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To address the challenges of low stitching accuracy and limited robustness in complex scenes, this study
proposed an image stitching model based on an improved Bi-directional Feature Pyramid Network
(BiFPN). The model enhances performance through three key optimizations. First, an adaptive
weighting mechanism dynamically balances the global and local contributions of multi-scale features.
Second, a Squeeze-and-Excitation (SE) attention mechanism strengthens feature extraction in critical
stitching regions such as edges and textures. Third, a global contrast enhancement module mitigates
illumination variation effects on feature matching through multi-scale histogram equalization and
adaptive calibration. Experiments were conducted on two benchmark datasets: Microsoft Common
Objects in Context (MS COCO) and the Karlsruhe Institute of Technology and Toyota Technological
Institute (KITTI). From MS COCO, 1,500 image pairs were selected (500 with illumination variations
and 500 with scale variations). From KITTI, 1,500 image pairs were selected (800 static scenes and 700
dynamic targets). Each dataset was split into training and validation sets with an 8:2 ratio. Training
used a batch size of 16, 50 epochs, and an initial learning rate of 0.001 with a 50% decay every 10
epochs. Comparative methods included traditional algorithms such as Oriented FAST and Rotated
BRIEF (ORB) and Scale-Invariant Feature Transform (SIFT), as well as deep learning approaches
including Vision Transformer-Large/16 (ViT-L/16) and the Stitch Generative Adversarial Network. The
proposed model outperformed all baselines in complex scenarios. On the MS COCO dataset with
illumination variations, the mean squared error (MSE) reached 1.12x107—69.09% lower than ORB
and 39.46% lower than ViT-L/16. The peak signal-to-noise ratio (PSNR) increased to 34.89 dB,
improving by 5.11 dB over SIFT and 2.75 dB over other models. The structural similarity index (SSIM)
reached 0.946, exceeding competing methods by 7.26%. On the KITTI dataset with dynamic targets, the
feature matching accuracy reached 92.3%, a 17.95% improvement over SIFT, while the stitching time
decreased to 1.78 s, 30.47% faster than other models. The model maintained high robustness under
parallax and motion blur conditions, providing precise and efficient image stitching for vision-based
control and automation tasks such as robotic navigation and industrial monitoring.

Povzetek: Studija predstavija izboljsan model za spajanje slik na osnovi BiFPN, ki z adaptivnim

utezevanjem, pozornostnim mehanizmom SE in izboljSavo kontrasta dosega visjo natancnost, robustnost
in hitrost spajanja v kompleksnih prizorih kot obstojece metode.

Introduction

. . Lo . . approaches, particularly those employing
With the_ Wldespr_ead ap_pllcatlon_of_lmage processing  networks for multi-scale feature extraction,
across diverse fields, image stitching has attracted  gemonstrated substantial advantages in

textures [3, 4]. In recent years, deep learning-based

improving

increasing attention as a core technique [1]. In domains
such as remote sensing, medical imaging, virtual reality,
and autonomous driving, image stitching not only
requires high accuracy in the final composite image but
must also handle challenges such as illumination
variations, viewpoint differences, and detail preservation
in complex scenes [2]. Traditional stitching algorithms—
such as feature point-based Oriented FAST and Rotated
BRIEF (ORB) and Scale-Invariant Feature Transform
(SIFT)—exhibit  limitations when dealing with
illumination changes, scale variations, and intricate

stitching quality and robustness [5, 6].

Among these methods, the Bi-directional Feature
Pyramid Network (BiFPN) performs effectively in multi-
scale feature processing; however, it still faces several
challenges in image stitching tasks [7, 8]. First, the
conventional BiFPN framework does not adequately
evaluate the relative importance of features at different
hierarchical levels during fusion, making it difficult to
achieve an optimal balance between global information
and local detail [9]. Second, under complex lighting
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conditions and richly textured scenes, the model’s ability
to extract key features remains insufficient, often
resulting in stitching gaps and ghosting artifacts.
Moreover, edge blending in overlapping regions
frequently becomes a performance bottleneck, where
unnatural transitions and inconsistent contrast remain
unresolved issues in real-world applications.

This study is structured as follows: Section 2 reviews
recent advances in computer image stitching, analyzing
the strengths and weaknesses of both traditional and deep
learning-based methods. Section 3 presents the proposed
stitching algorithm based on the improved BiFPN model,
detailing the adaptive weighting mechanism, Squeeze-
and-Excitation (SE) attention module, and Global
Contrast Enhancement (GCE) module. Section 4
evaluates the effectiveness of the proposed method
through experiments on multiple datasets. Finally,
Section 5 concludes the study and outlines future
research directions. The core research question addressed
in this study is whether an attention-enhanced BiFPN
model integrated with GCE can surpass state-of-the-art
methods in both stitching accuracy and efficiency under
challenging conditions such as illumination variation,
dynamic targets, and parallax distortion. The study
hypothesizes that the synergistic design—comprising
GCE-based preprocessing for illumination optimization,
SE attention for feature enhancement in critical regions,
and adaptive weighting for balanced multi-scale
information fusion—can effectively overcome the
robustness and real-time limitations of existing
approaches. The expected contributions are threefold: (1)
proposing an integrated “preprocessing—feature fusion”
framework, (2) quantitatively validating its superior
performance over traditional and deep learning-based
baselines across multiple datasets, and (3) providing
high-precision and high-efficiency image stitching
support for vision-based control tasks such as robotic
navigation and industrial monitoring.

2 Literature review

Early image stitching methods primarily relied on feature
point matching. Okarma and Kopytek improved stitching
accuracy through their work on SIFT-based techniques
[10]. Ullah et al. enhanced algorithmic efficiency using
ORB, making it suitable for real-time applications.
However, these handcrafted feature-based algorithms
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still exhibit limitations in complex scenes, particularly
under illumination changes, scale variations, and intricate
backgrounds [11].

