MS-NADNet: A Multi-Stream Noise-Aware Deep Learning Framework for Microarray Image Denoising

Abstract

Microarray imaging is a critical tool for large-scale gene expression analysis, yet its accuracy is oftencompromised by noise introduced during sample preparation, hybridization, and image acquisition. Traditionaldenoising approaches, including median, Wiener, and wavelet-based filtering, either rely on fixedparameters or degrade under mixed-noise conditions, while CNN-based methods treat all noise uniformly,limiting adaptability. To address these limitations, we propose MS-NADNet (Multi-Stream Noise-AwareDenoising Network), a deep-learning framework that integrates a Noise Characterization Module (NCM)to identify noise type, a set of Noise-Specific Denoising Modules (NSDMs) specialized for distinct noisedistributions, and a Global Refinement Block for residual suppression. A large-scale augmented datasetwas constructed from the Malignant Lymphoma Classification dataset, incorporating 17 noise variants, includingGaussian, Poisson, salt-and-pepper, speckle, and mixed combinations, to simulate realistic imagingconditions. Experimental evaluation demonstrates that MS-NADNet achieves an MSE of 0.00012, PSNR of42.73 dB, and SSIM of 0.9861, outperforming classical filters and state-of-the-art CNN denoisers. Theseresults confirm the robustness of MS-NADNet in handling diverse single and multi-noise environments,ensuring biologically reliable microarray image analysis and improved downstream gene expression profiling.

Author Biography

Shreenidhi BS, Visvesvaraya Technological University, Belagavi, 590018, India

Research scholar , Computer Science and Engineering

References

S. Valarmathi, A. Sulthana, K. C. Latha, R. Rathan, R. Sridhar, and S. Balasubramanian, “Noise Reduction from the Microarray Images to Identify the Intensity of the Expression,” in Proceedings of the Second International Conference on Soft Computing for Problem Solving (SocProS 2012), December 28-30, 2012, B. V Babu, A. Nagar, K. Deep, M. Pant, J. C. Bansal, K. Ray, and U. Gupta, Eds., New Delhi: Springer India, 2014, pp. 1451–1465.

X. H. Wang, R. S. H. Istepanian, and Y. H. Song, “Microarray image enhancement by denoising using stationary wavelet transform,” IEEE Trans Nanobioscience, vol. 2, no. 4, pp. 184–189, 2003, doi: 10.1109/TNB.2003.816225.

D. A. Adjeroh, Y. Zhang, and R. Parthe, “On denoising and compression of DNA microarray images,” Pattern Recognit, vol. 39, no. 12, pp. 2478–2493, 2006, doi: https://doi.org/10.1016/j.patcog.2006.02.019.

C. Niu, H. Zhang, and L. Li, “Microarray Fluorescence Image Processing and Analysis,” in 2024 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), 2024, pp. 51–54. doi: 10.1109/3M-NANO61605.2024.10769626.

N. A. Golilarz, I. Dehzangi, and K. Rahimi, “Optimized Adaptive Based Method for MR Image Denoising,” in 2024 IEEE 16th International Conference on Computational Intelligence and Communication Networks (CICN), 2024, pp. 976–983. doi: 10.1109/CICN63059.2024.10847356.

A. Petrov and S. Shams, “Microarray Image Processing and Quality Control,” J VLSI Signal Process Syst Signal Image Video Technol, vol. 38, no. 3, pp. 211–226, 2004, doi: 10.1023/B:VLSI.0000042488.08307.ad.

K. Marias, T. Margaritis, D. Kafetzopoulos, H. Stefanou, and P. Tsakalides, “ Microarray Image Denoising Using a Two-Stage Multiresolution Technique ,” in 2013 IEEE International Conference on Bioinformatics and Biomedicine, Los Alamitos, CA, USA: IEEE Computer Society, Nov. 2007, pp. 383–389. doi: 10.1109/BIBM.2007.32.

P. Nandihal and S. S. Manjunath, “A Study on Denoising Techniques for Microarray Images,” 2017.

R. K. Arunakumari Kakumani Kaustubha A. Mendhurwar, “Microarray Image Denoising using Independent Component Analysis,” Int J Comput Appl, vol. 1, no. 11, pp. 87–93, Feb. 2010, doi: 10.5120/234-388.

N. Samsudin, R. Hashim, and N. E. Abdul Khalid, “Denoising and block gridding of microarray image using mathematical morphology,” in 2012 7th International Conference on Computing and Convergence Technology (ICCCT), 2012, pp. 230–235.

L. Srinivasan, Y. Rakvongthai, and S. Oraintara, “Microarray Image Denoising Using Complex Gaussian Scale Mixtures of Complex Wavelets,” IEEE J Biomed Health Inform, vol. 18, no. 4, pp. 1423–1430, 2014, doi: 10.1109/JBHI.2014.2318279.

S. BS and S. Ramachandran, “Microarray image enhancement techniques by denoising: Current status and future directions,” International Journal of Natural Sciences Research, vol. 11, no. 1, pp. 44–51, 2023, doi: None.

M. M. Dhas and N. S. Singh, “Breast Cancer Diagnosis Using Majority Voting Ensemble Classifier Approach,” Journal of Soft Computing and Data Mining, vol. 5, no. 1, pp. 152 – 169, 2024, doi: 10.30880/jscdm.2024.05.01.013.

