News Dissemination Information Model and User Privacy Protection Method Based on BP Neural Network
Abstract
Online social networks are widely used as the main way of news dissemination, but the dynamic information dissemination process in online social networks often requires more work to predict and control user privacy accurately. A novel dissemination information model and user privacy protection method based on BP neural network is proposed. First, in constructing a neural network, it is necessary to calculate the network weight vector for the training sample set. Secondly, to ensure that the private information of the neural network learning model is not leaked, this paper proposes to allocate the weight vector to all participants so that each participant has part of the private value of the weight vector. In addition, a secure multi-party computing protocol is used to ensure the safety of the intermediate and final weights of the neural network. Ensure the rationality of information dissemination and the security of user privacy. Experimental results show that the proposed algorithm has more advantages in execution time and accuracy error than traditional non-privacy protection algorithms.DOI:
https://doi.org/10.31449/inf.v48i11.5997Downloads
Published
How to Cite
Issue
Section
License
Authors retain copyright in their work. By submitting to and publishing with Informatica, authors grant the publisher (Slovene Society Informatika) the non-exclusive right to publish, reproduce, and distribute the article and to identify itself as the original publisher.
All articles are published under the Creative Commons Attribution license CC BY 3.0. Under this license, others may share and adapt the work for any purpose, provided appropriate credit is given and changes (if any) are indicated.
Authors may deposit and share the submitted version, accepted manuscript, and published version, provided the original publication in Informatica is properly cited.