With the advancement of convolutional neural
networks, Lin et al. proposed a deep learning-based
stitching method that effectively improved accuracy and
reduced stitching errors, although its computational cost
remained high [12]. The BiFPN enables efficient multi-
scale feature fusion through bidirectional feature
connections and adaptive weighting, substantially
enhancing fusion efficiency and detail representation in
complex scenes [13]. Xia et al. successfully applied
BiFPN to image segmentation tasks, demonstrating its
superiority in multi-scale feature processing and
improved segmentation accuracy [14]. Nevertheless,
most existing studies have focused on object detection
and segmentation, with limited systematic exploration of
image stitching—particularly concerning the
enhancement of stitching accuracy through multi-scale
feature fusion.

Despite notable progress in image stitching for
simple scenes, numerous challenges persist in complex
environments. Qiao et al. reported that illumination
variations and complex textures significantly affected
traditional stitching algorithms, increasing stitching
errors [15]. Azizi et al. mitigated stitching gaps and
ghosting through local optimization techniques, though
edge blending remained suboptimal [16]. Moreover,
Zhang et al. highlighted that although deep learning
methods improved stitching accuracy, their high
computational complexity created bottlenecks in large-
scale data processing, underscoring the need for
enhanced efficiency [17].

Overall, traditional stitching techniques perform well
in simple scenes but struggle under complex conditions.
Deep learning-based approaches such as BiFPN have
improved accuracy, yet further optimization is required
to enhance both efficiency and precision, particularly in
scenarios involving illumination changes and ghosting.
To systematically clarify the research status, advantages,
and limitations of existing stitching methods—and to
define the innovation point of this study—a structured
comparison is presented in Table 1, summarizing
traditional feature-matching methods, mainstream deep
learning approaches, and the baseline BiFPN model prior
to improvement.

Table 1: Summary of existing image stitching methods and their performance.

Method Accuracy Metrics | Strengths Limitations
. . . Poor illumination robustness;
High computational efficiency feature matching accuracy drops
. MSE: 3.85x107% | (stitching time: 1.23 s); moderate g dracy drop
ORB (Traditional . ! R S to 78.6% under illumination

: PSNR: 29.12 dB; | adaptability to scale variations; suitable PO
Feature Matching) ) ; - variation; stitching gaps appear at
SSIM: 0.865 for real-time, low-precision e
L edges (average gap width: 4
applications. -
pixels).
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SIFT (Traditional
Feature Matching)

MSE: 3.52x107%
PSNR: 29.78 dB;
SSIM: 0.878

Strong scale invariance and high
matching accuracy in textured regions;
better noise resistance than ORB.

Time-consuming (1.35 s per
image pair); low recall rate
(75.2%) in dynamic scenes; prone
to ghosting artifacts.

Deep Learning —
Feature Pyramid

MSE: 2.38x107%
PSNR: 30.78 dB;
SSIM: 0.882

Enables hierarchical multi-scale feature
extraction; better global structural
consistency than traditional methods;
relatively  lightweight (85 M
parameters).

Uses fixed fusion weights,
limiting dynamic balance between
global and local features; low-
level features distort under
uneven illumination.

Encoder—decoder architecture

High computational complexity

U'NEt. (Deep MSE: 2.10x107%; | effectively preserves local details; (stl_tc_hlng time: 3.15 ), low
Learning - . ' . . Y efficiency in global feature
. PSNR: 31.54 dB; | superior texture restoration at stitching ! .
Segmentation ) : - propagation; noticeable
- SSIM: 0.895 edges compared with pyramid-based R
Derived) misalignment under large
models.
parallax.
Large model size (302 M
ViT-L/16 (Deep | MSE: 1.85x10°2 Global attention mechanism effectively parameters) and high
- ) ' | captures long-range feature | computational cost (45.8
Learning — | PSNR: 32.45 dB; Lo . ) i
) dependencies; achieves 87.5% | GFLOPs); contrast-sensitive
Transformer) SSIM: 0.902 : - . g . S
matching accuracy in dynamic scenes. | under illumination  variation,
causing SSIM fluctuations.
Generative architecture enhances visual | Unstable training prone to mode
StitchGAN (Deep | MSE: 1.62x1072; | coherence in stitched regions; superior | collapse; poor real-time
Learning — GAN | PSNR: 33.12 dB; | ghosting suppression (ghosting level: | performance (stitching time: 2.56
Derived) SSIM: 0.915 2.8) compared with traditional | s); unsuitable for low-latency
methods. applications.
. . Bidirectional  feature  propagation - -
Baseline B.'FPN MSE: 2.68x1072; | improves cross-scale fusion efficiency; !"m't.ed . adaptqb|!|w to
(Deep Learning — . ! : illumination variation and
e PSNR: 28.56 dB; | reduces feature loss compared with | . L )
Bidirectional insufficient extraction of key

Feature Fusion)

SSIM: 0.851

standard FPN; edge matching error
decreased by 15%.

regions in complex scenes.

3 Research method for
computer image
technology

3.1

Improved BiFPN model structure

optimizing
stitching l

p5 p6 p7

BiFPN establishes skip connections between each scale
layer, allowing the network to flexibly propagate features
across different scales, thereby enhancing multi-scale
feature fusion. The structure is illustrated in Figure 1.

Its core is illustrated in Equation (1):
P,j =YR-y wi-Up (Pi_yy) + Down (Pryq ) (1)
P; ; represents the j-th feature map at the i-th level, while
Up(-) and Down(:) denote the upsampling and
downsampling operations of the feature maps,
respectively. w, is the weight factor used to control the
fusion weighting of features at different levels.

I :

Figure 1: BiFPN model structure.

Based on BiFPN, this study proposes an improved
model structure focused on addressing specific issues in
image stitching tasks. The main innovations include an
adaptive weighting mechanism, an attention mechanism,
and a GCE module.
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Given multiple feature maps P;, the computation for
adaptive weighting is expressed in Equation (2) [18]:
N wi-Pj (2)

i=1 5N ",

w; is the adaptive weight coefficient obtained
through training. To ensure that the weights remain
positive and stable, the Softmax function is employed for
normalization, as shown in Equation (3):

exp(sy) ®)
Z?Ll exp (s5)

s; represents the raw weight scores learned through
the network.

