Efficient Underwater Garbage Detection Using GSConv Enhanced YOLOv8 with GD Mechanism
Abstract
Due to low visibility, scale variation, and complex backgrounds, detecting marine debris in underwater environments remains highly challenging. To address these issues, we propose YOLO-GGS, a lightweight yet high-performance object detector built upon YOLOv8. The framework incorporates three key innovations. First, the Gather-and-Distribute (GD) mechanism from Gold-YOLO is introduced into the neck, which unifies multi-scale feature aggregation while selectively injecting global context, thereby enhancing object perception across different scales. Second, GSConv-based hybrid convolutions are deployed in both the backbone and the injection module, effectively balancing rich channel interactions with reduced computational complexity. Third, a Slim-Neck design simplifies the feature fusion path by eliminating redundant operations, thus improving inference speed. Comprehensive experiments on the J-EDI and Brackish underwater
datasets demonstrate the superior performance of YOLO-GGS, achieving mAP@0.5:0.95 values of 88.5% and 84.7%, which represent improvements of 4% and 2.5% over the baseline model, respectively. Moreover, real-time evaluation shows that YOLO-GGS reaches an inference speed of 108.4 FPS. These results
highlight YOLO-GGS as an efficient and accurate solution for underwater debris detection, offering substantial potential for deployment on Autonomous Underwater Vehicles (AUVs) and Remotely Operated Vehicles (ROVs).
Full Text:
PDFReferences
@inproceedings{cheng2024yolo,
title={Yolo-world: Real-time open-vocabulary object detection},
author={Cheng, Tianheng and Song, Lin and Ge, Yixiao and Liu, Wenyu and Wang, Xinggang and Shan, Ying},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={16901--16911},
year={2024},
doi={10.1109/CVPR52733.2024.01599}
}
@inproceedings{chollet2017xception,
title={Xception: Deep learning with depthwise separable convolutions},
author={Chollet, Fran{c{c}}ois},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={1251--1258},
year={2017},
doi={10.1109/CVPR.2017.195}
}
@inproceedings{dai2017deformable,
title={Deformable convolutional networks},
author={Dai, Jifeng and Qi, Haozhi and Xiong, Yuwen and Li, Yi and Zhang, Guodong and Hu, Han and Wei, Yichen},
booktitle={Proceedings of the IEEE international conference on computer vision},
pages={764--773},
year={2017},
doi={10.48550/arXiv.1703.06211}
}
@article{deng2021embeddable,
title={An embeddable algorithm for automatic garbage detection based on complex marine environment},
author={Deng, Hongjie and Ergu, Daji and Liu, Fangyao and Ma, Bo and Cai, Ying},
journal={Sensors},
volume={21},
number={19},
pages={6391},
year={2021},
publisher={MDPI},
doi={10.3390/s21196391}
}
@inproceedings{fulton2019robotic,
title={Robotic detection of marine litter using deep visual detection models},
author={Fulton, Michael and Hong, Jungseok and Islam, Md Jahidul and Sattar, Junaed},
booktitle={2019 international conference on robotics and automation (ICRA)},
pages={5752--5758},
year={2019},
organization={IEEE},
doi={10.1109/ICRA.2019.8793975}
}
@article{garcia2021automatic,
title={Automatic detection and quantification of floating marine macro-litter in aerial images: Introducing a novel deep learning approach connected to a web application in R},
author={Garcia-Garin, Odei and Monle{'o}n-Getino, Toni and L{'o}pez-Brosa, Pere and Borrell, Asunci{'o}n and Aguilar, Alex and Borja-Robalino, Ricardo and Cardona, Luis and Vighi, Morgana},
