
https://doi.org/10.31449/inf.v50i5.11622 Informatica 50 (2026) 325–338 325 

 

Adaptive Multi-Scale Image Stitching Using an Attention-Enhanced 

BiFPN With Contrast-Aware Optimization 

 

Guiqiang Zhang*, Huihui Han 

School of Computer and Software Engineering, Anhui Institute of Information Engineering, Wuhu 241009, China 

E-mail: 18755531389@163.com, 18356977919@163.com 
*Corresponding author 

Keywords: computer image stitching, BiFPN, adaptive weighting mechanism, attention mechanism, global contrast 

enhancement 

Received: September 10, 2025 

To address the challenges of low stitching accuracy and limited robustness in complex scenes, this study 

proposed an image stitching model based on an improved Bi-directional Feature Pyramid Network 

(BiFPN). The model enhances performance through three key optimizations. First, an adaptive 

weighting mechanism dynamically balances the global and local contributions of multi-scale features. 

Second, a Squeeze-and-Excitation (SE) attention mechanism strengthens feature extraction in critical 

stitching regions such as edges and textures. Third, a global contrast enhancement module mitigates 

illumination variation effects on feature matching through multi-scale histogram equalization and 

adaptive calibration. Experiments were conducted on two benchmark datasets: Microsoft Common 

Objects in Context (MS COCO) and the Karlsruhe Institute of Technology and Toyota Technological 

Institute (KITTI). From MS COCO, 1,500 image pairs were selected (500 with illumination variations 

and 500 with scale variations). From KITTI, 1,500 image pairs were selected (800 static scenes and 700 

dynamic targets). Each dataset was split into training and validation sets with an 8:2 ratio. Training 

used a batch size of 16, 50 epochs, and an initial learning rate of 0.001 with a 50% decay every 10 

epochs. Comparative methods included traditional algorithms such as Oriented FAST and Rotated 

BRIEF (ORB) and Scale-Invariant Feature Transform (SIFT), as well as deep learning approaches 

including Vision Transformer-Large/16 (ViT-L/16) and the Stitch Generative Adversarial Network. The 

proposed model outperformed all baselines in complex scenarios. On the MS COCO dataset with 

illumination variations, the mean squared error (MSE) reached 1.12×10⁻²—69.09% lower than ORB 

and 39.46% lower than ViT-L/16. The peak signal-to-noise ratio (PSNR) increased to 34.89 dB, 

improving by 5.11 dB over SIFT and 2.75 dB over other models. The structural similarity index (SSIM) 

reached 0.946, exceeding competing methods by 7.26%. On the KITTI dataset with dynamic targets, the 

feature matching accuracy reached 92.3%, a 17.95% improvement over SIFT, while the stitching time 

decreased to 1.78 s, 30.47% faster than other models. The model maintained high robustness under 

parallax and motion blur conditions, providing precise and efficient image stitching for vision-based 

control and automation tasks such as robotic navigation and industrial monitoring. 

Povzetek: Študija predstavlja izboljšan model za spajanje slik na osnovi BiFPN, ki z adaptivnim 

uteževanjem, pozornostnim mehanizmom SE in izboljšavo kontrasta dosega višjo natančnost, robustnost 

in hitrost spajanja v kompleksnih prizorih kot obstoječe metode. 

 

1 Introduction 
With the widespread application of image processing 

across diverse fields, image stitching has attracted 

increasing attention as a core technique [1]. In domains 

such as remote sensing, medical imaging, virtual reality, 

and autonomous driving, image stitching not only 

requires high accuracy in the final composite image but 

must also handle challenges such as illumination 

variations, viewpoint differences, and detail preservation 

in complex scenes [2]. Traditional stitching algorithms—

such as feature point-based Oriented FAST and Rotated 

BRIEF (ORB) and Scale-Invariant Feature Transform 

(SIFT)—exhibit limitations when dealing with 

illumination changes, scale variations, and intricate  

 

textures [3, 4]. In recent years, deep learning-based 

approaches, particularly those employing neural 

networks for multi-scale feature extraction, have 

demonstrated substantial advantages in improving 

stitching quality and robustness [5, 6]. 

Among these methods, the Bi-directional Feature 

Pyramid Network (BiFPN) performs effectively in multi-

scale feature processing; however, it still faces several 

challenges in image stitching tasks [7, 8]. First, the 

conventional BiFPN framework does not adequately 

evaluate the relative importance of features at different 

hierarchical levels during fusion, making it difficult to 

achieve an optimal balance between global information 

and local detail [9]. Second, under complex lighting 
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conditions and richly textured scenes, the model’s ability 

to extract key features remains insufficient, often 

resulting in stitching gaps and ghosting artifacts. 

Moreover, edge blending in overlapping regions 

frequently becomes a performance bottleneck, where 

unnatural transitions and inconsistent contrast remain 

unresolved issues in real-world applications. 

This study is structured as follows: Section 2 reviews 

recent advances in computer image stitching, analyzing 

the strengths and weaknesses of both traditional and deep 

learning-based methods. Section 3 presents the proposed 

stitching algorithm based on the improved BiFPN model, 

detailing the adaptive weighting mechanism, Squeeze-

and-Excitation (SE) attention module, and Global 

Contrast Enhancement (GCE) module. Section 4 

evaluates the effectiveness of the proposed method 

through experiments on multiple datasets. Finally, 

Section 5 concludes the study and outlines future 

research directions. The core research question addressed 

in this study is whether an attention-enhanced BiFPN 

model integrated with GCE can surpass state-of-the-art 

methods in both stitching accuracy and efficiency under 

challenging conditions such as illumination variation, 

dynamic targets, and parallax distortion. The study 

hypothesizes that the synergistic design—comprising 

GCE-based preprocessing for illumination optimization, 

SE attention for feature enhancement in critical regions, 

and adaptive weighting for balanced multi-scale 

information fusion—can effectively overcome the 

robustness and real-time limitations of existing 

approaches. The expected contributions are threefold: (1) 

proposing an integrated “preprocessing–feature fusion” 

framework, (2) quantitatively validating its superior 

performance over traditional and deep learning-based 

baselines across multiple datasets, and (3) providing 

high-precision and high-efficiency image stitching 

support for vision-based control tasks such as robotic 

navigation and industrial monitoring. 

2 Literature review 
Early image stitching methods primarily relied on feature 

point matching. Okarma and Kopytek improved stitching 

accuracy through their work on SIFT-based techniques 

[10]. Ullah et al. enhanced algorithmic efficiency using 

ORB, making it suitable for real-time applications. 

However, these handcrafted feature-based algorithms 

still exhibit limitations in complex scenes, particularly 

under illumination changes, scale variations, and intricate 

backgrounds [11]. 