To further enhance the extraction and reinforcement
of key feature areas, this study introduces the SE
attention mechanism into BiFPN. This mechanism
enhances key features while suppressing irrelevant ones
through a "squeeze-excitation” operation.

The working principle of the SE module is as
follows [19]:

Squeeze operation: the feature map undergoes global
average pooling to generate a global feature descriptor
for each channel, as expressed in Equation (4):

Ze=—— NI N1 Xije @)
x; j,c denotes the value at position (i, /) in channel ¢
of the input feature map, and H and W are the height and
width of the feature map, respectively.
Excitation operation: a two-layer fully connected
operation is performed on the global descriptor vector z,
to generate the weights for each channel, as shown in

Equation (5):

Pfused =

w; =

sc = a(W, - ReLU (W; - z,)) (5)

W, and W, are the weight matrices, and o(:) is the
Sigmoid activation function used to scale the output to
the range [0,1].

Finally, the obtained weights are multiplied by the
original feature map channel-wise to enhance important
features, as shown in Equation (6):

Fe=s.-F (6)

By introducing the SE module, the improved BiFPN
model can more effectively capture key regions in
images, particularly in complex scenes (such as image
edges and textured areas), thereby significantly reducing
stitching errors caused by insufficient feature extraction.

To further reduce errors in image stitching,
especially in scenes with significant illumination changes
or contrast differences, this study introduces a GCE
module [20].

3.2 Feature extraction and matching

This study employs traditional ORB or SIFT methods for
the initial detection of feature points and the generation
of descriptors, in conjunction with the feature extraction
results from BiFPN to further improve the accuracy of
feature matching. The feature point detection process for
ORB is expressed in Equation (7) [21]:

2
D=3, () — 1(a) ()
I(p;) and I(q;) are the grayscale values at the image
pixel points p; and q;, respectively, and D represents the
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distance between feature descriptors, allowing for feature
point matching in the image.

SIFT processes the image at multiple scales by
constructing a Gaussian pyramid, then detects key points
using the Difference of Gaussian (DoG) method and
generates scale-invariant feature descriptors for each key
point [22]. The computation of the Gaussian pyramid is
expressed in Equation (8):

L(x,y,0) = G(x,y,0) *I(x,y) 8

L(x,y,0) is the Gaussian blurred image of the input
image at scale o, G(x,y,0) is the Gaussian kernel
function, and I(x, y) is the input image.

The calculation of key point detection is given in
Equation (9):

D(x,y,0) = L(x,y,ko) — L(x,y,0) 9)

Although traditional ORB and SIFT methods can
effectively extract feature points, their matching accuracy
may decline in scenarios with significant illumination
changes, scale variations, or noise interference [23]. To
address this, this study combines the improved BiFPN
model, utilizing an adaptive weighting mechanism and
attention mechanism to further extract multi-scale feature
information from the images.

Specifically, features extracted by the BiFPN model
can be fused with features from ORB or SIFT to create a
more comprehensive set of feature descriptors [24]. For
each pair of potential matching feature points, assuming
their descriptors are d1 and d2, the fused distance metric
can be expressed as Equation (10):

Dtysea = @ - Dorpysier + B - Dpippn~ (10)

Dorg/sier IS the distance for traditional feature
matching, Dgippy IS the matching distance for BiFPN
model features, and @ and B are weighting coefficients
used to adjust the contribution of different features. This
fusion significantly enhances feature matching accuracy
in complex scenes.

Once feature point detection and matching are
completed, the next step is to accurately align the two
images through image registration. Since there may be a
considerable number of mismatches in the initial feature
matching, the Random Sample Consensus (RANSAC)
algorithm is employed to precisely filter the matched
feature points, ensuring the final image stitching is
accurate [25].

Let the matched feature point pairs be {(xi, xi')};
where x; is the feature point in the first image and x; is
the corresponding point in the second image. RANSAC
estimates the homography matrix H between the images
as shown in Equation (11):

x; =H-x;

The specific steps are as follows:

(1) Randomly select 4 pairs of points from the
matched feature point set to estimate the homography
matrix H.

(2) Transform all matched points using the estimated
H and compute the geometric error for all points, as
indicated in Equation (12):

e; = llx{ —H- x|

(11)

(12)
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(3) Count the number of inliers that fit the
transformation model (i.e., the number of points with
errors below a certain threshold).

(4) Repeat the above steps several times, selecting
the model with the maximum number of inliers as the
final registration result.

3.3 Intelligent stitching strategy

The fusion operation involves not only a smooth
transition in spatial resolution but also the maintenance
of consistency in the depth and semantic levels of
features [26]. To achieve this goal, during the fusion
process, different response strengths for feature layers
are weighted to assign appropriate weights to features at
various scales, balancing the contributions of global
information and local details [27]. This is expressed in
Equation (13):

Fiina (6, ) = Xizq w; - Fi(x,y) (13)

F;(x,y) represents feature maps at different levels,
and w; is the weight adaptively computed based on the
importance of each feature layer. This weighting
approach enhances the contribution of low-level features
while  maintaining global semantic information,
achieving a balance between overall coherence and detail
preservation in the stitching effect. This equation shares
the core concept of the adaptive weighting mechanism
described in Equation (2) of Section 3.1, but it is applied
in a different context. The former is used in the final
stitching fusion stage, acting on the feature maps
processed by BiFPN and SE modules, where the weights
are adjusted according to the semantic contribution of the
stitching scene. In contrast, the latter serves as the
fundamental mechanism  for cross-scale feature
propagation within BiFPN, operating on the original
feature maps to achieve initial fusion. The two are
therefore not redundant but represent targeted
applications of the same underlying principle at different
stages.

