
Volume 35 Number 1 March 2011

Special Issue:
Autonomic and Self-Adaptive Systems

Guest Editor:
Javier Cámara
Carlos Cuesta
Miguel Ángel Pérez-Toledano

1977

EDITORIAL BOARDS, PUBLISHING COUNCIL

Informatica is a journal primarily covering intelligent systems
in the European computer science, informatics and cognitive com-
munity; scientific and educational as well as technical, commer-
cial and industrial. Its basic aim is to enhance communications
between different European structures on the basis of equal rights
and international refereeing. It publishes scientific papers ac-
cepted by at least two referees outside the author’s country. In ad-
dition, it contains information about conferences, opinions, criti-
cal examinations of existing publications and news. Finally, major
practical achievements and innovations in the computer and infor-
mation industry are presented through commercial publications as
well as through independent evaluations.

Editing and refereeing are distributed. Each editor from the
Editorial Board can conduct the refereeing process by appointing
two new referees or referees from the Board of Referees or Edi-
torial Board. Referees should not be from the author’s country. If
new referees are appointed, their names will appear in the list of
referees. Each paper bears the name of the editor who appointed
the referees. Each editor can propose new members for the Edi-
torial Board or referees. Editors and referees inactive for a longer
period can be automatically replaced. Changes in the Editorial
Board are confirmed by the Executive Editors.

The coordination necessary is made through the Executive Edi-
tors who examine the reviews, sort the accepted articles and main-
tain appropriate international distribution. The Executive Board
is appointed by the Society Informatika. Informatica is partially
supported by the Slovenian Ministry of Higher Education, Sci-
ence and Technology.

Each author is guaranteed to receive the reviews of his article.
When accepted, publication in Informatica is guaranteed in less
than one year after the Executive Editors receive the corrected
version of the article.

Executive Editor – Editor in Chief
Anton P. Železnikar
Volaričeva 8, Ljubljana, Slovenia
s51em@lea.hamradio.si
http://lea.hamradio.si/˜s51em/

Executive Associate Editor - Managing Editor
Matjaž Gams, Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Phone: +386 1 4773 900, Fax: +386 1 251 93 85
matjaz.gams@ijs.si
http://dis.ijs.si/mezi/matjaz.html

Executive Associate Editor - Deputy Managing Editor
Mitja Luštrek, Jožef Stefan Institute
mitja.lustrek@ijs.si

Executive Associate Editor - Technical Editor
Drago Torkar, Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Phone: +386 1 4773 900, Fax: +386 1 251 93 85
drago.torkar@ijs.si

Editorial Board
Juan Carlos Augusto (Argentina)
Costin Badica (Romania)
Vladimir Batagelj (Slovenia)
Francesco Bergadano (Italy)
Marco Botta (Italy)
Pavel Brazdil (Portugal)
Andrej Brodnik (Slovenia)
Ivan Bruha (Canada)
Wray Buntine (Finland)
Ondrej Drbohlav (Czech Republic)
Hubert L. Dreyfus (USA)
Jozo Dujmović (USA)
Johann Eder (Austria)
Ling Feng (China)
Vladimir A. Fomichov (Russia)
Maria Ganzha (Poland)
Marjan Gušev (Macedonia)
N. Jaisankar (India)
Dimitris Kanellopoulos (Greece)
Samee Ullah Khan (USA)
Hiroaki Kitano (Japan)
Igor Kononenko (Slovenia)
Miroslav Kubat (USA)
Ante Lauc (Croatia)
Jadran Lenarčič (Slovenia)
Shiguo Lian (China)
Huan Liu (USA)
Suzana Loskovska (Macedonia)
Ramon L. de Mantras (Spain)
Angelo Montanari (Italy)
Deepak Laxmi Narasimha (Malaysia)
Pavol Návrat (Slovakia)
Jerzy R. Nawrocki (Poland)
Nadja Nedjah (Brasil)
Franc Novak (Slovenia)
Marcin Paprzycki (USA/Poland)
Ivana Podnar Žarko (Croatia)
Karl H. Pribram (USA)
Luc De Raedt (Belgium)
Shahram Rahimi (USA)
Dejan Raković (Serbia)
Jean Ramaekers (Belgium)
Wilhelm Rossak (Germany)
Ivan Rozman (Slovenia)
Sugata Sanyal (India)
Walter Schempp (Germany)
Johannes Schwinn (Germany)
Zhongzhi Shi (China)
Oliviero Stock (Italy)
Robert Trappl (Austria)
Terry Winograd (USA)
Stefan Wrobel (Germany)
Konrad Wrona (France)
Xindong Wu (USA)

Informatica 35 (2011) 1–2 1

Editors’ Introduction to the Special Issue on Autonomic and Self-Adaptive
Systems

Traditionally, handling changing requirements, faults, or
upgrades on different kinds of software-based systems have
been tasks performed as a maintenance activity conducted
by human operators at design or development time. How-
ever, factors such as uncertainty in the operational envi-
ronment, resource variability, or the critical nature of some
systems which cannot be halted in order to be changed,
have lead to the development of systems able to reconfig-
ure their structure and behaviour at run time in order to
improve their operation without any human intervention.

