A Self-Adaptive CPS-Based Object Recognition Framework for Smart Glasses Using Dist-YOLOv3-Xception with Attention
Abstract
Full Text:
PDFReferences
] Hikmawati, N. U. Maulidevi, and K. Surendro, “Adaptive rule: A novel framework for recommender system,” ICT Express, vol. 6, no. 3, pp. 214–219, 2020, doi: 10.1016/j.icte.2020.06.001.
] [2] P. O. Antonino, A. Morgenstern, B. Kallweit, M. Becker, and T. Kuhn, “Straightforward Specification of Adaptation-Architecture-Significant Requirements of IoT-enabled Cyber-Physical Systems,” Proc. - 2018 IEEE 15th Int. Conf. Softw. Archit. Companion, ICSA-C 2018, pp. 19–26, 2018, doi: 10.1109/ICSA-C.2018.00012.
] [3] S. Zeadally, T. Sanislav, and G. D. Mois, “Self-Adaptation Techniques in Cyber-Physical Systems (CPSs),” IEEE Access, vol. 7, pp. 171126–171139, 2019, doi: 10.1109/ACCESS.2019.2956124.
] [4] A. Petrovska and A. Pretschner, “Learning Approach for Smart Self-Adaptive Cyber-Physical Systems,” in 2019 IEEE 4th International Workshops on Foundations and Applications of Self* Systems (FAS*W), 2019, pp. 234–236. doi: 10.1109/FAS-W.2019.00061.
] [5] E. Zavala, X. Franch, J. Marco, A. Knauss, and D. Damian, “SACRE: Supporting contextual requirements’ adaptation in modern self-adaptive systems in the presence of uncertainty at runtime,” Expert Syst. Appl., vol. 98, pp. 166–188, 2018, doi: 10.1016/j.eswa.2018.01.009.
] [6] A. Petrovska, S. Quijano, I. Gerostathopoulos, and A. Pretschner, “Knowledge aggregation with subjective logic in multi-agent self-adaptive cyber-physical systems,” Proc. - 2020 IEEE/ACM 15th Int. Symp. Softw. Eng. Adapt. Self-Managing Syst. SEAMS 2020, no. June, pp. 149–155, 2020, doi: 10.1145/3387939.3391600.
] [7] D. Gürdür and F. Asplund, “A systematic review to merge discourses: Interoperability, integration and cyber-physical systems,” J. Ind. Inf. Integr., vol. 9, no. October, pp. 14–23, 2018, doi: 10.1016/j.jii.2017.12.001.
] [8] Y. Eslami, M. Lezoche, P. Kalitine, and S. Ashouri, “How the cooperative cyber physical enterprise information systems (CCPEIS) improve the semantic interoperability in the domain of industry 4.0 through the knowledge formalization,” IFAC-PapersOnLine, vol. 54, no. 1, pp. 924–929, 2021, doi: 10.1016/j.ifacol.2021.08.110.
] [9] H. Nakagawa, A. Ohsuga, and S. Honiden, “Towards dynamic evolution of self-Adaptive systems based on dynamic updating of control loops,” Int. Conf. Self-Adaptive Self-Organizing Syst. SASO, pp. 59–68, 2012, doi: 10.1109/SASO.2012.17.
] [10] M. Vajgl, P. Hurtik, and T. Nejezchleba, “Dist-YOLO: Fast Object Detection with Distance Estimation,” Appl. Sci., vol. 12, no. 3, pp. 1–13, 2022, doi: 10.3390/app12031354.
] [11] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, vol. 2017-Janua, pp. 1800–1807, 2017, doi: 10.1109/CVPR.2017.195.
] [12] H. Walle, C. De Runz, B. Serres, and G. Venturini, “A Survey on Recent Advances in AI and Vision-Based Methods for Helping and Guiding Visually Impaired People,” Appl. Sci., vol. 12, no. 5, 2022, doi: 10.3390/app12052308.
] [13] J. R. Jiang, “An improved cyber-physical systems architecture for Industry 4.0 smart factories,” Adv. Mech. Eng., vol. 10, no. 6, pp. 918–920, 2018, doi: 10.1177/1687814018784192.
] [14] M. K. Habib and C. Chimsom I, “CPS: Role, Characteristics, Architectures and Future Potentials,” Procedia Comput. Sci., vol. 200, pp. 1347–1358, 2022, doi: 10.1016/j.procs.2022.01.336.
] [15] J. Zhou, Y. Huang, and B. Yu, “Mapping Vegetation-Covered Urban Surfaces Using Seeded Region Growing in Visible-NIR Air Photos,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 8, no. 5, pp. 2212–2221, 2015, doi: 10.1109/JSTARS.2014.2362308.