This study employs a refined edge smoothing
strategy. Initially, local Gaussian blur is applied to the
stitching edges to make the feature transition more
natural, thereby avoiding noticeable stitching artifacts
caused by feature discrepancies at the edges [28].
Simultaneously, the pixel values in the stitching area are
adjusted using a weight gradient method, allowing the
pixel values in the edge region to gradually transition to
those of the adjacent image as the distance increases [29].
This process is detailed in Equation (14):

Iblend (X, Y) = a(x, y)Il(xl y) + (1 - a(x' )’))Iz(x’ y)(14)

a(x,y) is a weight coefficient that varies in the edge
transition area, facilitating a smooth transition from one
image to another through linear or nonlinear adjustments.
This method avoids unnatural transitions caused by
forced edge alignment.

In the edge stitching region, differences in brightness
or feature misalignment often arise due to varying image
sources, resulting in visible stitching lines [30]. To
mitigate these issues, this study introduces a dynamic
feature enhancement mechanism for areas near the
stitching line. Specifically, the BiFPN model adaptively
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adjusts the feature hierarchy in the stitching area,
allowing the contributions of features at different levels
to vary according to needs. This dynamic adjustment
effectively smooths the transition areas of the images,
preventing the edge features from appearing disjointed.
The edge optimization is expressed in Equation (15):
Fedge =Y Ffused + (1 - )/) ' Flocal (15)
Fpyseq 1S the globally fused feature, F., is the local
feature at the edge, and y is an adaptive edge adjustment
coefficient that dynamically changes with the edge
position to smooth the features in the edge region [31].
This study combines the context feature consistency
measure in the BiFPN model to automatically detect
feature inconsistencies in the edge areas of the stitched
image. Through multiple iterative adjustments, it aims to
balance global and local features at the stitching line,
thus reducing stitching incoherence. To suppress
ghosting phenomena, the proposed strategy is based on
minimizing feature consistency errors. The specific
formula is given in Equation (16):
Eedge = Z(x,y)eﬂedge "Fl(x' y) — F(x, y)” (16)
Q.qq represents the stitching edge area, and Fy(x,y)
and F,(x, y) are the features of the images on either side
of the edge region. By optimizing this error function,
ghosting at the edges can be effectively reduced.

3.4  Architecture and algorithm of the

GCE module

The GCE module adopts a two-stage serial architecture
of “Multi-scale Histogram Equalization — Adaptive
Contrast  Calibration” to  achieve coordinated
optimization of global illumination correction and local
detail  preservation. (1) Multi-scale  Histogram
Equalization Unit (MHEU): The input image with a
resolution of 512x512 (consistent with the experimental
image size) was decomposed into three scales using a
Gaussian pyramid. The bottom layer employed a 3x3
Gaussian kernel to emphasize fine local textures (e.g.,
vegetation and road surface granularity), the middle layer
used a 5x5 kernel to enhance medium-scale regions (e.g.,
building edges and object contours), and the top layer
applied a 7x7 kernel to capture the overall illumination
distribution. For each scale, contrast-limited histogram
equalization was performed. The grayscale histogram
was first computed, bins exceeding the contrast
limitation threshold were clipped (to avoid over-
enhancement), and the clipped pixels were redistributed
evenly to other bins to correct the distribution. A
cumulative distribution function (CDF) was then used to
perform grayscale mapping. Finally, dynamic weighted
fusion (bottom layer weight 0.25, middle layer 0.4, top
layer 0.35) was applied to integrate the enhancement
results across scales, balancing fine detail and global
illumination effects. (2) Adaptive Contrast Calibration
Unit: The enhanced image was divided into 16x16 non-
overlapping local blocks. For each block, a contrast
evaluation value was computed based on the maximum,
minimum, and mean grayscale values. Dynamic gain was
assigned accordingly: under-enhanced blocks (contrast <
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0.2) received high-gain amplification, normal blocks (0.2
< contrast < 0.8) retained unit gain, and over-enhanced
blocks (contrast > 0.8) were subjected to low-gain
suppression. Bilinear interpolation was used to map the
block-level gains to a pixel-level gain map, which was
multiplied pixelwise with the image and clipped to the [0,
255] grayscale range to generate the final optimized
image.

The GCE module serves as the core component of
the image preprocessing stage, positioned between “raw
image input” and the “feature extraction pipeline.” Its
activation is triggered by the global contrast evaluation
value Cyopqr, defined as the difference between the
maximum and minimum grayscale values divided by 255:
the module automatically activates when Cgpq; < 0.3,
while only standard grayscale normalization is performed
when Cgiopq = 0.3t0 avoid redundant computation. The
optimized image output is simultaneously fed into two
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key branches: (1) the input feature detector, where
enhanced contrast improves corner response and
keypoint localization accuracy, thereby increasing initial
feature matching stability; and (2) the lower
convolutional layers of the improved BiFPN, serving as
the raw data for multi-scale feature fusion and ensuring
that low-level edge and texture features remain
unaffected by illumination variation. Moreover, the GCE
module operates synergistically with the SE attention
module. When calculating channel weights, the SE
module utilizes the grayscale gradient of the GCE output
image as an auxiliary feature, preferentially enhancing
channel weights corresponding to high-contrast regions
such as stitching edges, thereby further strengthening
feature representation in key areas. Table 2 presents the
related parameters and configuration methods of the
GCE module.

Table 2: Parameters and configuration methods of the GCE module.