This kind of systems, which typically operate using an
explicit representation of their structure and goals, has been
studied within different research areas of software engi-
neering (e.g., component-based development, requirements
engineering, software architectures, etc.) and described
with different names, which put their emphasis on dif-
ferent aspects. From those different names (self-healing,
self-managed systems, etc.) we have selected two which
are among the most popular, namely autonomic and self-
adaptive systems, for the title of this special issue.

Though there are many definitions for them - and some-
times they are even considered equivalent - we will provide
here a brief distinction between both terms, which still re-
fer to closely related approaches. A system will be consid-
ered autonomic when it automatically provides a number
of essential features and system-wide properties, without
the need of explicit human intervention - sometimes, not
even from the programmer. On the other hand, a system
is self-adaptive when it provides the means to adapt to ei-
ther external or internal changes by using its own resources.
Obviously, many of the autonomic functions provide adap-
tivity, and most of the self-adaptive features must be auto-
matically provided.

Another promising approach to systems able to dynam-
ically adapt themselves is that of self-organizing systems.
These are typically composed by a large number of con-
stituent components which operate according to a set of
local rules, rather than with an explicit representation of its
structure and goals – i.e. providing a decentralized setting.
In this case, the emergent behaviour derived from compo-
nent interaction stabilizes the system in the event of faults
or changes in the environment which need to be handled.

Although most research efforts in both approaches have
been isolated and lacked specific forums for discussion un-
til recently, there is a thriving international community cur-
rently involved in the study of these, sometimes known as
self-* systems, laying out the foundations that will enable
their systematic development. There are already several
workshops, conferences and symposia devoted to the study
and discussion of this topic; and this special issue follows
also from the efforts of this growing community.

This special issue gathers several selected, extended and

enhanced versions for papers from the First and Second
editions of the Workshop on Autonomic and Self-Adaptive
Systems (WASELF), which were respectively celebrated in
2008 and 2009 in Spain, emphasizing the participation of
both authors and reviewers from the international research
community. Additionally, several internationally recog-
nized experts in the area have been invited to contribute
to this issue, providing a baseline for the high quality of
the material included in this issue. Every published article
has followed a rigorous reviewing process, and had to be
approved by at least three reviewers with a high expertise
in the selected topics.

After the selection and approval of the reviewing com-
mittee, this special issue gathers five valuable contribu-
tions. The first two of them present frameworks to support
full-fledged self-adaptation; while the next one discusses
reconfiguration for behavioural adaptation. The latter two
discuss the topic in the context of services, considering
their choreographies and model-driven composition. We
will briefly summarize all of them in the following.

The first paper, entitled “A Framework for Automatic
Generation of Processes for Self-Adaptive Software Sys-
tems” has been authored by Carlos Eduardo da Silva and
Rogério de Lemos, and presents a framework for run-time
generation of self-adaptation processes in software sys-
tems, explaining the need for the automatic generation of
these processes at run-time, and how to base this approach
on AI planning and workflows.

The second paper, entitled “An Aspect-Oriented Ap-
proach for Supporting Autonomic Reconfiguration of Soft-
ware Architectures”, and authored by Cristóbal Costa, Jen-
nifer Pérez, and José A. Carsí presents a proposal to support
the autonomic reconfiguration of hierarchical software ar-
chitectures, taking a semi-decentralized approach to tackle
the problems of maintainability present in self-organizing
systems and scalability in self-adaptive ones.

Next, the third paper, entitled “Component Reconfigu-
ration in Presence of Mismatch” and authored by Carlos
Canal and Antonio Cansado, discusses how to reconfig-
ure systems in which components present mismatch and
are not designed with reconfiguration capabilities. In par-
ticular, this work identifies the requirements for achieving
run-time component substitution and defines interchange-
ability notions under behavioural adaptation.

