Provably Efficient Multi-Cancer Image Segmentation Based on Multi-Class Fuzzy Entropy
Abstract
One of the segmentation techniques with the greatest degree of success used in numerous recent applications is multi-level thresholding. The selection of appropriate threshold values presents difficulties for traditional methods, however, and, as a result, techniques have been developed to address these difficulties multidimensionally. Such approaches have been shown to be an efficient way of identifying the areas affected in multi-cancer cases in order to define the treatment area. Multi-cancer methods that facilitate a certain degree of competence are thus required. This study tested storing MRI brain scans in a multidimensional image database, which is a significant departure from past studies, as a way to improve the efficacy, efficiency, and sensitivity of cancer detection. The evaluation findings offered success rates for cancer diagnoses of 99.08%, 99.87%, 94%; 97.08%, 98.3%, and 93.38% sensitivity; the success rates of the LED Internet connection in particular were 99.99%; 98.23%, 99.53%, and 99.98%.DOI:
https://doi.org/10.31449/inf.v47i8.4840Downloads
Published
How to Cite
Issue
Section
License
Authors retain copyright in their work. By submitting to and publishing with Informatica, authors grant the publisher (Slovene Society Informatika) the non-exclusive right to publish, reproduce, and distribute the article and to identify itself as the original publisher.
All articles are published under the Creative Commons Attribution license CC BY 3.0. Under this license, others may share and adapt the work for any purpose, provided appropriate credit is given and changes (if any) are indicated.
Authors may deposit and share the submitted version, accepted manuscript, and published version, provided the original publication in Informatica is properly cited.







