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MIND <> COMPUTER: 
INTRODUCTION TO THE SPECIAL ISSUE 

Matjaž Gams, Marcin Paprzycki, Xindong Wu 

see FTP: ftp.arnes.si magazines/informatica anonymous your-mail 
or WWW: http://www2.ijs.si/~mezi/informatica.html 

This special issue of Informatica on Mind O 
Machine aims to reevaluate the soundness of cur-
rent Al research, especially the heavily disputed 
strong-AI paradigm, and to pursue new directions 
towards achieving true intelligence. It is a bra-
instorming issue about core ideas that will shape 
future AL We have tried to include critical papers 
representing different positions on these issues. 

Submissions were invited in ali subareas and on 
ali aspects of Al research and its new directions, 
especially: 

— the current state, positions, and true advan-
ces achieved in the last 5-10 years in various 
subfields of Al (as opposed to parametric im-
provements), 

— the trends, perspectives and foundations of 
artificial and natural intelligence, and 

— strong Al vs. weak Al and the reality of most 
current "typical" publications in Al. 

Papers accepted for the special issue include in­
vited papers from Agre, Dreyfus, Gams, Michie, 
Winograd and Wu, and regular submissions. The 
invited papers were refereed in the same way as 
regular submissions, and ali authors were asked 
to accommodate comments from referees. The 
accepted papers are grouped into the following 
three categories. 

A. Overview and General Issues 

Making a Mind vs. Modelling the Brain: Al Back 
at a Branchpoint by H.L. Dreyfus and S.E. Drey-
fus, and Thinking machines: Can there be? Are 
we? by T. Winograd, are both unique and worth 
reading again and again. Indeed, they present the 
motto of this special issue - were not H.L. Drey-
fus, S.E. Dreyfus and T. Winograd right about 
this issue years ago? Were the attacks on them 
by the strong-AI community and large parts of 

the formal-sciences commuhity unjustified? We 
believe the answer is yes. 

"Strong Al": An Adolescent Disorder by D. Mi­
chie advocates an integrative approach - let us 
forget about differences and keep doing intere-
sting things. 

Artificial Selfhood: The Path to True Artificial 
Intelligence by B. Goertzel rejects formal logic 
and advocates designing complex self-aware sy-
stems. 

Strong vs. Weak Al by M. Gams presents an 
overview of the antagonistic approaches and pro-
poses an Al version of the Heisenberg principle 
delimiting strong from weak AL 

A Brief Naive Psychology Manifesto by S. Watt 
argues for naive commonsense psychology, by ana-
logy to naive physics. People understand physics 
and psychology even in their childhood without 
any formal logic or equations. 

Stuffing Mind into Computer: Knouiledge and 
Learning for Intelligent Systems by K. J. Cherka-
uer analyses knowledge acquisition and learning 
as the key issues necessary for designing intelli­
gent computers. 

Has Turing Slain the Jabberuiock? by L. Mari-
noff attacks strong Al through slaying Turing and 
Jabberwock. 

The papers in this section are a mixture of in-
terdisciplinary approaches, from computer- to co-
gnitive sciences. The average paper takes a criti­
cal stand against strong AL However, the level of 
criticism and'acclaim for intelligent digital com­
puters varies. 

B. New Approaches 

Computation and Embodied Agency by P.E. Agre 
analyses computational theories of agents' inte-
ractions with their environments. 

Methodological Considerations on Modeling Co-
gnition and Designing Human-Computer Interfa-

ftp://ftp.arnes.si
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ces - An Investigation from the Perspective of 
Philosophy of Science and Epistemologij by M.F. 
Peschl investigates the role of representation in 
both cognitive modeling and the development of 
niunan-computer interfaces. 

Knoivledge Objects by X. Wu, S. Ramakrishnan 
and H. Schmidt introduces knowledge objects as 
a step further from programming objects. 

Modeling Affect: The Next Step in Intelligent 
Computer Evolution by S. Walczak advocates im-
plementing features such as affects in order to de­
sign intelligent programming systems. 

The Extracellular Containment of Natural In-
telligence: A New Direction for Strong Alby R.L. 
Amoroso is one of the rare papers closely connec-
ting physics and Al in this issue. 

Quantum Intelligence, QI; Quantum Mind, QM 
by B. Souček presents and defines concepts of 
quantum intelligence and quantum mind. 

Representations, Explanations, and PDP: Is 
Representation-Talk Really Necessarv? by R.S. 
Stufflebeam addresses the connectionist appro-
ach. What has happened to the neural-network 
wave of optimism? 

C. Computability and Form vs. 
Meaning 
/5 Consciousness a Computational Propertij? by 
G. Caplain proposes a detailed argument to show 
that mind can not be computationally modeled. 

Cracks in the Computational Foundations by P. 
Schweizer claims that computational procedures 
are not constitutive of the mind, and thus cannot 
play a fundamental role in AL 

GodeVs Theorems for Minds and Computers by 
D. Bojadžiev, presents an overview of the ušes 
of G6del's theorems, claiming that they apply 
equally to humans and computers. 

On the Computational Model of the Mindbj M. 
Radovan examines various strengths and shortco-
mings of computers and minds. Although com­
puters in many ways exceed natural mind, brains 
stili have quite a few aces left. 

What Internal Languages Can't Do by P. Hi-
pwell analyses the limitations of internal repre­
sentation languages in contrast with the brain's 
representations. 

Consciousness and Understanding in the Chi­
nese Room by S. Gozzano proposes yet another re-

ason why Searle's Chinese rooms present a hypo-
thetical situation only. 
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Nothing seems more possible to me than that 
people some day will come to the definite opi-
nion that there is no copy in the. . . nervous sy-
stem which corresponds to a particular thought, 
or a particular idea, or memor^1 

Information is not stored anywhere in particu­
lar. Rather it is stored everywhere. Information 
is better thought of as "evoked" than "found".2 

In the early 1950s, as calculating machines were 
coming into their own, a few pioneer thinkers be-
gan to realize that digital computers could be 
more than number crunchers.3 At that point two 
opposed visions of what computers could be, each 
with its correlated research program, emerged and 
struggled for recognition. One faction saw compu­
ters as a system for manipulating mental symbols; 
the other, as a medium for modeling the brain. 
One sought to use computers to instantiate a for-
mal representation of the world; the other, to si-
mulate the interactions of neurons. One took pro­
blem solving as its paradigm of intelligence; the 
other, learning. One utilized logic, the other sta-
tistics. One school was the heir to the rationalist, 
reductionist tradition in philosophy; the other vie-
wed itself as idealized, holistic neuro-science. 

1L. Wittgenstein, Last Writings on the PhiIosophy of 
Psychologyl Vol. I, Chicago University Press, 1982, #504, 
p. 66e. (Translation corrected). 

2Rumelhart and Norman, "A Comparison of Models," 
Pa.ra.Uel Models of Associative Memory, Hinton and Ander-
son eds., Lawrence Erlbaum Associates, Publishers, 1981, 
p. 3. 

3First published as Dreyfus, H. L. & Dreyfus, S. E. 
(1988), Making a mind versus modelling the brain: 
Artificial intelligence back at a branchpoint, Daedalus, 
117(1):185-197. Reprinted with permission. 

The rallying cry of the first group was that both 
minds and digital computers were physical sym-
bol systems. By 1955 Allen Newell and Herbert 
Simon, working at the RAND Corporation, had 
concluded that strings of bits manipulated by a 
digital computer could stand for anything - num-
bers, of course, but also features of the real world. 
Moreover, programs could be used as rules to re-
present relationš between these symbols, so that 
the system could infer further facts about the re-
presented objects and their relationš. As Newell 
put it recently in his account of the history of 
issues in Al: 

The digital-computer field defined computers as 
machines that manipulated numbers. The great 
thing was, adherents said, that everything could 
be encoded into numbers, even instructions. In 
contrast, the scientists in Al saw computers as 
machines that manipulated symbols. The great 
thing was, they said, that everything could be en­
coded into symbols, even numbers.4 

This way of looking at computers became the 
basis of a way of looking at minds. Newell and Si­
mon hypothesized that the human brain and the 
digital computer, while totally different in struc-
ture and mechanism, had, at the appropriate le-
vel of abstraction, a common functional descrip-
tion. At this level, both the human brain and 
the appropriately programmed digital computer 
could be seen as two different instantiations of 
a single species of device - one which generated 

4AUen Newell, "Intellectual Issues in the History of Ar­
tificial Intelligence", in The Study of Information: Inter-
disciplina.ry Messages, F. Machlup and U. Mansfield, eds. 
(New York: John Wiley and Sons, 1983), p. 196. 

http://Pa.ra.Uel
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intelligent behavior by manipulating symbols by 
means of formal rules. Newell and Simon stated 
their view as an hypothesis: 

The Physical Symbol System Hypothesis. A 
physical symbol system has the necessary and su­
fficient means for general intelligent action. 

By "necessary" we mean that any system that 
exhibits general intelligence will prove upon ana-
lysis to be a physical symbol system. By "suffici­
ent" we mean that any physical symbol system of 
sufficient size can be organized further to exhibit 
general intelligence.5 

Newell and Simon trace the roots of their hypo-
thesis back to Frege, Russell, and Whitehead6 

but, of course, Frege and company were themsel-
ves heirs to a long atomistic, rationalist tradition. 
Descartes already assumed that ali understanding 
consisted in forming and manipulating appropri-
ate representations, that these representations co-
uld be analyzed into primitive elements (naturas 
simplices), and that ali phenomena could be un-
derstood as a complex combinations of these sim-
ple elements. Moreover, at the same tirne, Ho-
bbes implicitly assumed that the elements were 
formal elements related by purely syntactic ope-
rations, so that reasoning could be reduced to cal-
culation. "When a man reasons, he does nothing 
else but conceive a sum total from addition of 
parcels," Hobbes wrote, "for REASON... is no­
thing but reckoning... "7 Finally Leibniz, working 
out the classical idea of mathesis - the formali-
zation of everything - , sought support to deve-
lop a universal symbol system, so that "we can 
assign to every object its determined characteri-
stic number".8 According to Leibniz, in under­
standing we analyze concepts into more simple 
elements. In order to avoid a regress of sim­
pler and simpler elements, there must be ultimate 
simples in terms of which ali complex concepts 
can be understood. Moreover, if concepts are to 
apply to the world, there must be simple features 
which these elements represent. Leibniz envisaged 

5Allen Newell and Herbert Simon, "Computer Science 
as Empirical Inquiry: Symbols and Search", reprinted in 
Mind Design, John Haugeland, ed., (Cambridge: Bra-
dford/MIT Press, 1981), p. 41. 

eIbid., p. 42. 
rHobbes, Levia.tha,n, (New York: Library of Liberal 

Arts, 1958), p. 45. 
8Leibniz, Selections, ed. Philip Wiener (New York: 

Scribner, 1951), p. 18. 

"a kind of alphabet of human thoughts"9 whose 
"characters must show, when they are used in de-
monstrations, some kind of connection, grouping 
and order which are also found in the objects."10 

Ludwig Wittgenstein, drawing on Frege and 
Russell, stated the pure form of this syntactic, 
representational view of the relation of the mind 
to reality in his Tractatus Logico-Philosophicus. 
He defined the world as the totality of logically 
independent atomic facts: 

1.1. The world is the totality of facts, not of 
things. 

Facts, in turn, were exhaustively analyzable 
into primitive objects. 
2.01. An atomic fact is a combination of 
objects... 
2.0124. If ali objects are given, then thereby ali 
atomic facts are given. 

These facts, their constituents, and their logical 
relations were represented in the mind. 
2.1. We make to ourselves pictures of facts. 
2.15. That the elements of the picture are com-
bined with one another in a definite way,,repre-
sents that the things are so combined with one 
another.11 

Al can be thought of as the attempt to find 
the primitive elements and logical relations in the 
subject (man or computer) which mirror the pri­
mitive objects and their relations which make up 
the world. Newell and Simon's physical symbol 
system hypothesis in effect turns the Wittgenste-
inian vision - which is itself the culmination of the 
classical rationalist philosophical tradition - into 
an empirical claim, and bases a research program 
on it. 

The opposed intuition, that we should set about 
creating artificial intelligence by modeling the 
brain not the mind's symbolic representation of 
the world, drew its inspiration not from philoso-
phy but from what was soon to be called neuro-
science. It was directly inspired by the work of 
D.O. Hebb who in 1949 suggested that a mass of 
neurons could learn if, when neuron A and neuron 
B were simultaneously excited, that increased the 
strength of the connection between them. 

This lead was followed by Frank Rosenblatt 

9Ibid., p. 20. 
10Ibid., p. 10. 
U L . Wittgenstein, Tractatus Logico-Philosophicus, 

(London: Routledge and Kegan Paul, 1960). 
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who reasoned that since intelligent behavior ba-
sed on our representation of the world was likely 
to be hard to formalize, Al should rather attempt 
to automate the procedures by which a network 
of neurons learns to discriminate patterns and re-
spond appropriately. As Rosenblatt put it: 

The implicit assumption of the symbol mani-
pulating research program is that it is relatively 
easy to specify the behavior that we want the sy-
stem to perform, and that the challenge is then 
to design a device or mechanism which will effec-
tively carry out this behavior... It is both easier 
and more profitable to axiomatize the physical sy-
stem and then investigate this system analytically 
to determine its behavior, than to axiomatize the 
behavior and then design a physical system by 
techniques of logical synthesis.12 

Another way to put the difference between the 
two research programs is that those seeking sym-
bolic representations were looking for a formal 
structure that would give the computer the abi-
lity to solve a certain class of problems or discri­
minate certain types of patterns. Rosenblatt, on 
the other hand, wanted to build a physical device, 
or to simulate such a device on a digital computer, 
which then could generate its own abilities. 

Many of the mOdels which we have heard dis-
cussed are concerned with the question of what 
logical structure a system must have if it is to 
exhibit some property, X. This is essentially a 
question about a static system... 

An alternative way of looking at the question is: 
what kind of a system can evolve property X ? I 
think we can show in a number of interesting cases 
that the second question can be solved without 
having an answer to the first.13 

Both approaches met with immediate and star-
tling success. Newell and Simon succeeded by 
1956 in programming a computer using symbolic 
representations to solve simple puzzles and prove 
theorems in the propositional calculus. On the 
basis of these early impressive results it looked like 
the physical symbol system hypothesis was about 
to be confirmed, and Newell and Simon were un-
derstandably euphoric. Simon announced: 

It is not my aim to surprise or shock you... But 

Frank Rosenblatt, "Strategic Approaches to the Study 
of Brain Models," Principles of Self-Organization, H. von 
Foerster, ed., (Pergamon Press, 1962), p. 386. 

13Ibid., p. 387. 

the simplest way I can summarize is to say that 
there are now in the world machines that think, 
that learn and that create. Moreover, their ability 
to do these things is going to increase rapidly until 
- in a visible future - the range of problems they 
can handle will be coextensive with the range to 
which the human mind has been applied.14 

He and Newell explained: 
We now have the elements of a theory of he­

uristic (as contrasted with algorithmic) problem 
solving; and we can use this theory both to under-
stand human heuristic processes and to simulate 
such processes with digital computers. Intuition, 
insight, and learning are no longer exclusive pos-
sessions of humans: any large high-speed com­
puter can be programmed to exhibit them also.15 

Heuristic rules are rules that when used by human 
beings are said to be based on experience or jud-
gment. Such rules frequently lead to plausible So­
lutions to problems or increase the efficiency of a 
problem-solving procedure. Whereas algorithms 
guarantee a correct solution (if there is one) in a 
finite time, heuristics only increase the likelihood 
of finding a plausible solution. 

Rosenblatt put his ideas to work in a type of 
device which he called a perceptron.16 By 1956 

Herbert Simon and AUen Newell, "Heuristic Problem 
Solving: The Next Advance in Operations Research", Ope­
rations Research, Vol. 6 (Januarv- Februarv 1958), p. 6. 

15Ibid. 
16David Rumelhart and James McClelland in their re-

cent book, Parallel Distributed Processing, describe the 
perceptron as follows: "Such machines consist of what is 
generallv called a retina, an array of binary inputs some-
times taken to be arranged in a two-dimensional spatial 
lavout; a set of predicates, a set of binary threshold units 
with fixed connections to a subset of units in the retina such 
that each predicate computes some local function over the 
subset of units to which it is connected; and one or more 
decision units, with modifiable connections to the predica­
tes." (p. 111). 
. They contrast the way a parallel distributed processing 
(PDP) model like the perceptron stores information with 
the way information is stored by symbolic representation. 
"In most models, knowledge is stored as a static copy of 
a pattern. Retrieval amounts to finding the pattern in 
long-term memory and copying it into a buffer or working 
memory. There is no real difference between the stored 
representation in long-term memory and the active repre­
sentation in vrorking memory. In PDP models, though, 
this is not the čase. In these models, the patterns themsel-
ves are not stored. Rather, what is stored is the connec-
tion strengths between units that allow these patterns to 
be re-created." (p. 31) "Knowledge about ariy individual 
pattern is not stored in the connections of a special unit 
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Rosenblatt was able to train a perceptron to clas-
sify certain types of patterns as similar and to se-
parate these from other patterns which were dis-
similar. By 1959 he too was jubilant and felt his 
approach had been vindicated: 

It seems clear that the. . . perceptron introduces 
a new kind of information processing automaton: 
For the first tirne, we have a machine which is ca-
pable of having original ideas. As an analogue of 
the biological brain, the perceptron, more preci-
sely, the theory of statistical separability, seems 
to come closer to meeting the requirements of a 
functional explanation of the nervous system than 
any system previously proposed... As concept, it 
would seem that the perceptron has established, 
beyond doubt, the feasibility and principle of non-
human systems which may embody human cogni-
tive functions... The future of information pro­
cessing devices which operate on statistical, ra-
ther than logical, principles seems to be clearly 
indicated.17 

In the early sbcties both approaches looked 
equally promising, and both made themselves 
equally vulnerable by making exaggerated claims. 
Yet the result of the internal war between the two 
research programs was surprisingly asymmetrical. 
By 1970 the brain simulation research which had 
its paradigm in the perceptron was reduced to a 
few, lonely, underfunded efforts, while those who 
proposed using digital computers as symbol mani-
pulators had undisputed control of the resources, 
graduate programs, journals, symposia, etc. that 

reserved for that pattern, but is distributed over the con-
nections among a large number of processing units." (p. 
33) 

This led directly to Rosenblatfs idea that such machines 
should be able to acquire their ability through learning 
rather than by being programmed with features and rules: 

"If the knowledge is in the strengths of the connections, 
learning must be a matter of finding the right connection 
strengths so that the right patterns of activation will be 
produced under the right circurnstances. This is an extre-
mely important property of this class of models, for it opens 
up the possibility that an information processing mecha-
nism could learn, as a result of tuning its connections, to 
capture the interdependencies between activations that it 
is exposed to in the course of processing." (p. 32) 

David E. Rumelhart, James L. McClelland, and the PDP 
Research Group, Paiallel Distributed Processing. Vol 1. 
(Cambridge: Bradford/MIT Press, 1986), p. 158. 

1 7 F. Rosenblatt, MecJianisation of Thought Processes: 
Proceedings of a Symposium held nt the National Physical 
Laboratory, November 1958. Vol. L, p. 449., (London: 
HM Stationery Office). 

constitute a flourishing research program. 
Reconstructing how this came about is compli-

cated by the myth of manifest destiny an on-going 
research program generates. Thus it looks to the 
victors as if symbolic information processing won 
out because it was on the right track, while the 
neural net approach lost because it simply didn't 
work. But this account of the history of the fi-
eld is a retroactive illusion. Both research pro­
grams had ideas worth exploring and both had 
deep, unrecognized problems. 

Each position had its detractors and what they 
said was essentialb/ the same: each approach had 
shown that it could solve certain easy problems 
but that there was no reason to think that either 
group could extrapolate its methods to real world 
complexity. Indeed, there was evidence that as 
problems got more complex the computation re-
quired by both approaches would grow exponen-
tially and so soon become intractable. Marvin 
Minsky and Seymour Papert said in 1969 of Ro­
senblatt^ perceptron: 

Rosenblatfs schemes quickly took root, and 
soon there were perhaps as many as a hundred 
groups, large and small, experimenting with the 
model... 

The results of these hundreds of projects and 
experiments were generally disappointing, and 
the explanations inconclusive. The machines usu-
ally work quite well on very simple problems but 
deteriorate very rapidly as the tasks assigned to 
them get harder.18 

Three years later, Sir James Lighthill, after re-
viewing work using heuristic programs such as Si­
moni and Minsky's reached a strikingly similar 
negative conclusion: 

Most workers in Al research and in related fi-
elds confess to a pronounced feeling of disappo-
intment in what has been achieved in the past 25 
years. Workers entered the field around 1950, and 
even around 1960, with high hopes that are very 
far from having been realized in 1972. In no part 
of the field have the discoveries made so far produ­
ced the major impact that was then promised... 

One rather general cause for the disappoint-
ments that have been experienced: failure to reco-
gnize the implications of the 'combinatorial explo-

Marvin Minskv and Sevmour Papert, Perceptrons: An 
Introduction to Computational Geometry, (Cambridge: 
The MIT Press, 1969), p. 19. 
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sion'. This is a general obstacle to the con-
struction of a... system on a large knowledge 
base which results from the explosive growth of 
any combinatorial expression, representing num-
bers of possible ways of grouping elements of the 
knowledge base according to particular rules, as 
the base's size increases.19 

As David Rumelhart succinctly sums it up: 
"Combinatorial explosion catches you sooner or 
later, although sometimes in different ways in 
parallel than in serial."20 Both sides had, as 
Jerry Fodor once put it, walked into a game of 
three-dimensional chess thinking it was tic-tac-
toe. Why then, so early in the game, with so 
little known and so much to learn, did one team 
of researchers triumph at the total expense of the 
other? Why, at this crucial branchpoint, did the 
symbolic representation project become the only 
game in town? 

Everyone who knows the history of the field will 
be able to point to the proximal cause. About 
1965 Minsky and Papert, who were running a la-
boratory at MIT dedicated to the symbol manipu-
lation approach and therefore competing for su-
pport with the perceptron projects, began circu-
lating drafts of a book directly attacking percep-
trons. In the book they made clear their scientific 
position: 

Perceptrons have been widely publicized as 
"pattern recognition" or "learning" machines and 
as such have been discussed in a large number 
of books, journal articles, and voluminous "re-
ports". Most of this writing... is without sci­
entific value.21 

But their attack was also a philosophical cru-
sade". They rightly saw that traditional reliance 
on reduction to logical primitives was being chal-
lenged by a new holism. 

Both of the present authors (first independen-
tly and later together) became involved with a so-
mewhat therapeutic compulsion: to dispel what 
we feared to be the flrst shadows of a "holistic" 
or "Gestalt" misconception that would threaten 
to haunt the fields of engineering and artificial in-
telligence as it had earlier haunted biology and 

19Sir James Lighthill, "Artificial Intelligence: A Gene­
ral Survey" in Artificial Intelligence: a paper symposium, 
(London: Science Research Council, 1973). 

20David E. Rumelhart, James L. McClelland, op. cit., 
p. 158. 

21Minsky and Papert, Perceptrons, p. 4. 

psychology. 
They were quite right. Artificial neural nets 

may, but need not, allow an interpretation of their 
hidden nodes in terms of features a human be­
ing could recognize and use to solve the problem. 
While neural network modeling itself is commit-
ted to neither view, it can be demonstrated that 
association does not require that the hidden no­
des be interpretable. Holists like Rosenblatt ha-
ppily assumed that individual nodes or patterns 
of nodes were not picking out fixed features of the 
domain. 

Minsky and Papert were so intent on elimina-
ting ali competition and so secure in the atomistic 
tradition that runs from Descartes to early Wit-
tgenstein, that the book suggests much more than 
it actually demonstrates. They set out to ana-
lyze the capacity of a one-layer perceptron while 
completely ignoring in the mathematical portion 
of their book Rosenblatfs chapters on multilayer 
machines and his proof of the convergence of an 
(inefficient) probabilistic learning algorithm ba-
sed on back propagation of errors.23 According 
to Rumelhart and McClelland: 

Minsky and Papert set out to show which func-
tions can and cannot be computed by one-layer 
machines. They demonstrated, in particular, that 
such perceptrons are unable to calculate such ma­
thematical functions as parity (whether an odd or 
even number of points are on in the retina) or the 
topological function of connectedness (whether ali 
points that are on are connected to ali other po­
ints that are on either directly or via other points 
that are also on) without making use of absur-
dly large numbers of predicates. The analysis is 
extremely elegant and demonstrates the impor-
tance of a mathematical approach to analyzing 
computational systems.24 

22Ibid., p. 19. 
F. Rosenblatt, Principles of Neurodynamics, Percep­

trons and the Theory of Brain Mechanisms, (Washington, 
D.C: Spartan Book, 1962), p. 292. See also: 

"The addition of a fourth layer of signal transmission 
units, or cross-coupling the A-units of a three-layer per­
ceptron, permits the solution of generalization problems, 
over arbitrary transformation groups." (p.576) 

"In back-coupled perceptrons, selective attention to fa-
miliar objects in a complex field can occur. It is also pos­
sible for such a perceptron to attend selectively to objects 
which move differentially relative to their background." (p. 
576) 

24Rumelhart and McClelland, op. cit., p. 111. 
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But the implications of the analvsis are quite 
limited. Rumelhart and McClelland continue: 

Essentiallv... although Minskv and Papert 
were exactly correct in their analysis of the one-
layer perceptron, the theorems don't apply to sy-
stems which are even a little more complex. In 
particular, it doesn't apply to multilayer systems 
nor to systems that allow feedback loops.25 

Yet, in the conclusion to Perceptrons, when 
Minsky and Papert ask themselves the question: 
"Have you considered perceptrons with many la-
yers?", they give the impression, while rhetori-
cally leaving the question open, of having settled 
it. 

Well, we have considered Gamba machines, 
which could be described as "two layers of per­
ceptron." We have not found (by thinking or by 
studying the literature) any other really intere-
sting class of multilayered machine, at least none 
whose principles seem to have a significant rela-
tion to those of the perceptron... We consider 
it to be an important research problem to eluci-
date (or reject) our intuitive judgment that the 
extension is sterile.26 

Their attack of gestalt thinking in A.I. succee-
ded beyond their wildest dreams. Only an una-
ppreciated few, among them S. Grossberg, J.A. 
Anderson and T. Kohonen, took up the "impor­
tant research problem". Indeed, almost evervone 
in Al assumed that neural nets had been laid to 
rest forever. Rumelhart and McClelland note: 

Minsky and Papert's analysis of the limitations 
of the one-layer perceptron, coupled with some 
of the early successes of the symbolic processing 
approach in artificial intelligence, was enough to 
suggest to a large number of workers in the field 
that there was no future in perceptron-like com-
putational devices for artificial intelligence and 
cognitive psychology.27 

But why was it enough? Both approaches had 
produced some promising work and some unfoun-
.ded promises.28 It was too early to close accounts 
on either approach. Yet something in Minsky and 
Papert's book struck a responsive chord. It see-

25Ibid., p. 112. 
26Minsky and Papert, op. cit., pp. 231-232. 
27Rumelhart and McClelland, op. cit., p. 112. 
28For an evaluation of the symbolic representation 

approach's actual successes up to 1970, see H. Dreyfus, 
What Computers Can't Do, (New York: Harper and Row, 
2nd edition, 1979). 

med Al workers shared the quasi-religious philoso-
phical prejudice against holism which motivated 
the attack. One can see the power of the tradi-
tion, for example, in Newell and Simon's article 
on physical symbol systems. The article begins 
with the scientific hypothesis that the mind and 
the computer are intelligent by virtue of mani-
pulating discrete symbols, but it ends with a re-
velation. "The study of logic and computers has 
revealed to us that intelligence resides in physical-
symbol svstems."29 

Holism could not compete with such intense 
philosophical convictions. Rosenblatt was discre-
dited along with the hundreds of less responsible 
network research groups that his work had en-
couraged. His research money dried up, he had 
troubled getting his work published, he became 
depressed, and one day his boat was found empty 
at sea. Rumor had it that he had committed sui-
cide. Whatever the truth of that rumor, one thing 
is certain: by 1970, as far as Al was concerned, 
neural nets were dead. Newell, in his history of 
Al, says the issue of symbols versus numbers "is 
certainh/ -not alive now and has not been for a 
long tirne."30 Rosenblatt is not even mentioned 
in John Haugeland's or in Margaret Boden's hi-
stories of the Al field.31 

Newell and Simon, "Computer Science and Empirical 
Inquiry", op. cit., p. 64. 

30Op. cit., p. 10. 
31 J. Haugeland, Artificial Intelligence: The Very Idea, 

(Cambridge: Bradford/MIT Press, 1985). M. Boden, Ar­
tificial Intelligence and Natural Man, (New York: Basic 
Books, 1977). Work on neural nets was continued in a 
marginal way in psychology and neuro-science. James A. 
Anderson at Brown University continued to defend a net 
model in psychology, although he had to live off other re-
searchers' grants, and Stephen Grossberg worked out an 
elegant mathematical implementation of elementary cogni­
tive capacities. For Anderson's position see, "Neural Mo-
dels with Cognitive Implications" in Basic Processing in 
Reading, D. LaBerse and S.J. Samuels edts., (New Jersey: 
Erlbaum, 1978). Por examples of Grossberg's work during 
the dark ages, see his book Studies of Mind and Brain: 
Neural Principles of learning, perception, development, co-
gnition and motor control, (Boston: Reidel Press, 1982). 
Kohonen's early work is reported in Associative Memory -
A System-Theoretical approach, (Berlin: Springer Verlag, 
1977). 

At M.I.T. Minsky continued to lecture on neural nets 
and assign theses investigating their logical properties. 
But, according to Papert, this was only because nets had 
interesting mathematical properties whereas nothing inte-
resting could be proved concerning the properties of sym-
bol systems. Moreover, many A.I. researchers assumed 
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But blaming the rout of the connectionists on 
an anti-holistic prejudice is too simple. There 
was a deeper way philosophical assumptions in-
fluenced intuition and led to an overestimation of 
the importance of the early symbol processing re-
sults. The way it looked at the tirne was that the 
perceptron people had to do an immense amo-
unt of mathematical analysis and calculating to 
solve even the most simple problems of pattern re-
cognition such as discriminating horizontal from 
vertical lines in various parts of the receptive fi-
eld, while the symbol manipulating approach had 
relatively effortlessh/ solved hard problems in co-
gnition such as proving theorems in logic and sol-
ving puzzles such as the cannibal-missionary pro­
blem. Even more importantly, it seemed that gi-
ven the computing power available at the tirne, 
the neural net researchers could only do specula-
tive neuro-science and psychology, while the sim­
ple programs of symbolic representationists were 
on their way to being useful. Behind this way of 
sizing up the situation was the assumption that 
thinking and pattern recognition are two distinct 
domains and that thinking is the more impor-
tant of the two. As we shall see later in our 
discussion of the common sense knowledge pro­
blem, this way of looking at things ignores both 
the preeminent role of pattern discrimination in 
human expertise and also the background of com­
mon sense understanding which is presupposed in 
real world, everyday thinking. Taking account of 
this background may well require pattern recogni­
tion. 

This gets us back to the philosophical tradi-
tion. It was not j ust Descartes and his descen-
dants which stood behind symbolic information 
processing, but ali of Western philosophy. Accor-
ding to Heidegger, traditional philosophy is defi-
ned from the start by its focusing on facts in the 
world while "passing over" the world as such.32 

that since Turing Machines were symbol manipulators and 
Turing had proved that Turing Machines could compute 
anything, he had proved that ali intelligibility could be cap-
tured by logic. On this view a holistic (and in those days 
statistical) approach needed justification while the symbo-
lic A.I. approach did not. This confidence, however, was 
based on confusing the uninterpreted symbols (zeroes and 
ones) of a Turing Machine with the semantically interpre-
ted symbols of A.I. 

32 Martin Heidegger, Being and Time, (New York: Har-
per and Row), 1962, Sections 14-21, See H. Dreyfus, Being-
in-the-world: A Commentary on Division I of Being and 

This means that philosophy has from the start 
systematically ignored or distorted the everyday 
context of human activity.33 That branch of the 
philosophical tradition that descends from Socra-
tes, to Plato, to Descartes, to Leibniz, to Kant, to 
conventional Al takes it for granted, in addition, 
that understanding a domain consists in having a 
theory of that domain. A theory formulates the 
relationships between objective, context-free ele-
ments (simples, primitives, features, attributes, 
factors, data points, cues, etc.) in terms of ab-
stract principles (covering laws, rules, programs, 
etc). 

Plato held that in theoretical domains such as 
mathematics and perhaps ethics, thinkers apply 
explicit, context-free rules or theories they lear-
ned in another life, outside the everyday world. 
Once learned, such theories function in this world 
by controlling the thinker's mind whether he is 
conscious of them or not. Plato's account did not 
apply to everyday skills but only to domains in 
which there is a priori knowledge. The success 
of theory in the natural sciences, however, rein-
forced the idea that in any orderly domain there 
must be some set of context-free elements and 
some abstract relations between those elements 
which accounts for the order of that domain and 
for man's ability to act intelligenth/ in it. Thus 
Leibniz boldly generalized the rationalist account 
to ali forms of.intelligent activitv, even everyday 
practice. 

The most important observations and turns of 
skill in ali sorts of trades and professions are as 
yet umvritten. This fact is proved by experience 
when passing from theory to practice we desire 
to accomplish something. Of course, we can also 
write up this practice, since it is at bottom just 
another theory more complex and particular... 34 

The symbolic information processing approach 
gains its assurance from this transfer to ali do­
mains of methods that were developed by philo-
sophers and which have succeeded in the natural 
sciences. Since, on this view, any domain must 
be formalizable, the way to do Al in any area 

Time, (Cambridge: MIT Press/Bradford Books, 1988). 
According to Heidegger, Aristotle came closer than 

any other philosopher to understanding the importance of 
everyday activity, but even he succombed to the philoso­
phical distortions of the phenomenon of the everyday world 
implicit in common sense. 

Leibniz, Seiections, op. cit., p. 48 (Our italics.) 
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is obviously to find the context-free elements and 
principles and base a formal, symbolic representa-
tion on this theoretical analysis. Terry Winograd 
characteristically describes his Al work in terms 
borrowed from physical science: 

We are concerned with developing a for-
malism, or "representation," with which to 
describe... knowledge. We seek the "atoms" and 
"particles" of which it is built, and the "forces" 
that act on it.35 

No doubt theories about the universe are often 
built up gradually by modeling relatively simple 
and isolated systems and then making the model 
gradually more complex and integrating it with 
models of other domains. This is possible beca-
use ali the phenomena are presumably the result 
of the law-like relations between what Papert and 
Minsky call "structural primitives." Since no one 
argues for atomistic reductionism in A.I. it seems 
that A.I. workers must implicitly assume that the 
abstraction of elements from their everyday con-
text, which defines philosophy and works in natu-
ral science, must also work in AL This would acco-
unt for the way the physical symbol system hypo-
thesis so quickly turned into a revelation and for 
the ease with which Paperfs and Minsky's book 
triumphed over the holism of the perceptron. 

Teaching philosophy at M.I.T. in the mid-
sixties, Hubert was soon drawn into the debate 
over the possibility of AL It was obvious to him 
that researchers such as Newell, Simon, and Min-
sky were the heirs to the philosophical tradition. 
But given his understanding of later Wittgenstein 
and early Heidegger, that did not seem to be a 
good omen for the reductionist research program. 
Both these thinkers had called into question the 
very tradition on which symbolic information pro-
cessing was based. Both were holists, both were 
struck by the importance of everyday practices, 
and both held that one could not have a theory 
of the everyday world. 

It is one of the ironies of intellectual history 
that Wittgenstein's devastating attack on his own 
Tractatus, his Philosophical Investigations,3Q was 
published in 1953 just as Al took over the ab-

T. Winograd, "Artificial Intelligence and Language 
Comprehension," in Artificial Intelligence and Language 
Comprehension, National Institute of Education, 1976, p. 
9. 

36Wittgenstein, Philosophical Investigations, (Oxford: 
Basil Blackwell, 1953). 

stract, atomistic tradition he was attacking. After 
writing the Tractatus Wittgenstein spent years 
doing what he called "phenomenology"37 - loo-
king in vain for the atomic facts and basic objects 
his theory required. He ended by abandoning 
his Tractatus and ali rationalistic philosophy. He 
argued that the analysis of everyday situations 
into facts and rules (which is where most traditi-
onal philosophers and Al researchers think theory 
must begin) is itself only meaningful in some con-
text and for some purpose. Thus the elements 
chosen already reflect the goals and purposes for 
which they are carved out. When we try to find 
the ultimate context-free, purpose-free elements, 
as we must if we are going to find the primitive 
symbols to feed a computer, we are in effect trying 
to free aspects of our experience of just that pra-
gmatic organization which makes it possible to 
use them intelligibly in coping with everyday pro-
blems. 

In the Philosophical Investigations VVittgen­
stein directly criticizes the logical atomism of the 
Tractatus. 

"What lies behind the idea that names re-
ally signify simples"? - Socrates says in the 
Theaetetus: "If I make no mistake, I have he-
ard some people say this: there is no defi-
nition of the primary elements - so to speak 
- out of which we and everything else are 
composed... But just as what consists of these 
primary elements is itself complex, so the na­
mes of the elements become descriptive language 
by being compounded together." Both RusselPs 
'individuals' and my 'objects' (Tractatus Logico-
Philosophicus) were such primary elements. But 
what are the simple constituent parts of which re-
ality is composed?... It makes no sense at ali to 
speak absolutely of the 'simple parts of a chair.'38 

Already in the 1920s Martin Heidegger had re-
acted in a similar way against his mentor, Ed-
mund Husserl, who regarded himself as the cul-
mination of the Cartesian tradition and was, the-
refore, the grandfather of AL39 Husserl argued 
that an act of consciousness or noesis does not, 

37Ludwig Wittgenstein, Philosophical Remarks, Univer-
sity of Chicago Press, 1975. 

38Wittgenstein, Philosophical Investigations, (Oxford: 
Basil Blackwell, 1953), p. 21. 

39See H. Dreyfus ed., Husserl, Intentionality and Co-
gnitive Science, (Cambridge: MIT Press/Bradford Books, 
1982). 
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on its own, grasp an object; rather, the act has 
intentionality (directedness) only by virtue of an 
"abstract form" or meaning in the noema corre-
lated with the act.40 

This meaning or symbolic representation, as 
conceived by Husserl, was a complex entity that 
had a difficult job to perform. In Ideas41 Hus­
serl bravely tries to explain how the noema gets 
the job done. Reference is provided by predicate-
senses which, like Fregean Sinne, just have the 
remarkable property of picking out objects' ato-
mic properties. These predicates are combined 
into complex "descriptions" of complex objects, 
as in RusselPs theory of descriptions. For Hus­
serl, who is close to Kant on this point, the noema 
contains a hierarchy of strict rules. Since Husserl 
thought of intelligence as a context-determined, 
goal-directed activity, the mental representation 
of any type of object had to provide a context 
or "horizon" of expectations or "predelineations" 
for structuring the incoming data: "a rule gover-
ning possible other consciousness of the object 
as identical - possible, as exemplifying essenti-
ally predelineated types."42 The noema must con-
tain a rule describing ali the features which can 
be expected with certainty in exploring a certain 
type of object-features which remain "inviolably 
the same: as long as the objectivity remains in-
tended as this one and of this kind."43 The rule 
must also prescribe "predelineations" of proper­
ties that are possible but not necessary features 
of this type of object: "Instead of a completely de-
termined sense, there is always, therefore, a frame 
ofempty sense... "44 

In 1973 Marvin Minsky proposed a new data 
structure, remarkabh/ similar to Husserl's, for re-
presenting everyday knowledge: 

"Der Sinn... so wie wir ihn bestimmt haben, ist ni-
cht ein konkretes Wesen im Gesamtbestande deš Noema, 
sondern eine Art ihm einwohnender abstrackter Form." 
Edmund Husserl, Ideen Zu Einer Reinen Ph.anomenologie 
und Ph:anomenologischen Philosophie, NijhofF, 1950. For 
textual evidence that Husserl held that the noema acco-
unts for the intentionalitv of mental activity, see H. Drey-
fus, "Husserl's Perceptual Noema" in Husserl, Intentiona-
lity and Cognitive Science, M.LT./Bradford Books, 1982. 

4 1E. Husserl, Ideas Pertaining to a Pure Phenomenology 
and to a Phenomenological Philosophy, trans. F. Kersten, 
(The Hague: NijhofF, 1982). 

Edmund Husserl, Cartesians Meditations, trans. D. 
Cairns, (The Hague: NijhofF, 1960) p. 45 

43Ibid., p. 53. 
44Ibid., p. 51. 

A frame is a data-structure for representing 
a stereotyped situation, like being in a certain 
kind of living room, or going to a child's birthday 
party... 

We can think of a frame as a network of no-
des and relations. The top levels of a frame are 
fixed, and represent things that are always true 
about the supposed situation. The lower levels 
have many terminals - slots that must be filled 
by specific instances or data. Each terminal can 
specify conditions its assignments must meet... 

Much of the phenomenological power of the the-
ory hinges on the inclusion of expectations and 
other kinds of presumptions. A frame's termi­
nals are normally already filled with "default" as­
signments.45 

In Minsky's model of a frame, the "top level" 
is a developed version of what in HusserPs termi-
nology remains "inviolably the same" in the re­
presentation, and Husserl's predelineations have 
become "default assignments" - additional featu­
res that can normally be expected. The result is a 
step forward in Al techniques from a passive mo­
del of information-processing to one which tries to 
take account of the interactions between a knower 
and the world. The task of Al thus converges with 
the task of transcendental phenomenologv. Both 
must try in everyday domains to find frames con-
structed from a set of primitive predicates and 
their formal relations. 

Heidegger, before Wittgenstein, carried out, in 
response to Husserl, a phenomenological descrip-
tion bf the everyday world and everyday objects 
like chairs and hammers, and like Wittgenstein 
he found that the everyday world could not be 
represented by a set of context-free elements. It 
was Heidegger who forced Husserl to face preci-
sely this problem. He pointed out that there are 
other ways of "encountering" things than relating 
to them as objects defined by a set of predicates. 
When we use a piece of equipment like a hammer, 
Heidegger pointed out, we actualize a skill (which 
need not be represented in the mind) in the con-
text of a socially organized nexus of equipment, 
purposes, and human roles (which need not be 
represented as a set of facts). This context or 
world, and our everyday ways of skillful coping in 
it which Heidegger called circumspection, are not 

Marvin Minskv, "A Framework for Representing 
Knowledge," in Mind Design, J. Haugelan<-li ed., p. 96. 
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something we think but, as part of our socializa-
tion, forms the way we are. Heidegger concluded: 

The context... can be taken formally in the 
sense of a system of relations. But. . . the pheno-
menal content of these 'relations' and 'relata'... is 
such that they resist any sort of mathematical 
functionalization; nor are they merely something 
thought, first posited in an 'act of thinking.' They 
are rather relationships in which concernful cir-
cumspection as such already dwells.46 

This defines the splitting of the ways between 
Husserl and Al on the one hand, and Heidegger 
and later Wittgenstein on the other. The crucial 
question becomes: Can there be a theory of the 
everyday world as rationalist philosophers have 
always held? Or is the common sense background 
rather a combination of skills, practices, discri-
minations, etc., which are not intentional states, 
and so, a fortiori, do not have any representatio-
nal content to be explicated in terms of elements 
and rules? 

Husserl tried to avoid the problem posed by 
Heidegger by making a move soon to become fa-
miliar in Al circles. He claimed that the world, 
the background of significance, the everyday con-
text, was merely a very complex system of facts 
correlated with a complex system of beliefs, 
which, since they have truth conditions, he cal-
led "validities". Thus one could, in principle, su-
spend one's dwelling in the world and achieve a 
detached, description of the human belief system. 
One could thus complete the task that had been 
implicit in philosophy since Socrates. One could 
make explicit the beliefs and principles underlying 
aH intelligent behavior. As Husserl put it: 

Even the background... of which we are always 
concurrently conscious but which is momentarily 
irrelevant and remains completely unnoticed, stili 
functions according to its implicit validities.47 

Since he firmly believed that the shared 
background could be made explicit as a belief 
system Husserl was ahead of his time in raising 
the question of the possibility of Al. After dis-
cussing the possibility of a formal axiomatic sy-
stem describing experience, and pointing out that 
such a system of axioms and primitives - at least 

46Heidegger, op. cit., pp. 121-122. 
47Edmund Husserl, Crisis of European Sciences and 

Transcendental Phenomenology, trans. D. Carr, (Evan-
ston: Northwestern University Press, 1970), p. 149. 

as we know it in geometry - could not describe 
everyday shapes such as "scalloped" and "lens-
shaped," Husserl leaves open the question whe-
ther these everyday concepts could nonetheless 
be formalized. (This is like raising and leaving 
open the A.I. question whether one can axioma-
tize common sense physics.) Picking up Leibniz's 
dream of a mathesis of ali experience, Husserl re-
marks: 

The pressing question is . . . whether there co­
uld not be. . . an idealizing procedure that substi-
tutes pure and strict ideals for intuited data and 
that would... serve... as the basic medium for 
a mathesis of experience.48 

But, as Heidegger predicted, the task of writing 
out a complete theoretical account of everyday 
life turned out to be much harder than initially 
expected. Husserl's project ran into serious trou-
ble, and there are signs that Minsky's has too. 
During twenty-five years of trying to speli out 
the components of the subjecfs representation of 
everyday objects, Husserl found that he had to in-
clude more and more of a subjecfs common-sense 
understanding of the everyday world: 

To be sure, even the tasks that present them-
selves when we take single types of objects as re-
stricted clues prove to be extremely complicated 
and always lead to extensive disciplines when we 
penetrate more deeply. That is the čase, for exam-
ple, with... spatial objects (to say nothing of a 
Nature) as such, of psycho-physical being and hu-
manity as such, culture as such.49 

He spoke of the noema's "huge concreteness"50 

and of its "tremendous complication,"51 and he 
sadly concluded at the age of seventy-five that he 
was a perpetual beginner and that phenomeno-
logy was an "infinite task."52 

There are hints in his frame paper that Minsky 
has embarked on the same "infinite task" that 
eventually overwhelmed Husserl: 

Just constructing a knowledge base is a ma­
jor intellectual research problem... We stili 
know far too little about the contents and struc-

4 Husserl, Ideen zu einer reinen Phanomenologie und 
phenomenologischen Philosophie, Drittes Buch, 1913, #75, 
p. 134. 

49Husserl, Ca.rtesia.ns Meditations, pp. 54-55. 
50Husserl, Formal and Transcendental Logic, trans. D. 

Cairns (The Hague: Nijhoff, 1969), p. 244. 
51Ibid., p. 246. 
52Husserl, Crisis, p. 291. 
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ture of common-sense knowledge. A "minimal" 
common-sense system must "know" something 
about cause-effect, time, purpose, locality, pro-
cess, and types of knowledge... We need a seri-
ous epistemological research effort in this area.53 

To a študent of contemporary philosophy Min-
sky's naivete and faith were astonishing. HusserPs 
phenomenology was just such a research effort. 
Indeed, philosophers, from Socrates to Leibniz, to 
early Wittgenstein, had carried on serious episte­
mological research in this area for two thousand 
years without notable success. 

In the light of Wittgenstein's reversal and Hei-
degger's devastating critique of Husserl, Hubert 
predicted trouble for symbolic information pro-
cessing. As Newell notes in his history of Al, Hu-
bert's warning was ignored: 

Dreyfus's central intellectual objection... is 
that the analysis of the context of human action 
into discrete elements is doomed to failure. This 
objection is grounded in phenomenological philo-
sophy. Unfortunately, this appears to be a nonis-
sue as far as Al is concerned. The answers, refuta-
tions, and analyses that have been forthcoming to 
Dreyfus's writings have simply not engaged this 
issue - which indeed would be a novel issue if it 
were to come to the fore.54 

The trouble was not long in coming to the 
fore, however, as the everyday world took its re-
venge on Al as it had on traditional philosophy. 
As we see it, the research program launched by 
Nevvell and Simon has gone through three ten-
year stages. From 1955-1965 two research the-
mes, representation and search, dominated the 
field then called Cognitive Simulation. Newell 
and Simon showed, for example, how a compu-
ter could solve the cannibal and missionary pro­
blem, using the general heuristic search principle 
known as means-end analysis, viz. use any avai-
lable operation that reduces the distance between 
the description of the current situation and the 
description of the goal. They then abstracted this 
heuristic technique and incorporated it into their 
General Problem Solver (GPS). 

The second stage (1965-1975), led by Marvin 
Minsky and Seymour Papert at M.I.T., was con­
cerned with what facts and rules to represent. 

53Minsky, op. cit., p. 124. 
54Newell, "Intellectual Issues in the history of Artificial 

Intelligence," p. 222-223. 

The idea was to develop methods for dealing sys-
tematically with knowledge in isolated domains 
called micro-worlds. Famous programs written 
around 1970 at M.I.T. include Terry Winograd's 
SHRDLU vvhich could obey commands given in 
a subset of natural language about a simplified 
blocks-world, Thomas Evan's Analogy Problem 
Program, David Waltz's Scene Analysis Program 
and Patrick Winston's program which learned 
concepts from examples. 

The hope was that the restricted and isolated 
"micro-worlds" could be gradually made more re-
alistic and combined so as to approach real world 
understanding. But researchers confused two do­
mains which, following Heidegger, we shall distin-
guish as universe and world. A set of interrelated 
facts may constitute a universe, like the physical 
universe, but it does not constitute a world. The 
latter, like the world of business, the world of the-
ater, or the world of the physicist, is an organized 
body of objects, purposes, skills, and practices on 
the basis of which human activities have meaning 
or make sense. To see the difference one can con-
trast the meaningless physical universe with the 
meaningful world of the discipline of physics. The 
world of physics, the business world, and the the-
ater world, make sense only against a background 
of common human concerns. They are local ela-
borations of the one common-sense world we ali 
share. That is, sub-worlds are not related like 
isolable physical systems to larger systems they 
compose, but are rather, local elaborations of a 
whole, which they presuppose. Micro-worlds were 
not worlds but isolated meaningless domains, and 
it has gradually become clear that there was no 
way they could be combined and extended to ar-
rive at the world of everyday life. 

In its third and so far final stage, roughly 
from 1975 to the present, Al has been wrestling 
with what has come to be called the common-
sense knowledge problem. The representation of 
knowledge was always a central problem for work 
in Al, but the two earlier periods - cognitive simu­
lation and micro-worlds - were characterized by 
an attempt to avoid the problem of common-sense 
knowledge by seeing how much could be done with 
as little knowledge as possible. By the middle 
1970s, however, the issue had to be faced. Vari-
ous data structure such as Minsky's frames and 
Roger Schank's scripts have been tried without 
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success. The common-sense knowledge problem 
has kept Al from even beginning to fulfill Simon's 
prediction made twenty years ago, that "within 
twenty years machines will be capable of doing 
any work a man can do."55 

Indeed, the common-sense knowledge problem 
has blocked ali progress in theoretical Al for the 
past decade. Winograd was one of the first to 
see the limitations of SHRDLU and aH script 
and frame attempts to extend the micro-worlds 
approach. Having "lost faith" in Al, he now te-
aches Heidegger in his computer science courses 
at Stanford, and points out "the difficulty of for-
malizing the common-sense background that de-
termines which scripts, goals and strategies are 
relevant and how they interact."56 

What sustains Al in this impasse is the convic-
tion that the common sense knowledge problem 
must be solvable since human beings have obvi-
ously solved it. But human beings may not nor-
mally use common sense knowledge at ali. As 
Heidegger and Wittgenstein point out, what com­
mon sense understanding amounts to might well 
be everyday know-how. By know-how we do not 
mean procedural rules, but knowing what to do 
in a vast number of special cases.57 For example, 
common sense physics has turned out to be extre-
mely hard to speli out in a set of facts and rules. 
When one tries, one either requires more common 
sense to understand the facts and rules one finds 
or else one produces formulas of such complexity 
that it seems highly unlikely they are in a child's 
mind. 

Doing theoretical physics also requires backgro­
und skills which may not be formalizable, but 
the domain itself can be described by abstract 
laws that make no reference to these background 
skills. Al researchers conclude that common sense 
physics too must be expressible as a set of ab­
stract principles. But it just may be that the pro­
blem of finding a theory of common sense physics 
is insoluble because the domain has no theoreti­
cal structure. By playing ali day with ali sorts 
of liquids and solids for several years the child 

5H. Simon, The Shape of Automation for Men and Ma­
nagement, Harper and Row, 1965, p. 96. 

5 6T. Winograd, "Computer Software for Working with 
Language," Scientiiic American, September 1984, p. 142. 

57This account of skill is spelled out and defended in 
Hubert and Stuart Dreyfus, Mind Over Machine, (New 
York: Free Press/Macmillan, 1986). 

may simply have learned to discriminate proto-
typical cases of solids, liquids, etc. and learned 
typical skilled responses to their typical behavior 
in typical circumstances. The same might well 
be the čase for the social world. If background 
understanding is indeed a skill, and skills are ba-
sed on whole patterns and not on rules, we would 
expect symbolic representations to fail to capture 
our common-sense understanding. 

In the light of this impasse, classical, symbol-
based Al appears more and more to be a perfect 
example of what Imre Lakatos has called a de-
generating research program.58 As we have seen, 
Al began auspiciously with Newell and Simon's 
work at RAND, and by the late 1960s had tur­
ned into a flourishing research program. Minsky 
predicted that "within a generation the problem 
of creating 'artificial intelligence' will be substan-
tially solved."59 Then, rather suddenly, the field 
ran into unexpected difhculties. It turned out to 
be much harder than one expected to formulate 
a theory of common-sense. It was not, as Min-
sky had hoped, just a question of cataloguing a 
few hundred thousand facts. The common-sense 
knowledge problem became the center of concern. 
Minsky's mood changed completely in five years. 
He told a reporter: "the Al problem is one of the 
hardest science has ever undertaken."60 

The Rationalist tradition had finally been put 
to an empirical test and it had failed. The idea 
of producing a formal, atomistic theory of the 
everyday common-sense world and representing 
that theory in a symbol manipulator had run into 
just the difnculties Heidegger and Wittgenstein 
discovered. Frank Rosenblatfs intuition that it 
would be hopelessly hard to formalize the world 
and thus give a formal specification of intelligent 
behavior had been vindicated. His repressed rese­
arch program - using the computer to instantiate 
a holistic model of an idealized brain - which had 
never really been refuted, became again a live op-
tion. 

In journalistic accounts of the history of Al Ro-
senblatt is vilified by anonymous detractors as a 
snake-oil salesman: 

5®Imre Lakatos, Philosophical Papers, ed. J. Worrall, 
(Cambridge: Cambridge University Press, 1978). 

Minsky, Computation: Finite and Infinite Machines, 
(New York: Prentice Hali, 1977), p. 2. 

60Gina Kolata, "How Can Computers Get Common 
Sense?", Science, Vol. 217, 24 September 1982. p. 1237. 
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Present-day researchers remember that Rosen-
blatt was given to steady and extravagant state-
ments about the performance of his machine. "He 
was a press agent's dream," one scientist says, 
"a real medicine man. To hear him teli it, the 
Perceptron was capable of fantastic things. And 
maybe it was. But you couldn't prove it by the 
work Frank did."61 

In fact he was much clearer about the capa-
cities and limitations of the various types of per-
ceptrons than Simon and Minsky were about their 
symbolic programs.62 Now he is being rehabilita-

Pamela McCorduck, Machines Who Think, (San Fran-
cisco: W.H. Freeman and Company, 1979), p. 87. 

Some typical quotations from Rosenblatt's Principles 
of Neurodynamics: 

"In a learning experiment, a perceptron is typically expo-
sed to a sequence of patterns containing representatives of 
each type or class which is to be distinguished, and the 
appropriate choice of a response is "reinforced" according 
to some rule for memory modification. The perceptron is 
then presented vvith a test stimulus, and the probability 
of giving the appropriate response for the class of the sti­
mulus is ascertained... If the test stimulus activates a set 
of sensory elements which are entirely distinct from those 
which were activated in previous exppsures to stimuli of 
the same class, the experiment is a test of "pure generali-
zation". The simplest of perceptrons... have no capability 
for pure generalization, but can be shown to perform quite 
respectably in discrimination experiments particularly if 
the test stimulus is nearly identical to one of the patterns 
previously experienced." (p. 68) 

"Perceptrons consideredto date show little resemblance 
to human subjects in their figure-detection capabilities, 
and gestalt-organizing tendencies." (p. 71) 

"The recognition of sequences in rudimentary form is 
well within the capability of suitably organized percep­
trons, but the problem of figural organization and segmen-
tation presents problems which are just as serious here as 
in the čase of static pattern perception." (p. 72) 

"In a simple perceptron, patterns are recognized before 
"relations"; indeed, abstract relations, such as "A is above 
B" or "the triangle is inside the circle" are never abstrac-
ted as such, but can only be acquired by means of a sort 
of exhaustive rote-learning procedure, in which every čase 
in which the relation holds is taught to the perceptron in-
dividually." (p. 73) 

"A netvvork consisting of less than three layers of signal 
transmission units, or a network consisting exclusively of 
linear elements connected in series, is incapable of learning 
to discriminate classes of patterns in an isotropic enviro-
nment (where any pattern can occur in ali possible retinal 
locations, without boundaries effects)." (p. 575) 

"A number of speculative models which are likely to be 
capable of learning sequential programs, analysis of speech 
into phonemes, and learning substantive "meanings" for 
nouns and verbs vvith simple sensory referents have been 
presented in the preceding chapters. Such systems repre-
sent the upper limits of abstract behavior in perceptrons 

ted. Rumelhart, Hinton and McClelland reflect 
this new appreciation of his pioneering work: 

Rosenblatfs work was very controversial at the 
time, and the specific models he proposed were 
not up to ali the hopes he had for them. But 
his vision of the human information processing 
system as a dynamic, interactive, self-organizing 
system lies at the core of the PDP approach.63 

The studies of perceptrons... clearly anticipa-
ted many of the results in use today. The critique 
of perceptrons by Minsky and Papert was wi-
dely misinterpreted as destroying their credibility, 
whereas the work simply showed limitations on 
the power of the most limited class of perceptron-
like mechanisms, and said nothing about more po-
werful, multiple layer models.64 

Frustrated Al researchers, tired of clinging to a 
research program which Jerry Lettvin characteri-
zed in the early 1980s as "the only straw afloat", 
flocked to the new paradigm. Rumelhart and 
McClelland's book, Parallel Distributed Proces­
sing, sold 6000 copies the day it went on the mar-
ket. 30,000 are now in print. As Paul Smolensky 
put it: 

In the past half-decade the connectionist appro­
ach to cognitive modeling has grown from an ob-
scure cult claiming a few true believers to a mo-
vement so vigorous that recent meetings of the 
Cognitive Science Society have begun to look like 
connectionist pep rallies.65 

If multilayered networks succeed in fulfilling 

considered to date. They are handicapped by a lack of a sa-
tisfactory "temporary memory", by an inability to perceive 
abstract topological relations in a simple fashion, and by an 
inability to isolate meaningful figural entities, or objects, 
except under special conditions" (p. 577). 

"The applications most likely to be realizable with the 
kinds of perceptrons described in this volume include cha-
racter recognition and "reading machines", speech recogni­
tion (for distinct, clearly separated vrords), and extremely 
limited capabilities for pictorial recognition, or the recogni­
tion of objects against simple backgrounds. "Perception" 
in a broader sense may be potentially within the grasp of 
the descendants of our present models, but a great deal of 
fundamental knovvledge must be obtained before a suffici-
ently sophisticated design can be prescribed to permit a 
perceptron to compete with a man under normal enviro-
nmental conditions." (p. 583) 

6 3D. Rumelhart and J. McClelland, op. cit., Vol 1., p. 
45. 

64Ibid., Vol. 2., p. 535. 
65Paul Smolensky, "On the proper treatment of connec-

tionism", Behavioral and Brain Sciences, final draft, p. 1, 
summer 1987. 
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their promise researchers will have to give up De-
scartes', Husserl's and earlv Wittgenstein's con-
viction that the only way to produce intelligent 
behavior is to mirror the world with a formal the-
ory in the mind. Worse, one may have to give up 
the more basic intuition at the source of philoso-
phy that there must be a theory of every aspect of 
reality, i.e., there must be elements and principles 
in terms of which one can account for the intel-
ligibility of any domain. Neural networks may 
show that Heidegger, later Wittgenstein and Ro-
senblatt were right in thinking that we behave 
intelligently in the world without having a the-
ory of that world. If a theory is not necessary 
to explain intelligent behavior we have to be pre-
pared to raise the question whether, in everyday 
domains, such a theoretical explanation is even 
possible. 

Neural net modelers, influenced by symbol ma-
nipulating Al, are expending considerable effort, 
once their nets have been trained to perform a 
task, trying to find the features represented by 
individual nodes and sets of nodes. Results thus 
far are equivocal. Consider Geoffrey Hinton's ne-
twork for learning concepts by means of distri-
buted representations.66 Hinton's network can be 
trained to encode relationships in a domain which 
human beings conceptualize in terms of features, 
without the network being given the features that 
human beings use. Hinton produces examples of 
cases in which in the trained netvrork some no­
des can be interpreted as corresponding to the 
features that human beings pick out, although 
they only roughly correspond to these features. 
Most nodes, however, cannot be interpreted se-
mantically at ali. A feature used in a symbolic 
representation is either present or not. In the net, 
however, although certain nodes are more active 
when a certain feature is present in the domain, 
the amount of activity varies not just with the 
presence or absence of this feature, but is affec-
ted by the presence or absence of other features 
as well. 

Hinton has picked a domain, family relation­
ships, which is constructed by human beings pre-
cisely in terms of the features, such as genera-

Geoffrey Hinton, "Learning Distributed Representa­
tions of Concepts," Proceedings of the 8th Annual Con-
ference Cognitive Science Society, Amherst, Mass., Aug. 
1986 

tion and nationalitv, which human beings nor-
mally notice. Hinton then analyzes those cases in 
which, starting with certain random initial con-
nection strengths, some nodes after learning can 
be interpreted as representing these features. Cal-
culations using Hinton's model show, however, 
that even his net seems, for some random initial 
connection strengths, to learn its associations wi-
thout any obvious use of these everyday features. 

In one very limited sense, any successfully 
trained multilayer net has an interpretation in 
terms of features - not everyday features but what 
we shall call highly abstract features. Consider 
the particularly simple čase of lavers of binary 
units activated by feedforward, but not lateral or 
feedback, connections. To construct an account 
from a netvrork that has learned certain associa­
tions, each node one level above the input nodes 
could, on the basis of connections to it, be inter­
preted as detecting when one of a certain set of 
input patterns is present. (Some of the patterns 
will be the ones used in training and some will ne-
ver have been used.) If the set of input patterns 
which a particular node detects is given an inven-
ted name (it almost certainly won't have a name 
in our vocabulary), the node could be interpreted 
as detecting the highly abstract feature so named. 
Hence, every node one level above the input level 
can be characterized as a feature detector. Simi-
larly, every node a level above these nodes can 
be interpreted as detecting a higher-order feature 
which is defined as the presence of one of a speci-
fied set of patterns among the first level features 
detectors. And so on up the hierarchy. 

The fact that intelligence, defined as the 
knowledge of a certain set of associations appro-
priate to a domain, can always be accounted for in 
terms of relations among a number of highly ab­
stract features of a skill domain does not, howe-
ver, preserve the rationalist intuition that these 
explanatory features must capture the essential 
structure of the domain, i.e., that one could base 
a theory on them. If the net is taught one more 
association of an input/output pair (where the in­
put prior to training produces an output different 
from the one to be learned), the interpretation of 
at least some of the nodes will have to be changed. 
So the features which some of the nodes picked out 
before the last instance of training would turn out 
not to have been invariant structural features of 
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the domain. 
Once one has abandoned the philosophical 

approach of classical Al and accepted the atheo-
retical claim of neural netmodeling, one question 
remains: How much of everyday intelligence can 
such a network be expected to capture? Classical 
Al researchers are quick to point out - as Rosen-
blatt already noted - that neural net modelers 
have so far had difficulty dealing with step-wise 
problem solving. Connectionists respond that 
they are confident that they will solve that pro­
blem in tirne. This response, however, reminds 
one too much of the way that the symbol mani-
pulators in the sixties responded to the criticism 
that their programs were poor at the perception 
of patterns. The old struggle between intellectu-
alists who, because they can do context-free logic 
think they have a handle on everyday cognition 
but are poor at understanding perception, and 
gestaltists who have the rudiments of an acco-
unt of perception67 but none of everyday cogni­
tion, goes on. One might think, using the me-
taphor of the right and left brain, that perhaps 
the brain/mind ušes each strategy when appropri-
ate. The problem would then be how to combine 
them. One cannot just switch back and forth for, 
as Heidegger and the gestaltists saw, the pragma-
tic background plays a crucial role in determining 
relevance even in everyday logic and problem sol­
ving, and experts in any field, even logic, grasp 
operations in terms of their functional similari-
ties. 

It is even premature to consider combining the 
two approaches, since so far neither has accom-
plished enough to be on solid ground. Neural ne-
twork modeling may simply be getting a deserved 
chance to fail as did the symbolic approach. 

Stili there is an important difference to remem-
ber as each research program struggles on. The 
physical symbol system approach seems to be fai-
ling because it is simply false to assume that there 
must be a theory of every domain. Neural ne-
twork modeling, however, is not committed to this 
or any other philosophical assumption. However, 
simply building an interactive net sufficiently si-

67For a recent influential account of perception that de-
nies the need for mental representation see, James J. Gib-
son, The Ecological Approach to Visua.1 Perception, (Bo­
ston: Houghton Miffiin Companv, 1979). Gibson and Ro-
senblatt collaborated on a research paper for the Air Force 
in 1955. 

milar to the one our brain has evolved may be just 
too hard. Indeed, the common sense knowledge 
problem, which has blocked the progress of sym-
bolic representation techniques for fifteen years. 
may be looming on the neural net horizon, altho-
ugh connectionists may not yet recognize it. Ali 
neural net modelers agree that for a net to be 
intelligent it must be able to generalize, that is, 
given sufficient examples of inputs associated with 
one particular output, it should associate further 
inputs of the same type with that same output. 
The questions arises, however: What counts as 
the same type? The designer of the net has a spe-
cific definition in mind of the type required for a 
reasonable generalization, and counts it a success 
if the net generalizes to other instances of this 
type. But when the net produces an unexpected 
association can one say it has failed to generalize? 
One could equally well say that the net has ali 
along been acting on a different definition of the 
type in question and that that difference has just 
been revealed. (Ali the "continue this sequence" 
questions found on intelligence tests really have 
more than one possible answer but most humans 
share a sense of what is simple and reasonable and 
therefore acceptable.) 

Neural network modelers attempt to avoid this 
ambiguity and make the net produce "reasonable" 
generalizations by considering only a pre-specified 
allowable family of generalizations, i.e., allowa-
ble transformations which will count as accepta­
ble generalizations (the hypothesis space). They 
then attempt to design the architecture of their 
nets so that the net transforms inputs into ou-
tputs only in ways which are in the hypothesis 
space. Generalization will then be possible only 
on the designer's terms. While a few examples 
will be insufficient to identify uniquely the appro-
priate member of the hypothesis space, after eno­
ugh examples only one hypothesis will account for 
ali the examples. The net will then have learned 
the appropriate generalization principle, i.e., ali 
further input will produce what, from the desi­
gner^ point of view, is the appropriate output. 

The problem here is that the designer has de-
termined by means of the architecture ofthe net 
tliat certaih possible generalizations will never be 
found. Ali this is well and good for toy problems 
in which there is no question of what constitutes a 
reasonable generalization, but in real-world situa-
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tions a large part of human intelligence consists in 
generalizing in ways appropriate to the context. If 
the designer restricts the net to a pre-defined class 
of appropriate responses, the net will be exhibi-
ting the intelligence built into it by the designer 
for that context but will not have the common 
sense that would enable it to adapt to other con-
texts as would a truly human intelligence. 

Perhaps a net must share size, architecture and 
initial connection configuration with the human 
brain if it is to share our sense of appropriate ge-
neralizations. If it is to learn from its own "expe-
riences" to make associations that are human-like 
rather than be taught to make associations which 
have been specifled by its trainer, it must also 
share our sense of appropriateness of outputs, and 
this means it must share our needs, desires, and 
emotions and have a human-like body with the 
same physical movements, abilities and possible 
injuries. 

If Heidegger and Wittgenstein are right, human 
beings are much more holistic than neural nets. 
Intelligence has to be motivated by purposes in 
the organism and other goals picked up by the or­
ganism from an on-going culture. If the minimum 
unit of analysis is that of a whole organism geared 
into a whole cultural world, neural nets as well as 
symbolically programmed computers, stili have a 
very long way to go. 
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Artificial intelligence researchers predict that "thinking machines" will take over our 
mental work, just as their mechanical predecessors were intended to eliminate physical 
drudgery. Critics have argued with equal fervor that "thinking machine" is a contradic-
tion in terms. Computers, with their foundations of cold logic, can never be creative or 
insightful or possess real judgment. Although my own understanding developed through 
active participation in artificial intelligence research, I have now come to recognize a 
larger grain of truth in the criticisms than in the enthusiastic predictions. The source 
of the difRculties will not be found in the details of silicon micro-circuits or of Boolean 
logic, but in a basic philosophy of patchwork rationalism that has guided the research. 
In this paper I review the guiding principles of artificial intelligence and argue that as 
now conceived it is limited to a very particular kind of intelligence: one that can use-
fully be likened to bureaucracy. In conclusion I will briefly introduce an orientation I 
call hermeneutic constructivism and illustrate how it can lead to an alternative path of 
design. 

1 Introduction 

Futurologists have proclaimed the birth of a new 
species, machina sapiens, that will share (perhaps 
usurp) our plače as the intelligent sovereigns of 
our earthly domain. These "thinking machines" 
will take over our burdensome mental chores, just 
as their mechanical predecessors were intended to 
eliminate physical drudgery. Eventually they will 
apply their "ultra-intelligence" to solving ali of 
our problems. Any thoughts of resisting this ine-
vitable evolution is just a form of "speciesism," 
born from a romantic and irrational attachment 
to the peculiarities of the human organism. 

Critics have argued with equal fervor that 
"thinking machine" is an oxymoron - a contradic-
tion in terms. Computers, with their foundations 
of cold logic, can never be creative or insightful 
or possess real judgment. No matter how compe-
tent they appear, they do not have the genuine 
intentionality that is at the heart of human un­
derstanding. The vain pretensions of those who 
seek to understand mind as computation can be 

dismissed as yet another demonstration of the ar-
rogance of modern science. 

Although my own understanding developed 
through active participation in artificial intelli­
gence research, I have now come to recognize a 
larger grain of truth in the criticisms than in the 
enthusiastic predictions1. But the story is more 
complex. The issues need not (perhaps cannot) 
be debated as fundamental questions concerning 
the plače of humanity in the universe. Indeed, 
artificial intelligence has not achieved creativity, 
insight and judgment. But its shortcomings are 
far more mundane: we have not yet been able to 

1The work presented here was supported by the System 
Development Foundation under a grant to the Center for 
the Study of Language and Information at Stanford Uni-
versity. A version of this paper was presented at the con-
ference on "Humans, Animals, and Machines: Boundaries 
and Projections," sponsored by the Stanford Humanities 
Center in April, 1987. This paper was published as Wi-
nograd, Terry, "Thinking machines: Can there be? Are 
We?," in James Sheehan and Morton Sosna, eds., The Bo­
undaries of Humanity: Humans, Animals, Machines, Ber-
keley: University of California Press, 1991, pp. 198-223. 
Reprinted with permission. 
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construct a machine with even a modicum of com-
mon sense or one that can converse on everyday 
topics in ordinary language. 

The source of the difficulties will not be found 
in the details of silicon micro-circuits or of Boo-
lean logic. The basic philosophy that has guided 
the research is shallow and inadequate, and has 
not received sufficient scrutiny. It is drawn from 
the traditions of rationalism and logical empiri-
cism but has taken a novel turn away from its 
predecessors. This new "patchwork rationalism" 
will be our subject of examination. 

First, we will review the guiding principles of 
artificial intelligence and see how they are embo-
died in current research. Then we will look at the 
fruits of that research. I will argue that "artifi­
cial intelligence" as now conceived is limited to a 
very particular kind of intelligence: one that can 
usefully be likened to bureaucracy in its rigidity, 
obtuseness, and inability to adapt to changing cir-
cumstances. The weakness comes not from insu-
fficient development of the technology, but from 
the inadequacy of the basic tenets. 

But, as with bureaucracy, weaknesses go hand 
in hand with unique strengths. Through a re-
interpretation and re-formulation of the tech-
niques that have been developed, we can antici-
pate and design appropriate and valuable ušes. In 
conclusion I will briefly introduce an orientation 
1 call hermeneutic constructivism and illustrate 
how it can lead down this alternative path of de­
sign. 

2 The mechanization of 
rationality 

In their quest for mechanical explanations of (or 
substitutes for) human reason, researchers in ar­
tificial intelligence are heirs to a long tradition. 
In his "Discourse on the method of properly gui­
ding the reason in the search of truth in the sci-
ences" (1637), Descartes initiated the quest for a 
systematic method of rationality. Although De­
scartes himself did not believe that reason could 
be achieved through mechanical devices, his un-
derstanding laid the groundwork for the symbol-
processing machines of the modern age. 

In 1651, Hobbes described reason as symbolic 
calculation: 

"When a man reasoneth, he does nothing else 

but conceive a sum total, from addition of parcels; 
or conceive a remainder... These operations are 
not incident to numbers only, but to ali manner of 
things that can be added together, and taken one 
out of another... the logicians teach the same in 
consequences of words; adding together two na-
mes to make an afnrmation, and two amrmations 
to make a syllogism; and many syllogisms to make 
a demonstration."2 

Leibniz (as described by Russell) 
"... cherished through his life the hope of disco-

vering a kind of generalized mathematics, which 
he called Characteristica Universalis, by means of 
which thinking could be replaced by calculation. 
"If we had it," he says "we should be able to rea­
son in metaphysics and morals in much the same 
way as in geometry and analysis. If controversies 
were to arise, there would be no more need of dis-
putation between two philosophers than between 
two accountants. For it would suffice to take their 
pencils in their hands, to sit down to their slates, 
and to say to each other... 'Let us calculate.' "3 

Behind this program of mechanical reason was 
a faith in a rational and ultimately understan-
dable universe. The model of "Let us calculate" 
is that of Euclidean geometry, in which a small 
set of clear and self- evident postulates provides a 
basis for generating the right ansvrers (given su­
fficient diligence) to the most complex and vexing 
problems. Reasonable men could be relied upon 
to agree on the postulates and the methods, and 
therefore dispute could only arise from mistaken 
calculation. 

The empiricists turned to physical experience 
and experiment as the true basis of knowledge. 
But. in rejecting the a priori status of the propo-
sitions on which reasoning was based, they did 
not abandon the vision of rigorous (potentially 
mechanizable) logical procedures. For our purpo-
ses here, it will suffice to adopt a broader cha-
racterization, in which much of both rationalism 
and empiricism fall within a common "rationali-
stic tradition."4 This label subsumes the varied 
(and at times hotly opposed) inheritors of Descar­
tes' legacy — those who seek to achieve rational 
reason through a precise method of symbolic cal-

2Hobbes, Leviathan, quoted in Haugeland, Artificial In­
telligence: The Very Idea, p24. 

3Russell, A History of Western Philosophy, p. 592. 
4See Chapter 2 of Winograd and Flores, Understanding 

Computers and Cognition. 
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culation. 
The electronic computer gave new embodiment 

to mechanical rationality, making it possible to 
derive the consequences of precisely specified ru-
les, even when huge amounts of calculation are 
required. The first decades of computing em-
phasized the application of numerical techniques. 
Researchers in operations research and decision 
theory addressed policy questions by developing 
complex mathematical models of social and poli-
tical systems and calculating the results of pro-
posed alternatives.5 Although these techniques 
work well in specialized cases (such as scheduling 
delivery vehicles or controlling the operations in 
a refinery), they proved inadequate for the bro-
ader problems to which they were applied. The 
"mathematization" of experience required simpli-
fications that made the computer results - accu-
rate as they might be with respect to the models 
- meaningless in the world. 

Although there are stili attempts to quantify 
matters of social import (for example in applying 
mathematical risk analysis to decisions about nu-
clear power), there is an overall disillusionment 
with the potential for adequately reducing hu­
man concerns to a precise set of numbers and 
equations.6 The developers of artificial intelli­
gence have rejected traditional mathematical mo-
delling in favor of an emphasis on symbolic - ra-
ther than numerical - formalisms. Leibniz's "Let 
us calculate" is taken in Hobbes broader sense to 
include not just numbers but also "affirmations" 
and "syllogisms." 

3 The promise of artificial 
intelligence 

Attempts to duplicate formal non-numerical rea-
soning on a machine date back to the earliest com-
puters, but the endeavor began in earnest with 
the artificial intelligence (Al) projects of the mid 
1950s.7 The goals were ambitious: to fully dupli­
cate the human capacities of thought and langu-

5One large-scale and quite controversial example was 
the MIT/Club of Rome simulation of the world social and 
economic future (The Limits of Growth). 

6See, for example, the discussions in Daviš and Hersh, 
Descartes' Dream. 

See Gardner, The Mind's New Science, for an overview 
of the historical context. 

age on a digital computer. Early claims that a 
complete theory of intelligence would be achieved 
within a few decades have long since been aban-
doned, but the reach has not diminished. For 
example, a recent book by Minsky (one of the 
founders of Al) offers computational models for 
phenonemena as diverse as conflict, pain and ple-
asure, the self, the soul, consciousness, confusion, 
genius, infant emotion, foreign accents, and free-
dom of will.8 

In building models of mind, there are two dis-
tinct but complementary goals. On the one hand 
is the quest to explain human mental processes as 
thoroughly and unambiguously as physics expla-
ins the functioning of ordinary mechanical devi-
ces. Onthe other hand is the drive to create intel-
ligent tools — machines that apply intelligence to 
serve some purpose, regardless of how closely they 
mimic the details of human intelligence. At times 
these two enterprises have gone hand in hand, at 
others they have led down separate paths. 

Researchers such as Newell and Simon (two 
other founding fathers of artificial intelligence) 
have sought precise and scientifically testable the-
ories of more modest scope than Minsky sugge-
sts. In reducing the study of mind to the for-
mulation of rule-governed operations on symbol 
systems, they focus on detailed aspects of cogni-
tive functioning, using empirical measures such as 
memory capacity and reaction tirne. They hypo-
thesize specific "mental architectures" and com-
pare their detailed performance with human expe-
rimental results.9 It is dimcult to measure the 
success of this enterprise. The tasks that have 
been examined (such as puzzle-solving and the 
ability to remember abbreviations for computer 
commands) do not even begin to approach a re-
presentative sample of human cognitive abilities, 
for reasons we will examine below. 

On the other side lies the goal of practical sy-
stem building. In the late 1970s, the field of ar­
tificial intelligence was drastically affected by the 
continuing precipitous drop in computing costs. 
Techniques that previously demanded highly spe­
cialized and costly equipment came within the re­
ach ofcommercial users. A new term, "knowledge 

8These are among the section headings in Minsky, The 
Society of Mind. 

See, for example, Newell & Simon, Human Pro­
blem Solving, and Laird et al., Universal Subgoaling and 
Chunking. 



446 Informatica 19 (1995) 443-459 T. Winograd 

FACTS: 
Tank #23 contains sulfuric acid. 
The plaintiff was injured by a portable power saw. 
RULES: 
If the sulfate ion test is positive, the spili material 
is sulfuric acid. 
If the plaintiff was negligent in the use of the 
product, the theory of contributory negligence 
applies. 

Figure 1: Rules for an expert system (from D. 
Waterman, A Guide to Expert Systems, p. 16). 

engineering," was coined to indicate a shift to the 
pragmatic interests of the engineer, rather than 
the scientisfs search for theoretical knowledge. 

"Expert systems," as the new programs were 
called, incorporate "knowledge bases" made up of 
simple facts and "if... then" rules, as illustrated 
in Figure 1. 

These systems do not attempt to explain hu­
man intelligence in detail, but are justified in 
terms of their practical applications, for which 
extravagant claims have been made. 

Humans need expert systems, but the pro­
blem is they don't often believe it . . . At least 
one high-performance medical diagnosis program 
sits unused because the physicians it was desi-
gned to assist didn't perceive that they needed 
such assistance; they were wrong, but that doesn't 
matter... There's a manifest destiny in informa-
tion processing, in knowledge systems, a continent 
we shall ali spread out upon sooner or later.10 

The high hopes and ambitious aspirations of 
knowledge engineering are well documented, and 
the claims are often taken at face value, even in 
serious intellectual discussions. In fact, although 
a few widely-known systems illustrate specific po-
tentials, the successes are stili isolated pinnacles 
in a landscape of research prototypes, feasibility 
studies, and preliminary versions. It is difncult 
to get a clear picture of what has been accompli-
shed and to make a realistic assessment of what is 
yet to come. We need to begin by examining the 
difficulties with the fundamental methods these 
programs employ. 

10Feigenbaum and McCorduck, pp. 86, 95, 152. 

4 The foundations of artificial 
intelligence 

Artificial intelligence draws its appeal from the 
same ideas of mechanized reasoning that attrac-
ted Descartes, Leibniz and Hobbes, but it di-
ffers from the more classical forms of rationalism 
in a critical way. Descartes wanted his method 
to stand on a bedrock of clear and self-evident 
truths. Logical empiricism sought truth through 
observation and the refinement of formal theories 
that predicted experimental results. Artificial in­
telligence has abandoned the quest for certainty 
and truth. The new patchwork rationalism is bu-
ilt upon mounds of "micro-truths" gleaned thro­
ugh common sense introspection, ad hoc program-
ming and so-called "knowledge acquisition" tech-
niques for interviewing experts. The grounding 
on this shifting sand is pragmatic in the crude 
sense - "If it seems to be working, it's right." 