The fourth paper, entitled “Realizability and Dynamic
Reconfiguration of Chor Specifications” has been authored
by Nima Roohi and Gwen Salaün. This paper presents so-
lutions to check if a certain service choreography is real-
izable and if a specific reconfiguration can be applied dy-
namically to the software system. The paper uses Chor as
choreography specification language and proposes an en-
coding of Chor into the FSP process algebra in order to

2 Informatica 35 (2011) 1–2

check the realizability of the choreography.
Finally, the paper entitled “Model-Based Dependable

Composition and Monitoring of Self-Adaptive Services”,
authored by Javier Cubo, Carlos Canal, and Ernesto Pi-
mentel, presents an approach based on self-adaptive and er-
ror recovery techniques. The proposal uses a model-based
mechanism to formalise Service-Oriented Architectures in
order to decrease the cost of their maintenance and evolu-
tion.

The guest editors wish to thank Professor Matjaz Gams
for providing us with the opportunity to edit this special
issue on Autonomic and Self-Adaptive Systems. Finally,
the editors would also like to thank both the authors of the
papers for their contributions and all the referees for their
critical and valuable comments. All their efforts helped to
ensure the high quality of the material presented in this spe-
cial issue.

Javier Cámara
Carlos Cuesta

Miguel Ángel Pérez-Toledano

Informatica 35 (2011) 3–13 3

A Framework for Automatic Generation of Processes for Self-Adaptive
Software Systems

Carlos Eduardo da Silva and Rogério de Lemos
School of Computing, University of Kent
Canterbury, Kent, CT2 7NF, UK
E-mail: {ces26, r.delemos}@kent.ac.uk

Keywords: self-adaptive systems, workflow generation, planning, process, architectural reconfiguration

Received: May 10, 2010

The self-adaptation of software systems is a complex process that depends on several factors that can
change during the system operational lifetime. Hence, it is necessary to define mechanisms for providing
a self-adaptive system the capability of generating during run-time the process that controls its adapta-
tion. This paper presents a framework for the automatic generation of processes for self-adaptive software
systems based on the use of workflows, model-based and artificial intelligence planning techniques. Our
approach can be applied to different application domains, improves the scalability associated with the gen-
eration of adaptation plans, and enables the usage of different planning techniques. For evaluating the
approach, we have developed a prototype for generating during run-time the workflows that coordinate the
architectural reconfiguration of a web-based application.

Povzetek: Opisano je okolje za generiranje procesov za prilagodljive sisteme.

1 Introduction
It is commonly agreed that self-adaptive software systems
should have the capability of modifying their own structure
and/or behaviour at run-time due to changes in the system,
its requirements, or the environment. In order to deter-
mine the actions to be taken to adapt itself, a self-adaptive
software system observes and analyses itself and its envi-
ronment, and if an adaptation is deemed to be necessary,
a plan is generated for altering the system in a controlled
manner. These systems are usually implemented in terms
of a feedback control loop, and one of its key activities is
the generation of adaptation plans [6].

The self-adaptation of a software system is a complex
process that depends on several factors that may change
during the system operational lifetime. In this context, an
adaptation plan should respect the relationships and depen-
dencies among the elements that compose the system, tak-
ing into account the actual state of the system and its en-
vironment. Thus, it is expected that self-adaptive software
systems should be able to generate adaptation plans during
run-time, in order to deal effectively with the variability
and uncertainty involved in the adaptation. Otherwise, the
self-adaptation process would cease to be consistent with
the actual system that it controls, since the adaptation pro-
cess would not be able to consider the actual system state,
thus restricting what and how can be adapted. Some ex-
isting approaches for software self-adaptation (such as [7]
[15]) explore mechanisms for the selection of adaptation
plans, where each available plan and the conditions asso-
ciated with the selection of that plan are defined at design-
time through the use of adaptation policies. However, it is

difficult to anticipate, at design-time, all the possible con-
texts of adaptation for some types of systems. For example,
resources considered during the design of the adaptation
policies may not be available during the system execution,
or new adaptation possibilities that have not been consid-
ered at design-time may become feasible due the availabil-
ity of new resources. To deal with this problem, it is nec-
essary the definition of mechanisms for providing a self-
adaptive software system the capability of generating, dur-
ing run-time, the process that controls and coordinates soft-
ware adaptation. In a previous work [8], we have outlined
an approach based on the use of dynamic workflows for co-
ordinating the self-adaptation of software systems. In this
paper, we detail that approach by defining a framework that
enables the dynamic generation of processes during run-
time. This framework consists of a process and collection
of languages, mechanisms and techniques, and its support-
ing computational infrastructure, consisting of open source
and in-house tools,