journal={Environmental Pollution},
volume={273},
pages={116490},
year={2021},
publisher={Elsevier},
doi={10.1016/j.envpol.2021.116490}
}
@article{gonzalez2022floating,
title={Floating marine macro litter in the Black Sea: Toward baselines for large scale assessment},
author={Gonz{'a}lez-Fern{'a}ndez, Daniel and Hanke, G and Pogojeva, M and Machitadze, N and Kotelnikova, Y and Tretiak, I and Savenko, O and Bilashvili, K and Gelashvili, N and Fedorov, A and others},
journal={Environmental Pollution},
volume={309},
pages={119816},
year={2022},
publisher={Elsevier},
doi={10.1016/j.envpol.2022.119816}
}
@inproceedings{han2020ghostnet,
title={Ghostnet: More features from cheap operations},
author={Han, Kai and Wang, Yunhe and Tian, Qi and Guo, Jianyuan and Xu, Chunjing and Xu, Chang},
booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition},
pages={1580--1589},
year={2020},
doi={10.1109/CVPR42600.2020.00165}
}
@inproceedings{he2017mask,
title={Mask r-cnn},
author={He, Kaiming and Gkioxari, Georgia and Doll{'a}r, Piotr and Girshick, Ross},
booktitle={Proceedings of the IEEE international conference on computer vision},
pages={2961--2969},
year={2017},
doi={10.1109/ICCV.2017.322}
}
@inproceedings{hong2020generative,
title={A generative approach towards improved robotic detection of marine litter},
author={Hong, Jungseok and Fulton, Michael and Sattar, Junaed},
booktitle={2020 IEEE international conference on robotics and automation (ICRA)},
pages={10525--10531},
year={2020},
organization={IEEE},
doi={10.1109/ICRA40945.2020.9197575}
}
@article{kylili2019identifying,
title={Identifying floating plastic marine debris using a deep learning approach},
author={Kylili, Kyriaki and Kyriakides, Ioannis and Artusi, Alessandro and Hadjistassou, Constantinos},
journal={Environmental Science and Pollution Research},
volume={26},
pages={17091--17099},
year={2019},
publisher={Springer},
doi={10.1007/s11356-019-05148-4}
}
@article{li2024slim,
title={Slim-neck by GSConv: a lightweight-design for real-time detector architectures},
author={Li, Hulin and Li, Jun and Wei, Hanbing and Liu, Zheng and Zhan, Zhenfei and Ren, Qiliang},
journal={Journal of Real-Time Image Processing},
volume={21},
number={3},
pages={62},
year={2024},
publisher={Springer},
doi={10.1007/s11554-024-01436-6}
}
@article{lin2022investigating,
title={Investigating sources of marine litter and developing coping strategies in scuba diving spots in Taiwan},
author={Lin, Ping-I and Ku, Gordon Chih-Ming and Lin, Hsiao-Hsien and Hsu, Chin-Hsien and Chi, Hung-Chih and Chen, Yi-Ching},
journal={Sustainability},
volume={14},
number={9},
pages={5726},
year={2022},
publisher={MDPI},
doi={10.3390/su14095726}
}
@inproceedings{lin2017feature,
title={Feature pyramid networks for object detection},
author={Lin, Tsung-Yi and Doll{'a}r, Piotr and Girshick, Ross and He, Kaiming and Hariharan, Bharath and Belongie, Serge},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={2117--2125},
year={2017},
doi={10.1109/CVPR.2017.106}
}
@inproceedings{liu2016ssd,
title={Ssd: Single shot multibox detector},
author={Liu, Wei and Anguelov, Dragomir and Erhan, Dumitru and Szegedy, Christian and Reed, Scott and Fu, Cheng-Yang and Berg, Alexander C},
booktitle={Computer Vision--ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11--14, 2016, Proceedings, Part I 14},
pages={21--37},
year={2016},
organization={Springer},
doi={10.1007/978-3-319-46448-0_2}
}
@article{ma2023mldet,