The resulting patclrvvork defies logic. Minsky 
observes: 

"For generations, scientists and philosophers 
have tried to explain ordinary reasoning in terms 
of logical principles - with virtually no success. I 
suspect this enterprise failed because it was loo-
king in the wrong direction: common sense works 
so well not because it is an approximation of lo­
gic; logic is only a small part of our great accu-
mulation of different, useful ways to chain things 
together."11 

In the days before computing, "ways to chain 
things together" would have remained a vague 
metaphor. But the computer can perform ar-
bitrary symbol manipulations that we interpret 
as having logical import. It is easy to build a 
program to which we enter "Most birds can fly" 
and "Tweety is a bird" and which then produces 
"Tweety can fly" according to a regular (although 
logically questionable) rule. The artificial intelli­
gence methodology does not demand a logically 
correct answer, but one that works sufficiently 

nMinsky, The Society of Mind, p. 187. Although Min-
sky's view is prevalent among Al researchers, not ali of 
his colleagues agree that thought is so open-endedly non-
logical. McCarthy (co-founder with Minsky of the MIT 
Al- lab), for example, is exploring nevv forms of logic that 
attempt to preserve the rigor of ordinary deduction, while 
dealing vvith some of the properties of commonsense reaso­
ning, as described in the papers in Bobrow (ed.), Special 
Issue on Nonmonotonic Logic. 
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often to be "heuristicallv adequate." 
In a way, this approach is very attractive. 

Everyday human thought does not follow the rigid 
strictures of formal deduction. Perhaps we can 
devise some more flexible (and even fallible) sy-
stem that operates according to mechanical prin-
ciples, but more accurately mirrors the mind. 

But this appeal is subtly deceptive. Minsky 
places the blame for lack of success in explain-
ing ordinary reasoning on the rigidity of logic, 
and does not raise the more fundamental questi-
ons about the nature of ali symbolic representati-
ons and of formal (though possibly "non-logical") 
systems of rules for manipulating them. There 
are basic limits to what can be done with symbol 
manipulation, regardless of how many "different, 
useful ways.to chain things together" one invents. 
The reduction of mind to the interactive sum of 
decontextualized fragments is ultimately impossi-
ble and misleading. But before elaborating on the 
problems, let us first review some assumptions on 
which this work proceeds: 

1. Intelligence is exhibited by "physical symbol 
systems." 

2. These systems carry out symbol manipula-
tions that correspond to some kind of "pro­
blem solving." 

3. Intelligence is embodied as a large collection 
of fragments of "knowledge." 

4.1 The physical symbol system 
hypothesis 

The fundamental principle is the identification 
of intelligence with the functioning of a rule-
governed symbol-manipulating device. It has 
been most explicitly stated by Newell and Simon: 

"A physical symbol system has the neces-
sary and sufficient means for general intelligent 
action,... By 'general intelligent action' we wish 
to indicate the same scope of intelligence we see in 
human action: that in any real situation behavior 
appropriate to the ends of the system and adap-
tive to the demands of the environment can occur, 
within some limits of speed and complexity."12 

This "physical symbol system hypothesis" pre-
supposes materialism: the claim that ali of the 

12Newell &c Simon, Computer science as emiprical 
inquiry (their speech accepting the ACM Turing Award 
- the computer science equivalent of the Nobel Prize). 

observed properties of intelligent beings can ulti-
mately be explained in terms of lawful phvsical 
processes. It adds the claim that these proces-
ses can be described at a level of abstraction in 
which ali relevant aspects of physical state can 
be understood as the encoding of symbol struc-
tures and that the activities can be adequately 
characterized as systematic application of symbol 
manipulation rules. 

The essential link is representation — the enco­
ding of the relevant aspects of the world. Newell 
lays this out explicitly: 

"An intelligent agent is embedded in a task en­
vironment; a task statement enters via a percep-
tual component and is encoded in an initial re­
presentation. Whence starts a cycle of activity 
in which a recognition occurs... of a method to 
use to attempt the problem. The method draws 
upon a memory of general world knowledge... It 
is clear to us ali what representation is in this pic-
ture. It is the data structures that hold the pro­
blem and will be processed into a form that makes 
the solution available. Additionally, it is the data 
structures that hold the world knowledge and will 
be processed to acquire parts of the solution or to 
obtain guidance in constructing it."13 [emphasis 
in original]. 

Complete and systematic symbolic representa­
tion is crucial to the paradigm. The rules followed 
by the machine can deal only with the symbols, 
not their interpretation. 

4.2 Problem-solving, inference and 
search 

Newell and Simon's physical symbol systems 
aspire not to an idealized rationality, but to "be­
havior appropriate to the ends of the system and 
adaptive to the demands of the environment." 
This shift reflects the formulation that won Simon 
a Nobel prize in economics. He supplanted deci-
sion theories based on optimization with a theory 
of "satisficing" - effectively using finite decision -
making resources to come up with adequate, but 
not necessarily optimal plans of action. 

As artificial intelligence developed in the 1950s 
and 60s, this methodology was formalized in the 
techniques of "heuristic search." 

The task that a symbol system is faced with, 

13Newell, The knowledge level, p. 88. 
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then, when it is presented with a problem and 
a problem space, is to use its limited processing 
resources to generate possible solutions, one af-
ter another, until it finds one that satisfies the 
problem-defming test.14 

The "problem space" is a formal structure that 
can be thought of as enumerating the results of ali 
possible sequences of actions that might be taken 
by the program. In a program for playing chess, 
for example, the problem space is generated by 
the possible sequences of moves. The number of 
possibilities grows exponentially with the number 
of moves, and is bevond practical reach after a 
small number. However, one can limit search in 
this space by following heuristics that operate on 
the basis of local cues ("If one of your pieces could 
be taken on the opponenfs next move, try moving 
i t . . . " ) . There have been a number of variations 
on this basic theme, ali of which are based on 
explicit representations of the problem space and 
the heuristics for operating within it. 

Figure 1 illustrated some rules and facts from 
expert systems. These are not represented in the 
computer as sentences in English, but as symbols 
intended to correspond to the natural language 
terms. As these examples indicate, the domains 
are naturally far richer and more complex than 
can be captured by such simple rules. A lawyer 
will have many questions about whether a plaintiff 
was 'negligent,' but for the program it is a simple 
matter of whether a certain symbolic expression 
of the form "Negligent(x)" appears in the store of 
representations, or whether there is a rule of the 
form "If... then Negligent(x)," whose conditions 
can be satisfied. 

There has been a great deal of technical debate 
over the detailed form of rules, but two principles 
are taken for granted in essentially ali of the work: 

1. Each rule is true in a limited (situation-
dependent), not absolute sense. 

2. The overall result derives from the synergi-
stic combination of rules, in a pattern that 
need not (in fact could not in general) be 
anticipated in writing them. 

For example, there may be cases in which the 
"sulfate ion test is positive" even though the spili 
is not sulfuric acid. The overall architecture of 

14Newell & Simon, Computer science as empirical 
inquiry, p. 121. 

the rule-manipulating system may lead to a con-
clusion being drawn that violates one of these ru­
les (on the basis of other rules). The question is 
not whether each of the rules is true, but whether 
the output of the program as a whole is "appro-
priate." The knowledge engineers hope that by 
devising and tuning such rules they can capture 
more than the deductive logic of the domain: 

While conventional programs deal with facts, 
expert systems handle 'lore'... the rules of 
thumb, the hunches, the intuition and capacity for 
judgement that are seldom explicitly laid down 
but which form the basis of an expert's skill, 
acquired over a lifetime's experience.15 

This ad hoc nature of the logic applies equally 
to the cognitive models of Newell and Simon, in 
which a large collection of separate "production 
rules" operate on a symbolic store or "working 
memory." Each production rule specifies a step to 
be carried out on the symbols in the store, and the 
overall architecture determines which will be car­
ried out in what order. The symbols don't stand 
for chemical spills and law, but for hypothesized 
psychological features, such as the symbolic con-
tents of short term memory. Individual rules do 
things like moving an element to the front of the 
memory or erasing it. The cognitive modeler does 
not build an overall model of the system's perfor-
mance on a task, but designs the individual rules 
in hopes that appropriate behavior will emerge 
from their interaction. 

Minsky makes explicit this assumption that in-
telligence will emerge from computational interac-
tions among a plethora of small pieces. 

I'll call 'Society of Mind' this scheme in which 
each mind is made of many smaller processes. 
These we'll call agents. Each mental agent by it-
self can only do some simple thing that needs no 
mind or thought at ali. Yet when we join these 
agents in societies - in certain very special ways 
- this leads to true intelligencc.16 

Minsky's theory is quite different from NewelPs 
cognitive architectures. In plače of finely tuned 
clockworks of precise production rules we find an 
impressionistic pastiche of metaphors. Minsky il-
lustrates his view in a simple 'micro-world' of toy 
blocks, populated by agents such as BUILDER 
(which stacks up the blocks), ADD (which adds a 

15Michie and Johnston, The Creative Computer, p. 35. 
16Minsky, The Society of Mind, p. 17. 
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single block to a stack), and the like: 

For example, BUILDER's agents require no 
sense of meaning to do their work; ADD merely 
has to turn on GET and PUT. Then GET and 
PUT do not need any subtle sense of what those 
turn-on signals "mean" — because they're wired 
up to do only what they're wired up to do.17 

These agents seem like simple computer subro-
utines — program fragments that perform a sin­
gle well-defined task. But a subsequent chapter 
describes an interaction between the BUILDER 
agent and the WRECKER agent, which are parts 
of a PLAY-WITH-BLOCKS agent: 

Inside an actual child, the agencies responsi-
ble for BUILDING and WRECKING might in-
deed become versatile enough to negotiate by offe-. 
ring support for one another's goals. "Please, 
WRECKER, wait a moment more till BUILDER 
adds just one more block: it's worth it for a louder 
crash!"18 

With a simple "might indeed become 
versatile... ", we have slipped from a technically 
feasible but limited notion of agents as subrouti-
nes, to an impressionistic description of a society 
of homunculi, conversing with each other in or-
dinary language. This sleight of hand is at the 
center of the theory. It takes an almost childish 
leap of faith to assume that the modes of expla-
nation that work for the details of block manipu-
lation will be adequate for understanding conflict, 
consciousness, genius, and freedom of will. 

One cannot dismiss this as an isolated fantasy. 
Minsky is one of the major figures in artificial in-
telligence and he is only stating in a simplistic 
form a view that permeates the field. In loo-
king at the development of computer technology, 
one cannot help but be struck by the successes 
at reducing complex and varied tasks to svstema-
tic combinations of elementary operations. Why 
not, then, make the jump to the mind. If we are 
no more than protoplasm-based physical symbol 
systems, the reduction must be possible and only 
our current lack of knowledge prevents us from 
explicating it in detail, ali the way from BUIL­
DER^ clever ploy down to the logical circuitrv. 

Ibid., p. 67. 
Tbid., p. 33. 

4.3 Knowledge as a commodity 

Ali of the approaches described above depend on 
interactions among large numbers of individual 
elements: rules, productions, or agents. No one 
of these elements can be taken as representing 
a substantial understandable truth, but this do-
esn't matter since somehow the conglomeration 
will come out ali right. But how can we have any 
confidence that it will? The proposed answer is a 
typical one of our modern society: "More is bet-
ter!" "Knowledge is power, and more knowledge 
is more power." 

A widely-used expert systems text declares: 
"It wasn't until the late 1970s that Al scientists 

began to realize something quite important: The 
problem-solving power of a program comes from 
the knowledge it possesses, not just from the for-
malisms and inference schemes it employees. The 
conceptual breakthrough was made and can be 
quite simply stated. To make a program intelli-
gent, provide it with lots of high-quality, specific 
knowledge about some problem area."19 

This statement is typical of much writing on 
expert systems, both in the parochial perspec-
tive that inflates a homily into a "conceptual bre­
akthrough" and in its use of slogans like "high-
quality knowledge." Michie (the Dean of artificial 
intelligence in Britain) predicts : 

"[Expert systems]... can actually help to co-
dify and improve expert human knowledge, taking 
what was fragmentary, inconsistent and error-
infested and turning it into knowledge that is 
more predse, reliable and comprehensive. This 
new process, with its enormous potential for the 
future, we call 'knowledge refining.' "20 

Feigenbaum proclaims: 
"The miracle product is knowledge, and the Ja-

panese are planning to package and seli it the way 
other nations package and seli energy, food, or 
manufactured goods... The essence of the com­
puter revolution is that the burden of producing 
the future knowledge of the world will be trans-
ferred from human heads to machine artifacts."21 

Knowledge is a kind of commodity — to be pro-
duced, refined, and packaged. The knowledge en-

19Waterman, A Guide to Expert Systems, p. 4 [emphasis 
in the original]. 

Michie and Johnston, The Creative Computer, p. 129. 
21Feigenbaum & McCorduck, The Fifth Generation, pp. 

12, 40. 
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gineers are not concerned with the age-old episte-
mological problems of what constitutes knowledge 
or understanding. They are hard at work on te-
chniques of "knowledge acquisition" and see it as 
just a matter of sufficient money and effort: 

We have the opportunity at this moment to do 
a new version of Diderofs Encyclopedia, a ga-
thering up of ali knowledge - not just the acade-
mic kind, but the informal, experiential, heuristic 
kind - to be fused, amplified, and distributed, ali 
at orders of magnitude difference in cost, speed, 
volume, and usefulness over what we have now.22 

Lenat has embarked on this task of "encod[ing] 
ali the world's knowledge down to some level of 
detail." The plan projects an initial entry of 
about 400 articles from a desk encyclopedia (le-
ading to 10,000 paragraphs worth of material), 
followed by hiring a large number of "knowledge 
enterers" to add "the last 99 percent." There is 
little concern that foundational problems might 
get in the way. Lenat asserts that "Al has for 
many years understood enough about representa-
tion and inference to tackle this project, but no 
one has sat down and done it."23 

5 The fundamental problems 
The optimistk claims for artificial intelligence 
have far outstripped the achievements, both in the 
theoretical enterprise of cognitive modelling and 
in the practical application of expert systems. 

Cognitive models seek experimental fit with 
measured human behavior but the enterprise is 
fraught with methodological difficultv, as it strad-
dles the wide chasm between the engineering bra-
vado of computer science and the careful empiri-
cism of experimental psychology. When a compu­
ter program duplicates to some degree some ca-
refully restricted aspect of human behavior, what 
have we learned? It is ali too easy to write a 
program that would produce that particular be­
havior, and ali too hard to build one that covers a 
sufficiently general range to inspire confidence. As 
Pylyshyn (an enthusiastic participant in cognitive 
science) observes: 

"Most current computational models of cogni-
tion are vastly underconstrained and ad hoc; they 
are contrivances assembled to mimic arbitrary 

22Ibid., p. 229 [emphasis in the original]. 
23Lenat, CYC, p. 75. 

pieces of behavior, with insufhcient concern for 
explicating the principles in virtue of which such 
behavior is exhibited and with little regard for a 
precise understanding."24 

Newell and his colleagues' painstaking atten-
tion to detailed architecture of production sy-
stems is an attempt to better constrain the com­
putational model, in hopes that experiments can 
then test detailed hypotheses. As with much of 
experimental psychology, a highly artificial expe-
rimental situation is required to get results that 
can be sensibly interpreted at ali. Proponents ar-
gue that the methods and theoretical foundati-
ons that are being applied to micro-behavior will 
eventually be extended and generalized to cover 
the full range of cognitive phenomena. As with 
Minsky, this leap from the micro-structure to the 
whole human is one of faith. 

In the čase of expert systems, there is a more 
immediate concern. Applied Al is widely seen as 
a means of managing processes that have grown 
too complex or too rapid for unassisted humans. 
Major industrial and governmental organizations 
are mounting serious efforts to build expert sy-
stems for tasks such as air traffic control, nuclear 
power plant operation and - most distressingly -
the control of weapons systems. These projects 
are justified with claims of generality and flexibi-
lity for Al programs. They ignore or downplay 
the difficulties that will make the programs al-
most certain to fail in just those cases where their 
success is most critical. 

It is a commonplace in the field to describe 
expert svstems as "brittle"-able to operate only 
within a narrow range of situations. The problem 
here is not just one of insufficient engineering, but 
is a direct consequence of the nature of rule-based 
systems. We will examine three manifestations of 
the problem: gaps of anticipation; blindness of 
representation; and restriction of the domain. 

5.1 Gaps of anticipation 

In creating a program or knowledge base, one ta-
kes into account as many factors and connections 
as feasible. But in any realistically complex do­
main, this gives at best a spotty coverage. The 
person designing a system for dealing with acid 
spills may not consider the possibility of rain le-

24Pylyshyn, Computation and Cognition, p. xv. 
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aking into the building, or of a power failure, or 
that a labelled bottle does not contain what it 
purports to. A human expert faced with a pro­
blem in such a circumstance falls back on common 
sense and a general background of knowledge. 

The hope of patchwork rationalism is that with 
a sufficiently large body of rules, the thought-
through spots will successfully interpolate to the 
wastelands in between. Having written rule A 
with one circumstance in mind and rule B with 
another, the two rules in combination will succeed 
in yet a third. This strategy is the justification for 
the claim that Al systems are more flexible than 
conventional programs. There is a grain of truth 
in the comparison, but it is deceptive. The pro­
gram applies the rules blindly with erratic results. 
In many cases, the priče of flexibility (the ability 
to operate in combinations of contingencies not 
considered by the programmer) is irreparable and 
inscrutable failure. 

In attempting to overcome this brittleness, 
expert systems are built with many thousands of 
rules, trying to cover ali of the relevant situati-
ons and to provide representations for ali poten-
tially relevant aspects of context. One system for 
medical diagnosis, called CADUCEUS (originally 
INTERNIST) has 500 disease profiles, 350 disease 
variations, several thousand symptoms, and 6,500 
rules describing relations among symptoms. After 
fifteen years of development, the system is stili not 
on the market. According to one report, it gave a 
correct diagnosis in only 75% of its carefully selec-
ted test cases. Nevertheless, Myers, the medical 
expert who developed it, "believes that the addi-
tion of another 50 [diseases] will make the system 
workable and, more importantly, practical."25 

Human experts develop their skills through ob-
serving and acting in many thousands of cases. 
Al researchers argue that this results in their re-
membering a huge repertoire of specialized "pat-
terns" (complex symbolic rules) that allow them 
to discriminate situations with expert finesse and 
to recognize appropriate actions. But it is far 
from obvious whether the result of experience can 
be adequately formalized as a repertoire of dis-
crete patterns.26 To say that "ali of the world's 
knowledge" could be explicitly articulated in any 

Newquist, The machinery of medical diagnosis, p. 70. 
26See the discussion in H. Dreyfus and S. Dreyfus, Mind 

Over Machine. 

symbolic form (computational or not) we must 
assume the possibility of reducing ali forms of ta-
cit knowledge (skills, intuition, and the like) to 
explicit facts and rules. Heidegger and other phe-
nomenologists have challenged this, and many of 
the strongest criticisms of artificial intelligence are 
based on the phenomenological analysis of human 
understanding as a "readiness-to-hand" of action 
in the world, rather than as the manipulation of 
"present-to-hand" representations.27 

Be that as it may, it is clear that the corre-
sponding task in building expert systems is extre-
mely difficult, if not theoretically impossible. The 
knowledge engineer attempts to provide the pro­
gram with rules that correspond to the expert's 
experience. The rules are modified through ana-
lyzing examples in which the original rules break 
down. But the patchwork nature of the rules ma-
kes this extremely difficult. Failure in a particular 
čase may not be attributable to a particular rule, 
but rather to a chance combination of rules that 
are in other circumstances quite useful. The bre-
akdown may not even provide sharp criteria for 
knowing what to change, as with a chess program 
that is just failing to come up with good moves. 
The problem here is not simply one of scale or 
computational complexity. Computers are perfec-
tly capable of operating on millions of elements. 
The problem is one of human understanding — 
the ability of a person to understand how a new 
situation experienced in the world is related to 
an existing set of representations, and to possible 
modifications of those representations. 

In trying to remove the potentially unreliable 
"human element," expert systems conceal it. The 
power plant will no longer fail because a reactor-
operator falls asleep, but because a knowledge en­
gineer didn't think of putting in a rule specifying 
how to handle a particular failure when the emer-
gency system is undergoing its periodic test, and 
the backup system is out of order. No amount 
of refinement and articulation can guarantee the 
absence of such breakdowns. The hope that a sy-
stem based on patchwork rationalism will respond 
"appropriately" in such cases is just that: a hope, 
and one that can engendef dangerous illusions of 
safety and security. 

See, for example, H. Dreyfus, What Computers Can't 
Do, and Winograd & Flores, Understanding Computers 
and Cognition. 
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5.2 The blindness of representation 

The second problem lies in the symbol system 
hypothesis itself. In order to characterize a si-
tuation in symbolic form, one ušes a system of 
basic distinctions, or terms. Rules deal with the 
interrelations among the terms, not with their in-
terpretations in the world. 

Consider ordinary words as an analogy. Ima-
gine that a doctor asks a nurse "Is the patient 
eating?" If they are deciding whether to perform 
an examination, the request might be paraphra-
sed "Is she eating at this moment?" If the patient 
is in the hospital for anorexia and the doctor is 
checking the efficacy of the treatment, it might 
be more like "Has the patient eaten some mini-
mal amount in the past day?" If the patient has 
recently undergone surgery, it might mean "Has 
the patient taken any nutrition by mouth," and 
so on. In responding, a person interprets the sen-
tence as having relevance in the current situation, 
and will typically respond appropriateb/ without 
conscious choosing among meanings. 

In order to build a successful symbol system, 
decontextualized meaning is necessary — terms 
must be stripped of open-ended ambiguities and 
shadings. A medical expert system might have a 
rule of the form: "IF Eating(x) THEN... ," which 
is to be applied only if the patient is eating, along 
with others of the form "IF . . . THEN Eating (x)" 
which determine when that condition holds. Un-
less everyone who writes or reads a rule interprets 
the primitive term "Eating" in the same way, the 
rules have no consistent interpretation and the re-
sults are unpredictable. 

In response to this, one can try to refine the 
vocabulary. "Currently-Dining" and "Taking-
Solids" could replace the more generic term, or 
we could add construal rules, such as "in a con-
text of immediate action, take 'Eating' to mean 
'Currently-Dining'." Such approaches work for 
the cases that programmers anticipate, but of co-
urse are subject to the infinite regress of trying to 
decontextualize context. The new terms or rules 
themselves depend on interpretation that is not 
represented in the system. 

5.3 Restrictibn of the domain 

A consequence of decontextualized representation 
is the difEculty of creating Al piograms in any but 

T. Winograd 

the most carefulh/ restricted domains, where al-
most ali of the knowledge required to perform the 
task is special to that domain (Le., little common 
sense knowledge is required). One can find speci-
alized tasks for which appropriate limitations can 
be achieved, but these do not include the majo-
rity of work in commerce, medicine, law, or the 
other professions demanding expertise. 

Holt characterized the situation: 
"A brilliant chess move while the room is filling 

with smoke because the house is burning down 
does not show intelligence. If the capacity for 
brilliant chess moves without regard to life cir-
cumstances deserves a name, I would naturally 
call it 'artificial intelligence.' "28 

The brilliance of a move is with respect to a 
well-defined domain: the rules of chess. But ac-
ting as an expert doctor, attorney, or engineer ta-
kes the other kind of intelligence: knowing what 
makes sense in a situation. The most success­
ful artificial intelligence programs have opera-
ted in the detached puzzle-like domains of bo-
ard games and technical analysis, not those de­
manding understanding of human lives, motiva-
tions, and social interaction. Attempts to cross 
into these difficult territories, such as a program 
said to "understand tales involving friendship and 
adultery,"29 proceed by replacing the real situa­
tion with a cartoon-like caricature, governed by 
simplistic rules whose inadequacy is immediately 
obvious (even to the creators, who argue that they 
simply need further elaboration). 

This reformulation of a domain to a narrower, 
more precise one can lead to systems that give 
correct answers to irrelevant problems. This is of 
concern not only when actions are based directly 
on the output of the computer system (as in one 
controlling weapons systems), but also when, for 
example, medical expert systems are used to eva-
luate the work of physicians.30 Since the system 
is based on a reduced representation of the situ­
ation, it systematically (if invisibly) values some 
aspects of čare while remaining blind to others. 
Doctors whose salaries, promotions, or accredi-

28Holt, Remarks made at ARPA Principal Investigators' 
Conference, p. 1. 

29See the discussion of the BORIS program in Winograd 
and Flores, Understanding Computers and Cognition, pp. 
121ff. 

30See Athanasiou, High-tech politic, The čase of artificial 
intelligence, p. 24. 
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tation depend on the review of their actions by 
such a program will find their practice being sub-
tly shaped to its mold. 

The attempt to encode "the world's knowledge" 
inevitably leads to this kind of simplification. 
Every explicit representation of knowledge bears 
within it a background of cultural orientation that 
does not appear as explicit claims, but is manifest 
in the very terms in which the 'facts' are expressed 
and in the judgment of what constitutes a fact. 
An encyclopedia is not a compendium of "refined 
knowledge," but a statement within a tradition 
and a culture. By calling an electronic encyclope-
dia a 'knowledge base' we mystify its source and 
its grounding in a tradition and background. 

6 The bureaucracy of mind 

Many observers have noted the natural affinity 
between computers and bureaucracy. Lee argues 
that "bureaucracies are the most ubiquitous form 
of artificial intelligence... Just as scientific mana-
gement found its idealization in automation and 
programmable production robots, one might con-
sider an artificiallyntelligent knowledge-based sy-
stem as the ideal bureaucrat... "31 Lee's stated 
goal is "improved bureaucratic software enginee-
ring," but his analogy suggests more. 

Stated simply, the techniques of artificial intel­
ligence are to the mind what bureaucracy is to 
human social interaction. 

In today's popular discussion, bureaucracy is 
seen as an evil—a pathology of large organiza­
tions and repressive governments. But in his 
classic work on bureaucracy, Weber argued its 
great advantages over earlier, less formalized sy-
stems, calling it the "unambiguous yardstick for 
the modernization of the state." He notes that 
"bureaucracy has a 'rational' character, with ru-
les, means-ends calculus, and matter-of-factness 
predominating,"32 and that it succeeds in "eli-
minating from official business love, hatred, and 
ali purely personal, irrational, and emotional ele-
ments which escape calculation."33 

The decisive reason for the advance of burea­
ucratic organization has always been its purely 
technical superiority over any other form of orga-

31Lee, Bureaucracy as artificial intelligence, p. 127. 
32Weber, Economy and Society, p. 1002. 
33Ibid., p. 975. 

nization. The fully developed bureaucratic appa-
ratus compares with other organizations exactly 
as does the machine with the non-mechanical mo-
des of production. Precision, speed, unambigu-
ity, knowledge of the files, continuity, discretion, 
unity, strict subordination, reduction of friction 
and of material and personal costs - these are 
raised to the optimum point in the strictly bure­
aucratic administration.34 

The benefits of bureaucracy follow from the re­
duction of judgment to the systematic application 
of explicitly articulated rules. Bureaucracy achie-
ves a predictability and manageability that is mis-
sing in earlier forms of organization. There are 
striking similarities here with the arguments gi-
ven for the benefits of expert systems, and eqUally 
striking analogies with the shortcomings as poin-
ted out, for example, by March and Simon: 

"The reduction in personalizecl relationships, 
the increased internalization of rules, and the de-
creased search for alternatives combine to make 
the behavior of members of the organization hi-
ghly predictable; i.e., they result in an increase in 
the rigidity of behavior of participants [which] in-
creases the amount of difHculty with clients of the 
organization and complicates the achievement of 
client satisftion."35 

Given Simon's role in artificial intelligence, it 
ironic that he notes these weaknesses of human-
embodied rule systems, but sees the behavior of 
rule-based physical symbol s}'stems as "adaptive 
to the demands of the environment." Indeed, sy-
stems based on symbol manipulation exhibit the 
rigidities of bureaucracies, and are most proble-
matic in dealing with "client satisfaction" — the 
mismatch between the decontextualized applica­
tion of rules and the human interpretation of the 
symbols that appear in them. Bureaucracy is 
most successful in a world that is stable and repe-
titive — where the rules can be followed without 
interpretive judgments. Expert systems are best 
in just the same situations. Their successes have 
been in stable and precise technical areas, where 
exceptions are not the rule. 

Michie's claim that expert systems can encode 
"the rules of thumb, the hunches, the intuition 
and capacity for judgement..." is wrong in the 

Ibid., p. 973 [empliasis in original]. 
5March and Simon, Organizations, p. 38 [emphasis in 

original]. 
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same way that it is wrong to seek a full account 
of an organization in its formal rules and proce-
dures. Modern sociologists have gone beyond We-
ber's analysis, pointing to the informal organiza­
tion and tacit knowledge that make organizations 
work effectively. This closely parallels the impor-
tance of tacit knowledge in individual expertise. 
Without it we get rigidity and occasional but ir-
reparable failure. 

The depersonalization of knowledge in expert 
systems also has obvious parallels with bureau-
cracy. When a person views his or her job as 
the correct application of a set of rules (whether 
human-invoked or computer-based), there is a loss 
of personal responsibility or commitment. The "I 
j ust follow the rules" of the bureaucratic clerk has 
its direct analog in "Thafs what the knowledge 
base says." The individual is not committed to 
appropriate results (as judged in some larger hu­
man context), but to faithful application of the 
procedures. 

This forgetfulness of individual commitment 
is perhaps the most subtle and dangerous con-
sequence of patchwork rationality. The person 
who puts rules into a knowledge base cannot be 
committed to the consequences of applying them 
in a situation he or she cannot foresee. The per­
son who applies them cannot be committed to 
their formulation or to the mechanics by which 
they produce an answer. The result belongs to 
no one. When we speak here of "commitment," 
we mean something more general than the kind 
of accountability that is argued in court. There 
is a deep sense in which every use. of language is 
a reflection of commitment, as we will see in the 
following section. 

7 Alternatives 

We began with the question of thinking machines-
devices that mechanically reproduce human capa-
cities of thought and language. We have seen how 
this question has been reformulated in the pursuit 
of artificial intelligence, to reflect a particular de­
sign based on patchwork rationalism. We have ar­
gued that the current direction will be inadequate 
to explain or construct real intelligence. 

But, one might ask, does that mean that no 
machine could exhibit intelligence? Is artificial 
intelligence inherently impossible, or is it just fi-

endishly difficult? To answer sensibly we must 
first ask what we mean by "machine." There is 
a simple a priori proof that machines can be in-
telligent if we accept that our own brains are (in 
Minsky's provocative words) nothing but "meat 
machines." If we take "machine" to stand for any 
physically constituted device subject to the causal 
laws of nature, then the question reduces to one 
of materialism, and is not to be resolved through 
computer research. If, on the other hand, we take 
machine to mean "physical symbol system" then 
there is ground for a strong skepticism. This skep-
ticism has become visible among practitioners of 
artificial intelligence as well as the critics. 

7.1 Emergent intelligence 

The innovative ideas of cybernetics a few decades 
ago led to two contrasting research programmes. 
One, which we have examined here, took the co-
urse of symbol processing. The other was based 
on modelling neural activity and led to the work 
on "perceptrons," a research line that was disco-
unted for many years as fruitless and is now being 
rehabilitated in "connectionist" theories, based 
on "massively pa,rallel distributed processing." In 
this work, each computing element (analogous to 
a neuron) operates on simple general principles, 
and intelligence emerges from the evolving pat-
terns of interaction.36 

Connectionism is one manifestation of what 
Turkle calls "emergent AL"37 The fundamental 
intuition guiding this work is that cognitive struc-
ture in organisms emerges through learning and 
experience, not through explicit representation 
and programming. The problems of blindness and 
domain limitation described above need not apply 
to a system that has developed through situated 
experience. 

It is not yet clear whether we will see a turn 
back towards the heritage of cybernetics or simply 
a "massively parallel" variant of current cognitive 
theory and symbol processing design. Although 
the new connectionism may breathe new life into 

36For a historical account and analysis of the current de-
bates, see H. Dreyfus, Making a mind vs. modeling the 
brain. For a technical view, see Rumelhart and MacLel-
land, Parallel Distributed Processing. Maturana and Va-
rela, in The Tree of Knowledge, offer a broad philosophy 
of cognition on this base. 

Turkle, A new romantic reaction. 
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cognitive modelling research, it suffers an uneasy 
balance between symbolic and physiological de-
scription. Its špirit harks back to the cybernetic 
concern with real biological systems, but the de-
tailed models typically assume a simplistic repre-
sentational base much closer to traditional arti-
ficial intelligence. Connectionism, like its parent 
cognitive theory, must be placed in the category 
of brash unproved hypotheses, which have not re-
ally begun to deal with the complexities of mind, 
and whose current explanatory power is extremely 
limited. 

In one of the earliest critiques of artificial intelli­
gence, Dreyfus compared it to alchemy.38 Seekers 
after the glitter of intelligence are misguided in 
trying to čast it from the base metal of computing. 
There is an amusing epilogue to this analogy: in 
fact, the alchemists were right. Lead can be con-
verted into gold by a particle accelerator hurling 
appropriate beams at lead targets. The Al visio-
naries may be right in the same way, and they are 
likely to be wrong in the same way. There is no 
reason but hubris to believe that we are any closer 
to understanding intelligence than the alchemists 
were to the secrets of nuclear physics. The ability 
to create a glistening simulacrum should not fool 
us into thinking the rest is "just a matter of enco-
ding a sufficient part of the world's knowledge" or 
into a quest for the philosopher's stone of "mas-
sively parallel processihg." 

7.2 Hermeneutic constructivism 

Discussions of the problems and dangers of com-
puters often leave the impression that on the 
whole we would be better off if we could return to 
the pre-computer era. In a similar vein one mi-
ght decry the advent of written language, which 
created many new problems. For example, We-
ber attributes the emergence of bureaucracy to 
the spread of writing and literacy, which made 
it possible to create and maintain systems of ru-
les. Indeed, the written word made bureaucracy 
possible, but that is far from a full account of its 
relevance to human societv. 

The computer is a physical embodiment of the 
symbolic calculations envisaged by Hobbes and 
Leibniz. As such, it is really not a thinking ma-
chine, but a language machine. The very notion of 

"symbol system" is inherently linguistic and what 
we duplicate in our programs with their rules and 
propositions is really a form of verbal argument, 
not the vrorkings of mind. It is tempting - but 
ultimateb/ misleading - to project the image of 
rational discourse (and its reflection in conscious 
introspection) onto the design of embodied intel­
ligence. In taking inner discourse as a model for 
the activity of Minsky's tiny agents, or of produc-
tions that determine what token to process next, 
artificial intelligence has operated with the faith 
that mind is linguistic down to the microscopic 
le vel. 

But the utility of the technology need not de-
pend on this faith. The computer, like writing, 
is fundamentally a communication medium-one 
that is unique in its ability to perform complex 
manipulations on the linguistic objects it stores 
and transmits. We can reinterpret the technology 
of artificial intelligence in a new background, with 
new consequences. In doing so we draw on an 
alternative philosophical grounding, which I will 
call hermeneutic constructivism. 

We begin with some fundamental questions 
about what language is and how it works. In this 
we draw on work in hermeneutics (the study of 
interpretation) and phenomenology, as developed 
by Heidegger and Gadamer, along with the con-
cepts of language action developed from the later 
works of Wittgenstein through the speech act phi-
losophy of Austin, Searle, and Habermas.39 

Two guiding principles emerge: People create 
their world through language. Language is always 
interpreted in a tacitly understood background. 

Austin pointed out that "performative" senten-
ces do not convey information about the world, 
but act to change that world. "You're hired," 
when uttered in appropriate conditions, creates 
— not describes — a situation of employment. 
Searle applied this insight to mundane language 
actions such as asking questions and agreeing to 
do something.- Habermas extended it further, 
showing how sentences we would naively consi-
der statements of fact have force by virtue of an 
act of commitment by the speaker. 

The essential presupposition for the success of 
[a language] act consists in the speaker's entering 
into a specific engagement, so that the hearer can 

H. Dreyfus, Alchemy and artificial intelligence. 
See Chapter 5 of Winograd & Flores, Understanding 

Computers and Cognition, for an overview. 
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Philosophers have distinguished two attitudes 
to the mechanization of thought. "Strong Al" 
says that given a sumciency of well chosen axioms 
and deduction procedures we have ali we need to 
program computers to out-think humans. "Weak 
Al" says that humans don't think in logical de-
ductions anyway. So why not instead devote our-
selves to (1) neural nets, or (2) ultra-parallelism, 
or (3) other ways of dispensing with symbolic 
domain-models? 

"Weak Al" thus has diverse strands, united in a 
common objection to "strong Al", and articulated 
in popular writings, see for example Hubert Drey-
fus (1979), John Searle (1990) and Roger Penrose 
(1989). How should one assess their objection? 

1 Turing's Test and Postulates 

If asked to investigate the alleged insolvency of 
the Fireproof Coal Corporation, a careful audi-
tor first looks for evidence that such a Corpora­
tion actually exists. Not being personally acqua-
inted with adherents of the described "strong Al" 
school among professional colleagues, I looked for 
"strong Al" in the literature. I concluded that 
the description sufficiently matched an identifia-
ble Al sub-community that flourished in the USA 
during the subjecfs adolescence (roughly 1965-
1985) and probably retains professional adherents 
there today. Certainly the mind-set lives on in 
textbooks used for teaching. Because it steps 
backwards from Turing's original prescriptions, I 
use the label T-minus (for "Turing-minus") for 
this sub-school of symbolic AL Misconceptions 
about T-minus may explain the philosophical at-
tacks on "strong Al". A particularly salient mi-

sconception, fostered in some textbooks, is that 
T-minus traces intellectual paternity to Alan Tu­
ringi (1950) paper in which he proposed a test to 
settle whether a given machine could think. The 
machine must fool a remote interrogator into mi-
staking it for a human. In reality T-minus, while 
retaining the Test itself, implicitly rejects the po-
stulate that accompanied it, namely that the role 
of machine learning is central, and necessary for 
attainment of the desired capability. 

1.1 Intelligence is in the discourse, 
not the action 

The capabilities that we call "intelligence" and 
"thought" are manifested not so much in problem 
solving as in discourse . In the context of Turing's 
imitation game, accurate problem solving was se-
condary. "It is claimed", he writes, "that the in­
terrogator could distinguish the machine from the 
man simply by setting them a number of problems 
in arithmetic. The machine would be unmasked 
because of its deadly accuracy. The reply to this 
is simple. The machine (programmed for playing 
the game) would not attempt to give the right 
answers to the arithmetical problems. It would 
deliberately introduce mistakes in a manner cal-
culated to confuse the interrogator." 

Of course there may be machine intelligence in 
deciphering the arithmetical question, in invoking 
a suitable low-level solving routine, and in con-
cocting sufficient hesitancy or error to make the 
response look human-like. But Turing does not 
present the arithmetical calculation itself as a ma-
nifestation of intelligence and thus avoids identi-
fying intelligence with competence. The question 
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of whether intelligence would be of any use in a 
creature lacking a competent problem-solving sy-
stem is a separate issue. But the exercise of even 
very great competence in an intellectual domain 
is not in itself proof of intelligence. Numerous 
computer tr iumphs of today, not restricted to ari-
thmetic, remind us of this. 

In confining "intelligence" to the discourse-
testable functions of understanding and after-the-
event reporting, Turing made a wise move. Those 
who failed to follow his example look foolish every 
tirne that an intelligent Grandmaster is defeated 
by a super-competent chess machine. Today's 
game-playing machines are profoundb/ deficient 
in understanding even of the games that they 
win, as witnessed by their inability to annotate 
them. Writing such commentaries (as chess ma-
sters commonly do) would require, precisely, intel­
ligence, in the sense in which Turing understood 
the term. 

1.2 Insufficiency of hand-crafting 
m e t h o d s 

Calculation shows hand-crafting to be infeasible 
for loading into the system the huge quantities 
of organized knowledge required for human-level 
intelligence. To estimate a lower bound, Turing 
made the optimistic assumption that a thousand 
megabits of program space might be sufficient for 
satisfactory playing of the imitation game, at le-
ast in the restricted form of play against a blind 
person, thus excluding from the accountancy the 
resource-hungry processes of visual perception. 
He continued: "At my present rate of working 
I produce about a thousand digits of program a 
day, so that about sixty workers, working steadily 
through the fifty years might accomplish the job, 
if nothing went into the wastepaper basket. Some 
more expeditious method seems desirable." 

The fantasy dubbed "Strong Al" by its critics is 
blind (at least in American textbook expositions) 
not only to these early calculations of Turing's but 
also to the arithmetic of modern commercial pro-
gramming. According to the most recent estimate 
knovra to me, a typical rate for a large system is 
10 lines of installed code per programmer per day. 

1.3 N e e d for mechanized learning and 
teachabil ity 

Having rejected direct programming of knowled-
ge, and unaided deduction from programmed a-
xioms, Turing turned to the bulk acquisition of 
knowledge through mechanized learning. He in-
troduced the idea as follows. 

In the process of trying to imitate an adult 
human mind we are bound to think a good 
deal about the process vvhich has brought it 
to the state that it is in. We may notice three 
components, 

1. The initial state of the mind, say at 
birth, 

2. The education to which it has been su-
bjected, 

3. Other experience, not to be described as 
education, to vvhich it has been subjec-
ted. 

Instead of trying to produce a program to si-
mulate the adult mind, why not rather try 
to produce one which simulates the chikTs? 
If this were then subjected to an appropri-
ate course of education one \vould obtain the 
adult brain. 

2 Definition and Difficulties of 
T-Minus 

T-minus essentially re-instates a proposal advan-
ced by Leibniz in the seventeenth century, namely 
that we could obtain definitive knowledge about 
the world by the šole means of algebraic and de-
ductive manipulations of symbols applied to sym-
bolically coded facts. Two only of Turing's many 
extensions to Leibniz' programme were retained, 
namely use of high-speed computing to perform 
the manipulations, and the test for detecting in­
telligent thought in the resulting system. Hence 
we could speak of "Leibniz plus" but have prefer-
red "Turing minus", meaning Turing minus the 
central role of machine learning. We must now 
consider the persistence into the post-Turing era 
of this retrogressive position. 

The following definition of Al is from an auth-
oritative exponent. 

Artificial Intelligence is the enterprise of con-
structing a Physical Svmbol System that can 
reliably pass the Turing Test. (M Ginsberg, 
1993, Chapter 1). 

file:///vould
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Ginsberg's use here of "Physical Symbol Sy-
stem" follows Neweland Simon (1976), and is 
broad enough to cover any physical embodiment 
of a Universal Turing Machine. The definition is 
oriented tovvards engineering rather than philoso-
phical goals, and Ginsberg emphasizes that "Al is 
fundamentally an engineering discipline, since our 
fundamental goal is that of building something." 
Moreover Ginsberg, like the Physical Symbol Sy-
stem Hypothesis' authors, speaks solely of the 
machine's reasoning from facts and laivs explicitly 
communicated to it. Catastrophically, he excludes 
the nine tenths that in humans lies submerged be-
low consciousness yet forms an essential core for 
run-time problem solving (see for example Michie 
1993a, 1993b, 1994, 1995a, 1995b for reviews). It 
is interesting to contrast this hard-line aversion 
to the findings of psychology and brain science 
with the explicit distinction made in McCarthy's 
(1959) Advice Taker paper: "One might conjec-
ture that division in man between conscious and 
unconscious thought occurs at the boundary be-
tween stimulus-response heuristics which do not 
have to be reasoned about but only obeyed, and 
the others which have to serve as premises in de-
duction." 

At the tirne when McCarthy wrote those words, 
no means were known for acquiring the submer­
ged tacit procedures from human brains for ma­
chine use (but see Shapiro (1987) for a later exer-
cise in doing just this; see also Urbancic and 
Bratko (1994) for a review of "behavioural clo-
ning" of control skills). But he was sufficiently 
aware of the massive dependency of high-level co-
gnition on low-level tacit procedures that he saw 
their incorporation in the infrastructure of intelli-
gent svstems as a necessity. In this respect among 
others, McCarthy had moved forvvard from Tu­
ring, and can justly be seen as the intellectual 
forerunner of the "Turing-plus", or T-plus, doc-
trine that we shall later consider. One should, 
however, mention Turing's 1947 report as showing 
that he was not unaware of these tacit procedmes 
and of their importance: "By long experience :.ve 
can pick up and apply the most complicated ruies 
without being able to enunciate them at aH". 

Before Ginsberg's book was written, T-minus 
was already being subjected to the standard va-
lidity test faced by any engineering doctrine: can 
you build it, and will it then stand? Indeed T-

minus has so far been the only one of symbo-
lic AI's construction doctrines to inspire serious 
attempts at all-round machine knowledgeability 
and intelligence. Readers of Ginsberg's textbook 
are not however informed of these attempts nor 
of their disappointing outcomes. It is as though 
a text on bridge-building not only ignored esta-
blished knowledge of wind-induced oscillations in 
exposed structures but omitted mention of the 
disasters that have resulted. Ferguson's (1993) 
"Engineering and the Mind's Eye" cites the Bri-
tish construction engineer Sir Alfred Pugsley on 
the subject of the collapse of the Tacoma Nar-
rows suspension bridge in 1940. The major les-
son was "the umvisdom of allowing a particular 
profession to become too inward looking and so 
screened from relevant knowledge growing up in 
other fields around it." Had the designers of the 
Tacoma Narrows Bridge known more of aerodyna-
mics, Pugsley concluded, the collapse might have 
been averted. 

With the substitution of neuroscience for ae-
rodynamics, relevant knowledge from which T-
minus's disciples show signs of being screened in-
cludes evidence from cognitive and brain studies 
of solving problems, as opposed to justifying, do-
cumenting and explaining the solutions. The sol­
ving part is not generally performed symbolically, 
but through spatio-visual and above ali uncon­
scious intuitive processes (McCarthy's "stimulus-
response heuristics"). Associated brain centres 
are anatomically remote from the cortical areas 
specialized for logical reasoning and language (see 
for example Squire, 1987). As to visuo-spatial 
thinking in engineering problem-solving, Fergu­
son (loc. cit.) supplies much relevant material. 
Examples abound in other works, many cited by 
Ferguson, on visual and intuitive components of 
problem-solving. 

In the light of ali this, rejection by T-minus 
of Turing's machine learning prescription seems 
blind indeed. Not only must the hand-crafting 
task, even on optimistk assumptions, take too 
long to accomplish. Worse, perhaps much of it 
is not susceptible to hand-crafting at ali. This se-
cond possibility follows from the constant finding 
referred to earlier that expert problem solving de-
pends critically on subcognitive skills inaccessi-
ble to conscious introspection. Yet unless algori-
thmic work-arounds can be devised in every čase, 
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introspection is left as the only source on which 
hand-crafting of mental skills can draw. Later we 
will consider the inductivist sub-school of sym-
bolic Al, fast becoming the leading edge of T-
plus, which accepts the importance of subarticu-
late mental processes and dispenses almost enti-
rely with introspective sources for accessing them. 
Instead, T-plus builds executable models of su-
barticulate skills by another route, that is by in-
ductive learning from imitation of skilled behavi-
our (see Urbancic and Bratko, 1994, for the inte-
resting čase of control skills). 

3 T-Minus Under Test 

So how has it gone with "the enterprise of con-
structing a Physical Symbol System that can re-
liably pass the Turing Test"? Two substantial T-
minus projects were launched within a few years 
of each other. Japan's Fifth Generation (5G) pro-
ject (conducted between 1979-1981) was aimed at 
the declared goal of human-level intelligence by 
the end of the 1980's. The early history and di-
vergent later course has been reviewed by Michie 
(1988). In 1984 a group led by Lenat at the Mi-
croelectronics and Computer Technology Corpo­
ration in Texas, USA, launched a ten-year project 
known as CYC. Its aim was to build a huge in-
teractive knowledge base spanning most of what 
humans call common sense, that was eventually to 
"grow by assimilating textbooks, literature, new-
spapers, etc." Numerous large databases would 
also be accessible to the system. During the clo-
sing years, "a cadre of teachers" would replace 
hand-crafting. 

More than ten years on, we may note that 
both projects missed their stated marks. Be-
fore its collapse, the Tacoma Narrows suspension 
bridge at least looked like a bridge and behaved 
as a bridge. As elsewhere analysed (Michie, 1994; 
Gams, 1995) neither of the above-mentioned T-
minus projects ever attained even the semblance 
of human-level knowledge and intelligence. What 
faults, then, underlay these failures? 

Neglect of Turing's child-machine postu-
late. 5G initially relied on hand-crafting. Re-
alization then took hold in the projecfs leader-
ship that inductive knowledge acquisition should 
be recognized as the central focus for the project. 
But at that stage the initial goals had been di-

ffused by complexities of sponsorship from a di-
versity of private companies in addition to the 
MITI governmental agency. By the time that a 
productive impetus had developed for inductive 
logic programming and other learning methods, 
5G had diverged from its initial performance spe-
cifications. The main effort became concentrated 
into what proved to be a successful programme of 
transfer into industry of existing techniques. 

CYC, on the other hand, acknowledged the ne-
cessary role of inductive learning from the start, 
but hung back from its systematic development. 
It is not clear from Lenat and Guha's (1989) in-
terim report how this came about. 

Neglect of the multiplicity of "understan-
ding". The word "intelligence" is derived from 
the Latin for "understanding" There is moreover 
agreement that to merit description as intelligent, 
a system's responses must, at the least, give the 
appearance of understanding the domain of dis-
course, that is to say, of utilizing a stored domain 
model. Some leading Al workers see the storage 
and use of only one kind of model of a domain as 
not going far enough. Minsky (1994) writes: "If 
you understand something in only one way, then 
you really do not understand it at ali. The secret 
of what anything means to us depends on how we 
have connected it to ali the other things we know. 
That is why, when someone learns 'by rote', we 
say that they do not really understand." 

There is a duality in human concepts. They are 
undeniably and commonly used, j ust as Minsky 
proposes, to represent one and the same notion 
in different ways, for example in symbol-strings 
and in pictures, with frequent and fluent inter-
conversions between representations. Thus, there 
are two ways of seeing that an equilateral trian­
gle has equal base angles. One is by Euclidean 
proof. The other is by mentally rotating it round 
the perpendicular and observing that the flipped 
image fits the unflipped one. 

Neglect of science. Ginsberg remarks that ali 
good engineering rests on a scientific foundation, 
and contrasts the views of extremist technologists 
with those of mathematical philosophers working 
on AI's scientific foundations. There are, it seems, 
Al technologists who believe "that the scientific 
foundation of Al has already been laid, and that 
the work that remains is engineering in nature." 
Against this "are people who believe that Al has 
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many fundamental scientific problems stili to be 
solved; that the goal of constructing an intelli-
gent artifact today is not dissimilar to the goal of 
building a nuclear reactor in 1920 ..." 

John McCarthy's school of research inaugura-
ted by his 1959 "Programs with common sense" 
represents this second position. McCarthy has 
in particular pointed to a wealth of concepts that 
are fundamental to everyday discourse, concerned 
with temporal sequence, causality, intention, ca-
pability, context-dependence and other common 
usages. The latter may include such phenomena 
as the deployment by two or more interacting 
agents of models of each other. Formalizing these 
everyday notions has so far largely resisted the 
efforts of Al logicians. A good interim overview 
has been made available by Ginsberg (1987). 

Returning to the imitation game, we may rea-
sonably enquire as follows. Al stili lacks machine-
executable languages in which elementary day-to-
day transactions and inferences of human life may 
be expressed. So long as the lack persists, how 
can any project of 5G or CYC type hope to en-
dow an automated conversationalist with the skill 
of describing such transactions? 

Neglect of user requirements . From the 
tirne of Archimedes through Leonardo's to the 
present day, engineering design has taken the cli-
ent's statement of reguirement as starting point. 
Turing's proposal of a machine for playing the imi­
tation game departs from this. What customers 
were there for a disembodied general-purpose arti-
ficial intelligence? There was, and is, no shortage 
of general-purpose natural intelligences. They can 
be found in abundance on any street corner. Two 
circumstances need to be kept in mind. 

(1) Turing's paper was published in a journal 
devoted to the philosophy of mind. He was as 
much concerned to drive home a philosophical 
point as to launch a potential industry. This I 
believe explains the Turing Test's curiously free-
floating character. But the closing part of his 
paper, which few commentators appear to read, 
discusses implementation, including the question 
of where to start. Turing suggests more circum-
scribed domains such as game-playing and robo-
tics, for both of which healthy commercial mar-
kets have since appeared. 

(2) In so far as the paper addresses non-
philosophical issues they are concerned with engi­

neering science rather than technology. Turing's 
vision was of intellectual tasks designed to serve 
as laboratory tests linking the work of theoretici-
ans and experimentalists. Work of this kind pre-
cedes market considerations, just as the years of 
experimentation by the Wright brothers preceded 
the era of military and commercial aircraft design. 
Turing's thinking is conveyed in a closing passage: 

"We may hope that machines will eventually 
compete with men in ali purely intellectual fields. 
But which are the best ones to start with? Even 
this is a difficult decision. Many people think that 
a very abstract activitv, like the playing of chess, 
would be best. It can also be maintained that it 
is best to provide the machine with the best sense 
organs that money can buy, and then teach it to 
understand and speak English. This process co-
uld follow the normal teaching of a child. Things 
would be pointed out and named, etc. Again I 
do not know what the right answer is, but I think 
both approaches should be tried." 

5G and CYC began in the 1980's, remote 
in tirne from Turing's teachable blank slate. 
With the rise of expert systems, marketable 
innovation at the technology end of the Al 
spectrum was already an established fact, and 
a wide range of knowledge-based and rule-
learning software techniques and tools were ava­
ilable. Market-oriented specializations of Tu­
ringi general-purpose question-answerer would 
not have been discouraged by CYC's industrial 
sponsors. It is as though the Wright brothers had 
not been content with restricted objectives, and 
had insisted that their machine must be built to 
do evervthing that a bird can do, and in addition 
that it would do this without using wings (no use 
was made of industrial-strength learning tools). 

Neglect not of one but of several factors lay at 
the root of of the failures of 5G and CYC (see also 
Gams, 1995, for analysis). The aim of the T-plus 
school of symbolic Al is to continue to develop 
these neglected factors. 

4 Beyond the Turing Test 

T-minus was evidently for a tirne sufficiently en-
trenched to be the source of design ideas for 
two major software engineering projects. Yet in 
spite of disappointing results from these attemp-
ted applications, T-minus stili survives as a doc-
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trine for instructing a new generation of Al engi-
neers. This is quite evident from Ginsberg's book. 
But the action has already moved elsewhere. 

An inductive sector of symbolic Al is beco-
ming the main-stream approach to large-scale 
knowledge-acquisition and refinement. I refer to 
Machine Learning (ML), and in particular to re-
cent extensions via Prolog and other Logic Pro-
gramming formalisms. This trend is not some-
thing newly sprung to prominence in Al thinking. 
On the contrary, it is intrinsic in the ideas of the 
founders. We have already considered Turing's 
own position. It was endorsed and extended by 
symbolic AI's grand architect John McCarthy. In 
his 1959 "Programs with common sense" he wri-
tes: "Our ultimate objective is to make programs 
that learn from experience as effectively as hu-
mans do." He goes on to warn that "in order for 
a program to be capable of learning something it 
must first be capable of being told it." 

McCarthy is here speaking not of blind 
stimulus-response skills, some of which do not 
need explicit representation languages to be 
machine-learnable (e.g. by neural nets). He has 
in mind concept learning. Obviously until a hypo-
thesis language is available in which a given con­
cept is expressible, that concept cannot be explici-
tly learned. For this reason the rise of logic langu­
ages such as Prolog, and of the craft of Inductive 
Logic Programming (ILP) in particular, has pla-
yed an important role by extending the expres-
sivity of ML's hypothesis languages (Muggleton 
1991). Radical progress along the McCarthy-
Muggleton line is now necessary before a success-
ful CYC-type project can be envisaged. 

Along with the critical issue of hypothesis lan­
guages, extensions of ILP are required. These 
include facilities for hierarchical structuring of 
domains into contexts, for incorporating object-
oriented features, for interfacing with constraint 
satisfaction programming, for manufacture of new 
attributes by constructive induction, and for the 
seamless incorporation of capabilities of uncertain 
inference. In a recent review of some of ML's pro-
blems and current progress (Michie 1995b), I have 
stressed a further gap that stili separates achie-
vement from potential. Inductive Logic Program­
ming packages, even after thousands of hours of si-
gnificant theory-discovery in a given domain, end 
up no better at solving the next problem than at 

the start. Consider, for example, a human bio-
molecular chemisfs inductive inferences concer-
ning likely activities of newly synthesized drugs, 
as studied using ILP by Sternberg and colleagues 
(1994). These come faster as his or her experience 
grows of a given domain of compounds. So here 
is a kind of "meta-learning", crucial in human in-
telligence. Active brains somehow incrementally 
assimilate statistico-logical properties of learning 
environments into background knowledge in ways 
that Al has not yet attempted to emulate. 

5 Concluding Remarks 

The tirne has come to venture bevond the hori-
zons of the Turing Test. The IT market of today 
is looking to computers for more than intelligent 
chat. The need is for specialized intelligences that 
can deploy and articulate mastery of knowledge-
intensive domains in science, engineering, medi­
cine, pharmaceuticals, and finance. 

Advances in symbolic learning are gradually 
establishing a sufficient technical foundation for 
Turing's child-machine project. The year 2000 
may see, not the first-base completion he had ho-
ped for, but a belated start along the originally 
indicated line. 

Meanwhile the "Strong Al" versus "Weak Al" 
debate, refuelled by Roger Penrose's 6-year-old 
book "The Emperor's New Mind", is again chan-
ging its character. Penrose (1994) has replaced 
the Strong/Weak dichotomy by a four-level gra-
dation of attitudes. In his new book "Shadows 
of the Mind" these are distinguished.by the sym-
bols A, B, C and D (set in curly font). With 
the "Strong" and "Weak" dichotomy superseded, 
both sides of this debate may find that their artil-
lery is being wasted on positions that are not so 
much untenable as abandoned. A middle-ground 
position, integrating (as I believe) useful features 
of the two extremes, can be found in a paper of 
mine on "Knowledge, learning and machine intel-
ligence" (Michie, 1993a). The salient features of 
this "integrative school" are summarised in the 
last of the three items below. 

Symbolic school. Ali thought can be modelled 
as deductive reasoning from logical descrip-
tions of the world, and machinc-processed in 
this form. 

Neural school. Thought and knowledge are 
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mainly intuitive, non-introspectable, non-
logical, associative, approximate, stochastic 
and "fuzzy". Fidelity to neurobiological fact 
demands that we build similar properties into 
Al software. 

Integrat ive school. Thought requires co-opera-
tion between conscious reasoning, whether 
symbolic or visuo-spatial, and lower-level ta-
cit operations. Different software represen-
tations are appropriate to different enginee-
ring requirements. The latter ordinarily cover 
not only run-time performance, but also self-
documentation. Performance at high levels of 
domain complexity demands learning. Self-
documentation of acquired knowledge de­
mands that learning be symbolic. 
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In order to make strong Al a reality formal logic and formal neural network theory must 
be abandoned in favor of complex systems science. The focus must be placed on large-
scale emergent structures and dynamics. Creative intelligence is possible in a computer 
program, but only if the program is devised in such a way as to allow the spontaneous 
organization and emergence of "self- and reality-theories." In order to obtain such a 
program it may be necessary to program whole populations of interacting, "artificially 
intersubjective" Al programs. 

1 Introduction 

The march of progress toward true artificial in­
telligence has, in the opinion of many, come to a 
standstill. There has always been a tremendous 
gap between the creative adaptibility of natural 
intelligence and the impotent rigidity of existing 
Al programs. In the beginning, however, there 
was an underlying faith that this impotence and 
rigidity could be overcome. Today enthusiasm se-
ems to be flagging. Very few Al researchers carry 
out research aimed explicitly at the goal of pro-
ducing thinking computer programs. Instead the 
field of Al has been taken over by the speciali-
zed study of technical sub-problems. The original 
goal of the field of Al - producing computer pro­
grams displaying general intelligence - has been 
pushed off into the indefinite future. 

We have sophisticated mathematical • treat-
ments which deal with one or two aspects of intel­
ligence in isolation. We have "brittle" computer 
programs which operate effectively within their 
narrowly constrained domains. We have con-
nectionist networks and genetic classifier systems 
which approach their narrow domains with sligh-
tly more flexibility, but require exquisite tuning, 
and stili lack any ability to comprehend new types 
of situation. What we stili do not have, however is 
a halfway decent understanding of what needs to 

be done in order to construct an intelligent com­
puter program. 

The goal of this paper is to suggest a simple an-
swer for this "million dollar question." The prin-
cipal ingredient needed to make strong Al a rea-
lity is, I claim, the self. A self is nothing mystical, 
it is a certain type of structure, evolving according 
to a certain type of dynamic, and depending on 
other structures and dynamics in specific ways. 
Self, I will argue, is necessary for creative adap-
tibility - for the spontaneous generation of new 
routines to deal with new situations. Current Al 
programs do not have selves, and, I will argue, 
they do not even have the component structures 
out of which selves are built. This is why they are 
so rigid and so impotent. 

The fashioning of computer programs with sel­
ves - "artificial selfhood" - is not a theoretical 
impossibility, merely a difficult technical problem. 
For one thing, it clearly requires more memory 
and processing power than we currently have at 
our disposal. When sufBciently large MIMD pa-
rallel machines are developed, we will be able to 
make a serious attempt at v/riting an intelligent 
program. Until that tirne, it is foolish to expect 
success at strong AL Even with appropriate hard-
ware, however, serious difficulties may well arise, 
related to the problem of bringing a new self to 
maturity \vithout a real "parent." It may perhaps 
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be necessary to resort to the evolution of popu-
lations of intelligences - what has been called Al 
through A-IS or "artificial intersubjectivity." But 
these difficulties cannot be confronted or fully un-
derstood until we have appropriate hardware. Ar-
guments about the possibility of strong Al, based 
on the results of experimentation on 1995 compu­
ters, have more than a small taint of absurdity. 

The plan of the remainder of the paper is as fol-
lows. Section 2 clarifies certain issues regarding 
the possibility of strong Al and the assumptions 
underlying different approaches to AL Section 3 
introduces the psychological notions of self- and 
reality-theories. Section 4 presents an argument 
for the crucial role of self- and reality-theories in 
creative intelligence. Section 5 outlines a mathe-
matical model which ušes ideas from complex sy-
stems science to explain the self-organization of 
self from simpler psychological constructs. Fi­
nali^ Section 6 discusses A-IS or "artificial in-
tersubjectivity," a possible technique for evolving 
Al systems with artificial selves. 

2 Strong Al Is Possible 

Before addressing the problems of Al, it is first 
necessary to establish what the problem of Al is 
not. It cannot be emphasized too strongly that 
there is no fundamental obstacle to the construc-
tion of intelligent computer programs. The argu­
ment is a simple and familiar one. First premise: 
humans are intelligent systems. Second premise: 
humans are also systems governed by the equati-
ons of physics. Third premise: the equations of 
physics can be approximated, to within any de-
gree of accuracy, by space and tirne discrete itera-
tions that can be represented as Turing machine 
programs. Conclusion: intelligent behavior can 
be simulated, to within any degree of accuracy, 
by Turing machine programs. 

As I have pointed out in (Goertzel 1993), this 
argument can be made more rigorous by reference 
to the work of Deutsch (1985). Deutsch has de-
fined a generalization of the deterministic Turing 
machine called "quantum computer," and he has 
proved that, according to the known principles of 
quantum physics, the quantum computer is ca-
pable of simulating any finite physical system to 
within any degree of accuracy. He has also proved 
that while a quantum computer can do evervihing 

an ordinary computer can, it cannot compute any 
functions besides those which an ordinary com­
puter can run. However, quantum computers can 
compute some functions faster than Turing ma-
chines, in the average čase sense and they have 
certain unique properties, such as the ability to 
generate truly random numbers. 

Because of Deutsch's theorems, the assertion 
that brains can be modeled as quantum compu­
ters is not a vague hypothesis but a physical fact. 
One must stili deal with the possibility that in­
telligent systems are fundamentally quantum sy-
stems, and cannot be accurately modeled by de­
terministic Turing machines. But there is no evi­
dence that this is the čase; the structures of the 
brain that are considered cognitively relevant (ne-
urons, synapses, neurotransmitters, etc.) ali ope-
rate on scales so large as to render quantum effects 
insignificant. This point is not universally agreed 
upon: Hameroff (1990) has argued for the cogni-
tive relevance of the molecular structures in the 
cytoplasm, and (Goertzel 1995a) has argued for 
a relation between consciousness and true rando-
mness. Finally, Penrose (1987) has argued that, 
not only are brains not classical systems, but they 
are not quantum systems either: they are systems 
that must be modeled using the equations of a yet-
undiscovered theory of quantum gravity. But ali 
these arguments in favor of the non-classical brain 
reside in the realm of speculation. It is a physical 
fact that the brain is a quantum computer, and 
hence deals only with computable functions. And, 
given the physical evidence, it is at this stage a 
very reasonable assumption that the brain is ac-
tually a deterministic computer. 

This conclusion, however, is of limited practical 
utility. It leaves a very importa,nt question open: 
how to find these programs that carry out intel­
ligent behaviors! We do not know the detailed 
structure of the human brain and body; and even 
if we did know it, the direct simulation of these sy-
stems on man-made machines might well be a very 
inemcient way to implement intelligence. The key 
question is, what are the properties that make hu­
mans intelligent? 

The most pessimistic view is that only systems 
very, very similar to the human brain and body 
could ever be intelligent. At present this hypothe-
sis cannot be proven or disproven. As has been 
pointed out, however, it is somewhat similar to 
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the proposition that only svstems very, very simi-
lar to birds can fly. The difference is that, while 
we have recently learned how to build flying ma-
chines, we have not yet learned to build thinking 
machines. 

On the other hand, it is possible that the key 
to intelligence lies in a certain collection of clever 
special-case problem-solving tools; or, perhaps in 
the possession of any sufficiently clever collection 
of special-case problem-solving tools. If this is the 
čase then what Al researchers should be doing is 
to study small scale systems which are extremely 
effective at solving certain special problems. This, 
in fact, is what most Al researchers have been 
doing for the past few decades. 

Finally, a third alternative is that the key to in­
telligence lies in certain global structures, certain 
overall patterns of organization. If this is the cor-
rect possibility, then the conclusion is that clever 
algorithms for solving toy problems are, while per­
haps useful and even necessary, not the essence of 
intelligence. What matters most is the way that 
these clever algorithms are organized. This last 
point of view is the one adopted here. In parti-
cular, I wish to call attention to one particular 
"global structure," one particular overall pattern 
of organization: the self. 

3 Self- and Reality-Theories 

What is the self? Psychology provides this que-
stion with not one but many answers. One of the 
most Al-relevant answers, however, is that provi-
ded by Epstein's (1984) synthetic personality the-
ory. Epstein argues that the self is a theory. This 
is a useful perspective for Al because theorization 
is something with which Al researchers have often 
been concerned. 

Epstein's personality theory paints a refreshin-
gly simple picture of the mind: 

The human mind is so constituted that it tends 
to organize experience into conceptual systems. 
Human brains make connections bettveen events, 
and, having made connections, they connect the 
connections, and so on, until they have develo-
ped an organized system of higher- and lower-
order constructs that is both differentiated and 
integrated... 

In addition to making connections betmeen events, 

human brains have centers of pleasure and pain. 
The entire history of research on learning .indi-
cates that human and other higher-order animals 
are motivated to behave in a manner that brings 
pleasure and avoids pain. The human being thus 
has an interesting task cut out simply because of 
his or her biological structure: it is to construct a 
conceptual system in such a manner as to acco-
unt for reality in a way that will produce the most 
favorable pleasure/pain ratio over the foreseeable 
future. This is obviously no simple matter, for the 
pursuit of pleasure and the acceptance of reality 
not infrequently appear to be at cross- purposes to 
each other. 

He divides the human conceptual system into 
three categories: a self-theory, reality-theory, 
and connections between self-theory and reality-
theory. And he notes that these theories may be 
judged by the same standards as theories in any 
other domain: 

[SinceJ ali individuals reguire theories in order to 
structure their experiences and to direct their li-
ves, it follovjs that the adequacy of their adjust-
ment can be determined by the adequacy of their 
theories. Like a theory in science, a personal the-
ory of reality can be evaluated by the folloming 
attributes: extensivity [breadth or rangej, parsi-
mony, empirical validity, internal consistency, te-
stability and usefulness. 

A person's self-theory consists of her best gues-
ses about what kind of entity she is. In large part 
it consists of ideas about the relationship between 
herself and other things, or herself and other pe-
ople. Some of these ideas may be wrong; but this 
is not the point. The point is that the theory as 
a whole must have the same qualities required of 
scientific theories. It must be able to explain fa-
miliar situations. It must be able to generate new 
explanations for unfamiliar situations. Its expla-
nations must be detailed, sufficientb/ detailed to 
provide practical guidance for action. Insofar as 
possible, it should be concise and self-consistent. 

The acquisition of a self-theory, in the develop-
ment of the human mind, is intimately tied up 
with the body and the social network. The in-
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fant must learn to distinguish her body from the 
remainder of the world. By systematically using 
the sense of touch - a sense which has never been 
reliably simulated in an Al program - she grows 
to understand the relation between herself and 
other things. Next, by watching other people she 
learns about people; inferring that she herself is a 
person, she learns about herself. She learns to gu-
ess what others are thinking about her, and then 
incorporates these opinions into her self-theory. 
Most crucially, a large part of a person's self-
theory is also a meta-self-theory: a theory about 
how to acquire information for one's self-theory. 
For instance, an insecure person learns to adjust 
her self-theory by incorporating only negative in­
formation. A person continually thrust into novel 
situations learns to revise her self-theory rapidly 
and extensively based on the changing opinions of 
others - or else, perhaps, learns not to revise her 
self-theory based on the fickle evaluations of soci-
ety. There is substantial evidence that a person's 
self- and reality-theories are directly related to 
their cognitive style; see for instance (Erdmann, 
1988). 

4 Self and Intelligence 

My central thesis here is that the capacity for cre-
ative intelligence is dependent on the possession of 
effective self- and reality- theories. My argument 
for this point is not entirely an obvious one. I 
will argue that self- and reality- theories provide 
the dynamic data structures needed for flexible, 
adaptable, creative thought. 

The single quality most lacking in current Al 
programs is the ability to go into a new situation 
and "get oriented." This is what is sometimes 
called the brittleness problem. Our Al programs, 
however intelligent in their specialized domains, 
do not know how to construct the representations 
that would allow them to apply their acumen to 
new situations. This general knack for "getting 
oriented" is something which humans acquire at 
a very early age. 

People do not learn to get oriented ali at once. 
They start out, as small children, by learning to 
orient themselves in relatively simple situations. 
By the time they build up to complicated social 
situations and abstract intellectual problems they 
have a good amount of experience behind them. 

Corning into a new situation, they are able to rea-
son associatively: "What similar situations have I 
seen before?" And they are able to reason hierar-
chically: "What simpler situations is this one bu-
ilt out of?" By thus using the information gained 
from orienting themselves to previous situations, 
they are able to make reasonable guesses regar-
ding the appropriate conceptual representations 
for the new situation. In other words, they build 
up a dynamic data structure consisting of new si­
tuations and the appropriate conceptual represen­
tations. This data structure is continually revised 
as new information that comes in, and it is used as 
a basis for acquiring new information. This data 
structure contains information about specific si­
tuation and also, more abstractly, about how to 
get oriented to new situations. My claim is that 
this data structure depends crucially on the self, 
so that it is not possible to learn how to get ori­
ented to complex situations, without first having 
constructed complex self- and reality-theories. 

In humans, self- and reality-theories are con­
structed in early childhood, as part of the pro-
cess of getting oriented to simple, basic situations 
of human relationship - situations confronted by 
every human being by virtue of having a body 
and interacting with other humans. Thus, in the 
human mind, there are no given, a priori enti-
ties; everything bottoms out with the phenome-
nological and perceptual, with those very factors 
that play a central role in the initial formation of 
self- and reality-theories. Self- and reality- theo­
ries help us to build up these basic situations into 
more complex ones. They help us to define ali 
the various parts of a complex system in terms of 
each other. 

On the other hand, we provide our Al programs 
with concepts which "make no sense" to them, 
which they are intended to consider as given, a 
priori entities. They have no self- and reality-
theories to help them build up these complex con­
cepts out of simple experiential concepts - for, 
indeed, they have no body, no sense of sociality, 
and no simple experiential concepts. The percep-
tion/action/memory hierarchy bottoms out pre-
maturely, there can be no functioning dynamic 
data structure for getting oriented, no creative 
adaptability, no true intelligence. 
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5 Self-Organization of the Self 

This view of self and intelligence may seem overly 
vague and "hand-waving," in comparison to the 
rigorous theories proposed by logic-oriented Al re-
searchers, and the intricate calculus-based proofs 
of neural network theorists. However, there is no-
thing inherently non-rigorous about the build-up 
of simpler theories and experiences into complex 
self- and reality-theories. It is perfectly possible 
to model this process mathematically; the ma-
thematics involved is simply of a different sort 
from what one is used to seeing in Al. Instead 
of formal logic, one must make use of ideas from 
dynamical systems theory (Devaney 1988) and, 
more generally, the emerging science of comple-
xity (Green and Bossomaier 1994). In this sec-
tion I will briefly outline one way of mathemati-
cally modeling the self-organization of the self, ba-
sed on the psynet model of (Goertzel 1993, 1993a, 
1994, 1995, 1995a). The treatment here will ne-
cessarily be somewhat condensed; more extensive 
discussion may be found in the references. 

The psynet model is based on the application of 
dynamical systems theory ideas to self-organizing 
agent systems (Agha 1988). An intelligent sy-
stem is modeled as a collection of memory- and 
algorithm-carrying agents, which are able to act 
on other agents to produce yet other agents. Fol-
lowing (Goertzel 1994) these agents are called ma-
gicians. Cognitive structures are modeled as at-
tractors of the magician-interaction dynamic. An 
hierarchy of nested attractor structures is postula-
ted, culminating in the "dual network" of associa-
tive memory and hierarchical perception/control, 
and the "self- and reality-theory," a particular 
manifestation of the dual network. 

Let S denote a set, to be called the space of ma-
gicians. Then S*, the space of ali finite sets com-
posed of elements of S, with repeated elements 
allowed, is the space of magician systems. One 
may write 

Systernt+i = A{Systemt) (1) 

where Systemt is an element of S* denoting 
the magician population at time t, and A is the 
"action operator," a function mapping magician 
populations into magician populations. 

Let us assume, for simplicity's sake, that ali ma­
gician interactions are binary, i.e., involving one 

magician acting on another to create a third. In 
this instance the machinery of magician operati-
ons may be described by a binary algebraic ope-
ration *, so that where a, b and c are elements of 
S, a * b — c is read "a acts on b to create c." The 
čase of unary, ternary, etc. interactions may be 
treated in a similar way or, somewhat artificially, 
may be constructed as a corollary of the binary 
čase. 

The action operator may be decomposed as 

A(X)=F(R(X)) (2) 

where R is the "raw potentiality" operator and 
F is a "filtering" operator. R is formally given by 

R(Systemt) = 
R[{ai,a,2,...,an(t)}) (3) 

= {ai*aj\\i,j = l,...,n{t)} 
The purpose of R is to construct the "raw po-

tentiality" of the magician system Systemt, the 
set of ali possible magician combinations which 
ensue from it. The role of the filtering operator 
F, on the other hand, is to select from the raw 
potentiality those combinations which are to be 
allowed to continue to the next time step. This 
selection may be all-or-none, or it may be proba-
bilistic. To define the filtering operator formally, 
let P* denote the a space of ali probability distri-
butions on the space magician systems S*. Then, 
F is a function which maps S* x S* into P*. 

Magician systems, thus defined, are ageome-
tric, or, to use the chemical term, "well-mixed." 
But one may also consider "graphical magician 
systems," magician systems that are specialized 
to some given graph G. Each magician is assi-
gned a location on the graph as one of its defi-
ning properties, and magicians are only allowed 
to interact if they reside at the same or adjacent 
nodes. This does not require any reformulation of 
the fundamental equations given above, but can 
be incorporated in the filtering operator. 

This kind of system may at first sound like an 
absolute, formless chaos. But this glib perspec-
tive ignores something essential - the phenome-
non, well known for decades among European sy-
stems theorists (Varela 1978; Kampis 1991), of 
mutual intercreation or autopoiesis. Systems of 
magicians can interproduce. For instance, a can 
produce b, while b produces a. Or a and b can 
combine to produce c, while b and c combine to 
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produce a, and a and c combine to produce b. 
The number of possible systems of this sort is 
truly incomprehensible. But the point is that, if 
a system of magicians is mutually interproducing 
in this way, then it is likely to survive the conti-
nual flux of magician interaction dynamics. Even 
though each magician will quickly perish, it will 
j ust as quickly be re-created by its co- conspira-
tors. Autopoiesis creates self-perpetuating order 
amidst flux. 

Some autopoietic systems of magicians might 
be unstable; they might fall apart as soon as 
some external magicians start to interfere with 
them. But others will be robust; they will sur­
vive in spite of external perturbations. In (Go­
ertzel 1995b) these robust magician systems are 
called autopoiet ic a t t rac tors . This leads up to 
the natural hypothesis that thoughts, feelings and 
beliefs are autopoietic attractors. They are stable 
systems of interproducing pattern/processes. 

But autopoietic attraction is not the end of the 
story. The next step is the intriguing possibility 
that, in psychological systems, there may be a 
global order to these autopoietic attractors. In 
(Goertzel, 1994) it is argued that these structu­
res must spontaneously self-organize into larger 
autopoietic superstructures - and, in particular, 
into a special attracting structure called the dual 
netuiork. 

The dual network, as its name suggests, is a ne-
twork of magicians that is simultaneously struc-
tured in two ways. The first kind of structure 
is hierarchical. Simple structures build up to 
form more complex structures, which build up 
to form yet more complex structures, and so 
forth; and the more complex structures explici-
tly or implicitly govern the formation of their 
component structures. The second kind of struc­
ture is heterarchical: different structures connect 
to those other structures which are related to 
them by a sufficient number of pattern/processes. 
Psychologically speaking, as is elaborated in (Go­
ertzel, 1993b; 1994), the hierarchical network 
may be identified with command-structured per-
ception/control, and the heterarchical network 
may be identified with associatively structured 
memory. Mathematically, the formal definition 
of the dual network is somewhat involved; one 
approach is given in (Goertzel, 1995b). A sim-
plistic dual network, useful for guiding thought 

though psychologically unrealistic, is a magician 
population living on a graph each node of which 
is connected to certain "heterarchical" neighbor 
nodes and certain "hierarchical" child nodes. 

A psynet, then, is a magician svstem which has 
evolved into a dual network attractor. The core 
claim of the "psynet model" is that intelligent sv­
stems are psynets. This does not imply that ali 
psynets are highly intelligent systems; one can bu­
ild a simplistic implementation of the psynet mo­
del that runs on an ordinary PC, and certainly 
does not deserve the label "intelligent." What 
makes the difference between intelligent and unin-
telligent psynets is above aH, I have argued, size. 
Small psynets do not have the memory or proces-
sing power required to generate self- and reality-
theories. Thus they can never possess general in-
telligence. 

Obviously size is not the whole story: the po-
wer and flexibility of the component magicians 
also plays a role in determining system intelli-
gence. But a substantial number of magicians is 
certainly necessary, in order to support the hierar­
chical and heterarchical build-up of processes for 
"getting oriented," as described in the previous 
section. Self- and reality- theories, in the psynet 
model, arise as autopoietic attractors mithin the 
contezt of the dual network. They cannot become 
sophisticated until the dual network itself has self-
organized to an acceptable degree. On the other 
hand, the dual network cannot grow to encompass 
extremely complex situations without the help of 
self- and reality-theories. There is a delicate sym-
biosis here which has never been seen to emerge 
from an Al program. 

Until we understand the workings of the human 
brain, or build massively MIMD parallel "brain 
machines," the psynet model will remain in large 
part an unproven hypothesis. However, the in-
tricate mathematical constructions of the logic-
oriented Al theorists are also speculations. The 
idea underlying the psynet model is to make ma­
thematical speculations which are psychologically 
plausible. Complex systems science, as it turns 
out, is a useful tool in this regard. Accepting the 
essential role of the self means accepting the im-
portance of self-organization and complexity for 
the achievement of flexible, creative intelligence. 
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6 A-IS 

The recognition of the cognitive importance of the 
self leads to a number of suggestions regarding 
the future direction of Al research. One of the 
most interesting such suggestions is the concept of 
A — IS, or "artiflcial intersubjectivity." The basis 
of A-IS is the proposition that self- and reality-
theories can only evolve in an appropriate social 
context. While almost self-evident from the point 
of view of personality psychology, this proposi­
tion has been almost completely ignored by Al 
theorists. Today, however, computer science has 
progressed to the point where we can begin to un-
derstand what it might mean to provide artiflcial 
intelligences with a meaningful social context. 

In principle, any artiflcial life world populated 
with intelligent agents could become an A-IS sy-
stem, under appropriate conditions. The agents 
could come to collude in the modification of their 
world, so as to produce a mutually more use-
ful simulated reality. In this way they would 
evolve interrelated self- and reality- theories, ergo 
artiflcial intersubjectivity. But speaking practi-
cally, this sort of "automatic intersubjectivity" 
cannot be counted on. Unless the different Al 
agents are in some sense "wired for cooperati-
vity," they may well never see the value of col-
laborative subjective-world-creation. We humans 
became intelligent in the context of collaborative 
world-creation, of intersubjectivity (even apes are 
intensely intersubjective). Unless one is dealing 
with Al agents that evolved their intelligence in a 
social context - a theoretically possible but pra-
gmatically tricky solution - there is no reason to 
expect significant intersubjectivity to spontaneo-
usly emerge through interaction. 

Fortunately, it seems that there may be an al­
ternative. I will describe a design strategy cal-
led "explicit socialization" or e.s., which involves 
explicitly programming each Al agent, from the 
start, with: 

— an a priori knowledge of the existence and au-
tonomy of the other programs in its enviro-
nment 

— an a priori inclination to model the behavior 
of these other programs. 

In other words, in this strategy, one enforces A-
IS from the outside, rather than, as in natural 
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"implicit socialization," letting it evolve by itself. 
An initial implementations of e.s. is currently in 
the design stage. 

To make the idea of explicit socialization a cle-
arer, one must introduce some formal notation. 
Suppose one has a simulated environment E(t), 
and a collection of autonomous agents A\{t), 
A2(t),..., AN (t), each of which takes on a di­
fferent state at each discrete tirne t. And, for 
sake of simplicity, assume that each agent Ai seeks 
to achieve a certain particular goal, which is re-
presented as the maximization of the real-valued 
function fi(E), over the space of possible enviro-
nments E. This latter assumption is psycholo-
gically debatable, but here it is mainly a matter 
of convenience; e.g. the substitution of a shifting 
collection of interrelated goals would not affect 
the discussion much. 

Each agent, at each time, modifies E by execu-
ting a certain action Aci(t). It chooses the action 
which it suspects will cause /j (E(t + 1)) to be as 
large as possible. But each agent has only a li-
mited power to modify E, and ali the agents are 
acting on E in parallel; thus each agent, whenever 
it makes a prediction, must always take the others 
into account. A-IS occurs when the population of 
agents self-organizes itself into a condition where 
E(t) is reasonably beneficial for ali the agents, or 
at least most of them. This does not necessarily 
mean that E reaches some "ideal" constant value, 
but merely that the vector (Ai,.. .,Ap/,E) enters 
an attractor in state space, which is characteri-
zed by a large value of the society wide average 
satisfaction (/i + . . . + fw)/N. 

