RuralGrid-PVO: A Reliability-Conscious Multi-Objective Optimization Framework for Distributed PV Siting in Rural Grids

Abstract

The rapid growth of distributed photovoltaic (PV) systems offers a sustainable solution to rural energydemands. However, integrating PV into rural distribution grids presents challenges related to powerquality and grid reliability. Traditional PV site selection approaches often neglect the impact ondistribution reliability metrics, resulting in suboptimal deployments. This paper proposes RuralGridPVO (Rural Grid Photovoltaic Optimization), an optimization modeling framework for PV gridconnection site selection in rural areas, incorporating distribution grid reliability considerations. TheRuralGrid-PVO method integrates the RTS-GMLC synthetic power system model with solar irradiancedata from the NSRDB to simulate realistic rural deployment scenarios. A multi-objective optimizationmodel combines a Genetic Algorithm (GA) with Deep Neural Networks (DNN) for fast reliabilityassessments, optimizing PV placement based on energy yield, voltage stability, power losses, andreliability indices (SAIDI/SAIFI). GA-DNN framework incorporates SAIDI/SAIFI into optimization,outperforming baseline GA, AHP-GIS, and ReliOpt-Hybrid in energy yield, voltage stability, andreliability improvements, though sensitivity to reliability weights requires further exploration. Thispaper proposes RuralGrid-PVO, a comprehensive six-module optimization pipeline for distributedphotovoltaic (PV) site selection in rural grids with a focus on enhancing grid reliability. The pipelineintegrates data acquisition, candidate site identification, capacity estimation via Random Forestregression (R² = 0.93), reliability-aware grid simulation utilizing a Deep Neural Network (DNN) forSAIDI/SAIFI prediction (MAE = 3.8 min/year), multi-objective optimization with a Genetic Algorithm(GA), and final configuration selection. The methodology operates on a hardware/software stackcomprising Python-based ML frameworks and power system simulation tools to ensure reproducibility.Experimental evaluation demonstrates that RuralGrid-PVO improves voltage profiles by 15.3%,reduces energy losses by 12.8%, decreases SAIFI by up to 9.6%, and lowers SAIDI by 39%, significantlyoutperforming baseline site selection methods. These results validate the framework's effectiveness inachieving reliable, energy-efficient rural PV integration.

References

.Hamid, A. K., Mbungu, N. T., Elnady, A., Bansal, R. C., Ismail, A. A., & AlShabi, M. A. (2023). A systematic review of grid-connected photovoltaic and photovoltaic/thermal systems: Benefits, challenges and mitigation. Energy & Environment, 34(7), 2775-2814. https://doi.org/10.1177/0958305X221117617

.Boruah, D., & Chandel, S. S. (2025). A novel regulatory framework for implementing distributed solar mini-grids with battery energy storage under the virtual power plant architecture in India. Journal of Energy Storage, 132, 117732. https://doi.org/10.1016/j.est.2025.117732

.Sujatha, G. (2025). A Solar PV Integrated UPQC to Enhance Power Quality using SEA Gull ANFIS Algorithm. Informatica, 49(8). https://doi.org/10.31449/inf.v49i8.6158

.Liao, R., Manfren, M., & Nastasi, B. (2025). Off-grid PV systems modelling and optimisation for rural communities: leveraging understandability and interpretability of modelling tools. Energy, 324. https://doi.org/10.1016/j.energy.2025.135948

.Ahmad, T., Ali, S., & Basit, A. (2022). Distributed renewable energy systems for resilient and sustainable development of remote and vulnerable communities. Philosophical Transactions of the Royal Society A, 380(2221), 20210143. https://doi.org/10.1098/rsta.2021.0143

.Apeh, O. O., Meyer, E. L., & Overen, O. K. (2022). Contributions of solar photovoltaic systems to environmental and socioeconomic aspects of national development—A review. Energies, 15(16), 5963. https://doi.org/10.3390/en15165963

.Jarrah, M., & Abu-Khadrah, A. (2024). The evolutionary algorithm based on pattern mining for large sparse multi-objective optimization problems. PatternIQ Mining, 1(1), 12–22. https://doi.org/10.70023/piqm242

.Farag, M. M., & Bansal, R. C. (2023). Solar energy development in the GCC region–a review on recent progress and opportunities. International Journal of Modelling and Simulation, 43(5), 579-599. https://doi.org/10.1080/02286203.2022.2105785

.Yin, S., & Zhao, Z. (2023). Energy development in rural China toward a clean energy system: utilization status, co-benefit mechanism, and countermeasures. Frontiers in Energy Research, 11, 1283407. https://doi.org/10.3389/fenrg.2023.1283407

.Zhang, Y., & Kang, Z. (2025). Situational Awareness and Fault Warning for Smart Grids Combined with Deep Learning Technology: Application of Digital Twin Technology and Long Short Term Memory Networks. Informatica, 49(22). https://doi.org/10.31449/inf.v49i22.7992

.Niu, M., Xu, N. Z., Kong, X., Ngin, H. T., Ge, Y. Y., Liu, J. S., & Liu, Y. T. (2021). Reliability importance of renewable energy sources to overall generating systems. IEEE Access, 9, 20450-20459. DOI: 10.1109/ACCESS.2021.3055354

.Saxena, A., Shankar, R., El-Saadany, E. F., Kumar, M., Al Zaabi, O., Al Hosani, K., & Muduli, U. R. (2024). Intelligent load forecasting and renewable energy integration for enhanced grid reliability. IEEE Transactions on Industry Applications, 60(6), 8403-8417. DOI: 10.1109/TIA.2024.3436471

.Iweh, C. D., Gyamfi, S., Tanyi, E., & Effah-Donyina, E. (2021). Distributed generation and renewable energy integration into the grid: Prerequisites, push factors, practical options, issues and merits. Energies, 14(17), 5375. https://doi.org/10.3390/en14175375

.Rishitha, N., Muthu Reshmi, K., Srishti Gulecha, R., & Vani, K. (2024). Machine learning-driven solar panel site selection and rooftop potential estimation for sustainable development goals. In Proc. Asian Conf. Remote Sensing (pp. 1-8).

