Improving Load Balancing Efficiency in Cloud Data Centers Through Hybrid Grey Wolf with Cat Swarm Optimization
Abstract
An effective resource management strategy that anticipates server resource utilization and appropriately distributes the load is recommended in order to address these problems and enhance data center performance. By reducing the number of servers in use, facilitating virtual machine migrations, and optimizing resource utilization, it helps save power. To reduce the likelihood of service level agreement (SLA) violations and performance degradation caused by either oveloded or under loaded servers and virtual machines. Resources for software applications can now be dynamically altered as needed thanks to the growth of cloud computing. Since better resource consumption can lead to increased scalability as well as significant cost and energy savings, effective resource management is crucial in cloud computing. The flexibility of cloud resources allows clients to dynamically increase and decrease their resource demands over time. However, predefined virtual machine sizes and variable resource requirements result in underutilization of resources, load imbalances, and high power consumption. The goal of this research is to develop a hybrid technique by combining Grey Wolf with algorithms. The hybridization processes take place in the Grey Wolf portion, when the Cat Swarm initialization process takes the place of the startup phase. The virtual machine (VM) section's data selection is enhanced by this substitution. The Grey Wolf and Cat Swarm algorithms are two examples of optimization algorithms. The evaluation criteria that are used are makespan, throughput, degree of imbalance, and turnaround time with degree of imbalance. The recommended approach outperforms alternative algorithms in each of these metrics. The proposed hybrid strategy resulted in 0.3% increase overall performance. Potential directions for future research include testing the proposed approach in larger and more complex data distribution in cloud data centers.
Full Text:
PDFReferences
Li, P., Li, J., Huang, Z., Li, T., Gao, C. Z., Yiu, S. M., & Chen, K. (2017). Multi-key privacy-preserving deep learning in cloud computing. Future Generation Computer Systems, 74, 76-85. https://doi.org/10.1016/j.future.2017.02.006
Jivanadham, L. B., Islam, A. M., Katayama, Y., Komaki, S., & Baharun, S. (2013, May). Cloud Cognitive Authenticator (CCA): A public cloud computing authentication mechanism. In 2013 International Conference on Informatics, Electronics and Vision (ICIEV) (pp. 1-6). IEEE. https://doi.org/10.1109/iciev.2013.6572626
Al-Maytami, B. A., Fan, P., Hussain, A., Baker, T., & Liatsis, P. (2019). A task scheduling algorithm with improved makespan based on prediction of tasks computation time algorithm for cloud computing. IEEE Access, 7, 160916-160926. https://doi.org/10.1109/access.2019.2948704
Markovic, D. S., Zivkovic, D., Branovic, I., Popovic, R., & Cvetkovic, D. (2013). Smart power grid and cloud computing. Renewable and Sustainable Energy Reviews, 24, 566-577. https://doi.org/10.1016/j.rser.2013.03.068
Abid, A., Manzoor, M. F., Farooq, M. S., Farooq, U., & Hussain, M. (2020). Challenges and Issues of Resource Allocation Techniques in Cloud Computing. KSII Transactions on Internet & Information Systems, 14(7). https://doi.org/10.3837/tiis.2020.07.005
Ujjwal, K. C., Garg, S., Hilton, J., Aryal, J., & Forbes-Smith, N. (2019). Cloud Computing in natural hazard modeling systems: Current research trends and future directions. International Journal of Disaster Risk Reduction, 38, 101188. https://doi.org/10.1088/1475-7516/2020/07/005
Takahashi, T., Blanc, G., Kadobayashi, Y., Fall, D., Hazeyama, H., & Matsuo, S. I. (2012, April). Enabling secure multitenancy in cloud computing: Challenges and approaches. In 2012 2nd Baltic Congress on Future Internet Communications (pp. 72-79). IEEE. https://doi.org/10.1109/bcfic.2012.6217983