title={MLDet: Towards efficient and accurate deep learning method for Marine Litter Detection},
author={Ma, Dongliang and Wei, Jine and Li, Ye and Zhao, Fang and Chen, Xi and Hu, Yuchao and Yu, Shanshan and He, Tianhao and Jin, Ruihe and Li, Zhaozhao and others},
journal={Ocean & Coastal Management},
volume={243},
pages={106765},
year={2023},
publisher={Elsevier},
doi={10.1016/j.ocecoaman.2023.106765}
}
@inproceedings{nascimento2019dsconv,
title={Dsconv: Efficient convolution operator},
author={Nascimento, Marcelo Gennari do and Fawcett, Roger and Prisacariu, Victor Adrian},
booktitle={Proceedings of the IEEE/CVF international conference on computer vision},
pages={5148--5157},
year={2019},
doi={10.1109/ICCV.2019.00525}
}
@article{politikos2021automatic,
title={Automatic detection of seafloor marine litter using towed camera images and deep learning},
author={Politikos, Dimitris V and Fakiris, Elias and Davvetas, Athanasios and Klampanos, Iraklis A and Papatheodorou, George},
journal={Marine Pollution Bulletin},
volume={164},
pages={111974},
year={2021},
publisher={Elsevier},
doi={10.1016/j.marpolbul.2021.111974}
}
@article{rehman2025optimized,
title={Optimized YOLOV8: An efficient underwater litter detection using deep learning},
author={Rehman, Faiza and Rehman, Mariam and Anjum, Maria and Hussain, Afzaal},
journal={Ain Shams Engineering Journal},
volume={16},
number={1},
pages={103227},
year={2025},
publisher={Elsevier},
doi={10.1016/j.asej.2024.103227}
}
@article{selvaraju2020grad,
title={Grad-CAM: visual explanations from deep networks via gradient-based localization},
author={Selvaraju, Ramprasaath R and Cogswell, Michael and Das, Abhishek and Vedantam, Ramakrishna and Parikh, Devi and Batra, Dhruv},
journal={International journal of computer vision},
volume={128},
pages={336--359},
year={2020},
publisher={Springer},
doi={10.1007/s11263-019-01228-7}
}
@inproceedings{sohan2024review,
title={A review on yolov8 and its advancements},
author={Sohan, Mupparaju and Sai Ram, Thotakura and Reddy, Rami and Venkata, Ch},
booktitle={International Conference on Data Intelligence and Cognitive Informatics},
pages={529--545},
year={2024},
organization={Springer},
doi={10.1007/978-981-99-7962-2_39}
}
@inproceedings{teng2022object,
title={The Object Detection of Underwater Garbage with an Improved YOLOv5 Algorithm},
author={Teng, Xiaowen and Fei, Yuhuan and He, Kai and Lu, Lihui},
booktitle={Proceedings of the 2022 International Conference on Pattern Recognition and Intelligent Systems},
pages={55--60},
year={2022},
doi={10.1145/3549179.3549189}
}
@inproceedings{valdenegro2016submerged,
title={Submerged marine debris detection with autonomous underwater vehicles},
author={Valdenegro-Toro, Matias},
booktitle={2016 International Conference on Robotics and Automation for Humanitarian Applications (RAHA)},
pages={1--7},
year={2016},
organization={IEEE},
doi={10.1109/RAHA.2016.7931907}
}
@article{verma2022deep,
title={A deep learning-based intelligent garbage detection system using an unmanned aerial vehicle},
author={Verma, Vishal and Gupta, Deepali and Gupta, Sheifali and Uppal, Mudita and Anand, Divya and Ortega-Mansilla, Arturo and Alharithi, Fahd S and Almotiri, Jasem and Goyal, Nitin},
journal={Symmetry},
volume={14},
number={5},
pages={960},
year={2022},
publisher={MDPI},
doi={10.3390/sym14050960}
}
@article{wei2022image,
title={Image semantic segmentation of underwater garbage with modified U-Net architecture model},
author={Wei, Lifu and Kong, Shihan and Wu, Yuquan and Yu, Junzhi},