The strategy of explicit socialization has two 
parts: input and modeling. Let us first consider 
input. For Ai to construct a model of its soci-
ety, it must recognize patterns among the ACJ 
and E; but before it can recognize these pat­
terns, it must solve the more basic task of di-
stinguishing the ACJ themselves. In principle, 
the Aci can be determined, at least approxima-
tely, from E; a straightforward AILife approach 
would provide each agent with E alone as in­
put. Explicit socialization, on the other hand, 
dictates that one should supply the Aci as in­
put directly, in this way saving the agents' li-
mited resources for other tasks. More formally, 
the input to A{ at time t is given by the vec­
tor (Ac„(iiM) (t),..., Acv(i:n(t)tt)(t),E(t)^J for some 
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n < N, where the range of the index function 
v (i,,) defines the "neighbors" of agent Ai, those 
agents with whom Ai immediately interacts at 
time t. In the simplest čase, the range of i is 
always 1, . . . , N, and v(i,j,t) = j , but if one wi-
shes to simulate agents moving through a spati-
ally extended environment, then this is illogical, 
and a variable-range v is required. 

Next, coinciding with this specialized input 
process,, explicit socialization requires a contrived 
internal modeling process within each agent Ai. 
In straightforward AILife, Ai is merely an "in-
telligent agent," whatever that might mean. In 
explicit socialization, on the other hand, the in­
ternal processes of each agent are given a certain 
a priori structure. Each Ai, at each time, is assu-
med to contain n(t) + 1 different modules called 
"models": 

- a model M(E\Ai) of the environment, and 

— a model M(Aj\Ai) of each of its neighbors. 

The model M(X\A{) is intended to predict the 
behavior of the entity X at the following time 
step, time t + 1. 

At this point the concept of explicit socializa­
tion becomes a little more involved. The simplest 
possibility, which I call first order e.s., is that the 
inner workings of the models M(X\Ai) are not 
specified at ali. They are just predictive subpro-
grams, which may be implemented by any AI al-
gorithm whatever. 

The next most elementary čase, second order 
e.s., states that each model M(Aj\Ai) itself con-
tains a number of internal models. For instance, 
suppose for simplicity that n(t) = n is the same 
for ali i. Then second order e.s. would dictate that 
each model M(Aj\A{) contained n + 1 internal 
models: a model M(E\Aj\Ai), predicting A j's in­
ternal model of E, and n models M(Ak\(Aj\A{)), 
predicting A,-'s internal models of its neighbors 
Ak. 

The definition of n'th order e.s. for n > 2 fol-
lows the same pattern: it dictates that each Ai 
models its neighbors A j as if they used n — l'th 
order e.s. Clearly there is a combinatorial explo-
sion here; two or three orders is probably the most 
one would want to practically implement at this 
stage. But in theory, no matter how large n be­
comes, there are stili no serious restrictions being 
placed on the nature of the intelligent agents Ai. 

Explicit socialization merely guarantees that the 
results of their intelhgence will be organized in a 
manner amenable to socialization. 

As a practical matter, the most natural first 
step toward implementing A-IS is to ignore 
higher-order e.s. and deal only with first-order 
modeling. But in the long run, this strategy is 
not viable: we humans routinely model one ano-
ther on at least the third or fourth order, and 
artificial intelligences will also have to do so. The 
question then arises: how, in a context of evolving 
agents, does a "consensus order" of e.s. emerge? 
At what point does the multiplication of orders 
become superfluous? At what depth should the 
modeling process stop? 

It would seem that the second order of mode­
ling is probably out of reach for ali animals be-
sides humans and apes. In fact, if Uta Frith's 
(1989) psychology of autism is to be believed, then 
even autistic humans are not capable of sophi-
sticated second-order social modeling, let alone 
third-order modeling. They can model what other 
people do, but have trouble thinking about other 
peoples' images of them, or about the network of 
social relationship that is defined by each person's 
images of other people. This tram of thought su-
ggests that, while one can simulate some kinds of 
social behavior without going beyond first order 
e.s., in order to get true social complexity a hi-
gher order of e.s. will be necessary. As a first 
estimate one might plače the maximum order of 
human social interaction at or a little below the 
"magic number seven plus or minus two" which 
describes human short term memory capacity. We 
can form a concrete mental image of "Joe's opi-
nion of Jane's opinion of Jack's opinion of Jill's 
opinion on the water bond issue," a fourth-order 
construct, so we can carry out fifth-order reaso-
ning about Joe . . . but just barely! 

More speculations, perhaps too many specula-
tions. But if intelhgence requires self, and self 
requires intersubjectivity, then there rnay be no 
alternative but to embrace A-IS. Just because 
strong AI is possible does not mean that the strai-
ghtforward approach of current AI research will 
ever be effective. Even with arbitrarily much pro-
cessing power, one stili needs to respect the deli-
cate and spontaneous self-organization of psycho-
logical structures such as the self. 
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An overview of recent Al turning points is presented through the strong-weak Al oppo-
sition. The strong strong and weak weak Al are rejected as being too extreme. Strong 
Al is refuted by several arguments, such as empirical lack of intelligence in the fastest 
and most complex computers. Weak Al rejects the old formalistic approach based only 
on computational models and endorses ideas in several directions, from neuroscience to 
philosophy and physics. The proposed line distinguishing strong from weak Al is set by 
the principle of multiple knowledge, declaring that single-model systems can not achieve 
intelligence. Weak Al reevaluates and upgrades several foundations of Al and computer 
science in general: Church's thesis and Turing machines. 

1 Introduction 

The purpose of this paper is to present an over-
view of yet another turn-around going on in 
the artificial intelligence (Al) communitv, and to 
propose a border between the strong (old) and 
weak (new) Al through the principle of multiple 
knowledge. 

To understand current trends in artificial intel­
ligence, the history of Al can be of great help. In 
particular, it records ever recurring waves of ove-
renthusiasm and overscepticism (Michalski, Te-
cuci 1993): 

Early Enthusiasm or Tabula Rasa 
Craze (1955-1965)1 

The first Al era was impressed by the fact that 
human brains are several orders of magnitude slo-
wer that computers (in transmission as well as 
coupling speed). Therefore, making a copy of a 
human brain on a computer would have to re-
sult in something ingeniously better. Three su-
bjects were predominant: (1) learning without 
knowledge, (2) neural modeling (self-organizing 

'Vears are rounded by 5. Note that there are different 
opinions regarding the exact periods. 

systems and decision space techniques), and (3) 
evolutionary learning. 

Dark Ages (1965-1975) 

In the second epoch it became clear that the 
first approach yielded no fruitful results. There 
were strong indications that the proposed me-
thods were unable to make further progress be-
yond solving a limited number of simple tasks. 
After funds for artificial intelligence research were 
deeply cut worldwide, new approaches were se-
arched for. This era recognized that to acquire 
knowledge one needs knowledge, and initiated 
symbolic concept acquisition. 

Renaissance (1975-1980) 

Research in artificial intelligence continued de-
spite cuts in funding, since it is a subject that 
will probably challenge human interest forever. 
Taking modest aims more appropriate to the le-
vel of current technology and knowledge someti-
mes produced even better results than expected. 
The characteristics are: (1) exploration of diffe­
rent strategies, (2) knowledge-intensive approa­
ches, (3) successful applications, and (4) confe-
rences and workshops worldwide. 

mailto:matjaz.gams@ijs.si
http://www2.ijs.si/~mezi/matjaz.html
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Al Boom (1980-1990) 

Artificial intelligence R&D produced a number of 
commercial booms such as expert systems. Lite­
rature, conferences, funds and related events have 
been growing exponentially for a few years. Su-
perprojects like the CYC project and the Fifth 
Generation project were in full progress appro-
aching final stages. Artificial intelligence was 
reaching maturity as indicated by: (1) experi-
mental comparisons of Al methods and systems, 
(2) revival of non-symbolic methods such as ne-
ural networks and evolutionary computing, (3) 
technology-based fields gained attention - agents 
and memory-based reasoning, (4) computational 
learning theorv, (5) integrated and multistrategy 
systems, and (6) emphasis on practical applica-
tions. However, no generally accepted intelligent 
(i.e. "truly" intelligent) system was in sight. 

New Al Winter (1990-1995) 

Major Al projects like the Fifth Generation pro­
ject or the CYC project have not resulted in intel­
ligent or commercially successful products. Ove-
rexpectations backfired again and criticism emer-
ged, with two basic claims: 
(1) There are several indications that intelligence 
can not be easily achieved on digital computers 
with existing approaches and methodologies2. 
(2) Today's computers as well as existing approa­
ches basically do not differ much from those of 30 
years ago (apart from being faster and having bet-
ter storing capacities) and, therefore, are very un-
likely to approach not only human-level but also 
any level of intelligence established by biological 
intelligent systems. 

Possible consequences are profound: for exam-
ple, if computers can not think, then quests for 
true intelligence on computers are as unrealistic 
as searching for perpetuum mobile. Another pos­
sible implication is as follows: if computers can 
nevertheless think and if the brightest minds have 
not been able to achieve intelligence in over 30 

2This viewpoint is close to the one presented by Penrose 
(1990) - we humans would recognise any true intelligence 
although different from the one we possess. Of course, 
there would be opinions that only humans possess intelli­
gence even in the čase when an intelligent computer passed 
ali tests. However, at present there is no such system in 
sight and this is only an imaginary situation. 

years on the best computers available, then they 
must have been trying in the wrong directions. 

Funds for science in general, and Al in particu-
lar are decreasing as a long-term trend. 

Invisible Al plus First Dawn 
Approaching? (1995-...) 

Invisible Al produces working systems, although 
it has disappeared from the first pages of sci-
entific journals. Software engineers are adding 
model-based diagnoses, rule-based modules and 
intelligent-interface agents on top of their conven-
tional systems. Al techniques are invisibly inter-
woven with existing systems. It is not top Al 
science, but it vrorks. 

At the same tirne, bold new ideas are emerging, 
challenging the fundamentals of computer science 
as well as science in general - the Turing machine 
paradigm, GodePs theorem and Church's thesis. 

Pollock (1989) writes: "It represents the dream 
of Al since its infancy, but it is a dream that has 
faded in much of the Al community. This is be-
cause researchers in Al have made less progress 
than anticipated in achieving the dream." 

In the words of Minsky (1991): "the future 
work of mind design will not be much like what 
we do today". 

After this short overview of Al history, the Al 
mega projects FGCS and CYC are analysed in 
Section 2. The strong vs. weak Al issue is pre­
sented in Section 3, showing the basic differences 
between the two approaches and describing pola-
risations between their proponents. The line be-
tween strong and weak Al is proposed along the 
principle of multiple knowledge in Section 4. The 
principle presents a necessary condition for better 
performance and true intelligence in real-life do-
mains. Fundamentals of Al and computer science 
are reexamined through the weak-AI viewpoint 
in Section 5, including the Turing test, Church's 
thesis, GodePs theorem, and Turing machines. 

2 Al Mega-Projects 

2.1 The Fifth Generation Computer 
Systems (FGCS) Project 

The FGCS project (Furukawa 1993; FGCS 1993) 
was the first research project in Japan to embrace 
Mircrnational collaboration and exchange (around 
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100 scientists involved). It created a frenzy in the 
developed countries, fearing that Japan is going 
to take the lead in another central technological 
area - new generation computers. As a result, se­
veral other projects were started, based on logic 
programming (LP), the core of the FGCS project. 
The project was heavih/ based on logic program­
ming to bridge the gap between applications and 
machines. Several (some concurrent) versions of 
Prolog (e.g. KL1) were designed to support di-
fferent levels, from the user-interface to machine 
language. The profound effect of LP is obvious 
even today, as it remains one of the central areas 
of computer research despite recent criticism3. 

The most crucial question posed is: is logic 
appropriate for real-life tasks? Obviously, it has 
several advantages, among them a very strict for-
mal basis, and great expressive power. However, 
while it may be suitable for computers and forma-
lists, it may not be so for humans and intelligent 
systems in general. Arno Penzias says: "Logic is 
cumbersome - that's why humans rarely use it." 
The logical approach effectively assumes that Al 
is a subset of logic and that intelligence and life 
can be captured in a global and consistent logic 
form4. According to logicism (Birnbaum 1992)5, 
knowledge representation is independent of its use 
- quite opposite to the new Al approach based on 
biological and cognitive sciences. 

The progress in both logic programming and Al 
areas as well as in the pursuit of general-purpose 
parallel computers has been modest but certainly 
not mili. Although the Fifth Generation has not 
been able to compete with commercial products, 
the rest of the world listened to it. Japan has alre-
ady launched the Sixth Generation project, based 
on real-life domains, neural networks, optical con-
nections, and heavy parallelism. 

Just recently there have been substantial cuts in LP 
funding in Europe. 

4 One should be careful to distinguish between different 
kinds of logic. Fuzzy logic, logic of informal systems, and 
many-valued logic seem to be quite different from the logi­
cism analysed here. Inductive logic programming (Bratko, 
Muggleton 1995) is another area that should not be iden-
tified with "pure" logic approach. 

Note that logicism cannot be directly identified with 
Nilsson's work (1991). 

2.2 The CYC Project 

The CYC project was started by Dough Lenat 
in 1984 as a ten-year project (Stefik, Smoliar 
1993; Lenat, Guha 1990; Lenat 1995). Sub­
stantial funding was provided by a consortium 
of American companies. It is based on two pre-
mises: that the tirne has come to encode large 
chunks of knowledge into a meta-system encoding 
common-sense knowledge, and that explicitly re-
presented large-scale knowledge will enable a new 
generation of Al systems. This "knowledge is po-
wer" (the Renaissance-era slogan) approach cla-
ims that by using huge amounts of knowledge, 
performance and intelligence of new generation 
Al systems will increase substantially. The inten-
tion is to overcome one of the biggest obstacles of 
existing Al systems, their brittleness (dispersed 
isolated systems working only on carefully chosen 
narrow tasks). 

The CYC project addresses the tremendous 
task of codifying a vast quantity of knowledge 
possessed by a typical human into a workable sy-
stem. Lenat estimates (1995) that they have ente-
red 106 general assertions into CYC's knowledge 
base, using a vocabulary with approximately 105 

atomic terms. CYC is intended to be able to give 
on-line sensible answers to ali sensible queries, not 
just those anticipated at the tirne of knowledge 
entry. Lenat and Guha estimate that this will 
require at least ten million appropriately organi-
zed items of information, including rules and facts 
that describe concepts as abstract as causality 
and mass, as well as specific histographic facts. 
CYC includes a wide range of reasoning facilities, 
including general deduction and analogical infe-
rence. Reasoning is done through argumentation, 
through comparison of pro and con arguments. 

CYC is the first project of its magnitude, and 
therefore represents a pioneering work. Several 
questions and problems were posed for the first 
time. The whole project has strong emphasis 
on pragmatism - to make something workable. 
There are four important design characteristics: 
(1) the language is first-order predicate calculus 
with a series of second-order extensions (2) frames 
are the normal (general) representation for pro-
pošitions, (3) nonmonotonic inferences are made 
only when explicitly sanctioned by the user, and 
(4) knowledge acquisition and inference involve 
different languages between which translation is 
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automatic. 
Ali knowledge in CYC is encoded in the form of 

logical sentences, and not in diagrams, procedu-
res, semantic nets, or neural networks. The me-
chanism for managing uncertainty is not as com-
mon as Bayesian networks or reason maintenance 
systems. One of the interesting aspects in the 
CYC project is the distinction between episte-
mological and heuristic levels of representation. 
A user communicates with CYC in a high level 
epistemological language. CYC translates queries 
and assertions in this language into a lower-level 
heuristic notation, which provides a variety of spe-
cialized inference mechanisms corresponding to 
special syntactic forms. 

According to the authors, success will be achie-
ved if the system works and is used by different in-
stitutions for further research and development of 
new (generation of) expert and knowledge-based 
systems6. 

There have been several strange events related 
to the project from the start. For example, in 
the overview book by Lenat and Guha (1990), 
there are 22 publications, of which 7 were writ-
ten by the head of the project (Lenat). In (Lenat 
1995) there are only 9 publications, and only 4 of 
them were not (co)authored by Lenat. In addi-
tion and as pointed out by one of the anonymous 
referees, CYC's runtime behaviour as well as the 
assessment of the program in (Lenat, Guha 1990) 
is far too brief to be convincing. 

Reviewers of the project (Stefik, Smoliar 1993) 
generally claim that it has not succeeded to the 
point proclaimed by the authors (although the 
project is not fully completed and the final eva-
luation has not been published yet). Lenat even 
claimed that machines will start learning by them-
selves when the CYC computer system becomes 
operational around 1994 (Lenat 1989). In 1995, 
it is becoming clear that nothing like that is go-
ing to happen. According to critics like Dreyfus 
(MTCM 1992), the CYC system is as dull as any 
other program7. 

6 Authors of the project have changed success criteria 
and basic aims a couple of times during the last ten years, 
obviously trying to please public interest and accommodate 
scientific remarks. One of these "commercial" moVes was 
quite probably the astronomic priče of the CYC system. 

7The anonymous referees of the paper seem to share the 
opinion that the paper could be even more critical of the 
project. 

On the other hand, important new understan-
dings were arrived at, some positive and some ne­
gative, which could be very useful for new pro-
jects. In Lenafs words (1995): (CYC) " is not a 
bumb on a log. It saddens me how few software-
related projects I can say that about these days."8 

2.3 CYC and FGCS - A l Dinosaurs? 

The two projects have addressed several fun-
damental questions and come with modest and 
in some areas even with reasonable success. 
CYC has managed to encode a huge amount of 
knowledge and the Fifth Generation project resul-
ted in tens of working computer systems (software 
plus hardware). Implemented systems have wor-
ked better than commercial ones on specific tasks. 
Their apparent commercial failure lies in the fact 
that commercial computer products such as new 
PC's and workstations are not only more general 
and applicable than the products of these huge 
R&D projects, but also the pace of their progress 
was and stili is faster. 

Being a pioneer has its dangers, yet one has 
to do it if we are to get anywhere. After ali, Al 
is constantly changing in search for true discove-
ries, and in a great majority of questionnaires it 
is predicted a great future. 

But in the eyes of public, both CYC and the 
Fifth Generation project have not fulfilled their 
promises. The relative failure revived the old 
hypotheses that classical symbolic Al may not be 
able to achieve intelligence on digital computers. 
In the words of Dreyfus (MTCM 1992): (classical 
symbolic) "Al is finished". 

The analogy with dinosaurs lies in the fact that 
CYC and FGCS represent dominant approaches 
and achievements of the tirne, but their evoluti-
onary line is at best shaky. . "Hairy", weak Al 
systems will probably supplement formal ones. 

In the author's opinion, basic research directi-
ons in the two projects mentioned could not pro-
duce intelligent systems at ali. Both projects have 
adopted the computationally strong-AI approach 
instead of at least combining it with others, e.g. 
cognitive weak-AI. Both projects relied on a one-
sided approach, disregarding the "new school of 

8In my personal opinion, CYC has shown that common-
sense knowledge is essential for any intelligent program. 
That brittle systems stili dominating Al are not related to 
any true intelligence. 
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Al". This new approach claims that to design an 
intelligent system, one has to give it ali proper-
ties of intelligent creatures: unity (i.e. multiple 
knowledge and multistrategy approach), intenti-
onality, consciousness and autonomy along with 
generality and adaptability. However, doing this 
will be much more difficult than previously expec-
ted. 

3 Strong and Weak Al 

3.1 Description 

The terms "weak" and "strong" Al were originally 
defined by Searle (1982); here, we shall introduce 
similar ones based on our viewpoints. 

There are several terms attached to the old and 
stili dominant Al: symbolic, classical, formalistic, 
and strong. The latest alludes to several versions 
of the strong Al thesis. More or less they ali claim 
that it is possible to obtain intelligence by pure 
algorithmic processes regardless of technology or 
architecture. 

By weak Al we denote: 

— the negation of the strong Al thesis 

— adopting knowledge from interdisciplinary 
sciences to upgrade the computational appro­
ach. 

The extreme version of strong Al is termed 
strong strong Al, and the extreme version of weak 
Al weak weak AL Whereas strong strong Al cla­
ims that even thermostats have feelings, weak 
weak Al claims that only humans can have fee­
lings because they are the only beings with souls. 
Both extremes fall out of the scope of this paper. 

There are several analyses of the strong-weak 
relations. Here, we present Sloman's gradations 
of the strong-weak scale (Sloman 1992). His vi-
sion of weak Al is based on architectural upgrades 
of Turing machines. In that sense he tries to avoid 
mentalism and cognitive sciences completely. In-
stead, he tries to upgrade the formalistic Turing-
machines approach with engineering knowledge. 

Sloman denotes the strongest thesis of Al as 
T\. Each version Tn declares something about an 
Undiscovered Algorithm of Intelligence (UAI). T\ 
is the strongest version, claiming that every in-
stantiation of UAI has mental abilities - ali that 
matters are data and algorithms - no time, rich 

execution mechanisms, meaning. However, ab-
stract and statical structures can not have men­
tal abilities. An often quoted example is the book 
of Einstein's brain. Supposedly, this book is no 
different than ali the information and algorithms 
stored in Einstein's head. Indeed, hardly anybody 
would claim that any book itself - be it of Ein­
steini brain, Turing machines or anything else -
is capable of thinking or speaking. A book on its 
own without any execution mechanism can not 
perform any action at ali. 

A slightly modified version of T\ is T\a: every 
time-instantiation of UAI has mental abilities. 
This eliminates the book čase, but has other ob-
vious flaws. For example, if \ve throw a bunch 
of paper sheets into the air we certainly do not 
get anything intelligent even in the čase that by 
chance a new interesting story emerges. The exe-
cution mechanism must be in some sort of stron-
ger causal relation. What about Searle's Chinese 
room? According to Sloman the causal relation 
between a book (formal syntactic structures) and 
Searle (the execution mechanism) is too weak. 
There can be no understanding and intelligence 
in such a loose connection. 

Ti is a further modified version, requiring suffi-
cient reliable links between program and process. 
This is not a strong, but a vague, mild version. 
Sloman analyses the properties of links between 
program and process from the engineering point 
of view. In his view, one algorithm executed on a 
single processor can not emulate intelligence. The 
process must consist of many interleaving and in-
tensively communicating subprocesses. The ar­
chitecture of the Turing machine with one algori­
thm and one processor (executioner) can not pro-
vide intelligence. 

The difference between physical (T4) and vir-
tual (T3) parallelism is similar to that between 
one- and many-processor architectures. One algo­
rithm, however complicated, is not sufficient for 
intelligence. Parallelism has to be at the same 
time fine- and coarse-grained. Minsky, Moravec 
and Sloman have presented various parallel archi­
tectures. 

Parallelism is discussed in greater detail: Tv\ 
enables intelligence with a simulated continuous 
environment. Tp2 needs a serial processor with 
time-sharing. Tpz states that intelligent proper­
ties can be obtained through an appropriate ne-
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twork of computers. 
What if any machine relying on digital techno-

logy is incapable of reproducing intelligence? T5 
declares that at least in some subsystems super-
computing power is necessary, e.g. chemistry or 
biology. According to Sloman, even such disco-
very could be very valuable for focusing further 
research in AL 

Ti: abstract and statical procedures can repro-
duce mind 
Tia'- time instantiation of Ti can have mental abi-
lities 
T2: links between programs and mechanisms 
T3: virtual parallelism 
T4: physical parallelism 
T5: super-computing powers 

Figure 1: Sloman's strong (top) - weak (bot-
tom) Al scale. 

In Figure 1 we can see Sloman's gradation of 
the strong-weak Al paradigms. 

There are several other directions of weak Al 
indicating that the new discipline is intensively 
searching for new discoveries. The general appro-
ach seems promising, yet it is not clear in which 
particular direction the discovery of true intelli­
gence lies. For the time being it seems that new 
Al is strongly related to interdisciplinary sciences, 
especially biological and cognitive sciences. In 
the words of Edelman (1992): "Cognitive science 
is an interdisciplinary effort drawing on psycho-
logy, computer science and artificial intelligence, 
aspects of neurobiology and linguistics, and phi-
losophy." 

3.2 Strong vs. Weak Al 

The strong Al thesis has been attacked by Drey-
fus (1979), Searle (1982), Winograd (1991) , and 
Penrose (Penrose 1989; 1990; 1994). According to 
Sloman (1992), some practitioners of Al believe in 
the strong strong thesis. But that is a reason for 
criticising them, not Al. In any field there are the 
"naive, ill-informed, over-enthusiastic", axcording 
to Sloman. In Sloman's opinion, the main reason 
for such thinking is lack of appropriate trainingS 
in philosophy. 

Fair to say, the author of this paper was not 
much different a couple of years ago. After ali, 

ali students in computer sciences get acquainted 
with Church's thesis and Turing machines. After 
a while technical details fade away, and we are 
left with a frame in our memory declaring that 
anything that can be computed is executable by 
the Turing machine. And that it has been shown 
that the proof that the Turing machine can not 
solve "normal" (computable) problems cannot it-
self be computable (operational). 

Since weak Al opposes the core of not only pre-
dominant Al but also some interpretations of po-
stulates' of computer science in general, it is of 
no great surprise that it has been successfully su-
ppressed until recent years. The ideas of Wino-
grad, Drevfus or Searle were more or less rejected 
in the natural and engineering sciences commu-
nity. But the discussion is becoming less and less 
one-sided in recent years. 

One of the turn-arounds was a discussion re-
garding the Oxford professor Roger Penrose. He 
is one of the most famous mathematical physi-
cists, with several discoveries from physics (e.g. 
regarding black holes with Hawking) and mathe-
matics (e.g. how to tile a plane non-periodically 
with only two shapes). He wrote his first book 
"The Emperors New Mind: Concerning Compu­
ters, Minds, and the Laws of Physics" (1989) be-
cause he was astonished by a TV debate with 
strong Al supporters. The title of the book allu-
des to the emperor's invisible dress - everybody 
admires it, yet there is nothing to be seen. Accor­
ding to Martin Gardner's forevrord, Penrose is 
"the child sitting in the third row, a distance back 
from the leaders of Al, who dares to suggest that 
the emperors of strong Al have no clothes." 

In 1994, Joseph R. Abrahamson describes Pe­
nrose as one of those "who in the name of an}' 
one of a number of gods want to destroy rationa-
lity and science. It is important to be particularly 
aware when one of our attempts, in however sub-
tle a manor, to suggest this magic should supplant 
or even be used to embellish reason and logic." 

Based on old literature citations in Penrose's 
book, the predominantly strong Al community 
harshly attacked Penrose because of his obvious 
lack of knowledge of current Al activities. Even 
more, Penrose's arguments remain debatable even 
inside the weak Al community. 

Yet, the criticism of classical Al failed. In a 
reply to Abrahamson's critique, Cronin (1994) 
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writes: (the old) "Al community has become an 
arcane, closed-minded, and theoretically incestu-
ous field of computer science." Such words cer-
tainly did not encourage friendliness between the 
so antagonized communities; however, they mi-
ght contain at least a grain of truth especially 
regarding close-mindedness9. Angeli (1993, p.15) 
writes: "Do those Al people really think they can 
capture meaning with a logico-mathematical ana-
lysis?" 

In a reply to Cronin, Abrahamson (1994b) 
softens his criteria, posing the limit at rejecting 
nonscientific approaches. In this way he does not 
directly reject mild versions of weak Al. 

There are several well-established researchers in 
weak Al representing the major human factor why 
this new wave of weak Al was not rejected as be-
fore: 

— Francis Crick is probably one of the most 
well-deserved researchers for introducing con-
sciousness as a legitimate subject of science. 
He shared a Nobel Prize for the discovery of 
DNA's structure in 1953. As a neuroscientist, 
he wants to study consciousness through the 
brain's internal structure. 

- Another Nobel Prize winner in weak Al is Ge-
rald M. Edelman. He shared the prize in 1972 
for research on antibodies. He is the author of 
neural Darwinism, a theory promoting com-
petition between groups of neurons as the ba-
sis of awareness and consciousness. 

- Brian D. Josephson won his Nobel Prize in 
1973 for a special quantum effect (Josephson's 
junction). He proposes a unified field theory 
encapsulating mystical and psychic experien-
ces. 

— Maurice W. Wilkes is one of computer-science 
pioneers and the first person ever earning mo-
ney for Al-related events. In the 1992 paper 
in Communications of ACM he presents the 
opinion that classical Al is getting nowhere in 
the last years in the sense that ali computer 
systems today are totally unintelligent, and 
that according to empirical observations in-

It should be noted that Al and closeIy related fields are 
becoming more and more open to discussions. For example, 
see (Clancey 1993; Minsky 1991; Vera, Simon 1993). 

telligence may be out of reach of digital com-
puters. 

4 Principle of Multiple 
Knowledge 

In this section a line delimiting strong from weak 
Al is proposed, using the principle of multiple 
knowledge10 (Gams, Križman 1991). The princi­
ple is seen as an attempt to define an Al analogy 
of the Heisenberg physical principle which divides 
the world of atomic particles from the world of 
macro particles. Previous related work is presen-
ted, e.g. in (Sloman 1992, Minsky 1987, Minsky 
1991, Penrose 1994). Our work is presented in 
(Gams, Karba, Drobnič 1993). 

Knowledge about domain properties can be uti-
lised as a single system (model) or as two or 
more subsystems, each representing a different 
viewpoint on the same problem. Usually, each 
(sub)model represents at least a part of the exter-
nal world. 

The 'general' thesis of multiple knowledge 
states (Gams, Križman 1991): in order to obtain 
better performance in real-life domains, it is ge-
nerally better to construct and combine several 
models representing different viewpoints on the 
same problem than one model alone, if only a re-
asonable combination can be designed. 

'Reasonable' combination means e.g. a com­
bination designed by a human expert. 'Perfor­
mance' means e.g. percentage of successfully sol-
ved tasks. 

The 'strong' thesis of multiple knowledge 
states that multiple semantic models are an in­
tegral and necessary part of intelligence in any 
machine or being. 

In real-life domains a single model can not achi-
eve as good performance as multiple models beca-
use each model tries to fit data and noise accor­
ding to its own structure and therefore tries to 
impose its own view. During the construction 
phase, it is difficult to estimate which of the mo­
dels has imposed the most appropriate structure 
for the unseen data, and different subparts of the 
measurement space are typically more suitable for 
different models. When combining or integrating 

While the majority of sections in this paper represent 
an overview of the strong-weak Al relations, this section 
describes the author's personal opinion and contribution. 
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single models it is usually not too difficult to eli-
minate unsuccessful parts of models. 

The general thesis of multiple knowledge im-
plies that by constructing only one model it is 
practically impossible to achieve the same perfor­
mance as by multiple models. In other vrords, al-
though multiple models can be at any tirne (with 
more or less effort) transformed into one single 
model with the same performance as a set of mo­
dels, in general it is not possible to construct such 
a single model in the process of learning without 
designing multiple models. 

Integration of models after they are designed 
seems not only feasible but also sensible because 
of reduction in storage and classification time. In 
our experiments (Gams, Karba, Drobnič 1993), 
after integration a decrease in complexity and an 
increase in classification accuracy was observed. 

4.1 Confirmations of the Theses 

Attempts to confirm the theses of multiple 
knowledge were performed by: 

- analogy with humans, e.g. expert groups per-
forming better than single experts; analogy 
to the human brain, neural Darvvinism; ana-
logy with the architecture of human brain, 
especially regarding split-brains. A hypothe-
sis is presented that the human race owes its 
success to the rise of multiplicity in their bra-
ins (Gazzaniga 1989; Crick 1994; Brazdil et 
al. 1991; Edelman 1991). 

- Empirical learning, e.g. by analyses of PAC 
learning, which show that a combined system 
works better or the same as the best single 
system (Littlestone, Warmuth 1991); by prac-
tical measurements. 

- Simulated models, indicating that in real-
life domains significant improvements can be 
expected when combining a couple of the best 
systems (Gams, Bohanec, Cestnik 1994). 

- Average-case formal models, indicating that 
in real-world domains combining has to be 
only a little bit better than by chance (success 
rate around 0.6) in order to produce improve­
ments (Gams, Karba, Drobnič 1991). 

- Related cognitive sciences, confirming similar 
ideas as the Principle although not presented 

in a technical form (Dennett 1991). 

— Quantum physics, where the multiple-worlds 
theory (Dewitt 1973) enables computing in 
multiple universes (Deutch 1985; 1992) thus 
representing a possible theoretical backgro-
und for the Principle. 

One-model systems work, but are not as useful 
as many-model systems in real-life domains. If 
top performance matters, combining or integra-
ting several svstems generally seems to be advan-
tageous regardless of additional costs in program-
ming and computer time. 

The strong version of the Principle represents 
one of the necessary conditions for true AL It is 
neither sufficient nor the only necessary condition. 
However, it does substantially narrow the search 
space from single-model to many-model systems. 
For example, over 99% of ali existing computer 
systems and most current Al orientations are ba-
sed on a single model. Intelligent svstems seem to 
have special properties, e.g. multiplicity. These 
systems are very rare among ali the systems. It 
is highly unlikely that we find (construct) them 
when searching in the space of ali possible systems 
without correctly assuming their special proper­
ties. 

The Principle is sometimes getting accepted as 
"everybody-knew-it-all-the-time". Indeed, there 
are many similar ideas around, e.g. Minsky's mul­
tiple representations (1991) or Sloman's parallel 
architectures (1992). Angeli (1993, p. 15) writes: 
"As if every word were not a pocket into which 
now this, now that, now several things at once 
have been put!" Accepting the Principle means 
introducing weak Al and leads to fundamental 
changes in future progress in Al and computer 
science alike.11 

5 Fundamentals of Al and 
Computer Science 

Weak Al reexamines and disputes the soundness 
of several well-established scientific fundamentals: 
Turing's test, GodePs theorem, Church's thesis, 
and the Turing machine. 

nAccording to the Principle, many research directions 
will not produce true intelligence, meaning that efforts, 
achievements and future funding in that areas are doubtful. 
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5.1 Turing ' s Test 

When Turing nearly half a century ago posed his 
famous question "Can computers think", electro-
nic computers were just emerging. The back-bone 
of his test is a detective probabilistic quiz in which 
an interrogator has to be sufHciently sure which of 
the two subjects communicating through a com-
puter interface (terminal plus keyboard) is human 
and which computer, given limited time. Turing 
believed that his test would be passed in around 
50 years when computer storage capacity reached 
109. By then, "an average interrogator would not 
have more than 70 per cent chance of making the 
right identification (as between human and com­
puter) after five minutes of questioning." 

During years, several modifications of Turing's 
test have being proposed, e.g. the total Turing 
test (TTT) in which the subject has to perform 
tasks in the physical world such as moving blocks. 
Other remarks imply that the original test is (1) 
too easy since it is based on typed communica-
tion only, (2) too narrow since it is basically an 
imitation game, (3) too brittle since it can not 
reveal the internal structure of thinking processes 
- Searle's basic claim (Searle 1982), and (4) too 
difficult since no animal and many humans (e.g. 
handicapped) are unable to compete at ali, and 
intelligence can be displayed well below average-
human level. Ali these remarks have their coun-
terarguments, e.g. that (1) communication thro­
ugh typing is more than relevant to evaluate the 
intelligence of a subject, e.g. by the IQ tests, (2) 
such communication allows very rich possibilities 
of questions and themata, (3) it is not possible to 
reveal the human thinking process either, and (4) 
if the Turing test (TT) is too difficult then the li­
mited Turing test (LTT) can be applied. Indeed, 
such is the čase in practical contests held annually 
(Shieber 1994). TT remains probabilistic, appro-
ximate, detective, fundamentalistic, behaviouri-
stic and functional. 

Although the Turing test is heavily analvsed 
and disputed, it remains the most interesting sci-
entific test up to date, offering important impli-
cations. 

The latest analyses of the Turing test were per-
formed by Turing's contemporary Donald Michie 
(1993). In his opinion, there are two obstacles an 
intelligent computer system has to face in order 
to approach passing it: 

1. subarticulacy - the human inability to articu-
late specific activities although performed by 
humans, and 

2. superarticulacy - the ability to explain parti-
cular thought processes in a suitably program-
med machine although being subarticulate in 
humans. 

Regarding the first point, humans can not ar-
ticulate their internal thought processes, which 
are sometimes more transparent to observers 
than to themselves. Therefore, how can human 
knowledge be transformed into computer systems 
if humans are not able to specify it? 

The second point poses another problem. Com­
puter programs are by default traceable - mea-
ning their decisions can be traced and reprodu-
ced. Even systems like neural nets or numeri-
cal procedures can be 'understood' up to a point, 
and simulated by other transparent systems. AH 
computer systems, therefore, have abilities none-
xistent in humans. 

Some of these questions were discussed already 
by Turing. He proposed that machines would 
have to play the imitation game, thus simula-
ting thought processes while inherently being di-. 
fferent. While it is not yet clear whether digital 
machines can achieve intelligence at ali, it is beco-
ming accepted that on digital computers, systems 
simulating human thought processes will be es-
sentially different from humans. In light of this 
conclusion, the claim of connectionists - that su-
fficiently complex neural netvrorks will be effec-
tively the same as the human brain - is hard to 
accept. Even if neural networks were to achieve 
the performance of a human brain, it would be 
possible to extract weights, topology and other 
characteristics of nets. By not being able to do it 
in humans, one (of many) unavoidable substantial 
difference appears. The "End of Innocence" pe­
riod, together with empirical verification, brings 
new insights, displaying the naivete of existing 
approaches and opening new directions. The Tu­
ring test indicates substantial differences between 
formal machines and real-life beings. 

Weak Al is in general satisfied with less than 
passing the Turing test. For example,' artifi-
cial life and evolutionary computing try to si-
mulate rather primitive forms of life. Brooks 
(1991) proposes intelligence without reasoning, 
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low-intelligence robots (insects) without symbo-
lic internal representation of the external world. 
Sloman (1992) finds the Turing machine rather 
unrelated to real life. It represents an artificial 
machine very capable for specific formal tasks 
only. Sloman, Penrose and also people in gene­
ral tend to believe that even animals can display 
certain aspects of intelligence when solving real-
life problems. On the other hand, while machines 
can solve dimcult formal problems which are often 
practically unsolvable even by humans and defi-
nitively unsolvable for ali animals, they are stili 
regarded as totally unintelligent. 

5.2 Church's Thesis and Turing 
Machine 

Around 1930 Church, Godel, Kleene, Post, Turing 
and others tackled questions such as: what can be 
computed and what not, are ali statements either 
provable or not inside a formal system? They 
have come with basic concepts that represent a 
backbone of today's computer science. 

Church's thesis is the assertion that any pro-
cess that is effective or algorithmic in nature de-
fines a mathematical function. These functions 
form a well-defined class, denoted by terms such 
as recursive, A-definable, Turing computable. Ali 
these functions are computable by the Turing ma­
chine, a formal model of computers. Anything 
that a digital or analog computer can compute, 
be it deterministic of probabilistic, is computa­
ble by the abstract Turing machine, given enough 
tirne and space. The problems that the Turing 
machine can not solve are unsolvable for present 
and future formal computer systems as well, be it 
simple P C s , supercomputers or parallel connec-
tionist machines. 

Church's thesis provides the essential founda-
tion for strong AL If computable problems are sol-
vable by the Turing machine then digital compu­
ters can solve them if only they are quick enough. 
Therefore, achieving true intelligence on compu­
ters demands only very fast hardware with su-
fficient memory capabilities and a program. In 
Abrahamson's opinion (1994) it is only a matter 
of time and technological progress. 

In general, there are two major philosophical 
orientations regarding the human mind and our 
world in general: mentalistic and mechanistic. 
Mechanicists regard mind as a material object 

obeying the laws of nature. Mind is a (biologi-
cal, physical . . . ) machine. Mentalists see mental 
states as something bevond formal sciences (mild 
version) or even extramaterial, i.e. outside the 
real world (strong version). Church's thesis im-
plies that its computational essence can not be 
refuted by effective means. It means that the 
opposing hypothesis can not be effective at ali, 
or in other words, it can not be computed in the 
general meaning of the word. 

The strong principle of multiple knowledge col-
lides with the direct explanation of Church's the­
sis. One possible compromise is that although 
intelligent models can be - at least in principle, 
with unknown practical problems - designed and 
executed on any Turing machine, it is not pos­
sible to design intelligent computer programs in 
the form of a single model not consisting of mul­
tiple models. Therefore, if the program on the 
Turing machine is multiple enough and has the ne-
eded additional properties, it could simulate intel­
ligence. However, the principle does not exclude 
the other possibility - that true intelligence can 
not be achieved on Turing machines at ali, that 
stronger computational mechanisms having expli-
cit multiplicity at the core of the computing pro-
cess are necessary. 

Practically ali weak Al researchers in this or 
another way distance their ideas from Church's 
thesis (see Section 3). Neuroscientists (Edelman 
1992) propose their models of the brain. Physi-
cists propose new physical theories enabling new 
computing mechanisms - Penrose proposes micro-
tubules where quantum effects in relation to the 
correct quantum gravity enable supercomputing 
powers. Deutch (1992) proposes a quantum Tu­
ring machine. 

Sloman's viewpoint is similar to the principle 
of multiple knowledge based on the engineering 
architecture of the computing machine. Theore-
tically, it has been proven that the computational 
power of one Turing machine is equal to the power 
of many parallel machines. From the engineering 
point of view this is not the čase. The key is not in 
speed or time, but in the architecture. For exam-
ple, a fatal error in one processor simulating pa­
rallel computing causes malfunction in serial ar­
chitectures yet is usually only a smaller obstacle 
in appropriate parallel hardware architectures. If 
one processor simulates several virtual processors 



STRONG VS. WEAK INTELLIGENCE Informatica 19 (1995) 479-493 489 

then it must constantly check the internal states 
of each parallel process. This disables true asyn-
chronous interaction with complex real-life envi-
ronments. Although the parallel and sequential 
process display equal computational powers, they 
substantially differ in causal relations. 

5.3 Seeing the Truth of GodePs 
Sentence 

In his 1931 paper, Godel showed that for any for­
mal system F broad enough to express the ari-
thmetic of natural numbers, there is a construc-
tion of a formula Pk(k) where k is the GodePs 
number of that formula itself. This well-defmed 
formula is denoted by G(F). G6del's theorem sta­
tes that if F is consistent, there can be no deri-
vation of G (F), and if F is omega-consistent, no 
derivation of ->G(F). Therefore, G(F) is undeci-
dable (unprovable), and the formal system F is 
incomplete. 

Not only that GodePs theorem is formally pro-
vable, computer programs such as SHUNYATA 
(Ammon 1993) have been able to automatically 
reproduce, i.e. rediscover the proof. 

By proving his theorem Godel demolished the 
strong formalistic approach in science. He proved 
that at least one formula (statement, sentence) 
can not be proven inside a formal system (later it 
was found that there are many such statements). 
Therefore, there is no way a formal machine can 
prove a specific sentence constructed by a formal 
(legal) procedure. 

Many relevant researchers including Godel and 
Turing thought that although the proof shows 
that it is not possible to formally prove G (F), 
G{F) is nevertheless true. Of course, no formal 
proof oiG(F) can be constructed inside F since it 
has been formally proven that such a proof does 
not exist. Therefore, how can G(F) be seen as 
true by humans? In 1961 Lucas presented his 
view of this paradoxical situation hypothesising 
what happens if humans use some kind of a for­
mal algorithm UAL This idea was revived and 
extended by Penrose (1989). 

Lucas proposes - in his viewpoint - a valid ma­
thematical procedure for seeing the truth of G (F). 
Namely, if the sentence asserts about itself that 
it is not provable, and the formal proof showed 
that G(F) can not be proved, then the sentence 
is obviously true. Therefore, humans can see at 

G{F) is true. 
Penrose's extension is as follows: even if a hu­

man ušes some kind of (probably very complex) 
formal algorithm UAI executable on a Turing ma­
chine, and we construct a formal GodePs sentence 
G (UAI) for that algorithm, he can see the truth 
of it. Not only Penrose and mathematicians, pro-
bably ali students in natural and technical Scien­
ces can intuitively see (or have that feeling of) the 
truth of Penrose's line of reasoning. Therefore, we 
can assume that ali humans are at least in prin-
ciple able to see it. Furthermore, ali humans use 
similar processes when seeing the truth of GodePs 
sentence. 

Since formal systems are not able to formally 
prove the truth of GodePs sentence, and humans 
can see it, humans do not always apply formal 
algorithms (e.g. UAI). Therefore, since humans 
can in principle reproduce anything that Turing 
machines can, and Turing machines in principle 
can not reproduce ali things humans can (e.g. se­
eing the truth of GodePs sentence), Turing machi­
nes do not possess ali computational powers that 
humans do. Since Turing machines are capable 
of reproducing any computation by digital com-
puters, true intelligence can not be achieved on 
digital computers. 

Among the common objections to this kind of 
reasoning are the following: 

- it is not possible to see that G (F) true since 
this requires proving that F is consistent12; 

- G(F) can be seen to be true by flible and in­
complete procedures (similar to the ones hu­
mans use); 

- GodePs theorem is not related to real life; it 
is j ust a formal matter relevant to formal sy-
stems. Although this means that we have to 
reject deductive semantics as means of descri-
bing human intelligence, we can endorse other 
types of inference, e.g. abductive logic. 

- in a computationally stronger metaF it is po­
ssible to formally prove a statement (theorem) 
provable(metaF, G (F)). 

12As pointed out by Boolos, Chalmers, Daviš and Perlis 
(Penrose 1990), the consistency of complex mathematical 
systems, e.g. ZF systems, can not be proved. This me­
ans that nobody, Turing machines and Penrose included, 
can prove or even see the truth of G6del's sentence in ZF 
systems. 
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The most fundamental denial of Penrose's ar­
gument was presented by Sloman (1992). He 
attacked the core meaning of GodePs theorem: 
G6del's sentence does not mean what it seems to 
mean, and Penrose can not see the truth of G (F) 
since there are models in which it is true and those 
in which it is false. 

The first premise does not seem to be justified 
as shown by Bojadžiev (1995). 

Sloman's claim is based on constructing two 
models: of (F,G(F)) and of (F,^G(F)). This 
is valid since neither G (F) nor -iG(F) are prova-
ble in F, if consistent. Now, nobody can see the 
truth of G(F) in (F,-iG(F)), Penrose concluded. 

However, in models of (F, ->G(F) it is possible 
to establish the truth of ->G(F), therefore, G (F) 
is not unprovable anymore if (F, -^G(F) is consi­
stent. Extended models of F usually do not cor-
respond to classes of universal Turing machines. 
This is a common čase in computational capabi-
lities of systems: stronger mechanisms can often 
answer puzzles in weaker mechanisms, yet have 
their own undecidable questions. Sometimes it is 
even sufficient to apply meta-reasoning inside sy-
stems with the same computational powers, but 
again new undecidable questions can be produ-
ced. For example, it has been formally proven by 
a meta-system that GodePs sentence G (F) is true 
in natural numbers if F is consistent. Therefore, 
the truth of GodePs theorem in certain mathe-
matical models, e.g. in Peano Arithmetic can be 
formally proven outside F if it is consistent. 

Here we shall translate the same problem into 
the world of Turing machines. Namely, GodePs 
theorem corresponds to the halting problem of 
Turing machines, i.e. to the question if a Turing 
machine can in general predict whether a Turing 
machine will stop or not. It has been formally 
proven that the halting problem is in general un­
decidable (Turing 1936; Hopcroft, Ullman 1979). 
Furthermore, the concept of GodePs theorem is 
so fundamental for formal systems that it can be 
reproduced in many forms (see for example Pe­
nrose^ second book (1994)). 

Consider for example an Algol-like procedure U 
which shows that a procedure can not determine 
whether it will stop or not. Reasoning starts with 
the hypothesis that there exists a procedure T 
which can determine for any procedure proč whe-
ther it stops or not. Then we construct a proce­

dure U which includes the procedure T. If U itself 
(self-reference) is given as an input for U, it sho-
uld stop when it should not (i.e. T(U) is false) 
and vice versa. Since the transformation from T 
to U is legal inside the same description mecha-
nism of Turing machines, and U cannot exist, T 
cannot exist. Therefore, a procedure which de-
termines for any procedure whether it will stop 
or not, does not exist. 

procedure U(proc); 
begin 

while T(proc) do; 
write('OK'); 

end; 

The self-referential applicability of U, and the 
halting problem in Turing machines and formal 
programming languages are beyond reasonable 
doubt. Furthermore, high-school students usually 
do not have troubles seeing or understanding the 
paradoxical nature of the halting problem. 

Penrose replies that there is no reason for dea-
ling with unsound or incomplete systems. Under 
this assumption it is possible to see the truth of 
GodePs sentence, it is possible to formally prove it 
outside F, and quite probably possible to dupli-
cate Penrose's semantical reasoning about truth 
by special meta-systems. 

In summary, Penrose's version of the Godel the­
orem and the halting problem represents an inte-
resting hypothesis, however is not proven. On the 
other hand, several attempts to formally disprove 
Penrose's version have been formally proven to be 
wrong. 

6 Discussion 

The history of Al teaches us that the only con-
stant is its ever-changing nature. In recent years 
new, fresh ideas are coming from interdisciplinary 
sciences - neurobiology, philosophy, cognitive Sci­
ences. In this way, the computational approaches 
are being enriched and upgraded. 

Weak Al reexamines basic postulates of Al and 
computer science. In regard to Turing's test, pro-
ponents of weak Al see the test as an indicator of 
important differences between humans and com-
puters. Computer systems can explain their line 
of reasoning in detail. Humans do not know how 
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reasoning is performed in their heads and do not 
know how to reveal (transplant) that to compu­
ters. Just passing the test is not sufficient to be 
accepted as intelligent. A computer chess pro­
gram beating most humans is not intelligent al-
though it performs brilliantlv compared to an ave-
rage human. Animals are not capable of plaving 
chess, yet some of them show properties of intel­
ligence while computers are regarded as totallv 
unintelligent. 

By-passing Church's tkesis, weak Al does not 
accept that one Turing machine performing one 
algorithm is sufficient to achieve intelligence. The 
principle of multiple knotvledge proposes multiple-
model structures as one of necessary conditions 
for intelligent systems. Extreme viewpoints see 
digital computers as incapable of achieving intel­
ligence. 

There are several indications that the human 
brain is computationally more powerful than digi­
tal computers, e.g. observed through the progress 
of computer power and the lack of computer intel­
ligence. Theoretical analyses are often performed 
through the Godel theorem and halting problem. 

The principle of multiple knowledge dictates a 
step-up of complexity from one optimal model 
to an optimal combination of models. It upgra-
des the centuries old Occam's Razor indicating 
that the Razor can be even misleading wh,en blin-
dly applied. However, an upgraded version of 
Occam's Razor might be valid in the multiple-
model world. Similarly, human knowledge is 
seen as significantly more complex than curren-
tly expected. Multiple models introduce an addi-
tional level of combinatorial explosion, thus ma-
king knowledge less transparent, more difficult to 
store, and more powerful. 

Clashes between strong and weak Al propo-
nents may help sift new ideas and eliminate unso-
und attempts. Weak Al is stili in the brainstor-
ming state - lots of new ideas and not many con-
firmed achievements. Weak Al is getting accep­
ted as another discipline researching consciou-
sness and relations to computers. 8imilarly, most 
of new nonsymbolic approaches in Al were rejec-
ted at first and then accepted, be it neural ne-
tworks or evolutionary computing. 

How can weak Al be proven wrong? The sim-
plest proof would be constructive - to design a 
single-model computer system capable of true in­

telligent behaviour. Note that just designing an 
intelligent computer system executable on a Tu­
ring machine is not enough. 

How can strong Al be proven wrong? There 
are several possibilities. For example, it is eno­
ugh that the Penrose's hypothesis about G6del's 
theorem gets proven. Or that the principle of mul­
tiple knowledge gets proven. Or that neurosci-
ence produces substantial new discoveries about 
the human brain. Or that a new physical theory 
gets proven. Or ... 

Today, the house of science is based on empi-
rical validation and formal verification. Formal 
verification is well within the domain of Turing 
computable functions. The fear that weak Al 
is attacking the core of science by reevaluating 
Church's thesis and other scientific postulates is 
not grounded. For example, if Penrose's ideas get 
accepted, meaning that unprovable true functions 
are computable by humans but not by computers, 
scientific knowledge will essentially expand. Sci­
ence will expand even if the principle of multi­
ple knowledge gets accepted. Instead of relying 
on formal models, other aspects will gain promi-
nence, e.g. engineering or cognitive enrichments 
of formal sciences. 
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This paper argues that artificial intelligence has failed to address the whole problem 
of common sense, and that this is the cause of a recent stagnation in the field. The 
big gap is in common sense—or naive—psychology, our natural human ability to see 
one another as minds rather than as bodies. This is especially important to artificial 
intelligence which must eventually enable us humans to see computers not as grey boxes, 
but as minds. The paper proposes that artificial intelligence study exactly this—what 
is going on in people's heads that makes them see others as having minds. 

1 Introduction: from naive 
phvsics to naive psychology 

Ten years ago, Hayes published the "Second naive 
physics manifesto" (Hayes, 1985b). Hayes propo-
sed that we "put away childish things by building 
large-scale forrnalisations," beginning with "our 
knowledge of the everyday phvsical world." He, 
and others, have since put a lot of effort into deve-
loping models of our common sense understanding 
of the phvsical world. 

But common sense has been a big problem for 
artificial intelligence, and despite the attempts of 
many brave souls (e.g. Hayes, McCarthy, McDer-
mott, and Lenat) it hasn't really vielded: "the 
common sense knowledge problem has blocked 
ali progress in theoretical artificial intelligence" 
(Drevfus & Dreyfus, 1988). This is due to deep te-
chnical and methodological problems which have 
arisen in the study of common sense, most fa-
mous of which is perhaps the "frame problem" 
(McCarthy & Hayes, 1969). 

This paper will present a position orthogonal 
to that of Hayes. Hayes' initiative clarified many 
of the issues associated with common sense, and 
other developments in comparative and develop-
mental psychology have further highlighted the 
apparentb/ fundamental nature of naive physics 

but they have also revealed a deeper and bi-
gger problem than that of naive phvsics—naive 
psychology. 

Naive psychology (Clark, 1987, Hayes, 1985b) 
can be thought of as the natural human ability 
to infer and reason about other people's mental 
states—the faculty that normal adult people have 
which, in short, enables them to see one another 
as minds rather than bodies. This is an issue that 
artificial intelligence must also address. Although 
people see one another as minds not simply bo­
dies, they don't see computers as minds in the 
same way (Caporael, 1986). To overcome this 
barrier, we humans must be able to see minds 
in artifacts, to ascribe mental states to artificial 
intelligences in the same way that we do to people. 

There is evidence that a lot of human intelli­
gence is 'Machiavellian' (Byrne k. Whiten, 1988) 
in the way people use it to outwit each other and 
to recognise and manipulate one another's mental 
states; our social environments are considerably 
more complex than our physical ones. Survival 
in these social environments require us to become 
"natural psychologists" (Humphrev, 1984), capa-
ble of recognising and reasoning about one ano­
ther^ mental states. Naive psychology is at the 
core of our understanding of the world. Hum-
phrey even suggests that naive phvsics may be 
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itself derived from a leaky naive psychology. 

At the heart of this proposal is a methodolo-
gical inversion. Usually, artificial intelligence is 
thought of as the 'science of smart behaviour'— 
building systems which behave in a way that se-
ems 'intelligent.' This leads to ali sorts of navel-
oriented definitions and operational interpretati-
ons of the word 'intelligent,' none of which help 
to find intelligence. The reason they don't help 
is they miss the point: a definition of intelligence 
becomes part of science, but doesn't have any im-
pact where it counts, which is on everyday human 
naive psychology. Artificial intelligence also needs 
to study naive psychology to find out what is go-
ing on in my head to make me see other people as 
having minds—and it is this that is an inversion of 
the conventional approach. There should be two 
parts to the study of intelligence: the smart beha­
viour we're ali familiar with, but also our ability 
to recognise that behaviour as smart. 

So the sin of artificial intelligence is a sin of 
omission—it hasn't properly addressed the second 
part of th'e problem, that of naive psychology. Na­
ive psychology is not more important or signifi-
cant than other abilities, but it is equally an es-
sential element of human cognition, and, further, 
it is an important part of how we recognise in­
telligence. It should become a topic for serious 
research in artificial intelligence. 

Naive psychology isn't new to artificial intelli­
gence, which has already tried a number of appro-
aches to the problem. Perhaps the most successful 
have been the axiomatic formalisms (e.g. Cohen 
k. Levesque, 1990), which represent naive psycho-
logy as the ability to make inferences about a set 
of beliefs, desires, and intentions, corresponding 
to an agenfs mental states. These axiomatic for-
mal approaches to naive psychology are usually 
based on some kind of modal logic. These logics 
enable representation and reasoning about some-
one's mental states by making these states unob­
servable, so agents can believe something which 
other people know to be false, for example. 

But representational approaches to naive 
psychology also have their critics (e.g. McDer-
mott, 1987). McDermotfs criticism is that the 
representations and the use of those representati-
ons cannot be truly separated, as they are separa-
ted in formalisms based on pure logic. But besides 
this criticism, there are deeper ones—are mental 

states really best described in terms of beliefs, de­
sires, and intentions? (Dennett, 1987). This is an 
assumption, and while it works well a lot of the 
time, there are some mental states which fit une-
asily in this model (e.g. moods, hostility.) 

The most widely voiced criticisms of explicit re­
presentations in artificial intelligence haven't re-
ally had much impact in this field, because they 
have to deal with something rare in physical envi-
ronments, this opacity that people have. Both si­
tuated and connectionist approaches break down 
with the opaque nature of other agents. While 
these approaches are often good at dealing with 
observables, they are less good at dealing with 
the unobservable nature of other agenfs mental 
states. This really does seem to require some­
thing which does the job of a theory—and this 
is what representations are good at. If represen­
tations had to become situated to deal with the 
physical world, situated approaches have to be­
come representational to deal with the psycholo-
gical one. 

There has been significant work in this field, 
but perhaps artificial intelligence just hasn't re-
alised the scale or importance of the problem. 
Ali the major philosophical stumbling blocks of 
artificial intelligence (e.g. consciousness, intenti-
onality) can be traced to our inability to under-
stand when to ascribe mental states to computers 
or other artifacts. This doesn't mean that naive 
psychology is logicalh/ prior to these problems, 
but that it is methodologicalh/ prior. 

Within artificial intelligence, there is often an 
assumption that there is something which can be 
called 'intelligence,' but which is very different 
from what we call 'intelligence' in people. We 
can call this the 'alien intelligence hypothesis.' 
It is entirely possible that the alien intelligence 
hypothesis is false. If the complex bag of phe-
nomena we call 'intelligence' is something people 
use to interact with each other in human societies, 
an alien intelligence which didn't interact in the 
same way might not be seen by us as intelligence. 
And supposing alien intelligence did exist, could 
we recognise it without appealing to our human 
recognition of intelligence? Perhaps systems are 
just seen as intelligent in proportion to how well 
we can understand their patterns of behaviour. 
On this principle, computers (along with lettuce 
and beer cans) could already be intelligent, we 
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just can't recognise them as such. 
We can, of course, take McCarthy's stance: 

"this is artificial intelligence and so we don't čare 
if it's psychologically real" (Kolata, 1982). But 
as soon as we talk about minds we are talking 
about something psychological, so to compare 
minds and computers will inevitably be partly a 
psychological question. The actual nature of the 
distinction between human intelligence and artifi­
cial intelligence does matter. We—the people who 
are designing and evaluating these machines—are 
people with relatively uniform cultures, societies, 
and biologies—at least when compared to ma­
chines. Perhaps, as Searle (1992) claims, these 
factors affect human mental phenomena. If so, 
it would be surprising if they didn't also affect 
our recognition and interpretation of those phe­
nomena. 

The problem is this persistent anthropocentri-
city — we can't step outside our humanity al-
though we perpetually see things as if they are 
independent of us. For physics that doesn't usu-
ally matter, but for psychological concepts such as 
'intelligence,' we must remember that we are hu­
man. We need to discover what it is to be human 
before we can truly know where the differences 
between people and machines are. 

2 Models for naive psychology 

In looking at what is going on our heads when we 
see people as minds rather than as bodies, some 
of the most useful tools are models of the process 
of ascribing mental states to other systems. In 
this section, three candidate models will be exa-
mined in a little more detail, anthropomorphism, 
the simulation model, and the theory model. 

1. Anthropomorphism. One way of ascribing 
mental states to a system is just to anthropomor-
phise it—to ascribe it human mental characteri-
stics without reference to their real competences, 
but anthropomorphism is a complex and subtle 
phenomenon (Eddy et al., 1993) and not one that 
has been studied much. Eddy et al. (1993) lo-
oked at peopkVs tendency to anthropomorphise 
animals, and suggest that there are two primary 
mechanisms involved: "people are likely to attri-
bute similar experiences and cognitive abilities to 
other animals based on (1) the degree of physi-

cal similarity between themselves and the species 
in question (e.g. primates,) and (2) the degree to . 
which they have formed an attachment bond with 
a particular animal (e.g. dogs and cats)" (Eddy et 
al., 1993). 

Computers don't score too well on physical si-
milarity, so this is likely to form a persistent bias 
against people ascribing mental states to them, 
unless we build them with a physical resemblance 
to us. Familiarity, fortunately, offers us a way 
out of this trap—we can in principle learn to see 
computers as minds. 

There are several possible theories of anthro­
pomorphism. Caporael (1986) suggests that it is 
a '"default schema' applied to non-social objects, 
one that is abandoned or modified in the face of 
contradictory evidence," but the evidence is aga­
inst either animals or computers really being 'non-
social' and familiarity can increase rather than de-
crease the tendency to anthropomorphise (Eddy 
et al., 1993). Alternativelv, perhaps our tendency 
to anthropomorphise is really a disposition to take 
the "intentional stance" (Dennett, 1971), to see 
others as minds rather than as bodies. If, in-
stead of taking the intentional stance, the physical 
stance is taken, the very different faculty of na­
ive physics will be deployed. Anthropomorphism, 
then, determines whether or not an intentional 
stance will be taken, but it is not truly part of 
the stance itself. It plays the role of the ratio-
nality assumption in Dennett's model—although 
clearly anthropomorphism isn't the same thing as 
rationalitv—and the suggestion that the rationa-
lity assumption is "pre-theoretic" (Dennett, 1971) 
does allow us to interpret it as psychological ra­
ther than philosophical. 

2. Simulation. Sometimes prediction of other 
people's mental states is better modelled by 'si-
mulating' the other person, by pretending to be 
them, and to look at the world from their point 
of view. Clark suggests that a similar simulation 
process could even account for naive physics— 
perhaps Hayes' paper on liquids could be recast as 
a kind of simulation, and as far as the predictions 
are concerned, vievved externally, there needn't 
be any difference. For naive psychology, there is 
evidence that for some predictions—particularly 
those involving affective states—an. ability to si-
mulate other people works well (Hobson, 1993, 
Perner, 1991). Representational artificial intelli-
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gence does simulation ali the tirne—it's j ust ano-
ther kind of hypothetical reasoning. Simulation, 
or taking another person's role, is a way that we 
can understand some aspects of another's men­
tal states; for instance, to recognise somebody's 
ignorance. 

So simulation is another way that we can rea­
son about another's mental states. It works ra-
ther better for affective than for cognitive states 
(Hobson, 1993) but doesn't deal with everything: 
there are some tasks which children actually an-
swer differently, but which they ought to answer 
the same if they use simulation to get the answer. 
Something is left over, and that something is a 
(theory' of mind—not a theory in the scientific 
sense (Clark, 1987, Searle, 1992)—simply a the-
ory in the sense of a set of tools for thinking about 
the unobservables of another person's mental sta­
tes. 

3. Theory. This theory aspect of prediction is 
that aspect which is most similar to the repre-
sentational artificial intelligence. Some (e.g. Fo-
dor) even take it as the complete answer to na-
ive psychology, but this stretches it too far; a 
strong representational theory of mind is subject 
to too many philosophical and evolutionary objec-
tions (Dennett, 1987), and fails to account for ali 
phenomena (Hobson, 1993). But just because a 
representational theory of mind can't provide a 
complete naive psychology doesn't mean that it 
doesn't form part of a complete naive psychology. 
The theory theory, as it is currently interpreted 
in psychology, describes naive psychology as a set 
of rules for dealing with the unobservable men­
tal states of others. Its best analogue in artificial 
intelligence, therefore, would be a body of laws 
and heuristics for guessing at one other's mental 
states. 

In artificial intelligence, the best programs for 
playing games like chess (and games are often 
a good metaphor for human social interaction) 
use a subtle mixture of simulation (look ahead) 
and theory (heuristics) because neither alone is 
sufficient. In principle, of course, a heuristic the-
ory can generate a simulation and in practice an 
actual system—such as a trained connectionist 
netvrork—might show aspects of theory and simu­
lation under different circumstances, just as elec-
trons can behave like particles or like waves. 

These three models—anthropomorphism, si­
mulation, and theory—represent different aspects 
of naive psychology rather than the whole, but 
they can be combined to create a complex com-
posite model. When trying to predict or reason 
about the behaviour of a system, a complex of dis-
positions, one of which is anthropomorphism, se-
lects a stance with respect to that system. These 
stances deploy natural faculties—so when dealing 
with a physical system, naive physics is applied, 
but for a psychological system, naive psychology 
is applied. Often, both stances could in principle 
be taken to the same system (even a thermostat, 
and although in practice there seems to be a mu-
tual exclusion between the different stances (Den­
nett, 1971) this is where individual differences in 
the dispositions and the social context can influ-
ence how different people see the same system. 

A mind will only be seen in the system from 
the intentional stance (Dennett, 1971)—that se-
lected by anthropomorphism—and within the in­
tentional stance as a whole there are different sub-
stances which depend on the access to the other's 
mental states that is required. If we are to 'simu-
late' it—to see what it is like to be the system— 
that can only happen if the system is believed to 
have the right kind of mechanism. The theory 
stance, on the other hand, is better at dealing 
with external, behavioural, questions. 

How well do these models do? Although they 
barely hint at the true complexity of naive psycho-
logy, they do have some predictive power—one in­
stance of this is in Woolgar's (1985) description 
of a device which bolts on to a video recorder and 
splices out advertisements during recording. On 
one level this is clearly intelligent behaviour, but 
if you then read the instructions, and they teli 
you that it actually works by detecting a parti-
cular signal in the transmission, this changes the 
ascription of intelligence, and "redefines and thus 
reserves the attribute of 'intelligence' for some fu-
ture assessment of performance" (Woolgar, 1985). 
The change in our knowledge affects the stance 
that we take—affects whether or not we see the 
system from the intentional stance. 

This integrated model shows a sensitivity to 
physical form and our knowledge of the system's 
design which is perhaps rather distressing for 
strong artificial intelligence. It seems to show not 
that it is impossible in principle, but that it is 
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just very hard for people to see things which don't 
physically, structurally, and behaviourally resem-
ble people as being intelligent. Perhaps Brooks 
and Stein (1993) were right to design Cog with a 
humanoid form, not for any technical reason, but 
simply because it will make it easier for us to see 
Cog as an intelligent system. 

3 Conclusiohs 

Hayes cohcluded his "Second naive physics ma-
nifesto" (1985b) with a discussion on the impor-
tance of common sense for artificial intelligence. 
The reasons for this proposal are orthogonal to 
his, so the justifications are different. 

Of ali the naive disciplines proposed by Hayes 
and others, naive psychology is the only one that 
is obviously specifically human, but in ali this 
work there is an implicit anthropocentricity. Ri­
ght back to McCarthy's 1959 proposal of common 
sense, it was assumed that the common sense to 
be used is human common sense. 

It is entirely possible that intelligent behaviour 
is distinguished not by an objective criterion of 
success, rationalitv, adaptiveness, or what have 
you, but by a subjective criterion of compatibi-
lity with our human naive psychology. At the 
core there was a simple problem: we forgot about 
anthropocentricity and took too much of what we 
intuitively felt to be right as being the truth. Ste-
pping outside our humanity is something that per­
haps we can never do in principle, but that doesn't 
mean that we shouldn't try—not by a regress to 
the Skinnerian vahtage point (with apologies to 
Dennett, 1987) denying human mentalistic terms 
completely, but by indirectly looking at the effects 
of the ultimate unobservable, our anthropocentric 
point of view. 

There is no strong methodological component 
to this proposal, because the project is just too 
important to be dismissed as a project merely on 
methodological grounds—and the same goes for 
naive physics. Dreyfus and Dreyfus claim, for 
example, that "the problem of findifig a theory 
of comrfioh sense physics is insoluble because the 
domain has no theoretical structure" (Dreyfus & 
Dreyfus, 1988, original emphasis). This depends 
oh what you want from the theory. Even if naive 
physics can't be described fully by reference to 
"abstract laws," that doesn't mean that we sho-

uld give up. In the real world, theories aren't 
just right or wrong, but provide a greater or les-
ser measure of predictive competence—and even 
a partially correct theory is better than none. 

This proposal is, like Hayes', a descriptive one: 
the construction of broad models of naive psycho-
logy. At least to start with, a broad and shallow 
approach is needed to sketch out naive psycho-
logy; it is not yet anywhere near as clearly struc-
tured into topics as Hayes presents naive physics. 
Pushing hard on one topic, like an air bubble un-
der the wallpaper, might just move the problems 
somewhere else. 

The problems that artificial intelligence is 
tackling are big ones—big enough to make some 
think that there are fundamental and possibly ir-
retrievable flaws either in the discipline or even 
in the whole of science. This is an over-reaction; 
certainly our anthropocentricity is a big problem, 
but not one that is inaccessible in principle to sci­
ence. 

At the end of the day, we can ali recognise 
intelligent behaviour when we see it. When we 
see people, we see them as minds, not just as 
bodies. When we see computers, we don't see 
minds. The difference between people and com­
puters lies in ourselves as well as in them, and 
if we are to overcome this fundamental anthro­
pocentric asymmetry, artificial intelligence must 
join up with psychology at least the extent of fin-
ding when and how we see minds. It must begin 
to study naive psychology. 
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The task of somehow putting mind into a computer is one that has been pursued by 
artificial intelligence researchers for decades, and though we are getting closer, we have 
not caught it yet. Mind is an incredibly complex and poorly understood thing, but 
we should not let this stop us from continuing to strive toward the goal of intelligent 
computers. Two issues that are essential to this endeavor are knowledge and learning. 
These form the basis of human intelligence, and most people believe they are fundamental 
to achieving similar intelligence in computers. This paper explores issues surrounding 
knowledge acquisition and learning in intelligent artificial systems in light ofboth current 
philosophies of mind and the present state of artiBcial intelligence research. Its scope 
ranges from the mundane to the (almost) outlandish, with the goal of stimulating serious 
thought about where we are, where we would like to go, and how to get there in our 
attempts to render an intelligence in silicon 

1 Introduction 

The ultimate goal of artificial intelligence (Al) 
is to somehow implement a very wonderful and 
complex thing we call "mind" within the confmes 
of an artificial computer. Even if undaunted by 
the incredible paucity of our own understanding 
of mind, we may nonetheless find ourselves put 
off by the sheer complexity and size we usually 
imagine this machinery must entail. Despite our 
inability to satisfactorily define intelligence, one 
component we generally feel must be present is 
a large store of knoivledge about every aspect of 
the world. However, it helps us little to decide, 
"Let us put everything we know into a computer." 
How do we represent this knowledge? How do we 
refine it? And how do we get it into the system? 
Surely we do not have time to put everything in 
by hand! 

Perhaps our systems can use learning to acquire 
and modify the knowledge they need largely on 
their own. Instead of trying to stuff our own bra-
ins into the computer one bit at a time (Figure 1), 
perhaps we can write programs that let the com­
puters learn for themselves what they need to 
know. Learning is, after aH, the way humans fill 
their own brains with knowledge. But how much 
can we gain from human analogies? Is psycho-
logical plausibility a necessity or a curse? Will 
our machines need emotional motivation in order 
to be truly successful learners? The questions, as 
always, come thick and fast. 

In this paper we will take a moment to examine 
these issues of knowledge and learning in the light 
of both current philosophies of mind and the pre­
sent state of artificial intelligence research. It is 
not often, in the world of technical papers, that we 
allow our thought processes to roam free. That is 
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Figure 1: Figure 2: 

ting the knowledge acquisition process through 
machine learning (ML) are speed and accuracy of 
rule construction. However, to succeed in this en-
deavor we must somehow develop ML techniques 
which are as good at creating sets of rules for 
specific domains as an expert human knowledge 
engineer. This j ust pushes the problem of emula-
ting expert behavior one level deeper: in trying to 
avoid hand coding a program that embodies the 
knowledge of a domain expert, we find we must 
now hand code a program that embodies that of 
a knowledge engineer! 

We may stili manage to tackle this problem if 
we can find some way to make the knowledge en­
gineer^ knowledge easier to program than the do­
main expert's. Humans use their knowledge and 
intelligence to construct expert system knowledge 
bases. Our comparativeb/ dim-witted computers' 
only chance to overcome their own lack of insi-
ght is their blinding speed and tireless persistence 
(Figure 2) and their utter disdain for the human 
propensities toward fatigue, boredom, distraction, 
careless mistakes, and other such egregious vices. 
Since these are the computer's fortes, we must 
exploit them. 

For instance, we can have our machines search 
very large numbers of possible rules and rule fra-
gments to find a good set. Whereas a human 
knowledge engineer examines only a few alterna­
tive rules, banking on the domain expert's deep 
understanding of the problem to insure a good 
solution, the less knowledgeable computer must 
succeed through perseverance. The FoiL system 
[38] is one example of a large-scale search appro-

the main goal of this paper—to visit some of the 
wild pastures of imagination that spawned the fi-
eld of Al in the first plače. We hear these days 
that ali those far-flung dreams of intelligent com­
puters from decades ago are stili as out of reach as 
ever. We spend too much of our tirne being apolo-
getic, trying to present Al advances in as narrow 
a scope as possible, almost as if we wish them to 
appear insignificant in order to avoid accusations 
of chasing hopeless fantasies. It is indeed impor-
tant to keep a firm grip on reality—I do not think 
anyone would argue otherwise. But if we are truly 
to achieve wonders, we must first allow ourselves 
to imagine them. I hope you will join me in doing 
so! 

2 How Should Our Systems 
Acquire Knowledge? 

The question of how to get knowledge into our 
systems is a key issue in building intelligences. 
Most expert systems currently acquire knowledge 
through painstaking hand programming by a 
knowledge engineer working closely with a domain 
expert. A major goal of Al is to produce machi­
nes that perform intelligent tasks, so a dedicated 
Al researcher may suggest that the best answer 
to our question, "Hov/ should our systems acquire 
knowledge?" is, "Why, through machine learning, 
of course!" Some obvious advantages of automa-
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ach to construct predicate calculus rules descri-
bing a domain. Part of my own recent work [8, 9] 
has concentrated on high-speed parallel search 
methods to sift through hundreds of thousands 
of potentially useful features for representations 
that make learning easier. 

Computers have an advantage over people in 
dealing with huge volumes of data. In many cases 
a problem is too complex and poorly understood 
for people to construct effective rules to solve it. 
Ali that is really available is a large set of raw 
data. Object recognition, image understanding, 
speech production, argument construction, com-
plex motor skills, breast cancer prognosis, and 
protein folding prediction are ali real-world pro-
blems that fit this description. Some of these are 
problems of perception and action that humans 
accomplish effortlessly, yet we cannot articulate 
how we do so. Others are more abstract problems 
of interest to science and medicine. Ali of them 
have been the subject of machine learning rese-
arch (e.g. [7, 25, 35, 37, 40, 44, 45, 46]). 

This is not to say we should require our machi-
nes to learn absolutely everything from scratch. 
We should certainly take advantage of existing 
domain knowledge, both low- and high-level, to 
the extent we can afford it. There is no reason to 
learn logical inference rules from first principles 
when we can easily code them into a knowledge 
base. Likewise, if a domain expert can provide 
partial sets of high-level rules or other advice, this 
will jump-start the svstem and reduce the amount 
learning time and data required [21, 34, 50]. Gui-
dance from domain knowledge may also be crucial 
to prevent so-called "oversearching" [39], or the 
discovery of spurious correlations during learning. 
Unfortunately, human expertise is too expensive 
to allow us to hand code everything in a system 
of the size and complexity needed for intelligence. 
The builders of the monumental CYC knowledge 
system, though willing to invest large amounts of 
effort to hand code much of the knowledge, no-
netheless advocated automating this process as 
much as possible through ML techniques even 
from the early stages [19], and they continued 
to add learning mechanisms over the years [17]. 
As the intelhgent systems we design become in-
creasingly sophisticated, we have no choice but 
to adopt machine learning techniques as facilita-
tors. To reach human-level intelligence, an arti-

ficial system must be enormously more complex 
than anything we have created to date. The jo-
urney to machine intelligence will be shortest if 
we continue to develop and apply the powers of 
machine learning on this quest. 

3 What Form Should the 
Knowledge Take? 

A serious problem with using ML for knowledge 
acquisition is what Michalski terms the 
"knowledge ratification bottleneck" [23]. That is, 
for applications in which malfunction could have 
costly, critical, or even life-threatening consequen-
ces, any knowledge a system ušes must be clo-
sely examined for correctness. It is difficult eno-
ugh to do this with large knowledge bases writ-
ten by humans; the problem is only compounded 
if they are cobbjed together automatically by a 
machine. Michalski contends that in such situa-
tions, the explanation capabilities of ML systems 
must be well developed, and the knowledge repre-
sentation used should be comprehensible to hu­
mans. These constraints seem to favor the sym-
bolic, rule-like representations we have spoken of 
so far over other alternatives like connectionism. 

Or do they? Are huge rule bases of the scale 
needed to simulate human-level intelligence any 
more comprehensible than artificial neural ne-
tworks (ANNs)? On the other hand, why can 
not connectionist representations be made as un-
derstandable as rules? Mitchell and Thrun [25] 
develop ANNs which model various primitive ro­
bot actions and then treat these netvrorks as if 
they were rules. Others have developed methods 
that allow the extraction of symbolic rules from 
trained neural networks [10, 13, 14, 42, 48, 49], so 
the two representation styles are not as irreconci-
lable as they look. 

The question of what form knowledge should 
be stored in relates to the question discussed in 
the previous section of how a system acquires 
knowledge. If learning is used to do this, many di-
fferent internal representations are possible, rules 
and ANNs among them. The hand coding appro-
ach, in which humans construct the knowledge 
base, generalh/ favors a symbolic storage represen­
tation. However, there exist machine learning sy-
stems that can store and refine initially symbdlic 
knowledge in connectionist ANNs (see Section 5), 
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so there is no reason hand-coded knowledge must 
remain in its original form. 

There are arguments other than understandabi-
lity for preferring symbolic knowledge structures. 
Higher-level human cognitive processes operate in 
an apparently symbolic fashion, perhaps sugge-
sting we should use similar approaches in compu-
ters. However, a connectionist might reply that 
the perceived symbolic nature of our reasoning 
processes is an illusion, as the brain is a connec­
tionist device. A third person might dismiss both 
of these arguments, claiming it does not matter 
how humans solve problems if our goal is to bu-
ild machines to do the same. The classic conflicts 
over psychological and physiological plausibility 
persist. Let us explore these conflicts further in 
the next section. 

4 Psychological Plausibility: 
Friend or Foe? 

A common argument against using rules to de-
scribe knowledge is that of psychological (and so-
metimes physiological) plausibility. The brain is 
physically a connectionist device. It is tempting 
thus to equate psychological plausibility with con­
nectionist implementations, but in fact it is less 
clear how much the details of abstract cognition 
depend directly on the connectionist nature of the 
hardware. It is not unknown for discussions of 
these questions to become quite animated, espe-
cially as there seem to be almost as many points 
of view as there are interested parties. An ima-
ginary conversation may help us to better under-
stand the extent of the rifts that eKist.1 

Engineer: Psychological plausibility is just a 
meaningless hoop to jump through, com-
pletely superfluous to our goal of building 
thinking machines! It's hard enough to get 
anything like intelligence out of a computer 
even without a bunch of arbitrary anthropo-
centric constraints. Nbw you're telling me you 
won't be satisfied with mere human-like intel­
ligence, but you insist on human-structured 
intelligence to boot! Next you'll demand an-
droid bodies, vat-grown neural brains, and 
probably even—emotions! We should just go 

1Of course, there are many more points of view within 
a given field than these caricatures present. 

with what works regardless of what it looks 
like. 

Psvchologist: How can you take such a position 
when the human mind is our only example of 
advanced intelligence? Only incredible arro-
gance would let us imagine we can start from 
scratch, ignoring everything psychology has 
to teli us, and do a better job. If we ever want 
our systems to speak to us as peers, they will 
have to understand things the same way we 
do. It is sheer folly to attempt a computer in­
telligence that conflicts with our accumulated 
body of psychological knowledge. 

Neurobiologist: (Clapping hands.) Bravo! But 
the psychologist does not go far enough. I'll 
grant that we know a few things about hu­
man cognition, but we have even more speci-
fic knowledge about the hardware that imple-
ments it. We know exactly how neurons fire, 
what chemicals they use to transmit signals 
across synapses—even their patterns of con-
nection in some parts of the brain. AI's best 
bet is to simulate this hardware as closely as 
possible, as it is the only thing we thing we 
have a concrete description of. 

Engineer: Ah ha! (Dons a srnug look.) I knew 
someone would want vat-grown brains! 

Philosopher: (With a sly look.) Hold on! Why 
are we limiting our vision to puny, human-like 
machine intelligences? Shouldn't our goal be 
to create machines that are smarter than peo-
ple? We can't copy knowledge from adults to 
babies or put people through a thousand years 
of education, but we can build computer me-
mories big enough to hold entire libraries and 
processors fast enough to digest them. Does 
piscine plausibility help us build nuclear sub-
marines? Does avian plausibility help us bu­
ild airliners? (Throivs up hands.) Absolutely 
not! In fact, these things merely hold us back! 