Yang, C., Goodchild, M., Huang, Q., Nebert, D., Raskin, R., Xu, Y., ... & Fay, D. (2011). Spatial cloud computing: how can the geospatial sciences use and help shape cloud computing?. International Journal of Digital Earth, 4(4), 305-329. https://doi.org/10.1080/17538947.2011.587547
Abdel-Basset, M., El-Shahat, D., El-Henawy, I., De Albuquerque, V. H. C., & Mirjalili, S. (2020). A new fusion of grey wolf optimizer algorithm with a two-phase mutation for feature selection. Expert Systems with Applications, 139, 112824. https://doi.org/10.1016/j.eswa.2019.112824
Zamfirache, I. A., Precup, R. E., Roman, R. C., & Petriu, E. M. (2022). Policy iteration reinforcement learning-based control using a grey wolf optimizer algorithm. Information Sciences, 585, 162-175. https://doi.org/10.1016/j.ins.2021.11.051
Rodríguez, L., Castillo, O., Soria, J., Melin, P., Valdez, F., Gonzalez, C. I., ... & Soto, J. (2017). A fuzzy hierarchical operator in the grey wolf optimizer algorithm. Applied Soft Computing, 57, 315-328. Faris, H., Aljarah, I., Al-Betar, M. A., & Mirjalili, S. (2018). Grey wolf optimizer: a review of recent variants and applications. Neural computing and applications, 30, 413-435. https://doi.org/10.1016/j.asoc.2017.03.048
Bezdan, T., Zivkovic, M., Bacanin, N., Strumberger, I., Tuba, E., & Tuba, M. (2022). Multi-objective task scheduling in cloud computing environment by hybridized bat algorithm. Journal of Intelligent & Fuzzy Systems, 42(1), 411-423. https://doi.org/10.3233/jifs-219200
Sundas, A., Badotra, S., Alotaibi, Y., Alghamdi, S., & Khalaf, O. I. (2022). Modified Bat Algorithm for Optimal VM's in Cloud Computing. Computers, Materials & Continua, 72(2). https://doi.org/10.32604/cmc.2022.025658
Raghavan, S., Sarwesh, P., Marimuthu, C., & Chandrasekaran, K. (2015, January). Bat algorithm for scheduling workflow applications in cloud. In 2015 International Conference on Electronic Design, Computer Networks & Automated Verification (EDCAV) (pp. 139-144). IEEE. https://doi.org/10.1109/edcav.2015.7060555
Fahim, Y., Rahhali, H., Hanine, M., Benlahmar, E. H., Labriji, E. H., Hanoune, M., & Eddaoui, A. (2018). Load Balancing in Cloud Computing Using Meta-Heuristic Algorithm. Journal of Information Processing Systems, 14(3). https://doi.org/10.1109/cist.2014.7016608
Senthil Kumar, A. M., Padmanaban, K., Velmurugan, A. K., Asha Shiny, X. S., & Anguraj, D. K. (2023). A novel resource management framework in a cloud computing environment using hybrid cat swarm BAT (HCSBAT) algorithm. Distributed and Parallel Databases, 41(1-2), 53-63. https://doi.org/10.1007/s10619-021-07339-w
Bin, N. I. N. G., Qiong, G. U., Zhao, W. U., Lei, Y. U. A. N., & Chun-yang, H. U. (2015). Bats algorithm research in cloud computing resource scheduling based on membrane computing. Application Research of Computers/Jisuanji Yingyong Yanjiu, 32(3). https://doi.org/10.4028/www.scientific.net/amr.989-994.2192
Ganne, A. (2022). Emerging Business Trends in Cloud Computing. International Research Journal of Modernization in Engineering Technology, 4(12). https://doi.org/10.56726/irjmets32082
Gundu, S. R., Panem, C. A., Thimmapuram, A., & Gad, R. S. (2022). Emerging computational challenges in cloud computing and RTEAH algorithm based solution. Journal of Ambient Intelligence and Humanized Computing, 1-15. https://doi.org/10.1007/s12652-021-03380-w
Alam, T., Gupta, R., Qamar, S., & Ullah, A. (2022). Recent applications of Artificial Intelligence for Sustainable Development in smart cities. In Recent Innovations in Artificial Intelligence and Smart Applications (pp. 135-154). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-14748-7_8
Ullah, A., & Chakir, A. (2022). Improvement for tasks allocation system in VM for cloud datacenter using modified bat algorithm. Multimedia Tools and Applications, 81(20), 29443-29457. https://doi.org/10.1007/s11042-022-12904-1
Kumar, R., Bhardwaj, D., & Joshi, R. (2022). Adaptive bat optimization algorithm for efficient load balancing in cloud computing environment. In Advances in Computational Intelligence and Communication Technology: Proceedings of CICT 2021 (pp. 357-369). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-16-9756-2_35
