DeepExplain: Enhancing DeepFake Detection Through Transparent and Explainable AI model

Sunkari Venkateswarulu, A. Srinagesh

Abstract


The rapid advancement of digital media technologies has given rise to DeepFake videos, synthetic content generated using deep learning algorithms that can convincingly mimic real individuals' appearances and actions. This presents a significant challenge in maintaining digital content integrity, as DeepFakes pose threats to information veracity, security, and public trust. Addressing this challenge necessitates robust detection methods that not only accurately identify DeepFakes but also ensure transparency and understandability in their operations. This study introduces DeepExplain, a new approach that combine convolutional neural networks (CNNs) and long shortterm memory (LSTM) networks, augmented with explainability features to enhance the detection of DeepFakes. Utilizing the comprehensive DeepFake Detection Challenge (DFDC) dataset, DeepExplain demonstrates superior accuracy and balanced performance across essential metrics such as recall, precision, and area under the receiver
operating characteristic (AUROC) curve. Crucially, by integrating explainability mechanisms like Gradientweighted Class Activation Mapping (Grad-CAM) and SHapley Additive exPlanations (SHAP) values, DeepExplain not only identifies DeepFakes but also provides insights into the decision-making process, fostering trust and facilitating broader understanding. The findings underscore the potential of explainable and transparent AI solutions in combating the evolving threat of DeepFakes, highlighting important directions for future research and
practical applications in digital media verification and security


Full Text:

PDF

References


W. H. Abir et al., "Detecting Deepfake Images Using Deep Learning Techniques and Explainable AI Methods".

Y. Mirsky and W. Lee, "The Creation and Detection of Deepfakes: A Survey".

J. Pu et al.. "Deepfake Videos in the Wild: Analysis and Detection". Apr. 2021. 10.1145/3442381.3449978.

S. Lyu. "DeepFake Detection: Current Challenges and Next Steps". arXiv (Cornell University). Mar. 2020. 10.48550/arxiv.2003.09234.

S. Lyu, "Deepfake Detection: Current Challenges and Next Steps".

P. J. Phillips, C. A. Hahn, P. Fontana, D. A. Broniatowski and M. A. Przybocki. "Four Principles of Explainable Artificial Intelligence". Aug. 2020. 10.6028/nist.ir.8312-draft.

S. Mohseni, N. Zarei and E. D. Ragan. "A Multidisciplinary Survey and Framework for Design and Evaluation of Explainable AI Systems". arXiv (Cornell University). Nov. 2018. 10.48550/arxiv.1811.11839.

A. Kiseleva, D. Kotzinos and P. D. Hert. "Transparency of AI in Healthcare as a Multilayered System of Accountabilities: Between Legal Requirements and Technical Limitations". Frontiers in artificial intelligence. vol. 5. May. 2022. 10.3389/frai.2022.879603.

Y. Mirsky and W. Lee. "The Creation and Detection of Deepfakes". ACM Computing Surveys. vol. 54. no. 1. pp. 1-41. Jan. 2021. 10.1145/3425780.

D. M. Montserrat et al.. "Deepfakes Detection with Automatic Face Weighting". Jun. 2020. 10.1109/cvprw50498.2020.00342.

C. Leibowicz, S. McGregor and A. Ovadya. "The Deepfake Detection Dilemma". Jul. 2021. 10.1145/3461702.3462584.

A. Singh, A. S. Saimbhi, N. Singh and M. Mittal. "DeepFake Video Detection: A Time-Distributed Approach". SN Computer Science. vol. 1. no. 4. Jun. 2020. 10.1007/s42979-020-00225-9.

C. Leibowicz, S. McGregor and A. Ovadya. "The Deepfake Detection Dilemma: A Multistakeholder Exploration of Adversarial Dynamics in Synthetic Media". Feb. 2021. 10.48550/arXiv.2102.06109v1.

"Deepfake detection by human crowds, machines, and machine-informed crowds | Proceedings of the National Academy of Sciences".

S. Wang, O. Wang, R. Zhang, A. Owens and A. A. Efros. "CNN-generated images are surprisingly easy to spot... for now". arXiv (Cornell University). Dec. 2019. 10.48550/arxiv.1912.11035.

T. Hwang, "Deepfakes: A Grounded Threat Assessment".

N. N. Thaw, T. July, A. N. Wai, D. H. Goh and A. Y. K. Chua. "Is it real? A study on detecting deepfake videos". Proceedings of the Association for Information Science and Technology. vol. 57. no. 1. Oct. 2020. 10.1002/pra2.366.

Y. Li, P. Sun, H. Qi and S. Lyu, "Toward the Creation and Obstruction of DeepFakes".

J. He, S. L. Baxter, J. Xu, J. Xu, X. Zhou and K. Zhang. "The practical implementation of artificial intelligence technologies in medicine". Nature Medicine. vol. 25. no. 1. pp. 30-36. Jan. 2019. 10.1038/s41591-018-0307-0.

S. Liu et al.. "Explainable Deep Learning for Uncovering Actionable Scientific Insights for Materials Discovery and Design". arXiv (Cornell University). Jul. 2020. 10.48550/arxiv.2007.08631.

W. Samek, T. Wiegand and K. Müller. "Explainable Artificial Intelligence: Understanding, Visualizing and Interpreting Deep Learning Models". arXiv (Cornell University). Aug. 2017.

A. Singh, S. Sengupta and V. Lakshminarayanan. "Explainable Deep Learning Models in Medical Image Analysis". Journal of Imaging. vol. 6. no. 6. pp. 52-52. Jun. 2020. 10.3390/jimaging6060052.




DOI: https://doi.org/10.31449/inf.v48i8.5792

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.