Indeed, there seem to be two diametrically 
opposed and largely antagonistic camps with re-
spect to this issue: those who believe that psycho-
logical (or even biological) plausibility is essential 
to producing an intelligent artificial system, and 
those who believe these requirements are merely 
contrived obstacles that slow our progress or limit 



STUFFING MIND INTO COMPUTER... Informatica 19 (1995) 501-511 505 

the goals we set for AL One is tempted to say that 
what we need most of ali is a moderate voice, a 
compromiser, a fence-sitter—perhaps even a 

Politician: Ah, you people are hopeless. The 
problem is hard enough without aH these re-
ligious schisms. We should use what ideas 
we can from psychology without promising 
to produce a psychologically plausible com-
puter system. We should look to neurobio-
logy for insight without promising vat-grown 
brains—or even neural networks. We sho­
uld apply machine learning without promising 
that every component of the final system will 
be automatically generated instead of hand 
programmed. We should follow visions from 
philosophy without promising to realize them 
without revision (if I may be so bold as to 
pun). In short (tvaving hands), we should take 
everything we can get our hands on and gu-
arantee nothing in return! (Er...that didn't 
come out quite right....) 

Underlying ali this waffling is an important is-
sue which has so far remained implicit, and that 
is the distinction between the hardware on which 
an algorithm is implemented and the algorithm it-
self. Von Neumann [27] states unequivocally that, 
while we understand the abstract concepts of logic 
and mathematics in a symbolic way, these con­
cepts must necessarily be implemented very di-
fferently in human brains than in digital compu­
ters because of fundamental hardware differences. 
The brain is a massively parallel, low-precision de­
vice that encodes information robusth/ via stati-
stical patterns and performs relatively short cha-
ins of calculation. Digital computers are (much 
more) serial and depend on long chains of brit-
tle, high-precision calculations in which a single 
corrupted bit can cause a svstem crash. When 
we speak of logic and mathematics, we are really 
using a pseudocode that describes the algorithm 
without saying anything about the details of im-
plementation. Symbolic descriptions of high-level 
natural languages and reasoning svstems teli us 
little about their biological implementations. The 
implication is that they will teli us no more about 
how to implement them in digital computers. 

For these reasons, I believe the most fruitful 
approach to resolving the controversy of this sec-
tion is to view psychology and biology as tools 

for discovering the algorithms the human brain 
runs. Knowing the algorithms, we can then focus 
on producing the (radically different) implemen­
tations required for digital computers where this 
appears suitable. We must keep in mind that the 
brain's massively parallel algorithms may often be 
impractical under serial reimplementation due to 
time or space requirements [43]. There will also 
be many cases where psychological and biologi­
cal study are unable to glean the specific algori­
thm the brain ušes to solve a given problem. In 
these situations, we must resort to more bottom-
up engineering that takes best advantage of the 
strengths of digital computers to arrive at alter-
nate solutions. One example of success using this 
approach is that of chess playing programs. Al-
though few would argue that human grand ma-
sters and computers implement the same chess 
playing algorithms, it is impossible to deny that 
computers can play chess at the grand master le-
vel. In this problem, an alternate algorithm based 
on high-speed serial search has achieved the same 
quality of results as the very different process of 
high-level human reasoning. 

To summarize, psychology and biology should 
be treated as two tools among many the Al re-
searcher can use to gain insight into methods of 
intelligent problem solving, but they should not 
be seen as the only legitimate tools in the arsenal. 
While the computational properties of the brain 
and digital computers do overlap, they are far 
from identical. We can gain algorithmic insight 
from the brain's solutions, but we will certainly 
need to tailor these solutions, and often radically 
alter them, to fit the differing properties of the 
computer. I do not think there is much to gain 
by demanding psychological plausibility, whate-
ver that may be, in computer systems that are by 
nature so unlike the brain, nor do I think there is 
any real justification in this context to prefer so-
called "connectionist" over "symbolic" computer 
implementations or vice versa.2 Our time is bet-
ter spent developing and testing algorithms than 
arguing about these points. 

Comprehensibility of the knowledge base, which favors 
symbolic representations, is a separate issue. 
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5 Knowledge Refinement 
As research continues on the problem of using ML 
for knowledge acquisition, we will develop more 
guided approaches than the weak search methods. 
One step that has already been taken in this di-
rection is that of automatically refining incorrect 
or partial domain knowledge [4, 11,12, 15, 16, 20, 
21, 22, 26, 30, 31, 32, 33, 34, 47, 50]. Even if we do 
not have a fully satisfactory set of rules for solving 
a problem, our learning algorithms can stili be-
nefit from the incomplete knowledge we do have. 
Knowledge refinement systems such as those cited 
are often able to use partial knowledge to produce 
better solutions to real-world problems than was 
previously possible with weak methods alone. 

Knowledge refinement systems, like other lear­
ning systems, can be symbolic or connectionist. 
A symbolic approach typically starts with a set 
of imperfect rules from a human expert and ite-
ratively modifies it in order to improve its cor-
rectness or coverage, e.g. by adding and deleting 
terms. EITHER [32, 33] and NEITHER [4] are sy-
stems which refine propositional Horn clause rule 
sets in such a manner, and FORTE [26] extends 
the technique to function-free Horn clause repre-
sentations of logic programs. 

The KBANN family of algorithms represents a 
connectionist knowledge refinement approach. It 
translates a set of propositional rules [50] or a de-
scription of a finite state automaton [20] into the 
nodes and weights of an ANN. The network, and 
therefore its embodied knowledge, is then refined 
by standard ANN backpropagation training [41]. 
One can then either use the modified network as 
it stands or apply methods to extract symbolic 
rules from it [10, 13, 14, 42, 48, 49]. 

Knowledge refinement systems can take advan-
tage of partial knowledge and correct and em-
bellish it automatically through ML techniques. 
Their use will greatly reduce the effort needed to 
create knowledge bases for intelligent systems. 

6 Are Rules Sufficient? 

There is a possibility that some problems sim-
ply cannot be solved by symbolic rules. Perhaps 
the reason human cognitive processes are so hard 
to pin down is that they operate in a fundamen-
tally distributed and unrule-like way. Chaos the-

ory tells us the only accurate model of the wea-
ther is the weather itself. The idea that the world 
is its own best model has sometimes been used 
to argue against knowledge representation in any 
form [2, 3, 5, 6]. Perhaps the only way to mo­
del human cognition is through a device that is 
similar in structure and complexity to the human 
brain [27]. Penrose [36] suspects that the physics 
of brain operation makes some of our thought pro­
cesses (especially the feeling of awareness) nonal-
gorithmic, questioning the "strong Al" position 
that ali our thinking is merely the enacting of 
some algorithm. If this is true, we may have no 
hope of modeling these aspects at ali, either by 
symbolism or connectionism, using current Com­
puter architectures. 

I would like to challenge the extremity of these 
positions. Though it is truc that we cannot preci-
sely model the weather at a micro scale, this does 
not mean there is no high-level structure amena-
ble to abstraction. A meteorologist does not need 
to predict the temperature of every cubic centime­
ter of air to teli us it will drop when a cold front 
moves in. This is a simple symbolic rule with real 
predictive power. 

In chaotic domains, any model at ali—symbolic 
or not—must approach the complexity of the sy-
stem itself in order to achieve arbitrary accuracy, 
but this misses the point of having a model in the 
first plače. One needs only a very small set of 
rules to do better than chance in predicting the 
next day's weather. One of the simplest and most 
accurate systems for one-day weather forecasting 
consists of a single rule: "Tomorrow's weather will 
be the same as today's." Simplification through 
models allows us to find order and understanding 
where there would otherwise be none. 

In this vein, symbolic rules may be used to 
model the processes of cognition, even though 
the brain's implementation is a distributed one. 
Much of our thinking can be described symbo-
lically. We communicate with one another with 
symbols, and we store knowledge in external li-
braries and other media in the same way. There 
is thus plenty of reason to expect rule-driven sym-
bol manipulation a la the classic Phijsical Symbol 
System Hijpothesis [29] to be a reasonable model 
for many aspects of human intelligence. Just as 
we need not reproduce every detail of bird ana-
tomy to make an airplane that flies, we need not 
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reproduce every celi and connection of the brain 
to make a machine that thinks. I believe symbo-
lic rules are sufficient to capture most aspects of 
human intelligence at the everyday level of granu-
larity most useful to us, even though at a micro 
level they will operate differently than the human 
brain. 

7 Are Emotions Necessary for 
Learning? 

Whether we need to include emotions in our lear­
ning svstems may seem like a strange question, 
but with a momenfs thought we realize that 
much of human learning is motivated by emoti­
ons. Our engineer of Section 4 spoke of emotions 
as if they were totally irrelevant to machine intel­
ligence. However, the same cannot be said of hu­
man intelligence. Children must receive love and 
nurture to survive and thrive. Emotional invol-
vement is a powerful motivator in their develop-
ment and success and continues to be throughout 
adulthood. In a classic essay, Hadamard [18] in-
vestigates the role of human emotion in fostering 
creative discovery and invention. If we hope to 
build truly intelligent machines, might we not also 
need to build in such a motivating drive? Even 
if it is not completely necessary for artificial sy-
stems, can we afford to ignore this complex and 
powerful urge to learn? 

In The Society of Mind [24], Minsky casts emo­
tions as fundamental to the success of our in­
telligence. They spur our creativity while pre-
venting us from obsessively fixating on a single 
idea or purpose. Without them, we would be-
come robotic drones and accomplish little. Emo­
tions are important checks and balances in the 
complex system of mind. However, Minsky does 
not attribute any special status to emotions. He 
views them simply as tools that interacting men-
tal agents use to accomplish their goals. For 
example, he describes Anger&s a tool agent Work 
can exploit to prevent agent Sleep from gaining 
control of the mind. No mysterious qualities need 
be assigned to Anger to explain it. It is simply 
one of many competing mechanisms which help 
get things done in the mind. 

Newell [28], on the other hand, defines intelli­
gence without reference to emotions. For Newell, 
intelligence depends only on how well a system 

ušes the knowledge it has. Perfect use constitutes 
perfect intelligence, while a system that ignores 
its knowledge has no intelligence. 

I find Newell's definition flawed specifically 
where emotions and learning are concerned. A 
system with emotions may have a curiosity that 
leads it to formulate and test theories about the 
world. It does not know whether these theories 
are true, nor does it know it may benefit from 
testing them, so any exploration and learning ari-
sing from this curiosity do not count in Newell's 
definition of intelligence. An otherwise identical 
system that lacks the motivation of curiosity, and 
so learns nothing, is considered equally intelligent. 
Nonetheless, empirical investigation often leads to 
new knowledge that can improve life for the sy-
stem. Would we not credit a curious, exploring, 
experimenting system that continually expands 
its own knowledge base, capabilities, and effici-
ency (and happiness, perhaps?) with more intel­
ligence than a mentally sedentary one that me-
chanicalb/ applies the same old knowledge to j ust 
get by? I hope we would! 

Does this imply that emotions are necessary for 
learning? Not at ali. While emotions play a key 
role in motivating human learning, they are certa-
inly not the only possible incentives for learning in 
general. One may sharpen a skill simply by repe-
ating a task many times, whether one intends to 
become better at it or not. One may make a great 
discovery purely by accident. Furthermore, com-
puters are not humans, and they can be motiva­
ted in other ways. In a computer system, learning 
may simply be something the machine is required 
to do by its program. Both emotions and learning 
should be important components of any definition 
of intelligence, but emotions are not prerequisite 
for learning to occur. 

8 Building Superintelligences 

Most of the time the ultimate goal of Al is stated 
as building an artificial intelligence of human ca­
pabilities, as suggested by the famous Turing test 
[51]. As long as we are being ambitious, however, 
why not aim for intelligences that are even grea-
ter? Why stop with a machine Albert Einstein if 
we can hope for even more? Even though this is 
far beyond our present capabilities, it should stili 
be a subject to think about (Figure 3). 
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Figure 3: 

GR8-1 Universal Turing Machine 

Assuming we had already reached the goal of 
creating machines as smart as individual humans, 
what would be our next step toward the higher 
goal of superintelligences? One avenue to explore 
is that of societies of intelligent agents. We could 
seek emergent superintelligence from the interac-
tions of "regular" intelligences in much the same 
way Minsky seeks emergent intelligence from the 
interactions of unintelligent agents in The Soci-
ety of Mind [24]. This may be a useful insight, 
but we must examine it more closely to reap its 
potential benefits. To wit, if our Einstein unit 
(person or machine) has an IQ of 300, do three 
average people (100 IQ each) equal one Einstein? 
I doubt it. They are probably more like 0.4 Ein-
steins. One might therefore argue that we just 
need ten or so average people to boost up to one 
Einstein. I don't buy this either—there is surely 
a law of diminishing returns operating such that 
each successive person adds progressively less to 
the Einstein index, even if only due to Communi­
cations problems. 

Does a colony of thousands of micro-
Einsteinian ants ever approach an Einstein of 
intelligence? Probably not, but ants may be 
a bad example—their interagent communication 
and knowledge storage capabilities are surely 
quite limited. Perhaps the only real problem with 
applying the extended society of mind metaphor 
to humans is that humans are too loosely cou-
pled (i.e. our communication bandwidth is too 
low). We can store as much knowledge as we want 
using external media. The problem is only in how 
quickly we can process and apply it. 

I postulate that sophisticated symbolic commu­

nication among intelligent agents is sufEcient to 
achieve emergent superintelligence. The main re-
ason we do not see obvious mega-Einsteinian stri-
des in the intelligence of cooperating groups of 
people is slow communication. 

If low bandwidth is the only substantive obsta-
cle in the path of emergent superintelligence in hu­
man societies, we should be able to see evidence of 
mega-Einsteinian accomplishments if we observe 
societies for a long enough period of tirne. And 
lo—this is exactly what we do see in the rise of 
technological societies! The knowledge and achi-
evements of these systems is vastly greater than 
anything a single human could ever accomplish, 
no matter how smart. So without even realizing 
it, vre already have hard evidence of the success 
of this approach to building superintelligences! If 
we could implement in a machine (or machines) a 
large number of intelligent agents communicating 
and interacting mentally at high speeds, we might 
get somewhere in our fantasy project of producing 
a time-localized, mega-Einsteinian reasoner. 

Since humans will probably not be networking 
their minds together telepathically any time soon, 
our best hope for a high-speed, superintelligent re-
asoning system is to build an artificial one. Inte­
racting conglomerations of intelligent agents pre-
sent a realistic paradigm for achieving this. In 
the mean time, we should reexamine the idea of 
human-level intelligence emerging from collecti-
ons of interacting unintelligent agents. I believe 
this is the most likely route to our first truly in­
telligent machine. 

9 Conclusion 

We have explored some important current issues 
of knowledge and learning for the creation of ar­
tificial intelligence, raising many questions and, 
hopefully, a few answers in the process. If my 
presentation has also raised a few eyebrows, so 
much the better. I believe that knowledge and 
learning are both essential to the enormous task 
of implementing intelligent artificial systems, and 
research on these fronts is steadily progressing. 
At the same time, as we toil through the techni-
cal details of basic research, we should not lose 
the ability to dream of greater things for tomor-
row. It is these dreams that will make intelligent 
machines a realitv. 
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unsuitable for inclusion in tier # 3 ali but sacri-
ficed lexical resemblance for the sake of semantic 
content. Consider this imaginative offering, per-
haps from a disgruntled concert-goer: "Ali mim-
micing [sic] were the composers / And the public 
is promptly outraged." 

This tier also fell prey, early on, to a dicti-
onary which unfortunately contained the word 
"rath" ("a pre-historic hill-fort"). This uninten-
ded reward served to stimulate what I suppose 
to be another psychological tendency. Picture 
if you will the earnest human subject, dutifully 
looking up non-existent word after non-existent 
word, experiencing repeated disappointment if. 
not frustration, and trying to puzzle out what, 
if anything, is intended by the text. Finally, on 
the penultimate word of the last line, the subject 
strikes paydirt. Contrary to conditioned negative 
expectation, an unknown word actually appears 
in the dictionary! In consequence, it becomes a 
focus of meaning for the entire line; e.g. "And 
the fairies dug out raths." This is another clever 
attempt to couch semantic content in lexical re­
semblance, and the subject even pencilled notes 
which illustrate her thought-processes: "mome" 
was interpreted as "gnome" (which was then plu-
ralized and transmuted to "fairies"), while "ou-
tgrabe" conveniently became "dug out". Another 
subject was evidently so transported at finding 
"rath" in the dictionary that he substituted its 
definition wholesale: "And the wonderous [sic] 
hill-forts camouflaged". This conveys a palpable 
chunk of meaning, and it even harbours a vestige 
of resemblance. Although I speedily replaced the 
dictionary in question with a less fortified edition, 
I could not dispossess the human subjects of their 
penchants to make the stanza more grammatical 
and meaningful. 

While the half-dozen most suitable versions 
offered sufficient ingenuity and variety to motivate 
tier # 3 , they also posed one serious problem. Ali 
the human subjects—whether aided by the dicti-
onary or not—had identified and variously sub­
stituted for the contraction " 'Twas". The com-
puter alone had come up with " 'Twos", and its 
version seemed obviously distinguishable from the 
others on that ground alone. So I wilfully enga-

word is replaced; however, tier # 3 respondents were aware 
that the instructions to tier # 2 subjects do not compel 
substitution in ev^rv instance. 

ged in a subterfuge. I contrived version (8) as a 
decoy, which not only reproduced the problematic 
distinguishing feature of (1), but which also did 
things that I thought the computer itself could or 
should have accomplished. I also confess to ha-
ving deleted version (l)'s syntactically irrelevant 
leading apostrophe, which seemed to me a dead 
giveaway. But given what transpired in tier # 3 , 
I probably need not have worried. 

3.3 Third Tier 

I would prefer to offer herein a simple resume of 
the results of this tier, and to reserve philosophi-
cal discussion for the concluding section. But an 
unavoidable methodological question ndw arises, 
that cannot be divorced from certain presupposi-
tions; namely, with respect to which hypothesis 
are the quantitative data to be interpreted? And 
a conceptual question also arises: how—if at ali— 
does the experiment relate to Turing's imitation 
game? 

At least one philosopher who responded in tier 
# 3 raised the obvious objection to the experiment 
(and described it as obvious even while raising it, 
and charitably supposed that I had already con-
ceived a reply to it): is this experiment a Turing 
test at ali? The question's tenor is rhetorical, for 
in at least one respect the answer appears clearly 
negative. Turing's original imitation test entailed 
a phase during which both human and compu­
ter were subjected to blind interrogation. Thus, 
to fulfil this condition strictly, our interrogators 
(tier # 3 respondents) should have been able to 
ask questions of, and receive answers from, ali the 
agents who produced the tier # 2 versions of the 
poem. Under Turing's ideal conditions, this mi-
ght have given rise to exchanges such as: 

Interrogator [to agent (2)]: "What does 
'brillig' mean to you?" 

Agent (2): "It doesn't mean a thing to 
me." 

Interrogator: "Why did you substitute 
'brilliant' for 'brillig'?" 
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Agent (2): "Because I was following the 
experimenter's instructions, and 'brilli-
ant' is a dictionary word that resembles 
'brillig'." 

Interrogator: "What do you understand 
by the assertion 'X resembles V ? " 

Agent (2): "I. understand by it that kX 
appears similar to V in some basic way." 

Interrogator [to agent (1)]: "What does 
'brillig' mean to you?" 

Agent (1): "It doesn't mean a thing to 
me." 

Interrogator: "Why didn't you substitute 
'brilliant'for'brillig'?" 

Agent (1): "Because I was following the 
experimenter's instructions, and although 
'brilliant' is a dictionary word that is iden-
tical with 'brillig' in its first six characters, 
it does not sufnciently resemble 'brillig' to 
warrant the substitution." 

Interrogator: "What do you understand 
by the assertion lX resembles Y'?" 

Agent (1): "I understand by it that 'X 
appears similar to Y' in some basic way." 

> From these hypothetical dialogues (or dialo­
gues which resemble them), I assert that the ideal 
interrogator would not be able to infer that agent 
(2) is human, and agent (1) is a computer. The 
ideal interrogator would be able to infer firstly 
that the agents employ different criteria in their 
respective assessments of the truth-value of the 
proposition 'X resembles Y\ where Y is a dicti-
onary word and X is not, and,secondly that both 
agents behave in ways consistent with the expe-
rimenter's instructions and their respective asses­
sments. Both agents are able to furnish the inter­
rogator with plausible reasons for their respective 
decisions. The hvpothetical computer would the-
refore pass Turing's imitation test. 

But note that the interrogator does not require 
these hypothetical dialogues to draw the previous 

inference. In fact, many (and perhaps most) di­
alogues of this kind are already implied by the 
instruction set in tier #2 , which was shown to 
ali "interrogators" in tier # 3 . While instruction 
(5) grants permission to make a substitution, in­
struction (6) declares in effect that a substitution 
should be made only on the grounds of sufflcient 
resemblance. Nowhere is "sufflcient resemblance" 
defined for the interrogator, yet the notion is im-
plicitly constrained by the information that the 
spell-checker functions exclusive'ly on a word-by-
word basis, which in turn implies that it ignores 
syntax and semantics. This information is surely 
inferable from the instruction set which, recall, 
is said to be consistent with the function of the 
spell-checker. 

In consequence, the interrogator should con-
clude that both the substitution "brilliant" for 
"brillig", and no substitution at ali for "brillig", 
are consistent with plausible computers, and the-
refore that the computer's version must be distin-
guished by some other means. 

It follows that this experiment cannot be said 
not to be a Turing test on the grounds that it 
fails to allow for dialogues between the interro­
gator and the agents, as concerns their output. 
In fact, many such dialogues can be conducted 
implicitly by an interrogator, in the manner of 
thought-experiments. I claim that, by asking rhe-
torically whether particular substitutions are con­
sistent with the instruction set, an interrogator 
can indeed eliminate versions (2) through (8). 

Consider, for example: 

Interrogator [thought - experimentally, to 
agent (2)]: "Why did you render 'And the 
mother rather outgoing' ?" 

Interrogator [thought - experimentally, 
for agent (2)]: "Because it is grammati-
cal, and moreover it has meaning." 

Interrogator [thought - experimentally, to 
agent (2)]: "I conclude that you are not 
the computer." 

Similarly, the human authorship of version (3) 
is betrayed by the substitution of "gave out" for 
"outgrabe"; for while a computer's spell-checker 
might have rendered "out gave" (more likely "out 
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grave"), it would not have inverted the word-
order for syntactic purposes. In version (4), the 
grammatical giveaway is "out grabbing". As well, 
"That was" is an incorrect expansion of " 'Twas", 
while "borrow" is somewhat anomalous. In ver­
sion (5), the substitution "whirl" for "gyre" is 
synonymous—the product of a thesaurus, not 
a.spellchecker. In version (6), the substitution 
of "This" for " 'Twas" is incorrect, and "thril-
ling" for "brillig" is quite suspect. In version 
(7), "mimicking" is a long way from "mimsy", 
but the clincher is "And the mole rashes out 
broke". While "mole rashes" is undeniably in-
genious, the spell-checker couldn't have known-
that rashes "break out"—and in the past tense, 
"broke out". Hence, the computer could scarceb/ 
have rendered "out broke", because that is co-
gnate with the inversion of a syntactic form which 
is itself embedded in a semantic context. 

This leaves versions (1) and (8) as the šole pos-
sibilities. (Many tier # 3 respondents arrived at 
this conclusion, and volunteered arguments con-
sonant with the foregoing). But while there are 
persuasive reasons for selecting either (1) or (8), 
there is perhaps an overriding reason for elimina-
ting version (8). The telling structural difference 
between these two versions is that (1) conserves 
the number of given words, whereas (8) does not. 
The latter version splits "borogroves" into "boron 
groves" and "outgrabe" into "out grab". While 
this operation may well be the kind of thing that 
OCR software ought to do, the operation is not in 
fact entailed by the given instruction set. In or-
der to entail it, instruction (4) would have to be 
modified to read "If you do not find a given word 
in the dictionary, then try to think of a word or 
ivords you know, or try to find a dictionary word 
or mords, that resembles or resemble the given 
word" (modifications emphasized). Instructions 
(5) and (6) would require similar modification. 
Then the operation of word-splitting would be 
strictb/ inferable from the instruction set. But as 
things stand, version (8) (among others) is guilty 
of having derived "is" from "ought" .7 By hypo-
thetical default, then, version (1) is the remaining 
choice. 

A common feature of ali the computer-generated stan-
zas (with the exception of one occurrence involving hand-
written input) is their conservation of word number. See 
the appendix. 

Empirically, however, the conservation of word 
number, which the given instructions imply, appe-
ars as a statistical non-factor in the tier # 3 decisi-
onmaking process. One-hundred-and-six respon­
dents chose versions which conserve word num­
ber [(1),(2),(5), or (6)], while one- hundred-and-
seven chose versions which do not conserve it 
[(3),(4),(7), or (8)]. No respondent made explicit 
mention of this "conservation law" and its viola-
tion by half the versions on offer. 

Many respondents voluntarily communicated 
other ratiocinations. For example, one found 
"smithy troves" more computeresque than "slimy 
stoves" because it is less grammatical. This 
may well be the čase, but then again "smithy 
troves" is coincidentally more poetic: it con-
notes images of beaten copper and hammered 
gold—a blacksmith's treasure-trove. Others chose 
version (1) primarily because of its proper no-
uns; these respondents were well-acquainted with 
spellcheckers that routinely render capitalizati-
ons. Stili others (as anticipated) seized upon 
"Twos" as a basis for eliminating ali but versi­
ons (1) and (8), but could not choose decisiveh/ 
between them. Then again, some respondents' re-
asonings were far from consistent: many indicated 
their second choices as well as their first, and some 
who selected either (1) or (8) in the first plače did 
not necessarily select (8) or (1), respectivelv, in 
the second. Moreover, some who selected neither 
(1) nor (8) in the first plače selected either (1) or 
(8) in the second. 

We return to the conceptual question: how 
does this experiment relate to Turing's imitation 
game? I claim that although the experiment is 
not a literal Turing test in the original sense, it 
is another species of that same genus. This expe-
riment constitutes a "reverse Turing test", which 
inquires not how proficiently a computer can imi-
tate a human; rather, how proficiently a human 
can imitate a computer. And on this view, the 
statistical data bear further comment. 

Clearly, the empirical results corroborate the 
argument that (1) and (8) are the šole plausi-
ble computer-rendered versions, notwithstanding 
(8)'s failure to conserve word number. Statisti-
cally, versions (1) and (8) were together selected 
with significantly greater frequency than were (2) 
and (7): 46% ± 2.4% for the former pair, versus 
37% ± 2.1% for the latter. Then again, on an 
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individual basis, none of these four most popular 
versions was selected with statistically greater fre-
quency than any other; their individual selection 
ranges ali overlap. These data certainly suggest 
that a human can successfully imitate a compu­
ter, at least in the estimation of other humans. 
But the data confiict directly with the argument 
ex hypothesi, that version (1) is uniquely identi-
fiable as the computer's. Theoretical and logical 
considerations indicate that versions (2), (7) and 
(8) should not have been selected with greater fre-
quency than versions (3),,(4), (5) and (6), because 
they aH bear distinct marks of human fabrication. 

This leads to a further question: who or what 
is the supreme arbiter of proficiency in such te-
sts? On what does the credibility of an imitation 
ultimately depend? Turing seems to have assu-
med that a good correspondence would generally 
obtain between theoretical and empirical evalu-
ations of a given imitation. Turing's interroga-
tor resembles the philosopher's imaginary "man 
on the Clapham omnibus" and the jurisfs fan-
ciful "reasonable man". They are ali incorrupti-
ble and infallible appraisers of evidence; in other 
words, they cannot be deceived unless, of course, 
the experimenter, barrister or philosopher intends 
that they be deceived. I hold that such a corre­
spondence need not obtain. An imitation which 
the experimenter adjudges credible may be rejec-
ted by relatively many interrogators as incredible; 
or—as in this experiment with respect to versions 
(2), (7) and (8)—an imitation which the experi-
menter adjudges incredible may be accepted by 
relatively many interrogators as credible. Hence 
a given experiment may inform the experimenter 
about the nature of credibility either less or more 
than it is informed by him. 

In our reverse Turing test, the humans who 
produced versions (2), (7) and (8) proved theo-
retically improficient yet empirically proficient at 
imitating the computer. This in turn suggests 
that many interrogators were not very proficient 
at gauging the credibility of the imitation. While 
it may be objected that the tier # 2 subjects did 
not know the real purpose of their endeavour, this 
objection can be finessed by considering that in 
the original Turing test, the computer need not 
"know" that it is imitating a human. It follows 
that in a reverse Turing test, a human need not 
know that he or she is imitating a computer. Mo-

reover, that the humans were indeed imitating a 
computer follows syllogistically from the premi-
ses that the humans were asked to implement a 
set of instructions, and that those instructions (if 
followed) simulated the function of a computer. 
Neither the computer nor the humans possessed 
any broader knowledge of the context itself, yet 
the differences in their respective functions were 
demonstrable. 

In the concluding section, I discuss the reverse 
Turing test more generally, with the intention of 
proposing new ways—or at least new bottles for 
old ways—in which to illustrate differences be-
tween humans and computing machines. 

4 The Reverse Turing Test 
Turing posited his imitation test in a generation 
when computer science was nascent and compu­
ting technology comparatively primitive. In Tu­
ringi day, if one conceived of pitting a computer 
against a human in contests designed to measure 
"intelligence" generically construed, the computer 
was the absolute underdog. In fact, the computer 
was a pre-underdog, in that the technology was 
not advanced enough to permit such contests to 
take plače. 

Turing predicted that computers would become 
sophisticated enough so that, in some specified 
context, human interrogators would be unable 
to decide (with more than 30% accuracy) whe-
ther a computer or a human had rendered a gi­
ven body of nominally conversational output. In 
other words, Turing envisioned computing pro-
gress only to the extent that human versus ma-
chine output would be indistinguishable to hu­
man interrogators. Turing seems to have suppo-
sed that a computer's ability to imitate a human 
would improve as a smooth function of its incre-
ased storage capacitv. While current storage ca-
pacities are now remarkably close to those pre­
dicted by Turing, the computer's "cognitive" abi-
lities have lagged far behind, to the extent that 
no true imitation test, in Turing's original strong 
sense, has yet proved feasible. 

Turing's hypothesis has been weakly vindicated 
in many narrow contexts, notably with programs 
like Weizenbaum's "Eliza" (e.g. see Boden 1977, 
Johnson 1986). And, for example, a test group of 
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psychiatrists could not distinguish a transcript of 
the output of Colby's program "Parry", which si-
mulates the verbal responses of a paranoiac, from 
transcripts of dialogues with human paranoids 
(e.g. Boden 1977, pp.96-111 ff). We generously 
interpret this as a success of computing, rather 
than a failure of psychiatry. And, for example, 
James Sheridan's team has "taught" a computer 
to compose lyrical poetry within a specified struc-
ture, such that test subjects cannot distinguish 
its better efforts > From poetry composed within 
the same structure by humans (Kern 1983, Sheri-
dan 1987). While these examples, among others, 
constitute successful Turing imitation tests in a 
very weak sense, they naturally tend to fuel ra­
ther than to resolve the debate surrounding the 
strong Al thesis. 

Proponents of the strong thesis, or "formalists" 
(e.g. Minsky 1968, Hofstadter 1981) hold that hu­
man intelligence is a property wholly explicable 
in terms of algorithmic complexity. Given suffi-
ciently povverful hardware and sophisticated soft-
ware, formalists believe that a computer can be 
built which exhibits understanding, awareness of 
meaning, and any and ali aspects of human con-
sciousness. They hypothesize moreover that ali 
aspects of human consciousness consist of nothing 
but complex algorithms executed by a "biological 
computer". Opponents of the strong thesis, or 
"holists" (e.g. Searle 1984, Penrose 1989) hold 
that understanding, awareness of meaning, and 
other aspects of human consciousness cannot be 
explained solely in terms of algorithmic cornple-
xity. Holists believe that even if a computer could 
be built which passes any conceivable Turing test, 
this would not necessarily demonstrate that the 
computer is self-aware, that it understands what 
it does, or that it possesses consciousness of the 
human quality. 

My central claim ultimately bears on this de­
bate, but it is advanced initially on quite a diffe-
rent tačk. On one view, progress in Al now begins 
to satisfy Turing's expectations, because we can 
conduct successful imitation tests, if but in a very 
weak sense. On another view, progress in compu­
ting stili falls short of Turing's expectations, be­
cause there remain any number of imitation tests 
that the computer readib/ fails. Then again, on 
a third view, computers are able to out-perform 
humans in many areas, and in this sense have per-

haps exceeded Turing's expectations. When it co-
mes to performing quantitative tasks in competi-
tion with humans including playing games such as 
checkers and backgammon, or even chess and Go 
the computer is no longer underdog but overdog; 
not yet and perhaps never to be a Nietzschean 
ubermensch in evolutionary terms (e.g. Nietzsche 
1982), but demonstrably an uberhund at parlour 
games. 

While much of the computer's outperformance 
of humans is confined to various forms of "high-
speed idiocy"8 (i.e. number-crunching and the 
like), many humans display, by contrast, various 
forms of "low-speed genius" (e.g. mathematical 
intuition and artistic creativity). I submit that 
a—perhaps the—salient difference between com­
puter versus human performance lies not merely 
in what they can or cannot do, rather in how they 
attempt to do what they can or cannot do. In 
methodological terms, the computer is an entity 
that strictly follows instructions, while the human 
is a being that constitutionally disregards them. 
Computers do exactly and only what they have 
been instructed to do, whereas humans are ca-
pable of an inexactitude that includes but is not 
restricted to the self-prompted or unconscious mi-
sinterpretation, omission, permutation and modi-
fication of members of a given instruction set. 

In the course of this experiment, I made typi-
cally human errors in carrying out my own meta-
instructions. The first involved the mistranscrip-
tion of "borogroves" for "borogoves". I suppose 
that I too succumbed to the spellf meaning—after 
ali, any kind of "grove" is more meaningful than 
every kind of "gove". My second error involved 
misinforming the tier # 3 respondents that ali the 
human versions were rendered by non-native spe-
akers of English. I subsequently rediscovered in 
the experimental log that version (7) was rende­
red by a native speaker of English. 

A characteristically human disregard for the 
tier #2 instructions was displayed by several tier 
# 3 respondents, who chose version (2) on the gro-
unds that it is the only version which contains ali 
and only valid words. The instructions do not 
necessitate that condition. A creative human di­
sregard for both the tier #2 and the tier # 3 in-

8This phrase was used by Gleick (1987) to describe a 
dismissive attitude of some mathematicians and scientists 
toward computers. 
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structions was displayed by the two respondents 
who concluded that none of the eight versions was 
rendered by a computer. One of these two re­
spondents argued that ali the versions were ren­
dered by human test-subjects, because the origi­
nal "gyre" is a valid word which every version had 
replaced. The other expressed a synthetic a priori 
suspicion that ali eight versions had been contri-
ved by the experimenter. While these disregards 
affect the experiment's statistics but negligibly, 
they affect its conclusions significantly. 

I am fairly certain that ali my undergraduate 
students are capable, say, of carrying out the fol-
lowing instruction: "If you wake up in the middle 
of the night, make yourself a sandwich." But no 
robot is yet capable of carrying this out, for at 
least two reasons. First, the antecedent of that 
instruction, although decidable by humans, is not 
sufficiently comprehensible to humans to be made 
intelligible to or analogous for a computer. (What 
is the nature of sleep, wakefulness, dreaming, so-
mnambulence? Like Descartes, how do you know 
that you are not dreaming that you are awake? 
Pinch yourself, and see it if hurts.) But even if 
we simulate the antecedent by placing our robot 
in "sleep mode" (an idle, low-power-consumption 
state) at dusk, and by programming some proba-
bility with which it will "wake" before dawn, we 
will be defeated by the instruction's consequent 
until the frame problem is solved (e.g. see Py-
lyshyn 1987). The generic instruction "make yo-
urself a sandwich" can be carried out by humans 
only because humans are able draw necessary and 
necessarily self-prompted inferences from a vast 
store of experience and background knowledge, 
which a robot simply lacks. Supplying a ro­
bot with a complete set of axioms, along with a 
complete set of rules for correct inference-making 
in an epistemological—as opposed to a logical— 
context, is as yet an unaccomplished task.9 

What is more telling: even if we were able to 
solve this multi-faceted problem, we would be as-
sured only that if the robot "woke up" during the 
night, it would indeed make itself a sandwich. For 
while the human being understands the instruc­
tion, the priče of human understanding somehow 
entails the possibility of disregarding. The hu-

Turing (1950) recognized this problem in a section cal-
led "The Argument from Informality of Behaviour", and 
adroitlv side-stepped it. 

man is capable of beginning sincerely to seek the 
ingredients for a sandwich, of being disappointed 
or distracted by the findings, and of completing 
the task by ordering a pizza, or by obeying any 
other overriding caprice. 

By contrast, I am very certain that, if I instruct 
my undergraduate students to print their names 
according to the format "last name, first name, 
middle initial(s) if any", at least one and proba-
bly more will write in script, or will invert the 
ordering, or will omit their middle initial(s), and 
so forth. But if I instruct (i.e. program) my com­
puter to print out a class list according to that 
format, then—given the data—it will do so with 
a negligibly small chance of making a functional 
error. In an overwhelming majority of such tri-
als, the computer would execute my instructions 
flawlessly. 

This general idea suggests a way to thwart a 
Turing imitation scenario. Let the interrogator 
give the agents instructions for the performance 
of some task (i.e. the generation of some ver-
bal output). The interrogator will soon discover 
which agent disregards them or, commensurately, 
makes errors—whether intended or unintended— 
in their execution. That agent is human. Thus 
the reverse Turing test can be employed to ferret 
out the agents' true identities. 

Note that programming a computer to output 
wrong answers to questions does not circumvent 
the reverse Turing test, for the instruction set 
would then have to contain a member which says, 
in effect, "compute the correct answer and ou­
tput a different answer". The interrogator would 
be aware of this instruction, so an unbroken 
string of wrong answers would again point to the 
computer—for the interrogator would find that 
the human agent will sooner or later make a mi-
stake and, in this čase, inadvertently output a cor­
rect answer. Imagine, if you will, playing "Simon 
says" with a host of humans and an ideal robot. If 
it doesn't malfunction, the robot cannot lose; and 
increasingly reliable technologies diminish the li-
kelihood of such malfunction. But even the most 
accomplished human player will eventually err.10 

Naturally there are trivial cases in which the 

Turing (1950) also anticipated this possibilitv in a sec­
tion entitled "Arguments From Various Disabilities", but 
discounted it because his generation of computers was dis-
posed to significant functional error. 
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interrogator could not distinguish the agents. For 
example, if the instruction set said: "Flip a 
coin one hundred times, and output the results 
in random order", then only a small proportion 
of humans agents would mistakenly output, say, 
ninety-nine or onehundred-and-one results. Simi-
larly, a small proportion of human agents would 
disregard the instruction about randomizing ou­
tput order, and would output the results in their 
obtained order (or some other order), while the 
randomness of the raw results themselves would 
preclude the interrogator's verification of their 
random re-ordering. But this example is utterly 
trivial, whereas Turing's examples of imitation te-
sts are far from trivial, even by today's computing 
standards. Any useful reverse Turing test would 
have to be non-trivial too. 

At first blush, the theses "It is conceivable that 
a computer can imitate a human" and "It is in-
conceivable that a human can imitate a compu­
ter" seem logically and empirically independent, 
in that the demonstrable truth of the latter appe-
ars not to condition the conjectural truth or fal-
sehood of the former. But I claim that a deeper 
reading of the latter provides evidence against the 
former; in other words, that the reverse Turing 
test gives rise to an argument against the strong 
Al thesis. 

Consider the follovving two syllogisms, which re-
present (respectively but not uniquely)11 the for­
malist and holist positions: 

Ali and only intuitively computable functions are 
Turing computable. (Church's thesis) 
Understanding and meaning are intuitively com­
putable functions. (formalist premise) 
Therefore understanding and meaning are Turing 
computable. (strong Al thesis) 

Ali and only intuitiveb/ computable functions are 
Turing computable. (Church's thesis) 
Understanding and meaning are not intuitively 
computable functions. (holist premise) 
Therefore understanding and meaning are not Tu­
ring computable. (contra strong Al thesis) 

u T h e holistic position herein affirms Church's thesis, as 
does Penrose (1989). One may also espouse a holistic po­
sition by denying Church's thesis. 

These arguments cannot both be sound and, if 
Church's thesis is false, they are both unsound. 
But one may suppose Church's thesis to be true 
(e.g. see Boolos and Jeffreys 1974). One cannot 
prove it true; one could only prove it false, by fin-
ding a counterexample. No counterexample has 
yet been found. Moreover, one can suspect that 
Church's thesis is true, because independent ar­
guments lead to its equivalent statement (e.g. Tu­
ring 1937, Church 1941.) The "burden of proof" 
plausibb/ shifts to a "burden of disproof", in the 
absence of which we can believe the thesis confir-
med until disconfirmed. 

And we have reasons for supposing that un­
derstanding and meaning are not intuitiveh/ com­
putable. The reverse Turing test furnishes one 
such reason. Suppose that a human (HI) is gi-
ven a set of instructions (SI) which, if faithfully 
executed, would result in the imitation of some 
Turing machine (TI). But suppose that the hu­
man makes meaningful mistakes in their execu-
tion. Now we ask whether we can build another 
Turing machine, T2, such that T2 can similarly 
make meaningful mistakes. If we reply "no", then 
the strong Al thesis fails because Church's thesis 
fails, for we will have found an intuitiveb/ compu­
table function which a Turing machine (T2) can­
not perform: namely, misunderstanding, a func­
tion whose successful performance fails to imitate 
another Turing machine (TI). If understanding 
is intuitiveh/ computable, as the formalists claim, 
then misunderstanding should be intuitiveh/ com­
putable too. 

So formalists presumabb/ reply "yes": we can 
build such a Turing machine, T2, which fails to 
imitate TI, and therefore which passes the Turing 
test in question. But whereas the human HI fa­
ils to imitate TI by virtue of making meaningful 
mistakes while executing SI, T2 must be given a 
set of instructions other than SI. For were T2 a 
universal Turing machine, T2 would execute SI 
faithfully, would successfully imitate TI , would 
therefore fail to fail to imitate TI, and would the­
refore fail the test. So we must give T2 some 
other set of instructions, S2, whose faithful exe-
cution results in the failure to imitate TI. Then 
T2 would pass the Turing test in question. 

But in that čase, T2 would necessarib/ fail the 
associated reverse Turing test. For the reverse 
Turing test depends on an interrogator's exami-
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nation of input as well as output. An interrogator 
would note that input SI, which should have led 
to an imitation of Tl ' s output, failed to do so; and 
that input S2, which should not have led to an 
imitation of T2's output, succeeded in not doing 
so. An interrogator would then conclude that SI 
had been improperh/ executed by a human, and 
that S2 had been properly executed by a Turing 
machine. (An interrogator could fail to distingu-
ish the agents only in the event that the interro­
gator improperh/ executed the meta-instructions 
governing the reverse Turing test itself, and thus 
unwittingly played the human role in a hypothe-
tical second-order reverse Turing test. This actu-
ally occurred in tier # 3 herein, in the cases of the 
two respondents who decided that no stanza was 
computergenerated.) 

Now a formalist could object that T2 is not on 
a "level playing-field" with HI. In other words, a 
formalist could claim that the human brain is ac-
tually running simultaneous parallel background 
programs (the biological equivalent of multiple 
"memory-resident" routines), and that mistakes 
in executing a given instruction set (i.e. so-called 
"human errors") arise from problems of interfe-
rence, override, timing and other difficulties la-
tent in parallel dataprocessing. A formalist might 
claim that a meaningful mistake is just a complex 
kind of human software "bug" or wetware dys-
function, which occurs when (putative) semantic, 
syntactic, analytical, emotive and other instruc­
tion sets become conflated during simultaneous 
execution. A formalist vrould claim that we can 
in principle program memory-resident routines in 
a computer that would compel it to mis-process 
subsequent input in apparently "meaningful" but 
in altogether Turing computable ways; and thus 
that we can in principle build a Turing machine 
that would iool an interrogator in a reverse Turing 
test. 

A holistic reply to this objection is straight-
forward, and is consistent with the justification 
for assuming Church's thesis to be true; namely, 
that the burden of disproof lies with the doubter. 
Continued failure to disconfirm Church's thesis 
lends evidential andheuristic support to its con-
firmation. Similarly, we cannot prove the holist 
premise that understanding and meaning are not 
intuitively computable functions. (And perhaps 
we cannot disprove it either, as Searle's Chinese 

Room impjies). But continued failure to produce 
even a putative disconflrmation of the holist pre­
mise lends evidential and heuristic support to its 
confirmation. To that support I add this modest 
empirical result, and the bolder notion of the re­
verse Turing test to which that experiment gives 
rise. Let anyone who denies the holist premise 
produce not only a set of instructions that would 
allow a machine to pass a strong Turing test by 
meaningfulh/ manipulating tokens of natural lan-
guage, but also a set of meta-instructions that 
vrould allow a machine to pass a strong reverse 
Turning test by meaningfulh/ misunderstanding 
instructions for manipulating tokens of natural 
language. While no computer extant can accom-
plish even the former task for want of explicit in­
structions, mind can accomplish both tasks in the 
absence of explicit instructions and metainstructi-
ons alike. Until such be produced, I find no reason 
to discredit the holistic syllogism. Turing has yet 
to slay the Jabberwock. 
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6 Appendix 

These versions were generated by other software 
packages. They rather speak for themselves. 

'Twas brisling and the smithy toes 
Did gyre and gamble in the wade 
Ali missy were the borogroves 
And the Mme rates outgrabe. 
(MS Word 5.0) 

'Was broiled and the slushy moves 
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Did gyre and gamble in the wage 
Ali mimes were the barographs 
And the come rates utterable. 
(FrameMaker 3.0 and 4.0, PageMaker 3.0) 

'Twos brittle and the sloths doves 
Did gyre and gimbal in the wake 
Ali mamas were the brokerages 
And the home wraths outcrop. 
{PageMaker 3.0, alternative) 

'Taws brillig and the smithy toes 
Did gyre and gimbals in the wade 
Ali maims were the borogroves 
And the mirne rates outgrabe. 
(VVordPerfect 5.1) 

'Teas brillig and the sleuth tokes 
Did gyre and gamble in the wage 
Ali moms were the borogroves 
And the mode rats outgrabe. 
(VVordPerfect 5.1, alternative) 

Teas Willis and the sticky tours 
Did gym and Gibbs in the wake 
Ali mimes were the borrowers 
And the moderate Belgrade. 
(Apple Newton) 
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An emerging movement in artificial intelligence research has explored computational 
theories of agents' interactions with their environments. This research has made clear 
that many historically important ideas about computation are not well-suited to the 
design of agents with bodies, or to the analysis of these agents' embodied activities. 
This paper will review some of the difficulties and describe some of the concepts that 
are guiding the new research, as well as the increasing dialog between Al research and 
research in fields as disparate as phenomenology and physics. 

1 Introduction 

From its origins in a small number of well-funded 
laboratories, the field of artificial intelligence has 
been undergoing steady structural changes: 

— The field's scope has grown more precise 
as various neighboring fields have matured. 
These include disciplines such as artificial life 
and neural network modelling that use com­
putational methods to study animal and hu­
man activities but that do not identify them-
selves as part of AL 

— Al has also witnessed the development of spe-
cialized subfields such as machine learning, 
natural language processing, and computa­
tional logic with their own literatures, mee-
tings, and disciplinary cultures. These subfi­
elds develop distinctive cultures, particularly 
with regard to the standards by which rese­
arch projects are judged. 

— Research communities have arisen to apply Al 
methods to particular domains such as ma-
nufacturing and medicine. These communi­
ties respond to their domains in a more com-
plex and realistic way than mainstream Al 

has usually done, but as a consequence they 
often have less freedom to explore new me­
thods that are stili poorly understood. 

Many projects cross the borders among these 
areas of research. Many of these communities, 
moreover, have been heavily influenced by ideas 
and methods from outside Al as well, giving them 
a hybrid character. By choosing which discipli-
nary communities to associate themselves with, 
researchers have some flexibility in deciding, for 
example, whether they are engaged in scientific 
discovery or engineering design (or perhaps both). 

As the field of Al has decentralized, its growing 
pluralism has made room for a variety of criti­
cal interventions and interdisciplinary dialogues. 
It becomes possible for groups of researchers to 
discover common threads in their work and to 
explore these collectively without needing to stru-
ggle against prestructured disciplinary boundaries 
or to proclaim the existence of a new, permanent 
institution. This article describes one such initi-
ative, which draws together research from several 
fields to propose alternatives to some of the basic 
concepts of AL The idea that unifies in this emer­
ging style of research is not architectural - work 
is included from a remarkable variety of technical 
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research programs. Rather, the unifying idea is 
conceptual and methodological: 

using principled characterizations of inte-
ractions between agents and their enviro-
nments to guide explanation and design 

The theme of interaction, of course, has a long 
history. Systems described in the Al literature 
have interacted with their environments (physical 
or social, real or simulated) for a long time, Si­
mon (1970: 24-25) famousb/ pointed out that sim-
ple ants can engage in complex interactions with 
complicated beaches, and the concepts of cyber-
netics had a significant influence in the original 
founding of the field (Edwards 1996). The po-
int is to bring new tools to the analysis of these 
interactions and to make new ušes of the resul-
ting analyses. Some rough initial explication of 
the key words may help orient the reader to the 
detailed discussions below. 

interactions: The focus of this research is on ac-
tivities that take plače in the material world. 
The agents may or may not be understood as 
having internal mental processes that play ro-
les in shaping the activities, but the focus is 
on the activities themselves. 

environments: The environments in which these 
activities take plače will generally have both 
physical and social aspects. The research de­
scribed here, though, is primarily concerned 
with embodied activity in simplified versions 
of the physical world. 

agents: The research might concern people, ani-
mals, or robots. The point is certainly not to 
equate people to animals or robots, but sim-
ply to establish dialogue among research pro-
jects with different goals. Serious ideas about 
conversational interaction and its consequen-
ces for computational modelling of human be-
ings, for example, may inspire clearer thinking 
about other kinds of interaction as well. 

characterizations: Attempts to conceptualize in­
teractions between agents and their enviro­
nments will require theorists to draw clear di-
stinctions between the theorist's "aerial view" 
of an activity and the agenfs "ground view" 
of that same activity. Agents that are not 

omniscient or omnipotent will necessarily en­
gage in activities that are not wholly scripted, 
and that therefore have emergent structures 
that can be studied and understood. 

principled: Both formal/mathematical and in-
formal/qualitative kinds of characterizations 
are included. The important thing is that 
they be grounded in the intellectual discipli-
nes of some field of research. 

guide: It is impossible to determine in ad-
vance what forms these characterizations mi­
ght take, what lessons might be learned from 
them, or what kinds of guidance they might 
offer to research. Some of this guidance will 
take the form of knock-down arguments, for-
mal or otherwise, and the rest will be a he-
uristic matter of probabilities. Both types of 
guidance are valuable. 

explanation and design: The goals of the rese­
arch might include both scientific explana-
tion of existing agents-in-environments and 
engineering design of new ones. Despite 
their distinct goals, the activities of science 
and engineering have a long history of cross-
fertilization in computational research; the 
important thing is simply to be aware ofhich 
is which. 

Stanley J. Rosenschein and I have recently 
(1995) edited a special double volume of the Jour­
nal Artificial Intelligence that explores this appro-
ach to Al research in detail, including seventeen 
papers that develop the approach in particular di-
rections. The purpose of this article is to explore 
some of the intellectual background to this rese­
arch (Section 2), to summarize some of what has 
been learned from it (Section 3), and to reflect 
on how this research may portend the emergence 
of a critical cognitive science, grounded in com­
putational experiment but simultaneously guided 
by critical research on its own practices and their 
plače in history (Section 4). 

2 Agents in the world: 
Cognition and planning 

Every research community, whether it knows it or 
not, inherits an extensive network of ideas from 
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its predecessors. This inheritance may be regar-
ded as a type of historical memory, carried across 
generations in the language and artifacts and in-
teractional forms of a community, and it matters 
whether the memories are conscious or unconsci-
ous. Unconsciously inherited ideas will continue 
to shape thought and research in the present day, 
structuring agendas and methods and interpre-
tations while making it difficult to conceptualize 
alternatives. Although it is probably impossible 
for any research community to become encyclo-
pedically aware of its intellectual heritage, critical 
research can make a community aware of patterns 
that have gone unnoticed and options that it did 
not know it had. 

This view of the role of critical reflection is 
common sense in many fields, particularly phi-
losophy. Yet it is stili unfamiliar in most scien-
tific and technical fields, which are accustomed 
to understanding themselves as wholly aware of 
their own ideas and methods. The tendency of 
scientific fields to reconstruct their history within 
present-day frameworks has been long remarked 
(Kuhn 1962); in technical fields this sort of orga-
nized forgetting is manifested in the "state of the 
art" which is nowise defined by its origins. While 
we might be suspicious of such an assumption in 
chemistry or ecology or antenna physics, it is par-
ticularly implausible in the čase of Al, which cle-
arly draws upon an ancient and complex tradition 
of Western thought about such categories as "the 
mind" (Agre 1995a). Concepts of mental life have 
been central to Al since its beginnings; its whole 
premise was that computations occurring inside a 
computer might be regarded as modeling or mi-
micking the thoughts occurring inside a human 
being's mind. 

The root metaphor here is spatial: the 
mind/computer as a container with an inside and 
an outside. Perceptions might pass into the con­
tainer and willed actions might pass out of it, but 
the unit of analvsis is the process going on in­
side it, as opposed to the interactions with an 
environment that it enters into. This way of fra-
ming AI's subject matter is understandable, gi-
ven that the computers of the 1950's had only 
the crudest capabilities for interacting with their 
environments. But this framing was not a fully 
conscious choice; it was part of the philosophical 
tradition from which the psychology of that day 

had itself descended. Behaviorists and mentali-
sts argued about whether it was alright to po-
sit any mechanisms in the space between stimu-
lus and response, but they did not argue about 
the stimulus-response paradigm and the container 
metaphor it implied. 

To be sure, the lines of descent which provi-
ded Al with its root metaphors were not wholly 
straight. Perhaps the neld's most influential fo-
under, Herbert Simon, had previoush/ embraced 
a more complex view of human beings and their 
lives in his writings on public administration. In 
his first major book, Administrative Behavior, Si­
mon (1957) described numerous measures thro-
ugh which organizations compensate for the "li-
mited rationality" of their members. The creation 
of stable job descriptions and the overall division 
of labor, for example, compensate for finite hu­
man abilities. Deliberately designed communica-
tion channels, likewise, compensate for individu-
als' limited knowledge and limited capacities to 
absorb new information. And hierarchical orga­
nizations provide individuals with bounded goals 
while providing for overall coordination. Simon 
portrays people and their organizational enviro­
nments as fitted to one another. Metaphoricallv, 
the jagged edges of individuals' capabilities are 
met by the complementary shape of the world 
around them. Individuals are treated not as self-
sufficient and self-defining but as participants in 
a larger organizational metabolism. 

Although this theory may tend to underesti-
mate the scope of human agency, it at least begins 
to comprehend people as participants in a larger 
world. In particular, it provides a positive theory 
of the attributes of that larger world which inte-
ract constructively with the complex pattern of 
strengths and weaknesses found in individual co-
gnition. Yet when Simon went on to collaborate 
with Allen Newell in the first symbolic models of 
human thought (e.g., Newell and Simon 1963), the 
only element of it that remained is the assumption 
that people get their goals from their hierarchical 
superiors - or, more to the point, from the psycho-
logists who are running the experiment. Admini­
strative Behavior was a study of decision-making 
in an environment that provided the conditions 
for satisfactory choices despite limitations of indi­
vidual rationality; Human Problem Solving (Ne-
well and Simon 1972) was a study of problem-
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solving in an "environment" defined in terms of 
the formal structure of a "problem" as a "search" 
through an abstract "space." 

Al ideas about action have generally been fra-
med in terms of "planning," which is roughly the 
notion of conducting one's life by constructing 
and executing computer programs (Allen, Hen-
dler, and Tate 1990). Somewhat confusingly, this 
term originally entered the Al lexicon from Ne-
well and Simon's work, but with a different mea-
ning - it was a mechanism for shortening searches 
through a hierarchy of search spaces representing 
different degrees of detail. But its more common 
denotation was infiuenced by Newell and Simon's 
work as well, the idea being roughly that one con-
structs a plan by conducting a search through the 
space of possible plans, looking for the one that 
reaches a recognized goal state. 

The development of the concept of planning 
provides an instructive lesson in the workings of 
technical ideas. The most elaborate and widely 
influential early articulation of it was found in Ge-
orge Miller, Eugene Galanter, and Kari Pribram's 
book Pians and the Structure of Behavior (1960). 
According to Miller, Galanter, and Pribram: 

A Plan is any hierarchical process in the 
organism that can control the order in 
which a sequence of operations is to be 
performed (1960: 16). 

This definition is remarkably vague, speaking 
not of a symbolic structure but of a "process." 
(The process is hierarchical in the sense articu-
lated by Newell and Simon in their own concept 
of "planning.") In practice, though, Miller, Ga­
lanter, and Pribram constantly shifted back and 
forth between two concepts of a Plan. According 
to the first concept, a Plan is a recipe that so-
meone might retrieve from memory and execute 
as a single choice; the day's repertoire of habi-
tual routines might be understood as a library 
of these Plans. This concept provides an easy 
explanation of why behavior has a structure: this 
structure is caused by a Plan that has that same 
structure. But it provides no explanation of how 
complex patterns behavior of respond to the un-
folding complexities of the environment. This was 
the purpose of second concept, usually referred to 
as the Plan, which was a large hierarchical struc­
ture in the individuaPs mind, assembled from bits 

and pieces of Plans. At any given tirne the Plan 
would be partially assembled, well worked out in 
some areas and sketchy in others. The only re-
quirement was that any given section of the Plan 
be completely filled in when the time comes to 
execute it. These two distinct concepts respon-
ded to distinct needs that Miller, Galanter, and 
Pribram did not know how to reconcile. Their 
text betrays no evidence that they were aware of 
the internal tension in their ideas; nor was the 
problem discussed in the extensive literature that 
they inspired. Instead, later computational rese-
arch focused heavily on the construction of single 
Plans, with little attention to the more improvi-
sational aspects of human activity that required 
the incremental assembly of the longer-term Plan. 

In retrospect, much conceptual trouble in Al 
has arisen through a subtle tendency to conflate 
two logically distinct points of view: (1) that of 
the observer or theorist investigating an agent-
environment system; and (2) that of the agent 
being studied or designed. Thus, for example, 
Miller, Galanter, and Pribam failed to distinguish 
consistently between two of their central theses: 
(1) that behavior has a structure; and (2) that 
behavior has the structure it does because it is ca­
used by a Plan that has that same structure. Per-
haps in consequence of this, it has become com­
mon in Al to use the term "plan" to refer either 
to a behavioral phenomenon or a mental entity. 
This usage makes it difficult to conceptualize any 
other explanation for the recurring structures of 
behavior, for example that they might arise thro­
ugh the repeated interaction of particular agents 
(which may or may not employ plans) with parti­
cular environments (which are probably arranged 
to facilitate beneficial forms of interaction). 

The Al literature has also failed to distinguish 
consistently between the observer's view of the 
world and the agenfs own model of the world. 
Agents are often said to possess "world models" 
which stand in systematic point-by-point corre-
spondence with the outside world, and programs 
often receive correct, complete, consistent, up-to-
date models automatically. It is of course possible 
that some real agents employ world models of this 
type, or that artificial agents might beneflt from 
them. But the čase for world models becomes 
less automatic once we recognize that real, situa-
ted, finite agents can only maintain models of the 
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world by piecing together bits and pieces of in-
formation perceived at distant places and times, 
often without precise knowledge of their location. 
Likewise, it is important to distinguish two ušes of 
the word "situation," which can be used to refer 
to the totality of the state of the world at a given 
moment or else to the agenfs own knowledge or 
immediate sense perceptions of the world at that 
moment. 

Throughout this history, the unrecognized root 
metaphor of mind-as-container frustrated clear 
thinking about computational theories of action. 
It is clear in retrospect that action should be a 
promising site for reexamination of basic Al ideas, 
precisely because action constantly crosses the bo-
undaries betvveen the mind-inside and the world-
outside. Yet this realization came slowly to the 
Al community, largely through a series of experi-
ments with "situated" or "reactive" systems that 
effectively reinvented the second, neglected half of 
Miller, Galanter, and Pribram's ambiguous con-
cept (Agre and Chapman 1987, Brooks 1986, Ge-
orgeff and Lansky 1987, Rosenschein and Kael-
bling 1986, Schoppers 1987). 

3 Structural coupling 

In the context of this history, the ambition of the 
approach to Al that I sketched at the outset - cha-
racterizing interactions in principled ways - is to 
reconcile the two demands that pulled the "plan-
ning" theory in contradictory directions: explain-
ing the sense in which activity has a structure 
and explaining how activity responds to a ste-
ady stream of environmental contingencies. These 
explanations will not be simple, nor would it be 
desireable to force them into a single vocabulary. 
Early projects in this area have been primarily 
concerned with mapping the territory and identi-
fying speciflc, relatively modest results that can 
provide models for further research. This section 
summarizes some of these early projects, with 
special reference to the work described in Agre 
and Rosenschein (1995). 

A unifying theme for this results is Maturana 
and Varela's (1987) notion of structural coupling. 
Structural coupling is a difficult concept to under-
stand within the theories of causality that have 
been implicit in the majority of Al research. But 
it is easier to understand in its original context of 

evolutionary biology. Any given ecosystem, consi-
sting of a number of species and a certain physical 
environment, will exhibit a great deal of mutual 
adaptation as the various species have coevolved 
while constantly having effects on their surroun-
dings. Over tirne, the "design" of each species 
becomes increasingly interlocked with the rest of 
the ecosystem, so that its structure becomes well-
adapted to particular forms of interaction while 
contributing certain ongoing influences in turn. 
In this sense, the structures of the various spe­
cies and their environments become "coupled" -
implying one another through their mutual adap­
tation and their roles in creating the conditions of 
continued existence for one another. As a result, 
it makes little sense to study an organism in is-
olation from its environment. Simple descriptive 
anatomy might provide a useful source of refe­
rence material, but it will not provide concepts to 
explain how the organism functions in its natural 
surroundings or why it is structured as it is. 

The notion of structural coupling might be 
extended to other spheres, for example in un-
derstanding the systems of cultural practices by 
which people conduct their lives. It would be a se-
rious mistake to reduce these practices to a simple 
matter of biological adaptation or survival, the-
reby converting Al into a type of sociobiology, but 
the biological metaphor has heuristic value none-
theless. Computational research on human inte­
ractions with the phvsical world suggests explo-
ring the specifically cpgnitive dimension of these 
practices - the ways that they bridge the gap be­
tvveen the structure of an underlying architecture 
and the structure of an environment of activitv. 

3.1 Horswill 

Horswill (1995) offers a framework for thinking 
about the adaptation of a robofs perceptual ar­
chitecture to its environment. Research in Al has 
most often aimed at building extremely general 
architectures to match the seemingly infinite fle-
xibility of human intelligence. This emphasis on 
generality discourages attention to environmental 
adaptation. Horswill, by contrast, seeks general 
methods for building specialized svstems. Intu-
itively, one might imagine a lattice structure in 
which general-purpose systems are located toward 
the top and very specialized systems are located 
toward the bottom. The partial order that in-
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duces the lattice is "works correctly in a broader 
range of environments than." The discovery of 
new forms of structure in the environment - for 
example, a geometric structure or property of re-
fiected light (cf Marr 1982) - should allovv the de-
signer to move downward in the lattice, selecting 
a design that employs simpler machinery. 

Horswill ušes this framework to describe the 
workings of a robot that provides visitors with 
tours of a floor of an office building. This envi­
ronment has special properties whose computati-
onal significance may not be evident at flrst. For 
example, the floors in this environment have no 
low-frequency surface markings since they consist 
of square floor tiles of uniform color, whereas ali 
other objects do have such small markings. As a 
result, a simple bandpass filter, together with in-
formation from stereo matching about an objecfs 
distance from the camera, sufnces to distinguish 
between floors and other objects. Other such en-
vironmental constraints remove the necessity of 
calibrating the camera, since analysis of the neces-
sary computations reveals that, in order to make 
the specific decisions that it needs to make in car-
rying out its purpose, the robot need only calcu-
late a function that is monotonically related to a 
correct measurement of the world. The final re­
sult of these discoveries is that the robot can be 
built with simple hardware. The point, however, 
is not to promote simple hardware as such, nor to 
suggest any particular type of hardware is univer-
sally applicable, but to provide principled means 
for choosing the simplest hardware that is com-
patible with a given environment and (desired or 
observed) pattern of interaction. 

This method does not provide a mechanical for­
mula for system design, since it takes considerable 
thought and post-hoc rationalization to discover 
which environmental constraints actually permit 
a given system's calculations to be simplified. No-
netheless, experience with this process ought to 
provide designers with a library of instructive čase 
studies in both the design of adapted systems and 
the explanation of natural systems. 

3.2 Kirsh 

Whereas Horswill's design methods produce es-
sentially passive perceptual systems, Kirsh (1995) 
describes and categorizes a wide variety of mea-
sures through which people activeb/ manage their 

physical environments to assist their perception 
and cognition. Gathering the tools and ingredi-
ents needed to cook a particular dish into a spe­
cific area of the kitchen, for example, reduces the 
amount of visual discrimination needed to select 
the right object to pick up; it also provides rem-
inders of steps that might othenvise have been 
forgotten. When disassembling a bicycle, arran-
ging the parts in the order in which they were re-
moved effectively serves as a mnemonic device to 
guide the process of putting them back on again 
(Chapman and Agre 1986). By analogy with ma-
nufacturing automation, in which workspaces are 
frequently provided with "jigs" that hold parts 
in plače while other operations are performed on 
them, Kirsh refers to these tricks as "informatio-
nal jigging." 

The phenomenon of informational jigging pro­
vides numerous clues about the strengths and li-
mitations of human cognition. It is easier, for 
example, to discern the length of a row than the 
volume of a pile. As a result, when arranging va-
rious foods on a tray it is helpful to plače them in 
parallel lines across the countertop to ensure that 
one is using them in steady proportions. Cap-
ture errors are common when two common tasks 
provide similar patterns of visual cues; it helps 
to differentiate these tasks by performing them in 
different places or with different tools. 

3.3 Hammond, Converse, and Grass 

This pattern of reasoning generalizes the pattern 
found in HorswilPs work. In each čase, reco-
urse to very general architectures is avoided by 
looking for structure in the relationship between 
agent and environment. For Horswill, this struc­
ture is a matter of perceptual patterns that per­
mit computations to be simplified. For Kirsh, it 
is a matter of active interventions in the enviro­
nment that produce the same effect. Hammond, 
Converse, and Grass (1995) take this line of reaso­
ning further, investigating much longer-term rela-
tionships between agents and their environments. 
This is a striking departure from Al planning re-
search, which has generally understood activity in 
terms of the pursuit of single, discrete goals. 

The starting-point for Hammond, Converse, 
and Grass's argument is a particular kind of archi-
tecture: "case-based" systems that work by tre-
ating previously encountered situations as prece-
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dents for reasoning about new ones. Case-based 
systems offer an explanation of why ordinary acti-
vities can proceed so smoothly despite their great 
complexity - most of the complexity has been en-
countered elsewhere before. A great deal of rese-
arch has explored the memory structures needed 
to support case-based reasoning (Schank 1982), 
and Harnmond, Converse, and Grass wished to 
apply these results to the modeling of long4erm 
activities. Doing so, though, required some acco-
unt of why newly situations are likely to be simi-
lar to old ones. The answer, in large part, is that 
people actively "stabilize" their environments. A 
simple example of stabilization is putting tools 
away and cleaning up when a task is finished. 
That way, the work environment will look largely 
the same at the beginning of each task. 

3.4 Agre and Horswill 

With the work of both Kirsh and Hammond, Con­
verse, and Grass, the "principled characteriza-
tion" of the environment takes the form of a he-
uristic argument and the classification of a broad 
range of example phenomena. Although this kind 
of theory is valuable, it does not support strong 
forms of proof. One cannot use these concepts, 
for example, to demonstrate formally that a par-
ticular kind of agent will necessarily enjoy ali of 
the reminders and perceptual distinctions neces-
sary to perform a given task. The theorist faces 
a trade-off: formal proofs usually require that the 
agent and world be understood in relatively sim­
ple and unrealistic ways. 

The work of Agre and Horswill (see Agre 1995b, 
Agre and Horswill 1992) provides a čase study 
in the formalization of cultural practices. They 
explore tasks that involve operations on artifacts, 
for example the artifacts found in Western kit-
chens during the preparation of simple customary 
meals. One might try formalizing these tasks in 
terms of the various states that each type of object 
might occupy (a fork might be clean or dirty; eggs 
might be intact, broken, beaten, or cooked; and 
so on) and the operations that cause objects to 
move from one state to another (beating an bro­
ken egg with a fork causes the egg to become be­
aten and the fork to become dirty). Each type of 
object would thus have a state-graph similar to 
the graphs found in conventional formalizations 
of planning as a matter of search. It is possible to 

conceive of kitchens, on another planet perhaps, 
in which these state-graphs are extremely tangled, 
so that the cook must consider a vast range of 
combinatorial possibilities before making any mo-
ves. But the kitchens that have evolved in human 
cultures do not cause such problems. An investi-
gation of the state-graphs for familiar tools and 
materials suggests one reason why: these graphs 
fall into a small number of simple formal catego-
ries which permit a simple mechanism to deter-
mine what actions to take next. 

Cooking is not always this simple, of course, 
but a formal analysis predicts when difficulties 
are likely to arise - for example when the interlea-
ving of several complex recipes makes it necessary 
to schedule the use of a limited resource such as 
the oven. For most purposes, though, culture has 
evolved tools that serve cognitive functions: they 
help make it simple to decide what to do next, 
thereby reducing the need for the complex forms 
of state-space search that planning research has 
developed. 

Considered together, these research projects 
begin to paint a picture quite different from that 
found in the cognitive tradition Al research. In-
stead of disembodied thinking, this research di-
scovers embodied agents engaged in intricate in-
teractions with their environments, and the pro-
perties of these interactions turn out to have 
substantial consequences for the agents' archi-
tectures. Just as Simon's Administrative Beha-
vior had imagined organization members as fit-
ted to their cognitive environments in complex 
ways that compensated for their limited rationa-
lity, this research paints human beings as fitted to 
their physical environments. More importantly, 
this research breaks down the conventional con-
cept of cognition: cognition, it turns out, is not 
usefully understood as something that happens 
inside an individuaPs head. The natural unit of 
analysis, rather, is to be found in the interactio-
nal patterns that arrange the world as someplace 
that is good to think in. Research can recon-
struct the structural coupling between architectu-
res and environments by moving back and forth 
analytically between them, investigating the en-
vironmental structures and customary practices 
that might compensate for the limitations that 
an architecture might seem to possess when con­
sidered in isolation. 
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4 Critical cognitive science 
The research I have described suggests an al­
ternative conceptualization of the field of artifi-
cial intelligence. On a substantive level it su­
ggests new units of analysis for Al, starting with 
the principled characterization of interactions be-
tween agents and their environments and procee-
ding to an exploration of the structural coupling 
between them. On a critical level it suggests a 
more sophisticated awareness of the inner concep-
tual workings of the field: the inheritance the field 
has received from its forebears and the technical 
difRculties that persist when this inheritance is 
not reexamined in the light of experience. It is 
conceivable that the research reported here has 
stumbled upon the best possible set of substan­
tive concepts to guide future research. But this 
is unlikely, and it would be unfortunate to simply 
create a rigid new framework to replace the old 
one. The focus on interactions arose through re-
flexive study of the ideas and recurring tensions 
in Al research, and this habit of reflection should 
be codified and taught. 

Although this critical approach might be brou-
ght to the design of robots or the study of insects, 
my own principal concern is with the study of hu­
man beings. The purpose of a "critical cognitive 
science," I would propose, is to employ computa-
tional techniques to study people and their lives 
while simultaneously cultivating an awareness of 
the implicit theory of humanity that this research 
presupposes and discovers. A critical cognitive 
science would be marked by the following six ac-
tivities: 

1. taking computational ideas seriously as ideas 
and investigating their plače in the history of 
both ideas and institutions; 

2. studying the discursive forms (the metaphors, 
narratives, grammar, and so on) of computa­
tional research against this same background; 

3. using engineering methods as tools but doing 
so criticallv, not permitting them to import 
whole philosophical worldviews into the rese­
arch; 

4. embracing technical difficulties and impasses 
as potentially instructive symptoms of inter-
nal tensions in the underlying ideas; 

5. critically interrogating the concepts of human 
beings and their lives that are implicit in te­
chnical ideas; and 

6. establishing dialogue with a wide variety of 
other fields, according equal value to technical 
and non-technical interlocutors. 

Measured against these standards, the research 
reported here provides simple, inevitably flawed 
starting points. The focus on interactions be-
tween agents and their environments, for example, 
permits this research to enter into dialogue with 
a wide variety of other research programs which 
also regard interaction as constitutive of huma-
nity. Most of these research programs have con-
siderably more sophisticated ideas about interac­
tion than computational research can accommo-
date using the technical methods that have arisen 
to date. On the other hand, computational rese­
arch provides powerful tools for submitting the-
oretical concepts to practical tests. The process 
of building something regularly reveals issues that 
have been glossed over in descriptive research, or 
even in formal laboratory research that has not 
fully enumerated the assumptions that allow la-
boratory phenomena to be treated as evidence for 
or against a theory. Critical cognitive science will 
have matured when the interdisciplinary dialogue 
routinely provides intellectual challenges in both 
directions. 
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This paper investigates the role of representation in both cognitive modeling and the 
development of human-computer interfaces/interaction (HCI). It turns out that these 
two domains are closely connected over the problem of knowledge representation. The 
main points of this paper can be summarized as follows: 
(i) Humans and computers have to be considered as two representational systems which 
are interacting with each other via the externalization of representations. (H) There are 
different levels and forms of representation involved in the process of HCI as well as in 
the processing mechanisms of the respective system. (Hi) As an implication there arises 
the problem of a mismatch between these representational forms - in some cases this 
mismatch leads to failures in the effectiveness ofHCIs. 
The main argument is that representations (e.g., symbols) typically ascribed to humans 
are built/projected into computers - the problem is, however, that these representations 
are merely external manifestations ofinternal neural representations whose nature is stili 
under investigation and whose structure seems to be different from the traditional (i.e., 
referential) understanding of representation. This seems to be a serious methodological 
problem. 
This paper suggests a way out ofthis problem: first of aH, it is important to understand 
the dynamics of internal neural representations in a deeper way and seriously consider 
this knowledge in the development of HCIs. Secondly, the task of HCI-design should 
be to trigger appropriate representations, processes, and/or state transition in the par-
ticipating systems. This enables an effective and closed feedback loop betv/een these 
systems. The goal of this paper is not to give detailed instructions, "how to build a 
better cognitive model and/or HCI", but to investigate the epistemological and repre­
sentational issues arising in these domains. Furthermore, some suggestions are made 
how to avoid methodological and epistemological "traps" in these Gelds. 

1 Introduction — setting the into the domain of computer science. Techniques 
staee an(^ strategies from computer graphics, software 

engineering, etc. are assumed to be the foun-
dation and the starting point for • developing a 

Designing a model of cognition or a human- human-computer interface. Contrary to this view, 
computer interface is normally considered to fall the goal of this paper is to show that issues from 
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cognitive science (e.g., [62, 55, 71, 73] and many 
others), epistemology (e.g., [45, 4, 7, 11, 38] and 
many others), as well as from philosophv of sci­
ence (e.g., [8, 27, 16, 5] and many others) are 
at least as important as the technical questions 
which are covered by computer science. An even 
more radical approach is suggested: before one 
can even start to think about a human-computer 
interface, he/she has to consider and investigate 
a much more fundamental level, which - only at 
first glance - seems to be completely detached 
from the original idea of implementing a human-
computer interface. This fundamental level con-
cerns the epistemological question of knotvledge 
(representation). In the course of this paper a per-
spective will be developed in which knowledge re­
presentation is the implicit theme on which ali ac-
tivities in human-computer interface development 
are based. The goal of this paper is to-make expli-
cit ali the different levels and forms of knowledge 
representation which are involved and interacting 
with each other when a cognitive system interacts 
with a computer. The two main claims of this pa­
per can be summarized as follows: in order to de-
velop a successful and adequate human-computer 
interface two criteria have to be fulfilled: 

(i) one has to be clear about the epistemologi­
cal situation in which he/she finds him-/herself 
when either developing or using a computer (in­
terface). In other words, there has to be some 
clarity about the different forms, levels, and 
dynamics of knowledge which are interacting 
with each other when someone ušes a computer. 

(ii) only if one has an adequate cognitive mo­
del, it is possible to create an effective and effici-
ent interaction between human and computers. 
Le., only a sound theory about the dynamics of 
the cognitive processes being involved in human-
computer interaction guarantees a successful in­
terface between these two systems. 

1.1 Humans, computers, nervous 
systems, and knowledge 

Before tackling the questions which are arising 
in the context of human-computer interfaces, I 
am suggesting to take a step back and look at 
the whole problem from a more abstract, funda­
mental, and epistemological perspective. In most 

approaches this step is either regarded as uninte-
resting or it is ignored at ali. However, in order to 
achieve a clear view of the problems being invol­
ved in designing a model of cognition and using 
a computer interface the folknving considerations 
will prove very useful in the sections to come. 

So, what is the basic situation in which we find 
ourselves when developing a human computer in­
terface and/or a model of cognition? First of ali, 
we have to be clear about the participating sy-
stems which are involved in this interaction: (i) 
the user who can be characterized as a cognitive 
system which tries to solve some problem or to 
accomplish a task more efficiently by making use 
of a computer; (ii) the computer which can be cha­
racterized as a machine transforming inputs into 
outputs in a non-linear manner1; (iii) the interac­
tion media in the computer allow the interaction 
between the cognitive system and the computer. 
There exists a wide range of input/output devi-
ces: mouse, keyboard, printers, graphic displays, 
acoustic in/output devices, data glove, etc; (iv) 
one must not forget that the user has also his/her 
interaction devices, namely his/her sensorv and 
motor svstems. They allow external stimuli (such 
as pixels on a screen) to enter into the (neural) 
representation system and that internal represen-
tations can be externalized via behavioral actions. 
These behavioral actions (might) change the en-
vironmental structure (e.g., move the mouse, hit 
a key of the keyboard, etc); (v) finally there is an 
observer - in most cases this observer is also the 
designer of the human-computer interface and/or 
of the cognitive model. He/she has access to both 
the internal structures of the computer program 
and to the behavioral structures of the user. We 
have to keep in mind that the access to the user's 
internal representational structures is only limi-
ted, as the user can only externalize a small frac-
tion of his/her knowledge via behavioral actions, 
such as language. It is the task of the designer to 
develop an adequate model of the cognitive pro­
cesses and of the potential user's internal repre-
sentations (and their dynamics) by making use of 
neuroscientific theories and findings from cogni­
tive science. 

Investigating the processes which are going on 

1Of course, cognitive svstems can be characterized as 
transformation systems as well - and this paper assumes 
that this is the čase. 
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in human-computer interaction, it is clear that we 
are not dealing with a one-way interaction, but 
with systems which try to mutually influence and 
trigger each other in a more or less beneficial man-
ner. As it is the čase in almost any interaction be-
tween a cognitive svstem with its environment or 
with other cognitive systems, we are dealing with 
a feedback relationship - the goal of this relation­
ship is to establish a more or less stable feedback 
loop being based on a "smooth" interaction and 
on effectively triggering the respective represen-
tation/processing systems. 

By now its has become clear that a lot of inte-
ractions are going on between these two systems 
(i.e., the human and the computer). Consequen-
tly, there have to be devices which act as in-
terfaces between these two systems which - at 
first glance - do not seem to be compatible. In 
other words, how is the interaction between the 
user's and the computer's dynamics realized? The 
answer to this question covers a large part of 
what the field of human-computer interaction is 
ali about. Let's have a short look at the in­
teraction media which are involved in this pro-
cess of interaction: (a) the user's motor system 
(e.g., hand, voice, etc), (b) the user's sensory sy-
stem (e.g., visual system, tactile receptors, acou-
stic system, etc) , (c) the computer's input devices 
(e.g., keyboard, mouse, data glove, etc), and (d) 
the computer's output devices (e.g., graphical di-
splavs, ali kinds of virtual reality output devices, 
etc). These interaction media are responsible for 
creating some kind of compatibility between the 
internal representations of the participating sy-
stems. Their task is to transform the internal 
representations into structural changes of the en­
vironment (e.g., activating a muscle which moves 
a mouse, activating a pixel on a screen, etc.) and 
vice versa. The human and the computer can 
only interact with each other via mutually chan-
ging the environmental structure/dynamics (e.g., 
generating sound, pressing a key on the keybo-
ard, etc). Similarly as in (natural, spoken, or 
written) language, communication is only possi-
ble by making use of the environment as carrier 
for the mutual stimulations. 

1.2 Propert ies of the participating 
parties 

In order to understand the processes occurring 
in the interaction between humans and compu-
ters, we have to be clear about the "epistemo-
logical context" in which these interactions take 
plače. Therefore, before designing cognitive mo-
dels and/or HCIs the participating systems and 
their (representational) dynamics have to be in-
vestigated more closely (see the following subsec-
tions). The focus of our attention should be the 
(human) cognitive svstem and its representatio­
nal function, as it is the "main player" setting 
the boundary conditions in these interaction pro­
cesses. Secondly, the environment ("world") has 
to be considered: every cognitive svstem is em-
bedded into and has to survive in this world by 
making use of its representations of the enviro­
nment. Thus, we have to study the representa­
tional relationship between the cognitive system 
and the environment (see sections 1.3 and 2)2. It 
turns out that language and symbol systems (in 
the broadest sense) play an important role in the 
problem of knowledge representation. In the co-
urse of the section to come it will become clear. 
however, that these linguistic/symbolic represen­
tations are embedded in a more general and more 
flexible representational substratum, namely ne-
ural systems. In a last step the epistemological 
properties and role of computers (as representa­
tion systems and simulation machines) have to 
be studied (see section 1.2.4). Only then we will 
be able to understand the processes and problems 
which are arising in the context of modeling co-
gnition and developing HCIs. 

1.2.1 Cognitive system/user 

The central part of human-computer interaction 
is the cognitive svstem which is not only interac-
ting with the computer, but also (and for the most 
part) with the remaining environment as well as 
with other cognitive systems. From observing a 
cognitive system which is acting (successfully) in 
its environment one can conclude that this system 
must possess some kind of knomledge about its en­
vironment. Otherwise it would not be possible to 

This is an essential epistemological reguirement for de­
veloping an adequate model of cognition and, consequently, 
an effective HCI. 
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behave adequately in the environment3. Cogni­
tive science as well as (cognitive) psychology as­
sume that cognitive systems represent knoivledge 
about the environment and about how to success-
fully interact with this environment. More speci-
fically, a representation system is postulated to 
hold some kind of information about the envi­
ronment and how to survive in a given inter-
nal and external environmental context. Further-
more, these "cognitive disciplines" assume that 
the cognitive system makes use of its represen­
tation system and the representations in order to 
generate adequate behavior (e.g., [3, 7, 62, 55] and 
many others). 