Li, X., Lu, Y., Fu, X., & Qi, Y. (2021). Building the Internet of Things platform for smart maternal healthcare services with wearable devices and cloud computing. Future Generation Computer Systems, 118, 282-296. https://doi.org/10.1016/j.future.2021.01.016
Krishnamoorthy, P. (2021). Performance Analysis of Hybrid BAT Algorithm and Cuckoo Search Algorithm [HB-CSA] for Task Scheduling in Mobile Cloud Computing. Available at SSRN 3997784. https://doi.org/10.2139/ssrn.3997784
Gundu, S. R., Panem, C. A., & Thimmapuram, A. (2020). Hybrid IT and multi cloud an emerging trend and improved performance in cloud computing. SN Computer Science, 1(5), 256. https://doi.org/10.1007/s42979-020-00277-x
Ullah, A., Nawi, N. M., & Khan, M. H. (2020). BAT algorithm used for load balancing purpose in cloud computing: an overview. International Journal of High Performance Computing and Networking, 16(1), 43-54. https://doi.org/10.1504/ijhpcn.2020.110258
Ibrahim, L. M., & Saleh, I. A. (2020). A solution of loading balance in cloud computing using optimization of bat swarm algorithm. Journal of Engineering Science and Technology, 15(3), 2062-2076. https://doi.org/10.5220/000767440058006
Chung, K., & Park, R. C. (2019). Chatbot-based heathcare service with a knowledge base for cloud computing. Cluster Computing, 22, 1925-1937. https://doi.org/10.1007/s10586-018-2334-5
Panda, M., & Das, B. (2019). Grey wolf optimizer and its applications: a survey. In Proceedings of the Third International Conference on Microelectronics, Computing and Communication Systems: MCCS 2018 (pp. 179-194). Springer Singapore. https://doi.org/10.1007/978-981-13-7091-5_1
Punitha, A. A. A., & Indumathi, G. (2019). Centralized cloud information accountability with bat key generation algorithm (CCIA-BKGA) framework in cloud computing environment. Cluster Computing, 22(Suppl 2), 3153-3164. https://di.org/10.1007/s10586-018-2009-2
Jian, C., Chen, J., Ping, J., & Zhang, M. (2019). An improved chaotic bat swarm scheduling learning model on edge computing. IEEE Access, 7, 58602-58610. https://doi.org/10.1109/access.2019.2914261
Patil, R., Dudeja, H., & Modi, C. (2019). Designing an efficient security framework for detecting intrusions in virtual network of cloud computing. Computers & Security, 85, 402-422. https://doi.org/10.1016/j.cose.2019.05.016
Lu, C., Gao, L., & Yi, J. (2018). Grey wolf optimizer with cellular topological structure. Expert Systems with Applications, 107, 89-114. https://doi.org/10.1016/j.eswa.2018.04.012
Gawali, M. B., & Shinde, S. K. (2018). Task scheduling and resource allocation in cloud computing using a heuristic approach. Journal of Cloud Computing, 7(1), 1-16. https://doi.org/10.1186/s13677-018-0105-
Attaran, M. (2017). Cloud computing technology: leveraging the power of the internet to improve business performance. Journal of International Technology and Information Management, 26(1), 112-137. https://doi.org/10.58729/1941-6679.1283
Singh, P., Dutta, M., & Aggarwal, N. (2017). A review of task scheduling based on meta-heuristics approach in cloud computing. Knowledge and Information Systems, 52, 1-51. https://doi.org/10.1007/s10115-017-1044-2
Zhang, Y., Liu, Z., Yu, F., & Jiang, T. (2017). Cloud computing resources scheduling optimisation based on improved bat algorithm via wavelet perturbations. International Journal of High Performance Systems Architecture, 7(4), 189-196. https://doi.org/10.1504/ijhpsa.2017.092385
Arunarani, A. R., Manjula, D., & Sugumaran, V. (2017). FFBAT: A security and cost‐aware workflow scheduling approach combining firefly and bat algorithms. Concurrency and Computation: Practice and Experience, 29(24), e4295. https://doi.org/10.1002/cpe.429
Mittal, N., Singh, U., & Sohi, B. S. (2016). Modified grey wolf optimizer for global engineering optimization. Applied Computational Intelligence and Soft Computing, 2016. https://doi.org/10.1155/2016/7950348
