Deep and Hybrid Ensemble Learning Methods for Enhanced Live-Birth Prediction in Fertility Treatments

Rituraj Jain, Uma Shankar, G V Radhakrishnan, Saroj Date, Kamal Upreti, S Caroline, Ramesh Babu P, Mohit Dayal

Abstract


The prediction of live birth outcomes using Assisted Reproductive Technologies (ART) remains a complex task owing to the high inter-patient variability and non-linear clinical interactions. This study presents a comparative evaluation of hybrid machine-learning models to improve in vitro fertilization (IVF) success prediction using a real-world anonymized dataset of 2,000 ART cases. After pre-processing (including missing value imputation, feature selection via Recursive Feature Elimination with Cross-Validation, and class balancing using SMOTE with k=5), four hybrid models were developed: stacking with XGBoost as the meta-learner, weighted ensemble, autoencoder-based feature fusion, and cascading classifiers. Models were evaluated using accuracy, AUC, precision, recall, and F1-score metrics, and compared against a baseline Random Forest classifier. The stacking model (XGBoost with Random Forest, MLP, and SVM base learners) achieved the best performance, with an accuracy and 0.999 AUC of 0.985. The weighted hybrid ensemble followed an accuracy of 0.953 and AUC of 0.994. The statistical significance of the improvements was confirmed using Wilcoxon Signed-Rank and McNemar’s tests (p < 0.05). To enhance model transparency, SHapley Additive exPlanations (SHAP) was applied to interpret base model contributions in the stacking architecture. These results support the application of AI-driven hybrid modelling for personalized IVF treatment planning. Future work will focus on prospective validation and clinical decision support system (CDSS) integration to assess deployment feasibility.


Full Text:

PDF

References


K. Sfakianoudis, E. Maziotis, S. Grigoriadis, A. Pantou, G. Kokkini, A. Trypidi, P. Giannelou, A. Zikopoulos, I. Angeli, T. Vaxevanoglou, K. Pantos, M. Simopoulou, Reporting on the Value of Artificial Intelligence in Predicting the Optimal Embryo for Transfer: A Systematic Review including Data Synthesis, Biomedicines. vol. 10, no. 3, p. 697, Mar. 2022. https://doi.org/10.3390/biomedicines10030697

L. Sun, J. Li, S. Zeng, Q. Luo, H. Miao, Y. Liang, L. Cheng, Z. Sun, W.H. Tai, Y. Han, Y. Yin, K. Wu, K. Zhang, Artificial intelligence system for outcome evaluations of human in vitro fertilization-derived embryos, Chin Med J (Engl). vol. 137, no. 16, p. 1939–1949, Aug. 2024. https://doi.org/10.1097/CM9.0000000000003162

L. Rienzi, D. Cimadomo, A. Vaiarelli, G. Gennarelli, J. Holte, C. Livi, M. Aura Masip, P. Uher, G. Fabozzi, F.M. Ubaldi, Measuring success in IVF is a complex multidisciplinary task: time for a consensus?, Reprod Biomed. vol. 43, no. 5, p. 775–778, Nov. 2021. https://doi.org/10.1016/j.rbmo.2021.08.012

S.M. Diakiw, J.M.M. Hall, M. VerMilyea, A.Y.X. Lim, W. Quangkananurug, S. Chanchamroen, B. Bankowski, R. Stones, A. Storr, A. Miller, G. Adaniya, R. van Tol, R. Hanson, J. Aizpurua, L. Giardini, A. Johnston, T. Van Nguyen, M.A. Dakka, D. Perugini, M. Perugini, An artificial intelligence model correlated with morphological and genetic features of blastocyst quality improves ranking of viable embryos, Reprod Biomed. vol. 45, no. 6, p. 1105–1117, Dec. 2022. https://doi.org/10.1016/j.rbmo.2022.07.018

D. Jha, V. Gupta, L. Ward, Z. Yang, C. Wolverton, I. Foster, W. Liao, A. Choudhary, A. Agrawal, Enabling deeper learning on big data for materials informatics applications, Sci Rep. vol. 11, no. 1, p. 4244, Feb. 2021. https://doi.org/10.1038/s41598-021-83193-1

Y. Qu, Z. Li, X. Zhao, J. Ou, Towards real-world traffic prediction and data imputation: A multi-task pretraining and fine-tuning approach, Inf Sci (N Y). vol. 657, p. 119972, Feb. 2024. https://doi.org/10.1016/j.ins.2023.119972

