 87.06%. Based on the experimental findings, it can be said that the suggested model performs noticeably better than the control model, indicating that it is an improved knowledge graph classification method. In addition, the proposed model contributes to the development of interior design related industries.DOI:
https://doi.org/10.31449/inf.v48i12.6029Downloads
Published
How to Cite
Issue
Section
License
Authors retain copyright in their work. By submitting to and publishing with Informatica, authors grant the publisher (Slovene Society Informatika) the non-exclusive right to publish, reproduce, and distribute the article and to identify itself as the original publisher.
All articles are published under the Creative Commons Attribution license CC BY 3.0. Under this license, others may share and adapt the work for any purpose, provided appropriate credit is given and changes (if any) are indicated.
Authors may deposit and share the submitted version, accepted manuscript, and published version, provided the original publication in Informatica is properly cited.







