Analysis of Deep Transfer Learning Using DeepConvLSTM for Human Activity Recognition from Wearable Sensors
Abstract
Human Activity Recognition (HAR) from wearable sensors has gained significant attention in the last few decades, largely because of the potential healthcare benefits. For many years, HAR was done using classical machine learning approaches that require extraction of features. With the resurgence of deep learning, a major shift happened and at the moment, HAR researchers are mainly investigating different kinds of deep neural networks. However, deep learning comes with the challenge of having access to large amounts of labeled examples, which in the field of HAR is considered an expensive task, both in terms of time and effort. Another challenge is the fact that the training and testing data in HAR can be different due to the personal preferences of different people when performing the same activity. In order to try and mitigate these problems, in this paper we explore transfer learning, a paradigm for transferring knowledge from a source domain, to another related target domain. More specifically, we explore the effects of transferring knowledge between two open-source datasets, the Opportunity and JSI-FOS datasets, using weight-transfer for the DeepConvLSTM architecture. We also explore the performance of this transfer at different amounts of labeled data from the target domain. The experiments showed that it is beneficial to transfer the weights of fewer layers, and that deep transfer learning can perform better than a domain-specific deep end-to-end model in specific circumstances. Finally, we show that deep transfer learning is a viable alternative to classical machine learning approaches as it produces comparable results and does not require feature extraction.DOI:
https://doi.org/10.31449/inf.v45i2.3648Downloads
Published
How to Cite
Issue
Section
License
Authors retain copyright in their work. By submitting to and publishing with Informatica, authors grant the publisher (Slovene Society Informatika) the non-exclusive right to publish, reproduce, and distribute the article and to identify itself as the original publisher.
All articles are published under the Creative Commons Attribution license CC BY 3.0. Under this license, others may share and adapt the work for any purpose, provided appropriate credit is given and changes (if any) are indicated.
Authors may deposit and share the submitted version, accepted manuscript, and published version, provided the original publication in Informatica is properly cited.