?z}a/rsl:weter Parameter Name | Value Configuration Method and Rationale
Gaussian Determined 'Ehrough comparative experiments on the Micrqsoft
. Common Objects in Context (MS COCO) dataset: 2 layers failed
. pyramid - ' / .
Architectural q . 3 layers to capture fine textures, while 4 layers increased computational
ecomposition o .
scale cost by_ over 30%; 3 layers achieved a balance between accuracy
and efficiency.
. Gaussian kernel Bqttom: 3%3; _Optimized through 5—f0|d cross-validation: this combin{:\tion
Architectural size per scale Middle: 5x5; | improved feature-matching accuracy by 8.3% compared to single
Top: 7x7 kernel sizes in KITTI static scene tests.
CLAHE Verified on the MS COCO illumination-variation subset (1,200
Algorithmic contrast 0.015 image pairs): thresholds below 0.01 caused over 12% texture
limitation ' distortion, while those above 0.02 yielded less than 8% contrast
threshold improvement.
Comparative experiments showed that 8x8 blocks led to
Algorithmic | Local block size | 16x16 excessive gain fluctuation, while 32x32 blocks failed to capture
local overexposure; 16x16 achieved the lowest calibration error.
Algorithmic Dynamic  gain [0.7,1.2] Empirically v_alidat(_ad to maintain pixel_overflow rate below
range 0.3%, preventing artifacts from extreme gain values.
Determined based on ORBJ/SIFT feature matching rate tests:
Triggering Global contrast 03 when below this value, matching rate decreased by over 20%;
trigger threshold | ™ above this wvalue, additional contrast enhancement was
unnecessary.
Multi-scale Bottom: 0.25; | Co-optimized with BiFPN adaptive weights via end-to-end
Fusion weighted fusion | Middle:  0.4; | training, yielding an SSIM improvement of 0.032 under
coefficients Top: 0.35 illumination-variant conditions in MS COCO.
3.5 Experimental design extensive image sequences captured in real urban settings,

For the experiments, two widely used benchmark
datasets in image stitching and computer vision—MS
COCO and KITTl—were employed. The MS COCO
dataset contains high-resolution images from diverse
real-world scenes with complex lighting conditions,
object occlusions, and scale variations, making it well-
suited for evaluating stitching performance in visually
intricate environments. The KITTI dataset, primarily
designed for autonomous driving research, provides

offering multi-view information on roads, buildings, and
vehicles.
Table 3: Experimental parameter settings.

Parameter name Parameter Value
BiFPN layer depth 3,57

Adaptive weight

coefficient (o, B) 0.2,05,08
Gaussian  blur standard | 1, 2, 3
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deviation (o)

Learning rate 0.001, 0.0005,
0.0001

Batch size 16

Number of training rounds | 50

Image resolution 512x512

Feature fusion weight

gradient coefficient (y) ’ 0.1,03,05

To ensure the model’s optimal performance, all key
parameters were carefully fine-tuned through iterative
experimentation. The primary experimental parameters
and their configurations are summarized in Table 3.

To comprehensively evaluate the performance of the
improved BiFPN model in image stitching tasks, this
study designs multiple evaluation metrics covering image
quality, visual consistency, and algorithm efficiency. The
MSE measures the average error in pixel values between
the stitched image and the reference image; a lower MSE
indicates better stitching results. This is expressed in
Equation (17):

MSE = — %M, ¥, [1G) = I'(L )] (17)

M and N are the height and width of the image,
respectively. 1(i,j) is the pixel value of the original
image at position (i,j), and I'(i,j) represents the pixel
value of the stitched image at position (i, j).

The PSNR is used to assess the quality of the
stitched image, with higher PSNR values indicating less
distortion, as shown in Equation (18):

LZ
PSNR = 10log, (m) (18)

L is the maximum pixel value of the image (for 8-bit
images, L=255).

SSIM quantifies the similarity in brightness, contrast,
and structure between the stitched image and the
reference image, as expressed in Equation (19)

(2uxpy+Cq)(20%y+C2)
SSIM (6 )) = Gz e otragrey 1)

Uy and p,, are the average luminance of the stitched
and reference images, respectively. o2 and ayz are the
variances (i.e., the range of brightness variations) of the
stitched and reference images, and oy, represents the
covariance (i.e., the correlation of brightness variations
between the two images). C; and C, are constants used to
prevent division by zero.

No-Reference Image Quality Assessment (NR-IQA)
evaluates the quality of images without relying on
reference  images. In  this  experiment, the
Blind/Referenceless Image Spatial Quality Evaluator
(BRISQUE) model is used to calculate the no-reference
quality score of the stitched image. NR-IQA quantifies
quality issues in the stitched image, such as blurriness,
noise, or visual distortion.

Stitching time measures the computational efficiency
of the algorithm, specifically the time taken from feature
extraction to the final stitching completion for each pair
of images, expressed in seconds (s). This metric is
particularly important in scenarios requiring real-time
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processing, such as autonomous driving and real-time
monitoring.

Edge Matching Error (EME) quantifies the
alignment and stitching accuracy in the edge regions of
the stitched image. This error measures the color and
brightness differences between the edge pixels of the
stitched region, with smaller errors indicating better
seamless transitions at the stitching edges, as shown in
Equation (20):

1
Eedge =

@Z(x,y)egedge [, (x,y) — L (x, )| (20)

N4 is the total number of edge pixels, Q.4 is the
pixel set of the edge region, I, (x, y) is the pixel value of
the first image at position (x, y), and I, (x, ) is the pixel
value of the second image at position (x, y).

To determine the optimal values of the three key
hyperparameters—fusion weighting coefficients o and f
(Equation 10) and the adaptive edge adjustment
coefficient y (Equation 15)—this study employed a five-
fold cross-validation strategy combined with multi-
metric evaluation. This approach ensured the robustness
and generalizability of parameter selection and avoided
bias caused by a single validation split. The MS COCO
and KITTI datasets were divided into training and
validation sets in an 8:2 ratio, with the validation set
further partitioned into five mutually exclusive folds.
Each fold covered representative scenarios such as
illumination variation, scale changes, and dynamic
targets to ensure parameter adaptability across diverse
conditions. The hyperparameter search space was defined
asa, p € {0.2,0.5, 0.8} and y € {0.1, 0.3, 0.5}, resulting
in 27 parameter combinations. For each configuration,
the model was trained on the training set and evaluated
on each validation fold using four metrics—MSE, PSNR,
SSIM, and feature matching accuracy (reflecting fusion
distance effectiveness). The mean performance across the
five folds was computed to minimize random variation.