Z. Li, K. Kamnitsas, B. Glocker, Analyzing Overfitting Under Class Imbalance in Neural Networks for Image Segmentation, IEEE Trans Med Imaging. vol. 40, no. 3, p. 1065–1077, Mar. 2021. https://doi.org/10.1109/TMI.2020.3046692

T. Gong, K. Chen, L. Zhang, J. Wang, Debiased Contrastive Curriculum Learning for Progressive Generalizable Person Re-Identification, IEEE Transactions on Circuits and Systems for Video Technology vol. 33, no. 10, p. 5947–5958, Oct. 2023. https://doi.org/10.1109/TCSVT.2023.3262832

D. Velasquez, E. Perez, X. Oregui, A. Artetxe, J. Manteca, J.E. Mansilla, M. Toro, M. Maiza, B. Sierra, A Hybrid Machine-Learning Ensemble for Anomaly Detection in Real-Time Industry 4.0 Systems, IEEE Access. vol. 10, p. 72024–72036, 2022. https://doi.org/10.1109/ACCESS.2022.3188102

M. Casalechi, M. Reschini, M.C. Palermo, G. Di Stefano, P. Vercellini, L. Benaglia, E. Somigliana, P. Viganò, Is endometrial receptivity affected in women with endometriosis? Results from a matched pair case-control study of assisted reproductive technology treatments, Reprod Biomed. vol. 47, no. 6, p. 103414, Dec. 2023. https://doi.org/10.1016/j.rbmo.2023.103414

A. Goyal, M. Kuchana, K.P.R. Ayyagari, Machine learning predicts live-birth occurrence before in-vitro fertilization treatment, Sci Rep. vol. 10, no. 1, p. 20925, Dec. 2020. https://doi.org/10.1038/s41598-020-76928-z

Y.O. Martirosyan, D.N. Silachev, T.A. Nazarenko, A.M. Birukova, P.A. Vishnyakova, G.T. Sukhikh, Stem-Cell-Derived Extracellular Vesicles: Unlocking New Possibilities for Treating Diminished Ovarian Reserve and Premature Ovarian Insufficiency, Life. vol. 13, no. 12, p. 2247, Nov. 2023. https://doi.org/10.3390/life13122247

C. Siristatidis, S. Stavros, A. Drakeley, S. Bettocchi, A. Pouliakis, P. Drakakis, M. Papapanou, N. Vlahos, Omics and Artificial Intelligence to Improve In Vitro Fertilization (IVF) Success: A Proposed Protocol, Diagnostics. vol. 11, no. 5, p. 743, Apr. 2021. https://doi.org/10.3390/diagnostics11050743

B.K. Phan, K.-H. Shen, R. Gurnani, H. Tran, R. Lively, R. Ramprasad, Gas permeability, diffusivity, and solubility in polymers: Simulation-experiment data fusion and multi-task machine learning, NPJ Comput Mater. vol. 10, no. 1, p. 186, Aug. 2024. https://doi.org/10.1038/s41524-024-01373-9

X. Qiu, Sequence similarity governs generalizability of de novo deep learning models for RNA secondary structure prediction, PLoS Comput Biol. vol. 19, no. 4, p. e1011047, Apr. 2023. https://doi.org/10.1371/journal.pcbi.1011047

Y. Yao, T. Sullivan, F. Yan, J. Gong, L. Li, Balancing data for generalizable machine learning to predict glass-forming ability of ternary alloys, Scr Mater. vol. 209, p. 114366, Mar. 2022. https://doi.org/10.1016/j.scriptamat.2021.114366

A. Almomani, K. Nahar, M. Alauthman, M.A. Al-Betar, Q. Yaseen, B.B. Gupta, Image cyberbullying detection and recognition using transfer deep machine learning, International Journal of Cognitive Computing in Engineering. vol. 5, p. 14–26, 2024, doi: 10.1016/j.ijcce.2023.11.002. https://doi.org/10.1016/j.ijcce.2023.11.002

P.H. Vuong, L.H. Phu, T.H. Van Nguyen, L.N. Duy, P.T. Bao, T.D. Trinh, A bibliometric literature review of stock price forecasting: From statistical model to deep learning approach, Sci Prog. vol. 107, no. 1, p. 1-31, Jan. 2024. https://doi.org/10.1177/00368504241236557

J. Yao, X. Zhang, W. Luo, C. Liu, L. Ren, Applications of Stacking/Blending ensemble learning approaches for evaluating flash flood susceptibility, International Journal of Applied Earth Observation and Geoinformation. vol. 112, p. 102932, Aug. 2022. https://doi.org/10.1016/j.jag.2022.102932

