Hybrid Nearest Neighbors Ant Colony Optimization for Clustering Social Media Comments
Abstract
Ant colony optimization (ACO) is one of robust algorithms for solving optimization problems, including clustering. However, high and redundant computation is needed to select the proper cluster for each object, especially when the data dimensionality is high, such as social media comments. Reducing the redundant computation may cut the execution time, but it can potentially decrease the quality of clustering. With the basic idea that nearby objects tend to be in the same cluster, the nearest neighbors method can be used to choose the appropriate cluster for some objects efficiently by considering their neighbor’s cluster. Therefore, this paper proposes the combination of nearest neighbors and ant colony optimization for clustering (NNACOC) which can reduce the computation time but is still able to retain the quality of clustering. To evaluate its performance, NNACOC was tested using some benchmark datasets and twitter comments. Most of the experiments show that NNACOC outperformed the original ant colony optimization for clustering (ACOC) in quality and execution time. NNACOC also yielded a better result than k-means when clustering the twitter comments.DOI:
https://doi.org/10.31449/inf.v44i1.2672Downloads
Published
How to Cite
Issue
Section
License
Authors retain copyright in their work. By submitting to and publishing with Informatica, authors grant the publisher (Slovene Society Informatika) the non-exclusive right to publish, reproduce, and distribute the article and to identify itself as the original publisher.
All articles are published under the Creative Commons Attribution license CC BY 3.0. Under this license, others may share and adapt the work for any purpose, provided appropriate credit is given and changes (if any) are indicated.
Authors may deposit and share the submitted version, accepted manuscript, and published version, provided the original publication in Informatica is properly cited.