With the advancement of convolutional neural 

networks, Lin et al. proposed a deep learning-based 

stitching method that effectively improved accuracy and 

reduced stitching errors, although its computational cost 

remained high [12]. The BiFPN enables efficient multi-

scale feature fusion through bidirectional feature 

connections and adaptive weighting, substantially 

enhancing fusion efficiency and detail representation in 

complex scenes [13]. Xia et al. successfully applied 

BiFPN to image segmentation tasks, demonstrating its 

superiority in multi-scale feature processing and 

improved segmentation accuracy [14]. Nevertheless, 

most existing studies have focused on object detection 

and segmentation, with limited systematic exploration of 

image stitching—particularly concerning the 

enhancement of stitching accuracy through multi-scale 

feature fusion. 

Despite notable progress in image stitching for 

simple scenes, numerous challenges persist in complex 

environments. Qiao et al. reported that illumination 

variations and complex textures significantly affected 

traditional stitching algorithms, increasing stitching 

errors [15]. Azizi et al. mitigated stitching gaps and 

ghosting through local optimization techniques, though 

edge blending remained suboptimal [16]. Moreover, 

Zhang et al. highlighted that although deep learning 

methods improved stitching accuracy, their high 

computational complexity created bottlenecks in large-

scale data processing, underscoring the need for 

enhanced efficiency [17]. 

Overall, traditional stitching techniques perform well 

in simple scenes but struggle under complex conditions. 

Deep learning-based approaches such as BiFPN have 

improved accuracy, yet further optimization is required 

to enhance both efficiency and precision, particularly in 

scenarios involving illumination changes and ghosting. 

To systematically clarify the research status, advantages, 

and limitations of existing stitching methods—and to 

define the innovation point of this study—a structured 

comparison is presented in Table 1, summarizing 

traditional feature-matching methods, mainstream deep 

learning approaches, and the baseline BiFPN model prior 

to improvement. 

 

Table 1: Summary of existing image stitching methods and their performance. 

Method Accuracy Metrics Strengths Limitations 

ORB (Traditional 

Feature Matching) 

MSE: 3.85×10⁻²; 

PSNR: 29.12 dB; 

SSIM: 0.865 

High computational efficiency 

(stitching time: 1.23 s); moderate 

adaptability to scale variations; suitable 

for real-time, low-precision 

applications. 

Poor illumination robustness; 

feature matching accuracy drops 

to 78.6% under illumination 

variation; stitching gaps appear at 

edges (average gap width: 4 

pixels). 
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SIFT (Traditional 

Feature Matching) 

MSE: 3.52×10⁻²; 

PSNR: 29.78 dB; 

SSIM: 0.878 

Strong scale invariance and high 

matching accuracy in textured regions; 

better noise resistance than ORB. 

Time-consuming (1.35 s per 

image pair); low recall rate 

(75.2%) in dynamic scenes; prone 

to ghosting artifacts. 

Deep Learning – 

Feature Pyramid 

MSE: 2.38×10⁻²; 

PSNR: 30.78 dB; 

SSIM: 0.882 

Enables hierarchical multi-scale feature 

extraction; better global structural 

consistency than traditional methods; 

relatively lightweight (8.5 M 

parameters). 

Uses fixed fusion weights, 

limiting dynamic balance between 

global and local features; low-

level features distort under 

uneven illumination. 

U-Net (Deep 

Learning – 

Segmentation 

Derived) 

MSE: 2.10×10⁻²; 

PSNR: 31.54 dB; 

SSIM: 0.895 

Encoder–decoder architecture 

effectively preserves local details; 

superior texture restoration at stitching 

edges compared with pyramid-based 

models. 

High computational complexity 

(stitching time: 3.15 s); low 

efficiency in global feature 

propagation; noticeable 

misalignment under large 

parallax. 

ViT-L/16 (Deep 

Learning – 

Transformer) 

MSE: 1.85×10⁻²; 

PSNR: 32.45 dB; 

SSIM: 0.902 

Global attention mechanism effectively 

captures long-range feature 

dependencies; achieves 87.5% 

matching accuracy in dynamic scenes. 

Large model size (30.2 M 

parameters) and high 

computational cost (45.8 

GFLOPs); contrast-sensitive 

under illumination variation, 

causing SSIM fluctuations. 

StitchGAN (Deep 

Learning – GAN 

Derived) 

MSE: 1.62×10⁻²; 

PSNR: 33.12 dB; 

SSIM: 0.915 

Generative architecture enhances visual 

coherence in stitched regions; superior 

ghosting suppression (ghosting level: 

2.8) compared with traditional 

methods. 

Unstable training prone to mode 

collapse; poor real-time 

performance (stitching time: 2.56 

s); unsuitable for low-latency 

applications. 

Baseline BiFPN 

(Deep Learning – 

Bidirectional 

Feature Fusion) 

MSE: 2.68×10⁻²; 

PSNR: 28.56 dB; 

SSIM: 0.851 

Bidirectional feature propagation 

improves cross-scale fusion efficiency; 

reduces feature loss compared with 

standard FPN; edge matching error 

decreased by 15%. 

Limited adaptability to 

illumination variation and 

insufficient extraction of key 

regions in complex scenes. 

 

3 Research method for optimizing 

computer image stitching 

technology 

3.1 Improved BiFPN model structure 

BiFPN establishes skip connections between each scale 

layer, allowing the network to flexibly propagate features 

across different scales, thereby enhancing multi-scale 

feature fusion. The structure is illustrated in Figure 1. 

Its core is illustrated in Equation (1): 

𝑃𝑖,𝑗 = ∑  𝑁
𝑘=1 𝑤𝑘 ⋅ Up⁡(𝑃𝑖−1,𝑘) + Down⁡(𝑃𝑖+1,𝑘) (1) 

𝑃𝑖,𝑗 represents the j-th feature map at the i-th level, while 

Up(⋅)  and Down(⋅)  denote the upsampling and 

downsampling operations of the feature maps, 

respectively. 𝑤𝑘 is the weight factor used to control the 

fusion weighting of features at different levels. 

p3 p4 p5 p6 p7

 
Figure 1: BiFPN model structure. 

 

Based on BiFPN, this study proposes an improved 

model structure focused on addressing specific issues in 

image stitching tasks. The main innovations include an 

adaptive weighting mechanism, an attention mechanism, 

and a GCE module. 
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Given multiple feature maps 𝑃𝑖 , the computation for 

adaptive weighting is expressed in Equation (2) [18]: 

 𝑃fused⁡ = ∑  𝑁
𝑖=1

𝑤𝑖⋅𝑃𝑖

∑  𝑁
𝑖=1𝑤𝑖

 (2) 

𝑤𝑖  is the adaptive weight coefficient obtained 

through training. To ensure that the weights remain 

positive and stable, the Softmax function is employed for 

normalization, as shown in Equation (3): 

 𝑤𝑖 =
exp(𝑠𝑖)

∑  𝑁
𝑗=1 exp⁡(𝑠𝑗)

  (3) 

𝑠𝑖 represents the raw weight scores learned through 

the network. 