For a and f3, the optimization goal was to balance the
contributions of traditional ORB/SIFT features and deep
BiFPN features within the fusion distance metric. When
a = 0.2, the underweighted traditional features reduced
matching accuracy in low-texture regions to 82.3%.
Conversely, when a = 0.8, deep feature influence was
suppressed, and PSNR dropped to 31.5 dB in complex
lighting conditions. Cross-validation identified the
optimal configuration as o = 0.6, B = 0.4, achieving an
average MSE of 1.21 x 1072, PSNR of 34.2 dB, SSIM of
0.938, and feature matching accuracy of 91.5%,
indicating an optimal balance between local detail
preservation and global structural consistency. For vy, the
objective was to balance the impact of global fused
features (F_fused) and local edge features (F_local) on
edge refinement. When y = 0.1, excessive local
weighting caused abrupt edge transitions (edge alignment
error = 1.8 pixels). When y = 0.5, global dominance led
to loss of fine details (SSIM = 0.925). The intermediate
value v = 0.3 minimized edge alignment error to 1.1
pixels while maintaining SSIM > 0.935, achieving a
favorable trade-off between edge smoothness and detail
preservation. The final parameter set (o = 0.6, B = 0.4, v
= 0.3) exhibited less than 5% performance fluctuation
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across validation folds, confirming its stability. This
hyperparameter optimization process was independent of
ablation studies, which were conducted separately to
verify  module  contributions, thereby  ensuring
methodological consistency and reliability of the final
experimental results.

4 Analysis of results for computer
image stitching technology
optimization

4.1 Model performance comparison

Images from different scenes (including variations in
lighting and scale) are selected for the experiments, and a
detailed comparison of the stitching results across
various methods is conducted, with the results illustrated
in Figure 2.
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Figure 2: Comparison of improved BiFPN model with
traditional methods.

In Figure 2, the improved BiFPN model significantly
outperforms traditional ORB and SIFT methods in terms
of MSE, PSNR, and SSIM. Particularly in scenarios with
substantial variations in lighting and scale, the stitching
results of the BiFPN model are more stable, with a
notable improvement in detail retention and structural
similarity of the stitched images. In complex
environments, the SSIM value of the improved model
approaches 0.95, far exceeding that of traditional
methods.
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To further validate the advantages of the improved
BiFPN model in stitching tasks, this study compares it
with other commonly used deep learning models, such as
FPN and U-Net. Figure 3 illustrates the stitching effects
and computational efficiency of each model across
different scenarios:
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Figure 3: Comparison of improved BiFPN model with
other deep learning models.

In Figure 3, the improved BiFPN model
demonstrates significant advantages over other deep
learning models. When comparing the improved BiFPN
model with other deep learning models, the MSE for
BiFPN in lighting variation scenarios is 1.12x1072, lower
than FPN's 2.38x1072 and U-Net's 2.10x1072, indicating
its clear advantage in stitching accuracy. Its PSNR value
is 34.89 dB, significantly higher than FPN's 30.78 dB
and U-Net's 31.54 dB, suggesting better image quality in
the stitched output. Furthermore, the stitching time for
BiFPN is 1.78 seconds, considerably lower than U-Net's
3.15 seconds, indicating that it not only excels in
stitching quality but also offers higher efficiency. To
further evaluate the performance positioning of the
improved BIiFPN model within the current image
stitching domain, two state-of-the-art comparison
baselines were added: the Transformer-based feature
extractor ViT-L/16 and the GAN-based stitching model
StitcthGAN. Experiments were conducted on the MS
COCO illumination variation subset and the KITTI
dynamic object subset, following the same preprocessing
steps, evaluation metrics, and data partitioning protocols
as in previous experiments. The comparative results are
summarized in Table 4.

Table 4: Comparison with state-of-the-art models.

Model MS COCO KITTI
Type (|||Un’!|nf’itlo (Dyn_aml
n Variation) ¢ Object)
Feature Feature
PSN ss| Matchin | Stitchin PSN ss| Matchin | Stitchin
MSE R M g g Time | MSE R M g g Time
(dB) Accurac | (S) (dB) Accurac | (s)
y (%) y (%)
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odel | MS COCO KITTI
Tvpe (IMuminatio (Dynami

yp n Variation) ¢ Object)

ViTL16 | 1.85x102 | 3245 [ 390 | 875 213 [ 2010 13128 | 0% | g75 235
SUCNCA | 1 eax102 | 3312 | 0% |ese 256 | 18710 3205 | 0% 34 |27
Improved

BIFPN || 1ox102 | 3489 | 29 | 923 178 | 13X107 1 3365 | 092 | g3 1.96
(proposed 6 2 1

)

As shown in Table 4, the improved BiFPN model
consistently outperformed both ViT-L/16 and StitchGAN
across the two test scenarios. In the MS COCO
illumination variation setting, the MSE decreased by
39.46% and 30.86%, while the PSNR increased by 2.44
dB and 1.77 dB compared with ViT-L/16 and
StitchGAN, respectively. These improvements can be
attributed to the GCE module, which effectively
optimized illumination inconsistencies and preserved
contrast in complex lighting conditions. In the KITTI
dynamic object scenario, the improved BiFPN achieved a
feature matching accuracy improvement of 4.8% over
ViT-L/16 and 8.9% over StitthGAN, benefiting from the
SE attention mechanism that strengthened key feature
extraction around moving object boundaries. Moreover,
the proposed model demonstrated the shortest stitching
time among all compared methods, indicating superior
accuracy-efficiency balance and confirming its
competitiveness as a high-performance solution for real-
world image stitching tasks.

4.2  Analysis of feature extraction and
matching results

The comparison of feature matching results when using
ORB/SIFT alone versus when combined with BiFPN is
shown in Figure 4.
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Figure 4: Effects of combining ORB/SIFT with BiFPN.