Currently, there is a wide range of techniques for gen-
erating processes in different application domains, such
as, web service composition [13], grid computing [11],
software management [3], and architectural reconfigura-
tion [4], [20]. These approaches present different solutions
that are very specific to their respective domains. More-
over, they are difficult to be reused in other domains [11],
and in some cases, in other applications inside the same
domain [4]. Compared with existing similar approaches,
our main contribution is a generic framework for the au-
tomatic generation of processes for self-adaptive software
systems. The objective is to define a framework that can be

4 Informatica 35 (2011) 3–13 C.E. da Silva et al.

applied to different application domains, and that can han-
dle the scalability associated with the generation of adapta-
tion plans. In order to achieve this, our framework is based
on a combination of techniques, such as, workflows, arti-
ficial intelligence (AI) planning and model transformation.
Workflows are used as a means to implement the processes,
AI planning is used to dynamically generate the processes,
while model transformation is employed in the translation
between domain specific models into planning problems.
A more specific contribution, which is an integral part of
the framework, is the use of model-based technology for
the generation of adaptation plans, thus enabling the usage
of different planning techniques according to the needs of
the application domain. In order to increase the scalability
of the framework, the generation of processes is split into
two levels of abstraction, namely, strategic and tactical, and
to reduce the complexity of the overall interaction between
these levels, the framework depends on the explicit repre-
sentation of feedback loops [6], [18]. In order to evaluate
the proposed approach, we have implemented a prototype
where the proposed framework is being applied for gener-
ating adaptation plans that manage the architectural recon-
figuration of a web-based self-adaptive application.

The rest of this paper is organised as follows. Section 2
presents some preliminary information that constitute the
basis of the defined framework. Section 3 describes the
proposed framework. Section 4 presents the application of
the framework in the context of architectural reconfigura-
tion of self-adaptive software systems, and evaluates the
overall effectiveness of the proposed framework. Section 5
discuss some related work, while the conclusions and fu-
ture directions of research are presented on Section 6.

2 Background

This section presents a brief overview of some of the key
technologies on which the proposed framework for dy-
namic process generation is based.

We have adopted as a basis for generating processes
the three-layer reference model for architecture-based self-
managed systems adopted by Kramer and Magee [18]. In
their model, the component control layer (the bottom layer)
consists of the components that accomplish the system
function, and includes facilities for supporting the manipu-
lation of components (e.g., status query, creation and inter-
connection). The change management layer modifies the
component architecture in response to changes that occur
at the bottom layer, or in response to new goals from the
layer above. The goal management layer (top layer) deals
with high level goals of the system by changing manage-
ment plans according to requests from the layer below and
in response to the introduction of new goals.

The techniques for the generation of workflows can be
divided into static and dynamic [13]. Static techniques
for generating workflows are employed during design or
compile-time, when workflows are not expected to change

during run-time. On the other hand, dynamic techniques
support the generation or modification of workflows at run-
time in order to handle changes that may occur. Static tech-
niques can receive as input an abstract model of the tasks
that should be carried out, without identifying the resources
to be used during execution, and workflow generation con-
sists of selecting the actual resources for the abstract model.
While dynamic techniques are able to automatically create
the abstract model and select the appropriate resources for
its execution. Our approach is classified as a dynamic gen-
eration technique where we apply AI planning for create
the abstract model.

AI planning endeavours to find from a particular initial
state a sequence of actions that are able to achieve an objec-
tive. In order to use AI planning, it is necessary to define a
domain representation, which identifies among other things
the available actions (or tasks) that can be used for gener-
ating a plan, and a problem representation, which includes
the initial state and the desired goal. Currently, there is a
wide variety of planners available that employ different al-
gorithms and techniques, and support different heuristics.
These planners allow tasks to be represented in different
ways, including, pre- and post-conditions, temporal infor-
mation (time for executing the task), and hierarchical task
networks (tasks that can be decomposed in further tasks).
For supporting this wide range of planning systems, there
is a standard language called the Planning Domain Defini-
tion Language (PDDL), which is used to specify domain
and problem representations [14].

Model-based technology explores the use of models
at different levels of abstraction, and transformations be-
tween levels to manage complexity. These models con-
form to specific meta-models, which define the relation-
ships among the concepts that can be used in a particular
domain. Transformations allow the generation of different
artefacts (e.g., source code) based on high level models, en-
suring consistency between the models and the generated
artefacts [19].

3 Framework for process generation

In our approach, processes are represented through work-
flows that are dynamically generated. Our framework di-
vides the generation and execution of workflows in three
phases: strategic, tactical and operational. At the strate-
gic phase, AI planning is used to generate abstract work-
flows. An abstract workflow describes the set of tasks and
the data dependencies among them, but without identifying
the actual resources that will be used during the workflow
execution. At the tactical phase, an abstract workflow is
mapped into a concrete workflow which identifies the ac-
tual resources associated with the tasks. It is important to
note that an abstract workflow can be mapped into differ-
ent concrete workflows by using different combinations of
resources. At the operational phase, the concrete work-
flow is executed. Figure 1 presents a simplified view of our

A FRAMEWORK FOR AUTOMATIC . . . Informatica 35 (2011) 3–13 5

approach for the dynamic generation of workflows.