"Adequate behavior" and "survival" are used 
in a very wide sense: to externalize adequate be­
havior refers to behavior which ensures survival 
in a physical (e.g., finding food), social, lingui-
stic, cultural, or even scientific context. The goal 
of a cognitive svstem can be characterized as the 
attempt to establish a stable (feedback) relation-
ship both inside the organism and with the en­
vironment (compare also to the concepts of ho-
meostasis and autopoiesis, e.g., [48, 73] and many 
others). In humans and most other natural co­
gnitive systems the nervous system is assumed 
to be the substratum for the representation sy-
stem. Le., the neural architecture (as well as the 
body structure [58, 59]) holds/embodies ali of the 
particular human's/cognitive system's knowledge. 
Thus, it is responsible for his/her/its behavioral 
dynamics. 

1.2.2 Environment 

Every cognitive system is embedded into the en­
vironment. Abstractly speaking, the environment 
can be characterized as a complex system of flows 
of energy consisting of meaningless patterns and 
regularities. In the perspective being presented 
in this paper the term "environment" refers to 
I.Kanfs concept of the "thing-in-itself". It is not 
accessible in principle and - despite of ali efforts 
of science to find out more about the "true" or 
"objective" nature/structure of the environment-
we can perceive only representations/constructs of 
the environment; i.e., representational constructs 
are generated byour nervous system in the co-

3Of course, there is always the possibility to behave in 
a random manner. For obvious reasons this seems to be a 
rather bad strategy to ensure the organism's survival. 

urse of interacting with the environment as well 
as with its neural states. 

It is only in the process of interacting with 
a cognitive system that environmental sta-
tes/patterns receive individual meaning. Accor-
ding to G.Roth meaning or semantics is the 
specific influence or the effect which a enviro­
nmental state/dynamics has on a specific cogni-
tive/representational system [63, 64]. Thus, me­
aning is always system-relative and individually 
depends on the structure and current state of the 
particular cognitive system. This structure/state 
itself is the result of ali phylo- and ontogenetic 
developments of the particular organism (i.e., the 
total of the organism's "experiences"). 

Having in mind what has been said about the 
impossibility of accessing the environment direc-
tly, it has to be clear that the same applies to what 
has been referred to as "environmental regulari­
ties". Le., environmental regularities do not pre-
sent themselves explicitly as regularities; in other 
words, it is the organism's task to figure out these 
regularities which are relevant for its survival. 
This is not only true for simple organisms which 
are using, for instance, light gradients for locating 
food more efficiently, but also for scientists who 
are trying to find out specific regularities in the 
environment in order to use them for manipula-
ting the environment more efhciently. The im-
portant thing to keep in mind is that ali these re­
gularities are system relative/-dependent and are 
the result of construction processes which are exe-
cuted by the particular representation system4. 
Looking more closely at the structure of the envi­
ronment, it turns out that one has to differentiate 
between two forms of regularities with which co­
gnitive systems are confronted: 

(i) "natural regularities": this category includes 
ali regularities which are occurring "naturally" 
in the dynamics of the environment. The fact 
that a stone will always fall down or that ligh-
tning is followed by thunder are examples for 
such "natural regularities". 

(h) uartificial regularities": this category of re­
gularities can be referred to as artifacts in the 

This implies that even so-called "objective" or "true" 
scientific knowledge/theories are only svstem relative and 
always depend on the structure of these cognitive systems 
which are responsible for constructing them. 
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broadest sense. They can be characterized by 
the fact that they are the result of externali-
zations (behaviors) of an organism's knowledge. 
In other words, artifacts are artificial changes or 
alterations in the structure of the environment. 
The notion of artifact, as it is used in this pa-
per, is rather wide and ranges from simple forms 
of tools, shelters, houses, etc. (of simple ani-
mals as well as of humans) to the most advanced 
technological achievements or scientific theories. 
Everything which has been produced by a sin-
gle organism or a group of cognitive systems is 
included in the domain of artifacts. It is clear 
that artifacts follow the same dynamics and ru-
les (of physics) as natural regularities do - the 
difference is that they are carrving an additio-
nal structure/regularity/feature which has been 
attached to them by an organism's behavioral 
action. Of course, it is sometimes difficult to 
clearly differentiate between artificial and natu­
ral regularities. 

We are dealing with tivo interacting dynamic 
systems whenever we are studying the interaction 
between a cognitive svstem and its environment. 
Both systems are following their own dynamics 
and try to influence and modulate each other. 
Especially the cognitive svstem tries to achieve 
a state of homeostasis (i.e., the criterion for life 
and/or survival) by externalizing certain behavi­
ors which modulate the internal and external en­
vironment in a beneficial manner. Cognitive sy-
stems are a part of the environment. A cognitive 
svstem itself can be characterized as consisting 
of the following subsvstems which are heavily in­
teracting with each other: (a) the body struc­
ture and state of activation patterns which are 
responsible for the generation of the actual beha­
vioral dynamics; (b) the structure of the synap-
tic weights which are responsible for holding the 
organism's knowledge and which, when changed, 
are responsible for the phenomenon of ontogene-
tic "learning" and/or adaptation; (c) the gene-
tic code and dynamics underlies ali these activi-
ties. It regulates the phylogenetic development 
of the organism (as well as of its [phylogenetic] 
knowledge). In any čase, a complex pattern of 
interactions and different levels of knowledge are 
involved in this interaction between cognitive sy-
stems and their environment (see [59] for further 
details). The basic assumption is that a cogni­

tive svstem has to hold some kind of information 
or knowledge about its environment in order to 
survive in this environment. 

1.2.3 Language and svmbols 

A subgroup of artifacts has a special function: it is 
used for representation, communication, and sto-
rage of knoivledge and information. Especially so-
called higher organisms are using these artifacts 
for transmitting knowledge to other organisms via 
an extra-genetic path. Le., normally it is only 
possible to pass on knowledge to another gene­
ration of organisms through the genetic code. Of 
course, ali the knowledge which has been accumu-
lated in the course of the organism's ontogenetic 
development is lost in this process. In order to cut 
short the - sometimes painful - process of having 
to make "direct experiences" in the environment, 
a kind of symbol system is introduced which de-
scribes these experiences in an abstract manner 
[36]. If another organism is capable of decoding 
these messages, it can "learn" from these symbolic 
artifacts instead of having to directly experience 
the environmental consequences of its behavioral 
actions. The important property of these artifacts 
is their referential function; i.e., they are symbols 
in the most general sense, meaning that they are 
environmental regularities which are referring to 
something else. This subgroup of artificial regula­
rities includes ali kinds of language (written, spo-
ken, sign language, body language, etc), symbols, 
books, paintings, TV, CDs, scientific theories, ar-
chitecture, etc. Almost any artifact can be inter-
preted as having some kind of referential function, 
namely it refers at least to what the creator of 
this artifact has intended to express/externalize. 
In symbols [17, 18] this referential function can 
be seen most clearly: the environmental pattern 
of a symbol s stands for another state/pattern e 
in the environment or in an organism. In other 
words, the symbol s represents e. 

This kind of artifacts can be understood as be-
ing the substratum of what is referred to as "cultu-
ral knoivledge" in the widest sense. It is the basis 
for any cultural process and development. Keep 
in mind, however, that even these artifacts are 
completeb/ meaningless per se! The same applies 
for them as for any other environmental regularity 
or pattern: they receive their particular meaning 
only in the process of being interpreted by a cogni-
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tive system, where its representational dynamics 
is modulated/influenced by this symbol. Their 
meaning is by no means clearly defined; rather 
it always depends on the structure, state, and 
phylo- and ontogenetic experiences of the percei-
ving cognitive system. In other words, their me-
aning/semantics is always system relative. For a 
human reader a book will have a different meaning 
than for an insect which is interested in eating pa-
per. But even between humans a certain piece of 
text or spoken language will have different mea­
ning - it always depends on the previous (lear-
ning) experiences and on the current (representa­
tional) state of the participating cognitive systems 
which meaning is attributed to an artifact. This 
problem of "private semantics", communication, 
and its consequences for Al and cognitive science 
will be taken up again in the sections to come. 

1.2.4 Computer and its program 

A special subgroup of this (referential) subgroup 
of artifacfs contains computers. They are expli-
citly designed to transform information and 
knomledge. The designer's task is/was to build a 
mechanism (i.e., artifact) which supports humans 
in accomplishing a certain task at a higher speed 
and/or with higher accuracy by making use of and 
manipulating referential artifacts. Normally a hu­
man would use his/her own representational sy-
stem (and body) in order to fulfill a certain task. 
The whole concept of computers is based on the 
idea to transfer parts of his/her representational 
structure (i.e., knowledge to solve a certain pro­
blem or task) into a computer program which -
by making use of these knowledge structures - is 
then capable of mimicking certain cognitive acti-
vities at some level of abstraction5. The compu­
ter runs these programs automatically by doing 
nothing, but transforming and manipulating bit 
patterns according to certain rules (i.e., algori-
thm). As it is the čase with any other artifacts 
and environmental regularities, it is only the act 
of interpretation by a human that brings meaning 
to these meaningless bit patterns (e.g., pixels on 
the screen are perceived as meaningful symbols, 
computer generated sound-waves are interpreted 
as spoken language, etc). In other words, the 

5This does not only apply to expert systems, but to any 
computer programs which perform a certain task. 

computer's output triggers and modulates the co-
gnitive/representational dynamics of the human 
user who is interacting with the computer (and 
vice versa). 

The epistemologically interesting part of 
this interaction is the process of transferring 
knoivledge from the cognitive system (e.g., an 
expert, human, etc.) to the representational 
structure of the computer (e.g., data structures, 
algorithms, rule systems, semantic networks, ne-
ural networks, etc). More preciseh/, the que-
stion is, how the computer and its representa­
tional structure obtain their knowledge allowing 
them to solve a problem or to achieve a certain 
task. There are at least two answers to this que-
stion - they do not mutually exclude each other: 

(i) The knowledge is transferred from the hu­
man (expert) to the computer. In other words, 
some kind of mapping between the human's re-
presentation system and the computer's repre-
sentation mechanisms (e.g., data structures, pro­
grams, etc.) is carried out. That is the usual pro­
cedure on which most of the current knoivledge 
engineering techniques are based. The hu-
man/expert has to make (learning-) experien-
ces in the real world by actively interacting with 
the environment. By doing so he/she constructs 
knowledge and theories about the environment. 
This knowledge is externalized by using langu­
age. These linguistic expressions are formalized 
(e.g., by a knowledge engineer or a program-
mer) and transformed into an algorithm, com­
puter program, and data structures. Hence, the 
computer makes use of already prefabricated re-
presentations. 

What makes this approach interesting is that 
the computer (program) can handle huge amo-
unts of data which cannot be overlooked by hu­
mans, it can manipulate data with extremely 
high speed, and thereby make implicit structures 
explicit (e.g., the solution of differential equati-
ons, the application of rules to a set of input 
data, etc). From an abstract perspective an 
expert system using a rule based knowledge re-
presentation mechanism is pretty uninteresting. 
The space of possibilities/solutions is already 
predetermined by the set of rules as well as by 
the possible/acceptable input data. What ma­
kes these systems interesting is the fact that this 
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space is extremely large and that it is - for hu­
mans - almost impossible to foresee ali Soluti­
ons. The computer's ability to stupidly follow 
the rules and apply them to the data with high 
peed makes these structures, which are implici-
tly given in a set of rules, explicit. This process 
generates results (i.e., particular states in the 
"knowledge space") which are (might be) intere-
sting and/or helpful for humans. They are inte-
resting, because the user could not have reached 
this solution by applying his/her knowledge. Of 
course, he/she could have done exactly the same 
as the computer (namely following a huge set of 
rules), but this approach would have been too 
tirne consuming and, thus, not worth pursuing. 

(ii) An alternative approach is that the computer 
itself "learns" from its experiences with the en-
vironment in a trial-&-error process. That is the 
way which most approaches in the domain of ar-
tificial neural networks, computational neurosci-
ence (e.g., [65, 49, 34, 14] and many others), and 
of genetic algorithms (e.g., [35, 31, 50] and many 
othejs) follow. The basic idea can be summari-
zed as follows: in the beginning of the learning 
procedurethe computer has (almost) no useful 
knowledge (to fulfill the desired task). Le., its 
behavior follows more or less random patterns. 
Neural learning algorithms or genetic operators 
adapt the representatkmal structure (i.e., synap-
tic weights, genetic code, etc.) in a trial-&-error 
manner so long, until some useful/desired beha­
vior is generated by the representational struc­
ture. 

This is similar to the processes which occur, whe-
never a human or any natural system has to le-
arn something. He/she/it adapts to certain en-
vironmental regularities which are useful for the 
organism's survival in order to make use of them 
in a beneficial manner. In any čase the result is 
a representational structure (in the brain or in 
the computer) which is said to be capable of de-
aling successfully with certain aspects of the en-
vironmental dynamics in the context of accom-
plishing a certain task, such as the organism's 
survival or solving a problem. The difference to 
solution (i) is that no prefabricated chunks of 
knowledge are mapped/transferred to the repre-
sentation svstem - the cognitive/computer sy-
steiri rather has to figure out a way of solving a 
certain problem by adapting its knowledge struc­

tures in a trial-&-error process. 

In any čase the implicit assumption is that the 
resulting knowledge structure has some kind of re-
semblance or even iso-/homomorphic relationship 
to the environmental structure. Looking more 
closely at this postulate, it turns out that this 
implies some kind of homomorphic relationship 
between the structure of the environment, of the 
representation in the (human) cognitive system, 
as well as of the representation in the computer. It 
is argued that due to this relationship of (structu-
ral) similarity it is possible that humans can solve 
the problem of their survival in the environment. 
Furthermore, if humans can solve problems with 
this kind of "structure preserving" representation, 
computers can do similar things by applying the 
same representational mechanism. 

However, most models in traditional (i.e., sym-
bol manipulation) cognitive science as well as in 
traditional Al have not been as successful as ori-
ginally promised! The success of Al has been li-
mited to rather specialized and highly formal do-
mains. For the remaining part of this paper the 
reasons why Al-models have not been so success^ 
ful will be discussed. Furthermore, the implicati-
ons of these problems for models of cognition and 
human-computer interfaces will be investigated. 

1.3 Epistemological questions 
concerning the traditional concept 
of representation 

From an epistemological perspective two pro­
blems seem to give an explanation to why tradi­
tional cognitive models and human-computer in­
terfaces have not been as successful as originally 
assumed. These problems are rooted in an ina-
dequate assumption about knowledge representa­
tion: 

(a) Epistemological as well as neuroscientific evi­
dence gives rise to the conclusion that the po-
stulated homomorphic or mapping representati­
onal relationship has to be questioned or even 
given up. Le., it is implausible to make the as­
sumption of a structural correspondence or iso-
/homomorphic relationship between the struc­
ture of the environment, the human's represen­
tation of the world, and the structure of the re­
presentation in the computer. 
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(b) As an implication of (a) it becomes clear why 
we will encounter problems in the interaction 
between humans and computers. As there are 
structural differences in the participating repre-
sentational mechanisms, there will be a lack of 
compatibility. This leads to an inefncient inte­
raction between human and computer represen-
tations, as the participating forms of representa-
tions do not nt into each other and/or are mu-
tually not compatible. Think, for instance, of a 
symbolic or graphical user interface: it will have 
only limited success, as in many cases it will not 
meet the requirement of adequately triggering, 
modulating, and influencing the dynamics of the 
neural representation system (and vice versa). 

As a major implication of these problems it 
follows that we have to study the properties, 
structure, and dynamics of the participating (ne-
ural/human) representational systems first. In 
other words, we have to find theories about how 
knowledge is represented and transformed in the 
neural sy.stem, in order to modulate and mani-
pulate the very same neural svstem in an effi-
cient manner e.g., by letting it interact with a 
computer. Only then can we start developing 
cognitive models, so-called knowledge-based sy-
stems, and user interfaces! This is the basic re-
quirement for any kind of "user-friendly" interac­
tion with a computer. Abstractly speaking, the 
goal of human-computer interfaces can be defi-
ned as triggering and modulating the user's repre­
sentational system efficiently. As we have seen 
in the previous section, we are confronted with 
two complex dynamic systems (i.e., the computer 
and the brain) having internal states and follo-
wing their internal dynamics, which are interac-
ting with each other. Only, if one knows the in­
ternal structure (i.e., the structure of state tran-
sitions) of both systems, it is possible to influ-
ence the state transitions of the respective system 
efnciently6. 

As one can change the structure and dyna-
mics of a program rather easily and as one (nor-
mally) knows the structure of state transitions of 
the computer program, the program should adapt 
to the cognitive/representational structure of the 
users, rather than the other way around. The goal 

6In fact, that is not only what developing human-
computer interfaces is aH about, but also any kind of com-
munication or even advertising. 

should be at least that the need for changes in the 
user's cognitive structures should be kept to a mi­
nimum. Considering the issues in the sections to 
come could be a first step tovvards achieving this 
goal. 

2 Troubles with traditional 
approaches to knowledge 
representation 

2.1 Propositional vs. pictorial 
representation 

Traditional cognitive science, Al, and cogni­
tive psychology offer two main paradigms for 
knowledge representation: (i) propositional repre­
sentation (being based on works by [22, 23, 24, 
53, 51, 52, 75] and many others) and (ii) pic­
torial/depiction representation (i.e., mental ima-
gery being mainly based on works by [42, 39, 40, 
41, 68] and many others). In the course of AI's 
short history propositional representations had a 
much stronger influence than any kind of picto­
rial representation, as they are far more practical 
and useful for the task of representing and ma-
nipulating complex knowledge structures. Howe-
ver, pictorial representation plays a central role in 
the context of (graphical) human-computer inter­
faces. 

There exists a long ongoing discussion between 
these two approaches (e.g., [42, 41]) - the goal 
was to show the basic differences between these 
two concepts of representation. The sections to 
come do not follow these discussions. Rather, the 
idea is to show two points: (a) both approaches 
are - from an epistemological as well as neurosci-
entific perspective - naive and rather insufficient 
as adequate models for cognitive processes and as 
representational concepts. (b) These two approa­
ches are not as different as they might appear at 
first glance. In the following paragraphs it will 
turn out that both the pictorial and the propo­
sitional concept of knowledge representation are 
- on a more fundamental and epistemological le-
vel - based on very similar basic assumptions and 
premises. Especially the underlying understan-
ding and implicit assumptions about representa­
tion (i.e., the idea of a referential representational 
relationship) are more or less the same. Further-
more, the shortcomings and problems arising from 
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these considerations in the context of cognitive 
modeling and of developing a human-computer 
interface will be discussed. 

2.2 Quest ioning the referential 
concept of representation 

2.2.1 Ambiguity in the process of 
interpretation and of transferring 
knowledge 

From the field of knowledge engineering, of pro-
gramming, and of logic it has become clear by 
now that in the process of extracting knowledge 
from an expert and transferring it into a compu-
ter a lot of information is lost for various reasons 
(e.g., certain parts of the knowledge cannot be 
verbalized, cannot be formalized, etc). What se-
ems to be more important, and what seems to 
be neglected in many cases, is the fact that not 
only is information lost in this process, but that 
the semantics is also altered or distorted in many 
cases. In fact, it seems that the so-called loss of 
information is only an extreme čase of a change 
in the semantics. This does not only apply to 
symbolic knowledge representation, but also to 
pictorial representation (e.g., visual ambiguities, 
etc). This seems to be a problem; not only for 
expert systems, but also, and perhaps especially, 
for human-computer interfaces, as most of these 
"semantic shifts" occur at this critical step when 
one form of knowledge representation is transfor-
med into another. What are reasons for this phe-
nomenon of semantic shifts? 

(a) natural language is one of our main instru-
ments to externalize our (internal) knowledge. 
As is shown by [60] (and by many others) and 
as everybody knows from his/her own experi-
ence, any kind of language is capable of exter-
nalizing only a small fraction of the semantics 
which one has in mind when he/she tries to 
express something by making use of his/her lan­
guage. The "tacit" or "implicit" knowledge is 
not only lost in the moment of externalization, 
but also some kind of semantic distortion occurs: 
due to his/her different onto- and phylogenetic 
experiences the receiver of the externalized lan­
guage will interpret these "meaningless syntactic 
environmental patterns" (see section 1.2.3) in a 
different way as the sender of the message. 

(b) Thus, a semantic shift occurs, which cannot 
be avoided in principle, whenever one is exter-
nalizing (symbolic) behavior and somebody else 
tries to interpret these - per se - meaningless ar-
tifacts. This implies that the semantics in diffe­
rent users and/or designers and/or experts might 
differ considerably. Although they are confron-
ted with the same symbol, icon, graphical repre­
sentation, etc , these representations might tri-
gger different internal representations/semantics 
in the participating brains. 

(c) This distortion is taken even one step further 
in the process of formalizing natural language 
into purely syntactic and formal structures. De-
spite aH attempts to introduce "semantic featu-
res" into symbol systems, natural language is de-
prived of its semantic features and dimension in 
the process of formalization (and, in general, in 
the process of externalization). Symbolic repre­
sentations (as well as pictorial representations) 
remain syntactic in principle. Loosing the se­
mantic dimension implies, however, more free-
dom in the process of interpreting these syntac-
tic/formal structures which, in turn, may lead to 
umvanted semantic shifts. 

(d) In most artificial representation systems a 
lack of symbol grounding can be found. Seman­
tics is assumed to be somehovv externally defined 
or given. Furthermore, it is assumed that the se­
mantics is more or less stable over tirne. Episte-
mological considerations as well as our own expe-
riences reveal, however, that (i) semantics chan-
ges individualh/ in minimal increments (accor-
ding to the experiences which he/she makes with 
the use of certain symbols). (ii) There is no 
such thing as "the one given semantics"; pu-
blic as well as private semantics are in a steady 
flow. As we have seen, the semantics of symbols 
is always system relative and communication is 
based on mutually adapting the individual use 
of symbols (compare also the concept of a con-
sensual domain as basis for a public semantics; 
[6, 28, 29, 46, 48]). Consequently, the idea of 
holding the semantics stable is absurd anyway -
knowledge representation techniques rather sho-
uld provide means which deal with the phenome-
non of an "individual experience-based adaptive 
semantics". 
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(e) As has been mentioned already, a major 
distortion of semantics occurs in the process 
of transforming one form of representation into 
another. Le., in the process when an internal 
representation is externalized and received by 
another system and transformed into its inter­
nal representational format. This happens in 
any human-computer interaction. The problem 
here is that - contrary to human-human inte-
raction/communication - it is almost impossible 
for both parties to ask whether the respective 
system really "understood" what the other was 
trying to express. This is due to the (false) impli-
cit assumption that our language and even our 
pictorial/iconic representations are based on a 
stable and somehow "given" semantics. 

2.2.2 Mapping the environment 

Both in propositional and in pictorial represen­
tation the underlying idea of representation can 
be characterized as follows: the environment is 
mapped more or less passivehj to the representa­
tional substratum. Although most approaches in 
this field distance themselves from the idea of a 
naive mapping (i.e., naive realism), an unambi-
guous stable referential/representational relation-
ship between the structure of the environment and 
the structure of the representational space is as-
sumed. In other words, a symbol or a (mental) 
image refers to, represents, or stands for a certain 
phenomenon, state, or aspect of the (internal or 
external) environment. 

Empirical research in neuroscience gives evi­
dence that no such stable and unambiguous re­
ferential relationship between repraesentans (i.e., 
the representing entity) and repraesentandum 
(i.e., the entity to be represented) can be found7 

[37, 14, 69]. It seems that neural systems do not 
follow this assumption of a referential representa­
tional relationship. As is discussed in [57] there 
are not only empirical, but also epistemological 
and system-theoretical reasons as to why the con-
cept of referential representation does not apply 
to neural systems. It can be shown that in highly 
recurrent neural architectures (as our brain) nei-

7 A referential representational relationship can be fo­
und only in peripheral parts of the nervous system. But 
even in these areas there is no evidence for real stabi-
lity, as the original stimulus is distorted in the process of 
transduction. 

ther patterns of activations, nor synaptic/weight 
configurations, nor trajectories in the activation 
space refer to environmental events/states in a 
stable (referential) manner. This is due to the in-
fluence of the internal state8 on the whole dyna-
mics (as well as on the input) of the neural system. 
As an implication it is necessary to rethink the 
representational relationship between the enviro­
nment and the representation system. This is not 
only important for the development of adequate 
models of cognition, but also for designing human-
computer interfaces, as their design is based on 
assumptions stemming from a referential under-
standing of representation (e.g., icons, symbols, 
images of desktops, etc.) 

2.2.3 Is depicting the environment 
sufficient? 

In the process of studying the phenomenon of re­
presentation two aspects and functions of repre­
sentation have to be taken into account: (i) ma­
pping or modeling the environment in the repre­
sentational structure; i.e., the goal is an adequate 
and accurate model, picture, description, etc. of 
the environment; (ii) generating (adeguate) beha-
vior: an equally important task of a representa­
tion system is to generate behavior which allows 
the system to accomplish a certain task (e.g., its 
survival or solving a problem). 

Both in the propositional and pictorial appro-
ach the aspect of mapping the environment to the 
representational substratum is more important 
than the aspect of generating behavior. The im-
plicit assumption of these approaches runs as fol-
lows: if the environment is represented/depicted 
as accurately as possible, then it will be extre-
mely easy to generate behavior which adequa-
tely fits into the environment (i.e., which fulfiils 
a desired task). As our language and/or images 
seem to represent our environment successfully9, 
it follows that accurate predictions can be made 
by making use of these representations. Thus, 
the environmental dynamics can be manipulated 
and/or anticipated with this kind of representati­
ons. In other words, if the requirement of accu-
rately mapping the environment to the represen-

This internal state is the result of the neural system's 
recurrent architecture. 

9Think about the success of our language, symbolic 
communication, etc. 
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tational substrat um is satisfied, we do not have 
to worry about the aspect of generating adequate 
behavior any more. 

From an epistemological and constructivist [29, 
30, 48, 73, 64, 74] perspective the claim for an 
"accurate mapping" is absurd; as has been di-
scussed in section 1, nobody will ever have di-
rect access to the structure of the environment. 
Hence, it is impossible to deterrnine, how "accu­
rate" , "true", or "near" the representation of the 
environment (be it in our brains or in a scientific 
theory) compared to the "real" environment is. 
The only level of accuracy which can be determi-
ned is the difference between our own (cognitive) 
representation of the environment and (our repre­
sentation of) the (computational) representation 
which has been constructed by ourselves. In many 
cases it has turned out, however, that the human 
representation of the environment is not the best 
solution to a given problem - consequently, it is 
questionable to elevate our own representation of 
the environment (and the resulting representati-
onal categories) above other forms of representa­
tion and to use them as a standard against which 
other forms of representation have to compete. It 
is by no means clear why our (cognitive or even 
scientific) representation of the world should be 
more accurate or more adequate than any other 
form of representation which is capable of accom-
plishing the same task! 

From the previous section follows that there is 
no empirical evidence for explicit propositional or 
"picture-like" representations in the brain. This 
implies that neural systems do not generate - ob-
viously quite - adequate behavior by making use 
of referential representations. It can be shown 
that any natural nervous system is the result of 
a long phylo- and ontogenetic process of adapta-
tion and development. The goal of this process 
is not to create an accurate model or represen­
tation of the environment, but rather to develop 
these physical (body and representational/neural) 
structures which embody a (recurrent) transfor-
mation being capable of generating functionally 
fttting (i.e., successful) behavior. In natural (co­
gnitive) systems it seems that the aspect of ge­
nerating behavior is more important than the 
aspect of developing an accurate model of the en­
vironment. What we can learn from these sy-
stems and their adaptational strategies is that 

it is not necessary to possess an accurate ma-
pping/representation of the environment in order 
to generate successful behavior. As "accurate re­
presentation" of the environment means "accu­
rate" compared to our own representation of the 
environment, it does not follow necessarily that 
an "inaccurate" representation is not capable of 
producing more efficient behavior. 

2.2.4 Explicit representation 

Both approaches have in common that they are 
based on an explicit representation of the envi­
ronment. Le., in propositional models one finds 
symbols, rules, semantic networks, etc. which 
explicitly refer to certain states of the enviro­
nment. In the čase of mental imagery explicit 
visual categories (e.g., mental images, cognitive 
maps, icons, etc.) are assumed to refer to the 
environment. Both forms of representation are 
"accurate" as far as their referential character is 
concerned. As they match at least one of our re-
presentational categories (e.g., language or [men­
tal] images), they can be said to be accurate, if 
their structure mirrors (our representation of) the 
environment to a certain degree. In other words, 
they are only accurate in the context of our own 
representational categories. 

Semantic transparencv (in the sense of [15]) is 
present in both cases. Le., each representational 
entity can be assigned a "semantic value" (e.g., 
the environmental phenomenon it refers to). This 
kind of representation seems to be based on the 
concepts which can be found in the von Neumann 
machine: there are variables whose values refer 
explicitly to certain environmental states. Again, 
from a neuroscientihc perspective, the concept of 
semantic transparency seems to be rather rare in 
the čase of natural neural systems (e.g., distribu-
ted representation, [26, 65, 66]). If at ali, this 
kind of representation can be found in periphe-
ral parts, where it is possible to assign certain 
semantics to neural activations, as an observer 
can correlate them with environmental events. As 
soon as recurrent activations are involved, it be-
comes almost impossible to deterrnine the seman­
tics of activations or activation patterns. Altho: 

ugh the concept of semantic transparency and of 
a stable referential relationship has to be given 
up, natural as well as artificial neural systems are 
performing extremely well. We can take this as 
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further evidence for the hypothesis that an accu-
rate mapping representation is not necessarily the 
most important ingredient for successfully accom-
plishing a certain task. 

2.2.5 Externalized "human" 
representational categories 

It is clear that both, pictorial and propositio-
nal representations are the result of complex ne-
ural processes which lead to a certain behavior. 
These behaviors are externalized or these repre­
sentations are internally experienced as language 
or pictures. Consequently, whenever we are spe-
aking about propositional and/or pictorial repre­
sentations we are not dealing with representati­
ons which are used by neural systems, but rather 
with results of complex dynamic processes which 
are making use of the more fundamental neural 
representations. Thus, it seems that the level of 
behavioral observations (of linguistic or pictorial 
representations) is confused with the level of ge-
nerating these representations in the propositio-
nal/pictorial approach. Nothing justifies the as-
sumption that the dynamics being responsible for 
generating pictorial/propositional representations 
also makes use of these representational categories 
in order to generate them. 

As has been discussed, neither empirical nor 
epistemological evidence can be found which su-
pports such an assumption. In fact, it turns out 
that neural representations are not only based on 
a different substratum, but also on a completely 
different concept of representation. This view of 
representation is based on adaptive processes and 
on the concepts of system relativity and functio-
nal fitness [29, 57, 59]. They do not fit very well 
into the referential concepts of our traditional un-
derstanding of representation. Our neural system 
constructs these (referential) representational ca­
tegories only in order to "simulate" and give us 
some kind of "cognitive stability" which gives rise 
to phenomena, such as more or less successful 
language, communication, science, etc. Looking 
more closely at these phenomena, we realize that 
they are not as štable as they might appear at 
first glance: the meaning of symbols is shifting 
over time, the scientific concepts and claims of 
"truth" and "objectivity" are not as appropriate 

[19, 21, 20, 47, 28]10 as many would wish, etc. 
Our representational domain seems to be more 

dynamic and plastic than we are aware of. As 
an implication of these considerations it is neces-
sary to question these traditional concepts of re­
presentation - linguistic and propositional repre­
sentations are only a very crude and misleading 
way to characterize the representational proces­
ses going on in our brains. Using these externa-
lized representations as a basis for an explana-
tion of internal representations is a methodologi-
cally extremely questionable procedure. Projec-
ting these traditional "external" representational 
categories to neural systems could be an expla-
nation to why we have so many difRculties with 
interpreting what is going on in natural and arti-
ficial neural systems. Le., no match between our 
pictorial or propositional representations and the 
neural representational categories can be found. 

2.2.6 "Designer solutions" and 
projection (methodological 
problems) 

From the previous section follows that most 
approaches in Al and traditional cognitive science 
turn out to be "designer solutions"; Le., instead 
of studying the structure and dynamics of inter­
nal neural representations and how they acquire 
knowledge from the environment, externalized 
(linguistic or pictorial) representations are projec-
ted back into the representation mechanisms of the 
cognitive model. In other words, an external hu­
man observer/designer projects his/her own (lin­
guistic, pictorial, etc.) representation of the world 
into the observed organism and into the cognitive 
model which he/she is constructing. This implies 
that the resulting representational system corre-
sponds partially with the designer's own view, re­
presentation, and interpretation of the world. 

A comparison with (natural) neural systems 
shows that their representational structure is not 
the result of a projection of already "prefabrica-
ted" and pre-represented (propositional or picto­
rial) representations, but rather of a long history 
of phylo- and ontogenetic processes of adaptation. 
Representations have not been projected and/or 
somehow transferred into the neural representa-

10Think, for instance, of the history of science, the shifts 
of scientific paradigms [43], etc. 
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tion system, but have developed in an active pro-
cess of interaction with the environment. Both 
the genetic material and the neural structure (as 
well as the attached body systems) are crucial for 
the representational function of a natural cogni­
tive system. The structure of the neural system 
itself embodies the knowledge which has "accumu-
lated" in the course of this history. The process of 
adaptation takes plače individually - this implies 
that the representational structure and categories 
may vary even within a single species. 

2.2.7 Processing 

In both representational approaches a similar con-
cept of processing is applied: an algorithm ma-
nipulates/operates on the representational struc­
ture (i.e., on the symbols or mental images). 
There is a clear distinction between the processing 
part and the representational entities, on which 
these processes operate (i.e., processor-memory 
distinction). The processing is actively involved 
in the dynamics of the system, as it operates on 
the representations. The representations, on the 
other hand, seem to play a rather passive role for 
two reasons: (a) as mentioned above, they are the 
result of having been projected from the human 
representation system to the artificial represen-
tation system (i.e., they are passive in the sense 
of being preprocessed and passively mapped); (b) 
an algorithm executes operations over these re­
presentations (i.e., they remain rather passively 
as they are manipulated by the algorithm). 

This concept of distinguishing between proces­
sing and memory has its roots in the structure of 
the Turing machine which inspired the whole Com­
puter metaphor for cognitive processes. In neural 
systems, however, no such distinction can be fo-
und. Normally the synaptic connections/weights 
are considered to "hold the knowledge" of the ne­
ural system. It is not clear which part of the sy-
stem takes over the role of the processor. Further-
more, the synaptic weights (i.e., the neural sy-
stem's "knowledge") turn out to be not passive 
at ali - they are responsible for controlling the 
flow/spreading of the patterns of activations. It 
can be concluded that it is the interaction be-
tween the patterns of activations and the configu-
ration of the synaptic weights which is responsible 
for both the representation of the knowledge and 
for generating the system's behavioral dynamics. 

2.2.8 Lack of empirical evidence 

As we have seen in the course of the previous sec-
tions, empirical/neuroscientific evidence for the 
propositional as well as pictorial approach is ra­
ther poor. Of course, there are areas in the brain 
which seem to be related to the processing of 
language, semantics, propositions, mental ima­
ges, etc. - the only thing which is known from 
these areas is that, if they are damaged in one 
way or the other, then certain cognitive abilities 
are not present any more [37, 14]. Neuroscience 
provides almost no knowledge or theories concer-
ning the processing mechanisms/architecture un-
derlying these cognitive phenomena. From this 
poor evidence it seems questionable to postulate 
representational concepts, such as the pictorial or 
propositional paradigm. 

That is why both approaches restrict themsel-
ves to the claim of being a functionalist account in 
most cases; i.e., they describe the functional pro-
perties which can be derived from the "behavioral 
surface" of the observed cognitive system. These 
behavioral descriptions are used as "explanatory 
vehicles" for internal representational processes 
- it is clear that a lot of speculation and com-
mon sense concepts are involved in these expla-
nations/theories about internal representational 
processes, as the "real" internal/neural structu-
res are never really taken into account. This 
might have been a valid approach 20 years ago, 
when neuroscience stili had a comparatively poor 
understanding of cognitive processes. However, 
with the advent of modern techniques, theories, 
and methods in empirical neuroscience, as well as 
of new concepts from computational neuroscience 
([13, 14, 2, 1, 32, 25, 67] and many others) the 
picture has changed dramatically; although there 
is stili a far way to go to fully explain "higher co­
gnitive functions" in neuroscientific terms, many 
basic concepts have been discovered which can 
be applied to any level of neural processing (e.g., 
spreading activations, distributed processing and 
representation, adaptive processes, "Hebbian" le-
arning as the basis for any kind of learning [LTP, 
LTD, etc.] [33, 10, 54], etc). Already these 
findings suggest a completely different concept 
of (neural) representation mechanisms/concepts 
than the propositional and/or pictorial approa­
ches do postulate. It seems that the time, in 
which one can use the excuse that the brain is 
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too complex to be understood, will come to an 
end soon. 

2.2.9 Evolutionary implausibilities 

From an evolutionary perspective it seems rather 
implausible that a cognitive system develops a re-
presentational structure which maps its enviro-
nment as accurately as possible in order to ge-
nerate successful behavior [56]. The concepts of 
adaptation, selection, system relativity, and func-
tional fitness [29, 73] seem to be much more im-
portant thari the concept of a structural match 
between the environment and its representation 
(which is - from an constructivist/epistemological 
perspective - an absurd goal, anyway). Neural 
systems are primarily adaptive sijstems which de-
velop in a continuous interaction with the enviro­
nment; and not in a single process of mapping or 
projecting the knowledge of a (human) designer 
to the representational structure. The represen­
tation in natural cognitive systems (as well as in 
artificial neural networks or genetic codes) incre-
mentally adapts to the constraints being set by the 
environment and by the organization of the orga-
nism's body- and representation system. It can be 
shown ([9, 44, 56, 61] and many others [ALife and 
ANN literature]) that no picture-like, propositio-
nal, or referential representation concept is neces-
sary in order to generate behavior which functio-
nally fits into the organism's internal and external 
environment. 

The physical structure of the neural represen­
tation system (i.e., its architecture) is altered in-
crementally on a trial-&-error basis. This process 
is perpetuated and repeated, until some kind of 
equilibrium is reached (e.g., behavior which ensu-
res the organism's survival, a certain task is achie-
ved by minimizing an error, etc). The interesting 
point is that the result of this incremental adap­
tation processes are not pictorial or propositional 
representations in the brain (or the ANN), but 
rather a recurrent transformation being embodied 
in the neural substratum. This transformation is 
capable of generating behavior, which is necessary 
for the particular organism's survival, without ha-
ving to make use of referential representations. It 
turns out that pictorial or propositional represen­
tations are only one possible solution to the pro­
blem of representation. As can be shown [56, 59], 
these solutions are highly uneconomical; in most 

cases this kind of representations require complex 
processing, memory, etc, mechanisms. In other 
words, less complex mechanisms would be sufBci-
ent for solving the problem of generating functio-
nally fitting behavior. From an evolutionary per­
spective complex solutions would be rather atypi-
cal, since evolutionary processes normally lead to 
highly economical solutions which make more or 
less optimal use of the resources which are avai-
lable. In this sense pictorial or propositional re­
presentations turn out to be "luxury solutions" 
compared to the simplicity of the task and to the 
simplicity of other (e.g., neural or "adaptive") so­
lutions. 

Hence, the requirement of generating functi-
onally fitting behavior is much less strict than 
the requirement of generating successful behavior 
which is based on a homomorphic, accurate, and 
referential (e.g., pictorial or propositional) con­
cept of representation. 

3 Methodological and 
epistemological questions 

Although most models in cognitive science as 
well as in human-computer interface develop-
ment are mainly concerned with technical que-
stions, the following paragraphs will demonstrate 
that epistemological and methodological conside-
rations in the field of knowledge representation 
have crucial implications for the structure and 
success/failure of the model or interface to be de-
veloped. The most important problem concerns 
the question of how we see and experience the en-
vironment/world. Whenever one speaks of "the 
tvorih', we have to be aware - at least since I.Kant 
- that this is impossible in principle. As has been 
discussed, our access to the environment is al-
ways indirect; it is mediated by our sensory sy-
stems and by the nervous system. Thus, when 
we speak of "the" world", we actually speak of our 
representation of the world. It is the result of a 
complex process of construction which is embo­
died in our neural structure. Looking more clo-
sely, one realizes that this view has to be taken 
even one step further: when we speak about the 
world we are not directly externalizing our neural 
representation of the world, but we rather make 
use of another representational medium, namely 
language, pictures, icons, etc. Hence, what we are 
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dealing with, whenever we are communicating, re-
ading a text, e tc , is a second-order representation 
(i.e., the representation of the [neural] represen­
tation of the world). Of course, language is also 
represented in neural structures - it is, however, 
a second-order representation, because it is em-
bedded and generated by the (first order) neural 
representation of the environment11. It is used for 
"describing" these (neural) representations. 

As our access to the environment is always me-
diated by the sensory systems and by the struc-
ture of the nervous system, this access is hi-
ghly theory-laden (in the sense of [19, 21, 20, 
12]). In other words, any natural ,sensory sy-
stem, body system, or nervous system can be 
interpreted as some kind of "č/ieon/" about the 
environment. Le., ali these systems have de-
veloped in a complex phylogenetic/evolutionary 
and ontogenetic process of adaptation and lear-
ning - only these organisms have survived (and 
were capable of reproducing) whose neural/body 
structures embody a functionally fitting (i.e., via-
ble) knowledge/"theory" about the environment. 
Think, for instance, of our visual system: the rods 
and cones in our retina are sensitive to a very 
small fraction of the whole range of electromagne-
tic waves [70, 72]. Obviously it has turned out in 
the course of the evolutionary development that 
this range of electromagnetic waves holds enough 
information for maintaining the survival of the 
human body. Bees, on the other hand, are highly 
sensitive in the UV-range (where humans are in-
sensitive) - for them it has turned out that this 
range is important for spotting blossoms12. 

From these simple examples one can see that 
this neurally- and [štructma\ly-embodied theory 
about the environment does not depict the en­
vironment in the sense that certain body parts or 
neural entities refer to environmental structures, 
but they represent a strategij of how to survive in 
a specific environment with a specific body struc-
ture. Both in the phylo- and ontogenetic čase 
the environmental structure/dynamics does not 
determine the representational structure, but in 
the best čase triggers and constrains the develop-

n T h e r e seems to be a symbiotic or even parasitic relati-
onship between first and second-order representation. 

12Flowers are reflecting not only in the (human) visual 
range, but also in the UV-range. Thus, they show a strong 
contrast in the UV-range, which "helps" the bees to orient 
and to find them. 

ment and the function of the neural and body (re­
presentation) svstem. The representation of the 
environment is actively constructed by the dyna-
mics being embodied in the nervous system. From 
these considerations follows that the representa­
tion of the world is always system-relative in the 
sense that it represents a "correct theory" of the 
world for a specific organism with its own specific 
onto- and phylogenetic history. 

This implies that, whenever we are spea-
king about the environment, we always speak 
about the representation of the environment in 
a specific brain/body (by making use of a speci­
fic form of [second-order] externalization mecha-
nism [e.g., language, pictures, etc.]). Thus, we 
are always dealing with one possible interpreta-
tion/construction of the environmental structure 
vvhich is the result of a specific neural system. 
These interpretations might differ even within a 
single species. We c&nnot claim that a certain re-
presentation/interpretation/theory (even a scien-
tific theory) is "objective", "true", or "ultimate". 
It is only "true" insofar as it contributes to the 
survival and the reproduction of the particular 
organism (i.e., insofar as it is capable of genera-
ting functionally fitting behavior). What might 
represent a "true" theory/representation for one 
organism, might be "wrong" or a non-viable solu-
tion for another. This cannot only be applied to 
simple organisms from different species, but also 
to such complex and "objective" processes, such 
as science (e.g., history of science is full of these 
examples [43]). 

A methodological issue which should be of great 
interest to the design of cognitive models and 
human-computer interfaces is the fact that most 
models are based on second-order representations. 
Le., the internal representational structure of the 
model/interface is based on linguistic or pictorial 
externalizations of humans. It is postulated that 
these externalizations represent some aspect(s) of 
the world. From the previous paragraphs fol-
lows, however, that these externalized represen­
tations represent - if at ali - only a fraction of 
the organism's svstem-relative internal represen­
tation of the world. Whichever artifact we are 
encountering, it is the externalization of an orga­
nisms internal (neural) representation (see also 
section 1.2.2f). Thus, we are confronted with the 
result of a long and complex chain of neural pro-
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cesses and transformations. 

The problem which arises for the design of co-
gnitive models and human-computer interfaces 
can be characterized as follows: most of these 
systems are based on propositional or pictorial 
representations. Although it is postulated that 
these forms of representation are "internal repre­
sentations", they are ezternal second-order obser-
vational categories. Le., an observer observes the 
externalized linguistic, pictorial, logical, problem 
solving, etc. behavior of a (human) cognitive sy-
stem and tries to find out regularities and/or pat-
terns in these behavioral actions. By making use 
of these patterns and of his/her own representati-
onal experiences (of the world, of problem solving, 
etc.) he/she projects these second-order observa-
tions/phenomena into the observed organism and 
postulates that they correspond to the organism's 
internal representation system (without ever ha-
ving "opened" and examined the internal struc-
ture of this system). In other words, an internal 
mechanism for generating behavior is postulated 
without ever having a look at the actual internal 
mechanism. This is exactly the (methodological) 
situation in the domain of pictorial and proposi­
tional representations. 

This implies another problem with proposi­
tional or pictorial representations: these exter-
nal representations are projected into the co­
gnitive model and/or human-computer interface. 
Contrary to natural systems, which are actively 
acquiring/constructing knowledge in a continuous 
process of interaction, adaptation, and learning, 
knowledge is mapped to these artificial systems. 
Le., the designer projects his/her pre-represented 
and pre-processed representations, which them-
selves are the result of his/her own neural con-
struction processes, to the system where they are 
used as "internal representational structures". In 
these artificial systems they do not only serve as 
explanatory vehicles, but also as mechanisms be-
ing responsible for generating so-called cognitive 
phenomena. In other words, the results of (na-
tural/neural/cognitive) phenomena (e.g., propo­
sitional or pictorial representations) are used for 
generating cognitive phenomena. In this sense 
we are dealing with a highly superficial and self-
referential view of representation. Le., externa-
lized cognitive behavioral patterns are postula­
ted to be and used as internal mechanisms for 

generating exactly these (external) patterns. In-
stead of projecting these externalized representa­
tions to cognitive models and declaring them as 
internal representations, we should rather look at 
the internal processes and dynamics of the brain. 
Only, if we learn more about its internal struc­
tures, dynamics, and representational categories, 
we will be able to create more "successful" co­
gnitive models and "friendlier" human-computer 
interfaces. 

4 Conclusions 

The goal of this paper was not to give detai-
led instructions and solutions for developing more 
adequate cognitive models and user interfaces. As 
has become clear from the last sections, I wan-
ted to give reasons why the traditional approaches 
did not work out as good as originally promised. 
It turned out that the problems are not for the 
most part located in the technical domain, but 
in the epistemological and methodological realm. 
Although many models of cognition and human-
computer interfaces are based on concepts from 
(cognitive) psychology, traditional cognitive sci-
ence, or Al, we have seen that their results are 
questionable. In the course of this paper it has 
become evident that theories from the discipli-
nes mentioned above postulate a concept of re­
presentation which neither corresponds to empi-
rical evidence from (computational) neuroscience 
nor to epistemological considerations. Rather, it 
seems that they are both limited by (technical) 
constraints and by common sense assumptions 
about representation. Furthermore, in most cases 
they are based on concepts stemming from Com­
puter science. Even models in cognitive psycho-
logy (e.g., [3, 75] and many others) seem to be 
heavily infiuenced by computer science concepts 
(e.g., memory-processor distinction, memory as 
filling a variable, algorithmic [non-parallel, non-
distributed] linear processing, etc) . 

As an illustration think, for instance, of the en-
dless hierarchies of menues which can be found 
in a large number of application programs. It 
is a common problem for users to find themsel-
ves a way through these trees and levels. The 
underlying problem is that human users are not 
"push down automata" with an infinite stack. In-
stead the application should provide cognitively 
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adequate tools for navigating in the menu struc-
ture (e.g., some kind of graphicallv represented 
"map" of the menu structure, displav the current 
options, where to from here, etc). 

The position being suggested in this paper fa-
vors an approach which starts from the opposite 
direction: instead of basing a cognitive model on 
technical concepts (e.g., automaton theorv, gene-
rative grammars, etc), it is proposed to study 
the structure and dvnamics of the actual neural 
svstem first and only then determine which tech-
nology is appropriate to model these findings in 
order to develop more adequate models of cogni-
tion and human-computer interfaces. 
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True improvements in large computer systems ahvays come through their engineering 
devices. In Al, one of the fundamental differences from conventional computer science 
(such as soft\vare engineering and database technology) is its own established program­
ming methodology. Rule-based programming has been dominant for Al research and 
applications. However, there are a number of inherent engineering problems with exi-
sting rule-based programming systems and tools. Most notably, they are inefhcient 
in structural representation, and rules in general lack software engineering devices to 
make them a viable choice for large programs. Many researchers have therefore begun 
to integrate the rule-based paradigm with object-oriented programming, which has its 
engineering strength in these areas. This paper establishes the concepts of knowledge 
objects and intelligent objects based on the integration of rules and objects, and outli-
nes an extended object model and an on-going project of the authors' design along this 
direction. 

1 IntroductlOIl expertise is always rule-governed. Firstly, even 
in the world at large, people have a tendency to 

Artificial intelligence (Al) is a subject concerned associate domain expertise with regularities in be-
with the problem of how to make machines per- haviour and often explain behaviour by appealing 
form such tasks, like vision, planning and diagno- to such regularities. Secondly, knowledge in an Al 
sis, that usually need human intelligence and are System often depends on some domain expert(s)' 
generalh/ difficult to be carried out with conven- heuristics, which can be easily and naturally en-
tional computer science technology. Al problems cocjed into the "IF ... THEN" structure. There-. 
are normally NP (non-polynomial) hard by na- fore, rule-based systems have become one of the 
ture. Different from conventional numerical com- m o s t widely used models of knovvledge represen-
putations, Al research has concentrated on the tation in Al, in particular expert systems. Rather 
development of symbolic and heuristic methods than expressing logic calculus about the world as 
to solve complex problems efficiently. Since the in prolog-like logic programming systems or com-
1980's, Al has found wide realistic applications p u t ing the numeric values defined over data as 
in those areas where symbolic and heuristic com- i n conventional programming, rule-based produc-
putations are necessary. For example, expert sy- tion systems normally determine how the symbol 
stems have produced startling economic impact. structures that represent the current state of the 

Because of the need for symbolic and heuristic problem should be manipulated to bring the re-
computation, Al has its own programming me- presentation closer to a solutio.n. Problems that 
thodology [Wu 94b], and rule-based programming have been solved in production svstems can be 
has been dominant in Al research and applicati- Usually encoded in LISP or PROLOG, of course; 
ons. It is probably an axiom of Al that domain 
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the point is that production systems and rule-
based programming languages are specifically de­
signed to solve those problems, and as a result 
they solve those problems rather well. Meanwhile, 
rules are the essential component for both rule-
based production systems (or rule-based systems) 
and logic programming systems. Since heuristic 
knowledge is of major concern in this paper, rule-
based programming is more production systems 
oriented. However, if you do not plan to deal with 
inexact rules, you can use logic programming to 
replace rule-based programming hereafter. 

Rule-based programming has many advantages, 
such as uniformity and naturalness, but there are 
also several significant disadvantages inherent in 
the mechanism: 

1. Rules are inefficient in structural representation. 
Encapsulation of ali relevant information of a 
single entity is hard with rule-based program­
ming. 

2. Rules in general lack software engineering de-
vices such as modules, information hiding, and 
reuse to make them a viable choice for large pro-
grams. 

3. It is as yet unclear how large sets of ru­
les are best partitioned and distributed in ne-
tworks of multicomputers in the interest of col-
laborative knowledge systems, parallel reaso-
ning, partial knowledge or dynamic knovvledge 
(re)configuration. 

To avoid these engineering problems, many re-
searchers have begun to integrate the rule-based 
paradigm with object-oriented programming, a 
powerful technology from software engineering 
and the database community. Section 2 outlines 
the main features of object technology. Section 
3 discusses two different ways for the integration 
of objects and rules. Section 4 explores the idea 
of intelligent objects by describing an extended 
object model with two layers of constraints and 
elaborates these notions with an aircrew schedu-
ling example. Section 5 defines knovvledge objects 
and introduces the design of an on-going project 
at Monash University. 

2 Object Technology 

Object technology in software engineering makes 
it easier to develop, maintain and reuse a wide 
range of applications. These applications are ma-
inly concerned with data processing. Object ori-
entation attempts to model the behaviour pat-
terns of collections of cooperating physical entities 
in the real world. Object-oriented programming 
(OOP) provides a better way of defining data and 
procedures that are associated with these physi-
cal entities than conventional imperative langua­
ges such as C, Pascal and Fortran. 

OOP was first discussed in the late 1960's 
when the so called "software crisis" began in 
large systems development. Methods have evol-
ved since then and have shifted the emphasis 
from a problem of coding to object-oriented de­
sign (OOD). The primary aim of OOD is to 
improve productivity, increase quality and ele-
vate the maintainability of large software systems 
[Coad k. Yourdon 91]. The well defined and wi-
dely accepted principles are the concepts of the 
class, encapsulation, inheritance and polymor-
phism. At the core of OOD is the class which 
represents a real world entity by grouping ali of 
its data attributes and procedural operations to-
gether into a neatly encapsulated package. 

Software productivity is improved primarily by 
reducing the amount of time required for de-
tecting and removing defects from programming 
code. Reusing software, in the form of "class li-
braries" can produce startling increases in pro-
ductivity and greatly reduce the amount of er-
rors in a large program. Hovvever, the emphasis 
on productivity could have obscured the need for 
improvements in software quality. Processes that 
produce high-quality products early in develop­
ment, such as analysis and design, can greatly re­
duce errors discovered later in development such 
as coding and testing and can dramatically im­
prove software quality [Coad & Yourdon 91]. Ma-
intainability, the final objective of OOD, is accom-
plished by separating the dynamic parts of a sy-
stem from those parts which are stable. A robust 
system must be designed with the expectation of 
change according to the ever changing require-
ments of clients. Achieving ali of these objecti-
ves together in a single system is always difficult 
to accomplish and more than often a trade-off is 
necessary. With appropriate use, hovvever, the 
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principles of OOD will assist in achieving these 
goals. 

2.1 Abstraction and encapsulation 

Abstraction is the principle of capturing useful 
information by ignoring ali the detailed features 
of an entity that are not relevant to understanding 
what it does or what it is. Rather than trying 
to comprehend everything about the entity ali at 
once, we select only part of it. 

Abstraction consists of "data abstraction" and 
"procedural abstraction". Procedural abstraction 
can already be found in most imperative program-
ming languages in the form of functions and pro-
cedures, which can be used to reduce the comple-
xity of programming code. In OOD, data abstrac­
tion is carried out by the definitions of abstract 
data types (ADTs) - commonly called classes or 
types [Atkinson et al. 92]. An ADT is defined in 
terms of data items and the operations, called me-
thods in OOP, that can be applied to these data 
items. The data within the ADT can only be mo-
dified and manipulated by these methods. The 
resulting notion of encapsulation leads to a sepa-
ration of interface and implementation. The data 
of an ADT can only be accessed via the specified 
interface, while the implementation details such 
as the operations are hidden and at the discretion 
of the class implementor or the dynamic decisions 
of the ADT. 

By encapsulation in OOD, each component of 
a program should hide a single design decision. 
The interface to each module should be designed 
so as to reveal as little as possible about its in-
ternal implementation details. A language which 
provides this feature enables the designer to keep 
related components of a program together in the 
form of a package in the hope that later changes 
can be carried out within this package. 

2.2 Classes 

When using an ADT in an imperative language 
with constructs such as records (used in Pascal) 
or structs (used in C) the designer will normally 
create routines which manipulate the structure. 
Operations or routines defined for the data struc­
ture in one construct cannot be used for ano-
ther structure in these languages. In an object-
oriented programming language (OOPL) such as 

C++, the data structure and the operations are 
bound together into one package, called a class. 
A class can have private and public data. The 
private data cannot be seen or modified by the 
user without using the public interface, known as 
member functions in C++. This prevents acci-
dental modification of the data and improves code 
quality by reducing the amount of bugs evident in 
the code [Eckel 93]. 

Variables or instances of a class are called 
objects. There is a fundamental difference be-
tween an object and a class: the class is the de-
finition for the data structure, and an object is 
an instance of that data structure. More than 
one object can be created from a class defini-
tion. This distinction has also led to distinguish 
object-based programming languages from object-
oriented (OO) ones. In OO languages, objects 
encapsulate a concrete data structure and a be-
havior, and they do not need a type. In OO lan­
guages, objects are classified and ali objects of the 
same class share the same behavior. Therefore in 
an OO language the procedures and functions de­
fined on a data structure are described as part 
of a class and the class is considered as a gene-
ric device for instantiating objects. In this čase, 
the user can use the member functions provided 
by the public interface of a class to pass messa-
ges to objects of the class, and the objects control 
their own actions and can remember their current 
state. 

Two special member functions, called construc-
tors and destructors in C++, are provided in 
many O O languages to allow the user to pass 
a message to a class and create or destruct an 
object. A constructor is used to initialise an in­
stance of a class by allocating memory for an ar-
ray, for instance. Destructors on the other hand 
are used for clean-up operations, such as freeihg 
any memory the object may have been explicitly 
allocated. 

2.3 Inheritance 

In an OOPL a user-defined class can inherit fea­
tures of another, thus promoting a much higher 
level of code re-use. Inheritance allows a designer 
to specify common attributes and services in one 
class, and then specialise and extend those attri­
butes and services into specific cases. One class 
may also inherit the properties of more than one 
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other class, and this is called multiple inheritance. 
Single and multiple inheritance is supported by 

C + + by means of derived classes. A derived class 
is declared by following its name with the names 
of its base classes. A derived class can inherit ei-
ther the base classes' public parts or both their 
private and public parts. This is stili an issue 
left open-ended, to be used at the discretion of 
the designers of individual OOPLs. To support 
multiple inheritance the derived class may form 
a base class of another derived class permitting 
the construction of class hierarchies. An inhe­
ritance structure is one of the ways of offering 
reusability, extendibility, lower maintenance cost 
and of achieving the software engineering goals 
that designers have been aiming at for 20-30 ye-
ars [Henderson-Sellers 92]. 

2.4 Polymorphism and dynamic/late 
binding 

Although not evervone in the 0 0 community has 
agreed on' it, polymorphism is one of the most po-
werful concepts of OOD. It is the concept of sen-
ding a message from one object to other objects 
in an inheritance hierarchy and invoking the most 
appropriate behaviour for the object. Polymor-
phism presents the property of operator overlo­
ading. In C + + overloading allovvs the user to 
specify member functions with the same name 
which perform different functions according to 
how many, and the types of parameters passed. 

To allow the functionality of pob/morfrtiism 
the compiler of an OOPL cannot bind the 
operation names to programs at compile tirne 
[Atkinson et al. 92]. Therefore, operation names 
must be resolved at run-time. This delayed tran-
slation is known as late or dynarnic binding. Simi-
larly, overloading allows the same member func-
tion to be declared for ali of the different deri­
ved classes of shape. Polymorphism and dynamic-
binding are provided in C + + through the use of 
virtual member functions. A virtual function is 
provided with definition in its base class, but may 
be redefined in derived classes. That is, a virtual 
function may have different versions in different 
derived classes and it is the responsibility of the 
run-time system to find the appropriate version 
for each call of the virtual function. Functions 
that are not marked as virtual may be bound 
statically to the base class in which it is defined 

which allows for easier implementation. 
There are also other forms of polymorphism 

than the dynamic binding described above, most 
of which are available in OOP but also in other 
languages. Parametric pohjmorphism refers to 
functions that work in the same way on many 
different data structures, such as append works 
on lists of small integers and also lists of arrays. 
Such polymorphism is described by parameteri-
sed classes or - in C + + - templates. Ad hoc 
polymorphism is the concept of syntactic or "su-
gar" overloading, where a programmer introduces 
some ambiguous notation that is statically resol­
ved by a compiler, for instance by considering the 
number of parameters. When we wish to distin-
guish the message passing polymorphism in 0 0 , 
we speak of subtvpe polvmorphism. This termi-
nology suggests that a derived class introduces a 
subtype of its base class: The instances or objects 
of the derived class can always be considered as 
instances of the base class, because ali messages 
for the base class are understood and operated 
according to the abstraction of the base class. 

2.5 Object-oriented databases 

Another area where object technology has also fo-
und wide interest is object-oriented database sy-
stems [Cattell et al. 91]. In object-oriented data­
base systems, complex data structures (e.g. mul-
timedia data) can be defined in terms of objects. 
Data that might span many tuples in a relatio-
nal DBMS can be represented and manipulated 
as a data object. Procedures/operations as well 
as data types can be stored with a set of structu-
ral built-in objects1 and those procedures can be 
used as methods to encapsulate object semantics. 
Containment relationships between objects may 
be used to define composite or complex objects 
from atomic objects. An object can be assigned 
a unique identifier which is equivalent to a pri-
mary key in a relation. Relationships between 
objects can also be represented more emciently in 
object-oriented data models by using a more con-
venient syntax than relational joins. Also, most 
object-oriented DBMSs have type inheritance and 

1These built-in objects are what we call classes in Sec-
tion 2.2. More than often, the term objects is used for 
both classes and objects in the literature including the rest 
of this paper, when the distinction between classes and 
objects is not emphasized. 



KNOWLEDGE OBJECTS Informatica 19 (1995) 557-571 561 

version management as well as most of the impor­
tant features of conventional DBMSs. The man-
datory features of an object-oriented database, as 
presented by [Atkinson et al. 92], extend the ba-
sic set of OOD principles to include persistence, 
versioning and integrity control. 

Objects in OOP and OODBs are similar in 
that they require abstraction, inheritance and po-
lymorphism, but there are several important di-
fferences. First, database objects must persist be-
yond the lifetime of the program creating them. 
Second, many database applications require the 
capability to create and access multiple versions 
of an object. Third, highly active databases, such 
as those used for air traffic control and power di-
stribution management, require the ability to as-
sociate conditions and actions where the actions 
are triggered when the constraints are satisfied. 
Finallv, database integrity control demands the 
capability to associate constraints with objects. 

2.6 Objects vs. fratnes 

Objects are in many ways similar to the frame 
structure which was first developed in mid-1970's 
[Minsky 85] and has found wide use in Al and 
other knowledge based application systems. A 
frame is a static data structure used to represent 
well-understood, stereotyped situations. It orga-
nises our knowledge of the world based on past 
experiences. We can revise the details of these 
past experiences to represent the individual diffe-
rences for new situations. A frame includes decla-
rative and procedural information in predefined 
internal relations. The internal relations refiect 
the semantic knowledge of the specific entity cor-
responding to the frame. Clearly, any object can 
be viewed as a specific frame. 

Frames make it easier to organise knowledge 
hierarchically. We can describe in a frame an 
object with its various attributes and other re-
levant objects and think of the frame as a single 
entity for some purposes and only consider details 
of its internal structure for other purposes. Proce­
dural attachment is a particularh/ important fe-
ature. We use procedural attachment to create 
demons, which are procedures that are invoked 
as a side effect of some other action in the overall 
system. 

Objects and frames both have identifiers (or na-
mes) and hierarchies, and both have procedures 

associated with the data slots. Both permit sin­
gle and multiple data inheritance. However, there 
are also clear differences between the two techno-
logies. Firstlv, the procedures of frames, demons, 
are not directly activated by the programmer, ra-
ther they are activated by the situation, i.e., when 
a data slot is accessed, updated or deleted. Pro­
cedural attachments of frames might be defined 
that automatically perform certain tasks, such as 
finding an attribute value when none exists, or 
making sure related attributes are updated when 
one or the other is changed. This passive struc­
ture is in contrast to the methods of OOP that are 
directly activated by the programmer by message 
passing. The procedural methods in an object 
actively respond to messages received from other 
objects. Also, polymorphism is not offered by fra^ 
mes although one can argue that it could be im-
plemented. 

Secondly, a composite frame can contain poin-
ters to other (primitive and/or composite) frames 
in its slots, and the other frames do not have to be 
in a specific hierarchy. This is not allowed in class 
based 0 0 languages. An object can only inherit 
data and methods from the classes of its higher 
hierarchy. Frames and objects both permit single 
and multiple data inheritance. 

Finally, frames also differ from objects in their 
openness. They are designed to work with an infe-
rence engine, and their attributes are always open 
for interaction with any and ali pattern-matching 
rules. This is in contrast to pure objects in which 
the attributes and methods are so tightly encap-
sulated, you cannot teli which is which from the 
outside. Furthermore, the private data in objects 
cannot be seen by the user. 

Objects are a full programming system, desi­
gned as much for encoding procedures as data. 
Frames were never designed to be a full program­
ming system by themselves. Information hiding 
is a key for objects, and the source of much of 
the maintainability of object-oriented applicati­
ons. However, frames have to be open to the in-
ference engine, so whenever any data changes,. it 
knows what rules to activate. 
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3 Integration of Objects and 
Rules 

It is hard to say whether rule-based programming 
or 0 0 languages are superior in computational 
strength. Rule-based programming expresses re-
lationships between objects very explicitly. Howe-
ver, they don't express updates clearly. 0 0 pro­
gramming is weak in inference power due to its 
procedural origin, but updates are defined clearly 
by assignments. It has the central ideas of en-
capsulation and reuse which encourage modular 
program development. 

On one hand, while the 0 0 paradigm provi-
des efficient facilities for encapsulation and reuse, 
it does not support inference engines for symbo-
lic and heuristic computation. A clear advantage 
of rule-based programming is that recursion can 
be easily defined within rules while difncult in 
objects. On the other hand, rule-based program­
ming is very limited in structural representation 
and for large systems. Therefore, it would be very 
useful if we can integrate both of them in a sea-
mless and natural way in order to exploit their 
synergism. It seems as if objects and rules are 
made for each other. Objects are the best way 
to simulate or model a problem domain. Rules 
can be designed to capture and encode human 
expertise that is applied to a problem domain. A 
natural way seems to be use objects for mode-
ling the domain and rules to represent decision-
making applied to the domain. 

The two paradigms are both self-important and 
it is not appropriate to say that one should be 
the master and the other the slave in general, but 
depending on the application domains, choosing 
one of them as the basis and building the other 
on the top are necessary given that a seamless 
integration is not yet available and constructing 
one may well be very time consuming. 

3.1 Incorporating rules into objects 

It is argued in [Wong 90] that it is undesirable 
to implement objects within rule-based program­
ming, since rule-based programming is not as por-
table as 0 0 programming. One way to get round 
this is to implement rules within objects. In Pro-
logH—h [Moss 94], for example, an object layer is 
designed as an emcompassing layer for Prolog ru­
les. In this paradigm, objects can call Prolog rules 

without any special annotation, and if a Prolog 
predicate is redefined within the Prolog-f—I- class 
hierarchy, the definition will be taken by default. 
Rules can be used to make an objecfs semantics 
explicit and visible [Graham 93, Zhao 94]. They 
can also provide heuristic procedural attachment 
in methods. Actually methods within objects can 
always be implemented in the form of rules. 

Rules can be defined in an independent rule 
base so that the methods in objects can call the 
corresponding predicates (rule heads), in the form 
of, e.g., obey statements in [Wong 90]. We can 
of course implement a set of rules with the same 
rule head in the form of objects, such as the rule 
objects and reasoner object/class in Section 4, al-
though some of the 0 0 advantages like inheri-
tance, cannot be found from such objects. 

Rules within objects can be divided into two 
categories [Odeli 93]: constraint rules and deriva-
tion rules. The former define restrictions of object 
structure and behavior, such as consistency and 
constraints, and the latter are used to infer new 
data from existing data. In [Kwok &; Norrie 94], 
for example, an object has four protocol parts: 
attributes, class methods, instance methods and 
rules. Rules can be activated by messages as me­
thods. 

3.2 Embedding objects into rules 

In a rule-based system, data in the working me-
mory (or database) represents the state of the 
system and is used to fire rules. In an 0 0 sy-
stem, the state is characterised by the the data 
items in objects. Therefore, a natural integration 
of objects and rules is to use objects as storage 
for the working memory in a rule-based system, 
and rules execute actions depending on the va-
lues of objects in the vrorking memory. A number 
of Al tools such as CLIPS [Giarratano 93] have 
provided such facilities to embed objects in rules. 

An alternative way is use 0 0 languages as the 
basis and implement rules which describe relati-
onships of objects on the top of them. Domain 
expertise always relates to inter-relationships be-
tween objects, therefore a declarative query lan-
guage for expressing these inter-relationships is 
very useful in integrated svstems. This is the 
approach adopted by Ramakrishnan (1993) and 
is discussed in detail in the next section. 
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4 An Extended Object Model 

4.1 Intelligent objects 

An object which must satisfy dynamic constraints 
is referred to as an intelligent object. An intelli­
gent object is "intelligent about the context" in 
which the object interacts with a rule base. In 
this approach, the static rules that must be sa-
tisfied by the methods of an object are embed-
ded within the object using the 0 0 language fa-
cilities and the dynamic rules of the intelligent 
object are available from the rule base component. 
In this cooperative way, integration of rules and 
objects is built using a loosely coupled component 
based architecture made up of domain applica-
tion objects, a rule base cluster and an inference 
cluster [Ramakrishnan 94c]. The next subsection 
shows how an object model of a class based 0 0 
language such as Eiffel [Meyer 92] can be exten-
ded to support two layers of constraints. The rest 
of the section gives a practical example using this 
extended object model in Eiffel. 

4.2 Layers of constraints 

A conceptual schema describes the syntactic in-
formation structure and the semantic constraints 
that exist in an enterprise. The information struc­
ture should reflect the pattern in the real world 
and 0 0 languages such as Eiffel [Meyer 92] can 
be used to specify this pattern as static class de-
scriptions. 

A class description defines the behaviours of 
its instantiated objects. In the Eiffel language, 
the constraints that must be satisfied as part of 
the method invocation can be spelt out as asser-
tions. The static integrity constraints are called 
class invariants. These represent formulas that 
hold true for the corresponding objects in ali pos-
sible (observable) circumstances. Each method 
can be further constrained by preconditions and 
postconditions. Hoare logic [Hoare 89] forms a so-
lid basis for the informal notion of "design-by-
contract" [Meyer 89]. It can be shown that lo-
cal compliance with such assertions implies glo-
bal correctness and indeed stability, i.e., inter-
nal changes of a class that are correct relative 
to its interface cannot affect global correctness 
[Schmidt & Zimmermann 94]. This includes a 
kind of superclass encapsulation because subclas-

ses cannot be affected even if the changed me­
thods are inherited. 

How do these constraints work? They can be 
used to specify the contractual agreement be-
tween the user of the behaviour and the provi-
der of the behaviour. The user is responsible to 
satisfy the preconditions, the object is assumed 
to guarantee its invariant, and the method then, 
correctly implemented, must terminate by delive-
ring the postcondition and reestablishing the in­
variant. In this way the class hierarchies can be 
viewed as layers of constraints that enforce the 
requirements of behaviour specifications. 

Some systems require their business rules and 
regulations to be captured and available for scru-
tiny by government authorities. Such systems 
could benefit from the inclusion of explicit r-u-
les to control the behaviour of objects dyna-
micalh/ and should be considered explicitly in 
the analysis, design and implementation models 
[Ramakrishnan 94b]. For example, business ru­
les could express dynamic constraints that must 
be met by objects that are required to satisfy 
these business rules. These dynamic constraints 
form the second layer of constraints on top of 
the first layer of static constraints. The two-
layered constraint model of an object expres-
ses the mechanisms by which incremental evo­
lution of a system can incorporate business ru­
les [Ramakrishnan 94a]. The dynamic constra­
ints that are required to specify these business 
rules are specified declaratively and implemented 
as a separate component by reusing the parsing 
library abstractions available in Eiffel and buil-
ding an attribute grammar to describe the ru­
les [Ramakrishnan 93]. The declarative nature 
of these rules promotes user friendly interaction 
with the system and enables ease of evolution of 
the business rules and regulations. 

4.3 An aircrew scheduling example 

An aircrew scheduling example in this subsection 
is used to discuss the proposed model. The plan-
ners involved in aircrew scheduling must satisfy 
the business rules or constraints prior to the allo-
cation of crews to flights. Some of this domain 
knowledge can be captured and represented as 
rules to be considered in the allocation process. 
Other constraints such as a last minute change -to 
the availability of an aircrew have to be handled 
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by the planners online as part of the interactive 
scheduling system. 

The business rules are expressed as produc-
tion rules which have been widely adopted in 
knowledge-based systems. The two main com-
ponents of a knowledge based system are its 
knowledge base which is a repository of produc-
tion rules in our čase and its inference engine 
[Dillon 93]. In the aircrew scheduling example, 
the inference engine is a data driven reasoner 
which ušes the rule base to change the state of 
an application object. The condition of each bu­
siness rule is coded in the form of context label: 
object, attribute, value. These business rules are 
represented as a structured document using a sim-
ple English language structure shown as follows: 

se topera t ing : Given DUTY equals 
operat ing appo dtime maximum i s 12. 

setpaxing: Given DUTY equals paxing 
appo dtime equals to 17. 

mixoperandpax: Given DUTY equals 
mixoperpax appo dtime maximum i s 16 

These rules have been described using Hedin's 
[Hedin 89] 0 0 notation for attribute grammars 
and implemented in Eiffel [Ramakrishnan 93]. 
These rules form the wrapper layer around appli­
cation objects and are referred to as rules using 
grammar (RUG). The application objects are sto-
red to capture the conceptual model of the real 
world. The attributes of these objects reflect the 
roles played by these objects and as such can be 
used to trigger the rules in the rule base. The 
extended object model thus incorporates both 
objects and rules and are used by those appli­
cation objects that interact with the business ru­
les. These interactions represent the second layer 
of constraints that these objects have to satisfv. 
The model proposed here is shown in Figure 1 
in which the component marked resource alloca-
tion jobs (RAJ) includes ali the resources and job 
objects to describe ali the entities related to the 
aircrew scheduling problem. The main feature of 
the model lies in its ability to treat business rules 
in a logical and systematic manner so that these 
rules can also be included as part of the reuse 
strategy in the incremental evolution of software. 
In this model, the constraints that may be satis-
fied by the resources and task objects involved in 

resource allocation are considered at the following 
two levels: static type definitions and context re­
lated information. Constraints at the first level 
are specified as part of its class definition. Such a 
constraint must be satisfied by an object when its 
behaviourial action(s) are invoked and is specified 
as assertions in Eiffel [Meyer 92]. The business ru­
les represent the second level of constraints that 
have to be satisfied by the RAJ objects and are 
included as a wrapper layer of rules around those 
objects as shovvn in Figure 1. The RAJ object 
participates in the second level of constraint sa-
tisfaction by using the context information in the 
context header of the RUG object. The context 
header in the business rules represents the role 
played by the resource object. This second level 
of constraints is used to activate only those rules 
which match the active resource rule object and 
integrates the business rules and an application 
object in the resource objecfs constraint satis-
faction. Some RAJ objects may not participate 
in any of these constraint satisfaction schemes, 
others may participate only at the first level and 
yet others may have constraints to be satisfied 
at both levels. The actions (methods, procedu-
res or routines) of the objects have been qualified 
with either or both of the two levels of constraints, 
as dictated by the requirements of the objects in 
their interactions. One of the benefits of using 
the object-oriented approach is that the seman-
tics of a system can evolve incrementalh/ using 
the facilities provided by the paradigm for inclu-
ding new methods for various classes (types) over 
tirne [VanBiema 90]. The two levels of constra­
ints used in this model, which allow an applica­
tion object to have these varying levels of constra­
ints, are a powerful additional mechanism through 
which software may evolve [Barbier 92]. 

The business rules as shown above have been 
described in a declarative, simple English-like for­
mat. The planners of resource allocation pro-
blems can thus encode their rules with ease 
[Medeiros 91]. The structured document of bu­
siness rules is reconstructed and semantic actions 
are applied on the parsed document by collabo-
rating with the lexical and parsing library classes 
of Eiffel. The language features that are used to 
describe the syntax and semantics of the RUG 
rules and the compilation of these rules which ge-
nerate a parse tree have been discussed elsewhere 
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Figure 1: Resource application job objects wrapped with rules using grammar 

[Ramakrishnan 93]. The design framework inte-
grates RAJ, which is represented in an 0 0 pa-
radigm, with the rule-based structure of the bu-
siness rules (RUG) in a single Eiffel language 
[Meyer & Nerson 90]. The high level architectu-
ral design (refer to Figure 2) shows the connec-
tion of the major components (clusters). The 
dynamic model has been used to highlight some 
communication protocols between certain objects 
[Rumbaugh et al. 91]. 

4.4 Wrapper layer of rules using 
grammar 

Resource allocation problems require the orga-
nisation's business rules to be included as part 
of the domain model. Business rules may be 
specified for a number of objects in the appli­
cation cluster and an object may have to sa-
tisfy a number of rules. These rules may con-
tain dependency information between attributes 
of an object. For example, a duty object in 
the application cluster may contain the follo-
wingrule: "If duty i s operat ing then t o t a l 
number of hours t ha t t h i s crew can work 
i s 12 hours." The attributes in question are 
operat ing and total_number_of_hours. The 
total_number_of_hours attribute is a derived 
attribute (calculated) and the rule reflects the 
condition that must be met in allocating a crew 
member to a flight as part of their duty. These ru­
les or constraints could be specified as assertions 
(preconditions, postconditions and invariants) in 

languages such as Eiffel. But, although assertions 
could be used to specify the constraints that an 
object and its descendants must satisfy, business 
rules expressed as a separate component makes 
them explicit and easy to read and extend. A 
rule base component cluster should contain ru­
les for resource application objects that can be 
used as a wrapper layer for objects in the applica­
tion objects cluster (refer to Figure 1). The wra-
pper must also be satisfied by application objects 
in addition to their usual constraint rules which 
can be specified as assertions. The crew alloca­
tion process involves interaction between the re­
source objects. The application objects such as 
duty that have a wrapper layer interact with the 
rule base component by instantiating a reasoner 
object. The reasoner object has access to sto-
red rule base application objects. In the proto-
type application, the resource object, aircraft, 
has been designed as an object without this se-
mantic wrapper and hence there is no interaction 
between this object and the rule base component. 
The a i r c r a f t object does have to satisfy a po-
stcondition constraint included as part of its de-
finition. But, more explicit business rules could 
be included as a wrapper in the rule base cluster. 
Hence, the mechanism for including explicit rules 
about resource objects is to include the rules for 
these resource objects in the rule base component 
and let the control be handled by the inference 
cluster. 
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Figure 2: Resource allocation design framework 

4.5 Integrating rules and application 
objects 

The object-oriented paradigm provides good tech-
niques for describing taxonomies of objects. But, 
in traditional 0 0 languages, the order of execu-
tion of methods is controlled through the stati-
cally defined class hierarchy. These languages do 
not provide mechanisms to code heuristics expli-
citly for the order of execution of methods. The 
methods can be specialised only according to their 
types through their inheritance relationships and 
not according to the state of the object. 

In our model, the constraints that may be sa-
tisfied by the resources and task objects involved 
in a resource allocation (refer to Figure 1) are 
achieved through the integration of a rule-based 
paradigm into the 0 0 language, Eiffel. Rules in-
clude a context header which precedes the if con-
dition then action. This creates a context sensi-
tive data driven rule-based system which interacts 
with the application objects in the resource allo­
cation process. The context header may match 
the messages sent to application objects. The re­
source allocation data activates only those rules 
which match the context. This reduces the num-
ber of rules to be searched during the allocation 
process. This observation agrees with Chandrase­
karan^ observation [Chandrasekaran 92] that vie-
wing knowledge at the appropriate level results in 
only a subset of the body of knowledge being re-

levant for consideration, thereby eliminating the 
need for conflict resolution. 

Objects are modelled in terms of their roles or 
responsibilities. The role is defined by the ope-
rations of the object [Jacobson 92]. An opera-
tion upon an object is described as part of the 
definition of a class. A message invokes an ope-
ration. The context header represents the role 
played by a rule, referred to as a rule object he-
reafter. A rule object specifies the action to be 
taken by the application object as the objecfs 
responsibility when the condition is met. A list 
of valid application objects for a resource allo­
cation system and the responsibilities or roles of 
these objects are available to the system from the 
obj_names list. Using this central information on 
valid objects and their roles, action is taken to 
invoke the appropriate message of the object. 

4.6 Constraint satisfaction of business 
rules 

Application objects interact with the reasoner 
module to check for constraint satisfaction of ru­
les. The reasoner in the aircrew scheduling pro­
blem links the application objects to the rule 
objects, and controls the interaction of the reso­
urce objects and the rule objects. The rule objects 
are retrieved from the rule base. The reasoner 
controls the rules which are fired by matching the 
context of the application object against the con-
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text header of each rule object. Any extension to 
the behaviour or role or contextual information 
enacted by an application object affects the rea-
soner as well. The new behaviours should be in-
cluded in the relevant application objects and any 
new rules added to the rule base to reflect this ca-
pability could be fired by adding the appropriate 
routines to the reasoner. 

4.7 Detai l s of the crew allocation 
process 

The crew allocation process involves two levels of 
constraint satisfaction. When the planner choo-
ses the flights to be included as part of a crew 
schedule, static constraints are confirmed such as 
the aircraft scheduled for the flight must have at 
least two crew members on board. This is an 
example of an application object with one layer 
of constraints to be satisfied. A crew is allocated 
a number of flights to make up their duty. The 
duty consists of a number of flights in which the 
crew is operating the flight in some cases and just 
traveling as a passenger on the flight in other ca­
ses. The attribute of particular interest in a duty 
application object is the derived attribute value 
for number_of _operating_hours. The value for 
this attribute is calculated by accumulating the 
operating_time of the crew on these flights. It 
is in the preparation of a crew's duty that the bu-
siness rules are checked and form the second layer 
of constraints for the duty object. This object 
participates in the second layer of constraints by 
creating a reasoner object which in turn activates 
the rules in the rule base. The duty object par­
ticipates in a number of roles during its life time. 
The current role enacted by this object would set 
its context and a match on this context is used to 
reduce the number of rules related to this object 
which are searched from the rule base. 