journal={Sensors},
volume={22},
number={17},
pages={6546},
year={2022},
publisher={MDPI},
doi={10.3390/s22176546}
}
@inproceedings{wang2023yolov7,
title={YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors},
author={Wang, Chien-Yao and Bochkovskiy, Alexey and Liao, Hong-Yuan Mark},
booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition},
pages={7464--7475},
year={2023},
doi={arXiv:2207.02696}
}
@article{xue2021efficient,
title={An efficient deep-sea debris detection method using deep neural networks},
author={Xue, Bing and Huang, Baoxiang and Wei, Weibo and Chen, Ge and Li, Haitao and Zhao, Nan and Zhang, Hongfeng},
journal={IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing},
volume={14},
pages={12348--12360},
year={2021},
publisher={IEEE},
doi={10.1109/JSTARS.2021.3130238}
}
@inproceedings{zhang2018shufflenet,
title={Shufflenet: An extremely efficient convolutional neural network for mobile devices},
author={Zhang, Xiangyu and Zhou, Xinyu and Lin, Mengxiao and Sun, Jian},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={6848--6856},
year={2018},
doi={10.1109/CVPR.2018.00716}
}
@article{zhang2024yolov7t,
title={YOLOv7t-CEBC network for underwater litter detection},
author={Zhang, Xinyu and Zhu, Daqi and Gan, Wenyang},
journal={Journal of Marine Science and Engineering},
volume={12},
number={4},
pages={524},
year={2024},
publisher={MDPI},
doi={10.3390/jmse12040524}
}
@article{zhao2025seafloor,
title={Seafloor debris detection using underwater images and deep learning-driven image restoration: A case study from Koh Tao, Thailand},
author={Zhao, Fan and Huang, Baoxi and Wang, Jiaqi and Shao, Xinlei and Wu, Qingyang and Xi, Dianhan and Liu, Yongying and Chen, Yijia and Zhang, Guochen and Ren, Zhiyan and others},
journal={Marine Pollution Bulletin},
volume={214},
pages={117710},
year={2025},
publisher={Elsevier},
doi={10.1016/j.marpolbul.2025.117710}
}
@article{zhao2023improved,
title={Improved ship detection with YOLOv8 enhanced with MobileViT and GSConv},
author={Zhao, Xuemeng and Song, Yinglei},
journal={Electronics},
volume={12},
number={22},
pages={4666},
year={2023},
publisher={MDPI},
doi={10.3390/electronics12224666}
}
@article{zhou2022yolotrashcan,
title={YOLOTrashCan: a deep learning marine debris detection network},
author={Zhou, Wei and Zheng, Fujian and Yin, Gang and Pang, Yiran and Yi, Jun},
journal={IEEE Transactions on Instrumentation and Measurement},
volume={72},
pages={1--12},
year={2022},
publisher={IEEE},
doi={10.1109/TIM.2022.3225044}
}
@article{zhu2024yolov8,
title={YOLOv8-C2f-Faster-EMA: an improved underwater trash detection model based on YOLOv8},
author={Zhu, Jin and Hu, Tao and Zheng, Linhan and Zhou, Nan and Ge, Huilin and Hong, Zhichao},
journal={Sensors},
volume={24},
number={8},
pages={2483},
year={2024},
publisher={MDPI},
doi={10.3390/s24082483}
}
@article{girshick2015fast,
title={Fast r-cnn},
author={Girshick, Ross},
journal={arXiv preprint arXiv:1504.08083},
year={2015},
doi={10.1109/TPAMI.2016.2577031}
}
@article{wang2024gold,
title={Gold-YOLO: Efficient object detector via gather-and-distribute mechanism},
author={Wang, Chengcheng and He, Wei and Nie, Ying and Guo, Jianyuan and Liu, Chuanjian and Wang, Yunhe and Han, Kai},
journal={Advances in Neural Information Processing Systems},
volume={36},
year={2024},
doi={10.48550/arXiv.2309.11331}
}
DOI: https://doi.org/10.31449/inf.v49i22.10283
This work is licensed under a Creative Commons Attribution 3.0 License.