Figure 1: Overview of workflow generation.

The proposed approach can be placed in the context of
the three layers reference model for self-managed system
adopted by Kramer and Magee [18]. At the goals manage-
ment layer, corresponding to our strategic phase, abstract
workflows are generated according to a particular objective
(or goal). These workflows are used as a basis for gen-
erating the concrete workflows at the change management
layer, corresponding to our tactical phase. Once a concrete
workflow has been generated, it is executed at the compo-
nent control layer, corresponding to the operational phase.
In our approach, similar to the three layers reference model,
if errors occur at a particular phase and that phase is not
able to handle the error, these are propagated to the previ-
ous phase in which they should be dealt with. In case of a
problem occurs during the execution of the concrete work-
flow, a new concrete workflow is generated at the tactical
phase, without the need to generate a new abstract work-
flow. If it is not possible to generate a concrete workflow
(e.g., there are not enough resources), the generation goes
back to the strategic phase, where a new abstract workflow
is generated. In the eventuality it is not possible to generate
an abstract workflow, the generation finishes with an error.

In the rest of this section, we provide more details con-
cerning key aspects of the proposed framework. The first
step, though, is to elaborate on the type of workflows sup-
ported by our approach, then we describe the task tem-
plates that are used for generating workflows, and finally,
we present the actual process that enables the dynamic gen-
eration of workflows.

3.1 Types of workflows
In the context of the proposed framework for the dynamic
generation of processes during run-time, it is important to
distinguish how workflows are related to the system itself.
Workflows can either be an integral part of the system or
they can be peripheral to the system.

A workflow is an integral part of a system if its execu-
tion constitutes the system itself. This is the case of work-
flows that implement business processes, where each exe-
cuted task contributes to the service to be delivered by the
business (the goal of the workflow). In these workflows,
the non-functional properties associated with the workflow
may influence the non-functional properties of the system
itself. For example, the execution time associated with a

particular task should influence the time it takes for the
workflow to execute. Moreover, the criteria for selecting
which tasks should be part of a workflow and how they
should be composed should be dictated by the requirements
associated with the system. For example, in the case of web
service orchestration, depending on the expected overall
execution time of the workflow, the appropriate combina-
tion of tasks should be identified to compose the workflow.

A workflow is a peripheral part of a system if its exe-
cution has as an outcome the system that is expected to
deliver the actual services. This is the case of workflows,
for example, that coordinate architectural reconfiguration
of software systems, where the goal of the workflow is to
generate a system that can deliver the actual services. In
these workflows, the non-functional properties associated
with the workflow have almost no relation with the proper-
ties of the system being generated by the workflow. Thus,
it is expected that the criteria for generating the workflow,
and the criteria for generating the system from the execu-
tion of the workflow to be distinct. For example, in the
architectural configuration of a software system, reliability
could be a key property for that system, and it may not be
considered when generating the workflow that would pro-
duce the actual system.

3.2 Defining task templates
In order to use AI planning, it is necessary to define task
templates to be used by the planner in terms of their pre-
and post-conditions. In our work we have used Planning
Domain Definition Language (PDDL) to define task tem-
plates, and these templates are implemented as workflows.
These implementations are structured in terms of atomic
actions [10], as a means for incorporating fault tolerance,
based on exception handling, into the workflow execution.
Figure 2 presents the base structure defined for implement-
ing task templates. Following the task templates specifica-
tion, task template implementations include pre- and post-
conditions checks, respectively, before and after the execu-
tion of the associated task.

Figure 2: General structure for task templates implementa-
tion.

Task templates can have two possible outcomes: Suc-
cess, representing the successful execution of the task, and
Failure, representing failure in the execution of the task. A
task template implementation may incorporate a recovery
path, which is activated when there is a failure during exe-
cution of the task, or a violation of its post-condition. The

6 Informatica 35 (2011) 3–13 C.E. da Silva et al.

recovery can be implemented in different ways (forward
or backward) according to the application domain, and the
task only finishes successfully when the post-condition is
fully satisfied. In our approach, it is the system developer
who decides how to implement the recovery. For now, we
are restricting the implementation of our approach to back-
ward error recovery, where the effects of a task are undone
before finishing with a failure.

