Continuous Blood Pressure Estimation from PPG Signal
Abstract
Given the importance of blood pressure (BP) as a direct indicator of hypertension, regular monitoring is encouraged for healthy people and mandatory for patients at risk from cardiovascular diseases. We propose a system in which photoplethysmogram (PPG) is used to continuously estimate BP. A PPG sensor can be easily embedded in a modern wearable device, which can be used in such an approach. A set of features describing the PPG signal on a per-cycle basis is computed to be used in regression models. The predictive performance of the models is improved by rst using the RReliefF algorithm to select a subset of relevant features. Afterwards, personalization of the models is considered to further improve the performance. The approach is validated using two distinct datasets, one from a hospital environment and the other collected during every-day activities. Using the MIMIC hospital dataset, the best achieved mean absolute errors (MAE) in a leave-one-subject-out (LOSO) experiment were 4.47 +- 5.85 mmHg for systolic and 2.02 +- 2.94 mmHg for diastolic BP, at maximum personalization. For everyday-life dataset, the lowest errors in the same LOSO experiment were 8.57 +- 7.93 mmHg for systolic and 4.42 +- 3.61 mmHg for diastolic BP, again using maximum personalization.Downloads
Published
How to Cite
Issue
Section
License
Authors retain copyright in their work. By submitting to and publishing with Informatica, authors grant the publisher (Slovene Society Informatika) the non-exclusive right to publish, reproduce, and distribute the article and to identify itself as the original publisher.
All articles are published under the Creative Commons Attribution license CC BY 3.0. Under this license, others may share and adapt the work for any purpose, provided appropriate credit is given and changes (if any) are indicated.
Authors may deposit and share the submitted version, accepted manuscript, and published version, provided the original publication in Informatica is properly cited.