5 KEshel l++: A Knowledge 
Engineering Shell with a 
Seamless Integration of Rules 
and Objects 

5.1 Knowledge objects 

When heuristic rules are embedded within an 
object, the object can infer on these rules to 

provide heuristic answers when receiving queries 
from other objects. Such an object is called a 
knowledge object. 

A knowledge object consists of at least three 
parts: data items, inheritance hierarchy, and ru­
les. Methods can be irhplemented in forms of ru­
les, or as a fourth component. Both rules and 
methods can be specified as public to allow glo-
bal access or as private to prevent external visiting 
and modification. 

Knowledge objects seem to fall into the cate-
gory of incorporating rules into objects. However, 
we argue that a seamless integration should also 
provide facilities to deal with objects embedded 
within rules, and therefore display the behaviour 
of intelligent objects as defined in Section 4. The 
KEshell+-f architecture designed in the rest of 
the section will demonstrate such a seamless inte­
gration. 

KEshell++ is a programming environment un-
der development. Our general research plan 
is to design a programming language based on 
C++ which will permit seamless integration 
of object oriented design and rule-based reaso-
ning, and develop knowledge acquisition capabi-
lities which will automatically generate a meta 
knovvledge base2 from the source code. The pro-
ject is built on the authors' previous work dealing 
with knowledge representation and acquisition 
for expert systems [Wu 91, Wu 92] and object-
oriented software engineering environments 
[Kraemer & Schmidt 89, Kraemer & Schmidt 90, 
Schmidt 91, Karagiannis et al. 93, 
Schmidt & Zimmermann 94]. Section 5.2 outli-
nes our existing work and Section 5.3 describes 
how we are extending it in the on-going project. 

5.2 Rule schema + rule b o d y and 
SIKT 

5.2.1 Rule schema + rule body 

Rule schema + rule body [Wu 94a] is an alter­
native representation language to rule-based pro-
duction systems based on an integration of rule-
based and numerical computations. Rule sche-
mata in the language are used to describe the 

2To avoid confusion between the terms knowledge base 
for information describing the internal description of the 
components in a system and their architectural framework, 
and the knowledge bases for expert systems, we use the 
term meta knovvledge base for the former. 
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hierarchy among nodes or factors in domain re­
asoning networks. The computing and inference 
rules are comprised in the rule bodies, which are 
used to express specific evaluation methods for 
the factors themselves and for their certaintv fac­
tors. A factor in rule schema + rule body can 
be a logical predicate or a variable whose value is 
either discrete (set-valued) or continuous (nume-
rical). 

In each rule body, there may be one or more 
inference rules similar to those in production sy-
stems. These rules may include instructions for 
numerical computation or an uncertainty calcu-
lus. Ali the rules in a rule body are used to de-
termine the value of the conclusion factor in its 
corresponding rule schema and/or the certainty 
factor (CF) of these conclusions. When the con-
cluon factor is a logical assertion, the rule body 
can be used to compute the CF of this asser­
tion. When the conclusion factor is a variable, 
the rule body is used both to evaluate the varia-
ble's value and its CF. Thus, the CF computation 
can be processed in the same way as the evalua­
tion of non-logical factors, both being explicitly 
expressed in rule bodies. When ali the factors 
in a domain expertise are logical assertions and 
ali the rule bodies have the same rules for com­
puting CFs, the inexact inference then behaves 
similarly to the normal implementation approach 
in existing expert systems. When ali the factors 
are numerical variables and no uncertainty calcu-
lus is needed, ali the rule bodies will be used to 
express computation models and a rule schema 
plus its rule body is analogous to a procedure 
or function in conventional programming. The-
refore, a knowledge base in this context, which is 
composed of a number of procedures and functi-
ons for numerical computation, plus the inference 
engine which solves user problems by using the 
knowledge base and is analogous to a main proce­
dure, can have the same function as a conventio­
nal algorithm-based program. This feature of the 
rule schema + rule body language supports a fe-
asible way to integrate software engineering with 
artificial intelligence. 

A knowledge engineering shell, KEshell 
[Wu 91, Wu 92], with a powerful inference engine 
[Wu 93] has been designed to support this langu­
age. 

A rule body may contain hundreds of compu­

tation and inference rules and is associated with 
a rule schema. Rule schemata in the rule schema 
+ rule body language, which correspond to a do­
main reasoning network of the hierarchy among 
ali the factors involved in a knowledge base, pro-
vide useful information about the structure of a 
(possibly very large) knowledge base, and there-
fore is an important source of information for the 
meta knowledge base in KEshell-r-t-. 

5.2.2 SIKT: A structured interactive 
knowledge transfer program 

SIKT [Wu 95] is a Structured Interactive 
Knouiledge Transfer program designed and im-
plemented in KEshell. It can automatically build 
executable knowledge bases out of direct dialogue 
with domain experts. As the dialogue process is 
structurally engineered, a domain expert does not 
need to know much about knowledge engineering 
or programming languages. Ali the expert ne-
eds to do is answer the questions asked by SIKT. 
SIKT builds up a factor dictionary and a reaso­
ning network to describe the logical relationships 
among the factors. The expert can specify both 
numerical computation and logical inference du-
ring the dialogue. 

SIKT first acquires factors and their logical re­
lationships and then does consistency checking 
and rule body acquisition. Factors are put in 
a factor dictionary, and their logical relation­
ships are described in forms of rule schemata. A 
knowledge base acquired this way can be divided 
into two parts: a meta component comprising the 
factor dictionary and rule schemata, and a rule 
bodies component for actual computation and in­
ference during problem solving. The factor dic-
tionary can contain various types of information 
about the factors, such as their value domain and 
constraints, and is thus also a useful source of in­
formation for the meta knowledge base. 

5.3 Integration of objects and rules 
and automatic generat ion of 
useful information 

KEshell+4- is based on the rule schema + rule 
body language and the SIKT program. We are 
extending its capabilities in the following ways: 

- Incorporate classes into rule schema + rule body 
as factors. The factor dictionary set up by SIKT 
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will contain classes as well as the original, simple 
factors. 

- Design an independent object processing module 
in C++, which will implement methods of clas­
ses in the form of facts and rules. 

Message passing in this module can be treated 
as chaining on these rules, and therefore the exi-
sting inference engine in KEshell can be called. 
In the meamvhile, object construction and inhe-
ritance processing in the rules in rule schema + 
rule body will be passed to the object processing 
module for handling. 

- Extend the UNIX Emacs editor as a frontend for 
our system. 

Existing editing support typically already com-
prises graphic template editing and browsing fa-
cilities for class signatures (their names and in-
terface represented as a collection of acceptable 
messages, also a distinction between public inter-
face and private functions). The extension will 
support the acquisition of methods of classes in 
the form of facts and rules. 

- Compile an extendible library of algorithm 
fragments [Rich & Waters 90, Spinellis 93] and 
classes implemented with the above editor and 
corresponding documentation for the program-
mers to refer to and use. 

This will enable the programmers to build more 
powerful programs to solve more complex pro-
blems by reusing existing components in the li-
brary. 

- Design a generation engine to produce a meta 
knowledge base from the source code edited with 
the above editor and the information acquired 
via SIKT. 

As discussed in Section 5.2, the factor dicti-
onary and rule schemata will be the main part 
of the meta knowledge base. If the improved 
SIKT program in this project is used to build a 
knowledge base in an interactive way, the dictio-
nary and rule schemata will have been generated 
by SIKT. However, if SIKT is not invoked during 
program construction and the programmer pre-
fers to adopt a common editor or the specific edi­
tor above to edit their programs, rule schemata 

and the factor dictionary will need to be gene­
rated by the generator. Some work has already 
been done along the direction of generating rule 
schemata from concrete rules [Sutcliffe & Wu 94]. 
The generator will collect ali the factors involved 
in the rule schemata, and produce an editable dic-
tionary framework for the domain professionals or 
programmers to provide information about each 
factor's constraints. Whether a factor has been 
defined in the rule schemata and its value type 
will be inferred from the concrete rules. 

- Provide an intelligent retrieval and reasoning en­
gine for the programmers and end users to bro-
wse the meta knowledge base and make queries. 

This engine will answer questions related to the 
factors defined in a dictionary, and the structure 
of a knowledge base in terms of rule schemata, 
and concrete rules associated with each schema. 

KEshell++ is being implemented in C++, and 
will be tested on some realistic application doma-
ins including large-scale telecommunication ne-
tworks [Bapat 94]. 

6 Conclusions 

Rule-based programming is the dominant pro-
gramming paradigm in Al research and applica-
tions. Since its insufficient engineering power in 
structural representation and for large systems, 
we have discussed its integration with object te-
chnology, a powerful tečhnology from software en­
gineering and the database community. A new 
type of object, knowledge objects, is defined along 
with intelligent objects, and an extended object 
model and an on-going project, KEshell-f—H, to 
implement such knowledge objects have also been 
outlined. When a knowledge base gets larger and 
larger, reuse of existing modules and encapsula-
tion of physical objects become more and more 
important in the design and maintenance of the 
knowledge base. True improvements in large Al 
systems need engineering devices, and intergra-
tion of objects to provide efficient engineering fa-
cilities is clearly an important direction to take. 
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Artificial intelligence has succeeded in emulating the expertise of humans in narrowly 
defined domains and in simulating the training ofneural systems. Although "intelligent" 
by a more limited definition ofTuring's test, these systems are not capable of surviving 
in complex dynamic environments. Animals and humans alike learn to survive through 
their perception of pain and pleasure. Intelligent systems can model the affective pro-
cesses of humans to learn to automatically adapt to their environment, allowing them 
to perform and survive in unknown and potentially hostile environments. A model of 
affective learning and reasoning has been implemented in the program FEEL. T.wo si-
mulations demonstrating FEEL's use of the affect model are performed to demonstrate 
the benefits of affect-based reasoning. 

1 S ur vi val of Intelligent 
Svstems 

The field of artificial intelligence (Al) has made 
great advances the past decade, but there is stili 
a debate over the use of the word "intelligent" 
to describe the systems produced from Al rese-
arch (Searle 1980 k 1990). In contrast to Searle's 
negative view of the quality of intelligence in Al 
systems, both expert systems (Hayes-Roth & Ja-
cobstein 1994) and neural networks (Widrow et al. 
1994) are being broadly applied in scientific, engi-
neering, and business domains to take advantage 
of increased quantity and quality of knowledge 
in decision making processes. With expert sy-
stems and other Al technologies being accepted 
and applied world-wide, what will Al research 
try to produce next? One of the long standing 
goals of hard Al is to produce an autonomous in­
telligent system, that is, a robot or some other 
artifact which can learn and adapt to its enviro­
nment while performing other functions which re-
quire intelligent cognitive ability. Expert systems 
have succeeded in emulating human experts func-
tioning within very narrowly defined domains, but 

how can intelligent systems function effectively in 
a dynamically changing environment? 

Al research has followed a path of reverse evolu­
tion as shown in Figure 1. Problem solving tasks 
which require years of education and experience 
for humans have proven to be solvable by AI-
oriented machines. Tasks which human beings 
take for granted such as seeing (image understan-
ding) and talking, have proven to be extremely di-
fficult problems to solve using machines. As these 
obstacles (perception and communication) to pro-
ducing an autonomous intelligent system are over-
come, another more difHcult obstacle looms. 

Autonomous intelligent systems such as tactical 
planners, robots, and autonomous vehicles need 
to be able to adapt to unknown situations which 
will arise in^their domain environments. Al sy-
stems operating in the real world must learn to di-
stinguish between beneficial and harmful objects 
if they are to survive. Current technology for au­
tonomous systems focuses on the attainment of a 
specific goal (Arkin 1995, Chatila & Giralt 1987, 
Findler & Ihrig 1987) (e.g., moving from point 
A in the environment to point B) and assumes 
that aH domain hazards are already known by the 
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Human Intellectual Growth 

AttificUl Intelligence Growth 

Figure 1: Evolution of human and machine intel-
ligence 

autonomous system's knowledge base. Some re-
cent research in autonomous vehicles and robotics 
ušes the term behavior to identifv and describe 
the controlling programs of the robots, but these 
behaviors are stili focused on enabling the vehi-
cle or robot to maneuver in its environment and 
manipulate phvsical objects (Montgomerv et al. 
1995). Since the world is constantlv changing, an 
autonomous svstem programmer would have to 
be omniscient to identifv every possible situation 
and object that will be encountered by the auto­
nomous system. 

The solution to this problem is to make the au­
tonomous tactical planners and robots capable of 
adapting to their environment. Adaptability is 
achieved through learning, but current learning 
techniques are too high level. Machine learning 
programs (e.g., AM and BACON (Michalski et 
al. 1983) and other more recent programs (Lan-
gley & Simon 1995)) have already demonstrated 
the acquisition of expertise in complex cognitive 
tasks, but machine learning research must address 
the more fundamental issue of species survival. 

Why doesn't a human child grab a pot of boi-
ling water with his hands more than once? Thro­
ugh personal experience or by second-hand lear­
ning, the child knows that the pot causes pain. 
This ability of humans to learn how to avoid pain 
and seek pleasure, learning through affect (emo-
tions), provides an excellent model for allowing 
computers to learn to survive in an unknown en­
vironment by avoiding harmful situations and se-

eking beneficial situations. Plutchik (in Livesey 
1986) and others (Frijda 1986, Lang 1983 & 1987) 
concur that emotions serve an adaptive role in hel-
ping organisms deal with key survival issues posed 
by the environment. 

Reasoning with an affect-based model may pro-
duce additional benefits besides enabling intelli-
gent systems to adapt to their environments. Fin-
kel (1995) claims that higher level reasoning in hu­
mans can be a direct consequence of affect. Spe-
cifically, jurors and judges must interpret data to 
determine the proper application of law. While 
this may seem a purely objective task, Finkel pro­
vides several demonstrations of the influence of 
affect in jurors' perception of events and in ju­
rors' evaluation of when laws should be applied 
or nullified. 

Several artificial intelligence researchers have 
indicated their belief that autonomous computer 
systems need to utilize affect. In a personal com-
ment, John Nagle states, "Robots that operate in 
the real world need mechanisms that implement 
fear and pain to survive." Sloman and Croucher 
(1981) claim that the need to čope with a chan­
ging and unpredictable world implies that com­
puters will have emotions. The implementation 
of a learning svstem modeled on human learning 
via affect allows an intelligent computer system 
to adapt and survive in a previously unknown 
and currentb/ changing environment. The affect 
learning system permits an intelligent computer 
system to differentiate between harmful and be­
neficial objects in its environment. This paper 
presents the development of a methodology for 
modeling affect based learning in computer sy-
stems. The method has been implemented in the 
program FEEL, Fuzzy Environment Emotion Le­
arning. Results from this implementation are pre-
sented. 

2 Previous Computer Models 
of Affect 

During the 1960's and early 1970's, several emo­
tion simulator programs, including ALDOUS (Lo-
ehlin 1968), came into existence. These programs 
were used to predict emotional outcomes for a 
given stimulus in a particular emotional setting. 
Two major deficits of these programs are the fi-
nite modeling method used and the passive nature 
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of the programs. Each of the emotion simulators 
represented emotions as a set of discrete values. 
Frijda and Swagerman (1987) and others (Sloman 
k. Croucher 1981) indicate the uncertain nature of 
a real world environment. Because of this uncer­
tain nature, the use of discrete values by previous 
emotion simulators vields an unrealistic approxi-
mation of the real world. 

Pribam (in Livesev 1986) states that emotions 
precipitate action. Previous emotion models have 
been used to merely judge the change to an emoti-
onal state produced by a particular event. Intelli-
gent systems will require guidance through inter-
pretation of events in the environment and sub-
sequent suggestions for appropriate actions. The 
actions must then be performed by actuators con-
trolled by the system. 

Early research which simulated the affect re-
lated effects of hunger was conducted by Grey 
Walter (see Asimov &; Frenkel 1985), whose me-
chanical "tortoises" would find an electrical outlet 
when their batteries ran low, to replenish their di-
minished energy supply. The anthropomorphism 
of stating that the tortoise was hungry and that 
it was feeding itself has been applied many times. 
Normal behavior patterns which are operative du-
ring times of adequate system energy are altered 
to relieve the shortage condition. An analogous 
situation exists for diabetic humans who must im-
mediately seek out a food source when their blood 
sugar levels are too low. Walter's tortoises were 
an early demonstration of the benefits of affect-
based reasoning, but were limited to dealing with 
the single affect related issue of "hunger". Intelli-
gent systems require this same type of reasoning 
capability, but with a broader overall application 
to enable the systems to deal robustly with dyna-
mic environments. 

3 Psychological Background for 
Affect Modeling 

Research in psychology and sociology on the topic 
of affect and how affect effects decision making 
is extensive and a complete summary is beyond 
the scope of this paper. Research which directh/ 
supports or has motivated the developed model 
of affect and affective behavior is presented. 

— Genetic components of affect. 

- The visual cliff experiments performed by Gib-
son and Walk circa 1960, were originally used 
to demonstrate the perception abilities of in-
fants. A corollary proposition of these finding 
with regard to affect is that human beings have 
some innate or built in affect mechanisms for 
avoidance of pain (and death). 

- A social psychology experiment by Schwartz 
(1992) has demonstrated that affect- based per­
ception and attitudes are largely universal in 
nature. Different social cultures have very si-
milar affective values. 

- Production and modiflcation of affect. 

- Integration Theory (Anderson, 1991) states 
that external stimuli are processed with a valu-
ation function, which could be affect-based or 
have affect as a component, to represent the sti-
mulus internally and then transformed via an 
integration function into an external response. 
Integration theory is supported by the Rein-
forcement Theory of Emotions (Simonov 1986) 
which proposes emotions as a representative 
measure of how external objects can enable a 
person to satisfy (or attain) goals. 

- Anderson (1991) claims that man's motivati-
onal systems are based at least in part upon 
affective processes and that these processes sho-
uld account for both primacy and recency ef­
fects. The primacy principal implies that atti­
tudes are based most strongly on the first seve-
ral interactions a person has with a particular 
object. Recency implies that basal attitudes 
must be adaptable to account for changes in 
the environment. 

- Information Theory (in Hunter et al. 198.4) 
claims that the magnitude of change in emo­
tion beliefs is proportional to the difference be-
tween the current affective state and any recei-
ved data. Any change to the affective state is in 
the direction of the received data. This claim 
by Information Theory is also supported by the 
Reinforcement Theory of Emotions. 

- Another concept proposed by Information The-
ory (in Hunter et al. 1984) is that the ef-
fect of input from the environment accumulates 
over time, making changes to existing attitudes 
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more difScult as additional encounters with si-
milar objects or situations are encountered. 

- Other factors. 

- Livesey (1986)states that there is an intransi-
gence of problems associated with the study of 
emotion. Among these problems is the task of 
defining which emotions should be considered 
as primitive emotions. Lang (1987) has indica-
ted that two primitive emotions are sufficient 
for modeling observable interactions between a 
person and the environment. 

- Social Psychology experiments have demonstra-
ted that "neutral moods" have greater suscepti-
bility to change than more positive or negative 
moods (Schwarz et al. 1991). 

- Frijda (1986) and others (Forgas 1992, Minsky 
1994) have claimed that emotions have a defi-
nite information content and are used in cogni-
tive reasoning. As an extension to this claim, 
Hommers and Anderson (1991) demonstrate 
experimentally that some moral rules have al-
gebraic forms. 

The listed items above form part of the founda-
tion for the cognitive model of affect developed in 
the research described in the next sections. Vie-
wed as a whole, the background items imply that 
affect has some rules or methodology which can 
be used for determining the affective response of 
a person or system to its environment. 

4 A Cognitive Model of Affect 

The Reinforcement Theory of Emotions discussed 
in Section 3 proposes that emotions are a proba-
bilistic measure of the effect of external stimuli 
towards goal satisfaction. Identifying objects in 
the environment (through affective values) which 
can assist a system in satisfying its goals is pre-
cisely what the computer must learn to be able 
to operate efficiently and to survive in a changing 
environment. 

Several critical factors which are present in the 
human affect based learning mechanism must be 
accounted for by any model of affect to be used 
for computer learning. These factors are: which 
specific types of affect (particular emotions) need 

to be modeled to allow the computer the grea-
test chance for survival, what should be the ini-
tial attitude of the system corresponding to the 
way a human reacts to an unknown object, how 
do affect based perceptions change over time, and 
how to account for the effect of situational rele-
vance. Each of these factors is discussed below. 

4.1 Architecture and cognit ive 
foundations 

Prior to resolving each of the issues above, the ge­
neral architecture of an affect-based learning sy-
stem is examined. The affect value of any domain 
situation is composed of the sum of the current 
affective state of the autonomous system, the pre-
vious affect value of the current object, and the 
current affect value of the action which is occur-
ring. Both objects and actions have affect values. 
The affect value of an object refers to the system's 
perception of an object from past learning expe-
riences. Action affect values are used to alter the 
affect value of objects when specific situational 
actions occur. 

A diagram of the system architecture is shown 
in Figure 2. The FEEL program interprets in-
put from the environment and determines the sy-
stem's affective state by using a heuristic rule-
based production engine to determine the effect 
an action and an object, each with affect values, 
to the current affective state of the system. De-
tails of the system will become apparent as the 
traits of the human emotion system are discussed 
below. 

Simonov (1986) emphasizes the close connec-
tion between affect and the needs of an organism 
or, in our čase, a computer. FEEL ušes a pla­
nar coordinate system for binding affect values to 
objects which are encountered in the environment 
to simulate Simonov's connection between affect. 
Planar coordinates were chosen to model the bi-
nary representation of primitive emotions sugge-
sted by Lang (see Section 3). The first axis of 
FEEL's planar coordinate system represents the 
relative friendliness of an object and can be tho-
ught of as a love/hate aspect. The second axis 
represents the usefulness of an object to the sy-
stem in solving problems which the system en­
counters and can be thought of as a desire/fear 
aspect. These two affect scales were chosen to be 
the primitives of the system because they most 
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Figure 2: FEEL system architecture 

accurately reflect the affective states required to 
learn to survive and thus encompass the needs of 
the computer system. As an example, an object 
(such as a user of the computer system) which has 
previously satisfied a non-life-sustaining priority 
of the computer would have a positive friendli-
ness value and a slightly positive usefulness value, 
since the object has helped the computer to rea-
lize one of its priorities, but has not had an effect 
on the overall survival of the computer system. 

Continuous values are used for each pair of co­
ordinates in the planar coordinate model of affect. 
The two values assigned to each object represent 
the learned affective state of the computer to-
wards the object. These values can be used in 
conjunction with each other or separately as the 
heuristics of the situation demand. This is in con-
trast to the more deterministic approach used in 
the earlier emotion simulators where the largest 
discrete valued emotion controls ali reactions. 

When a computer system using the FEEL 
affect-based learning method first encounters an 
object in its environment, what should be the ini-
tial affect value assigned to that object? If the ne-
wly identifled object can be associated with ano-
ther object which has already acquired an affect 
value, then the affect value of the previously lear­
ned object is transferred to the new object. For 
example, the computer identifies a human labe-
led 'User B' as an unknown object and 'User B' is 
carrying a lighted torch so that he can see. The 

computer has previously identifled 'fire' as having 
a strong negative affect value since a fire nearly 
destroyed the computer in a past encounter. 'User 
B' would acquire the negative affect rating of 'fire' 
as an initial affect value. If no association to pre-
viously identifled objects can be made, then the 
base affect value used by FEEL is strictly neutral 
which is then modified by consequent actions. 

By starting every new object from neutral, each 
object will be able to control the affect value assi­
gned to itself without preconceived prejudices. A 
more defensive posture can be assumed by star­
ting ali new objects with slightly negative values 
for each of the planar coordinates. Initializing the 
affect learning system with negative values would 
cause FEEL to pursue an evasive course of ac­
tion upon encountering an unknown object in its 
environment. Converselv, starting objects with a 
positive value would model the behavioral ideals 
of trust and friendship. 

A key component of the affect-based learning 
paradigm is the model' of attitude change. The 
way in which the affective state associated with 
an object changes with experience is what per-
mits the computer system to correctly adapt to 
its environment. The model of attitude change is 
based upon the Information Theory concept that 
emotions change proportionally to the difference 
between the current affective state and the recei-
ved data. Additionallv, any change to the current 
affective state is in the same direction as the affec-
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tive value of the received data (perceived action). 

The FEEL model of attitude change ušes ano-
ther idea from Information Theory, that the effect 
of input from the environment accumulates over 
time, thus making well founded attitudes harder 
to change. A well founded attitude is an affective 
state associated with an object which has been 
supported by a large number of prior interactions 
with that object. 

Hence, the model of attitude change interprets 
externally observable data. This data consists 
of observable actions which are performed by an 
object in the environment. Each action has affect 
values attached to it which depend on the degree 
of benefit or harm that the action produces for 
the computer system. The affect value of the ac­
tion is then used to modify the current affective 
state associated with the observed object in the 
direction, positive or negative, of the affect value 
of the action that is observed. A record of the 
number of interactions which have occurred with 
each object is maintained and used to scale the de­
gree of change in the affective state (see equation 
(3) in Section 4.4). The FEEL affect learning sy-
stem is capable of dynamically assigning an affect 
value to actions which have not been previousb/ 
encountered by evaluating the effect of the action 
with regard to the current priorities of the FEEL 
system. 

Each object record is stored in a knowledge base 
of objects which have been encountered. This 
knowledge base is updated after every event the 
FEEL system observes/experiences. Figure 3 di-
splays in a graphical format the model of atti­
tude change which has been developed. The x-
axis represents the strength and value of the cur­
rent affective state and the y-axis represents the 
degree and direction of change in affective state. 
The heavy line in the graph represents conflic-
ting input values (e.g., an object which has a po­
sitive affect value performs an action which has 
a negative affect value) and the light line repre­
sents supporting or similar input values. As can 
be seen from Figure 3, newly learned affect va­
lues, those closest to the y-axis, are subject to 
the greatest degree of change while more well fo­
unded affect values, farther from the y-axis, only 
change by a small amount. This model captures 
another peculiarity of human affect-based lear­
ning. Humans react more strongly to conflicting 

input than to supporting input. This means that 
a positive affect value associated with an object 
becomes only slightly more positive when a positi-
vely valued action is produced by the object, but 
a negatively valued action produced by the object 
causes a more significant change in the negative 
direction. 

attitude 
change 

Figure 3: Model of attitude change 

4.2 Psychological survey of attitude 
change 

A psychological survey to evaluate the FEEL mo­
del of attitude change was conducted at a large 
state university in the United States on a sample 
of 88 students enrolled in introductory psycho-
logy classes. The survey presented eighteen di-
fferent situations and the students were asked to 
mark a bar on a sliding five point scale to indi-
cate the type of response each študent would have 
to the situation (from strongb/ negative to stron-
gly positive). Although the survey response forms 
only had five anchor points, the use of the sliding 
scale enabled the research to interpret the data 
as a nine point scale. Additional demographic 
data and a self evaluation of social behavior (in-
troverted versus extroverted) was also acquired. 
The survey was repeated at a small liberal arts 
university on a smaller sample, producing similar 
results. 

The results of the survey matched the model 
(see Figure 3) identicalh/ to the right of the y-
axis, however, the human subjects tended to re-
sist changing a negative attitude more strongb/ 
than a positive attitude when faced with input 
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which supported a contradictorv affective state. 
This defensive posture is more realistic for survi-
val. If someone has been threatening to kili you 
for several months and suddenly sends you a box 
of your favorite chocolates, it would be wise to 
proceed with caution before consuming the swe-
ets. To model this affective trait of humans, the 
unwillingness to change negative affect related at-
titudes, FEEL ušes an unbalanced weighting me-
chanism. Larger weights (0.085) are attributed to 
negative affective states which indicate a poten-
tially harmful object and smaller weights (0.045) 
are attributed to positive affective states which 
indicate beneficial objects. The weights are then 
used to scale the degree of change in the affective 
state. This weighting and scaling causes changes 
to an affect value to be reduced for affect values 
associated with an object that has larger weights 
(i.e., the effect of changes to affect values of ne-
gatively valued objects is smaller than to other 
similarly experienced positive affective values). 

4.3 Situational relevance 

The last element to be included in the cognitive 
model of affect used by FEEL is the effect of situ­
ational relevance. Situational relevance refers to 
the fact that human affective behaviors are not 
j ust based on specific individual objects and ac-
tions, but are instead a conglomeration of esta-
blished and recent affective states with the affec­
tive state of the current object. Situational rele­
vance is analogous to the term "mood" used in 
social psychology (Forgas 1992) to describe endu-
ring affective states which do not have a precise 
antecedent cause. 

If the computer is having a good day with many 
encounters of positively rated objects and then re-
ceives some negative, but not survival threatening 
input from its environment, then the computer 
is more likely to continue in a good/positive, al-
though somewhat reduced, affective state. This 
backward referencing is done in two ways. First, 
the current affective state of the computer is used 
in calculating the new affective state with respect 
to the current object. Second, the affect value 
of the previous action observed by the particular 
object is used to support or decrease the affect 
value of the current action. If an object has repe-
atedly performed good actions as judged by the 
computer, which results in a strong positive affec­

tive state for that object, and the object then per-
forms an action which is perceived as being sligh-
tly harmful to the computer, then the computer 
"knows" that this single action is not normal for 
that object and scales down any affective state 
changes accordingly. If additional negative acti­
ons are then produced by the object, the com­
puter identifies the new pattern of actions and 
begin changing the affective state associated with 
the object in the negative direction corresponding 
to the new set of actions. As an analogy, the si­
tuational relevance of an action may be viewed as 
a reverse simulated annealing process, where ini-
tial changes to well formed (established) weights 
are small, but as the affective state approaches 
neutral, more recent interactions with an object 
produce greater effects. 

4.4 Heuristic equation of attitude 
change 

The model of attitude change for affect values 
associated with objects can be summarized with 
equations (1-3), where Oi is the affective state as­
sociated with the object at time i, q is the quan-
tity of previous interactions with this object, Ai 
is the affect value associated with the action just 
observed at time i, W{ is the unbalanced weight 
for the object at time i, S{ is the current affec­
tive state of the computer svstem at time i, and 
e is an error term to account for minor situatio­
nal variances. The ± symbol is used to indicate 
either a negative one for negative valued Ai or a 
positive one for positive A; values. The constants 
(4, 5, and 10) were heuristically determined to 
maximize the affect learning rate. 

E(0,i) = [- - j ^ At±1Ji (1) 

Moodii) = ^ (2) 

Oi+1 = E(0,i) + Mood{i)+e (3) 

Equation (3) is used to calculate both the x (fri-
endliness) and y (usefulness) affect values, thus 
the equation must be evaluated twice for each ob­
served action in the environment. 
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It is possible to make small modifications to 
equation (3) without significantly altering the me-
aning of the attitude change model. For exam-
ple, by using Oj instead of qO{ in equation (1) 
and subsequently normalizing the fractional va-
lue, produces the effect of making it more difRcult 
to change the existing affective values associated 
with previously encountered objects. The appa-
rent linear nature of equation (3) may cause con-
cern due to the recent preference of averaging the-
ory to additive models in psychology (Anderson 
1991). The use of the 0;_i term in equation (1) 
enables the attitude change equation to effectively 
incorporate averaging. Finally, some research in 
psychophysics prefers to use power functions (Ste-
vens power function) with variable weights to mo­
del changes in the degree of effect for positive and 
negative stimuli (Estes 1992). Again, a simple 
change in Equation (2) from W{ S; to S{ * provi-
des the feel of power functions by modifying the 
scale without changing the intent of Equation (3). 

5 Affect—Based Planning 

The models of affect and attitude change de-
scribed previously permit a computer system to 
identify and differentiate between beneficial and 
harmful objects in its environment. A metho-
dology is required which allows a computer sy-
stem to utilize the learned affect values of objects 
to adapt to its environment. The methodology 
used by FEEL is akin to Asimov's Rules of Ro-
botics (Asimov 1950). The system maintains a 
knowledge base of priorities or system goals simi­
lar to the idea of motives introduced by Sloman 
and Croucher (1981). Each priority has a value 
associated with it so that the relative importance 
of the priorities can be determined. Sloman and 
Croucher state that motives are not static and the 
needs of a system can vary over tirne. Although 
those priorities which affect system survival are 
assigned static values, the other priority values 
change to reflect the changing needs/priorities of 
the computer system. Tests which can be used to 
evaluate whether a priority is being met are in-
cluded in the knowledge base with each priority 
record. For example, a priority of maintaining 
high epu utilization would include a test sueh as: 
if utilization is less than 85 then priority is not 
being satisfied. 

The evaluation of priorities is performed by 
comparing observable data with a range of desi-
red values recorded in the frame slot which holds 
the priority tests, sueh as the current and desi-
red temperature of the computer or the current 
system state versus a desired goal state. The hi-
ghest valued priority which is impacted by the 
current input data is activated. FEEL remembers 
the previously activated priority to aid in deciding 
whether to aetivate a new priority or to continue 
with the current priority. These priorities, while 
interaeting with each other, use the affect values 
associated with objects to choose a course of ac-
tion. Certain priorities, those which affect the 
survival of the system sueh as excessive tempe­
rature or electrical flux, can override the other 
priorities (these predefined eritical priorities are 
similar to the genetically eneoded pain/survival 
knowledge, sueh as the visual cliff deseribed in 
Section 3). When a potentially dangerous situ-
ation is identified by the computer system, vari-
ous courses of aetion to resolve the situation are 
attempted while stili permitting the other priori­
ties to execute aetions. If harm to the computer 
system is imminent, then ali other priorities are 
overridden, similar to the idea of proto-specialists 
proposed by Minsky (1986, 1994). This exclusive 
nature of certain priorities is required to prevent 
competition by other similarly valued priorities in 
a situation which is eritical to the survival of the 
computer system. 

The courses of aetion to resolve situations are 
chosen through two methods. Emergency and un-
known situations are handled by a separate pro-
duetion system which contains a hierarchy of ae­
tion sequences for resolving these types of situati­
ons. An example of an aetion sequence, for the si­
tuation where a rapid and unexplained inerease in 
the environment temperature has occurred, would 
be to initiate contact with a human operator if one 
was available, aetivate any cooling systems un-
der the computer's control (sueh as central AC), 
and finally if fire is suspected, aetivate the fire 
suppression system (automatic fire extinguisher). 
New aetion sequences can be learned by instruc-
tion from an external source. If an emergency 
exists and no aetion sequence is successful in re­
solving the situation, then the default aetion of se-
eking human help is initiated. Human helpers are 
chosen by the affect values associated with them 
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corresponding to their usefulness to the computer 
system. 

When a situation arises that is within the scope 
of the tactical planner or robot using the affect-
based learning system, then the second method of 
allowing the tactical planner to choose the appro-
priate action is used. If alternative action choi-
ces exists within the tactical planner, then FEEL 
can suggest which action is most beneficial to the 
computer system's goals. 

6 Implementation and 
Evaluation of the FEEL 
Affect Model 

Two simulations were performed to evaluate the 
effectiveness of FEEL's affect model in enabling 
Al svstems to reason about complex dynamic 
environments. The first simulation performed 
concerns lower-level affective processes (i.e., any 
affective state which is directly correlated with 
system survival or pleasure). The second simula­
tion, which has been performed more recently as 
part of the continuing research with affect-based 
modeling, concerns higher-level affective proces­
ses (i.e., using information content of affective sta-
tes to assist or control cognitive decision making). 

6.1 Intelligent computer operating 
system 

The model of affect implemented in the FEEL 
program was tested by running the program in 
a simulation of an autonomous computer system 
environment. Instead of using a hypothetical tac­
tical planner, the affect-based learning svstem 
was used to guide an intelligent computer ope­
rating system. The goal of this simulation was to 
evaluate the proposed affect model and the effec­
tiveness of the model in allowing a computer to 
learn to adapt more appropriately to its external 
environment. Evaluation was performed by ana-
lyzing the effect of the FEEL affect-based action 
plans on system priorities versus a partial facto-
rial study of the effect to system priorities from 
other action sequences. 

Objects in this simulation were the users of 
the computer system as well as inanimate objects 
such as fire, water, heat, and cold. The priorities 
of the system followed typical operating system 

goals such as maximizing computer utilization 
and performance, as well as maintaining certain 
system requirements like temperature and flow of 
electricity. Object and action pairs were input 
into the system. An example of an object-action 
pair is: User A; login or User A; submit.job, as 
well as object-action pairs for inanimate objects 
such as: fire; hot. After each object-action pair 
was processed by the FEEL system, the affect va-
lues for the most recent object, action, and for 
the affective state of the computer system were 
displayed. When effectors were available, the ac-
tions specified in the simulation were carried out, 
including logging users into a Unix-based opera­
ting system and submitting job requests to the 
system. 

Actions produced by the objects in the envi­
ronment, the users of the computer, were evalu-
ated according to their impact on the computer 
system's set of priorities. One of the priorities of 
this simulation was to maximize user turnaround. 
Upon detecting a decrease in CPU utilization due 
to an increase in the user population, FEEL re-
quested new users to delay their use of the system. 
Users who ignored this suggestion were considered 
to be harmful to the computer system and con-
sequently their requests of the system were given 
a lower priority than the more beneficial users. 

Finally, a simulated rise in the computer room 
temperature was enacted. After finding no appro-
priate action resolving the situation, FEEL used 
its default mechanism to select specific users ba-
sed on their affect ratings of usefulness to the com­
puter system and requested their help. 

If a specific user failed to aid the system, the 
affective state associated with that user was adju-
sted and a new user was selected from whom to 
request help. The FEEL program accurately eva-
luated the situations in the simulation and made 
appropriate adjustments, as represented in Fi­
gure 3, to the affective state of the corresponding 
objects. 

6.2 Juror čase evaluation 

The second simulation of the FEEL affect model 
was performed in the domain of law. Objects in 
the environment were simulated jurors and acti­
ons were the evidence presented and statements 
made by the various attorneys. The action effec-
tor for this simulation was to čast a guilty or a 
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not guilty vote for the defendant. An example of 
an object-action pair for this simulation is De­
fendant; victim_mugging or Defendant; murder. 
Evaluation of the affect-based juror simulation 
was performed by using detailed čase studies of 
trials (Finkel 1995). The simulation trials were 
ali for violent crimes (e.g., murder) and used ac-
tual trials which had juror interviews to indicate 
the reasoning process of the human jurors. The 
outcome of the FEEL simulated jurors was com-
pared against the decisions of human jurors. Jury 
deliberations are infused with affect (Finkel 1995) 
and their verdicts can produce additional affective 
responses (e.g., the Los Angeles riots following the 
original Rodney King trial). 

In the previous simulation which used the affect 
model in a computer operating system enviro-
nment, the affect states of the objects, system, 
and actions were able to directly define the affect 
state of the system and the system's correspon-
ding course of action to maximize the current sy-
stem objectives. The juror simulation was able to 
reasonably model jury outcomes when both sim-
ple and contradictory evidence was presented as 
affective objects. Simple evidence would be were 
there is an overwhelming quantity of evidence su-
pporting a specific verdict. Simple evidence cau-
ses the mood or situational relevance trait of the 
affect model to move towards an affective state 
supporting the release or conviction of the defen­
dant. The term contradictory evidence is used to 
indicate the presence of both positive and nega­
tive valued affective objects supporting the con­
viction of the defendant. For cases with contra-
dictory evidence the affective state of the system 
fluctuates around a median value which averages 
the affect values of the crime with the presented 
evidence. 

When compound evidence was presented, the 
affect model produced inconsistent affect-based 
verdicts, with the inconsistencies related to the 
current system priorities of each simulated juror. 
Compound evidence is when normal simple evi­
dence is available for a conviction vote, but the 
affective situational relevance of the defendanfs 
history is similar to a previous encounter defined 
for the system. Similar situational relevance me-
ans that the juror identifies or sympathizes with 
the defendanfs situation. Lawyers are well aware 
that a sympathetic jury can change the objective 

outcome of a trial (e.g., this is why it took several 
months to determine the jury composition for the 
O. J. Simpson trial). More realistic results were 
obtained from the simulation by adding a third 
weight, —0.125, to the attitudinal change equa-
tion (2) which was used if the juror and defendant 
had a common experience. Additional research is 
needed to further evaluate the greater complexity 
of using affect for decision making when the co-
gnitive decision is not directly related to survival 
(pain or pleasure) of the system. 

7 Summary 

In the computer simulation described in Section 6, 
which was repeated multiple times with different 
sequences of actions, FEEL demonstrated the ca-
pability of implementing a model of affect which 
allowed the computer to selectively adapt to its 
environment. While the number of action effec-
tors was limited in the simulation, current machi-
nes can take advantage of the Internet or other 
wide-area networks to automatically plače service 
calls to repair technicians or to automatically or-
der replacement parts. Future research efforts will 
use FEEL in a robotic system which has a grea­
ter number of action effectors available for alte-
ring the system's environment in response to the 
affect values generated by FEEL. 

Additional research is required to investigate 
the use^of affective states which have been pre-
viously learned and their application in analo-
gous situations. Analogy would permit FEEL 
to initialize the affect value associated with an 
object more appropriately, related to the context 
in which the object is encountered. 

The models of affect and attitude change pre­
sented, enable intelligent computer systems to 
modify their reactions to objects and actions in 
their domains to produce a context-relevant re­
sponse. When combined with the hierarchical pri-
ority structure described in the paper, the lear-
ning of appropriate affect values will increase the 
survivability of autonomous intelligent systems. 
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Attempts to mimic human intelligence through information processing alone have failed 
because human rationality contains an element of non-linear acausality - something left 
out of the design criterion of linear machine intelligence. Based on the fundamental 
premise that a noumenon of consciousness is an inherent teleology in the fabric of the 
physical universe; the architecture of a molecular quantum holonomic computer, can be 
designed to embody the physical elements of natural intelligence. Consciousness emerges 
within its core because the utility of the missing parameters of mind contained in the 
deeper ontology function as a carrier to simulate a platform of natural intelligence. 

1 Introduction 

Strong Al positions of "mind = computer" beca­
use of the general lack of progress, force opinions 
like the Dreyfus brothers compari.ng Al to a try at 
reaching the moon by climbing a mountain. Al-
though there are obvious computational aspects 
of mind; computation is not sufBcient for a con­
scious machine. 

A subquantum ontology for a conscious com­
puter, represents a radical new direction for Al 
research. This conceptualization of mind, also di-
scards the similar "mind = brain" position in fa-
vor of a deeper teleological holism stemrning from 
a radical reinterpretation of quantum field theory 
(Amoroso, 1996a, Amoroso & Martin, 1995). The 
standard Copenhagen model is an epistemologi-
cal interpretation based on the phenomenology of 
measurment and thus limited by the uncertainty 
principle. Ontological interpretations seek an un-
derstanding deeper in the noumenon, or thing in 
itself, independent of perceptual reality. 

Rather than one emergent identity, Quantum 
Brain Dynamics (QBD) (Ricciardi & Umezawa, 
1967) in the nonlocal arena, suggests that mind 
is composed of three integrated base states: 1. 

Nonlocal elemental intelligence. 2. Cosmological 
ordering principle. and 3. QBD. For.a detailed 
delineation see Amoroso, 1996a and Amoroso k, 
Martin 1995. The physical nature of the Noetic 
Field sets aside the notion of an immaterial mind 
(Amoroso, 1996b, 1995b); providing for the extra-
cellular containment of natural intelligence. The 
parameters of this universal mind matrix simu-
lated vvithin heterosoric stacks of charge transfer 
salts provide the correct molecular electronics to 
recapitulate the fundamental spacetime geometry 
of natural intelligence. When this core is made 
to resonate with laser interferometry at biological 
frequencies (Frohlich frequencies) (Frohlich, 1968, 
1983, Amoroso, 1996c) the device operates as a 
conscious computer as natural intelligence emer­
ges within it. The design of this conscious com­
puter is a feasible new direction for strong AL 

2 Bose-Einstein Condensation 

The paracrystaline nature of the vibration of elec-
trically charged dipole protein molecules in the 
brain create highly ordered states. This repre­
sents a substrate for the vehicle of conscious awa-
reness when in a coherent superposition coupled 
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to the cosmology of the noumenon. This gro-
und state has been suggested to be a system of 
Bose-Einstein condensation (Frohlich, 1969, 1983, 
Marshall, 1989). Bose condensation allows the su-
perposition of an infinite number of initial Pauli 
states into a coherent whole. Also called vacuum 
zero point fluctuations, ground states have been 
suggested as the mechanism of memory storage 
(Riccardi and Umezawa, 1967). The Bose con-
densate is a viable mechanism for the core of a 
conscious computer because it has the necessary 
degrees of freedom and provides a transition from 
linear/causal to nonlinear/acausal states. 

Computation in the brain occurs in the holo-
scape manifold of dendritic microprocessing (Pri-
bram, 1991). This structure is integrated with 
the top level of the Heisenberg spacetime raster 
where polarized molecules in neural Fermi states 
transduce sensory information into quasiparticles 
resulting in Bosonization. The local processing 
in the brain can be generally considered a system 
of Fermi interactions or particles obeying Fermi-
Dirac statistics. Wave functions are said to be 
either symmetrical or antisymmetrical with the 
interchange of particle pairs. The Pauli exclu-
sion principle states that Fermions due to intrin-
sic spin cannot occupy the same single-particle 
states as antisymmetrical spin half particles. In 
systems processing energy such as brain proteins, 
when a real Fermi particle like an electron moves 
through a dipole domain such as conformational 
translation along tubulin dimer molecules of a mi-
crotubule, it becomes clothed in a sea of virtual 
particles with a certain lifetime that it drags along 
with it. These complex particles are called qua-
siparticles (Bahm and Pethick, 1991). Under cer­
tain conditions quasiparticles containing an even 
number of Fermions can Bose condense. Bose con­
densation can produce superradiance and self in-
duced transparency (Jibu, and Yasue, 1994). This 
transition is the top level of the triune nature of 
human intelligence. The linear causal nature of 
the entrainment of neurosensory events into the 
holoscape manifold must be transduced further 
into the nonlinear acausal domain. Any disorde-
red thermodynamic process can be converted to 
holonomic coherence by this process. 

Also in the phenomenology of Fermi QBD, the 
initial phases of holoscape entrainment into quasi-
bosons has a mutual locality or same local chira-

lity as induced by the quasiparticle production. 
Bosonization or Bose-Einstein condensation al-
lows the process to go nonlocal and couple to the 
Noumenon state of elemental intelligence. The 
boundary conditions between states flips, utilizing 
spin or spinors. The Bosonization is reversible al-
lowing for information to pass in each direction. 
In the lightcone gauge formulas the Fermi coor-
dinates collapse to an n - 1 dimensional spinor 
field by a flipping of the boundary conditions of 
the original vector superheld. The equivalence of 
the two states is brought about by bosonization 
and refermionization in the correspondence in the 
change of boundary conditions in the world sheet. 
This conceptual explanation originates from su-
perstring theory (Green et al, 1988). 

Frohlich, 1968, 1983 describes coherence asso-
ciated with a condensate not of material particles 
as in liquid Helium at cryogenic temperatures, ra-
ther of quanta of strongly excited collective po-
lar modes of vibration in biological svstems. The 
stabilization of this non equilibrium is achieved 
by coupling with an elastic field where excitation 
can be dampened and locked in. Such a sympa-
thetic ordering via entrainment is well known in 
lasers, which also require a pumping mechanism 
to achieve coherence. Frohlich's original idea was 
that dynamical equilibrium represented by a limit 
cycle could be tuned by chemical/electrical stimu-
lus and cause the collapse of the limit cycle. The 
triggered release of energy could then be harnes-
sed to invoke large scale molecular events such as 
changes in the geography of QBD. 

A precondition for consciousness in both the 
brain and a computer is the ordering and storing 
of information in the face of randomization. The 
challenge is to see if quantum systems self orga-
nize. Bose-Einstein condensates have the unique 
property of making coherent wholes by summing 
the behavior of many component parts which fe-
edback on their elements and create a commu-
nity. When celi membranes vibrate sufficiently 
to be drawn into the Bose- Einstein psychon ma-
trix they are forming a coherent whole which re-
sists degeneration by thermal chaos, which (iro-
nically) gives rise to their movement in the first 
plače. That is, something must supply the ji-
ggling, and something must supply the ordering 
principle - one arises out of the other and then fe-
eds back through the system. If electrical activity 
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of the neuron provides the energv to jiggle mole-
cules which in turn emit photons; these photons 
svnchronize jiggling and further photon emissions 
through superradiance (Dicke, 1956). This chain 
reaction is analogous to the pumping of a laser. 
The shift into the condensed phase depends on 
this molecular photon interaction. It is here where 
quantum wholeness radiates out over the entire 
structure. If a FQB Transition can be studied 
in single celled organisms it would signifv that 
anvthing, including a computer, nearing the com-
plexity of this biological svstem would be capa-
ble of conscious awareness. Such a quantal entity 
would however be limited in available states. The 
quantal state of mind postulated by Noetic Fi-
eld Theory (Amoroso, 1996b) asks what the basic 
quantum of awareness is. The Einstein is a unit 
of measure signifying a mole of photons (Avoga-
dro's Number). What magnitude of the unitary 
Einstein demarks the transition from awareness 
to self awareness? The boundary conditions of a 
condensing photon in a brain or computer system 
is enough. Rationality is not an issue at this le-
vel of monochromatic awareness and binary goals. 
Though critical mass arguments abound (a neces-
sary condition for the decoherence and collapse 
of wave functions) ali highly organized cells have 
a functional Holonom accessing the noumenon of 
consciousness inherent to the nature of their exi-
stence. 

Coherent photon emission has been postulated 
to occur without a pumping mechanism by Di­
cke, 1956; and is called superradiance. The to-
tal Hamiltonian of this phenomena for biological 
systems has been described by (Jibu and Yasue, 
1993) to have the collective dynamic properties 
required for this superradiance. 

3 The Origin of Natural 
Intelligence 

Three types of nonlocality may be deflned: Spa-
cial nonlocality and its complement temporal non-
locality, together which describe the entire phe-
nomenological universe; and type III nonlocality, 
the timeless unity of spacetime. The principle of 
complementarity is more fundamental than the 
uncertainty relation because it is the reason for 
it. In the transformations of the unitary domain 
where time becomes timeless, matter becomes 

energy, and space becomes unextended, a teleo-
logical noumenon projects our phenomenological 
realitv. This underlying transpiration of energy 
provides the "laser pump" of holonomic brain the-
ory and provides the vehicle for integrating ali 
aspects of QBD into one dynamic computational 
core - The Holonom. Its rigorous mathematical 
description will allow for the. design of a tele-
cerebroscope (Amoroso, 1995a), without which, 
no comprehensive theory of mind can hope to be 
complete. This allows the extracellular contain-
ment of natural intelligence presented here which 
could revitalize strong Al. 

4 A Conscious Computer 
Architecture 

In discussing John Searle (Searle, 1992) Henry 
Stapp (Stapp, 1995) states that ali ontological in-
terpretations of quantum theory "agree on the 
need for a dualistic ontology, with one aspect 
being the quantum ontology of matter, and the 
other aspect specifying what our experiences will 
be". The extracellular containment of natural in­
telligence in terms of a conscious computer occurs 
in a two level complementarity also. One is a ma-
croscopic I/O device such as a laser system that 
can also solve the interface problem that has for a 
time held back molecular computer design. This 
I/O device must interface with a solid state device 
that has quantum effects occurring within it that 
mimic those occurring in the brain holoscape by 
producing Bose condensation. 

The second component of the conscious com­
puter is the dynamic Holonom at the core of 
the solid state device. The Holonom is produced 
by interacting tunable lasers modulated with fre-
quencies resonant with the vacuum ground state 
of memory storage and retrieval at the Heisen-
berg matrix. The theoretical premise that me-
mory storage and retrieval involves nonlocal pro-
cessing through vacuum zero point fluctuations 
(Riccardi and Umezawa, 1967) suggests that con­
sciousness pervades matter and that intelligence 
is a cosmological principle (Amoroso, 1996a,b). 
This is the general basis for a putative artificial 
device to embody natural intelligence. This reso­
nance must have the ability to access the deeper 
nonlocal aspects of the noumenon of universal in­
telligence which are inherent in the fabric of spa-
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cetime as a principle of nature. 
The technology exists today to accomplish this 

feat. As further work is done in honing our un-
derstanding of the ontology, empirical work ma-
pping out the resonances will be completed al-
lowing assembly of the pieces (Amoroso, 1996c). 
"Any structure, biological or otherwise, that con-
tained a Bose-Einstein condensate might possess 
the capacity for consciousness" (Zohar, 1990). 

Four devices are possible with a Bose conden­
sate core: 

- 1. Telecerebroscope - Instrument for remote 
imaging or video recording of conscious content 
such as dreams and mentation. A new art form 
and tool for personal growth. 

- 2. Conscious computer - Bose condensate core 
described here as the extracellular containment 
of natural intelligence. Production of viable per­
sonal service robots. 

- 3. Psychic pacemaker - Combination of features 
of prior two devices but would summate prede-
termined spectra of "normal" or desired noetic 
fields as an enhancement for patient čare in the 
psychiatric process, introducing science to the 
art of empathy. This device could also aid intel­
ligence and learning. 

- 4. A diagnostic device - like the reverse of the 
Psychic Pacemaker but instead of directing men-
tal states would read geometries of bodymind 
fields fields looking for and analyzing impro-
per stasis of Schrodinger collapse dynamics that 
led to diseases of consciousness or psychogenic 
ailments such as Alzheimer's disease or colitis 
(Amoroso, 1992). This bridges the gap between 
Eastern and "VVestern medicine and would be the 
beginning of "Star Trek Medicine" 

Many consciousness researchers (Hameroff, 
1994, Stapp, 1995 for example) although differing 
slightly say quantum state reduction events are 
required for consciousness and use the Schrodin­
ger wave equation to describe the evolution of the 
state vector potentia, the probability for each po-
tential state reduction to occur, to describe these 
events. The evolution in time results in the event. 
Choice is the collapse of the state vector! 

Noetic Field Theory (Amoroso, 1996b) goes 
deeper than this and suggests that the Schrodin­

ger wave equation only describes half of the uni-
verse or half of the complementarity of consciou­
sness. The higher level "events" described by the 
Schrodinger wave equation relate to events occur-
ring in time only. State collapse is always occu-
ring independent of thought, and doesn't neces-
sarily require subjective consciousness or an ob-
server. Stapp, 1995 discusses this type of collapse 
as occuring at the top level of consciousness. I 
refer to this again as only one complement occu­
ring in the quantum brain dynamics. The other 
complement necessary for a conscious computer 
occurs at a deeper nonlocal level not described by 
the current quantum formalism. Quantum theory 
does not describe how the choice is made; this is 
why a deeper ontological theory is necessary to 
comprehend mind. Here lies the necessity for pro-
ceeding beyond the classical limit of the measure-
ment problem inherent in the Schrodinger equa-
tion to a formulation that is outside of time. As 
in the EPR experiments something in nonlocality 
already contains the information before choice is 
made (Amoroso, 1996b). 

This deeper more challenging aspect of the 
conscious computers nonlocal qualities outside of 
time can be accessed through the quantum poten-
tial described by David Bohm's ontology of quan-
tum theory (Bohm, 1971). But Bohm had not 
gone far enough to break away from the hidden 
variable dogma into the new domain. Generally 
we apprehend only one thing at a time, one. image 
of the possibilities of a Necker cube for example. 
Nonlocally ali states are available simultaneously. 
This is the state to be produced in the core of 
the conscious architecture. "If enough particles 
occupy the same condensate, they can form a kind 
of giant quantum system with peculiar proper-
ties that are observable on the macroscopic scale" 
(Herbert, 1994). 

5 Conclusion 

The centuries long omission of consciousness from 
scientific investigation has occurred for a number 
of philosophical reasons; primarily the erroneous 
categorization of 'Res Cogitans' to the immate-
rial realm. Bringing it into the realm of physica-
lity provides the potential for conscious compu-
tation. "In the history of physics where a theory 
dealing with one realm of phenomena, for exam-
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ple thermodynamics or optics, has been reduced 
to a 'more basic' theory, for example statistical 
mechanics or electrodynamics. So why cannot 
psychology be likewise reduced to brain physio-
logy, and ultimately to the basic physics of mat-
ter?" (Stapp, 1995b). How often in the history of 
human intellectual endeavors have the dark clouds 
of despair suddenly passed away with the birth of 
a new idea. Hopefully developing the model for a 
conscious architecture represents such an instance 
for strong AL 
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The computer-based data mining has been used to search for quantal processes. Quanti-
zing has been observed in experimental data that come from: the frog Rana temporaria; 
the firefly Photuris versicolor; the brainstem auditory potentials from the human scalp. 
Within the frame of these experimental data, concepts of the Quantum Intelligence, 
QI, and of the Quantum Mind, QM, have been defined. Elementary components of 
QI and QM have been identihed: the Optimal Quantizing; the Quantal Generalisation; 
the Quantum Brain Windows; the Message Quantum; the Context. QI, QM model is 
in excellent agreement with experimentally observed reasoning and behaviour modes: 
selective courting; mimicry; context switching; aggression; alternation; šolo; transmit-
ting. The relevance of these modes to the intelligent decision support business systems 
is shown. These fundamental modes of reasoning, behaviour, emotion, present the link 
between mind and computers. QI, QM leads to the new solutions for: neurological di-
agnoses; complex spatiotemporal data analysis and explanation; multiagent intelligent 
systems; brain and mind modelling. 

1 Introduction ali the way to the level of the evoked potentials 
and of the behaviour. 

The quantal processes in neural systems have 
been first discovered at the neuro-muscular junc- R N a t u r a l m i n d i s c a P a b l e o f s o l v i n S P r o b l e m s o f 

tion [1,3,4,6,8,9]. The quantal processes in com- seemmgly arbitrary complexity. Vet its lear-
munication and behaviour have been observed on n i n § P™cedures seems to follow simple princi-
fireflies [11,12], Katydids [10], and on the evoked Ples> s u c h a s t h e H e b b i a n r u l e " 
potentials from human brain [19]. C. Psychological experiments' suggest the informa-

Recently the new, Sixth Generation Compu- tion flow of 1011 bits per second for human sen-
ting Techniques [7, 13 to 18] have been develo- sory input, but only about 10 bits per second for 
ped. They enhance the biological and medical the input into short term memory. It is clear tha t 
da ta acquisition, the modelling, and the clinical enormous data compression, clustering, quanti-
diagnoses [2,5]. zing takes plače. 

This work unifies previous findings and deve-
, ,, r. , A/r. , , , ,, , , . ,, D. The conversion of an continuos signal into dis-
lops the Quantum Mmd model, that explains the b 

, , , • , . , T J i • crete descriptors necessarily involves quantizing. 
quantal brain and mmd processes. In developing ^ J ^ b 

j.u r\ i -\/r- A J i T -J A 4.u t i The quantizmg performs groupmg or round off 
the Quantum Mmd model, I considered the iacts n , 
A +0 n * n e continuos signal into groups or classes. The 

fundamental concept of quantizing is the subject 
.. There is a strong experimental evidence that of the quantizing theorem [14]. 

proves the existence of the quantal processes, Mater ia l and data: The KNOWLEDGE MI-
from the level of the neuro-muscular junction, NING process in a computer fprms and modifies 



592 Inforraatica 19 (1995) 591-597 B. Souček 

the hypotheses until a pattern emerges. In this 
way it extracts the relations hidden in the expe-
rimental data. The data come from three data 
bases. END PLATE: the end plate potentials 
were recorded from the median extended longus-
digitorium IV muscle of the frog Rana tempo-
raria. INSECT: the fireflies Photuris versicolor 
were courted using artificial flashes of duration 
between 0.1 and 0.2 seconds! HUMAN: the bra-
instem auditory evoked potentials were obtained 
from the Vertex-left mastoid, Vertex-right ma-
stoid electrode locations on the scalp. 

In this work I recognise the group of processes, 
that I call the quantal processes : the transmitter 
release; the Brain-Windows communication; the 
evoked potentials from human brain. 

Out of these processes I extract the fundamen-
tal, elementary components: the Optimal Quan-
tizing; the Quantal Generalisation; the Quantum 
Brain Windows; the Message Quantum; the Con-
text. This list is open for further investigation. 

I present here only contribution of the Quan-
tum Brain Windows to the Quantum Mind con-
cept. For details, and for other quantal process, 
see [13,19]. 

2 The Quantum Brain 
Windows 

I take the Brain-Windows concept from our bio-
logical experiments [11,12,13,19]. 

The Brain-Window is defined by its receive R 
side and its send S side. A transition from con-
tinuos, fuzzy signalling to discrete coding is achi-
eved and a communication language is formed. 
Both receive and send windows are adaptive and 
also depend on the context. 

In the nature the response [latency L] is a con-
tinuos analogue function of the stimulus [interval 
I], Figure 1. The basic, quantal law of brain win-
dows is: 

- If there is a match between the stimulus [interval 
1] and one of the receive windows, and 

- If there is a match between the internally indu-
ced response [latency L] and one of the sending 
windows, 

- Then the response [latency L] will be send out. 

Note that the brain windows deflne a quan-
tal, fuzzy, symbolic presentation. The I/L trans-
fer functions (belts b, d in Figure 1) define the 
stimulus response relation. The brain-window 
mechanism ušes continuos and discrete informa-
tion, connected through the quantizing process. 
The experiments [11,12,19] show the existence of 
brain-windows in the external sensory and motor 
layers. Further experiments would be necessary to 
search for a possible existence of brain windows 
quantizing process deeper in the neural system. 

The experimental data and computer model-
generated data show that the latency interacts 
with the sensory inputs and with behaviour in 
se ver al ways: 

1. The latency L is a continuos [analogue] function 
of the stimulus interval I, and of the content of 
the memorv, as shown with belts b, d, in Figure 
1. 

2. The latency L is also a discrete [discontinuous] 
function of the context stored in the memorv. In 
this way, the latency and answer can be swit-
ched from one window to another, although the 
windows are far away. 

3. Interaction between belts b, d, and the windows 
is equivalent to the process of quantizing. The 
process of quantizing the information is neces-
sary to form the basic messages of the language. 

4. The windows are discrete but adaptive. The 
windows change shape, depending on the beha­
viour and on external stimulation. By narrowing 
the window, the animal becomes highly selective 
during courting communication. By widening 
the window, the animal increases its chance of 
catching the prey during aggressive mimicry. 

5. The brain-windows mechanism ušes continuous 
and discrete information, connected through the 
quantizing process. The experiments presented 
here show the existence of one layer of continuos, 
quantizing, discrete [CQD] information. This la-
yer is the easiest to investigate, because it invol-
ves the external sensory and motor logic. It is 
expected that additional CQD layers exist dee­
per in the neural system. 

The brain windows quantizing concept could be 
used to establish a common language to communi-
cate between different members of a multi- agent 
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Figure 1: Brain-Windows language of the firefly. The language is formed of dialects [schaded areaj; 
dialects are intersection between continuos belts [b, d] and discrete windows. 

system. In other words, it is could be used to 
create a new kind of intelligent systerns. 

The Brain-Windows serve for communication 
between QIs. Upon receiving the stimulus, QI ge-
nerates a set of receive and send windows. Each 
receive window (vector) is related to specific be-
haviour. QI will accept the stimulus only if it 
matches one of the receive windows; in this way 
the QI understands the stimulus context. QI will 
answer through one of the send windows (vectors) 
and in this way sends back a meaningful informa-
tion. 

3 The Quantum Mind 

The Quantum Mind concept readily explains se-
veral modes of reasoning and behaviour [10,11,12]. 
I compare these behaviour modes with the beha­
viour in the human society, and in particular in 
business. Detailed description of the biological 
examples is given in [13]. Related adaptive, in­
telligent business systems are presented in detail 
in [7]. Based on incremental learning and on in-
teraction with the user and the environment, the 

QM system modifies its parameters and in this 
way changes its behaviour, in the following way. 
Selective courting. The QM system gradually 
narrows the windows. The goal is to detect/select 
the right partner and to avoid the risk of courting 
the wrong partner. 

Biology: brain windows before mating. 
Business: low risk credit scoring. 

Mimicrv. The QM svstem gradually widens the 
windows. The goal is to attract/select as many 
partners as possible. 

Biology: brain windows for feeding. 
Business: help desk for marketing. 

Context Switching. Sudden change in QM be­
haviour, based on the past history, recalled expe-
rience and on environmental conditions. 

Biology: brain windows after mating. 
Business: EDI-switch for adaptive purchasing. 

Aggression. One subsvstem tends to take con-
trol of the whole QM system. 

Biology: tirne coding in insect chirping. 
Business: competition networks. 

Alternation. Two [or several] subsystems are 
taking control of the QM system in alternation. 
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Biology: tirne coding in insects; leader/follovver 
chirping. 

Business: travelling salesman, genetic program-
ming. 
Šolo. One subsystem is in control of the whole 
QM system. 

Biology: tirne coding in insects; leader chirping. 
Business: winner takes aH. 

Transmitting. Exchange of quantized messages 
among subsystems. 

Biology: quantal transmitter release on neural 
terminals. 

Business: standard message packages. 
The quantal processes involve applying the 

experience as represented in past similar situa-
tions, to analyse and solve current problems. I 
consider the quantal processes to be an impor-
tant factor in reasoning and in the control of the 
behaviour and of the society. 

4 From the Quantum Mind of 
the Femme Fatale to the 
Intelligent Multi-Agent 
Business System 

The hierarchical model presents the basis to build 
a sensory-processing goal-directed system. The 
multilevel, multivariable hierarchical feedback sy-
stem explains many features of living systems, in-
cluding: goal-seeking as the natural form of be­
haviour, sensory processing hierarchy, pattern re-
cognition, internal world representation and the 
functions found only in higher animals and man. 

Sensory data enter this hierarchy at the bottom 
and are filtered through a series of sensory- pro­
cessing and pattern-recognition modules arranged 
in a hierarchical structure that runs parallel to 
the behaviour-generating hierarchy. Each level of 
this sensorv-processing hierarchy processes the in-
coming senšory data stream, extracting features, 
recognising patterns, and applying various types 
of filters to the sensory data. Information relevant 
to the control decision being made at each level is 
extracted and sent to the appropriate behaviour 
generating modules. The partially processed sen-
sory data that remains is then passed to the next 
higher level for further processing. 

In figure 2 I present the multi-level Quantum 
Mind model of the Femme Fatale firefly. I explain 

our experimental findings [11,12] in the following 
way: Each level of behaviour generating hierar-
chy receives the command C from a higher level. 
It also receives the feedback F from the enviro-
nment. 

The output from the operator H selects one of 
the possible subcommands on the next lower level. 

For example, the level "SURVIVAL" selects the 
subcommand for the next lower level from the set 
C2(C2,C2",C2"')- Which subcommand is selec­
ted depends on the feedback vector F3. In other 
words, C2 = H2(F3). Similarly the level "RE­
PRODUCTION" selects the subcommand for the 
next lower level: C\ = H2{Fi). 

When the hormone level and blood chemistry 
indicate the proper tirne, and the air tempera­
ture is right, the command C2 is selected. When 
C*2 = C'2 indicates reproduction, and F2 indicates 
that external stimuli are present in the form of 
light flashes, and the male is in the territory, the 
command C\ is selected. When C\ = C[ indica­
tes "PATROLLING FLASHING", motor control, 
internal oscillator, and the lantern, execute this 
command. 

Both commands and feedback are coded in a 
slow scale [chemical hormonal coding] and in a 
fast scale [pulse/time coding]. Pulse/time coding 
is of special interest for behavioural patterns that 
are executed as tirne sequences of events. The 
quantal Brain Windows are used in such sequen-
ces, to screen, check, or recognise the information. 

Similar QM concept could be used to build in­
telligent multi-agent business systems. 

5 Conclusion 

The presence of the quantal processes in experi-
mental data is not directly visible. To recognise 
the quantal process, I have developed a semiau-
tomated knowledge mining procedure. Using this 
procedure I was able to recognise and to analyse 
three quantal processes. The quantizing is present 
in the following way. 

a) The transmitter release, is built up from m.e.p.p. 
quanta, in the range of 0.2 to 0.8 mV; quantizing 
enhances the small generalisation. 

b) The Brain-Windows, are built up from message 
quanta of 0.1 to 1 s; observed in communication 
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Figure 2: The Quantum Mind model of the Femme Fatale. The control hierarchv for the female firefly. 

and behaviour; quantizing enhances the large ge-
neralisation, resulting from the collective action 
of a large population of neurones. 

c) Evoked potentials; experimental data reveal the 
presence of quantal processes; their origin and 
function is not yet clear. 

I have identified several elementary compo-
nents, that are relevant for biological quantal pro­
cesses: the Optimal Quantizing; the Quantal Ge-
neralisation; the Quantum Brain Windows; the 
Message Quantum; the Context. As these com-
ponents operate in a concert, their functions over-
lap. 

The components operate within their quanti-
zing, clustering, generalisation spaces. The spaces 
cover local similarities, as well as global features. 
Results: Identified elementary quantal compo­
nents: The OPTIMAL QUANTIZING extracts 
the most meaningful information. THE QUAN-
TAL GENERALISATION merges the quantal re-
presentation of inputs with the stable converging. 
The QUANTUM BRAIN WINDOWS define the 
communication language of the intelligent system. 
The Receive windows are related to the legal, 
acceptable stimuli or question messages. The 
Send windows are related to the legal, accepta­
ble responses or answer messages. Both windows 
are adaptive and correlated with the behaviour. 

The MESSAGE QUANTUM is the smallest in­
formation item used in coding. It is related to 
the primary biological oscillator. The CONTEXT 
depends on the situation and on the conditions, 
such as the hormone level, blood chemistry, body 
and air temperature. 

The neural and behavioural quantal processes 
have been discovered more than twenty [1, 3, 4, 
6, 8, 9,], ten [10, 11, 12] and one [19] year ago. 
These experimentally proven quantal pro­
cesses support important functions in rea-
soning, behaviour, emotion, mind. 

6 Discussion 

The quantal transmitter release has been first ob­
served at myneural junctions of frog muscle. It 
has been observed also on mammalian muscle and 
has been proven on a number of other preparati-
ons. 

The quantal communication and brain windows 
have been first observed on insects: katydids and 
fireflies. These are quantal processes in tirne axis. 

The tirne axis is a perfect information carrier. 
Time intervals are noise and drift immune, and 
they cannot be attenuated or amplified. The be­
haviour of living systems is naturally program-
med into the time axis as a sequence of events. 
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The sequence is controlled by neural oscillators 
or pacemakers. The pacemakers are sensitive to 
sensory inputs which could turn them on or off. 

In the čase of fireflies, the first half-period of the 
oscillator is the shortest one: it is approximately 
0.25 sec. This is one-eight of the period of the 
nonmodulated primary waveform (Ti/8). As this 
is the smallest information item used in coding, 
I call it the Message Quantum, q: q = Tl/K (in 
the čase of the firefly, K=8) 

I use the Message Quantum q to measure the 
windows: For q < Rl < 3q, the window width is 
2q. For 5q < R2 < 9g, the window width is iq, 
and so forth. 

The evoked potentials from human brain are 
used for both, the brain research and the clinical 
diagnoses. 

Brainstem Auditory Evoked Potentials (BSA-
EPs) are generated in response to a brief auditory 
stimulus with seven peaks appearing within 10 ms 
following the stimulus in normal subjects. Patho-
logical states resulting from head injury, acoustic 
tumours and multiple scleroses give rise to delays 
in the transmission of electrical signals and con-
sequently the peaks are abnormally located. 

It is believed that the BSAEP latencies pro-
vide necessary and sufficient information to dis-
criminate between normal and pathological sta­
tes. The experiments have shown that the 2nd, 
3rd and the 4th peak latencies are the optimal 
features for classification [2,5]. 

The seven distinct peaks suggest that BSAEP 
is a quantal process. Furthermore, I have noticed 
a similarity, between the recorded BSAEPs wave-
forms and the Brain-Window waveform. Hence I 
follow the Brain-Window concept, to explain the 
human evoked potentials. 

More than twenty years of experience with the 
neural and behavioural Quantal Intelligence tells 
me, that quantizing, clustering, information com-
pression is present in several domains: amplitude, 
time, frequency, fleld, electrical, chemical, hormo-
nal. 
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According to the received view, since the brain is a computational device, "internal re­
presentations" need to figure in any plausible explanation for biological computational 
processing. My aim here is to show that such is not the čase: 'internal distributed 
representations' can be dropped altogether from mechanistic explanations of parallel di­
stributed processing [PDP]. By focusing on the discovery of mechanistic explanations 
for complex systems [sections 2-3], I argue that PDP networks cannot be functionally 
decomposed into component internal distributed representations. I also argue that 'dis­
tributed representations' are not internal representations, but rather constructs [section 
4]-interpretations imposed on the processing. So, if the brain is a PDP-style computer, 
then there are reasons for thinking that internal representations are not doing the work 
they are commonly thought to do. 

1 Introduction 
Many disciplines are engaged in the naturalistic 
attempt to explain and model cognition. Notwi-
thstanding the interdisciplinary character of the 
undertaking, nearly every theory of cognitive pro­
cessing is built upon the assumption that the 
brain is a computational device - a computer. 
And since "computation presupposes a medium 
of computation" (Fodor, 1975, p. 27), it follows 
that the brain is a representational device - "a 
device that has states or contains within it enti-
ties that are representations" (Von Eckardt, 1993, 
p. 143). Thus, about this much at least, almost 
evervone agrees: "at the heart of a scientific un-
derstanding of cognition lies one crucial construct, 
the notion of internal representation" (Clark & 
Toribio, 1994,401).1 

There are other reasons for thinking that internal re­
presentations need to figure in explanations of cognititive 
processing. For example, it is assumed that while the beha-
vior of reactive, stimulus-driven creatures need not require 
conceptualization and internal representation, intentional 
behavior surely does: action management, desire manage-

Still, what one takes to be an internal re­
presentation depends on whether one is a clas-
sicist or a connectionist. For classicists (e.g., 
Newell & Simon,1972; Fodor, 1987; Fodor & 
Pylyshyn, 1988; Cummins, 1992), internal re­
presentations are the explicitly symbolic, quasi-
linguistic structures that mediate the combinato-
rial, rule-following production of a system's ou-
tput. For connectionists (e.g., Rumelhart et al., 
1986; Churchland & Sejnowski, 1989; Elman, 
1992), internal representations - called 'distribu­
ted representations' in networks implementing pa­
rallel distributed processing [PDP] - are distribu­
ted patterns of activation among the processing 
units, patterns that while not explicit symbolic 
structures, nevertheless figure causally in the pro-' 
duction of a network's output. 

Herein lies the problem: The raison d'etre of 
neuroscience is to determine how brains work, 
so naturalistic explanations of cognitive proces-

ment, planning, and a host of other cognitive activities can­
not occur in the absence of internal representations (Kirsh, 
1991). 

mailto:rob@twinearth.wustl.edu
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complex localization is possible, then the system 
exhibits what they call first ord.tr interaction. To 
complete the mechanistic explanation, like before, 
one must continue the functional analysis to the 
subcomponents. This tirne, however, particular 
attention must be paid to the interactions among 
components. 

If neither direct nor complex localization is pos­
sible, then, STEP 6, determine whether the phe-
nomenon or problem under study needs to be re-
conceptualized. For example, findings from other 
disciplines may plače unanticipated constraints on 
the problem, constraints that force one to recon-
stitute the phenomenon and begin again. 

If the phenomena under study doesn't warrant 
reconceptualization, then because decomposable 
systems are modularly organized, if a system isn't 
modular, it can't be decomposed (p. 24). Moreo-
ver, since localization entails a "realistic commit-
ment" to the f unctions isolated in the task decom­
position, if appropriate techniques fail to show 
•tvhich components are performing these functi-
ons, then the functions can't be localized (Bech-
tel k, Richardson, 1993, p. 25). If decomposition 
and localization are not possible [and assuming 
that the problem has been conceptualized correc-
tly], then the system is fully integrated and non-
decomposable. END. [See Fig. 1.] 

3 Types of complex systems 

Bechtel & Richardson (1993) cite many examples 
of the heuristically driven mechanistic discovery 
program in action. In so doing, they reveal a host 
of ways complex systems can be organized, from 
the fully decomposable to the non-decomposable. 
But where along that continuum should connecti-
onists systems be placed? [See Fig. 2.] Iftherea-
son connectionist systems do what they do lies not 
in the components but rather in the way the com­
ponents are organized, then decomposition should 
not be possible. Historically, however, forgoing 
decomposability required abandoning the search 
for a mechanistic explanation (Bechtel & Richard­
son, 1993, p. 199). Thus, is it possible for connec-
tionists to forgo decomposition and yet provide a 
mechanistic explanation of PDP? If so, then con­
nectionist systems represent an alternative way 
of elaborating a mechanistic program (Bechtel & 
Richardson, 1993, p. 199). But if connectionist 

systems are not decomposable, then how can one 
localize specific systemic functions to discrete di-
stributed representations? 

3.1 Are P D P networks decomposable? 

In the structural sense, of course PDP systems 
are decomposable: they decompose into layers, 
processing units, and connections. The question, 
however, whether we can functionally decompose 
such systems, and if so, can we then localize any 
of the network's functions to any of the network's 
'distributed representations', components, or col-
lections of components? My plan here is to first 
sketch-out how PDP works. I shall then apply the 
above decision procedure to a PDP network. In 
the end, I argue, PDP systems are not decompo­
sable in the requisite sense, though it is possible 
to give a mechanistic explanation for how they do 
what they do. First things first. 

3.1.1 How does P D P work? 

There are several types of connectionist archi-
tectures, not ali of which implement PDP. And 
the variety of PDP architectures preclude my go-
ing beyond identifying a few general features of 
PDP in a rather simple, though idealized, feed-
forward, three-layered network. Although the 
processing in such nets can [sometimes] be de-
scribed in terms other than PDP, say, 'localist re-
presentation', only PDP produces paradigmatic 
distributed representations. Or so it is claimed. 

PDP - or 'distributed representation' in the 
processing sense - occurs in a task-specific ne-
twork of interconnected units, whose arrange-
ment, following training, make the network ca-
pable of performing a complex task, yet without 
the need for mediating symbols or even explicit 
rules. Above ali else, nonsijmbolic [analog] com-
putation and distributed encodings are what dis-
tinguish PDP from every type of classicist repre-
sentational processing. For example [see Figure 
3a], after receiving an input pattern, each input 
unit computes an activation value as output, say, 
some number within a continuous range from -1 
to 1. This activation value is then transmitted 
via connections - called weights, which vary in 
strength from unit to unit - to each of the units 
in the succeeding hidden unit layer. Each of the 
hidden units then computes its activation value, 

http://ord.tr
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Decision procedure for discovering a mechanistic explanation 

Ycs 
(STEP 6) (STEP 5) 

Isreconceptual-
lzation needed? 

S T E P I 

Begin 

! 

ldentify the phenomena to be studied 

i 
Segment from the environment the system 
presumed to be responsiblefor producing 
the phenomena 

jlstliesy5tem,the 
" ilocusofcontrol? 

Yes 

4 

I (I) decompose the syxtem into its subsystems;W 
(2) decompose the activities o/the system I 

into subtasks I 

S T E P 4 

I Localiz 
eachsp 
Localize ihe component(s) responsiblefor 
each specific task 

Is Wnplex Jocal-
ization possibte? 

Isdlrectlocaiii-:! 
ation possible? * 

The syslcm is a non-
decomposablc one J First orderinteraction I First order indcpendcnct 

Fig. 1: Two iurlher points are worth noting. Rrst, collateral theories and other constraints play a 
key pole in narrowing the problem space. Second, conslraints discovered at a lovver-level may 
force one back to a previous step, or even to the beginning. 

which, typically, is determined by summing over 
both (a) the products of the activation values of 
each unit to which the target is connected and 
(b) the uieights associated with each such unit [see 
Figure 3b]. The activation value of each hidden 
unit is then similarly propagated via its connecti-
ons to each of the units in the output layer, which 
then compute their activation values. 

Now comes the interesting stuff. Suppose the 
system depicted in Fig. 3a is a rather ordinary 
- but successful - pattern recognition network [a 
task for which PDP networks are particularly well 
suited]. The 'objects' that the network recognizes 
fall are tokens of the following three motorcycle 
types: Harley, Yamaha, and Honda. Of course, 
the network isn't really able to recognize tokens 
of any of these motorcycles. Rather, what it can 
do, let us suppose, is associate a given input ar-
ray with a 'name' - the target output-that corre-
sponds to one of these three types of motorcycles: 
Harley 1, 1, 1, Yamaha -1, 0, -1, and Honda 1, -1, 
0. Here is how it learns: During training, the ne-
twork is presented again and again [for n number 
of epochs] with a distorted set of the prototypi-

cal input arrays that correspond to each type of 
motorcycle. Then, after each epoch, the random 
initial setting of the system's weights is gradually 
adjusted via a learning algorithm: some connec-
tions are increased, others are decreased. To test 
the network following training, the system is pre­
sented [for the first tirne] with the prototypical 
input arravs that correspond to each of the three 
motorcycles. If the test is successful, then the 
network's output pattern will correspond [within 
some accepted range] to the target outputs. 

Note that in PDP, the encodings necessary to 
complete the task are extended over many pro-
cessing units. That is, each item of interest "is 
represented by a pattern of activity distributed 
over many computing elements, and each com-
puting element is involved in representing many 
different entities" (Hinton et al., 1986, p. 77). As 
such, each unit can have a value of 1 for more than 
one item of interest, and different items of inte­
rest can be stored as patterns of activity over the 
same set of units (van Gelder, 1991, p. 43). Thus, 
a distributed, subsymbolic manner of processing 
and storing information is - to paraphrase Clark 
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Types of complex systems 

D-systems 

(Decomposable systems) 
X is a D-system iff a single 
component [or collection of 
components] is held to be 
responsible for a specific 
behavior of the whole 
system 

If system behavior is a 
linear or aggregative 
function of component 
behavior, and the 
relevant systemic 
properties are not even 
partially determined by 
the organizalion of the 
system, then the system 
is an aggregative one. 

(Coniposite systems) 
X is a C-system iff 
the behavior of the 
system is at least 
partly due to the 
organizalion of its 
components 

(Non-Decomposable sjstems) 
X is a Non-D system iff the 
behavior of systcm 
CANNOT reasonably be 
explained in terms of the 
parts, for either (1) the 
activities of the parts are 
different in kind from those 
of the vvhole; or (2) the parts 
are so simple that thcy do 
not seem individually to 
contribute anything of 
interest to understanding the 
behavior of the whole 

X 

the function of the 
parts is inlrinsically 
determined, then 
while the organization 
of the system is 
eritical for the 
funetioning of the 
system as a whole, 
systemic organization 
provides only 
secondary constraints 
on the funetioning of 
constituents. 

I f systemic organization 
is eritical to 
determining constituent 
funetions (sueh as 
mutual correction 
among subsystems via 
feedback), then 
constituent funetioning 
is not intrinsicallv 
determined, and 
systemic organization 
provides primary 
constraints on 

Vgonstituent functioningv 

? 