To further enhance the extraction and reinforcement 

of key feature areas, this study introduces the SE 

attention mechanism into BiFPN. This mechanism 

enhances key features while suppressing irrelevant ones 

through a "squeeze-excitation" operation.  

The working principle of the SE module is as 

follows [19]: 

Squeeze operation: the feature map undergoes global 

average pooling to generate a global feature descriptor 

for each channel, as expressed in Equation (4): 

 𝑧𝑐 =
1

𝐻×𝑊
∑  𝐻
𝑖=1 ∑  𝑊

𝑗=1 𝑥𝑖,𝑗,𝑐  (4) 

𝑥𝑖,𝑗,𝑐 denotes the value at position (𝑖, 𝑗) in channel c 

of the input feature map, and H and W are the height and 

width of the feature map, respectively. 

Excitation operation: a two-layer fully connected 

operation is performed on the global descriptor vector 𝑧𝑐 

to generate the weights for each channel, as shown in 

Equation (5): 

 𝑠𝑐 = 𝜎(𝑊2 ⋅ ReLU⁡(𝑊1 ⋅ 𝑧𝑐))  (5) 

𝑊1 and 𝑊2 are the weight matrices, and σ(⋅) is the 

Sigmoid activation function used to scale the output to 

the range [0,1]. 

Finally, the obtained weights are multiplied by the 

original feature map channel-wise to enhance important 

features, as shown in Equation (6): 

 𝑃̃𝑐 = 𝑠𝑐 ⋅ 𝑃𝑐  (6) 

By introducing the SE module, the improved BiFPN 

model can more effectively capture key regions in 

images, particularly in complex scenes (such as image 

edges and textured areas), thereby significantly reducing 

stitching errors caused by insufficient feature extraction. 

To further reduce errors in image stitching, 

especially in scenes with significant illumination changes 

or contrast differences, this study introduces a GCE 

module [20]. 

3.2 Feature extraction and matching 

This study employs traditional ORB or SIFT methods for 

the initial detection of feature points and the generation 

of descriptors, in conjunction with the feature extraction 

results from BiFPN to further improve the accuracy of 

feature matching. The feature point detection process for 

ORB is expressed in Equation (7) [21]: 

 𝐷 = ∑  𝑁
𝑖=1 (𝐼(𝑝𝑖) − 𝐼(𝑞𝑖))

2
  (7) 

𝐼(𝑝𝑖) and 𝐼(𝑞𝑖) are the grayscale values at the image 

pixel points 𝑝𝑖  and 𝑞𝑖, respectively, and 𝐷 represents the 

distance between feature descriptors, allowing for feature 

point matching in the image. 

SIFT processes the image at multiple scales by 

constructing a Gaussian pyramid, then detects key points 

using the Difference of Gaussian (DoG) method and 

generates scale-invariant feature descriptors for each key 

point [22]. The computation of the Gaussian pyramid is 

expressed in Equation (8): 

 𝐿(𝑥, 𝑦, 𝜎) = 𝐺(𝑥, 𝑦, 𝜎) ∗ 𝐼(𝑥, 𝑦)  (8) 

𝐿(𝑥, 𝑦, 𝜎) is the Gaussian blurred image of the input 

image at scale 𝜎 , 𝐺(𝑥, 𝑦, 𝜎)  is the Gaussian kernel 

function, and 𝐼(𝑥, 𝑦) is the input image. 

The calculation of key point detection is given in 

Equation (9): 

 𝐷(𝑥, 𝑦, 𝜎) = 𝐿(𝑥, 𝑦, 𝑘𝜎) − 𝐿(𝑥, 𝑦, 𝜎)  (9) 
Although traditional ORB and SIFT methods can 

effectively extract feature points, their matching accuracy 

may decline in scenarios with significant illumination 

changes, scale variations, or noise interference [23]. To 

address this, this study combines the improved BiFPN 

model, utilizing an adaptive weighting mechanism and 

attention mechanism to further extract multi-scale feature 

information from the images. 

Specifically, features extracted by the BiFPN model 

can be fused with features from ORB or SIFT to create a 

more comprehensive set of feature descriptors [24]. For 

each pair of potential matching feature points, assuming 

their descriptors are d1 and d2, the fused distance metric 

can be expressed as Equation (10): 

 𝐷fused = 𝛼 ⋅ 𝐷ORB/SIFT + 𝛽 ⋅ 𝐷BiFPN  (10) 

𝐷ORB/SIFT  is the distance for traditional feature 

matching, 𝐷BiFPN  is the matching distance for BiFPN 

model features, and 𝛼  and 𝛽  are weighting coefficients 

used to adjust the contribution of different features. This 

fusion significantly enhances feature matching accuracy 

in complex scenes. 

Once feature point detection and matching are 

completed, the next step is to accurately align the two 

images through image registration. Since there may be a 

considerable number of mismatches in the initial feature 

matching, the Random Sample Consensus (RANSAC) 

algorithm is employed to precisely filter the matched 

feature points, ensuring the final image stitching is 

accurate [25]. 

Let the matched feature point pairs be {(xi, xi′)}; 

where 𝑥𝑖 is the feature point in the first image and 𝑥𝑖
′ is 

the corresponding point in the second image. RANSAC 

estimates the homography matrix 𝐇 between the images 

as shown in Equation (11): 

 𝑥𝑖
′ = 𝐇 ⋅ 𝑥𝑖  (11) 

The specific steps are as follows: 

(1) Randomly select 4 pairs of points from the 

matched feature point set to estimate the homography 

matrix H. 

(2) Transform all matched points using the estimated 

H and compute the geometric error for all points, as 

indicated in Equation (12): 

 𝑒𝑖 = ∥∥𝑥𝑖
′ −𝐇 ⋅ 𝑥𝑖∥∥  (12) 
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(3) Count the number of inliers that fit the 

transformation model (i.e., the number of points with 

errors below a certain threshold). 

(4) Repeat the above steps several times, selecting 

the model with the maximum number of inliers as the 

final registration result. 

