Impact of Data Balancing During Training for Best Predictions
Abstract
To protect the middle class from over-indebtedness, banking institutions need to implement a flexible analytic-based evaluation method to improve the banking process by detecting customers who are likely to have difficulty in managing their debt. In this paper, we test and evaluate a large variety of data balancing methods on selected machine learning algorithms (MLAs) to overcome the effects of imbalanced data and show their impact on the training step to predict credit risk. Our objective is to deal with data unbalance to achieve the best predictions. We investigated the performance of these methods by different learners when classification models are trained using MLAs.DOI:
https://doi.org/10.31449/inf.v45i2.3479Downloads
Published
How to Cite
Issue
Section
License
Authors retain copyright in their work. By submitting to and publishing with Informatica, authors grant the publisher (Slovene Society Informatika) the non-exclusive right to publish, reproduce, and distribute the article and to identify itself as the original publisher.
All articles are published under the Creative Commons Attribution license CC BY 3.0. Under this license, others may share and adapt the work for any purpose, provided appropriate credit is given and changes (if any) are indicated.
Authors may deposit and share the submitted version, accepted manuscript, and published version, provided the original publication in Informatica is properly cited.