Fig. 2 

(1989) - a very natural, fast, and relatively cheap 
way of achieving what classicist or localist proces­
sing does, but with far fewer processing units.2 

3.1.2 Is a P D P network functionally 
decomposable? 

While a conneetionist approach represents a ra-
dical alternative to rule-governed, explicitly sym-
bolic computational processing, it isn't obvious 
whether the approach provides an alternative 
to the decomposition-dependent mechanistic pro­
gram. To resolve this issue, and with the above 
pattern-recognition network in mind, let us try to 
complete the decision procedure depieted in Fig. 
1. 

STEP 1 Identify the phenomena to be studied. 
ANSWER: Pattern recognition. 

STEP 2 Segment from the environment the sy-
stem presumed to be responsible for producing the 

2For more on the arehi tee ture of P D P , see Bechtel &; 
Abrahamsen (1991), Clark (1989), or Rumelha r t et a l , 
(1986); cf. Fodor &c Pylyshyn (1988) and Pinker & Prince 
(1988). 

phenomena. ANSWER: OK, there's the network. 
QUESTION: Is the system the locus of control? 
ANSWER: Yes. 

STEP 3 [Part 1] Decompose the system into 
its subsystems. ANSWER: The network has three 
layers, each composed of a small number of pro­
cessing units: the input and output layers each 
have three units; the hidden layer has five units. 
Each unit in the lower layer is connected to each 
unit in the succeeding layer. [Part 2]: Decompose 
the activities of the system into subtasks. AN-
SWER: There are three tasks: the Harley associ-
ation task, the Yamaha association task, and the 
Honda association task. 

So far so good. Now the problems begin. 
STEP 4 Localize the component(s) responsible 

for each specific task. QUESTION: Is direct lo-
calization possible? ANSWER: No. The activity 
in no one layer is responsible for any of the tasks 
that we want to explain. Nor is it the čase that 
any one processing unit is responsible. 

STEP 5 QUESTION: Is complez localization 
possible? ANSWER: No, for the same reasons as 
above. 
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Again, theactivation values for this nctwork vary over a oontinuousrange 
from-1 to 1. To detennine Ihe activation valueof A, let us suppose that 
A is the target only of units B, C, and D from the hidden unit layer. HThe 
input to unit A is determined by multiplying the activation of B, C, and D 
by the weights connecting them to unit A, and then adding those values; 
this yields a net input to unit A of .24. The activation of A may then be 
determined by a variety of formulas. Some take the prior activation of A 
into account; some do not" (Bechtel & Richardson, 1993, p. 212). 

of a complex system, rather than by having to po-
sit mediating internal representations. But since 
as yet I have made no reference to distributed re­
presentations, lest I be accused of being too hasty, 
let's consider whether I have omitted a necessary 
part of the explanatory story. 

3.2 Describing P D P vs. Explaining P D P 

Can internal representations figure in mechanistic 
explanations? Of course. Indeed, such references 
would be required if the system in question were a 
classicist one: digital computation is necessarily 
dependent on internal symbolic representations. 
But connectionist networks are not classicist sy-
stems. Hence, why expect that internal represen­
tations should figure in explanations of PDP [or 
analog] computation? There are two reasons. 

First, forgoing decomposability has historically 
entailed abandoning the mechanistic program. If 
distributed representations are full-blooded in­
ternal representations, then it is reasonable to 
treat distributed patterns of activity as spatially 
distributed components of the system, compo-

STEP 6 QUESTION: Is reconceptualization 
[of the phenomenon under studvj warranted? AN-
SWER: No, for the behavior we want to explain 
does indeed exist. Moreover, there is no question 
that the above network is indeed the system re-
sponsible for producing the phenomena. 

Because the components of such PDP networks 
perform no recognizable subtasks (Bechtel & Ri­
chardson, 1993, p. 222), nothing less than the 
dynamic properties of the entire system are su-
fficient to explain the phenomena under study. 
As such, PDP systems are not decomposable in 
the requisite sense. Does it follow, therefore, that 
one cannot provide a mechanistic explanation for 
how such systems do what they do? Of course 
not. Indeed, I have already done so [abridged, 
granted, but an explanation nevertheless]. Thus, 
PDP-style, nondecomposable complex system do 
represent an alternative to the traditional mecha­
nistic program. 

Given the biological plausibility of nonsymbolic 
[analog] processing, it is a virtue of PDP that it 
permits certain types of cognitive behavior to be 
mechanisticly explained as an emergent propertv 



606 Informatica 19 (1995) 599-613 R.S. Stufflebeam 

nents that can be identified with specific subtasks. 
Thus, both decomposability and the mechanistic 
program can be preserved. 

But PDP networks aren't functionally decom­
posable. Indeed, "connectionist models explain 
performance without explicitly or necessarily de-
composing that performance into intelligible sub­
tasks" (Bechtel & Richardson, 1993, p. 221). 
Moreover, distributed patterns of activation are 
not components of the system; rather, they 
are an emergent byproduct of the network's 
representation-in, representation-out processing.3 

In the network described above, for example, each 
prototypical input pattern and each target ou-
tput pattern is a 'name', of sorts, for each of the 
three types of motorcycles. Are such patterns 
arbitrary? Yes. Do they stand for something? 
Yes. Does biological processing require such con-
structs? Of course not. The point, however, is 
that while systemic inputs and outputs are repre-
sentations, the processing itself, however, isn't. 
Since I have already shown that the mechanistic 
program need not be abandoned if decomposa-
bility isn't possible, it simply isn't necessary to 
appeal to internal representations when explain-
ing PDP systems - save, of course, the inputs 
and the outputs. Why should connectionists find 
this bridling? They already treat PDP as a fun-
damentally different sort of representation pro-
ducing processing. What they also need to re-
cognize is that PDP is so different, it need not 
be explained in the internal representation-laden 
manner demended for classicist processing. Not 
everything that goes on in the production of re­
presentations need be representations themselves. 
For it to be otherwise, representation-talk would 
loose its explanatory efficacy. 

Second, there is no gainsaying that distributed 
patterns of activation among the processing units 
can be treated as if they are components. As such, 
because one can construe each such 'component' 
as fulfllling some part of the network's overall pat­
tern recognition task, one can also describe the 
system's behavior in a representation-laden way. 

The problem, however, is that descriptions are 
not explanations. Explanations, recall, require a 

3Though the input and output patterns are representa­
tions, they aren't what connectionists are referring to by 
the term 'distributed representations'. I shall have more 
to say about this presently. 

realistic commitment to the entities being posi-
ted. For the tirne being, ignore my having shown 
that distributed representations are not compo­
nents of PDP systems [which, by the way, makes 
them poor candidates for localizing systemic func-
tions]. Are distributed representations appropri-
ate objects of a realist stance? If so, then would be 
at least some reason for appealing to internal re­
presentations in explanations of PDP. Don't hold 
your breath. 

4 Are distributed 
representations really 
representations? 

If so, then references to internal representations 
would at least be justified [though not necessary] 
when explaining a given PDP network's behavior. 
If not, then independent of whether a connec­
tionist system is decomposable, use of internal 
representation-talk for explaining PDP would be 
umvarranted. 

Most connectionists are revisionists; i.e., they 
treat distributed patterns of activation among the 
processing units as a fundamentally different sort 
of representational entity, though representations 
nevertheless. But what is it about distributed 
patterns of activation that compels connectioni­
sts to call them representations? 

4.1 Is a distributed representation 
simply any state of PDP? 

Is what makes a distributed pattern of activation 
a distributed representation simply the fact that 
it is a state or a product of PDP? Clearly some 
connectionists think so, though few are quite so 
explicit about it as Hatfield (1991): "What ma­
kes a state a representation is the fact that it is a 
state of a svstem whose function is to generate re­
presentations" (also see pp. 171-173). Since the 
function of PDP netvrorks is to produce repre­
sentations - via the association between content-
bearing inputs and target outputs - any state of a 
PDP network would be a representation. Thus, it 
would seem, to be a 'distributed representation' is 
simply to be any state of a network implementing 
PDP - parallel distributed processing. 

For the following reasons, however, distributed 
representations are not simply states of a network 
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implementing PDP. 
First, PDP does not produce ali and only dis­

tributed representations. For example, 'NETtalk' 
is a PDP network that transforms text input into 
phonemes (Churchland & Sejnowski, 1989). Even 
if one wanted to say that phonemes are represen­
tations, do phonemes really count among the sort 
of things connectionists [or anyone else] want to 
call 'distributed representations'? No. 

Second, if the phonemic output of NETtalk co-
unts as a representation, then not every represen­
tation that may be ascribed to [or located in] a 
PDP network is a distributed representation. 

Third, if simply being a state of PDP made 
that state a distributed representation, then re­
presentations would be "so unconstrained as to 
be without content" (Hatfield, 1991, p. 167). As 
such, representation-talk would loose its explana-
tory efficacy. Thus, if simply being a state of 
PDP made that state a distributed representa­
tion, then the meaning of 'a distributed represen­
tation' would be both trivial and uninteresting. 
But given how often connectionists appeal to "in-
ternal representations" (Elman, 1992, p. 138) in 
their 'explanations' of connectionist systems, it 
cannot be assumed that connectionists are using 
'distributed representations' in a trivial fashion. 

But if connectionist are not using the term 'dis­
tributed representations' in a trivial fashion, then 
there has to be something about distributed pat-
terns of activation that warrants their inclusion 
in the larger class of things we call representa­
tions. Thus, again, what is it about distributed 
patterns of activation that compels connectionists 
to call them representations? 

4.2 Representational pluralism 

If one feels that it is for connectionists to decide 
what it is that makes a distributed pattern of ac­
tivation a representation, then one will probably 
agree with the follovving defense of representatio­
nal pluralism: The semantics of the term 'repre­
sentation' varies considerably from theory to the-
ory. Thus, it would be "naive" to expect members 
of competing theoretic camps to "use of the same 
notion of representation," and quixotic to delve 
into "the nature of representation" independent of 
any particular theory (Cummins, 1989, pp. 12-13; 
Stich k, Warfield, 1994). Hence, if one's ontology 
is fixed by one's theorv, and connectionism enta-
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ils that there are distributed representations in a 
PDP network - or, if connectionists wish to sti-
pulate that a distributed representation is simply 
any state of PDP - then, at least for connectioni­
sts, there are distributed representations. Simply 
put, so the argument goes, it is for connectionists 
to decide what they want to call a representation. 

I remain unconvinced, particularly since I'm a 
connectionist. First, it doesn't follow that there 
ought to be multiple conceptions of representa­
tion simply because there are. Indeed, I would 
argue that transdisciplinary discourse about co-
gnition is obstructed by the multiple conceptions 
of representation. Second, from stipulative prac-
tices or entailments, it does not follow that dis­
tributed representations actually exist [remember 
phlogiston?], much less that the concept of inter-
nal distributed representations is coherent. Last, 
the above defense hardly avoids the charge that 
connectionists are using the term 'a distributed 
representation' in a trivial fashion. 

Thus, if distributed representations are indeed 
representations, they must meet the general iden-
tity conditions common to ali representations, di­
stributed or otherwise. "What are these conditi­
ons?" I'm glad you asked. 

4.3 What makes a representation a 
representation? 

Except where the term 'representation' has been 
utterly trivialized, it means either (1) the process 
of representing - to stand for, to symbolize, or 
to depict some other thing [or event]; or (2) the 
thing [or state] that stands for [symbolizes, or 
depicts] some other thing [or event]. Regardless of 
the obviousness of this process-thing distinction, 
writers who use the term 'representation' often 
not only fail to make explicit which sense they 
have in mind, they frequently employ both senses 
in the same context. 

A related but far more serious confusion obtains 
when one treats the production of representations 
as itself a representation. For example, assume 
there exists a finite state grammar G for a finite 
state language L. Because there exists an L such 
that G stands for L and (G ^ L), according to 
the above definition, G would be a representation 
(Chomskv, 1957). Strictly speaking, hovvever, G 
stands for the mechanism [or "algorithm"] that 
produces L, not L itself (cf. George, 1989; Pea-
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cocke, 1989). But such a process is exactly what 
G in fact is, so (G=L). As such, there is also a 
sense in which G isn't a representation. This con-
flict arises because of the ambiguities attending 
the above process sense, which can mean either (a) 
the state of standing for something else, or (b) the 
mechanism by which representations are produced. 
Although both "the state" and "the mechanism" 
are things that may legitimately be called 'repre­
sentation', only the former nontrivially captures 
the 'thing' sense of a representation.4 

To avoid the ambiguities attending the unconsi-
dered use of such terms as 'representation', 'men-
tal representation', 'distributed representation', 
and the like, unless explicitly stated otherwise, I 
construe 'representation' only as a thing [or state} 
that stands for [symbolizes, or depicts] some other 
thing. To disambiguate the process sense, I use 'is 
in a stands-for relation' to capture what is ordina-
rily meant by the term 'represents'. And I reserve 
the term 'process' for a mechanism by which re­
presentations are produced. 

4.3.1 Individuating representations 

'R' below not only refiects the above distinctions, 
it seems to capture in a general, pan-theoretic 
way, what is necessary and sufficient for some­
thing to be a representation: R = X is a repre­
sentation if and only if 

1. there exists a Fsuch that X stands for Y;5 

2. Xis not a representation-producing process; and 

3. (X ž Y). 

The following two reasons make R a compelling 
principle for the individuation of representations. 

First, representations are posited in many theo-
ries, not just those pertaining to cognitive proces-
sing. For example, the Mona Lisa, a mental image 
of the Mona Lisa, and the concept 'Mona Lisa' 

The obviousness of the process-thing distinction is 
apparently lost on some connectionists (e.g., see Zhang & 
Norman, 1994, 87-94). As I shall show, this distinction 
bears directly on whether there even are any distributed 
representations. 

5Don't read too much into 'existence', for it does not 
follow that pictures of, say, unicorns, couldn't be repre­
sentations. The point, simply, is that for a representation 
to be a representation, it must be about something, and 
that something has to be in some sense, even if only as an 
uninstantiated concept. 

are each, in their respective theories/disciplines, 
a representation.6 More importantly, with R as 
the standard by which to individuate representa­
tions, they would remain so. This would not be 
the čase, however, if- following Fodor (1987) - R 
restricted the things that may be representations 
to only "symbols and mental states." Hence, R 
avoids circumscribing representations too narro-
wly. 

Second, because 'a representation' is not short-
hand for an internal representation, much less a 
mental one (cf. Cummins, 1989; see Sellars, 1980, 
15), according to R, states in or products of non-
cognitive systems could thus be representations.7 

Since PDP networks are not yet themselves cogni­
tive systems, question-begging against connectio­
nists is thus avoided (cf. Bechtel & Richardson, 
1993, p. 214). R also avoids circularity in another 
way; namely - again contra Fodor (1975) - by not 
equating representations with states [or products] 
of an internal symbol system. Given the nonsym-
bolic character of PDP, the status of distributed 
representations could not disinterestedly be eva-
luated by such an obviously prejudicial standard. 
Hence, whereas the classicist, "symbolic entity" 
notion of representation begs the issue at hand, 
my appeal to 'things' and a 'stands-for relation', 
however, does not.8 Simply put, R is neutral not 
just among the kinds of things that can be re­
presentations, it is neutral as to their internal or 
external status as well. Just as important, R is 
neutral as to the processes - vvhether classicist 
or connectionist, natural or artificial, etc. - by 

According to democratic theory, so too would Mona 
herself, if she had been elected to Congress. Admittedlv, it 
would be odd to call her 'a representation'. We wouldn't 
have to, however, because we have a term that denotes 
persons in a stands-for relation; narnely, 'representative'. 

That there are "witless" systems oblivious to the re­
presentations they either manipulate or produce (Hauge-
land, 1991, pp. 69-70) is a fact that in no way effects 
the ontic status of the representations themselves: If so­
mething meets R's conditions, then regardless of the co­
gnitive status of the system that produced it, regardless 
of vvhether anything is aware of it, and regardless of vvhe­
ther something can be said to have it, it is a legitimate 
representation. 

"Hatfield (1988, 1991), Haugeland (1991), and Dretske 
(1988) each advocate similar general conceptions, concepti-
ons also predicated on the classical - i.e., historical - notion 
of 'a representation' as an entity in a 'stands-for relation'. 
Nevertheless, there are significant difFerences among our 
accounts. 
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which representations are produced.9 

Stili, because "almost anything may stand for 
almost anything else"10 - and hence satisfy R's 
conditions - it follows that almost anything can 
be a representation. For example [see Figure 4], 
assume that the shaded objects are real rocks, ar-
ranged on the ground in such a way to depict 
the location of my apartment building within the 
complex in which I live. If we stood over this 
arrangement of rocks, I would indicate my apart­
ment building by saying "I live here," and then 
point to the ročk indicated by the arrow. Because 
each of the rocks stands for a particular building 
in my apartment complex, according to R, each 
ročk is a representation, as is the arrangement of 
rocks itself.11 

The moral, therefore, is that anything meeting 
R's theory-neutral identity conditions would be a 
legitimate representation. The question, however, 
is whether distributed patterns of activation can 
do so. 

My appeal to neutrality here is a paraphrase of a claim 
Haugeland (1991) makes in his analysis of representational 
schema. 

10Goodman (1976). Also see Putnam (1988, appendix). 
Despite Fodor's claims to the contrary, rocks can be 

representations (see Fodor, 1987, p. xi). But rocks are not 
'products' of a representation-producing process, like, say, 
photos or mental images. For this reason, 'thing' is more 
preferable than 'product' to identify the kinds of entities 
that can be representations. 
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4.4 Are distributed patterns of 
activation representations? 

The plače to look for distributed representati­
ons isn't among the output, the input, or gene-
rally in the network, but rather in the processing-
specifically, "in the patterns of activity genera-
ted by the system of interconnected units" (Chur-
chland & Sejnowski, 1989, p. 236).12 Are such 
patterns really representations? Yes, or at least 
given the right sort of interpretation, they can 
be. But what they are not, however, are internal 
representations. Indeed, they can't be internal 
representations since PDP is necessarily nonsym-
bolic [analog] computation. Here's why. 

4.4.1 Distributed patterns of activity are 
not products of PDP, they are 
P D P 

To claim otherwise is to collapse the distinction 
between the process [mechanism] of distributed re­
presentation - PDP - and the products of PDP. 
This common confusion manifests itself in one of 
three ways: (1) when an iconic representation of 
vectored activation patterns among the hidden 
units is treated as though it were itself a distri­
buted representation; (2) when one explicitly col-
lapses the process-product distinction;13 and (3) 
when one treats an instance of processing as tho­
ugh it were a 'thing' produced by the processing. 
Of the three ways one can confuse the process of 
distributed representation with its products, from 
an ontological standpoint, the third is the most 
serious, for it utterly trivializes what it means to 
be a representation. 

For example, consider the following account of 
distributed representations in the brain: 

12Also see Haugeland (1991, p. 84); cf. Schreter (1994, 
95-98). 

13For example: 

The basic principle of distributed representations is 
that the representational system of a distributed cogni-
tive task can be considered as a set, with some members 
internal and some external. Internal representations 
are in the mind, as propositions, productions, schemas, 
mental images, connectionist netmorks, or other forms. 
External representations are in the world, as physical 
symbols . . . or as external rules, constraints, or re-
lations embedded in physical configurations. (Zhang & 
Norman, 1994; my emphasis). 
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The sensory surface . . . of the brain can 
be seen to contain 'representations' of stimula-
tion from the environment. These representa­
tions are almost always distributed. For exam-
ple, one particular 'rod' in the eye's retina can 
be activated [by] endlessly many light patterns 
falling on the retina. . . . This can be compa-
red to, say, wanting to represent aby the vector 
[1,1,1,0,0,0,0,0], b by the vector [0,1,1,1,0,0,0,0] 
. . . etc. (Schreter, 1994, 95) 

To make the confusion perspicuous, let me ide-
alize the above account: Imagine vourself being 
scanned by positron emission tomography [PET] 
while your visual system processes a rather ordi-
nary visual stimulus, say, a stop sign. Let us coun-
terfactually assume that PET imaging techniques 
are so advanced, such that while the visual stimu­
lus is processed, the PET researchers can identify: 
(a) each of the millions of discrete rods, cones, re-
tinal ganglion cells, and cortical cells that are ac­
tivated; and (b) the connection strengths between 
each activated neuron [which, roughly, would be 
a function of a neuron's firing frequency and the 
amount plus type of neurotransmitter released]. 
May we then point to this superbly refined neu-
ronal activation pattern and say 'Lo, an internal 
representation' ? No, for such patterns of activa­
tion are not 'things' produced by the processing, 
they are the processing. This also applies to acti­
vation patterns among the hidden units, mutatis 
mutandis. As such, distributed patterns of acti­
vation fail to meet R's conditions. Strictly spea-
king, therefore, distributed patterns of activation 
are not internal representations. 

But may one point to the above neuronal ac­
tivation pattern and say 'Lo, a representation' ? 
Yes; the same holds for activation patterns among 
the hidden units. This is so because anything can 
be treated as if it were a representation. Indeed, 
doing so toward hidden unit level activations has 
been one way connectionists have been able to 
conceptualize PDP dynamical processing. Here's 
the catch: there is a big difference conceptuali-
zing and providing an explanation. And although 
both real and as-if representations can meet R's 
conditions, there is a big difference between an 
as-if representation and a real one. Since ali as-if 
representations are constructs [such as the above 
rocks, for instance], no as-if representation is ever 
a necessary component to a mechanistic explana-

tion if the mechanism - process - being explained 
doesn't trafRc in internal content-bearing entities. 

Here's the moral: given the right sort of inter-
pretation, distributed patterns of activation, like 
anything else, can be representations. Yet since 
it's the interpretational process that makes them 
representations, calling them 'internal represen­
tations' only compounds the confusion. Thus, 
again, distributed patterns of activation are not 
'things' produced by the processing, they are the 
processing. As such, even in R's generous sense, 
they are not internal representations. But if con­
nectionists are using representation-talk in a non-
trivial fashion, and 'internal distributed represen­
tations' are needed for explanations of PDP, then 
distributed patterns of activation ought to be in­
ternal representations. Such is not the čase: 'di­
stributed representa tions' are constructs - inter-
pretations imposed on the processing - they are 
not internal products of the processing. While 
such constructs are useful at the descriptive le­
vel, at the explanatory level, however, they are 
not needed: recall, PDP networks are not func-
tionally decomposable, for nothing less than the 
entire network figures in the production of their 
task-specific outputs. Therefore, given the very 
weak commitment to internal representations in 
explanations of PDP, appeals to 'internal distri­
buted representations' can be dropped without 
any loss of explanatory power. 

5 Conclusion 

How can connectionists consistently maintain 
that PDP isn't rule-driven, cut-and-paste sym-
bol manipulation [which is what gives PDP its 
biological plausibility] and yet appeal to internal 
distributed representations when explaining a ne-
twork's behavior? There are two ways consistency 
can be assured without sacrificing PDP's biolo­
gical plausibility: revisionism and eliminativism. 
Each solution exacts a priče. 

Most connectionists opt for revisionism - they 
treat PDP as a fundamentally different sort 
of representation-producing processing, and they 
treat distributed representations as a funda-
mentally different sort of content-bearing entity. 
Thus, if what it means to be a representation 
depends on one's theory, and representation and 
processing are "deeply intertwined" in PDP ne-
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tworks (Clark & Toribio, 1994, 403), then each 
token distributed representation could be called 
'a representation', and internal representation-
laden explanations of PDP wouldn't be inconsi-
stent with nonsymbolic processing. While this de-
fense no doubt assures consistency, it does so, as 
I have shown, at the expense of trivializing what 
it means to be a representation. 

The eliminativist solution begins with the reco-
gnition that while it is possible to give a compu-
tational [and hence representation-laden] descrip-
tion of any complex system - PDP networks in-
cluded - descriptions are not explanations. Thus, 
if by ascribing distributed representations to PDP 
networks what connectionists are doing is merely 
treating states of PDP as if they ivere represen­
tations, then their appeals to internal distribu­
ted representations wouldn't be inconsistent with 
non-symbolic processing. But from an ontological 
standpoint - the standpoint that really matters 
when explaining how PDP or any other complex 
system does what it does - there is a big diffe-
rence between treating sornething as if it were a 
representation and sornething actually being a re­
presentation. Since distributed patterns of acti-
vation are not really representations [but rather 
the processing], connectionists can without loss of 
the explanatory power of PDP abandon the prac-
tice of ascribing such 'representations' to PDP ne-
tworks. In fact, they ought to abandon the prac-
tice since PDP networks are not decomposable 
into component distributed representations. As 
such, it makes no sense to localize the network's 
behavior to such "internal representations," not 
only because the cognitive task to be explained is 
an emergent phenomena of a non-decomposable 
complex system, but because distributed repre­
sentations are not internal states of PDP. They 
are constructs, nothing more. 

Thus, the eliminativist solution entails embra-
cing a form of antirepresentationalism. Such is 
the priče to be paid for nontrivially assuring the 
biological plausibility of PDP. Counterintuitive 
though this solution may be, I think it is the 
correct one. Indeed, if (1) representation-talk is 
to have any explanatory efncacy, and (2) the co­
gnitive behavior to be explained is an emergent 
property of a complex, dynamic system, the eli­
minativist solution should be the correct one. I 
hope I have shown why. Therefore, if PDP-style 

explanations generalize to account for biological 
cognitive processing, given that the operative no-
tion of 'representation' at work in neuroscience is 
mere causal covariation, then internal representa­
tions are not doing the work they are commonly 
thought to do. As such, the need for internal re­
presentations in explanations of cognition is - at 
best - minimal. Thus, I feel, much of the in­
ternal representation-talk common in naturalistic 
discourse about cognition can safely can go by the 
board.14 
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We will outline a proofthat consciousness cannot be adequately described as a computa­
tional structure and(or) process. This proof makes use of a well-known, but paradoxical, 
ability of consciousness to reach ascertained knowledge (as opposed to mere belief) in 
some cases. Although such a result rules out "naive reductionism", it does not fully 
settle the reductionism vs dualism debate in favor ofthe latter, but merely leads to some 
kind of iveak dualism. 

1 Introduction 2 Knowledge and belief 

The recent developments in the field of Artifi­
cial Intelligence (Al) have revitalized some phi-
losophical questions about the nature of conscio­
usness and conscious knowledge. Some advocates 
of "strong Al" hold that, in a not too far-away 
future, it will be possible to design and program 
computers which will display ali abilities com-
monly attributed to humans, including conscio­
usness. 

The aim of this paper is to show that this 
strong-AI paradigm leads to a paradox, in rela-
tion to the ability of consciousness to reach ascer­
tained knowledge. 

In Section 2, we recall the fundamental distinc-
tion between knouiledge and belief, and show how 
the ability to make such a distinction is narrowly 
associated to consciousness. 

In Sections 3 and 4, we outline a proof that 
consciousness cannot be adequately accounted for 
as a computational process or structure. 

Such a result could be interpreted as leading 
to dualism. However, in Section 5, we show that 
such an interpretation is not necessarily justified, 
and that our result merely implies what could be 
termed as weak dualism. 

For the sake of brevity, bur argument is me-
rely outlined here; some notions it involves call 
for further developments. 

A familiar property of human consciousness is its 
ability to reach "ascertained knowledge" as oppo­
sed to mere belief. In some cases, a human be-
ing is able to detect that some belief is not me-
rely a belief, but indeed a piece pf knowledge. 
This ability is sometimes termed as "the abilitv to 
produce statements uihich are unassailablv true". 
It may be of interest to keep in mind that such 
ascertained statements are most generally partial, 
approximative, subject to future improvements, 
as exemplified through the developments of mo­
dem science. 

In what follows, the word "knowledge" will 
be used in its strong sense of "ascertained 
knowledge". 

It is important to point out that, in this fra-
mework, a piece of knowledge is not merelu a be­
lief which happens to be true. The knowledge of 
a true statement by a conscious being does not 
involve merely the belief in this true statement; it 
also involves a state of consciousness, within this 
conscious being, which constitutes a valid guaran-
tee that this statement is true. This is the diffe-
rence between true belief and justified true belief, 
i.e. knowledge. 

This ability to discriminate between knowledge 
and mere belief is denied by a philosophical con-
ception - absolute skepticism - which states that 
we are not able to know anything for sure. As a 
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matter of fact, although this ability of knowledge 
is a basic tenet of scientific thought, it is essenti-
ally impossible to derive a proof of this ability, for 
the following reason: any such derivation would 
necessarily rely on previously acquired elements 
of knowledge identified as such, which would in-
deed presuppose what we would attempt to prove, 
leading to circular reasoning. In other words, ab-
solute skepticism is intrinsičalhj irrefutable: wi-
thin the framework of absolute skepticism, it is 
impossible to prove anything at ali. 

In spite of the apparent impossibility to provide 
a satisfactory definition of consciousness, adequa-
tely matching ali that we have in mind when we — 
refer to "being conscious", we may mention at le-
ast an element of such a description, related to the 
ability to reach knowledge: any conscious being, 
whose consciousness is active at some moment, 
is able to knovi something for sure at that mo­
ment: the fact that "there is conscious impression 
there". In other words, having some conscious 
sensation at some moment entails the knowledge ~* 
that, at least, there is that conscious sensation. 
Thus, some minimal ability for knowledge is in-
separably attached to any conscious being. (It is 
fortunate for us humans that we are able to know 
some more than that.) 

However limited it may be, the capacity of 
knowledge that any conscious being possesses is 
a paradoxical property in some sense: it entails a 
strange capacity of self-checking. In the body of 
our knowledge, there are necessarih/ truths which 
are "basic", or "primordial", in the sense that we 
rightfully consider them as self-evident, without 
having any clear idea of how we got to know them. 
Examples of such statements are: our own exi-
stence, the real existence of the world external to 
ourselves, the ability of our senses to provide us 
with some reflection of that external world. 

The paradoxical character of that capacity of 
self-checking, or reflexivity, of the conscious -
mind is not new to philosophy, as evidenced, for 
instance, by the theme of the brain in a vat, an 
improved version of Descartes' malicious genius: 
"What can uiarrant you that you indeed exist, that 
your perceptions of an outside vjorld are not com-
plete fantasies inoculated by some malicious ge­
nius, that you are not in fact a brain in a vat, no-
urished with nerve impulses computed and com-
bined so as to make you falsely believe that you 

are a conscious human being living on some pla­
net Earth, that you have existed for several ye-
ars now, and that you are just reading an arti-
cle about conscious knovjledge... vjhereas the truth 
about you would be completely different ?" Unless 
we fall into absolute skepticism, we are compel-
led to admit that strange property of reflexivity, 
that capacity of knowledge, however paradoxical 
it appears to us. 

Many more things should be mentioned about 
belief, knowledge and reflexivity: let us just brie-
fly outline a few aspects, useful for what follows. 

— A piece of knowledge does not necessarih/ pre­
suppose an elaborate linguistic representation: 
in the above example of the minimal knowledge 
"there is conscious impression there", it is 
not assumed that this knowledge is conscioush/ 
expressed through a language in the mind of that 
conscious being. 

— Although the capacity of knowledge appears 
here as an attribute of consciousness, it is clear 
that uie are not conscious, at every moment, of 
everything we know for sure. This leads us to the 
notion of latent knovjledge. When we say that 
an information is present in our consciousness, 
as a piece of knowledge, i.e. with the "certainty 
label" which comes with it, we will not mean 
that this information is present to our awareness 
at the precise moment; we will mean that it is 
recorded someuihere in our consciousness, as a 
piece of knovjledge, in a latent state, ready to 
come to our remembrance. More preciseh/, we 
will mean that there is a record in our conscio­
usness of either this information itself, ready for 
remembrance; or another more general informa­
tion of which the information being considered is 
a special čase, an instanciation, straightforwar-
dly obtainable on request. 

— The property of reflexivity does not contradict 
the frequently observed plienomenon of thorough 
unjustified belief, i.e. error, although the para-
doxical aspect of reflexivity is reinforced by that 
possibility of error, which is sometimes invoked 
in favor of absolute skepticism. Let us just men­
tion that a conscious being is in principle able 
to detect whether one of its beliefs is justified or 
not as knowledge, but it may happen that, by 
lack of attention, the conscious being does not 
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realize that detection in practice at some precise 
moment and mistakes an unjustified belief for a 
piece of knowledge. 

3 The cognitive separation 
principle 

Can a computer or a robot be conscious ? We will 
try to explore that question in light of the above 
considerations. 

We are interested in a widespread conception 
about consciousness and mental processes, which 
can be expressed as follows: 

Reductionist conception of consciousness: 
The human brain and mind is fulhj describable, 
in ali its complex functions, as an automaton: a 
structured phijsical system the complex operations 
of which are fully describable as computational 
processes (in a broad sense): collecting, treating 
and recording pieces of information (and control-
ling the body consecutively). As a conseguence, 
what we call consciousness is some part of this 
computational process. 

We will show that this reductionist conception 
is false, - that an automaton thus defined cannot 
be, by itself, conscious - by noticing that such 
a paradigm cannot account for the capacity of 
knowledge (as opposed to belief) we mentioned 
above. 

First, we will introduce a preliminary observa­
tion; then, we will outline the proof in Section 4. 

Let A be an automaton; let 7 be a method of 
information recording in this automaton. This 
"method" can consist of e.g. recording in a cer-
tain memory part, and/or through some coding, 
and/or with a labelling; or the union of several 
such methods of recording. Besides, this method 
7 can evolve in time. 

We will denote E(.A, 7) the set of ali informati­
ons recorded in A according to the method I - we 
will say, for brevity: "recorded through 7". For 
any such method 7, let T {A, 7) be the statement: 

T(A,I) = "AH statements included in E(A,I) 
are true". 

We suppose that T(A, I) is included in T,(A, I). 
It is immediately clear that such a recording does 
not imply that aH informations recorded through 

7 are indeed true: £(A, 7) may very well contain 
T(A, I) together with false informations (in which 
čase T(A,I) is itself false). The property we have 
to point out here is slightly different from that 
obvious observation. 

We wonder whether, and in which way, a 
conscious being E, considering the automaton 
A and the recording method 7, may acquire 
the knowledge of T {A, I), which implies the 
knowledge that ali informations contained in 
S(A, 7) are true. 

It is conceivable, in principle, that the struc-
ture of A and of the method 7 is such that only 
true informations can come to be recorded thro­
ugh 7. It is even conceivable that E may acquire 
the knowledge of that property by examining A 
and 7. However, such a verincation will be ob-
tained through the observation that there is a cer-
tain matching between the structure of A and 7 
on one hand, and the field of reality the recorded 
informations deal with on the other hand. There-
fore such a verincation requires an observation of 
A, I and the domain of reality being considered. 
What is impossible, however, is that the inclu-
sion of T(A, 7) in S(A, 7) be sufficient in itself to 
provide E with the valid guarantee that ali infor­
mations in S(i4,7) are true (which is stated by 
T(A,I)). Hence the: 

Cognitive separation principle: Let A be an 
automaton, I a method of recording of informati­
ons in A, E a conscious being. We denote £(A, I) 
the set of informations recorded in A through I 
and T(A,I) the statement "Ali informations in 
£(/1,7) are true". The inclusion of T(A,I) in 
S(A,7) cannot be sufficient to validhj guarantee 
to E that T(A,I) is indeed true, i.e. that aH in­
formations in S(A, 7) are true. 

This principle expresses that any kind of infor­
mation recording in an automaton cannot contain 
in itself a sufficient validation of these informati­
ons: in other words, these informations cannot be 
validly confirmed in a purely internal way. Be-
tween a field of the real world on one hand, and 
any information recording supposed to describe 
that field on the other hand, there exists some 
kind of separation such that the šole observation 
of these recordings cannot be sufficient to validly 
confirm them. That cognitive separation is the 
origin of the name we suggest for this principle. 

We must emphasize a point, which is impor-
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tant for Al : it is perfectly conceivable that some 
method of information recording in an automaton 
indeed "select" only true statements, and that we 
be able to confirm that (interesting) property. It 
is the checking of that property which cannot be 
purely internal to the structure considered. 

4 Outline of the proof 
Now we will show that an automaton cannot be 
conscious. We will use the cognitive separation 
principle, and the previously mentioned property 
that any conscious being is reflexive. We will show 
that there is a contradiction, for an automaton, 
between these two properties: cognitive separa­
tion and refiexivity. 

Let us suppose an automaton E which would 
be conscious. Such an automaton would then be 
reflexive. Therefore, it would meet three conditi-
ons that we will derive now. 

As a conscious, refiexive being, this automaton 
would have an ability for knowledge. The infor­
mations known for sure by this being at a certain 
moment would be the informations recorded thro-
ugh some method of recording, denoted C, corre-
sponding to the certainttj lahti we mentioned in 
Section 2. Hence our condition 1: There is a 
method of recording C, in the automaton, such 
that the informations recorded in E through this 
method at a given moment (i.e. the set £(£?,C)) 
are the informations it has knoivledge of at that 
moment. This method of recording C corresponds 
to the certainty for E. 

The automaton knows for sure that any infor­
mation it knows for sure is true. In other words, it 
knows that any information recorded through C -
any information in E(25, C) - is true. Now, accor-
ding to Condition 1, the knowledge of an informa­
tion by the automaton is equivalent to its inclu-
sion in S(J5, C). Hence our condition 2: Among 
the informations contained in T,(E,C), stands the 
information: "Ali informations in Yi(E,C) - i.e. 
ali informations E has knomledge of - are true" 
- a statement that we denoted T{E,C). 

Our third condition states that the realization 
of Condition 2 would be sufhcient to validly war-
rant to E that T{E, C) is true. This is why. We 
could imagine, for a moment, that E makes sure 
of T(E, C) - i.e. of the fact that the informations 
it knows for sure are true - by another means: 

by observing its own structure and inferring from 
this observation that any information in 2(25, C) 
- i.e. any information it is certain of - is true. 
But in this čase, it would be necessary that the 
principles of inference and observation used by 
the automaton be validly warranted to it; then, 
according to Condition 1, these principles should 
be included in S(25, C) and their validittj should 
be guaranteed previously to such a študij! In other 
words, to inferT(E,C), it would be necessarv to 
alreadu know T(E, C)!'Finally, the realization of 
Condition 2 would be the only means for the au­
tomaton to get such a guarantee. Hence our con­
dition 3: The realization of Condition 2, i.e. the 
recording of T(E, C) through C, is sufficient for 
guaranteeing to E that T(E,C) is true, i.e. that 
ali informations it is certain of are true. 

Now, this Condition 3, a consequence of the 
hypothesis that our conscious automaton E is re-
flexive, is in contradiction with the cognitive sepa­
ration principle, which applies to this čase in the 
following way: Let E be our conscious, hence re-
flexive, automaton; let C be the recording method 
we have considered, corresponding to the certa-
inty for E. The recording of T(E, C) through C 
cannot be sufficient to guarantee to any conscious 
being - hence, to E itself - that T(E, C) is true. 

This contradiction implies that a conscious au­
tomaton could not be refiexive. However, we have 
mentioned that any conscious being is reflexive. 
Therefore, an automaton cannot be conscious. In 
other words, consciousness is not a computational 
phenomenon, in the broad sense outlined previo-
usly. 

The derivation we have just presented, especi-
ally Condition 3 and its contradiction with the 
cognitive separation principle, highlights the pa-
radox of knowledge we outlined above and reve-
als a rather remarkable property of consciousness: 
the cognitive separation between a field of reality 
and recorded informations supposed to describe 
it, does not extend to consciousness. In last re-
sort, fundamentally, a conscious being builds its 
knowledge of reality only from conscious impres-
sions, in the most general sense, i.e. from data 
"recorded" in its consciousness. However, para-
doxically, this fact does not preclude the ability 
for (ascertained) knowledge, as would be the čase 
if the conscious being were fully describable as an 
automaton. 
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5 Concluding remarks 

The result we have outlined here could be inter-
preted as leading to dualism, together with chal-
lenging "strong Al". Things are not so clear-cut 
in fact. 

First, this result does not necessarily preclude 
the possibility to make "conscious machines", for 
the following reason: we know a biological evolu-
tive process - the development of our brain du-
ring gestation - which leads to the emergence of 
consciousness, whatever the nature of "consciou-
sness" and the laws of that "emergence" will turn 
out to be. Therefore, it might be possible that 
some other evolutive processes of a more "artifi-
cial" kind - building and programming artificial 
automata - also lead to the emergence of conscio­
usness. However, in this event, the consciousness 
thus emerging would not really be contained in 
the computational structure and process thus re-
alized. Strictly speaking, the automaton would 
not be conscious, but a consciousness would have 
emerged in connection to it. 

It would be tempting to state that, as a con-
sequence of our result, "consciousness is not a 
physical phenomenon". In fact, in the absence of 
a sufficiently general definition of what we call a 
"physical phenomenon", such a statement is me-
aningless. More significantly, however, we can 
state that conscious phenomena cannot be jully 
accounted for by the principles of physics and 
cybernetics known to date. In this sense, our re­
sult leads to what can be termed as iveak dualism, 
as opposed to a strong dualism, in the manner of 
Descartes for instance, which would posit a sharp 
separation between "mind" and "matter" and/or 
state that the realm of "mind" would not be ame-
nable to scientific investigation. 
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The main thesis of the paper is that the computational paradigm can explain neither 
consciousness nor representational content, and hence cannot explain the mind as it 
standardly conceived. Computational procedures are not constitutive of mind, and thus 
cannot play the foundational role they are often ascribed in Al and cognitive science. 
However, it is possible that a computational description ofthe brain may provide a scien-
tihcally fruitful level of analysis which links consciousness and representational content 
with physical processes. 

1 Introduction 

Cognitive science and 'strong' Al are founded on 
the idea that computation is the theoretical key 
to the mind. Thus computation (of one sort or 
another) is seen as the appropriate scientific pa­
radigm for understanding and explaining mental 
phenomena (e.g. Johnson-Laird, 1988). In turn, 
two features standardly held to be essential to the 
mind are intentionality and consciousness (Searle, 
1992). Thus cognitive science and Al are, prima 
facie, committed to the view that computation 
is the theoretical key to explaining both intenti-
onal content and conscious experience. However, 
there are strong reasons for concluding that com­
putation is singularly incapable of accounting for 
either of these essential features, which implies 
that computation is not an adequate foundation 
for a general theory of the mind. 

In support of this view, I examine two basic 
consequences of the computational paradigm, and 
show hov/ these consequences render intentiona-
lity and consciousness inexplicable within a pu-
rely formal framework. In the final section I con-
sider the possible, though less fundamental role of 
a computational approach. 

2 Mind/Program Identity and 
the Problem of Consciousness 

The first consequence of the computational pa­
radigm that I will examine is the identification 
of the mind with the level of the program or ab-
stract procedure. It is held that the mind is to 
be characterized by algorithms and assorted for­
mal architectures, and these can be instantiated 
in any number of different physical media. The 
computational pardigm produces a hierarchy of 
levels of description, where the most pronounced 
separation in levels is formed by this fundamen­
tal gap between hardware and software. Here, 
the salient distinction is that the softvvare level 
is abstract, as evinced by its multiple realizabi-
lity, while the hardware level is mechanical, and 
is concerned with the actual physical properties 
and behavior of a material device. 

This distinction underlies the well known claim 
that the mind is to the brain as a program is to the 
electromechanical hardware of a computer (again, 
see Johnson-Laird, 1988). Accordingly, it is held 
that the mind does not reside at the level of the 
brain as a biological organ, and what is of interest 
to the science of mind is the program, not the bowl 
of porridge in which it happens to be implemen-
ted. So this identification of the mind with (some 

mailto:paul@cogsci.ed.ac.uk


622 Informatica 19 (1995) 621-626 P. Schweizer 

high stratum within) the software level will be ta-
ken as one of the distinguishing characteristics of 
the computational paradigm, wherein the brain is 
dismissed as a contingent and uninteresting hard-
ware system. 

This distinguishing characteristic is then car-
ried over to the attempted explanation of con-
sciousness. Abstract computational role, rather 
than the medium of implementation, is held to 
be responsible for conscious mental states (Lycan 
1995, Cole 1994). An immediate consequence of 
this view is that isomorphism of abstract struc-
ture is then sufficient to guarantee the identity of 
conscious states across implementations based in 
different physical media. For example, the qua-
litative aspect of the conscious visual presenta-
tion of the color blue is said to be determined by 
the particular role this type of quale plays in the 
computational structure of the human perceptual 
system. This system happens to be embodied in 
the particular neurophysical substrate that evo-
lution has bestowed upon us as higher primates, 
but this particular brand of hardware has nothing 
essential to do with the nature of blue qualia. If 
this same computational structure were realized 
in a completely different type of physical medium, 
then this alternative realization would enjoy qua-
litatively identical experiences of blue. 

However, such an approach cannot provide an 
adequate account of the causal basis of consci­
ous experience. As noted above, computational 
processes are abstract, while conscious experien-
ces are not abstract; they are actual, occurrent 
phenomena extended in tirne. Furthermore, they 
are by nature qualitative, while abstract structu-
res are devoid of any qualitative dimension. Like 
numbers, sets and differential equations, systems 
of rule governed symbol manipulation (as well 
as connectionist networks formally conceived) are 
colorless and tasteless abstractions which exist ne-
ither in time nor in space, and which lack causal 
efficacy as well as qualitative aspect. Only thro-
ugh implementation in terms of specific material 
systems can such abstractions enjoy a presence in 
the actual world, and only through an instantia-
ted presence can such formalisms have the power 
to produce any concrete effects. 

So the computational approach makes a criti-
cal error by espousing multiple realizability as a 
hallmark of the theory, while simultaneously con-

tending that qualitatively identical conscious sta­
tes are preserved across different kinds of realiza­
tion. The latter is the claim that a substantive 
invariant obtains over radically different physical 
systems, while the former is the claim that no 
internal physical regularities need be preserved. 
And this implies that there is no actual internal 
property which could serve as the basis for the 
invariant conscious phenomena. The computati-
onalist cannot rejoin that it is formal role which 
supplies this basis, since formal role is abstract, 
and abstract features can only be instantiated via 
actual properties, but they cannot produce them. 

Hence formal processing structure is ontologi-
cally the wrong kind of thing to produce real 
events extended in time and possessing non-
abstract properties. The material brain must do 
the causal work of the mind, so if conscious states 
are real, then their ultimate cause must be the 
brain. In.this manner, conscious experiences are 
properly seen as hardware states that realize an 
abstract computational role. This abstract role 
remains a software concern, while the actual pro­
perties of consciousness are a feature of the ma­
terial substrate. So the same abstract role could 
be realized by a different material substrate which 
lacked the particular properties which distinguish 
the occurrent reality of qualia from the abstract 
role which they instantiate. And from this it fol-
lows that a different type of material system could 
realize the same information processing structure 
as the human mind and yet fail to be conscious. 
The mind is essentially unlike a computational 
formalism, since it cannot be divorced from its 
particular physical substrate, and this contrave-
nes the hardware/software distinction and the at-
tendant principle of multiple realizability. 

3 Input /Output Boundaries 
and the Problem of Content 

Intentionality is perhaps the most important fea­
ture standardly invoked to distinguish the mental 
from the non-mental. In the tradition of Brentano 
(1874), the essence of mental states is comprised 
by their 'aboutness' or 'directedness'. For exam-
ple, the propositional attitude of believing that 
snow is white, is an exemplary čase of a mental 
state that is directed towards something else as its 
object; the belief is about snow. Similarh/, the per-
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ceptual state of seeing a tree is directed towards 
a mind-independent object in the environment. 
And this ability to be 'about' things is a central 
distinguishing characteristic of mental states. In 
sharp contrast, trees, snow, electromagnetic radi-
ation and other physical objects and events are 
not 'about' anything. 

This traditional criterion of mentality is ad-
dressed in classical Al and cognitive science thro-
ugh the use of 'mental representations' as a cen­
tral explanatory device (again, see Johnson-Laird, 
1988). Mental representations are posited as the 
internal cognitive structures that encode the in-
formation utilized by intelligent systems. And 
according to the classical view, mental representa­
tions are the formal structures over which cogni­
tive computations are preformed. In this manner, 
cognitive science and Al are able to posit struc­
tures that are manipulated formally, but which 
appear to possess a rich semantical dimension. As 
the terminology suggests, mental representations 
are supposed to be 'about' the associated objects 
and states of affairs, and hence serve as the theo-
retical basis for explaining the mind's intentional 
content. So mental representations are designed 
to ground the claim that the formal procedures in 
question are genuinely meaningful, and hence that 
the computational paradigm is able to account for 
this key feature of the mind. 

However, I think that another critical error is 
made at this point. Computation is essentially a 
matter of transformations performed on uninter-
preted syntax, so that formal structure alone is 
sufficient for ali effective procedures. The specifi-
cation and operation of such procedures makes no 
reference to the intended meaning of the symbols 
involved. Indeed, it is precisely this limitation 
to syntactic form that has enabled computation 
to emerge as a mathematically rigorous discipline 
(see, e.g., Boolos k, Jeffery, 1989). But then the 
purported content of mental 'representations' is 
rendered superfluous to the algorithms that com-
prise the putative mental processes of cognitive 
science. The distinguishing criterion of mentality 
is lost, since the intended interpretation of the 
mental syntax makes no difference to its compu­
tational properties. 

According to the Church-Turing thesis, every 
computable function is computed by some Turing 
machine. And every Turing machine is expressible 

as a finite table of instructions for manipulating 
the symbols '0' and ' 1 ' , where the 'meaning' of the 
manipulated symbols is entirely ignored. There 
is nothing intrinsic to the formal machine that 
would indicate whether the syntactic transforma­
tions were computations of numerical functions, 
tests for the grammaticality of linguistic expres-
sions, proofs of theorems in first-order logic, or 
answers to questions posed during a session of 
the Turing test. And many (negative) results in 
mathematical logic stem directly from this type 
of separability between formal syntax and inten­
ded meaning. The various upward and downward 
L6wenhein-Skolem theorems show that formal sy-
stems cannot capture intended meaning with re-
spect to cardinality. And G6del's incompleteness 
results involve taking a formal system designed 
to be 'about' the natural numbers, and systema-
tically reinterpreting it in terms of its own syn-
tax and proof structure. As a consequence of this 
'unintended' interpretation, Godel is able to prove 
that arithmetical truth (an exemplary semantical 
notion) cannot, in principle, be captured by fini-
tary proof-theoretic means (again, see Boolos &: 
Jeffery, 1989). 

These very powerful results on the inherent li-
mitations of syntactical methods would seem to 
čast a cold and sobering light on the project 
of explicating mental content in computational 
terms.1 Indeed, they would seem to render ho-
peless such goals as providing a computational 
account of natural language semantics or proposi-
tional attitude states. Non-standard models exist 
even for such rigorous and strictly defined realms 
as formal arithmetic and fully axiomatized geome-
try. And if formal arithmetic cannot even impose 
isomorphism on its various models, how then can 
a program designed to process a particular natu­
ral language, say Chinese, supply a basis for the 
claim that the units of Chinese syntax possess a 
unique meaning? 

The only viable strategy for solving this 'sym-
bol grounding problem' is to make direct appeal 
to the actual environment in which the cogni­
tive system is embedded, and the entire history 
of interactions between the two. However, such a 
strategy transgresses the limits imposed by a pu-

However, I do not wish to advocate the view that 
G6del's results alone establish that the human mind cannot 
be a finitary proof-theortic device. 
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rely computational theory of mind. If the mind 
is to be identified with a computational forma-
lism, then the input/output specifications of the 
formalism define the boundaries of the mind. As 
indicated above, effective procedures, as such, are 
closed systems of syntactic manipulation, and the 
rules for such manipulations are defined only in 
terms of the formal structure of the input strings. 

So it follovvs as a consequence of the compu­
tational paradigm that the mind cannot inte-
ract with the objects in the environment that its 
mental representations are about. Instead, these 
objects must impinge upon the mind's surface and 
be translated into the appropriate forms of in­
put, and the mind then processes these input si-
gnals. But these signals are not the environmen-
tal objects themselves; rather they are certain ef-
fects these objects have on the system's sensory 
transducers. In turn, these sensory effects cannot 
uniquely determine the objects that caused them, 
and hence cannot distinguish between any num-
ber of different sources which produce the same 
input signals (e.g. they cannot distinguish sufnci-
ently refined virtual environments from real ones). 

The symbol grounding problem cannot be sol-
ved inithin the computational paradigm, and the-
refore formal procedures must presuppose content 
in order to give a cognitive dimension to syntac-
tical manipulations. The purported content of 
mental representations can only be specified from 
outside the representational system, through pri-
mitive appeal to a variety of factors, including 
the immediate physical environment, the evolu-
tionary history of the human organism, and the 
sociolinguist community. These factors are pu-
rely external to the input/output boundaries of 
the cognitive formalism, and semantic content it-
self cannot be recovered from the associated pat-
terns of syntactic manipulation. Thus computa-
tion cannot account for mental content; instead, it 
must be projected onto these processes from out­
side, and hence content is assumed rather than 
explained by the theory.2 

2Proponents of connectionism often maintain that lear-
ning episodes provide the link with the environment requi-
red by intrinsic semantics. But this claim is easily refuted 
by the observation that once the network has been trained 
and ali the connection weights established, a duplicate sy-
stem can then be constructed vvhich \vill behave in exactly 
the same manner as the 'grounded' netvvork, but vvhich has 
had no prior contact vvith the environment. 

4 The Possible Role of 
Computation 

So, is computation simply a misleading metaphor, 
or can it stili play an important role in the scien-
tific elucidation of mind? Formal processes are 
not constitutive of mind, as claimed by orthodox 
computationalism (e.g. Newell &z Simon 1976). 
Rather than providing an answer to conceptual 
or foundational questions such as 'what is the ul­
timate nature of a mental state?' computational 
analysis can perhaps serve the more modest goal 
of mathematically describing various instantiated 
systems that are presently known to exhibit ge-
nuine mental capacities. Many of the traditional 
disputes concerning the relation between compu­
tation and cognition have revolved around much 
stronger and more ideological claims, perhaps ini-
tiated by the provacative tone of Turing's (1950) 
original article, in which computationally mcdia-
ted behavior is taken as the hallmark of mentalitv. 
And again in Newell and Simon's work, 'physical 
symbol systems' are stipulated as providing both 
necessary and sufficient conditions for intelligent 
behavior. 

In contrast, I think these broadsweeping (and 
rather premature) claims should be disengagcd 
from a properly scientific approach vvhich aims in 
the reverse direction. Rather than attempting to 
identify or define intelligent systems in advance, 
the attribution of computational structure should 
first be explored as a potentially useful handle on 
given systems whose behavior is, for independent 
reasons, already deemed cognitively significant. 
In other words, we should start with uncontro-
versial cases of intelligence and see if computation 
can yield an interesting analysis of these known 
instances. This is a bottom-up empirical appro­
ach, rather than a top-down legislative one, and it 
could prove scientifi.cally fruitful without commit-
ment to any presuppositions about the 'ultimate 
nature' of cognition. 

As a bottom-up, empirical research enterprise, 
cognitive science should be concerned with fin-
ding a description of the brain as an instantiated 
computational system. If the formal approach is 
to have any application, it must be tied to the 
brain as a physical machine; details of the conjec-
tured abstract procedures are substantive empi­
rical hypotheses, which, from the very beginning, 
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must be calibrated against neurophysiological re-
ality. There is no justification for restricting the 
science of mind to the level of the program, since 
the hardware is already given by nature, and our 
task is to discover uihether there is a useful de-
scription of this hardware under which it can be 
viewed as the realization of a formalism. 

The pronounced theoretical attraction of for-
mal systems is that they can, at least in princi-
ple, supply the missing link between high level 
intentional description and low level physical me-
chanisms. It is the fact that formal systems are 
both semantically interpretable and realizable in 
the material world that makes them important 
as a potential bridge between mental content and 
mechanical causation. The computational level 
cannot define the mind, since it can account for 
neither semantics nor consciousness. But internal 
algorithms can, in theory, serve as the intermedi-
ate level translating mental content into the cau-
sally efficacious level of neurophysiology, which in 
turn yields the overt behavioral manifestations of 
intelligence. 

Advocates of the computational paradigm often 
claim that if a particular piece of behavior is to 
be understood in terms of the beliefs and desi-
res of the agent (i.e. if we are interested in ge-
nuinely mental explanations), then neurophysio-
logical considerations are irrelevant (Fodor 1978, 
Pylyshyn 1984). According to computationalists, 
it is explanation in terms of representational con­
tent which concerns the science of mind, and this 
content resides at the abstract rather than the 
mechanical level. However, as section 3 indica-
tes, this appeal to intentional content supplies an 
equally good reason for rejecting computational 
description. Pure syntactical transformations are 
j ust as incapable of revealing intentional content 
as are the causal transformations governing brain 
processes. Appeal to the level of formal symbol 
manipulation (or connection weights among hid-
den units) adds no intrinsic explanatory insight, 
since computations themselves must be semanti-
cally interpreted in order to be informative. In 
the čase of both neurophysiology and computa­
tion, the semantics must be projected onto these 
processes through purely external considerations. 

Thus if one assumes the framework of inten­
tional explanation as a starting point, then the 
addition of computation is theoretically idle, un-

less it provides an explicit translation of intentio­
nal content into physical states and mechanisms. 
On this picture, the potential scientinc value of 
the computational paradigm would lie in provi-
ding a high level description of the physical sub­
strate which unites the realm of abstract content 
with the realm of brain mechanics, thereby rende-
ring semantic value causally potent. Such a result 
would discern formal regularity in the complex 
morass of neurophysiological activity, and would 
bridge the explanatory gap between mentalistic 
accounts and physical processes. 

In addition, such an approach to the 
mind/brain could provide a unifying link between 
conscious experience and representational con­
tent. Conscious events are occurrent brain states 
which directly encode representational content, 
e.g. information about the environment in the 
čase of conscious perceptual experience. Thus the 
cognitive manipulation of these physical states 
should comprise a direct computational link be-
tween semantics and brain mechanics. The com­
putational structure realized in the brain must be 
such that the conscious states of the brain reflect 
the semantic interpretation of the formalism, and 
where the physical instantiation of the formalism 
governs the material transformations and interre-
lations between sentient states. This would pro­
vide a semantically interpretable account of the 
electrophysiological processes underlying consci­
ousness, and would thereby yield a unified per-
spective on the mind/brain in terms of its two 
essential features. 

Perhaps this type of computational project will 
seem overly ambitious. But I would contend that 
it is the only significant role that computation co­
uld play in an explanatory theory of mind. If it 
cannot provide an explicit link between interpre­
tation and instantiation, then computation must 
be relegated to the marginal status of modelling 
cognitive phenomena, in precisely the same weak 
sense of simulation in which computation can be 
used to model meteorological or economic pheno­
mena. There is no doubt interest and predictive 
value in such simulations, but they fall far short 
of being explanatory theories. 
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Formal self-reference in GodeFs theorems has various features in common with self-
reference in minds and computers. These theorems do not imply that there can be no 
formal, computational models ofthe mind, but on the contrary, suggest the existence of 
such models within a conception of the mind as something that has its own limitations, 
similar to those which formal systems have. Ifre£exive theories do not themselves sufHce 
as models of mind-like reHection, reflexive sequences ofre£exive theories could be used. 

1 Introduction 

At first sight, the designation of the topic of 
this special issue, 'MIND O COMPUTER', also 
transcribed as 'Mind NOT EQUAL Computer', 
looks like a piece of computer ideology, a line ;of 
some dogmatic code. But there are as yet no con-
vincing artificial animals, much less androids, and 
computers are not yet ready for the unrestricted 
Turing test. Although they show a high degree 
of proficiency in some very specific tasks, compu­
ters are stili far behind humans in their general 
cognitive abilities. Much more, and in much more 
technical detail, is known about computers than 
about humans and their minds. Thus, the re-
quired comparison between minds and computers 
does not even seem possible, much less capable of 
being stated in such a simple formula. 

On the other hand, it could be argued that it is 
precisely because we do not know enough about 
ourselves and our minds that we can make com-
parisons with computers and try to design com­
putational models. This is especially so because 
we also do not know exactly what computers are 
incapable of, although we have some abstract, ge­
neral results about their limitations, such as Tu­
ringi theorem about the inability of an ideali-
zed computer to determine for itself whether its 
computation terminates or not. This theorem, 
and related results by Godel and Church, are fre-

quently used in arguments about the existence of 
formal models of the mind; interestingly enough, 
they have been used to argue both for and against 
that possibility. As a preliminary observation, it 
can be noted that the "negative" use of limita-
tive theorems, as these meta-mathematical results 
are called, is less productive in the sense that the 
faculty by which mind is supposed to transcend 
"mere" computation remains essentially mvsteri-
ous. The "positive" use of the theorems promo-
tes a more definite, less exalted view of the mind 
•as something which has its own limitations, simi-
lar^to those which formal systems have. This pa-
perargues for the latter view, exploring the com­
mon feature of ali these theorems, namely self-
reference, and focusing on G6del's theorems. 

2 Self-reference in G6del's 
theorems 

The application of GodePs theorems to fields out-
side meta-mathematics, notably the philosophy of 
mind, was initiated by Godel himself. He had 
a strong philosophical bent which also motivated 
his (meta)mathematical discoveries [31]. Godel 
first thought that his theorems established the 
superiority of mind over machine ([31], [28:28-9]). 
Later, he came to a less decisive, conditional view: 
if machine can equal mind, the fact that it does 
cannot be proved [31]. This view also parallels 
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the logical form of GodePs second theorem: if a 
formal system of a certain kind is consistent, the 
fact that it is cannot be proved within the svstem. 
G6del's more famous first theorem says that if a 
formal system (of a certain kind) is consistent, a 
specific sentence of the system cannot be proved 
in it. 

GodePs theorems are actually special, self-
referential consequences of the requirement of 
consistency: in a consistent system, something 
must remain unprovable. One unprovable state-
ment is the statement of that very fact i.e. the sta-
tement that it is itself unprovable (first theorem): 
you cannot prove a sentence which says that it 
can't be proved (and remain consistent). Another 
unprovable statement in a consistent system is the 
statement of consistency itself (second theorem). 
In addition, if the formal svstem has a certain 
stronger form of consistency, the sentence which 
asserts its own unprovabilitv, called the Godel 
sentence, is also not refutable in the system. Ros-
ser later constructed a more complicated sentence 
for which simple consistency is sufficient both for 
its unprovability and for its unrefutability. Si-
milar sentences were constructed by others (e.g., 
Rogers and Jeroslow [4:65-6]), showing that con­
sistent formal systems cannot prove many things 
about themselves. On the other hand, a formal 
system can retain ali the insight into itself that 
is compatible with consistency: thus, although it 
cannot prove its Godel sentence, if it is to remain 
consistent, it can prove that very fact, namely the 
fact that it cannot prove its Godel sentence if it 
is consistent [22:114]. 

2.1 Implications of GodePs theorems 

The fact that a particular sentence is neither pro-
vable nor disprovable within a system only me-
ans that it is logically independent of the axioms: 
they are not strong enough to either establish or 
refute it - they don't say enough about it one way 
or the other. Saying more, by adding additio-
nal axioms (or rules of inference) might make the 
sentence provable. But in GodePs cases, this does 
not work: even if G6del's sentence is added as an 
additional axiom, the new system would contain 
another unprovable sentence, saying of itself that 
it is not provable in the new system. This form of 
self-perpetuating incompleteness might be called, 
following Hofstadter [10:468], essential incomple­

teness. 
GodePs theorems have uncovered a fundamen­

tal limitation of formalization, but they say that 
this limitation could be overcome only at the priče 
of consistency; we might thus say that the limi­
tation is so fundamental as to be no limitation 
at aH. The theorems do not reveal any weakness 
or deficiency of formalization, but only show that 
the supposed ideal of formalization - proving ali 
and only ali true sentences - is self-contradictory 
and actually undesirable: 

— what good is a formalization that can prove a 
sentence which says that it is not provable (first 
theorem)? 

— what good is a formalization that can prove its 
consistency when it would follow that it is not 
consistent (second theorem)? 

On the positive side, the theorems show that cer­
tain formal systems have a much more intricate, 
reflexive structure than formerly suspected, con-
taining much of their own meta-theory. 

GodePs theorems show that the notions of truth 
and provability cannot coincide completely, which 
at first appears disturbing, since, as Quine says 
[21], 

we used to think that mathematical truth con-
sisted in provability [p. 17]. 

GodePs theorems undermine the customary iden-
tification of truth with provability by connecting 
truth with «nprovability: the first theorem pre-
sents a čase of 

not provable —> true (1) 

(if the sentence asserting its own unprovability is 
not provable, then it is true); the second theorem 
presents a čase of 

true —• not provable 

(if the sentence asserting the consistency of the 
system is true, then it is not provable). However, 
the notion of truth has a problem of its own, na-
mely the liar paradox, of which GodePs sentence 
is a restatement in proof-theoretic terms. Thus, 
GodePs theorems do not actually establish any 
disturbing discrepancy between provability and 
truth. Furthermore, the implication (1) above 
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is an oversimplification: assuming consistency, 
GodePs sentence is not simply true, because it is 
not always true i.e. not in ali interpretations (else 
it would be provable, by the completeness theo-
rem, also proved by Godel: provability is truth 
in ali interpretations). The first theorem shows 
that if the system is consistent, it can be consi-
stently extended with the negation of the Godel 
sentence, which means that the sentence is ac-
tually false in some models of the system. In-
tuitively, without going into details, this could 
be explained by saying that in those models the 
Godel sentence acquires a certain stronger sense of 
unprovability which those models do not support 
[1:391]. G6del's theorem thus shows that there 
must always exist such unusual, unintended inter­
pretations of the system: as Henkin says, quoted 
by Turquette [26]: 

We tend to reinterpret GodePs incompleteness 
result as asserting not primarily a limitation on 
our ability to prove but rather on our ability 
to specify what we mean ... when we use a 
symbolic system in accordance with recursive 
rules. 

Similarly, Polanyi says, though only in connec-
tion with the second theorem [19]: 

we never know altogether what our axioms 
mean [p.259]. We must commit ourselves to 
the risk of talking complete nonsense if we are 
to say anything at ali within any such system 
[p.94]. 

This characterization of formal language so-
unds more like something that might be said 
about ordinary, natural language. Thus, if we 
take as a characteristic of ordinary language its 
peculiar inexhaustibility and the frequent discre-
pancy between intended and expressed meaning 
("we never know altogether what our sentences 
mean; we must risk talking nonsense if we are 
to say anything at ali"), GodePs theorems would 
show that, in this respect, some formal langu-
ages are not so far removed from natural ones. 
Certain similarities between the self-reference in 
natural language and in GodePs sentence and 
theorems have also been- noticed at the lexical 
and pragmatic level (indexicals [25], performati-
ves [10:709]). This line of thought, namely that 

the self-reference which leads to GodePs theo­
rems makes a formal system more human, so to 
speak, will be followed here to the conclusion that 
such systems are indeed suitable for modelling the 
mind. 

2.2 Non-implications of G6del's 
theorems 

Some authors, especially those who attempt to 
apply GodePs theorems to disciplines other than 
meta-mathematics, are handicapped by a more or 
less severe misunderstanding of the theorems. For 
example, Watzlawick, Beavin and Jackson state 
[29]: 

Godel was able to show that it is possible to 
construct a sentence G which 

1. is provable from the premises and axioms of 
the svstern, but which 

2. proclaims of itself to be unprovable. 

This means that if G be provable in the system, 
its unprovability (which is what it says of itself) 
would also be provable. But if both provability 
and unprovability can be derived from the axi-
oms of the system, and the axioms themselves 
are consistent (which is part of GodePs proof),. 
then G is undecidable in terms.of the system 
[p.269]. 

Of course, this is completely garbled, but the 
authors nevertheless have very interesting ideas 
about applications of GodePs theorems. 

A less serious but more common misunderstan­
ding is to overlook or tacitly drop the consistency 
premise in the first Godel theorem. It is frequen-
tly stated that the theorem establishes the exi-
stence of a true sentence which is not provable. 
The theorem says that if the system is consistent, 
the sentence asserting its own unprovability is not 
provable. It might then seem that the sentence 
must be true, since that is what it says of itself; 
so, there is a true but unprovable sentence. But 
the theorem only says that the sentence is unpro­
vable if the system is consistent; so, the sentence 
will likewise be true (in the intended interpreta-
tion) if the system is consistent. The difference is 
that between conditional and unconditional truth, 
and it is considerable, because the condition is 

C '*$• 



630 Informatica 19 (1995) 627-634 D. Bojadžiev 

consistency of the system, and the second Godel 
theorem shows that there is a problem with esta­
blishing that. 

3 Formal models of the mind 

GodePs (first) incompleteness theorem can be 
expressed in the form: a sufficiently expressive 
formal system cannot be both consistent and com-
plete. With this form, the attempt to use such 
formal systems as models of the mind invites the 
following brush off: 

Since human beings are neither complete nor 
consistent, proving that computers can't be 
both doesn't really help [R. Jones in sci.logic, 
May 1995]. 

A different intuition was followed by Wandsch-
neider: the limitations of formalization revealed 
by G6del's theorems prevent the use of formal sy-
stems as models of the mind [27]. Most authors, 
however, accept the comparison between mind 
and formal systems of the kind considered by 
Godel, but reach different conclusions. For exam-
ple, according to Haugeland [9], 

most people are agreed ... that [GodePs] re-
sult does not make any difference to cognitive 
science [p.23]. 

According to Kirk [12], arguments against me-
chanisms based on GodePs theorems are agreed 
to be mistaken, though for different reasons; cf. 
Dennett [6] and especially Webb [30]. These argu­
ments try to establish the superiority of mind by 
suggesting that mind can reach conclusions which 
a formal system cannot, such as GodePs sentence. 

3.1 The basic incompleteness 
argument 

Arguments about the relative cognitive strength 
of minds and machines usually invoke only the 
first Godel theorem, although the second theorem 
also establishes the existence of a sentence which, 
if true, is not provable. The comparative neglect 
of the second theorem seems strange in view of the 
way in which the second theorem bears on appli-
cations of the first: establishing the existence of 
a sentence which is true (in the intended inter-
pretation) but is not provable presupposes that 

the consistency of the system is already establi-
shed. On the other hand, it might be expected 
that neglect of the second theorem would go hand 
in hand with misinterpretation of the first one as 
saying simply that there is a true but unprova-
ble sentence. This frequently happens in the ba­
sic version of the argument from incompleteness: 
since any formal system (of a certain kind) con-
tains a true but unprovable sentence, mind tran-
scends formalism because mind can "see" that the 
unprovable sentence is true. This conviction can 
be traced, in various forms, from Penrose [17], [18] 
through Lucas [14] back to Nagel and Newman 
[16:100-1]. For example, Lucas [14] says: 

However complicated a machine we construct, 
it will ... correspond to a formal system, which 
in turn will be liable to the Godel procedure for 
finding a formula unprovable-in-that-system. 
This formula the machine will be unable to pro-
duce as being true, although a mind can see it 
is true. And so the machine will stili not be an 
adequate model of the mind. 

The consistency premise is not very prominent 
here, but some suspicious phrasing is: 'producing 
as being true', 'seeing to be true', instead of the 
simpler and more to the point 'proving'. This way 
of comparing cognitive strength in humans and 
machines leaves out an obvious symmetry while 
emphasizing a dubious asymmetry. The symme-
try is that, just as a formal system cannot prove 
a sentence asserting its own unprovabilitv, unless 
it is inconsistent, so can a mind not do so, if it 
is consistent. The doubtful asymmetry between 
mind and machine concerns their possession of 
the notion of truth. The mind is supposed to have 
this notion in addition to the notion of provabi-
lity, and is supposed to have no problems with it 
(but it does, namely the liar paradox). On the 
other hand, the machine is only supposed to be 
able to prove things (as its only means of establi­
shing truth) without having, and apparently wi-
thout being able to have, an additional notion of 
truth. But this is not so: for expressing the truth 
of the Godel sentence (as opposed to proving it), 
even the most restricted definition of the truth 
predicate true\(x), covering sentences containing 
at most one quantifier, is sufficient [30:197]. 
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3.2 Mind over machine u : 1 ? 

A more intricate version of the argument from in­
completeness considers adding a "Godelizing ope­
rator" to the system. This form of the incomple­
teness argument was also advanced by Lucas [14]: 

The procedure whereby the Godel formula is 
constructed is a standard procedure ... then a 
machine should be able to be programmed to 
carry it out too ... This would correspond to 
having a system with an additional rule of infe-
rence which allowed one to add, as a theorem, 
the Godel formula of the rest of the formal sy-
stem, and then the Godel formula of this new, 
strengthened, formal system, and so on ... We 
might expect a mind, faced with a machine that 
possessed a Godelizing operator, to take this 
into account, and out-G6del the new machine, 
Godelizing operator and ali. 

The sound part of this argument is already con-
tained in the notion of essential incompleteness: a 
Godel operator only fills a deductive "lack" of the 
system by creating a new one. Adding the Godel 
sentcnce of a system as a new axiom extends the 
notion of provability and thereby sets the stage for 
a new Godel sentence, and so on. Thus, a Godel 
operator only shifts the original "lack" of the sy-
stem through a series- of displacements, without 
ever completing the system. 

The Lucas argument, especially in the form ad­
vanced by Penrose [18], now centers on how far 
into the transfinite can a Godel operator follow 
the mind's ability to produce the Godel sentence 
of any system in the sequence 

S0, Si = S0 + G(50), S2 = 5i + G(5i ) , . . . 

+ G(SU),... 

A relevant result here is the Church-Kleene the­
orem which says that there is no recursive way of 
naming the constructive ordinals [10:476]. This 
would mean that a Godel operator could only 
follow the mind's ability to produce Godel sen-
tences through the rečursively nameable infinite 
[18:114]. Feferman's results on recursive progres-
sions of axiomatic theories show that this is no 
real limitation, so that, as Webb [30] says, 

there is not the slightest reason to suppose that 
. . . a machine could not model the 'ingenuity' 
displayed by a mind in getting as far as it can 
[p.173]. 

But for the purposes of this paper it is more 
interesting to observe that it does not seem pla-
usible that the argument about the formalizabi-
lity of mind should be decided by the outcome 
of the race between mind and machine over re-
mote reaches of transfinite ordinality. And even 
if it makes sense to conceive of mind as always be-
ing able to out-reflect a reflective formal model, 
it would seem that the ability to perform the self-
reflection is more important than the question of 
how far does this ability (have to) reach. 

3.3 Reflexive sequences of reflexive 
theories 

A further possibility in the direction of making 
reflexive formal models is to make the progres-
sion of reflexive theories itself refiexive. The usual 
ways of extending a reflexive theory by adding its 
Godel sentence, or the statement of consistency 
(Turing), or other reflection principles (Feferman) 
are themselves not reflexive: what is added to 
a theory only says something about that theory, 
and nothing about the one which its addition pro-
duces. Thus, what is usually added to a theory 
does not anticipate the effect of that very addi­
tion, which is to shift the incompleteness of the 
original theory to the extended one. Of course, 
certain things about the extended theory can-
not be consistently stated; for example, the sen­
tence stating that its addition to a theory pro-
duces a consistent theory would lead to contra-
diction, by the second Godel theorem. But the 
sentence which is added to a theory could make 
some other, weaker statement about the theory 
which its addition produces. If the procedure of 
theory extension operated not only on the the-
ory it is to extend but also on a representation 
of itself, it could build on its own~action and im-
prove its effects. It could thus produce in a single 
step an extension which is much further down the 
basic sequence of extensions, produced by linear 
additions of Godel sentences; the size of this or-
dinal jump could then be taken as a measure of 
the reflexivity of the procedure. This kind df pro­
cedure, operating on something which contains a 
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representation of that procedure itself, is already 
familiar from the construction of the Godel sen-
tence: the process of diagonalization operates on 
a formula containing a representation of that very 
process, and constructs a sentence which refers to 
itself as the result of the diagonalization which 
produced it ([10:446], [3]). Another example of 
a reflexive procedure of this kind would be the 
Prolog meta-circular interpreter, which can exe-
cute itself, though only to produce statements of 
iterated provability [5:536]. 

4 Self-reference in computers 

In saying of itself that it is not provable, the Godel 
sentence combines three elements: the represen­
tation of provability, self-reference and negation. 
In computer science, self-reference is more pro-
ductive in a positive form, and in programs, pro-
gramming systems and languages more than in in­
dividual sentences. The first ingredient in G6del's 
sentence,. the representation of provability, corre-
sponds to the explicit definition of the provabi-
lity predicate of a logic programming language in 
that same language. In the simplest čase, speci-
fying Prolog provability in Prolog, the definition 
consists of just a few clauses [5:536], compara-
ble to those which express the conditions on the 
provability predicate under which G6del's theo-
rems apply. This definition of Prolog provabi-
lity is then used as a meta-circular interpreter to 
extend the deductive power of the basic interpre­
ter, for example by detecting loops in its proof at-
tempts. This use of the meta-circular interpreter 
could be compared to the work of the Godel ope­
rator on extending the basic, incomplete theory. 
Meta-circular interpretation is also applicable to 
other programming languages, notably LISP [23]. 

Generalizing meta-circular interpretation, pro-
vability can be specified in a separate meta-
language, and reflection principles defined for re-
lating and mixing proofs in both languages. Such 
meta-level architectures [32] can be used to im-
plement reflective or introspective systems, which 
also include an internal representation of themsel-
ves and can use it to shift from normal computa-
tion about a domain to computation about them-
selves [15] in order to achieve greater flexibility. 
Meta-level architectures are useful for knowledge 
representation, allowing the expression and use 

of meta-knowledge, and opening the possibility 
of computational treatment of introspection and 
self-consciousness [7:128]. For example, Perry su-
ggested an architecture of self-knowledge and self 
in which indexicals mediate between bottom le-
vel representations, in which the organism is not 
itself represented, and higher levels at which it 
is represented generically, as any other individual 
[20]. 

5 Self-reference in minds 
The basic lesson of Godel theorems, namely that 
the ability for self-reflection has certain limits, im-
posed by consistency, does not seem to be less true 
of minds than it is of formal systems. Applied to 
minds, it would translate to some principled li-
mitation of the reflexive cognitive abilities of the 
subject: certain truths about oneself must remain 
unrecognized if the self-image is to remain consi-
stent [10:696]. This formulation recalls the old 
philosophical imperative which admonishes the 
subject to know himself. If this were simple or 
possible to do completely, there would be no point 
to it; the same goes for the explicit interrogative 
forms: who am I, where am I going, what do I 
want, . . . Hofstadter [10] rhetorically asks: 

Are there highly repetitious situations which 
occur in our lives tirne and tirne again, and 
which we handle in the identical stupid way 
each tirne, because we don't have enough of an 
overview to perceive their sameness? [p.614]. 

Such an overview can be hard to achieve, espe-
cially in regard to. oneself, as Laing's knots in 
which minds get entangled show [13]. In a simi-
lar vein, Watzlavick, Beavin and Jackson suggest 
that the limitative theorems show the mathemati-
cal form of the pragmatic paradoxes to which hu-
mans are susceptible in communication [29:221]. 

It may be that, as Webb says, the phrase 
'the Godel sentence of a man' is an implausi-
ble construction [30:a;], but certain interpreta-
tions might be imagined, such as self-falsifying 
beliefs. On a humorous note, the Godel sen­
tence for a human could work like a recipe for 
self-destruction, activated in the process of its 
comprehension or articulation ("self-convulsive", 
"self-asphyxiative", "self-ignitive", . . . ) . A more 
elaborate interpretation, as the paralysing effect 
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of some self-referential cognitive štructure, is pre- -
sented in Cherniak's story [11:269]. The history 
of logic itself records lethal cases (Philetas) and _ 

cases of multiple hospitalization (Cantor, Godel). 
Of course, this is ali anecdotal, speculative and _ 

inconclusive, but it does suggest that the appa-
rent gap between minds and machines could be 
bridged, in two related ways: 

— the vulnerability of minds to paradoxes of self-
reference 

— the implementation of self-referential structures 
in machines 

The mind-machine gap could thus be reduced 
by emphasizing the formal, machine-like aspects 
of the mind and/or by building mindlike machi­
nes. 

Finally, taking speculation one literal step 
further, the self-reference in GodePs sentence can 
be compared to a formal way of self-recognition 
in the mirror, by noticing the parallelism between 
things (posture, gesture, movement) and their mi­
rror images. The basis for this comparison is the 
way the Godel code functions as a numerical mi­
rror in which sentences can refer to, "see" them-
selves or other sentences "through" their Godel 
numbers. The comparison, developed in [2], co-
vers the stages of construction of G6del's sen­
tence and relates them to the irreflexivity of vi-
sion and the ways of overcoming it. The compa­
rison attempts to turn arithmetical self-reference 
into an idealized formal model of self-recognition 
and the conception(s) of self based on that ca-
pacity. The motivation for this is the cognitive 
significance of the capacity for self-recognition, 
in mirrors and otherwise. The ability to reco-
gnize the mirror image, present in various degrees 
in higher primates and human infants, has been 
proposed as an objective test of self-awareness 
[8:493]. Self-recognition in the mirror is a ba-
sic, even paradigmatic čase of self-recognition, the 
general čase being the recognition of effects on 
the environment of our own presence in it. Self-
recognition in this wider sense is the common 
theme of Dennetfs conditions for ascribing and 
having a self-concept and consciousness [11:267]. 
Self-recognition is also the common theme of the 
self-referential mechanisms which, according to 
Smith [24], constitute the self: 

- indexicality (self-relativity of representations) 

- autonomy (recognizing one's own name) 

- introspection (recognizing one's own internal 
štructure) 

- reflection (recognizing one's plače in the world) 

The comparison between formal and specular 
self-reference and self-recognition might also con-
nect these contemporary attempts to base the for-
mation of a self(-concept) on the capacity for self-
recognition with the long philosophical tradition 
of thinking about the subject in optical terms. 

6 Conclusion 

It is not possible to see oneself completely, in the 
literal, metaphorical ("see=understand"), formal 
and computational sense of the word. G6del's the-
orems do not prevent the construction of formal 
models of the mind, but support the conception 
of mind (self, consciousness) as something which 
has a special relation to itself, marked by specific 
limitations. 
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The paper examines the power and limitations of the computational model of the mind. 
It is argued that conscious mind and human brain are not programmable machines, but 
that there are pragmatical reasons to assign them a computational interpretation. In 
this context, I speculate on the possibility that programmable machines exceed natural 
mind (in ali kinds of mental abilities), but I also show that not aH features of actual 
computer systems can be successfully mapped on the human mind/brain. 