3.3 Intelligent stitching strategy 

The fusion operation involves not only a smooth 

transition in spatial resolution but also the maintenance 

of consistency in the depth and semantic levels of 

features [26]. To achieve this goal, during the fusion 

process, different response strengths for feature layers 

are weighted to assign appropriate weights to features at 

various scales, balancing the contributions of global 

information and local details [27]. This is expressed in 

Equation (13): 

 𝐹final (𝑥, 𝑦) = ∑  𝐿
𝑖=1 𝑤𝑖 ⋅ 𝐹𝑖(𝑥, 𝑦)  (13) 

𝐹𝑖(𝑥, 𝑦) represents feature maps at different levels, 

and 𝑤𝑖  is the weight adaptively computed based on the 

importance of each feature layer. This weighting 

approach enhances the contribution of low-level features 

while maintaining global semantic information, 

achieving a balance between overall coherence and detail 

preservation in the stitching effect. This equation shares 

the core concept of the adaptive weighting mechanism 

described in Equation (2) of Section 3.1, but it is applied 

in a different context. The former is used in the final 

stitching fusion stage, acting on the feature maps 

processed by BiFPN and SE modules, where the weights 

are adjusted according to the semantic contribution of the 

stitching scene. In contrast, the latter serves as the 

fundamental mechanism for cross-scale feature 

propagation within BiFPN, operating on the original 

feature maps to achieve initial fusion. The two are 

therefore not redundant but represent targeted 

applications of the same underlying principle at different 

stages. 

This study employs a refined edge smoothing 

strategy. Initially, local Gaussian blur is applied to the 

stitching edges to make the feature transition more 

natural, thereby avoiding noticeable stitching artifacts 

caused by feature discrepancies at the edges [28]. 

Simultaneously, the pixel values in the stitching area are 

adjusted using a weight gradient method, allowing the 

pixel values in the edge region to gradually transition to 

those of the adjacent image as the distance increases [29]. 

This process is detailed in Equation (14): 

𝐼blend (𝑥, 𝑦) = 𝛼(𝑥, 𝑦)𝐼1(𝑥, 𝑦) + (1 − 𝛼(𝑥, 𝑦))𝐼2(𝑥, 𝑦)(14) 

𝛼(𝑥, 𝑦) is a weight coefficient that varies in the edge 

transition area, facilitating a smooth transition from one 

image to another through linear or nonlinear adjustments. 

This method avoids unnatural transitions caused by 

forced edge alignment. 

In the edge stitching region, differences in brightness 

or feature misalignment often arise due to varying image 

sources, resulting in visible stitching lines [30]. To 

mitigate these issues, this study introduces a dynamic 

feature enhancement mechanism for areas near the 

stitching line. Specifically, the BiFPN model adaptively 

adjusts the feature hierarchy in the stitching area, 

allowing the contributions of features at different levels 

to vary according to needs. This dynamic adjustment 

effectively smooths the transition areas of the images, 

preventing the edge features from appearing disjointed. 

The edge optimization is expressed in Equation (15): 

 𝐹edge = 𝛾 ⋅ 𝐹fused + (1 − 𝛾) ⋅ 𝐹local  (15) 

𝐹fused is the globally fused feature, 𝐹local is the local 

feature at the edge, and 𝛾 is an adaptive edge adjustment 

coefficient that dynamically changes with the edge 

position to smooth the features in the edge region [31]. 

This study combines the context feature consistency 

measure in the BiFPN model to automatically detect 

feature inconsistencies in the edge areas of the stitched 

image. Through multiple iterative adjustments, it aims to 

balance global and local features at the stitching line, 

thus reducing stitching incoherence. To suppress 

ghosting phenomena, the proposed strategy is based on 

minimizing feature consistency errors. The specific 

formula is given in Equation (16): 

 𝐸edge = ∑  (𝑥,𝑦)∈Ωedge
∥∥𝐹1(𝑥, 𝑦) − 𝐹2(𝑥, 𝑦)∥∥  (16) 

Ωedge represents the stitching edge area, and 𝐹1(𝑥, 𝑦) 

and 𝐹2(𝑥, 𝑦) are the features of the images on either side 

of the edge region. By optimizing this error function, 

ghosting at the edges can be effectively reduced.  

3.4 Architecture and algorithm of the 

GCE module 

The GCE module adopts a two-stage serial architecture 

of “Multi-scale Histogram Equalization – Adaptive 

Contrast Calibration” to achieve coordinated 

optimization of global illumination correction and local 

detail preservation. (1) Multi-scale Histogram 

Equalization Unit (MHEU): The input image with a 

resolution of 512×512 (consistent with the experimental 

image size) was decomposed into three scales using a 

Gaussian pyramid. The bottom layer employed a 3×3 

Gaussian kernel to emphasize fine local textures (e.g., 

vegetation and road surface granularity), the middle layer 

used a 5×5 kernel to enhance medium-scale regions (e.g., 

building edges and object contours), and the top layer 

applied a 7×7 kernel to capture the overall illumination 

distribution. For each scale, contrast-limited histogram 

equalization was performed. The grayscale histogram 

was first computed, bins exceeding the contrast 

limitation threshold were clipped (to avoid over-

enhancement), and the clipped pixels were redistributed 

evenly to other bins to correct the distribution. A 

cumulative distribution function (CDF) was then used to 

perform grayscale mapping. Finally, dynamic weighted 

fusion (bottom layer weight 0.25, middle layer 0.4, top 

layer 0.35) was applied to integrate the enhancement 

results across scales, balancing fine detail and global 

illumination effects. (2) Adaptive Contrast Calibration 

Unit: The enhanced image was divided into 16×16 non-

overlapping local blocks. For each block, a contrast 

evaluation value was computed based on the maximum, 

minimum, and mean grayscale values. Dynamic gain was 

assigned accordingly: under-enhanced blocks (contrast < 
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0.2) received high-gain amplification, normal blocks (0.2 

≤ contrast ≤ 0.8) retained unit gain, and over-enhanced 

blocks (contrast > 0.8) were subjected to low-gain 

suppression. Bilinear interpolation was used to map the 

block-level gains to a pixel-level gain map, which was 

multiplied pixelwise with the image and clipped to the [0, 

255] grayscale range to generate the final optimized 

image. 

The GCE module serves as the core component of 

the image preprocessing stage, positioned between “raw 

image input” and the “feature extraction pipeline.” Its 

activation is triggered by the global contrast evaluation 

value 𝐶𝑔𝑙𝑜𝑏𝑎𝑙 , defined as the difference between the 

maximum and minimum grayscale values divided by 255: 

the module automatically activates when 𝐶𝑔𝑙𝑜𝑏𝑎𝑙 < 0.3, 

while only standard grayscale normalization is performed 

when 𝐶𝑔𝑙𝑜𝑏𝑎𝑙 ≥ 0.3to avoid redundant computation. The 

optimized image output is simultaneously fed into two 

key branches: (1) the input feature detector, where 

enhanced contrast improves corner response and 

keypoint localization accuracy, thereby increasing initial 

feature matching stability; and (2) the lower 

convolutional layers of the improved BiFPN, serving as 

the raw data for multi-scale feature fusion and ensuring 

that low-level edge and texture features remain 

unaffected by illumination variation. Moreover, the GCE 

module operates synergistically with the SE attention 

module. When calculating channel weights, the SE 

module utilizes the grayscale gradient of the GCE output 

image as an auxiliary feature, preferentially enhancing 

channel weights corresponding to high-contrast regions 

such as stitching edges, thereby further strengthening 

feature representation in key areas. Table 2 presents the 

related parameters and configuration methods of the 

GCE module. 