3.3 Workflow generation process
As previously mentioned, our framework is partitioned into
three different phases, where the two first phases are associ-
ated with the generation of workflows, and the last phase is
related to the workflow execution. Each phase of the gen-
eration process is composed by several activities1, where
some of these activities are dependent on the application
domain in which the generation framework is being used,
while others are completely independent of the application
domain. In the following, we detail the activities associated
with the strategic and tactical phases, while focusing on the
domain independent activities.

3.3.1 Strategic phase

The main objective at this phase is to find the sequence
of tasks that will compose an abstract workflow. This is
achieved by means of AI planning techniques. In order to
generate a workflow, an AI planner receives as input the
goal to be achieved, the initial state, and a set of available
task templates (with associated pre- and post-conditions).

Figure 3 presents an overview of how a workflow is gen-
erated at the strategy phase. In order to use AI planning,
it is necessary, first, to obtain the initial state and the goals
associated with the workflow, which are represented by the
Obtain current state and Obtain workflow goals activity.
These activities are dependent of the application domain in
which the generation framework is being used.

Figure 3: Overview of the activities of the strategic phase.

The Translate into pre/post represents the activity of
translating the goal and the initial state from the notation
(or representation format) used by the application domain
to the notation employed by the planning technique. This
translation receives as input one or more models and pro-
duces a planning problem representation in PDDL. These
input models describe the goal and the initial state associ-
ated with the workflow in a domain dependent format. For

1Activities refer to the steps of the generation, while tasks are associ-
ated with the generated workflow.

example, goal-oriented models can be used to represent the
objective associated with business processes [16], while ar-
chitectural models can be used when considering software
reconfiguration [20].

Once the pre- and post-conditions have been defined, the
next step is the execution of the planner being used (Run
planner activity). Depending on the planning technique
used, there are several possibilities for generating work-
flows, and one workflow must be selected based on certain
criteria. This selection can be incorporated in the planning
technique through the use of different heuristics (such as
the number of tasks in the generated workflow, or the time/-
cost for executing the generated workflow), or can be a
second step after the several possible workflows have been
identified. In our approach, we have decided to represent it
as a single activity, since it is affected by the planning tech-
nique used. Since most planners support PDDL, and re-
ceive as input pre- and post-conditions in this language, we
can easily change the planner used with no, or very small
impact in the task templates specification and the other ac-
tivities of the strategy level. In case it is not possible to find
a plan for a given set of pre- and post-conditions, the Run
planner activity finishes with an error, and the strategic
phase is restarted.

The Translate into workflow activity receives the out-
put of the planner and translates it into an abstract workflow
in the format used for specifying workflows in the execu-
tion platform, in our case, the YAWL workflow modelling
language [23]. This translation involves the instantiation of
each action identified in the PDDL plan as a YAWL work-
flow task, where the names identified in the action are used
for populating the associated workflow task.

It is important to mention that the tasks that compose an
abstract workflow are referred to as strategic tasks, and the
resources associated with these tasks are referred to using
logical names, which are sufficient to identify the actual
resources at the next phase. In case of a problem at the
tactical phase, or during the Run planner activity, the cur-
rent state is updated (Obtain current state activity) and
the Obtain workflow goals activity is activated to decide
whether a new goal should be tried, or if the generation
finishes with an error.

3.3.2 Tactical phase

The main concern at this phase is to allocate the appropri-
ated resources to the tasks of the abstract workflow. The
way in which the resources are identified is dependent on
the application domain, and on the type of workflow be-
ing considered. When dealing with workflows that are an
integral part of the system, the resources of the tactical
phase are called tactical tasks, which are used for replac-
ing the strategic tasks of the abstract workflow. In case
of workflows that are a peripheral part of the system, we
consider the strategic tasks as parametrised tasks, where
logical names are used as the task parameters. In this case,
the resources of the tactical phase are called concrete pa-

A FRAMEWORK FOR AUTOMATIC . . . Informatica 35 (2011) 3–13 7

rameters. Considering those two types of workflows, we
have structured the activities of this phase in a way that al-
lows the use of any of the cases (or both at the same time)
according to the application domain. Figure 4 presents an
overview of the activities at this phase.

Figure 4: Activities of the tactics level.

The first activity at the tactical phase consists in ex-
tracting the strategic tasks that compose the received ab-
stract workflow (Extract strategic tasks). The next activ-
ity (Select concrete parameters) is responsible for iden-
tifying the concrete parameters of a peripheral workflow.
These concrete parameters are then used as replacement
for the logical parameters in the extracted tasks (Replace
tasks parameters). These tasks, with the concrete param-
eters identified, are then used in the next activity (Select
tactical tasks) for selecting the tactical tasks of an inte-
gral workflow. Once the tactical tasks have been selected,
they are used as replacement in the tasks of the abstract
workflow (Replace tasks), resulting in a concrete work-
flow that can be executed at the next phase.

