A Hybrid Particle Swarm Optimization and Differential Evolution Based Test Data Generation Algorithm for Data-Flow Coverage Using Neighbourhood Search Strategy
Abstract
Meta-heuristic search techniques, mainly Genetic Algorithm (GA), have been widely applied for automated test data generation according to a structural test adequacy criterion. However, it remains a challenging task for more robust adequacy criterion such as data-flow coverage of a program. Now, focus is on the use of other highly-adaptive meta-heuristic search techniques such as Particle Swarm Optimization (PSO) and Differential Evolution (DE). In this paper, a hybrid (adaptive PSO and DE) algorithm is proposed to generate test data for data-flow dependencies of a program with a neighbourhood search strategy to improve the search capability of the hybrid algorithm. The fitness function is based on the concepts of dominance relations and branch distance. The measures considered are mean number of generations and mean percentage coverage. The performance of the hybrid algorithm is compared with that of DE, PSO, GA, and random search. Over several experiments on a set of benchmark programs, it is shown that the hybrid algorithm performed significantly better than DE, PSO, GA and random search in data-flow test data generation with respect to the measures collected.DOI:
https://doi.org/10.31449/inf.v42i3.1497Downloads
Published
How to Cite
Issue
Section
License
Authors retain copyright in their work. By submitting to and publishing with Informatica, authors grant the publisher (Slovene Society Informatika) the non-exclusive right to publish, reproduce, and distribute the article and to identify itself as the original publisher.
All articles are published under the Creative Commons Attribution license CC BY 3.0. Under this license, others may share and adapt the work for any purpose, provided appropriate credit is given and changes (if any) are indicated.
Authors may deposit and share the submitted version, accepted manuscript, and published version, provided the original publication in Informatica is properly cited.