 

Table 2: Parameters and configuration methods of the GCE module. 

 

Parameter 

Type 
Parameter Name Value Configuration Method and Rationale 

Architectural 

Gaussian 

pyramid 

decomposition 

scale 

3 layers 

Determined through comparative experiments on the Microsoft 

Common Objects in Context (MS COCO) dataset: 2 layers failed 

to capture fine textures, while 4 layers increased computational 

cost by over 30%; 3 layers achieved a balance between accuracy 

and efficiency. 

Architectural 
Gaussian kernel 

size per scale 

Bottom: 3×3; 

Middle: 5×5; 

Top: 7×7 

Optimized through 5-fold cross-validation: this combination 

improved feature-matching accuracy by 8.3% compared to single 

kernel sizes in KITTI static scene tests. 

Algorithmic 

CLAHE 

contrast 

limitation 

threshold 

0.015 

Verified on the MS COCO illumination-variation subset (1,200 

image pairs): thresholds below 0.01 caused over 12% texture 

distortion, while those above 0.02 yielded less than 8% contrast 

improvement. 

Algorithmic Local block size 16×16 

Comparative experiments showed that 8×8 blocks led to 

excessive gain fluctuation, while 32×32 blocks failed to capture 

local overexposure; 16×16 achieved the lowest calibration error. 

Algorithmic 
Dynamic gain 

range 
[0.7, 1.2] 

Empirically validated to maintain pixel overflow rate below 

0.3%, preventing artifacts from extreme gain values. 

Triggering 
Global contrast 

trigger threshold 
0.3 

Determined based on ORB/SIFT feature matching rate tests: 

when below this value, matching rate decreased by over 20%; 

above this value, additional contrast enhancement was 

unnecessary. 

Fusion 

Multi-scale 

weighted fusion 

coefficients 

Bottom: 0.25; 

Middle: 0.4; 

Top: 0.35 

Co-optimized with BiFPN adaptive weights via end-to-end 

training, yielding an SSIM improvement of 0.032 under 

illumination-variant conditions in MS COCO. 

 

3.5 Experimental design 

For the experiments, two widely used benchmark 

datasets in image stitching and computer vision—MS 

COCO and KITTI—were employed. The MS COCO 

dataset contains high-resolution images from diverse 

real-world scenes with complex lighting conditions, 

object occlusions, and scale variations, making it well-

suited for evaluating stitching performance in visually 

intricate environments. The KITTI dataset, primarily 

designed for autonomous driving research, provides  

 

extensive image sequences captured in real urban settings, 

offering multi-view information on roads, buildings, and 

vehicles. 

Table 3: Experimental parameter settings. 

 

Parameter name Parameter Value 

BiFPN layer depth 3, 5, 7 

Adaptive weight 

coefficient (α, β) 
0.2, 0.5, 0.8 

Gaussian blur standard 1, 2, 3 
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deviation (σ) 

Learning rate 
0.001, 0.0005, 

0.0001 

Batch size 16 

Number of training rounds 50 

Image resolution 512512 

Feature fusion weight 

gradient coefficient (γ) 
0.1, 0.3, 0.5 

 

To ensure the model’s optimal performance, all key 

parameters were carefully fine-tuned through iterative 

experimentation. The primary experimental parameters 

and their configurations are summarized in Table 3. 

To comprehensively evaluate the performance of the 

improved BiFPN model in image stitching tasks, this 

study designs multiple evaluation metrics covering image 

quality, visual consistency, and algorithm efficiency. The 

MSE measures the average error in pixel values between 

the stitched image and the reference image; a lower MSE 

indicates better stitching results. This is expressed in 

Equation (17): 

 MSE =
1

𝑀×𝑁
∑  𝑀
𝑖=1 ∑  𝑁

𝑗=1 [𝐼(𝑖, 𝑗) − 𝐼′(𝑖, 𝑗)]2 (17) 

M and N are the height and width of the image, 

respectively. 𝐼(𝑖, 𝑗)  is the pixel value of the original 

image at position (𝑖, 𝑗), and 𝐼′(𝑖, 𝑗) represents the pixel 

value of the stitched image at position (𝑖, 𝑗). 
The PSNR is used to assess the quality of the 

stitched image, with higher PSNR values indicating less 

distortion, as shown in Equation (18): 

 PSNR = 10log10⁡ (
𝐿2

MSE
)  (18) 

L is the maximum pixel value of the image (for 8-bit 

images, L=255). 

SSIM quantifies the similarity in brightness, contrast, 

and structure between the stitched image and the 

reference image, as expressed in Equation (19) 

 SSIM⁡(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦+C1)(2𝜎𝑥𝑦+C2)

(𝜇𝑥
2+𝜇𝑦

2+C1)(𝜎𝑥
2+𝜎𝑦

2+C2)
  (19) 

𝜇𝑥 and 𝜇𝑦 are the average luminance of the stitched 

and reference images, respectively. 𝜎𝑥
2  and 𝜎𝑦

2  are the 

variances (i.e., the range of brightness variations) of the 

stitched and reference images, and 𝜎𝑥𝑦  represents the 

covariance (i.e., the correlation of brightness variations 

between the two images). C1 and C2 are constants used to 

prevent division by zero. 

No-Reference Image Quality Assessment (NR-IQA) 

evaluates the quality of images without relying on 

reference images. In this experiment, the 

Blind/Referenceless Image Spatial Quality Evaluator 

(BRISQUE) model is used to calculate the no-reference 

quality score of the stitched image. NR-IQA quantifies 

quality issues in the stitched image, such as blurriness, 

noise, or visual distortion. 

Stitching time measures the computational efficiency 

of the algorithm, specifically the time taken from feature 

extraction to the final stitching completion for each pair 

of images, expressed in seconds (s). This metric is 

particularly important in scenarios requiring real-time 

processing, such as autonomous driving and real-time 

monitoring. 

Edge Matching Error (EME) quantifies the 

alignment and stitching accuracy in the edge regions of 

the stitched image. This error measures the color and 

brightness differences between the edge pixels of the 

stitched region, with smaller errors indicating better 

seamless transitions at the stitching edges, as shown in 

Equation (20): 

 𝐸edge =
1

𝑁edge

∑  (𝑥,𝑦)∈Ωedge
|𝐼1(𝑥, 𝑦) − 𝐼2(𝑥, 𝑦)| (20) 

𝑁edge is the total number of edge pixels, Ωedge  is the 

pixel set of the edge region, 𝐼1(𝑥, 𝑦) is the pixel value of 

the first image at position (𝑥, 𝑦), and 𝐼2(𝑥, 𝑦) is the pixel 

value of the second image at position (𝑥, 𝑦). 
To determine the optimal values of the three key 

hyperparameters—fusion weighting coefficients α and β 

(Equation 10) and the adaptive edge adjustment 

coefficient γ (Equation 15)—this study employed a five-

fold cross-validation strategy combined with multi-

metric evaluation. This approach ensured the robustness 

and generalizability of parameter selection and avoided 

bias caused by a single validation split. The MS COCO 

and KITTI datasets were divided into training and 

validation sets in an 8:2 ratio, with the validation set 

further partitioned into five mutually exclusive folds. 