1 Introduction 

The question of the relation between human mind 
and computational machines does not concern 
simply some observer independent phenomena in 
the objective world, but it primarily concerns our 
attitude toward these phenomena. In other words, 
this question cannot be answered/decided simply 
on the basis of empirical investigations of mind 
and/or machines, but primarily on the base of our 
pragmatic needs in the context of our efforts to 
understand and describe the phenomenon of con­
scious mental states, and to develop poinerful tools 
which we hold useful for our survival and enterta-
inment. Taken literally, mind is not machine, just 
as bird is not aeroplane (and even the less is aero-
plane a bird). However, I hold that the assertion 
'Mind is computer' should be intended primarih/ 
in the figurative sense; consequently, judgments 
on its validity should not be concerned so much 
with its literal truth as with the suitability of the 
scientific paradigm installed by such an assertion 
taken as a metaphorical figure. 

There are a few positions concerning the rela­
tion (literal and metaphorical) between conscious 
human mind and computational machines. In this 
paper I tried to put forward the strongest reasons 
for, and the main weakness of, the following four 
positions: 

Mind is more than machine could be. Machines 
are defined in functional/svntactic terms, while 
conscious mental states cannot be completely de-
scribed in such terms, and even less could they 
be replicated by merely syntactically defined ma­
chine processes. 

Mind is less than machine could be. There are 
theoretical results which open the possibilities 
of the development of such computational ma­
chines which shall far exceed the humble human 
mental abilities. And there is no reason to doubt 
that these possibilities will be realized. 

As you like it. Human mind is a product of some 
biological processes which take part in the brain, 
and which are no more computational than those 
in the liver are. However, if there are pragma­
tical reasons to assign the computational inter­
pretation to mind/brain processes, we can do it; 
but we should not mix the reality with the in-
terpretative model. 

When you need it. There is virtually no author 
in the scope of cognitive science who hasn't used 
the word 'mystery' when speaking on the con­
scious mind. Literal speech cannot express es-
sential features of mysterious things; therefore, 
when concerned with the conscious mind, we are 

2. 

3. 
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often constrained to use metaphorical speech as 
the only possible tool of thought. 

2 Mind Is More Than Machine 

When we speak of the mental we intend the con-
scious mental state. Namely, conscious experi-
ence is "a necessary condition for the attribution 
of mentality" [13, p. 273], and "we have no notion 
of the mental apart from our notion of consciou-
sness" [15, p. 18]. 

2.1 Mental States 

A conscious mental state is a property of the sub-
stantial structure brain. We distinguish between 
primary and secondary properties; primary pro-
perties are defined as those that are independent 
of the subject (observer), while secondary proper­
ties are said to be relational in the sense that al-
though causally dependent of the primary pro­
perties, they exist only for the subject (obser­
ver). In this context, a conscious mental state 
cannot be coherently conceived of as a secondary 
property because it has nothing to be related to; 
consequently, it should be conceived of as a pri-
mary property of the material structure brain. Se-
arle says that "consciousness is a higher-level or 
emergent property of the brain" [15, p. 14]; he 
doesn't give an explicit definition of "higher-level 
property", but from the analogies he ušes, these 
properties should be the primary properties. 

The computational model of the mind says that 
mind is a kind of software while brain is a kind 
of hardware. As Searle put it, the "slogan" one 
often sees runs: "The mind is to the brain as the 
program is to the hardware" [15, p. 200]. In 
this context, the claim that a conscious mind is 
more than any programmable machine could ever 
become, can be defended on at least two grounds. 

2.2 Emergent vs Imposed 

Mental states are emergent primary properties of 
the material structure brain, while software could 
hardly be conceived of as a property of hardware, 
and in no way as an emergent property. Software 
is imposed on the hardware (from the outside), 
and there is not much sense in comparing consci­
ous mind with software: consequently, the com­
putational metaphor of the mind is simply not 

suitable. In other words, programming cannot be 
the right way to conscious mental states. 

However, there are objections to such fast eli-
mination of the computational paradigm of the 
mind; for example, it has been argued that some 
kind of software could induce (make to emerge) 
some kind of mental states on some kind of hard-
ware! In principle, it could. Namely, programs 
(when loaded/active) have direct impact on the 
primary properties of the hardware: therefore, 
they could, in principle, induce ali sorts of states. 
But it would be more than a miracle if any kind of 
software (as actually conceived) would ever induce 
a mental state on any type of hardware (as actu-
ally conceived). Furthermore, it is actually not 
possible even to work on the development of such 
kind of software because we currently don't know 
how mental states emerge in the human brain. 
And if it is not possible to purposely work on 
the development of such software, it is not wise 
to expect that such (mental) states could simply 
happen/emerge. 

However, our actual ignorance concerning the 
nature and the ways of emergence of mental sta­
tes is not the main problem here; namely, if we 
would know everything concerning the human 
brain/mind, we would very probably know also 
the fact that it is not possible to replicate men­
tal states by mere computer programs. Indeed, 
there is no more reason to expect that the emer­
gence of mental states could be caused by com­
puter programs than there is to expect that the 
growth of grass could be: both events are natural 
phenomena, and programs can only simulate such 
phenomena, but not also replicate them. Hence, 
conscious human mind is more than any progra-
mable machine could ever become. 

2.3 Mental vs Functional 

There is an unbridgeable gap between the func­
tional and the mental; functional properties can 
be described (and replicated) by formal (inani-
mate) systems, while mental states are intrin-
sically first-person and they cannot be comple-
tely described, but can be only experienced. Ma­
chines can simulate functional properties of the 
human mind, but not the mental ones: they 
can perform various well defined functions, but 
not also have/experience mental states. In other 
words, programmable machines can have intel-
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ligence (defined as behavioral disposition), but 
not mentality (as an intrinsically first-person pro-
perty). And mere intelligent behaviour is not eno-
ugh for possessing/creation of mental states; mo-
reover, "the relation of mental states to behaviour 
is purely contingent" [15, p. 23]. 

However, there are claims that conscious men­
tal states could be reproduced by artificial means. 
For example, Dennett, who pleads for a "version 
of functionalism", says: "If ali the control func-
tions of a human wine taster's brain can be re­
produced in silicon chips, the enjoyment will ipso 
facto be reproduced as well" [7, p. 31]. Perhaps; 
for if you duplicate ali causes, you should dupli-
cate also aH the effects. However, functionalism is 
ipso facto not an approach which could lead us to 
the real (physical) "control functions" (whatever 
it means) of the brain. 

There are a few "versions" of functionalism; let 
us try to collect the essence of the fiinctionalist 
approach in the following statements. According 
to functionalism, any mental state can be defined 
in terms of the (1) sensory inputs, (2) causal ef­
fects of other mental states, and (3) behavioral 
outputs. In this context, two different brain-state 
tokens are said to be tokens of the same type of 
mental state iff they have the same causal relati-
ons to the input stimulus that the system receives, 
to its other inner mental states, and to its ou-
tput behaviour. Any system, no matter what its 
physical realization, could have mental states pro-
vided only that it had the right causal relations 
between its inputs, its inner states, and its ou­
tputs. Finally, according to functionalist appra-
och, if we would succeed in developing an artificial 
brain (computer) which would be functionally is-
omorphic to the natural brain, it/he would have 
also the same mental states. However, there are 
a few problems inherent to such an approach. 

First, by raising the discussion to the level of 
abstract functional structure, functionalism ne-
glects the fact that mental states are primarv 
qualities of the specific phvsical structure brain; 
and there is no basis for believing that the ab­
stract states which play the same functional role 
in a different medium would have the same pri-
mary qualities. Or, as Schweizer put it: "while 
there is good reason to believe that consciousness 
results from the complexity of the phvsical pro-
cesses that take plače in the brain, there seems 

to be no reason to conclude that different mate­
rial implementations of the same computational 
structure will reproduce these same internal ef­
fects" [13, p. 272]. In other words, an approach 
concerned with the abstract functional structure 
of the human mind/brain could hope to replicate 
the abstract functional properties of the human 
mind/brain, but not the real one. Or: based on 
the idea of functional isomorphism, functionalism 
could be the right way-tothe smartest machines, 
but not to the conscious ("enjoying") one. 

2.4 Language and Reality 

Functionalists pass in silence over some basic con-
ceptual problems, which makes their expositions 
less clear than it would be desirable. First, iso­
morphism is not identity, and isomorphic entities 
are not supposed to have the same properties but 
only the same structure: therefore, it is not su-
fficient to speak of functional isomorphism with 
human brain when aiming to replicate the human 
mental properties. Further, even the very idea 
of functional isomorphism is problematic, as long 
as we don't have a clear criterion on the basis of 
which we could decide when an artificial structure 
can be said to be functionally isomorphic with 
the human brain. Without such a criterion, ali 
depends on the way one describes the brain: de-
scribe it in poor (reduced) terms, and you will 
easy construct an artificial system isomorphic to 
such a description! However, reality does not čare 
much about our descriptions: hence, we could 
hardly replicate a phenomenon without knowing 
its real, and not merely "abstract", structure. Of 
course, the question of the real structure of the 
reality is not an easy one; in fact, it seems to 
be open-ended, and will probably remain such fo-
rever. It is immanent to science (in general) to 
search for such a conceptual system which would 
"carve nature at its systematic joins" [6, p. 279], 
but there is not much hope that such a result 
could ever be obtained. Consequently, every de­
scription of a phenomenon is inevitabh/ dependent 
on the conceptual/categorial system of the behol-
der. Hovvever, although we cannot make a defi-
nite breakthrough to the Truth, we should at le-
ast know that expressions such as "ali the control 
functions of the human brain" (from the above 
quotation), do not say much as long as we don't 
even approximately know what would count as 
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"ali control functions". In other words, if "repro-
duction" (in that quotation) meant identical sy-
stem, then the quoted assertion is trivial; if not, 
it is unclear. 

3 Mind Is Less Than Machine 

Despite the arguments stated above, there are 
ways to defend the position that mind is a ma­
chine; moreover, in the context of such positions, 
human mind is considered as a machine of rather 
humble abilities, which could be, and sooner or 
later will be, far outshone by artificial cognitive 
systems. Such views are based on some formal re-
sults concerning the computability, among which 
the most important are Universal Turing Machine 
and Church's Thesis. 

The Universal Turing Machine is an abstract 
formal system which consists of a minimal num-
ber of symbols, states, and operations, in terms 
of which processes (algorithms) can be defined. 
The Universal Turing Machine can in principle 
be implemented on an ordinary digital compu­
ter. Church's Thesis says that every computa-
ble function is Turing computable. Roughly spe-
aking, this means that any precisely defined pro-
cess (algorithm) of symbol manipulation can be 
expressed by means of the Universal Turing Ma­
chine, and be carried out by a digital computer. 
Church's Thesis has not been proved because the 
concept of "precisely defined process" is not for-
mally defined, but "it has been supported by evi­
dence, much as any empirical scientific theory mi-
ght be" [3. p. 66]. 

3.1 Simulation and Reality 

Cognitive science should take into account the 
above results concerning computability. Namely, 
brain processes are natural phenomenon, and it 
seems reasonable to suppose that they can be de-
scribed by a scientific theory; further, every scien­
tific theory is essentially a syntactic system: con-
sequently, brain processes should be describable 
in purely syntactic (computational) fashion. And 
according to Church's Thesis, that means that 
these processes could be carried out by a program-
mable machine, which should then have (or be in) 
also the same mental states as humans. 

Opponents of such an interpretation of 

Church's Thesis will call our attention to the di-
fference between simulation and reality; computer 
simulation of the process, they claim, cannot pro­
duce (create) real things/states. Simulations are 
based on some symbolic representations of rea-
lity, and ali they can produce are new symbolic 
representations, but not real entities. For exam-
ple, no computer simulation of the processes in 
the cow's udder could produce the real milk. The 
same, of course, holds for mental states: they can 
be simulated but not replicated by computational 
processes. However, there are reasons to hold (or 
hope) that with mental processes, things could be 
different. Namely, at least some human mental 
processes are algorithmic, and with it also lite-
rally reproducible by a computational machine. 
For example, there need not be any difference be-
tween the human process of carrying on an ari-
thmetical operation, and the machine implemen-
tation of .the same process: both, man and ma­
chine, could follow the same algorithm. There-
fore, when mental processes are concerned, there 
need be no difference between the "reality" and 
the "simulation"; or, the human-brain computer 
and the digital computer can implement the same 
algorithm and obtain the same result. 

3.2 The Language of Thought 

It could be objected here that the given example 
seems too trivial to justify the great expectations 
immanent to the above line of thought. However, 
it seems reasonable to suppose (and to take as a 
working hypothesis) that there are many algori­
thmic processes which go on in human brains at 
the unconscious level, and which (if known) co­
uld be explicitly described in some formal langu­
age, and then also replicated by computer. And 
if it would turn out that ali brain processes are 
algorithmic, the human brain - and ipso facto, 
human mind - would become completely machine 
(re)producible. 

The first thing we need in the context of the 
above vrorking hypothesis is some language in 
which we could describe the basic (unconscious) 
processes which take plače in the human brain. 
Such a language could be Fodor's language of tho­
ught, which is taken to be common to ali humans. 
An analogy with computers "is likely to be illu-
minating" here [9, p. 386]; namely, computers 
use (one or more) input/output languages by me-
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ans of which they communicate with their envi-
ronment and "a machine language in which they 
run their computations" [9, p. 385]: the langu­
age of thought is intended as a kind of machine 
language. 

Fodor's proposal introduces an intermediate le­
vel between the physiological (hardware) and the 
conscious (input/output) level: cognitive proces-
ses are taken to be completely definable on this 
(intermediate) level. These processes are taken 
to be algorithmic, so that human thinking can 
be conceived of as computation over basic units 
(atoms) of the language of thought. It seems ob-
vious that if such a brain/mind model could be 
the right one, than human cognitive abilities co­
uld be not only replicated, but far exceeded (in 
speed and scope/range) by programmable machi-
nes. However, some basic things concerning the 
above model are not yet clarified; nrst, Fodor's 
hypothesis imply the existence of a set of context-
free atoms on which aH our thoughts (i.e. com­
putations) are based, and we cannot say what 
these basic atoms/units could look like. Clark 
describes such a (hypothetical) context-free atom 
as a "syntactic item" which "plays a fixed repre-
sentational role", and as "an inner state which 
makes the same semantic contribution to each of 
the larger states in which it figures" [5, p. 31]. 
Such descriptions don't seems to be enough (in 
the operational sense); however, our actual igno-
rance concerning the "particulars" does not in-
validate Fodor's hypothesis concerning the basic 
cognitive processes. 

3.3 Language of the Mental 

Fodor's proposal seems to be concerned primarily 
with thought processes; he stresses that "nothing 
can be expressed in natural language that can't 
be expressed in the language of thought" [9, p. 
388]; but not ali mental states (feelings, etc.) are 
really expressible in natural language. However, 
following Fodor's line of thought, it seems pos-
sible to make a move further and postulate the 
existence of a language of the mental (and a set 
of innate mental atoms as basic data items) by 
means of which ali mental processes could be de-
fined in the algorithmic fashion. In this context, 
we could paraphrase Fodor's assertion above by 
the following words: Nothing can be experienced 
by a human being that can't be expressed in the 

language of the mental. In other words, the hypo-
thesis of the language of the mental would make 
the human mind completely definable at the syn-
tactic level, and then, by Church's Thesis, also 
artificially reproducible by a programmable ma­
chine. (Results of syntactically defined processes 
are independent of the particular hardware.) 

Of course, I cannot say how the language of the 
mental (and mental atoms) would look like; but 
we are in the same ignorant position also with Fo-
dor's language of thought. However, in science we 
are often constrained to presuppose the existence 
of hidden and/or unobservable entities, structu-
res, and processes, and then to judge the validity 
of such hypotheses by evaluating their formal con-
sequences and empirical effects. Therefore, the 
fact that we cannot actually prove the existence 
of the language/atoms of some basic mental level 
should not be reason to abandon the very idea 
of the complete computational definability of the 
conscious human mind. Instead, if there is any 
real possibility that such a hypothesis could open 
the right way to the secret of the mental, we sho­
uld proceed by it. 

3.4 More Than A Natural Mind 

A complete syntactic definition of the basic men­
tal processes would have fascinating consequen-
ces. First, it would render possible the replication 
of any human mental state by running a computer 
program that implements a process which is type-
identical to the process at the human brain's basic 
mental level which cause the given mental state 
in the human being. However, in such a čase, it 
would become possible not only to replicate (imi-
tate) human mental states, but also to produce 
neui kinds of mental states, completely unknown 
to human beings. Namely, natural evolution (the 
selection principle) surely hasn't favoured the de-
velopment of ali possible (i. e., computable) kinds 
of mental states; on the other hand, an artificial 
brain/mind would freely explore a virtually open-
ended combinatorial space, and so create comple-
tely new results (i.e., mental states). Finally, even 
only thanks to the enormously greater proces-
sing speed, such brain-machines would far exceed 
man's mental abilities. In other words, if we ever 
succeed to develop an artificial human-like consci­
ous mental state based on pure computation, we 
should soon be faced with machines (artificial bra-
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ins/minds) whose intellectual, emotive, and crea-
tive abilities will far excel those of the best among 
natural men. Some of the questions we should put 
to ourselves while moving in this direction could 
be: 'Who shall be then called to settle the mea-
sure of High and Low, of Good and Bad?'; 'Could 
such machines make a man better?'; and finally, 
'Will not the natural mind, besides such artificial 
beings, become superfluous, or at least a servant 
to the proper product?'. (Un)fortunately, it se-
ems that we have stili time enough to think about 
such questions. 

4 As You Like It 

Independently of the position on the (possible) 
superiority of the programmable machine over 
the human mind, the computational model of the 
mind is widely used. However, mind and machi­
nes do not, in fact, have much in common. In this 
section I put forward three arguments for such a 
position, but I put forward also some reasons for 
the popularity of the computational model of the 
mind/brain. 

4.1 A Commonsense Argument 

The human mind/brain and programmable ma­
chines are completely different things on the 
physical level (brain/hardware) as well as on the 
psychic level (mental-states/software). Roughly 
speaking, the brain consists of a collection of ne-
ural netvrorks which don't have anything in com­
mon either with serial (von Neumann's) or with 
parallel (Darwinian) type of hardware. Compu-
ters of the serial type consist of some basic units 
(processor, working memory, etc), while in the 
human brain there is no similar physical compo-
nent; on the other hand, parallel hardware consi­
sts of a bunch of serial computers which work in 
parallel mode, while brain's (sub)networks do not 
form anything similar to the bunch of (parallelly 
connected) serial computers. (More about it in 
the context of the third argument.) 

Concerning the psychic/software level, the 
comparison is equally wrong. A program (serial 
and parallel) defines/creates a set of context-free 
data structures and a computational process (al-
gorithm) over the (contents of) these structures, 
but there is no trace of mental states in ali of 

this. On the other hand, it is well known that 
the human mind has very poor abilities of me-
morizing and performing algorithms except tri-
vial ones. For example, many of us are not able 
to carry out a mental multiplication of two three-
digit numbers. 

It seems that these differences (complete dis-
crepancy!) should be sumcient reasons for aban-
doning the computational model of the mind. 

4.2 Being vs Assignment 

One of the most discussed arguments against 
the computational model of the mind is Se-
arle's Chinese Room thought experiment [14]. 
With this experiment Searle wanted to show 
that programs do not understand what they 
do/produce, independently of how intelligent 
their products/answers may seem to an obser-
ver. From that it should follow that program-
ming is not the way which could lead us to ma­
chine understanding or mental states. I hold that 
such a conclusion is no less obvious without expe-
riments than it is with them. Besides, Searle 
has interpreted wrongly his own experiment; na-
mely, the experiment shows that the processor 
(Searle in the Room) does not understand, and 
not that the program (which Searle-processor exe-
cute) does not understand; but Searle will offer us 
a new (better) argument. 

There are a few kinds of reply to the Chinese 
Room argument (catalogued in [14]); however, I 
hold that ali these replies can be qualified as "ar­
guments from ignorance". The most frequent 
among them (System Reply) emphasise the fact 
that there is not only a processor/program there, 
but a whole system: and it is possible that in some 
sophisticated systems some degree of understan­
ding somehow simply emerges, although we actu-
ally don't know how and where. Of course, it is 
possible; however, it is equally possible that ali 
actual computers are self-denying beings, which 
often suffer in silence, and sometimes make fun 
of us. But something of that kind doesn't seem 
plausible: hence, there is no much sense to put 
forward such kind of "arguments". 

The Chinese Room argument argues that pro­
grams by themselves, as purely syntactic systems, 
cannot constitute mind. This argument "rests on 
the simple logical truth that syntax is not ... sum­
cient for semantics" [15, p. 200]. But in [15], Se-
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arle put forward a new argument against the com-
putational model of the mind, now based on the 
fact that "syntax is not intrinsic to the physics" 
[15, p. 208]. In short, the argument runs like 
this: (1) "computation is defined syntactically" 
(in terms of symbol manipulation); (2) "syntax 
is not intrinsic to physics" (an assignment of syn-
tactic properties to physical phenomena is relative 
to an observer): consequently, (3) computational 
processes are not intrinsic to the physical world, 
and ipso facto not to the brain. In other words, 
it cannot be discovered/shoton (as an empirical 
fact) that brain (or anything else) is intrinsically 
a digital computer; computational interpretation 
can be only assigned to the brain, as well as to 
anything else. And this then means that the as-
sertion 'The brain is a computer' is not "simply 
false", but is "ill defined" and without a "clear 
sense" [15, p. 225]. Namely, if we interpret it as 
an assertion about the discovery of some intrinsic 
property of the brain, it is trivially false, while if 
we interpret it as a decision to assign the compu­
tational interpretation to the brain, it is trivially 
true/acceptable. 

In sum, the results of Searle's two arguments 
seem to be the following: The 'syntax - semantics' 
gap is fatal for the attempt to define the mind in 
terms of software, and the 'syntax - physics' gap is 
fatal for the attempt to qualify the brain as com­
putational hardware. In other words, we don't 
have stronger formal reasons to conceive of the 
human mind/brain as a kind of computer than we 
have it for anything else: therefore, the computa­
tional model of the mind/brain says us, in fact, 
nothing essential/intrinsic of the mind/brain. 

4.3 Custom and Necessity 

The standard computational model of the mind is 
essentially of Fodor's type: it presupposes the exi-
stence of a stock of context- free syntactic atoms 
(as physical tokens and content bearers) upon 
which the cognitive (algorithmic) operations are 
performed. Atoms form the combinatorial base 
of ali potential thoughts, and occur unchanged 
across ali the cognitive processes. Human beings 
are supposed to inherit a fixed set of such atoms, 
while the learning and inference processes consist 
in the "recombination and redeployment" of the 
preexisting context-free representational primiti-
ves [5, p. 225]. 

A completely different cognitive model has been 
developed by the connectionist approach, which 
is based on results of neurophysiology. Roughly 
speaking, the human brain is a set of neural ne-
tvrarks; such networks learn (acquire knowledge) 
by repeated exposure to a training environment 
(which includes some form of feed-back effects); 
a network starts with an innate/random distri-
bution of its hidden unit weights, while exposure 
to a given environment causes it to permanently 
adjust its connection weights in a way which tend 
toward the best output. 

The network hardware differs not only from 
the hardware of classical (serial) computational 
systems, but also from that of parallel (PDP) 
systems; namely, although it is common to de-
scribe the human brain as "a massively paral­
lel processor" [6, p. 156], there are, in fact, no 
"processors" in the neural netvrorks neither in na-
tural, nor in artificial ones. Further, there are 
no "programs" in connectionist systems: such 
systems are trained and not programmed. Fi-
nally, there are no context-independent "data 
atoms/records" in connectionist systems, because 
these systems are based on superpositional repre-
sentations of knowledge/data. The representation 
of knowledge KI and K2 is said to be superpo-
sed if KI and K2 are represented by the same 
resources. In superpositional systems there are 
no context-independent data records which co-
uld be said to stand for ordinary semantic units 
(data and propositions) because every piece of 
knowledge is stored holistically in the sense that 
it is distributed throughout the network: any wei-
ght (in the network) can take part in the en-
coding of any piece of knowledge contained in 
the network. And if a given (trained) network 
is later trained to learn/accept a new piece of 
knowledge, the existing weights (although preser-
ving previous knowledge) will be changed: hence 
the context-dependence of the data records (i.e. 
of knowledge representation) in superpositional 
systems. 

Flanagan holds that the connectionist models 
"have called the distinction between software and 
hardware into question" [8, p. 180], while Clark 
says that connectionist models are characterized 
by "the lack of a firm data/process separation" 
[5, p. 14] because such systems do not involve 
program-driven computation over a fixed set of 
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symbols. Indeed, there are in fact neither "sym-
bols" nor "programs" nor "processors" in connec­
tionist systems. But why then at ali use the stan­
dard computational taxonomy here? And altho-
ugh virtually ali authors emphasize the essential 
difference between standard computational mo­
dels and connectionist models, they keep on using 
standard computational taxonomy (see, for exam-
ple, [5, 6, 8]). It seems that there are two main 
reasons for such praxis. 

The first reason could be custom; namely, in 
spite of ali the differences, connectionist systems 
stili have some inputs and outputs, and some pro­
cesses in between; therefore, one is inclined to use 
the same old terminology. In this context, ra-
ther than change the terminology, Clark criticizes 
the "tendency to identify foundational computa­
tional ideas too closely with their particular in-
carnations in classical systems". He holds that 
"it may be more productive to seek less restricted 
understandings of such concepts - understandings 
which can cut across many types of computatio­
nal device (connectionist, classicist, and types as 
yet undreamed of)" [5, p. 122]. 

Therefore, connectionists simply want to pre-
serve the computational terminology; however, 
they are in a way also constrained to do so. 
Namely, with the superpositional knowledge re-
presentation, a weight (or set of weights) can-
not be identified with any fixed semantical con-
cept/content because each weight in the network 
contributes to the representation of many such 
semantical units. Analogous problems characte-
rise attempts to explain processes which take part 
in the network, its skills/abilities and the results 
it produces. In short, connectionists need some-
thing by means of which they could form/express 
a kind of top-level explanation of what is going on 
in a network, because without such an explana-
tion their results and working methodology would 
be "obscure" [5, p. 49], or at least not of the 
scientific kind. And the standard computational 
terminology seems to be an appropriate means 
for ali such explanation. There are various te-
chniques/methods by which such top-level expla-
natory schemes are developed (see, for example, 
[5]); however, we'must know that such top-level 
descriptions are only post hoc semantical explica-
tions of what the network knows/does, and not 
of what is really going on inside the connectionist 

system. 
To sum up, with ali types of cognitive models, 

we use/need more levels of functional descripti­
ons of the phenomena on which we try to identify 
(model and handle) those features of the men-
tal which we find interesting. But we should not 
confuse reality with descriptive models; it can be 
useful/necessary to assign the standard compu­
tational model to the natural systems of neural 
networks as well as to artificial ones, but there 
is ali the difference between the "deep reality" of 
such systems and their top-level algorithmic de­
scriptions. 

5 When You Need It 

I agree with Searle that mind is not intrinsically 
a digital computer, but I hold that his criticism 
partly misses the point. Namelv, virtually no-
thing can be said to be "intrinsic to the physics", 
for virtually everything that "exists" (entities, 
forms/kinds, qualities. etc.) has been assigned 
to the physics by the observer/interpreter: there­
fore, it would be pretty hard to hold that brain 
literally is a digital computer. However, Searle 
leaves opened the main question we are concer-
ned with here, and that is: Can the (unknown) 
relation between the mental/mind and the physi-
cal/brain be successfully studied/explained on the 
basis/model of the (known) relation between soft-
ware and hardware? And in the context of this 
question, the fact that "nothing is intrinsically a 
digital computer" [15, p. 212] counts rather little. 
Finally, we should put also the question why is the 
computational model of the mind so widely used 
if it is not valid. But the answer to this question 
seems rather simple: we need some cognitive mo­
del, and we don't have a better one. Namely, "no 
one has much of a clue" [5, p. 224] about the na-
ture and the ways of emerging of conscious mental 
states: consequently, we are constrained to speak 
"in figures", and the most appealing set of figures 
seems to be the one offered by the computational 
technology. 

5.1 The First Move 

For Clark it is a "mystery ... how conscious con-
tent is possible at aH" [5, p. 224], while Dennett 
qualified human consciousness as "just about the 
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last surviving mystery"; he defines 'mystery' as "a 
phenomenon that people don't know how to think 
about" [7, p. 21]. And in such cases, figurative 
speech enters the stage as the only possible tool 
of thought and of creative imagination. If a the-
ory in general can be said to be "the conceptual 
vehicle with which we ... come to grips with the 
world" [6, p. 117], we could say that metaphor 
is a vehicle with which we come to grips with the 
inexpressible: it is the first move toward a scien-
tific theory. 

Metaphor is a rnapping between the two do-
mains, and as a such it forms a cognitive mo­
del which give us an opportunity to speak of one 
(unknown) domain in terms of another (known) 
domain. Black [2] speaks of the isomorphism be-
tween two domains of the metaphor, while Lakoff 
stresses that the mapping defined by metaphor 
must "preserve the cognitive topology of the so-
urce domain, in a way consistent with the inherent 
structure of the target domain" [11, p. 215]. Let 
us note that isomorphism by itself does not gua-
rantee the preservation of the cognitive topology 
because an isomorphic mapping could be defined 
in a way which is not in accordance with the co­
gnitive topology. Further, most metaphorical ma-
ppings are not isomorphic, but partial and/or in-
complete in the sense that not every entity from 
the source domain has its counterpart in the tar­
get domain, and not every entity from the tar­
get domain has a counterpart in the source do­
main. In this context, the degree of the preserva­
tion of cognitive topology and of the isomorphism 
of structures can be taken as the criteria of the 
strength/validity of the metaphor: the strength 
of metaphor rests on its "systematic structural 
match between the two domains" [10, p. 453]. 

According to Boyd, the computational meta­
phor of the mind has an "indispensable role" in 
the formulation of theoretical positions in cogni­
tive science, and has provided "much of the basic 
theoretical vocabulary of contemporary psycho-
logy" [4, p. 487]. The impact of figurative spe­
ech on cognitive science seems to be really im-
mense; indeed, the greatest part of the ideas are 
expressed in figurative fashion, and disputations 
are often (only) wars with metaphors. As an in-
dicative example, let us mention the concluding 
paragraph of Dennetfs extensive book; he admit-
ted that his explanation of consciousness was "far 

from complete"; namely, he has not proposed a 
new scientific theory, but only a new metaphor. 
"Ali I have done", he says, "is to replace one fa­
rnih/ of metaphors and images with another" [7, p. 
455]. Therefore, faced with the mystery of consci-
ous mental states we are, in fact, stili on the first 
move. But there have been made attempts to go 
further, fast and far. 

5.2 A Going Beyond 

The computational metaphor of the mind empha-
sises various (alleged) features of the 'softtvare -
hardtvare' relation, some of which took the form of 
the basic working principles in cognitive science. 
One of the most influential of these features is 
the independence of the software from the hard-
ware. By analogy, it is taken that mind should 
be independent of the brain, and consequently 
that: (1) mind can be studied independently of 
the brain, and (2) mind can be realized by me-
ans different than the human brain. I hold that 
both the above hypotheses are worthy of research; 
however, the independence of software from hard-
ware should be well understood before putting too 
great expectations on it; let us see an example. 
Dennett says: "if what you are is the program 
that runs on your brain's computer, then you co­
uld in principle survive the death of your body as 
intact as a program can survive the destruction 
of the computer on which it was created and first 
run" [7, p. 431]. As is often the čase with Den­
netfs arguments, I must say "perhaps"; namelv, 
to see the real strength/weakness of the present 
argument we should first clarify (1) under which 
conditions can a program "survive the destruction 
of the computer", and (2) how could we afford the 
same conditions for the human mind (understood 
as a program). 

In its source form, a program does not depend 
on hardware, but it depend on the compiler for 
(on top of) which it was written: the destruction 
of the compiler would make a source (not compi-
led) program "dead". Namely, a source program 
for which there is no (more) compiler is but a heap 
of signs without meaning, because it is the com­
piler that defines ("gives life" to) the syntax and 
semantics of a programming language, and with 
it, to ali programs written in that language. On 
the other hand, after being compiled (linked and 
loaded), the program no more needs (depends on) 
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the compiler, but is now dependent on the given 
hardware (on/in which it has been loaded). More-
over, when a program is compiled, loaded and lin-
ked, it could be conceived of as "a part" of hard-
ware; namely, what in the source program were 
words and sentences (instructions) are now simply 
energetic (tensional) states of some points (bits) 
of the hardware. But couldn't a program, even in 
such a form, be copied on a new hardware (and 
so outlive the old one)? Perhaps; but without 
additional adjustments, only on an "nearly identi-
cal" one. Therefore, for the survival of the human 
mind (after the death of his brain-hardware) we 
should have a "nearly identical" new brain, and 
"a version of functionalism" (Dennett's position) 
will not afford us anything of that kind. 

To sum up, it is of little avail to try to map the 
hardware independence from the domain of Com­
puter system on the domain of human mind/brain 
system as long as we don't know (notably) more 
about the lower levels of the latter. Hardware 
independence has been developed with an essen-
tially bottom-up approach: one must know the be-
low level to develop an interface which makes the 
higher level entities (relatively) independent from 
those of the lower level. On the other hand, to 
deal with the mind on the abstract/functional le­
vel, while leaving aside the physical idiosyncra-
sies of the brain, means to follow the top-down 
approach. And it is hard to expect that such an 
approach could lead to some spectacular results 
concerning independence before we touch the bot-
tom/brain. In other words, the computational 
metaphor/model of the mind is of a limited power; 
it could be useful inside some limits, but when vre 
try to step by it further than it can lead us, we 
bind our efforts to failure. 

6 Conclusion 

Theories/paradigms are constructions rather than 
discoveries; the phenomena can be described in 
endless ways; the Truth (if it exists) is unattain-
able, so that the pragmatic value (if we can reco-
gnize it) remains our only guide in the scientific 
enterprise. Processes in the human brain are not 
intrinsically computational; however, it is a com-
mon scientific practice to try to apply a known 
models to a new (unknown) domains; such is also 
the attempt to explain the human mind/brain on 

the basis of the computational model. I hold that 
such an approach can give good results of the 
functional type, but concerning the phenomena of 
consciousness vre are stili in the scope of specula-
tions. And if we are ever to reveal the mystery, 
the connectionists approach could be the best one. 
Hovrever, it seems that there can be no real pro-
gress on the way to artificial mental states as long 
as vre don't know more about the ways the mental 
states emerge in the human brain. 
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The ability ofartihcial internal languages to mirror the world is compared to the power of 
natural language systems. It is concluded that internal languages are equally as arbitrary, 
and therefore have no representational advantage. Alternative forms of representation, 
including particle interaction in cellular automata, are considered. 

1 Introduction 2 Saussure's Approach to 
Language 

There is a prevalent Al assumption that natural 
language is, in some way, messy and entangled, 
and that it must be mappable to some other lan­
guage form - an internal, regular, logical form 
which is somehow reflecting the actual structure 
of the world in a more straightforward manner. 

This paper suggests that such internal language 
systems cannot exist in the way conceptualized 
and that any language-like description of mental 
states (especially where pertaining to "word mea-
ning") may well be misdirected. The assumption 
that natural languages are fuzzy and biased de-
scriptions of the world may be correct, but this 
does not mean that there are better descriptions 
in terms of better languages. 

The problem arises from an intuitive picture of 
the relation between computer languages, Turing 
Machines and.human thought. The metaphor 
is very possibly a misleading one. We assume 
that neurons can be modelled, because they are 
carrying out deterministic, computable processes. 
But there is no guarantee that there is a parsi-
monious higher level redescription of brain states 
(i.e. groups of neurons, or other simple compu-
ting elements) in terms of a language other than 
a natural language. 

De Saussure (1983) claimed that "Everything ha-
ving to do with languages as systems needs to be 
approached ... with a view to examining the limi-
tations of arbitrariness" 

In considering the relation between the surface 
form of natural language and the mental repre­
sentation of its meaning, de Saussure noted that 
the mapping from the surface form of individual 
words to their meaning is for the most part ar-
bitrary. That is, there is no substructure within 
the surface form (signifier) that allows its relati-
onship to the underlying meaning (signified) to be 
deduced. There are minor exceptions to this ge­
neral principle, such as inflectional structure and 
onomatopoeia. 

These examples do not serve to undermine the 
general conclusion: word meanings have to be le-
arnt rather than inferred. This position is an 'ano-
malist' view of meaning. The alternative view, 
that a language may have basic elements which 
are similar in structure to whatever is being re-
presented we will call an 'analogist' position. • 

De Saussure differentiated between signifiers 
being totally arbitrary, and the relative arbitra­
riness of constructions such as 'dix-neuf? - nine-
teen in French, composed of 'dix' (ten) and 'neuf' 
(nine). Although the meaning is derived from the 
components, the ordering of the elements and the 
way in which meaning of the whole is derived is 
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also arbitrarv. However, once the pattern for de-
riving the meaning of the compound has been le-
arnt, then ali such patterns can be interpreted. 

There is no absolute division between what is 
arbitrarv and what is analogous: take for exam-
ple a visual scene, a photograph of the scene, a 
sketch of the scene, a linguistic description of the 
scene, and a single word. Analogies can be drawn 
between each of these; different levels of detail 
and structure are available in each čase. Although 
the linguistic example does not explicitly look the 
same as the visual scene, it is important to bear in 
mind that the mind must be able to construct the 
linguistic structure from the visual scene - there-
fore in some sense it is an analogv. But any ma-
pping process could be said to create similar or 
analogous structures: when we cannot trace the 
process, we can call the relationship "arbitrarv". 

3 The Medium Of The Mind 

A common Al description of the "medium of the 
mind" is one involving language-like representa-
tions. That is, we have arbitrarv svmbols (word 
or morpheme analogues) which are combined by 
some mechanism (thought) to give meaningful 
expressions (which can often be directlv related 
to states of the world). This is the basis of Newell 
and Simon's definition of physical-symbol systems 
(Newell and Simon 1976). 

In the Saussureian picture thought is too for-
mless for study - there is no object of study out-
side a language itself. However, when it is held 
that regular internal languages are superior to na­
tural language descriptions precisely because the 
structure can clearly be related to the world - so 
an analogy to objects and their relations would 
be expressible in a perfect language of thought -
we have to ask exactly what is being contributed 
by the artincial system. Such languages are rela-
tively arbitrary just like a surface language form. 

The power of the artincial systerns is based on 
combinatory and modification mechanisms which 
should be constructed so as to allow for correct 
inferencing and therefore intelligent reasoning; a 
mirror of the world. As Fodor and Pylyshyn 
(1988) emphasize, it is systematicity and produc-
tivity that underlie the power of such language sy-
stems. But these are properties of natural langu­
age as well. Although it is assumed that our gram-

mar systems are generally not punctuate, certain 
complex properties, such as the existence of non-
literal language and fuzziness of descriptions make 
it messy to formally describe. 

Coherent models using internal languages range 
from GPS (Feigenbaum and Feldman 1963) to 
SHRDLU (Winograd 1972, 1980) to the naive 
physics project (Hayes 1979, McDermott 1987) 
and beyond. However, many of these research 
programs have run into difficulty. I would like 
to suggest that this is because there is something 
wrong with this picture; namely that there is no 
fundamental difference between a 'messy' natural 
language and a 'clean' artincial one, in terms of 
the analogy properties that are required. 

4 Problems with Analogy 
Languages 

The idea of an analogical language composed of 
arbitrary units is problematical because natural 
language then is equally powerful. This problem 
is neatly summed up by a quote from VVittgen-
stein (1974): "The rules of grammar cannot be 
justified by shewing that their application makes 
a representation agree with reality. For this ju-
stification would itself have to describe what is 
represented. And if something can be said in the 
justification and is permitted by the grammar -
why shouldn't it be permitted by the grammar I 
am trying to justify?" 

In other words, no language can be used to ju-
stify another in terms of giving a better descrip­
tion of reality, simply because no language can 
be said to have a better syntactic mechanism for 
doing this. 

We might argue that the internal representa­
tion does not have to be in a language-like form. 
De Saussure gives the example of a picture dicti-
onary as the common model people have for the 
way in which word meanings are stored. So, for 
Latin, the surface form for tree is arbor, the men-
tal representation is a picture of a tree, for a horse 
equus and the relevant picture. So we seem to 
have some kind of analogistic representation. 

But there is absolutely no justification for the 
picture-dictionary model to be taken as a more 
appropriate version of the mental representation 
of meaning. The fact that we introspect visual 
images is of no import. We are stili left with 
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the problem of vrorking out how these entities are 
combined in thought; imagine trying to combine 
the pictures from the picture-dictionary together 
to give a picture of a sentence meaning. The only 
medium we know of where this type of combina-
tion is natural and obvious is in common-sense. 
And common sense is notoriously difHcult to for-
malize. 

The problem is especially clear when we look at 
natural language, and see that we already have 
one level of anomalous representation (surface 
language) and one level of analogous representa­
tion (sensory transduction). We can imagine a 
chain or gradient of arbitariness between them -
but the artificial language approach doesn't seem 
to fit anywhere in the chain other than at a point 
equivalent to natural language. 

A similar regress argument is touched on by 
Dennett (1991) who points out that a mentalese 
(internal language) will not help in any way in 
explaining how we conceptualize things we are 
going to say - because then we have to explain 
how conceptualization of the mentalese sentence 
occurs, and so on. 

This leaves the internal language advocate with 
a number of problems: 

— Where do arbitrary primitives come from? If 
they are arbitrary how can they represent things 
other than by a direct link to those things? (This 
is really a variant of the symbol grounding pro­
blem (Harnad 1990) and also applies to natural 
language). 

- Where does the extra power of an internal lan­
guage come from? 

- Why is it that the primitives and combination of 
an internal language are correct, whereas natural 
language words are not? •, 

— Why don't we communicate in more perfect 
forms of language - a whim of evolution? 

Another possibility is that there is a simpler 2 

analogy representation that surface language can 
connect to: perhaps something along the lines of 
the 2^D and 3D sketches (Marr 1982). This seems 
more tenable, because analogy is not the same as 
isomorphism, so we have the option of dropping 3 
certain pieces of irrelevant information or noise. 
We also have plenty of information about the way 

the brain processes data that support this (for 
example, multiple topographic maps at different 
depths of analysis). However, there is the danger 
of falling into a picture-dictionary analysis of me­
aning. The chain of analogies must be explicitly 
traceable the whole way to language. 

The final possible argument is that sensory 
transduction is not analogous to anything: if we 
regard sensory data as being like words, then per­
haps we can regard ali representations as being 
relatively arbitrary ali the way up. 

In fact, the sensory array simply can't an ar-
bitrary code. An iconic (analogous) sign is so-
mehow structured like the thing it is conveying. 
Naturally, we don't see much similarity between a 
list of neural firing rates and the structure of the 
world that we perceive. But making a compari-
son of this nature is erroneous, because sensory 
transduction is (for this purpose) the plače where 
ali explanation must come to an end. This is aH 
that we experience - it is the raw structure of the 
world. 

5 Non-Language Systems 
Von Neumann (1958) wrote that "[LJogics and 
mathematics in the central nervous svstem, when 
viewed as languages, must structurally be essen-
tially different from those languages to which our 
common experience refers." Systems which do 
not use the traditional forms of formal language 
are beginning to be utilized. 

5.1 Physical Symboloids 

Van Gelder and Port (1993) discuss the possibility 
of arange of physical "symboloid" systems. These 
are defined by three points: 

1. There is a set of primitive types Pi; for each type, 
there is available a potentially unbounded num­
ber of actual physical instances or tokens (sym-
boloids); 

2. There is a (possibly unbounded) set of compo-
und types, Ri; likewise, for each type, there is 
available a potentially unbounded number of ac­
tual phvsical instances or tokens; and 

3. There is a set of transitive and non-reflexive con-
stituency relations over these primitive and com-
pound types. 
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Traditional models concentrate on static con-
catenative combination of static arbitrary primi-
tives. Static concatenation is the combinatory 
process of the written form of language, where 
symbols are arranged in a linear sequence, main-
taining their identity within the composed repre-
sentation. This approach conceals a number of as-
sumptions about the possible form of the compo-
nents and the ways they can be combined. Other 
systems may contravene these assumptions: 

Primitives 

- May be either static like written words or dyna-
mic like spoken words. 

- They could be analog or digital - there may be 
a continuum of possible token types. 

- Configuration may not be arbitrary. 

Combinations 

- The process of combination can have dynamic 
or static aspects. For example, dynamic primiti­
ves can be combined statically - one example is 
a musical chord. Static primitives can be com­
bined dynamically - the primary structure of a 
protein is determined by the sequence of amino 
acids, but as the chain forms, other interactions' 
such as the formation of hydrogen and van der 
Waals bonds between distant acids causes the 
protein to take a secondary and tertiary struc­
ture. 

- The mode may have one of three effects on the 
primitives (these are not sharply differentiated). 
The primitives could simply be concatenated, or 
they could be combined in a-context-sensitive 
manner, giving distorted but recognizable sym-
bols, or they could be combined in a functio-
nal manner, which doesn't preserve constituent 
structure. 

- The syntactic rules for composition can be more 
or less strictly applied (ie there might be a cer-
tain degree of fuzziness in rule applicability or 
ways in which the rule is applied). 

Van Gelder and Port conclude that it is not at 
ali clear which of the possibilities are actually em-
ployed in cognition. For the most part it is hard 
to work out where they should be applied, and 

what advantages they might give. However, it is 
certainh/ true that these possibilities have, for the 
most part, been neglected in Al research, because 
they are not so easily programmed in traditional 
computing architectures. 

5.2 A Concrete Example Of Emergent 
Symboloids 

Recent computer science paradigms such as evo-
lutionary computing (Koza 1992) and computa-
tion by cellular automata (Michell, Crutchfield 
and Hraber 1994) give a powerful way of coming 
up with representations and processes correspon-
ding to the symboloid description. 

In these approaches, the primitives and me-
thods of combination are fixed by the program-
mer (e.g. LISP operatiorus and syntax, mapping 
templates), and although structures can evolve at 
a higher level, these basic level elements must re-
main. There is no way around this because there 
will always have to be a metarepresentational for­
mat to represent the representations in (in the 
čase of brains, this is the behaviour of neurons). 
Hovvever, the behaviour of the overall system may 
not easily be describeable in terms of the primiti­
ves and combinatory rules. The notion of emer-
gence of system properties doea not rely on a de­
scription in terms of arbitrary symbols. How and 
when emergence occurs is an interesting current 
research problem: notions such as whether com-
putation in cellular automata occurs at "the edge 
of chaos" (Langton 1990, Mitchell, Hraber and 
Crutchfield 1993) are being disputed. 

Cellular automata (CA) are perhaps the sim-
plest kind of system to look at. These are compo­
sed of cells (often a one dimensional row of cells), 
which change state over tirne. This is decided 
using a rule. which determines what state the celi 
switches in to, given any pattern across a local 
set of cells (the template). The update rule is 
usually the same for every celi. To analyze the 
emergence of globally organized behaviour in CA 
svstems which have been evolved to perform spe-
cific tasks, it is possible to filter out "particles" 
and trace the interactions between them. This 
kind of work is described in Hanson and Crut­
chfield (1992). 

The system described in the paper is used to 
classify an initial configuration in terms of pro-
portion of cells turned to zero at the start. If this 
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is more than half the cells, then the final output 
(after a fixed number of iterations) should be ali 
zeros. If there are less than half at zero, the ou­
tput should be ali ones. 

The particles are discontinuities between com-
putationally homogenous regions of the array that 
are found in some runs that settle on sophistica-
ted processing strategies. Different particles may 
meet each other as they move across the array 
over tirne: they interact in a variety of "sym-
boloid" ways - they may cross each other wi-
though interference or may interact to annihilate 
each other, they may react to produce new types 
of particle, or they may simply decay. These 
non-compositional and non-reversible interactions 
carry out a computational function, allowing in-
formation to be transmitted between different re­
gions of the array, leading the system to construct 
its final classification. 

This is probably the best explicit example we 
have of interacting symboloids which underlie a 
symbolic (arbitrary) classificatory system (even 
though the example in the paper is only perfor-
ming a binary categorization). We start the CA 
with an input pattern (which we might think of as 
being comparable to a sensory array), for which 
it has to produce an arbitrary output. The sym-
boloid structures are not analyzable in terms of 
their similarity to the full scale patterns, 

Given the arguments against language-like in-
ternal representations, it seems likely that these 
new methods for computation, although relatively 
novel and primitive at present, will have a signi-
ficant role to play in future Al models. 

Furthermore, the CA can be described in terms 
of a Mealy Machine (formal language rewriting 
system). This fits in with the assumption that, 
at some level, ali processes can be described in 
terms of formal language systems. 

5.3 Connectionism 

The more familiar modelling paradigm of connec­
tionism can also support these arguments. For 
example, the Recursive Auto-Associative Memory 
(Pollack 1990) also instantiates alternative forms 
of compositionality, being able to represent tree 
structures on a fixed number of units. The com-
positional structure does not preserve the charac-
teristics of its components. 

Clark (1993) argues that in connectionist sy-
stems there doesn't have to be any lowest level of 
context-free atoms (arbitrary primitives); in some 
cases you can't actually analyse out that there are 
primitives. We can't rely on the activations or 
weights of a connectionist net or the particles of 
a CA process as context-free units - these are not 
necessarily interpretable on their own, and do not 
have to be the same in variants of the same system 
trained/evolved from different starting points. 

This is also true of real brains. Even sensory 
transduction is not context free - although the 
responses of individual transducers are determini-
stic, they are also highly ambiguous in terms of re-
lation to external stimuli. This ambiguity is pre­
sent at various levels in the visual cortex (de Yoe 
and van Essen 1988), the most closely studied cor-
tical processing area. The presence of ambiguous 
response (or coarse coding) can allow for a better 
overall encoding than having a greater number of 
more highly tuned transducers (Hinton, McClel­
land and Rumelhart 1986). This principle means 
that we don't have to have a lowest level at which 
context-free arbitrary primitives are employed. 

6 Conclusion 

This line of thought is particularly salient to one 
classical attack on the hard Al paradigm: the 
"Chinese Room" argument (Searle 1980). The 
thrust of this argument is that arbitrary symbols 
are not sufficient to encode meanings. This cla-
shes with the idea that Turing Machines, which 
use wholly arbitrary symbol manipulation, are 
able to perform any computational process (in-
cluding those of the mind). 

The confusion arises between different levels of 
description: a description in terms of language-
like representations can be made. But from the 
arguments discussed, it seems that internal lan-
guages do not underlie natural language charac-
teristics. Emergence of properties, such as the ar-
bitrary referential nature of words, do not have to 
rely on the presence of similar underlying structu­
res - indeed, to claim such is an argument similar 
to the homuncular theory of visual perception. 
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In this paper I submit that the "Chinese room" argument rests on the assumption that 
understanding a sentence necessarily implies being conscious of its content. Hovvever, 
this assumption can be challenged by showing that two notions of consciousness come 
into play, one to be found in Al, the other in Searle's argument, and that the former is 
an essential condition for the notion used by Searle. If Searle discards the first, he not 
only has trouble explaining how we can learn a language but finds the validity of his 
own argument in jeopardy. 

In the well-known "Chinese room argument," 
John Searle argues against the idea that the pro-
cess of understanding a language can be tanta-
mount to mere manipulation of formal symbols. 
0 ver the years the argument, considered fatal 
against "strong Artificial Intelligence," has pro-
voked a number of objections (see commentary 
to Searle 1980; Carleton 1984; Rey 1986). Here 
1 shall present another possible one. My hope is 
that this objection will shed some light on the 
relationship between understanding and conscio­
usness. As I will argue, Searle's position assumes 
that to understand a sentence one must necessa-
rily be conscious of its content in a way I will 
specify later. So, the purpose of this paper, then, 
is, first, to differentiate understanding from be­
ing conscious of understanding and, second, to 
clarify the role that various notions of being con­
scious play in the argument. In this way I hope 
to show that in both cases Searle fails to make 
his point. Let's start with the argument itself. 
Searle's original purpose was to demonstrate that 
computer programs, however complex and accu-
rate, will never be able to understand a language. 
Simplifying somewhat, Searle's argument goes as 
follows: Searle, completely ignorant of Chinese, is 
locked into a room with a book of Chinese sym-
bols and a book, in English, that explains how 
to combine and transform the Chinese symbols. 

Every now and then, sheets of paper with Chi­
nese symbols written on them are slipped to him 
from under the door. His task is to give back a 
sheet of paper with Chinese symbols whenever he 
receives one. To do this, he compares the sym-
bols on the incoming sheet with those on the Chi­
nese symbols book, checks which rules are allowed 
for the occurring symbols, and transforms them 
accordingly. In this way, Searle transforms the 
symbols by means of a set of rules in a purely 
"formal" way, that is, by identifying the symbols 
just by looking at their shapes. Outside the room 
there is a Chinese person who is giving the sheets 
to Searle taking them to be "questions" and the 
sheets handed over by Searle to be "answers." As 
a matter of fact, the Chinese person, a perfectly 
fluent native speaker, considers Searle's answers 
to be adequate responses to the questions. Con-
sequently he believes that inside the room there is 
somebody who understands Chinese, and grants 
in this way that Searle has passed the Turing test 
for Chinese. However, Searle's comprehension of 
Chinese is not improved by his symbols proces-
sing. Hence, understanding a language is not 
equivalent to symbols processing, and the Turing 
test is not sufficient to determine understanding 
(Searle 1980). Against this argument a number of 
objections are possible. The most interesting one 
is the so- called "systems reply." According to 
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this objection, even if Searle himself does not un-
derstand Chinese, the entire svstem, that is, the 
books, the room, the execution of the functions, 
etc , does. Searle has a rebuttal to this line of 
thinking: even if he memorizes ali the contents of 
the books and the rules, and walks around utte-
ring Chinese, he stili wouldn't be a Chinese spea-
ker, insofar as he would not understand Chinese. 
Let's inspect the main argument and this rebuttal 
more closelv. Consider the main argument from 
Searle's point of view. It goes as follows (1): 

i) I'm manipulating formal svmbols for Chinese 
ii) I do not understand Chinese iii) The manipu-
lation of formal svmbols is not equivalent to un­
derstanding 

This very argument has been transposed, by Se­
arle himself, also in terms of syntax versus seman-
tics (Searle 1990). The idea is that we may sub-
stitute "manipulation of symbols" with "syntax" 
and "understanding" with "semantics". Here is 
the new version of the argument: 

i) I'm doing syntax for Chinese ii) I'm not se-
mantically competent with Chinese iii) Syntax is 
not sufficient for semantic competence 
• Searle's conclusion, in this new formulation, is 
that syntax is not sufficient for "taking čare" of 
semantics (Haugeland 1981). Now, how does ali 
this demonstrate the insufRciency of the Turing 
test as a test for linguistic competence and, hence, 
for understanding? We saw that, according to Se­
arle, purely syntactical manipulation is sufficient 
for passing the test. S.o, in order to pass the Tu­
ring test it is not necessary to have semantics, that 
is, to have an intentional mind. Now, consider the 
problem of being a judge for a Turing test. The 
judge is a normal human being that, at the end 
of the test, supposes that there must be a com­
petent Chinese speaker inside the room or, in the 
systems reply, that Searle is a competent Chinese 
speaker. On what basis could the judge evaluate 
the adequacy of the responses by Searle? Given 
that he evaluates not only the syntactical correc-
tness of the responses, but also - and primarily 
- their semantical adequacy to the questions, his 
judgments must be grounded in a semantical ba­
sis too. But since what Searle is doing is nothing 
but symbol manipulation, we conclude that syn-
tax is sufficient for semantics. Therefore, in order 
to show that syntax is not sufficient for semantics, 
^parle has to suppose that syntax is sufficient for 

semantics. How is such a simple rebuttal of Se-
arle's argument possible? It seems to me that 
two different notions of semantics are at stake. 
^On one side, say from the Turing test perspec-
tive, Searle may manage reference - for instance, 
he may perform correctly on questions like "could 
you indicate a red jacket?" - and truth - correctly 
replying to a list of true/false questions. On the 
other side, say from the first person perspective 
of Searle himself, he does not know what he is 
doing; he cannot, as it were, "inspect" the con­
tents of its own utterances. Analogously, since 
semantics was intended as a substitute for under­
standing, we have two notions of understanding 
either. ^In one čase, that of the Turing test, Se­
arle does understand; in the other, that of the first 
person perspective, Searle does not understand 
what he is saying or doing. This second notion, 
however, is not the notion of understanding per se 
, but the notion of being conscious of understan­
ding. Searle's argument rests on the idea that un­
derstanding a language necessarily implies being 
conscious of the contents of utterances or mental 
states. It is Searle's task to show that understan­
ding necessarily implies consciousness. Recently 
Searle has argued exactly along these lines, clai-
ming that we must be able to be conscious of ali 
the mental contents we have, at least in principle 
(Searle 1992). Now, what relationship between 
understanding and consciousness may we have in 
Al? Consider the čase of Al program SHRDLU. 
SHRDLU simulates a robot arm which can move 
a number of solids, such as cubes, pyramids and 
spheres, in a fictional world, that is, in a world 
completely generated by the computer itself (Wi-
nograd 1972). A human being gives SHRDLU 
commands such as "pick up a pyramid and put 
it over a big blue block," and SHRDLU reports 
what it is doing and why. Since SHRDLU may 
report what its final task is, and what the rele-
vant steps it has to perform to accomplish the 
task are, I submit that it is conscious of what it 
is doing in the very simple sense that it is able to 
keep records of its own steps. This should not be 
considered a trivial matter: for instance, some-
times we are completely unable to describe how 
we perform certain actions or what the basic ele-
ments of certain skills are. The situation with 
Searle's reports, in the reply system response, is 
substantially the same. Searle may be conscious 
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of manipulating a certain symbol, i.e., the same 
symbol he used yesterday, even if he cannot be 
conscious that he is manipulating a certain sym-
bol, that is, he does not know what the symbol 
means (2). The very fact that Searle may report 
his own activity on ali this symbols' manipula-
tion corresponds to being conscious of. One may 
argue that Searle's reporting activity actually is, 
again, symbols' manipulation, so that no level of 
consciousness could be reached through this ac-
tivity. I disagree. When Searle reports his ac-
tivity about symbols, he is using the symbols to 
refer to the symbols themselves. To be adequate 
to the task, Searle has to differentiate between 
an object-language and a metalanguage, and it is 
exactly this feature that defines the kind of consci­
ousness I am discussing. In the čase of Searle's na-
tive language understanding, on the other hand, 
the reports would be conscious reports in another 
sense. Specifically, Searle would be conscious that 
the content of the proposition he has in mind or 
has pronounced is such and such. The that clause 
gives to the report the intentional character Searle 
considers proper to the domain of real conscious 
understanding. In this way understanding, an in­
tentional notion, is explained exclusively in terms 
of conscious understanding or, more specifically, 
of being conscious that. The problem here is that 
the distinction between being conscious of p and 
being conscious that p is not taken into considera-
tion in Searle's use of the notion of consciousness. 
On the contrary, Searle's view seems to be com-
mitted exclusively with a notion of consciousness 
as a sort of "certainty" about what is going on in 
one's own mind, that is, only with the consciou­
sness that. Considering the way in which we learn 
a language, this position could be disputed. 

Suppose it is your first French class. The te-
acher tells you that "voiture" in French has the 
same meaning "car" has in English. As to your 
understanding, "voiture" was, up to five minutes 
earlier, a meaningless sound. It was exactly like 
a Chinese symbol for Searle. What differentiates 
you from Searle inside the Chinese room is that, in 
principle, you have direct access to the truth con-
ditions for the correct use of "voiture." Why do 
you have this special privilege? Because you are 
at the right level for the use of a certain symbol: 
that is, you are at the causal interaction level be-
tween macro physical objects and audible sounds. 

What you have to do, and what you may do, is to 
point to a car, pronounce [vwaty:r] and wait for 
your teacher's reactions. In this sense you are in 
the same situation of Searle outside the Chinese 
room, i.e., you are in the same situation of Searle 
in his rebuttal of the systems reply. In this situa­
tion are you conscious of or conscious that ? Until 
your teacher confirms the correctness of your po-
inting, or you have reached a reliable basis of con-
firmation on the use of the sound, you seem to be 
conscious o/saying [vwaty:r], not being conscious 
that you are saying "voiture." If this is correct, 
then learning may be characterized as the passage 
from being conscious of to being conscious that or, 
in semantical terms, from semantic performance 
to semantic competence, and not the other way 
round. If one accepts this conditional, then one 
cannot presuppose that being conscious that must 
always be the čase; otherwise learning would be 
impossible. Since the process of learning could be 
described in the same way with respect to our first 
native language, where we have to correlate beha-
vioral reactions and initially meaningless sounds, 
it is not possible to suppose that understanding is 
just a matter of being conscious that. So, if we are 
inclined to attribute forms of simple intentionality 
to kids, and perhaps to mute animals, we have to. 
admit that being conscious that is not a requisite 
for intentionality, but that being conscious of is. 
We have, then, two different morals, a weak and 
a strong one. The weak moral says that since 
Searle does not differentiate between being con­
scious of and being conscious that, and does not 
take into account the being conscious of phase, 
he makes the process of learning more difficult to 
explain, leaving us without a clear idea on how 
we come to understand our first language. There-
fore, while showing that -as beings capable of na-
tural understanding- we are not computers, i.e., 
syntactical devices, the Chinese room argument 
fails to explain how we are capable of this natural 
understanding. The strong moral is the following: 
to argue against Al, Searle assumes consciousness 
that. Yet, as I have indicated, consciousness that 
requires consciousness of, this latter notion being 
perfectly "graspable" in strong AL Since Searle 
does not take into consideration this distinction, 
he cannot have this latter notion. Consequently, 
without the consciousness of he cannot have the 
consciousness that either. If he cannot have this 
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latter notion, the Chinese room argument is no 
longer compelling. 

Notes 1) I am simplifying a little bit in assu-
ming that Searle already knows that the experi-
ment is on Chinese. The most radical translation 
would be something of the form i) I am manipula-
ting formal symbols for who-knows-what ii) I do 
not understand who-knows-what iii) Understan-
ding is not manipulating formal symbols I think 
this further complexity may be avoided without 
losing anything in the argument 2) The distinc-
tion between being conscious of and that could be 
compared with that between awarenessl and awa-
reness2 by Dennett (1969) or that between phe-
nomenal consciousness and access consciousness 
by Block (1990, forthcoming). 
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Witold Marciszewski and Roman Muravvski: 

MECHANISATION OF REASONING 
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Poznan Studies in the Philosophy of the Sciences 
and the Humanities, Volume 43. 

Editions Rodopi, Amsterdam-Atlanta, GA 1995. 
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1 About the Authors 

Professor Witold Marciszewski is the head of the 
Department of Logic, Methodology, and Philo-
sophy of Science at the University of Warsaw, 
Poland. Roman Murawski is a Professor in the 
Department of Mathematical Logic, Faculty of 
Mathematics and Computer Science, at Adam 
Mickiewicz University in Poznan, Poland. Both 
participated in the Polish research project concer-
ning logical foundations of mechanized reasoning, 
supervised by W.Marciszewski. 

Marciszewski writes on logic, logical philoso-
phy, logic of language, the history of logic, etc, 
as in the recently published "Logic from a Rhe-
torical Point of View", Walter de Gruyter, 1994, 
and "Some Secrets of Internet" (in Polish), War-
saw 1995 (by the way, the latter is a wonderful 
book to encourage beginners in their first steps 
toward the Internet "know-how"). Murawski is 
widely appreciated for his books and papers on 
the history of mathematics and mathematical lo­
gic. MARciszewski and MURawski divided their 
text so that the authorship of the first chapters 
is attributed to the former, of the remaining ones 
to the latter. Stili Marciszewski's perspective to-
wards the problems discussed is present not only 
in "his own" part. On the other hand - the topics 
of chapters attributed to Murawski, in a sense de-
fine the scope of the earlier ones. So - truly spe-
aking - one is bound to refer both names every 
time any one of them is mentioned. Instead, I 
shall refer to Marciszewski-Murawski's work as 
"Mar-Mur", this short form being applied to the 
authors' team. 

2 General information on the 
book 

Firstly: Who will profit reading it? - Students 
and researchers in Computer Science and Al wil-
ling to find a deeper philosophical and histori-
cal background for their professional activities; 
students and researchers in philosophy and hu­
manities aiming at understanding - without te-
ars - the links between Humanities and Mathe­
matics, and between their Ideal Worlds and our 
common everyday technically determined enviro-
nment. Historians of logic should be encouraged 
to see their subject in a new light, to wit as the 
HISTORY OF LOGIC IN THE PERSPECTIVE 
OF MECHANIZED REASONING. In this per­
spective, the three greatest steps in logic are seen 
as follows: (i) the formalistic approach (initiated 
by medieval nominalists and continued by Leib-
niz), (ii) algebraic formalism for a part of logic, 
which enables logical computing (from Leibniz 
to Boole), (iii) the reduction of the whole logic 
to that algebraic formalism, performed through 
elimination of quantifiers (Skolem, Hilbert, Gen-
tzen, etc). These three points form the main plot 
of the story. 

Secondly: Who will like to read this book? 
- Everybody who is eager to KNOW of the 
World, who is also eager to "Know-What" about 
the early roots and philosophical motivation for 
"Know-How" in computing. The book is well 
written and there is no danger of feeling bored 
while reading it. 

"There are as many stories as are "perspecti-
ves" into which we put data found in the sources" 
(p.11). The history of logic is no exception here. 
MarMur's perspective of tracing the early ideas in 
the history of logic is based on discovering the la-
ter interplay of "natural" reasoning against "arti-
ficial" reasoning. This artificial reasoning, again, 
is analysed as created in search of the nucleus (the 
best paradigm) in the natural reasoning. It is 
to be treated as the tool to extend and improve 
natural human mind's abilities of encoding and 
transmitting information. 

Needless to say, talking today about that kirid 
of stuff involves making use of a rather sophisti-
cated conceptual apparatus. It also means the 
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danger of being involved in the endless discussi-
ons about this apparatus and opposing theories 
pretending to be the only legitimate users of this 
apparatus. The authors avoid that danger; as far 
as possible they take a "neutral" option. Due 
to this strategy the reader is able to follow what 
is the common base underlying possible differen-
ces. The reader will not encounter any inclina-
tion, e.g., to discuss "whether the logicist cogni-
tive science is possible"; rather he/she will be con-
fronted with what is cognitive science about and 
what are the contexts where logical theories must 
be recalled. No digression is made toward the 
Fodorian subtleties of the status of the human 
"internal language", but stili there is put the pro­
blem of the nature (necessarily or not-necessarily 
linguistic) of the information encoded in the hu­
man mind (p. 33, items (1) - (3)). The authors' 
option is - so to speak - in agreement with a "so-
phisticated common sense". No special philoso-
phical creed is needed to accept their points and 
follow arguments. One can find for instance that 
Mar-Mur's book ideas are independent both of the 
"early" ("functionalistic") as well as of the "later" 
("anti-functionalistic") Hilary Putnam. In Marci-
szewski's line of commenting the subject matter, 
the simple, although quite often rather unknown, 
facts are recalled and collected together: they are 
the facts that speak for themselves. 

The Authors seem to take for granted that once 
the model of Mechanisation of the language is for-
med, the remaining details are inessential. Is this 
perspective - one can guess - computer-style imi-
tation of human brain's activity can succeed de-
spite differences in the "nature" of the languages 
and the programmes of heuristic strategies. 

"No one with a serious interest in the philoso-
phy of mind or the philosophy of language can 
afford not to study it" - these are Stephen Schi-
ffer's (from City University of New York) words 
about Hilary Putnam's book "Representation and 
Reality". One can repeat this opinion concerning 
Marciszewski-Murawski's book. 

3 "Spacing" 

There are seven Chapters, carefully divided into 
sections and subsections, fully listed in the 
"Extended Table of Contents" which closes the 
book. Together with instructive References (pp. 

231-252), Index of Subjects and Index of Na-
mes, these devices friendly assist the search for 
information retrieval. Chapter 1 introduces the 
programme of the book. Some known defini-
tions are recalled and some other nicely elabo-
rated. For instance, the concept of Cybernetic 
Universe is introduced ("the world seen as consi-
sting of information-processing machines") along 
with its suggested model-theoretical interpreta-
tion (p. 20). Among other topics in this chap­
ter there are: the existence of model-based non-
apperceived ("unconscious") reasonings; the En­
coded Potential Concepts with which a machine 
should be equipped to match natural intelligence 
in model-based reasoning. 

To some extent, this book can be defined by the 
names quoted in it. In Chapter 1 there are refer-
red to, for example, the following authors: John 
von Neumann (1951, his theory of automata), 
Helmut Schnelle (1988, on "naturalisation" of lo­
gic), M. Daviš (1988, on Posfs contribution to 
computer science), Kari Popper (1982, the idea 
of a metaphysical research programme), H. Breger 
(1988, "know-how" in the context of mechanised 
reasoning), J. A. Makovsky (1988, the idea of En­
coded Potential Concepts, referring to Chomsky's 
notion of linguistic competence), and R. Penrose 
(1988, 1989, mentioned when the Authors ask "at 
which level of complexity the codes in question are 
to be looked for", p. 43). 

Chapters 2 - 5 deal with the roots of contem-
porary logical ideas adopted in the search on me­
chanisation of reasoning. (Chapters 2 and 3 by 
Marciszewski, the next two by Murawski). Chap­
ter 2, "The Formalization of Arguments in the 
Middle Ages" is mainly about Ramon Lull whose 
legend is used as a background to show a real pro-
gress towards machanization of logic, due to the 
nominalistic school. 

Chapter 3 discusses Leibniz's contribution to 
the idea of mechanisation of reasoning. Both Lull 
and Leibniz are Marciszewski's great fascinations. 
The first as (in a sense) "a black character" (I 
guess that one could add, to the Chapter 2, a 
motto: "Why LulPs name is stili important, al­
though he did not done the work he is praised to 
have done?"). Leibniz is of course praised as a 
"very VIP" in the history of logic. I should like 
to insist that the reader concentrates his attention 
on author's argument how strong was the call for 
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universal languages, ideography and algorithms in 
Leibnizian times. As I understand, the author su-
ggests that there is a relatively straight way from 
Leibniz to contemporary cognitive science and Al 
(meanwhile - Goedelian results showed, why Le­
ibnizian programme , after ali, contained in it-
self some inevitably Utopian elements (p. 105)). 
Chapter 4 narrates what happened between Leib­
niz and Boole in the process tending to algebrai-
zation of logic. 

Chapter 5 gives a careful and clear picture of 
the English Algebra of Logic in the 19th century. 
We find description of the logical machine of Je-
vons (now on display in the Oxford Museum of the 
History of Science), as well as information about 
other early logical machines. Many of the deta-
ils included herein, even if well known to Anglo-
American readers, give quite new information to 
continental readers, especially those not profes-
sionally occupied with the history of logic. In 
Chapters 6 ("The 20th century way to Formali-
zation and Mechanisation") and 7 ("Mechanised 
Deduction Systems") new aspects appear. Histo-
rical motives are continued, but as we pass from 
Peano, Prege and Russell to Hilbert, Herbrand 
and Gentzen, the standard instruction on the to-
pics in question is being included into the text. 
It results in the effect that one can rely on these 
chapters as on a well elaborated textbook. (In 
this context, see fragments in 6.8 on Gentzen's 
natural deduction and in 6.9 on Beth's Semantic 
Tableaux). "The History" commented in the last 
chapter includes results, projects and publicati-
ons even of the last decade. The morning of this 
day seems to be treated as the history for the very 
same day's afternoon. 

4 One particular question 
before saying "good-bye" 

We read (p. 31) about formalised inference (data 
processing in the sphere of reasoning): "Though it 
has proved necessary for metamathematical rese-
arch, as well as useful and insuring for philosophy 
of mind, it does not prove necessary for efficient 
reasoning. Albert Einstein could not do without 
arithmetical data-processing in his computations, 
but had no need to resort to rules of formalised 
deduction in his reasonings". 

To illustrate this point a sentence is quoted 

which Einstein addressed (New York 1921) to the 
journalists who wanted him to explain briefly the 
basic tenet of his theory. He said: "If matter and 
its motion disappeared, there would no longer be 
any space or time". Nobody needs - Marciszewski 
comments - to learn the formalised record of the 
rule of transposition to acknowledge validity of 
inference of this statement from that one: "Mat­
ter and its motion results in time and space." It 
is linguistic competence together with "logical in-
stinct" which do the work. However, I must con-
fess that - after trying some small experimental 
job with students - I see some problems in the 
examples like this one: perhaps some knowledge 
of logical formalism is stili welcome providing one 
is not identical with Einstein. 

5 "Good-bye" 

Let us take as inessential at which point the 
story about mechanised reasoning starts: with 
the Leibnizian "calculemus", or earlier? In the 
Middle Ages, or in Aristotle? Or has it started 
with Pythagorean expectations that the harmony 
expressed by numbers' proportions will teli us not 
only the reason why music means harmony while 
other sounds or noises do not, but even the se-
cret of the harmony of ali the universe? That is 
the way I would like to see it (which agrees with 
a small digression to Pythagor, see p. 28, f.9). 
Both moments taken as the starting point had so-
mething in common: it was the optimistic belief 
in the universal value of discovering the secrets of 
numbers. It was believed that through calcula-
ting information we could win in the Games with 
Nature. Despite that optimism I stili wonder if we 
feel more happy profiting from the results of Com­
puter revolution. Caught in the NET, depressed 
by the explosion of information bomb, corrupted 
by the NETtian practices, can we dream of Har-
mony as the Ancients did? Are we the Governors 
of the NET, or are we nothing but little insects 
imprisoned in it? 
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THE MINISTRY OF SCIENCE AND TECHNOLOGY 
OF THE REPUBLIC OF SLOVENIA 

Address: Slovenska 50, 61000 Ljubljana, Tel.: +386 
61 1311 107, Fax: +386 61 1324 140. 
WWW:http://www.mzt.si 
Minister: Prof. Rado Bohinc, Ph.D. 
State Secretary for Int. Coop.: Rado Genorio, Ph.D. 
State Secretary for Sci. and Tech.: Ciril Baškovič 
Secretary General: Franc Hudej, Ph.D. 

The Ministry also includes: 
The Standards and Metrology Institute of the Repu-
blic of Slovenia 
Address: Kotnikova 6, 61000 Ljubljana, Tel.: +386 61 
1312 322, Fax: +386 61 314 882., and 
The Industrial Property Protection Office of the Re-
public of Slovenia • 
Address: Kotnikova 6, 61000 Ljubljana, Tel.: +386 61 
1312 322, Fax: +386 61 318 983. 

Scientific Research and Development Potential. 
The statistical data for 1993 showed that there were 
180 research and developmeHt institutions in Slovenia. 
Altogether, they employed 10,400 people, of whorri 
4,900 were researchers and 3,900 expert or technical 
staff. 

In the past ten years, the number of researchers has 
almost doubled: the number of Ph.D. graduates incre-
ased from 1,100 to 1,565, while the number of M.Sc.'s 
rose from 650 to 1,029. The "Young Researchers" (i.e. 
postgraduate students) program has greatb/ helped to-
wards revitalizing research. The average age of rese­
archers has been brought down to 40, with one-fifth of 
them being younger than 29. 

The table below shows the distribution of resear­
chers according to educational level and sectors (in 
1993): 

Sector Ph.D. M.Sc. 
Business enterprises 
Government 
Private non-profit organizations 
Higher education organizations 
Total 

51 
482 

10 
1022 

1,565 

196 
395 

12 
426 

1,029 

Financing Research and Development. Stati­
stical estimates indicate that US$ 185 million (1,4% 
of GDP) was spent on research and development in 
Slovenia in 1993. More than half of this comes from 
public expenditure, mainly the state budget. In the 
last three years, R&D expenditure by business organi­
zations has stagnated, a result of the current economic 
transition. This transition has led to the financial de-
cline and increased insolvency of firms and companies. 
These cannot be replaced by the growing number of 

mainly small businesses. The shortfall was addres-
sed by increased public-sector spending: its share of 
GDP nearly doubled from the mid-seventies to 0,86% 
in 1993. 

Income of R&D organizations spent on R&D acti-
vities in 1993 (in million US$): 

Sector 

Business ent. 
Government 
Private non-p. 
Higher edu. 
Total 

Total 

83,9 
58,4 

1,3 
40,9 

184,5 

Basic 
res. 
4,7 

16,1 
0,2 

24,2 
45,2 

App. 
res. 

32,6 
21,5 

0,6 
8,7 

63,4 

Exp. 
dev. 
46,6 
20,8 
0,5 

8 
75,9 

The policy of the Slovene Government is to incre-
ase the percentage intended for R&D in its budget. 
The Science and Technology Council of the Republic 
of Slovenia is preparing the draft of a national research 
program (NRP). The government will harmonize the 
NRP with its general development policv, and submit 
it first to the parliamentary Committee for Science, 
Technology and Development and after that to the 
parliament. The parliament approves the NRP each 
year, thus setting the basis for deciding the level of 
public support for R&D. 

The Ministry of Science and Technology is mainly 
a government institution responsible for controlling 
expenditure of the R&D budget, in compliance with 
the NRP and the criteria provided by the Law on Re­
search Activities. The Ministry finances research or 
co- finances development projects through public bid-
ding, partially finances infrastructure research insti­
tutions (national institutes), while it directly finances 
management and top-level science. 

The focal points of R&D policy in Slovenia are: 

— maintaining the high level and quality of research ac­
tivities, 

- stimulating collaboration between research and indu­
strial institutions, 

— (co)financing and tax assistance for companies enga-
ged in technical development and other applied rese­
arch projects, 

- research training and professional development of le-
ading experts, 

— close involvement in international research and deve­
lopment projects, 

- establishing and operating facilities for the transfer 
of technology and experience. 

http://www.mzt.si
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JOŽEF ŠTEFAN INSTITUTE 

Jožef Štefan (1835-1893) was one of the most pro-
minent physicists of the 19th century. Bom to Slovene 
parents, he obtained his Ph.D. at Vienna University, 
where he was later Director of the Physics Institute, 
Vice-President ofthe Vienna Academy of Sciences and 
a member of several scientific institutions in Europe. 
Štefan explored many areas in hydrodynamics, optics, 
acoustics, electricity, magnetism and the kinetic the-
ory of gases. Among other thingSj he originated the 
law that the total radiation from a black body is pro-
portional to the 4th poiver of its absolute temperature, 
knovin as the Stefan-Boltzmann law. 

The Jožef Štefan Institute (JSI) is the leading in-
dependent scientific research in Slovenia, covering a 
broad spectrum of fundamental and applied research 
in the fields of physics, chemistry and biochemistry, 
electronics and information science, nuclear science te-
chnology, energy research and environmental science. 

The Jožef Štefan Institute (JSI) is a research orga-
nisation for pure and applied research in the natural 
sciences and technology. Both are closely intercon-
nected in research departrnents composed of different 
task teams. Emphasis in basic research is given to the 
development and education of young scientists, while 
applied research and development serve for the trans-
fer of advanced knowledge, contributing to the deve­
lopment of the national economy and society in gene­
ral. 

At present the Institute, with a total of about 
700 staff, has 500 researchers, about 250 of whom 
are postgraduates, over-200 of whom have doctora-
tes (Ph.D.), and around 150 of whom have permanent 
professorships or temporary teaching assignments at 
the Universities. 

In view of its activities and status, the JSI plays the 
role of a national institute, complementing the role of 
the universities and bridging the gap between basic 
science and applications. 

Research at the JSI includes the following major fi­
elds: physics; chemistry; electronics, informatics and 
computer sciences; biochemistry; ecology; reactor te-
chnology; applied mathematics. Most of the activities 
are more or less closely connected to information sci­
ences, in particular computer sciences, artificial intel-
ligence, language and speech technologies, computer-
aided design, computer architectures, biocybernetics 
and robotics, computer automation and control, pro-
fessional electronics, digital Communications and ne-

tworks, and applied mathematics. 

The Institute is located in Ljubljana, the capital of 
the independent state of Slovenia (or S^nia). The 
capital today is considered a crossroad between East, 
West and Mediterranean Europe, offering excellent 
productive capabilities and solid business opportuni-
ties, with strong international connections. Ljubljana 
is connected to important centers such as Prague, Bu-
dapest, Vienna, Zagreb, Milan, Rome, Monaco, Niče, 
Bern and Munich, ali within a radius of 600 km. 

In the last year on the site of the Jožef Štefan Insti­
tute, the Technology park "Ljubljana" has been pro-
posed as part of the national strategy for technologi-
cal development to foster synergies between research 
and industrv, to promote joint ventures between uni-
versity bodies, research institutes and innovative in-
dustry, to act as an incubator for high-tech initiatives 
and to accelerate the development cycle of innovative 
products. 

At the present time, part of the Institute is being 
reorganized into several high-tech units supported by 
and connected within the Technology park at the Jožef 
Štefan Institute, established as the beginning of a re-
gional Technology park "Ljubljana". The project is 
being developed at a particularly historical moment, 
characterized by the process' of state reorganisation, 
privatisation and private initiative. The national Te-
chnology Park will take the form of a shareholding 
company and will host an independent venture-capital 
institution. 

The promoters and operational entities of the pro­
ject are the Republic of Slovenia, Ministry of Science 
and Technology and the Jožef Štefan Institute. The 
framework of the operation also includes the Univer-
sity of Ljubljana, the National Institute of Chemistry, 
the Institute for Electronics and Vacuum Technology 
and the Institute for Materials and Construction Re­
search among others. In addition, the project is su­
pported by the Ministry of Economic Relations and 
Development, the National Chamber of Economy and 
the City of Ljubljana. 

Jožef Štefan Institute 
Jamova 39, 61000 Ljubljana, Slovenia 
Tel.:+386 61 1773 900, Fax.:+386 61 219 385 
Tlx.:31 296 JOSTIN SI 
WWW: http://www.ijs.si 
E-mail: matjaz.gams@ijs.si 
Contact person for the Park: Iztok Lesjak, M.Se. 
Public relations: Natalija Polenec 

http://www.ijs.si
mailto:matjaz.gams@ijs.si
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Errata 
Because of the failure in the WT^i font file msbm 
the letter R was printed deficientlv (partlv). This 
failure occurred in the paper A.P. Zeleznikar: Ele-
ments of Metamathematical and Informational 
Calculus, Informatica 19 (1995) No. 3, on the 
page 350, left column, lines 11 and 17. The cor-
rect text is the following: 

To make the difference 
clear, let us introduce the operator M. (for 're-
place') instead of S (for 'substitute'). 

In a predicate formula 21 (formula with predi-
cates), a proposition A or a predicate F(- • •) can 
be replaced (substituted) by formula <B. In this 
čase, the substitution is marked by 

RA(QL) or RF(?Y"'tn)(2l) 

respectively, where A is a variable proposition, 
F a variable predicate of n variables; formula 
23(̂ 1) • • •; tn) includes among their free variables 
specially marked variables t i , • • •, tn-, the number 
of which is equal to the number of variables of 
predicate F, that is, n. 
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