A Hybrid Deep Learning Approach to Keyword Spotting in Vietnamese Stele Images
Abstract
In order to access the rich cultural heritage conveyed in Vietnamese steles, automatic reading of stone engravings would be a great support for historians, who are analyzing tens of thousands of stele images. Approaching the challenging problem with deep learning alone is difficult because the data-driven models require large representative datasets with expert human annotations, which are not available for the steles and costly to obtain. In this article, we present a hybrid approach to spot keywords in stele images that combines data-driven deep learning with knowledge-based structural modeling and matching of Chu Nom characters. The main advantage of the proposed method is that it is annotation-free, i.e. no human data annotation is required. In an experimental evaluation, we demonstrate that keywords can be successfully spotted with a mean average precision of more than 70% when a single engraving style is considered.DOI:
https://doi.org/10.31449/inf.v47i3.4785Downloads
Published
How to Cite
Issue
Section
License
Authors retain copyright in their work. By submitting to and publishing with Informatica, authors grant the publisher (Slovene Society Informatika) the non-exclusive right to publish, reproduce, and distribute the article and to identify itself as the original publisher.
All articles are published under the Creative Commons Attribution license CC BY 3.0. Under this license, others may share and adapt the work for any purpose, provided appropriate credit is given and changes (if any) are indicated.
Authors may deposit and share the submitted version, accepted manuscript, and published version, provided the original publication in Informatica is properly cited.