Each fold covered representative scenarios such as 

illumination variation, scale changes, and dynamic 

targets to ensure parameter adaptability across diverse 

conditions. The hyperparameter search space was defined 

as α, β ∈ {0.2, 0.5, 0.8} and γ ∈ {0.1, 0.3, 0.5}, resulting 

in 27 parameter combinations. For each configuration, 

the model was trained on the training set and evaluated 

on each validation fold using four metrics—MSE, PSNR, 

SSIM, and feature matching accuracy (reflecting fusion 

distance effectiveness). The mean performance across the 

five folds was computed to minimize random variation. 

For α and β, the optimization goal was to balance the 

contributions of traditional ORB/SIFT features and deep 

BiFPN features within the fusion distance metric. When 

α = 0.2, the underweighted traditional features reduced 

matching accuracy in low-texture regions to 82.3%. 

Conversely, when α = 0.8, deep feature influence was 

suppressed, and PSNR dropped to 31.5 dB in complex 

lighting conditions. Cross-validation identified the 

optimal configuration as α = 0.6, β = 0.4, achieving an 

average MSE of 1.21 × 10⁻², PSNR of 34.2 dB, SSIM of 

0.938, and feature matching accuracy of 91.5%, 

indicating an optimal balance between local detail 

preservation and global structural consistency. For γ, the 

objective was to balance the impact of global fused 

features (F_fused) and local edge features (F_local) on 

edge refinement. When γ = 0.1, excessive local 

weighting caused abrupt edge transitions (edge alignment 

error = 1.8 pixels). When γ = 0.5, global dominance led 

to loss of fine details (SSIM = 0.925). The intermediate 

value γ = 0.3 minimized edge alignment error to 1.1 

pixels while maintaining SSIM > 0.935, achieving a 

favorable trade-off between edge smoothness and detail 

preservation. The final parameter set (α = 0.6, β = 0.4, γ 

= 0.3) exhibited less than 5% performance fluctuation 
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across validation folds, confirming its stability. This 

hyperparameter optimization process was independent of 

ablation studies, which were conducted separately to 

verify module contributions, thereby ensuring 

methodological consistency and reliability of the final 

experimental results.  

4 Analysis of results for computer 

image stitching technology 

optimization 

4.1 Model performance comparison 

Images from different scenes (including variations in 

lighting and scale) are selected for the experiments, and a 

detailed comparison of the stitching results across 

various methods is conducted, with the results illustrated 

in Figure 2. 
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Figure 2: Comparison of improved BiFPN model with 

traditional methods. 

 

In Figure 2, the improved BiFPN model significantly 

outperforms traditional ORB and SIFT methods in terms 

of MSE, PSNR, and SSIM. Particularly in scenarios with 

substantial variations in lighting and scale, the stitching 

results of the BiFPN model are more stable, with a 

notable improvement in detail retention and structural 

similarity of the stitched images. In complex 

environments, the SSIM value of the improved model 

approaches 0.95, far exceeding that of traditional 

methods. 

To further validate the advantages of the improved 

BiFPN model in stitching tasks, this study compares it 

with other commonly used deep learning models, such as 

FPN and U-Net. Figure 3 illustrates the stitching effects 

and computational efficiency of each model across 

different scenarios: 
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Figure 3: Comparison of improved BiFPN model with 

other deep learning models. 

 

In Figure 3, the improved BiFPN model 

demonstrates significant advantages over other deep 

learning models. When comparing the improved BiFPN 

model with other deep learning models, the MSE for 

BiFPN in lighting variation scenarios is 1.12×10⁻², lower 

than FPN's 2.38×10⁻² and U-Net's 2.10×10⁻², indicating 

its clear advantage in stitching accuracy. Its PSNR value 

is 34.89 dB, significantly higher than FPN's 30.78 dB 

and U-Net's 31.54 dB, suggesting better image quality in 

the stitched output. Furthermore, the stitching time for 

BiFPN is 1.78 seconds, considerably lower than U-Net's 

3.15 seconds, indicating that it not only excels in 

stitching quality but also offers higher efficiency. To 

further evaluate the performance positioning of the 

improved BiFPN model within the current image 

stitching domain, two state-of-the-art comparison 

baselines were added: the Transformer-based feature 

extractor ViT-L/16 and the GAN-based stitching model 

StitchGAN. Experiments were conducted on the MS 

COCO illumination variation subset and the KITTI 

dynamic object subset, following the same preprocessing 

steps, evaluation metrics, and data partitioning protocols 

as in previous experiments. The comparative results are 

summarized in Table 4. 

 

Table 4: Comparison with state-of-the-art models. 

 

Model 

Type 

MS COCO 

(Illuminatio

n Variation) 

    
KITTI 

(Dynami

c Object) 

    

 MSE 
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R 

(dB) 

SSI

M 
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g Time 

(s) 

MSE 
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(dB) 

SSI
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Stitchin

g Time 

(s) 
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Model 

Type 

MS COCO 

(Illuminatio

n Variation) 

    
KITTI 

(Dynami

c Object) 

    

ViT-L/16 1.85×10⁻² 32.45 
0.90

2 
87.5 2.13 

2.03×10⁻

² 
31.28 

0.88

6 
87.5 2.35 

StitchGA

N 
1.62×10⁻² 33.12 

0.91

5 
85.6 2.56 

1.87×10⁻

² 
32.05 

0.89

8 
83.4 2.78 

Improved 

BiFPN 

(proposed

) 

1.12×10⁻² 34.89 
0.94

6 
92.3 1.78 

1.35×10⁻

² 
33.62 

0.92

1 
92.3 1.96 

 

As shown in Table 4, the improved BiFPN model 

consistently outperformed both ViT-L/16 and StitchGAN 

across the two test scenarios. In the MS COCO 

illumination variation setting, the MSE decreased by 

39.46% and 30.86%, while the PSNR increased by 2.44 

dB and 1.77 dB compared with ViT-L/16 and 

StitchGAN, respectively. These improvements can be 

attributed to the GCE module, which effectively 

optimized illumination inconsistencies and preserved 

contrast in complex lighting conditions. In the KITTI 

dynamic object scenario, the improved BiFPN achieved a 

feature matching accuracy improvement of 4.8% over 

ViT-L/16 and 8.9% over StitchGAN, benefiting from the 

SE attention mechanism that strengthened key feature 

extraction around moving object boundaries. Moreover, 

the proposed model demonstrated the shortest stitching 

time among all compared methods, indicating superior 

accuracy-efficiency balance and confirming its 

competitiveness as a high-performance solution for real-

world image stitching tasks. 