Q. Xi, Q. Yang, M. Wang, B. Huang, B. Zhang, Z. Li, S. Liu, L. Yang, L. Zhu, L. Jin, Individualized embryo selection strategy developed by stacking machine learning model for better in vitro fertilization outcomes: an application study, Reproductive Biology and Endocrinology. vol. 19, no. 1, p. 53, Dec. 2021. https://doi.org/10.1186/s12958-021-00734-z

Z. Han, J. Zhao, H. Leung, K.F. Ma, W. Wang, A Review of Deep Learning Models for Time Series Prediction, IEEE Sens J. vol. 21, no. 6, p. 7833–7848, Mar. 2021. https://doi.org/10.1109/JSEN.2019.2923982

C. Luo, J. Zheng, T. Li, H. Chen, Y. Huang, X. Peng, Orthogonally constrained matrix factorization for robust unsupervised feature selection with local preserving, Inf Sci (N Y). vol. 586, p. 662–675, Mar. 2022. https://doi.org/10.1016/j.ins.2021.11.068

X. Mi, B. Zou, F. Zou, J. Hu, Permutation-based identification of important biomarkers for complex diseases via machine learning models, Nat Commun. vol. 12, no. 1, p. 3008, May 2021. https://doi.org/10.1038/s41467-021-22756-2

A.T. Tredennick, G. Hooker, S.P. Ellner, P.B. Adler, A practical guide to selecting models for exploration, inference, and prediction in ecology, Ecology. vol. 102, no. 6, p. e03336, Jun. 2021. https://doi.org/10.1002/ecy.3336

J. Diao, G. Gao, Y. Zhang, X. Wang, Y. Zhang, Y. Han, A. Du, H. Luo, Caesarean section defects may affect pregnancy outcomes after in vitro fertilization-embryo transfer: a retrospective study, BMC Pregnancy Childbirth. vol. 21, no. 1, p. 487, Dec. 2021. https://doi.org/10.1186/s12884-021-03955-7

S. Ranjbari, T. Khatibi, A. Vosough Dizaji, H. Sajadi, M. Totonchi, F. Ghaffari, CNFE-SE: a novel approach combining complex network-based feature engineering and stacked ensemble to predict the success of intrauterine insemination and ranking the features, BMC Med Inform Decis Mak. vol. 21, no. 1, p. 1, Dec. 2021. https://doi.org/10.1186/s12911-020-01362-0

F. Del Giudice, F. Belladelli, T. Chen, F. Glover, E.A. Mulloy, A.M. Kasman, A. Sciarra, S. Salciccia, V. Canale, M. Maggi, M. Ferro, G.M. Busetto, E. De Berardinis, A. Salonia, M.L. Eisenberg, The association of impaired semen quality and pregnancy rates in assisted reproduction technology cycles: Systematic review and meta‐analysis, Andrologia. vol. 54, no. 6, p. e14409, Jul. 2022. https://doi.org/10.1111/and.14409

S. Wu, Y. Zhang, X. Wu, G. Hao, H. Ren, J. Qiu, Y. Zhang, X. Bi, A. Yang, L. Bai, J. Tan, Association between exposure to ambient air pollutants and the outcomes of in vitro fertilization treatment: A multicenter retrospective study, Environ Int. vol. 153, p. 106544, Aug. 2021. https://doi.org/10.1016/j.envint.2021.106544

Y. Zou, Y. Pan, N. Ge, Y. Xu, R. Gu, Z. Li, J. Fu, J. Gao, X. Sun, Y. Sun, Can the combination of time-lapse parameters and clinical features predict embryonic ploidy status or implantation?, Reprod Biomed. vol. 45, no. 4, p. 643–651, Oct. 2022. https://doi.org/10.1016/j.rbmo.2022.06.007

K. Koc, A.P. Gurgun, Scenario-based automated data preprocessing to predict severity of construction accidents, Autom Constr. vol. 140, p. 104351, Aug. 2022. https://doi.org/10.1016/j.autcon.2022.104351

S.-A. Sadegh-Zadeh, S. Khanjani, S. Javanmardi, B. Bayat, Z. Naderi, A.M. Hajiyavand, Catalyzing IVF outcome prediction: exploring advanced machine learning paradigms for enhanced success rate prognostication, Front Artif Intell. vol. 7, p. 1392611, Nov. 2024. https://doi.org/10.3389/frai.2024.1392611




DOI: https://doi.org/10.31449/inf.v46i7.8521

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.