In case of failure during the execution of the generated
workflow, new tactical tasks are selected for generating a
new concrete workflow. If no tactical tasks are selected
based on the concrete parameters, new concrete parame-
ters are selected and the process repeated. If there are no
available resources for the concrete parameters, the tacti-
cal phase finishes with a failure, and the process goes back
to the strategical phase. It is important to note that it is
necessary to control the relationship between the selection
of concrete parameters, and the selection of tactical tasks.
For example, in case there are no tactical tasks for a de-
termined set of parameters, this set must be identified, and
eliminated from the possible parameters in order to avoid
an infinite loop. The same thing happens in the interaction
between the execution of a concrete workflow and the se-
lection of new tactical tasks, and between the strategic and
tactical phase.

Apart from the changes in the task template implemen-
tation, the tactical phase is also customised according with
the considered type of workflow. In this way, it is possible
to deal with peripheral workflows by eliminating the Se-
lect tactical tasks activity, only with integral workflows
by eliminating the Select concrete parameters and the
Replace tasks parameters activities, or with both types
by not eliminating any of the activities. This decision must
be made during the instantiation of the framework into a
particular domain. For example, different web service in-
stances could be captured as tactical tasks of an integral
workflow.

Figure 5: Overview of the infrastructure for supporting pro-
cess generation.

3.4 Infrastructure
In the sequence, we describe the tools and techniques of
the infrastructure that provides the basis for dynamically
generating workflows. We present the infrastructure’s main
components, and identifying those components that must
be modified according with the application domain.

Figure 5 presents the infrastructure that underpins the
proposed framework. The generation process is managed
through a workflow. Workflow specifications are modelled
using the YAWL workflow modelling language [23], and
are executed in the YAWL Workflow Management Sys-
tem (WfMS). All elements have been implemented using
the Java programming language, and the communication
among them uses web service technology. The Model
translator component must be customised based on the ap-
plication domain by providing the transformation rules that
translates domain specific models into planning problems.
We have successfully used different planners, implemented
in C and Python (Satplan, Sgplan6, LPG-td, LAMA)2 by
building Java wrappers for each one of them. When deal-
ing with planning based only on pre- and post-conditions,
the replacement of the planner used has no impact in the
other components of the framework. We also used tempo-
ral based planning, requiring the modification of the task
template specification for including the appropriated non-
functional property (e.g., the cost of each action), and the
transformation rules of the Model translator component
for including the metric used by the planner (e.g., mini-
mize the total execution time of the generated plan) in the
problem representation. The Workflow translator com-
ponent is responsible for translating a PDDL plan into an
YAWL workflow specification. It does that by parsing a
PDDL plan and recovering the task implementation associ-
ated with each task of the plan. These task implementations
are them composed together as the tasks of a new work-
flow specification using the services of the Workflow spec
handler component. The Workflow spec handler pro-
vides different services for manipulating workflow speci-
fications, and has been implemented based on the API of
the YAWL WfMS. All repositories have been implemented
as Java classes. The Workflow spec repository interacts
with the YAWL WfMS and its worklets service [1] for load-

2Participants of different editions of the International Planning Com-
petition: http://ipc.icaps-conference.org/

8 Informatica 35 (2011) 3–13 C.E. da Silva et al.

ing concrete workflows into the WfMS engine. The Tac-
tical tasks selector is responsible for implementing the
decision making associated with the selection of tasks in
the tactical phase, while the Tactical tasks repository is
used for storing all available tactical tasks.

4 Process generation for
architectural reconfiguration

This section describes how the proposed framework is be-
ing used for generating the workflows that manage the ar-
chitectural reconfiguration of a self-adaptive application,
presenting the case study application used for its evalua-
tion, its prototype implementation and a brief discussion
about some experiments results.

4.1 The reconfiguration process
In the context of the Collect/Analyse/Decide/Act (CADA)
feedback control loop [12], our reconfiguration process is
related to the decide and act phases, while we assume the
existence of mechanisms responsible for the collect and
analyse phases. The decide phase of the feedback loop is
responsible for identifying what to adapt (the selection of a
configuration), and how to adapt (the generation of a work-
flow for connecting this configuration), while the act phase
is responsible for executing the generated workflow. In this
scenario, it is important to mention that we are not con-
cerned with the selection of an architectural configuration
for the system. This is outside the scope of our work, and
there are several existing approaches that can be used to
implement this (e.g., [2]). Instead, our focus is in demon-
strating how adaptation plans can be generated based on
the selected configuration.