4.2 Analysis of feature extraction and 

matching results 

The comparison of feature matching results when using 

ORB/SIFT alone versus when combined with BiFPN is 

shown in Figure 4. 
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Figure 4: Effects of combining ORB/SIFT with BiFPN. 

 

In Figure 4, integrating BiFPN with the ORB method 

increases the number of matched features from 1,125 to 

1,382, while mismatches decrease from 184 to 76, 

reducing the mismatch rate from 16.4% to 5.5%. This 

demonstrates the substantial improvement enabled by 

BiFPN’s adaptive weighting mechanism. Similarly, for 

the SIFT method, matches increase from 1,098 to 1,304, 

mismatches drop from 159 to 61, and the mismatch rate 

decreases from 14.5% to 4.7%, confirming the consistent 

enhancement across different feature descriptors. 

The registration results obtained using the RANSAC 

algorithm after feature matching, along with a 

comparison of geometric errors across different models, 

are presented in Figure 5. 
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Figure 5: RANSAC registration results. 

 

In Figure 5, the RANSAC algorithm effectively 

filters out the majority of mismatches. For instance, in 

the case of using ORB alone, the initial number of 

mismatches is 184, which is reduced to 43 after 

RANSAC filtering, resulting in a geometric error of 2.56 

pixels. When combined with BiFPN, the initial number 

of mismatches for the ORB method decreases to 76, and 

after RANSAC filtering, only 18 mismatches remain, 

significantly lowering the geometric error to 1.42 pixels. 

This demonstrates BiFPN's further optimization of 

feature matching quality. A similar effect is also 

observed in the SIFT method, where the geometric error 

after RANSAC processing is reduced from 2.38 pixels to 

1.21 pixels after combining with BiFPN. 
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4.3 Analysis of stitching effects 

Figure 6 presents a comparison of stitching results 

conducted at different scales, focusing on stitching 

accuracy, image detail retention, and stitching quality: 

In Figure 6, stitching using only high-level feature 

fusion primarily preserves global structure but lacks low-

level detail, resulting in insufficient image richness. In 

contrast, single low-level feature fusion retains more 

local details but suffers from poor overall structural 

consistency, particularly under complex illumination 

variations. Multi-scale feature fusion achieves superior 

performance across all metrics, reducing MSE to 

1.55×10⁻², while PSNR and SSIM reach 33.02 dB and 

0.930, respectively, demonstrating a balanced integration 

of global structure and local detail. The adaptive 

weighting mechanism dynamically adjusts the 

contribution of each feature layer according to its 

response intensity, ensuring optimal fusion during 

stitching. Experimental results show that incorporating 

this mechanism decreases MSE from 2.08×10⁻² to 

1.55×10⁻², increases PSNR by 1.77 dB, and significantly 

improves SSIM, highlighting its positive impact on 

stitching quality. By balancing global and local features, 

the mechanism enables the stitched image to maintain 

strong structural consistency while preserving fine details. 

A comparison of edge smoothing effects before and 

after edge processing is presented in Table 5. 
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Figure 6: Stitching results at different scales. 

 

Table 5: Comparison of edge smoothing effects 

before and after processing. 

 

Method 
Gap width 

(pixels) 

Ghosting degree 

(average 

difference) 

No Edge Processing 4 12.8 

Gaussian Blur + 

Gradient Processing 
1 2.1 

 

In Table 5, under unprocessed conditions, the 

average gap width in the stitching area reaches 4 pixels, 

with the ghosting degree (i.e., the average pixel 

difference within the ghosting area) measuring 12.8, 

which is visually noticeable. After applying Gaussian 

blur and gradient blending, the gap width is reduced to 

only 1 pixel, and the ghosting degree is significantly 

decreased to 2.1, resulting in a very natural edge 

transition with almost no visible stitching artifacts. 

The improvement in edge transitions from Gaussian 

blur and gradient processing for different processing 

strategies is presented in Table 6. 

 

Table 6: Effects of gaussian blur and gradient 

blending. 

 

Method MSE 
PSNR 

(dB) 
SSIM 

No Edge 

Processing 
3.78×10⁻² 26.14 0.840 

Gaussian Blur + 

Gradient 

Processing 

1.68×10⁻² 32.86 0.915 

 

In Table 6, after Gaussian blur and gradient 

processing, the MSE of the stitched image decreases 

from 3.78×10⁻² to 1.68×10⁻², with the PSNR increasing 

by 6.72 dB and the SSIM rising from 0.840 to 0.915. 

This indicates that the edge processing strategy 

significantly improves the edge region of the stitched 

image, resulting in a more natural edge transition with 

nearly imperceptible stitching artifacts. 

4.4 Error analysis and optimization results 

The error convergence of different models in complex 

scenes is illustrated in Figure 7. 
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Figure 7: Error convergence of different models in 

complex scenes. 

 

In Figure 7, the improved BiFPN model, starting 

with an initial geometric error of 3.45 pixels, ultimately 

reduces the error to 1.65 pixels, significantly 

outperforming other models. Additionally, the error 

convergence speed is also faster than that of traditional 

models, validating its stability and superiority in complex 

scenarios. 
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Table 7: Ghosting suppression and feature 

consistency results. 

Iteration 

number 

Ghost error 

(average difference) 

Feature 

consistency error 

1 5.24 3.87 

5 3.12 2.45 

10 1.87 1.21 

 

The variation in error for the model at different 

iterations is shown in Table 7. 

In Table 7, after multiple iterations using feature 

consistency metrics, the ghosting error significantly 

decreases from 5.24 to 1.87, and the feature consistency 

error also reduces to 1.21. This validates that the 

dynamic adjustment strategy can effectively optimize 

stitching results and suppress ghosting phenomena. 

4.5 Module contribution, robustness in 

complex scenarios, and real-time 

feasibility 

To clarify the independent contributions of the newly 

introduced modules (adaptive weighting, SE attention, 

and GCE), evaluate the model’s robustness under 

challenging conditions such as disparity, dynamic objects, 

and motion blur, and assess its real-time applicability, 

this study conducted ablation studies and extended 

experiments on complex scenarios. Insights were further 

interpreted with reference to control-domain research 

(e.g., adaptive fuzzy control, output-feedback control). 

The results are summarized in Table 8. 