A. Mastrogianni, E. Dermatas, and A. Bezerianos, “Microarray Image Denoising using Spatial Filtering and Wavelet Transformation,” in 13th International Conference on Biomedical Engineering, C. T. Lim and J. C. H. Goh, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 594–597.

A. S. Agnal and K. Mala, “Noise Removal From Microarray Images Using Maximum a Posteriori Based Bivariate Estimator,” International Journal of Image, Graphics and Signal Processing, vol. 5, no. 1, pp. 32–39, 2013, doi: 10.5815/ijigsp.2013.01.05.

M. Mastriani and Alberto. E. Giraldez, “Microarrays denoising via smoothing of coefficients in wavelet domain,” 2018. [Online]. Available: https://arxiv.org/abs/1807.11571

G. S. C. Kumar, R. K. Kumar, G. A. Naidu, and J. Harikiran, “Noise removal in microarray images using variational mode decomposition technique,” Telkomnika (Telecommunication Computing Electronics and Control), vol. 15, no. 4, pp. 1750–1756, 2017, doi: 10.12928/TELKOMNIKA.v15i4.5375.

S. Arumugam, B. Yohannis, J. Uthayakumar, and S. Sivakumar, “Restoration of Noisy Microarray Images using Filtering Techniques,” vol. 25, no. 4, pp. 21095–21106, 2021.

C. Gopalappa, T. K. Das, S. Enkemann, and S. Eschrich, “Removal of hybridization and scanning noise from microarrays.,” IEEE Trans Nanobioscience, vol. 8, no. 3, pp. 210–218, Sep. 2009, doi: 10.1109/TNB.2009.2029100.

A. Zifan, M. H. Moradi, and S. Gharibzadeh, “Microarray image enhancement by denoising using decimated and undecimated multiwavelet transforms,” Signal Image Video Process, vol. 4, no. 2, pp. 177–185, 2010, doi: 10.1007/s11760-009-0109-4.

R. Ren, Z. Guo, Z. Jia, J. Yang, N. K. Kasabov, and C. Li, “Speckle Noise Removal in Image-based Detection of Refractive Index Changes in Porous Silicon Microarrays,” Sci Rep, vol. 9, no. 1, p. 15001, 2019, doi: 10.1038/s41598-019-51435-y.

B. S. Gowri, S. A. H. Nair, and K. P. S. Kumar, “Hybrid arithmetic optimization algorithm with deep transfer learning based microarray gene expression classification model,” International Journal of Information Technology, vol. 16, no. 6, pp. 3923–3928, 2024, doi: 10.1007/s41870-024-01901-2.

S. E. Kuzhali and S. D. S., “Collaborative Priors with SVD for Denoising of cDNA Microarray Images,” Indian J Sci Technol, vol. 12, no. 37, pp. 1–15, 2019, doi: 10.17485/ijst/2019/v12i37/147036.

P. Nandihal, V. Bhat, and J. Pujari, “Application of FFDNET for Image Denoising On Microarray Images,” International Journal of Recent Technology and Engineering (IJRTE), vol. 8, pp. 2691–2694, 2019, doi: 10.35940/ijrte.C4950.098319.

R. Sunitha and H. B. Phani Raju, “Evolutionary Tool for Denoising DNA Microarray Images Using CNN,” in Microelectronics, Communication Systems, Machine Learning and Internet of Things, V. Nath and J. K. Mandal, Eds., Singapore: Springer Nature Singapore, 2023, pp. 193–201.

N. V Orlov et al., “Automatic classification of lymphoma images with transform-based global features.,” IEEE Trans Inf Technol Biomed, vol. 14, no. 4, pp. 1003–1013, Jul. 2010, doi: 10.1109/TITB.2010.2050695.

J. Liu et al., “Speckle noise reduction for medical ultrasound images based on cycle-consistent generative adversarial network,” Biomed Signal Process Control, vol. 86, p. 105150, 2023, doi: https://doi.org/10.1016/j.bspc.2023.105150.

P. Nandihal, “Image Noise Type Identification in Microarray Images Using CNN-INC,” International Journal of Advanced Trends in Computer Science and Engineering, vol. 9, pp. 6279–6288, 2020, doi: 10.30534/ijatcse/2020/307942020.

A. Mohandas, S. M. Joseph, and P. S. Sathidevi, “An Autoencoder based Technique for DNA Microarray Image Denoising,” in 2020 International Conference on Communication and Signal Processing (ICCSP), 2020, pp. 1366–1371. doi: 10.1109/ICCSP48568.2020.9182265.

Authors

  • Shreenidhi BS Visvesvaraya Technological University, Belagavi, 590018, India
  • R Saravana Kumar Visvesvaraya Technological University, Belagavi, 590018, India

DOI:

https://doi.org/10.31449/inf.v50i8.11954

Downloads

Published

02/21/2026

How to Cite

BS, S., & Kumar, R. S. (2026). MS-NADNet: A Multi-Stream Noise-Aware Deep Learning Framework for Microarray Image Denoising. Informatica, 50(8). https://doi.org/10.31449/inf.v50i8.11954