Bouyer, A., & Arasteh, B. (2014). The necessity of using cloud computing in educational system. Procedia-Social and Behavioral Sciences, 143, 581-585. https://doi.org/10.1016/j.sbspro.2014.07.440
Dillon, T., Wu, C., & Chang, E. (2010, April). Cloud computing: issues and challenges. In 2010 24th IEEE international conference on advanced information networking and applications (pp. 27-33). Ieee. https://doi.org/10.1109/aina.2010.187
Randles, M., Lamb, D., & Taleb-Bendiab, A. (2010, April). A comparative study into distributed load balancing algorithms for cloud computing. In 2010 IEEE 24th International Conference on Advanced Information Networking and Applications Workshops (pp. 551-556). IEEE. https://doi.org/10.1109/waina.2010.85
Ullah, A., Razak, S. F. A., Yogarayan, S., & Sayeed, M. S. (2025). Modified Neural Network Used for Host Utilization Predication in Cloud Computing Environment. Computers, Materials & Continua, 82(3). https://doi.org/10.32604/cmc.2025.059355
Remmach, H., Razak, S. F. A., Ullah, A., Yogarayan, S., Sayeed, M. S., & Mrhari, A. (2025). CNN-Based Multi-Output and Multi-Task Regression for Supershape Reconstruction from 3D Point Clouds. Informatica, 49(5). https://doi.org/10.31449/inf.v49i5.6863
Ullah, A., Alam, T., Aziza, C., Sebai, D., & Abualigah, L. (2024). A Hybrid Strategy for Reduction in Time Consumption for Cloud Datacenter Using HMBC Algorithm. Wireless Personal Communications, 137(4), 2037-2060. https://doi.org/10.1007/s11277-024-11395-7
Alam, T., Gupta, R., Nasurudeen Ahamed, N., Ullah, A., & Almaghthwi, A. (2024). Smart mobility adoption in sustainable smart cities to establish a growing ecosystem: Challenges and opportunities. MRS Energy & Sustainability, 11(2), 304-316. https://doi.org/10.1557/s43581-024-00092-4
Ullah, A., Alomari, Z., Alkhushayni, S., Al-Zaleq, D. A., Bany Taha, M., & Remmach, H. (2024). Improvement in task allocation for VM and reduction of Makespan in IaaS model for cloud computing. Cluster Computing, 27(8), 11407-11426. https://doi.org/10.1007/s10586-024-04539-8
Alam, T., Ullah, A., & Benaida, M. (2023). Deep reinforcement learning approach for computation offloading in blockchain-enabled communications systems. Journal of Ambient Intelligence and Humanized Computing, 14(8), 9959-9972. https://doi.org/10.1007/s12652-021-03663-2
Ouhame, S., Hadi, Y., & Ullah, A. (2021). An efficient forecasting approach for resource utilization in cloud data center using CNN-LSTM model. Neural Computing and Applications, 33(16), 10043-10055. https://doi.org/10.1007/s00521-021-05770-9
Clemons, E. K., & Chen, Y. (2011, January). Making the decision to contract for cloud services: Managing the risk of an extreme form of IT outsourcing. In 2011 44th Hawaii International Conference on System Sciences (pp. 1-10). IEEE. https://doi.org/10.1109/hicss.2011.292
Yao, J., & He, J. H. (2012, April). Load balancing strategy of cloud computing based on artificial bee algorithm. In 2012 8th International conference on computing technology and information management (NCM and ICNIT) (Vol. 1, pp. 185-189). IEEE. https://doi.org/10.3724/sp.j.1087.2012.0244
Sajid, M., & Raza, Z. (2013, December). Cloud computing: Issues & challenges. In International conference on cloud, big data and trust (Vol. 20, No. 13, pp. 13-15). sn. https://doi.org/10.1201/b16318-3
Pawar, C. S., & Wagh, R. B. (2013, March). Priority based dynamic resource allocation in cloud computing with modified waiting queue. In 2013 International Conference on Intelligent Systems and Signal Processing (ISSP) (pp. 311-316). IEEE. https://doi.org/10.1109/issp.2013.6526925
Chauhan, R., & Kumar, A. (2013, November). Cloud computing for improved healthcare: Techniques, potential and challenges. In 2013 E-health and bioengineering conference (EHB) (pp. 1-4). IEEE. https://doi.org/10.1109/ehb.2013.6707234
DOI: https://doi.org/10.31449/inf.v49i28.8860

This work is licensed under a Creative Commons Attribution 3.0 License.