] [16] M. Búr, G. Szilágyi, A. Vörös, and D. Varró, “Distributed graph queries over models@run.time for runtime monitoring of cyber-physical systems,” Int. J. Softw. Tools Technol. Transf., vol. 22, no. 1, pp. 79–102, 2020, doi: 10.1007/s10009-019-00531-5.
] [17] D. Weyns et al., “Towards Better Adaptive Systems by Combining MAPE, Control Theory, and Machine Learning,” Proc. - 2021 Int. Symp. Softw. Eng. Adapt. Self-Managing Syst. SEAMS 2021, no. 1, pp. 217–223, 2021, doi: 10.1109/SEAMS51251.2021.00036.
] [18] S. H. Ahmed, G. Kim, and D. Kim, “Cyber Physical System: Architecture, applications and research challenges,” IFIP Wirel. Days, no. November, 2013, doi: 10.1109/WD.2013.6686528.
] [19] M. Sony, “Design of cyber physical system architecture for industry 4.0 through lean six sigma: conceptual foundations and research issues,” Prod. Manuf. Res., vol. 8, no. 1, pp. 158–181, 2020, doi: 10.1080/21693277.2020.1774814.
] [20] T. Kluge, “A role-based architecture for self-adaptive cyber-physical systems,” Proc. - 2020 IEEE/ACM 15th Int. Symp. Softw. Eng. Adapt. Self-Managing Syst. SEAMS 2020, pp. 120–124, 2020, doi: 10.1145/3387939.3391601.
] [21] G. Weichhart, J. Mangler, C. Mayr-Dorn, A. Egyed, and A. Hämmerle, “Production process interoperability for cyber-physical production systems,” IFAC-PapersOnLine, vol. 54, no. 1, pp. 906–911, 2021, doi: 10.1016/j.ifacol.2021.08.188.
] [22] R. Casadei, A. Placuzzi, M. Viroli, and D. Weyns, “Augmented Collective Digital Twins for Self-Organising Cyber-Physical Systems,” Proc. - 2021 IEEE Int. Conf. Auton. Comput. Self-Organizing Syst. Companion, ACSOS-C 2021, pp. 160–165, 2021, doi: 10.1109/ACSOS-C52956.2021.00051.
] [23] A. Aradea, R. Rianto, and H. Mubarok, “Inference Model for Self-Adaptive IoT Service Systems,” Int. J. Intell. Eng. Syst., vol. 14, no. 4, pp. 337–349, 2021, doi: 10.22266/ijies2021.0831.30.
] [24] Aradea, I. Supriana, and K. Surendro, “ARAS: adaptation requirements for adaptive systems,” Autom. Softw. Eng., vol. 30, no. 1, p. 2, 2022, doi: 10.1007/s10515-022-00369-3.
] [25] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,” 2018, [Online]. Available: http://arxiv.org/abs/1804.02767
] [26] D. Bahdanau, K. H. Cho, and Y. Bengio, “Neural machine translation by jointly learning to align and translate,” 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc., pp. 1–15, 2015.
] [27] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén, Experimentation in Software Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. doi: 10.1007/978-3-642-29044-2.
] [28] M. M. John, H. H. Olsson, and J. Bosch, “Developing ML/DL Models: A Design Framework,” in 2020 IEEE/ACM International Conference on Software and System Processes (ICSSP), 2020, pp. 1–10.
] [29] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? The KITTI vision benchmark suite,” in 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp. 3354–3361. doi: 10.1109/CVPR.2012.6248074.
] [30] K. Lu, F. Zhao, X. Xu, and Y. Zhang, “An object detection algorithm combining self-attention and YOLOv4 in traffic scene,” PLoS One, vol. 18, no. 5 May, pp. 1–18, 2023, doi: 10.1371/journal.pone.0285654.
] [31] L. Chen, W. Shi, and D. Deng, “Improved yolov3 based on attention mechanism for fast and accurate ship detection in optical remote sensing images,” Remote Sens., vol. 13, no. 4, pp. 1–18, 2021, doi: 10.3390/rs13040660.
] [32] J. Sun, H. Ge, and Z. Zhang, “AS-YOLO: An Improved YOLOv4 based on Attention Mechanism and SqueezeNet for Person Detection,” 2021 IEEE 5th Adv. Inf. Technol. Electron. Autom. Control Conf., vol. 5, pp. 1451–1456, 2021, [Online]. Available: https://api.semanticscholar.org/CorpusID:233198337
] [33] J. Terven and D. Cordova-Esparza, “A Comprehensive Review of YOLO: From YOLOv1 and Beyond,” pp. 1–34, 2023, [Online]. Available: http://arxiv.org/abs/2304.00501
DOI: https://doi.org/10.31449/inf.v49i15.8853
This work is licensed under a Creative Commons Attribution 3.0 License.