In Figure 4, integrating BiFPN with the ORB method
increases the number of matched features from 1,125 to

1,382, while mismatches decrease from 184 to 76,
reducing the mismatch rate from 16.4% to 5.5%. This
demonstrates the substantial improvement enabled by
BiFPN’s adaptive weighting mechanism. Similarly, for
the SIFT method, matches increase from 1,098 to 1,304,
mismatches drop from 159 to 61, and the mismatch rate
decreases from 14.5% to 4.7%, confirming the consistent
enhancement across different feature descriptors.

The registration results obtained using the RANSAC
algorithm after feature matching, along with a
comparison of geometric errors across different models,
are presented in Figure 5.
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Figure 5: RANSAC registration results.

In Figure 5, the RANSAC algorithm effectively
filters out the majority of mismatches. For instance, in
the case of using ORB alone, the initial number of
mismatches is 184, which is reduced to 43 after
RANSAC filtering, resulting in a geometric error of 2.56
pixels. When combined with BiFPN, the initial number
of mismatches for the ORB method decreases to 76, and
after RANSAC filtering, only 18 mismatches remain,
significantly lowering the geometric error to 1.42 pixels.
This demonstrates BiFPN's further optimization of
feature matching quality. A similar effect is also
observed in the SIFT method, where the geometric error
after RANSAC processing is reduced from 2.38 pixels to
1.21 pixels after combining with BiFPN.
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4.3 Analysis of stitching effects

Figure 6 presents a comparison of stitching results
conducted at different scales, focusing on stitching
accuracy, image detail retention, and stitching quality:

In Figure 6, stitching using only high-level feature
fusion primarily preserves global structure but lacks low-
level detail, resulting in insufficient image richness. In
contrast, single low-level feature fusion retains more
local details but suffers from poor overall structural
consistency, particularly under complex illumination
variations. Multi-scale feature fusion achieves superior
performance across all metrics, reducing MSE to
1.55x1072, while PSNR and SSIM reach 33.02 dB and
0.930, respectively, demonstrating a balanced integration
of global structure and local detail. The adaptive
weighting  mechanism  dynamically  adjusts  the
contribution of each feature layer according to its
response intensity, ensuring optimal fusion during
stitching. Experimental results show that incorporating
this mechanism decreases MSE from 2.08x1072 to
1.55x1072, increases PSNR by 1.77 dB, and significantly
improves SSIM, highlighting its positive impact on
stitching quality. By balancing global and local features,
the mechanism enables the stitched image to maintain

strong structural consistency while preserving fine details.

A comparison of edge smoothing effects before and
after edge processing is presented in Table 5.
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which is visually noticeable. After applying Gaussian
blur and gradient blending, the gap width is reduced to
only 1 pixel, and the ghosting degree is significantly
decreased to 2.1, resulting in a very natural edge
transition with almost no visible stitching artifacts.

The improvement in edge transitions from Gaussian
blur and gradient processing for different processing
strategies is presented in Table 6.

Table 6: Effects of gaussian blur and gradient

blending.
PSNR

Method MSE (dB) SSIM
No — Bdge | 37gx102 | 26.14 0.840
Processing

Gaussian Blur +

Gradient 1.68x1072 | 32.86 0.915
Processing
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Figure 6: Stitching results at different scales.
Table 5: Comparison of edge smoothing effects
before and after processing.
Gap width Ghosting degree
Method (pixels) (average
P difference)
No Edge Processing | 4 12.8
Gaussian  Blur  +
) . 1 2.1
Gradient Processing

In Table 5, under unprocessed conditions, the
average gap width in the stitching area reaches 4 pixels,
with the ghosting degree (i.e., the average pixel
difference within the ghosting area) measuring 12.8,

In Table 6, after Gaussian blur and gradient
processing, the MSE of the stitched image decreases
from 3.78x1072 to 1.68x1072, with the PSNR increasing
by 6.72 dB and the SSIM rising from 0.840 to 0.915.
This indicates that the edge processing strategy
significantly improves the edge region of the stitched
image, resulting in a more natural edge transition with
nearly imperceptible stitching artifacts.

4.4  Error analysis and optimization results

The error convergence of different models in complex
scenes is illustrated in Figure 7.

5 - Initial geometry error (pixels)
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Figure 7: Error convergence of different models in
complex scenes.

In Figure 7, the improved BiFPN model, starting
with an initial geometric error of 3.45 pixels, ultimately
reduces the error to 1.65 pixels, significantly
outperforming other models. Additionally, the error
convergence speed is also faster than that of traditional
models, validating its stability and superiority in complex
scenarios.
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Table 7: Ghosting suppression and feature
consistency results.

Iteration Ghost error | Feature

number (average difference) | consistency error
1 5.24 3.87

5 3.12 2.45

10 1.87 1.21

The variation in error for the model at different
iterations is shown in Table 7.

In Table 7, after multiple iterations using feature
consistency metrics, the ghosting error significantly
decreases from 5.24 to 1.87, and the feature consistency
error also reduces to 1.21. This validates that the
dynamic adjustment strategy can effectively optimize
stitching results and suppress ghosting phenomena.

4.5 Module contribution, robustness in
complex scenarios, and real-time
feasibility

To clarify the independent contributions of the newly

introduced modules (adaptive weighting, SE attention,
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and GCE), evaluate the model’s robustness under
challenging conditions such as disparity, dynamic objects,
and motion blur, and assess its real-time applicability,
this study conducted ablation studies and extended
experiments on complex scenarios. Insights were further
interpreted with reference to control-domain research
(e.g., adaptive fuzzy control, output-feedback control).
The results are summarized in Table 8.

The ablation study demonstrates clear synergistic
gains among the modules:

e Adaptive weighting dynamically allocates
feature contributions (analogous to uncertainty handling
in adaptive fuzzy control), reducing MSE by 31.0%.

« SE attention strengthens critical feature signals
(similar to output-feedback control), increasing feature
matching accuracy by 5.8%.

e GCE mitigates illumination interference
(aligned with robust control principles), improving PSNR
by 10.5%.