.Gui, B., Sam, L., & Bhardwaj, A. (2024). From roofs to renewables: Deep learning and geographic information systems insights into a comprehensive urban solar photovoltaic assessment for Stonehaven. Energy 360, 1, 100006. https://doi.org/10.1016/j.energ.2024.100006

.Tafula, J. E., Justo, C. D., Moura, P., Mendes, J., & Soares, A. (2023). Multicriteria decision-making approach for optimum site selection for off-grid solar photovoltaic microgrids in Mozambique. Energies, 16(6), 2894. https://doi.org/10.3390/en16062894

.Zambrano-Asanza, S., Quiros-Tortos, J., & Franco, J. F. (2021). Optimal site selection for photovoltaic power plants using a GIS-based multi-criteria decision making and spatial overlay with electric load. Renewable and Sustainable Energy Reviews, 143, 110853. https://doi.org/10.1016/j.rser.2021.110853

.Coban, H. H. (2024). A multiscale approach to optimize off-grid hybrid renewable energy systems for sustainable rural electrification: economic evaluation and design. Energy Strategy Reviews, 55, 101527. https://doi.org/10.1016/j.esr.2024.101527

.Roldán-Porta, C., Roldán-Blay, C., Dasi-Crespo, D., & Escriva-Escriva, G. (2023). Optimising a biogas and photovoltaic hybrid system for sustainable power supply in rural areas. Applied Sciences, 13(4), 2155. https://doi.org/10.3390/app13042155

.Qasimi, A. B., Toomanian, A., Nasri, F., & Samany, N. N. (2023). Genetic algorithms-based optimal site selection of solar PV in the north of Afghanistan. International Journal of Sustainable Energy, 42(1), 929-953. https://doi.org/10.1080/14786451.2023.2246081

.Mwakitalima, I. J., Rizwan, M., & Kumar, N. (2023). Integrating Solar Photovoltaic Power Source and Biogas Energy‐Based System for Increasing Access to Electricity in Rural Areas of Tanzania. International Journal of Photoenergy, 2023(1), 7950699. https://doi.org/10.1155/2023/7950699

.Zhu, R., Murcia León, J. P., Friis-Møller, M., Gupta, M., & Kaushik, D. Optimal Sizing of Renewable Hybrid Power Plants Considering Component Reliability as a Multi-Discipline Optimization Under Uncertainty. Available at SSRN 5352198. DOI:10.2139/ssrn.5352198

.Agajie, E. F., Agajie, T. F., Amoussou, I., Fopah-Lele, A., Nsanyuy, W. B., Khan, B., ... & Tanyi, E. (2024). Optimization of off-grid hybrid renewable energy systems for cost-effective and reliable power supply in Gaita Selassie Ethiopia. Scientific Reports, 14(1), 10929. https://doi.org/10.1038/s41598-024-61783-z

.Zhou, N., Shang, B., Zhang, J., & Xu, M. (2024). Modeling load distribution for rural photovoltaic grid areas using image recognition. Global Energy Interconnection, 7(3), 270-283. https://doi.org/10.1016/j.gloei.2024.06.002

.Xie, H., Li, P., Shi, F., Han, C., Cui, X., & Zhao, Y. (2025). Spatial and Temporal Expansion of Photovoltaic Sites and Thermal Environmental Effects in Ningxia Based on Remote Sensing and Deep Learning. Remote Sensing, 17(14), 2440. https://doi.org/10.3390/rs17142440

.Belaid, A., Guermoui, M., Khelifi, R., Arrif, T., Chekifi, T., Rabehi, A., ... & Alhussan, A. A. (2024). Assessing suitable areas for PV power installation in remote agricultural regions. Energies, 17(22), 5792. https://doi.org/10.3390/en17225792

.https://github.com/GridMod/RTS-GMLC

.https://nsrdb.nrel.gov/

Authors

  • Yu Zhang Shijiazhuang Power Supply Branch, Shijiazhuang 056000, Hebei, China
  • Jinyue Shi Shijiazhuang Power Supply Branch, Shijiazhuang 056000, Hebei, China
  • Haitao Ge Shijiazhuang Power Supply Branch, Shijiazhuang 056000, Hebei, China
  • Liang Geng Shijiazhuang Power Supply Branch, Shijiazhuang 056000, Hebei, China
  • Lulu Jia Shijiazhuang Power Supply Branch, Shijiazhuang 056000, Hebei, China

DOI:

https://doi.org/10.31449/inf.v50i7.11442

Downloads

Published

02/21/2026

How to Cite

Zhang, Y., Shi, J., Ge, H., Geng, L., & Jia, L. (2026). RuralGrid-PVO: A Reliability-Conscious Multi-Objective Optimization Framework for Distributed PV Siting in Rural Grids. Informatica, 50(7). https://doi.org/10.31449/inf.v50i7.11442