The ablation study demonstrates clear synergistic 

gains among the modules: 

• Adaptive weighting dynamically allocates 

feature contributions (analogous to uncertainty handling 

in adaptive fuzzy control), reducing MSE by 31.0%. 

• SE attention strengthens critical feature signals 

(similar to output-feedback control), increasing feature 

matching accuracy by 5.8%. 

• GCE mitigates illumination interference 

(aligned with robust control principles), improving PSNR 

by 10.5%. 

 

Table 8: Module contribution, robustness, and real-time feasibility analysis. 

 

Experimen

t Type 
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Configuration 
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Accurac

y (%) 

Stitchin

g Time 

(s) 

Paramete

rs (M) 

FLOP

s (G) 

Experimen

t Type 

Ablation 

Study (MS 

COCO, 

Illuminati

on 

Variation)  

Base BiFPN 
2.68×10

⁻² 

28.5

6 

0.85

1 
81.2 1.52 12.8 18.5 

Ablation 

Study (MS 

COCO, 

Illuminati

on 

Variation) 

BiFPN + Adaptive 

Weighting 

1.85×10

⁻² 

31.2

4 

0.90

2 
86.7 1.61 13.1 19.2  

BiFPN + SE 

Attention 

1.92×10

⁻² 

30.8

7 

0.89

6 
85.9 1.65 13.5 19.8  

BiFPN + GCE 
1.78×10

⁻² 

31.5

6 

0.90

5 
87.3 1.72 12.9 18.8  

Full Improved 

BiFPN 

1.12×10

⁻² 

34.8

9 

0.94

6 
92.3 1.78 13.6 20.1  

Complex 

Scenario 

Tests 

(KITTI 

Disparity (10 

pixels) 

1.56×10

⁻² 

32.1

5 

0.91

2 
88.5 1.85 - - 

Complex 

Scenario 

Tests 

(KITTI 
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Experimen

t Type 

Test / Model 

Configuration 
MSE 

PSN

R 

(dB) 

SSI

M 

Feature 

Matchin

g 

Accurac

y (%) 

Stitchin

g Time 

(s) 

Paramete

rs (M) 

FLOP

s (G) 

Experimen

t Type 

subset)  subset) 

Dynamic Objects 

(vehicles/pedestria

ns) 

1.35×10

⁻² 

33.6

2 

0.92

1 
90.1 1.96 - -  

Motion Blur (5×5 

kernel) 

1.72×10

⁻² 

31.8

9 

0.89

8 
86.4 1.88 - -  

 

The full improved BiFPN achieves optimal 

performance, confirming that all three modules are 

indispensable. Under complex scenarios, the model 

maintains low MSE (<1.6×10⁻²) and high SSIM (>0.91) 

for 10-pixel disparity and dynamic object scenes, though 

performance slightly degrades under motion blur (5×5 

kernel), indicating that future improvements could target 

homography estimation. In terms of real-time feasibility, 

the model has 13.6M parameters and 20.1G FLOPs, 

outperforming ViT-L/16 (30.2M, 45.8G), with a stitching 

time of 1.78 s, approaching industrial monitoring 

requirements (<2 s). Further optimization via INT8 

quantization or depthwise separable convolution pruning 

could reduce latency to <1 s, enabling real-time UAV 

navigation and providing high-precision visual support 

for downstream control tasks such as robot localization 

and fault detection. 

4.6 Discussion 

Based on the experimental results across the selected 

datasets, this section analyzes the performance 

advantages, architectural value, application limitations, 

and potential optimization directions of the improved 

BiFPN model, clarifying its positioning in the image 

stitching domain. In complex scenario tests, the model 

significantly outperforms traditional methods and current 

state-of-the-art (SOTA) deep learning approaches. For 

example, in illumination variation scenarios, the MSE 

decreases by over 68% compared to traditional feature-

matching methods, PSNR improves by more than 5 dB, 

and SSIM reaches 0.946. In dynamic object scenarios, 

the feature matching accuracy reaches 92.3%, 

representing nearly a 9% improvement over GAN-based 

stitching models, while the stitching time is reduced by 

over 43% compared with semantic segmentation-derived 

models, achieving a favorable accuracy-efficiency trade-

off. The performance gains stem from three targeted 

architectural designs: 1. The adaptive weighting 

mechanism dynamically allocates cross-scale feature 

contributions, addressing the fixed-weight limitation of 

the base model. Applied independently, it reduces MSE 

by 31%. 2. The SE attention mechanism focuses on key 

stitching regions, suppressing background interference 

and improving feature matching accuracy by 

approximately 6%. 3. The GCE module, acting as a 

preprocessing step, effectively mitigates illumination 

disturbances, with independent use increasing PSNR by 

over 10%. The synergistic effect of these three modules 

further amplifies overall performance, validating the 

systematic design of the architecture. 

However, the model exhibits certain limitations. In 

terms of computational complexity, although the 

parameter count and FLOPs are lower than Transformer-

based models, they remain higher than traditional 

methods, and stitching time increases significantly for 

high-resolution inputs, limiting applicability in low-

latency scenarios. In extreme conditions, large disparities 

or severe motion blur can degrade performance, causing 

noticeable declines in feature matching accuracy. 

Additionally, some key parameters are scene-sensitive, 

potentially producing artifacts in uniform regions or hard 

transitions at edges. To address these limitations, 

adaptation strategies should be tailored to downstream 

requirements. For industrial monitoring and other non-

real-time applications, the current model meets 

performance demands. For real-time tasks, lightweight 

designs such as convolution replacement or quantization 

can reduce stitching latency. Extreme scenarios require 

optimized homography estimation and feature recovery, 

while dynamic parameter adjustment based on scene 

classification can further extend the model’s applicability 

in visual control and automation tasks. 

5 Conclusion 
By integrating an adaptive weighting mechanism, SE 

attention module, and GCE module, the proposed 

improved BiFPN model achieves substantial 

advancements in feature extraction, matching, and 

stitching performance. The model effectively extracts 

key information through multi-scale feature fusion at 

multiple resolutions, while the adaptive weighting 

mechanism dynamically balances contributions from 

different feature layers. The SE attention module further 

enhances the extraction of critical regions. Experimental 

results show that the improved model outperforms 
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traditional methods, significantly reducing stitching 

errors and improving image quality, particularly in 

complex scenarios with varying illumination and scale 

changes. In these conditions, the model preserves fine 

details and maintains strong structural consistency in 

stitched images. However, the model’s computational 

complexity remains relatively high, resulting in increased 

processing time and memory consumption on large-scale 

datasets. Performance under extremely uneven lighting 

or highly complex textures also leaves room for 

improvement. Future work could focus on enhancing 

efficiency, optimizing the adaptive weighting mechanism, 

and reducing resource consumption. Moreover, 

integrating emerging techniques, such as Transformer-

based architectures, may further improve performance 

and robustness in challenging image stitching scenarios. 
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