Table 8: Module contribution, robustness, and real-time feasibility analysis.

Feature
Experimen | Test /  Model PSN SSI Matchin Stltc_hm Paramete | FLOP | Experimen
. . MSE R g g Time
t Type Configuration (dB) M Accurac | (s) rs (M) s(G) |tType
y (%)
Ablation
Study (MS
Base BiFPN 268x10 1285 |1 085 1 g1, |152 |128 185 | ©OCO,
2 6 1 IHluminati
on
Variation)
ADIaon | BiEpN + Adaptive | 1.85x10 | 312 | 0.90
Study (MS | oo/ PO 2T |57 |87 |16l | 131 19.2
COCO, €lg tlng
IHluminati
on BiFPN + SE | 1.92x10 | 30.8 | 0.89
Variation) | Attention 2 7 6 859 1.65 135 19.8
BiFPN+GCE | L7810 | 315 1990 gz 1172|129 18.8
Full Improved | 1.12x10 | 34.8 | 0.94
BIFPN 5 9 6 92.3 1.78 13.6 20.1
Complex Complex
Scenario Disparity (10 | 1.56%10 | 32.1 | 0.91 885 185 i i Scenario
Tests pixels) 2 5 2 ' ' Tests
(KITTI (KITTI
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Feature
Experimen | Test /  Model PSN SSI Matchin Stltc_hm Paramete | FLOP | Experimen
t Type Configuration MSE R M g g Time rs (M) s(G) | tType
(dB) Accurac | (s)
y (%)
subset) subset)
Dynamic Obijects
(vehicles/pedestria _12'35x10 :233'6 2'92 90.1 1.96 - -
ns)
Motion Blur (5x5 | 1.72x10 | 31.8 | 0.89
kernel) -2 9 8 864 1.88 i i
The full improved BIiFPN achieves optimal and improving feature matching accuracy by

performance, confirming that all three modules are
indispensable. Under complex scenarios, the model
maintains low MSE (<1.6x107?) and high SSIM (>0.91)
for 10-pixel disparity and dynamic object scenes, though
performance slightly degrades under motion blur (5%5
kernel), indicating that future improvements could target
homography estimation. In terms of real-time feasibility,
the model has 13.6M parameters and 20.1G FLOPs,
outperforming ViT-L/16 (30.2M, 45.8G), with a stitching
time of 1.78 s, approaching industrial monitoring
requirements (<2 s). Further optimization via INT8
quantization or depthwise separable convolution pruning
could reduce latency to <1 s, enabling real-time UAV
navigation and providing high-precision visual support
for downstream control tasks such as robot localization
and fault detection.

4.6 Discussion

Based on the experimental results across the selected
datasets, this section analyzes the performance
advantages, architectural value, application limitations,
and potential optimization directions of the improved
BiFPN model, clarifying its positioning in the image
stitching domain. In complex scenario tests, the model
significantly outperforms traditional methods and current
state-of-the-art (SOTA) deep learning approaches. For
example, in illumination variation scenarios, the MSE
decreases by over 68% compared to traditional feature-
matching methods, PSNR improves by more than 5 dB,
and SSIM reaches 0.946. In dynamic object scenarios,
the feature matching accuracy reaches 92.3%,
representing nearly a 9% improvement over GAN-based
stitching models, while the stitching time is reduced by
over 43% compared with semantic segmentation-derived
models, achieving a favorable accuracy-efficiency trade-
off. The performance gains stem from three targeted
architectural designs: 1. The adaptive weighting
mechanism dynamically allocates cross-scale feature
contributions, addressing the fixed-weight limitation of
the base model. Applied independently, it reduces MSE
by 31%. 2. The SE attention mechanism focuses on key
stitching regions, suppressing background interference

approximately 6%. 3. The GCE module, acting as a
preprocessing step, effectively mitigates illumination
disturbances, with independent use increasing PSNR by
over 10%. The synergistic effect of these three modules
further amplifies overall performance, validating the
systematic design of the architecture.

However, the model exhibits certain limitations. In
terms of computational complexity, although the
parameter count and FLOPs are lower than Transformer-
based models, they remain higher than traditional
methods, and stitching time increases significantly for
high-resolution inputs, limiting applicability in low-
latency scenarios. In extreme conditions, large disparities
or severe motion blur can degrade performance, causing
noticeable declines in feature matching accuracy.
Additionally, some key parameters are scene-sensitive,
potentially producing artifacts in uniform regions or hard
transitions at edges. To address these limitations,
adaptation strategies should be tailored to downstream
requirements. For industrial monitoring and other non-
real-time applications, the current model meets
performance demands. For real-time tasks, lightweight
designs such as convolution replacement or quantization
can reduce stitching latency. Extreme scenarios require
optimized homography estimation and feature recovery,
while dynamic parameter adjustment based on scene
classification can further extend the model’s applicability
in visual control and automation tasks.

5 Conclusion

By integrating an adaptive weighting mechanism, SE
attention module, and GCE module, the proposed
improved BiFPN  model achieves  substantial
advancements in feature extraction, matching, and
stitching performance. The model effectively extracts
key information through multi-scale feature fusion at
multiple resolutions, while the adaptive weighting
mechanism dynamically balances contributions from
different feature layers. The SE attention module further
enhances the extraction of critical regions. Experimental
results show that the improved model outperforms
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traditional methods, significantly reducing stitching
errors and improving image quality, particularly in
complex scenarios with varying illumination and scale
changes. In these conditions, the model preserves fine
details and maintains strong structural consistency in
stitched images. However, the model’s computational
complexity remains relatively high, resulting in increased
processing time and memory consumption on large-scale
datasets. Performance under extremely uneven lighting
or highly complex textures also leaves room for
improvement. Future work could focus on enhancing
efficiency, optimizing the adaptive weighting mechanism,
and reducing resource consumption. Moreover,
integrating emerging techniques, such as Transformer-
based architectures, may further improve performance
and robustness in challenging image stitching scenarios.
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