In our approach, we divided a configuration model in
two different levels of concerns, reflecting the division be-
tween abstract and concrete workflows. In this way, an
abstract configuration describes a system configuration in
terms of its components, identified by a logical names, their
types and connections, identifying the structure of the sys-
tem, but abstracting away from the actual component in-
stances. A concrete configuration, on the other hand, de-
scribes a system configuration in terms of actual compo-
nent instances, and their respective attributes. Similar to an
abstract workflow, an abstract configuration can be instan-
tiated into different concrete configurations depending on
the availability of actual component instances.

Figure 6 presents an overview of the reconfiguration pro-
cess. At the strategic phase, the initial state and goal cor-
respond, respectively, to the current and selected configu-
rations. The selected configuration is an abstract configu-
ration, where the affected elements are treated as abstract
elements. For example, when dealing with the replacement
of a component, the new component can be treated as an
abstract component, allowing the reuse of the abstract con-
figuration by replacing this abstract component. If the pro-

cess is being applied to establish a new configuration, all
elements are treated as abstract elements. The Translate
into Pre/post activity generates the planner inputs from
architectural models using a translation algorithm based
on model comparison techniques, where the architectural
models are compared, and the results of this comparison
are translated into a problem specification in PDDL using
a set of model transformation rules. This algorithm fol-
lows the idea of model transformation employed in model-
driven engineering, where a model (the comparison results)
is transformed into another model (pre- and post-conditions
expressed in PDDL) [19]. In case the planner can not find a
plan for a given set of pre- and post-conditions, a new con-
figuration is selected, or the reconfiguration finishes with a
failure.

At the tactical phase, the Obtain concrete configura-
tion is responsible for finding a concrete configuration for
the system, which is used for generating a concrete work-
flow. This activity corresponds to the Select concrete
parameters activity presented in Section 3.3.2. It is im-
portant to mention that in the present context, the gener-
ated workflows are a peripheral part of the system, where
abstract workflows are characterised by the use of logical
names as tasks parameters. In this way, we do not consider
the Selection of tactical tasks activity at the tactics phase.

The generated workflow is then executed changing the
target system. In case of a failure during its execution (e.g.,
a failure while connecting two components), a new con-
crete configuration is selected, and a new concrete work-
flow is generated and executed. For now, we are assuming
the existence of exception handling mechanisms capable of
undoing the effects of the failed workflow before returning
to the tactical phase. In case there are not enough resources
for establishing a new concrete configuration based on the
selected abstract configuration, a new abstract configura-
tion is selected, and a new abstract workflow is generated.
If it is not possible to find a new configuration for the sys-
tem, the process finishes with an error.

4.2 Case study

In the sequence, we present an example scenario of a dis-
tributed system that was used to evaluate our work.

The developed prototype application provides stock
quotes portfolio reports with suggestions of investments
based on historical and current information about the client,
and the actual stock quotes values. In this scenario, we con-
sider the existence of different resources that are captured
by different component types, which can be combined in
different configurations for the provision of the mentioned
service. For each of these component types, there are sev-
eral component instances that can be used. New instances
and resource types can become available, resulting in con-
figurations not envisioned at design-time.

Figure 7 presents an example of a configuration for the
provision of this service. The Front end component rep-
resents the user access point to the service. Report ser-

A FRAMEWORK FOR AUTOMATIC . . . Informatica 35 (2011) 3–13 9

Figure 6: Overview of the process for generating reconfiguration plans.

vice logic represents the application logic of the offered
service (stock quote portfolio report), and requires services
from internal and external providers. External providers
are used for obtaining stock quote values, which can be ob-
tained from different sources. These are captured through
Bridge components. A bridge component handles archi-
tectural mismatches between the service providers and the
system, providing an uniform interface for the different on-
line providers. The Client info logic component, an in-
ternal service, provides information about the client, and
requires a Database component.

Figure 7: Example of a configuration.

Follow the division between abstract and concrete con-
figurations, each component instance of a concrete con-
figuration is associated to a logical name and type. In
this way, GUI1 :C1 :Front End indicates that the com-
ponent instance GUI1 is associated with logical name C1
with functional requirements associated with components
of type Front End.

4.3 Prototype implementation

The infrastructure for supporting the defined reconfigura-
tion process has been implemented based on the architec-
ture presented in Figure 5, and is presented in Figure 8.

In this prototype, architectural models are represented
using Eclipse Modelling Framework (EMF) models based
on xADL 2.0 [9]. In order to run our experiments, we
have implemented a simplified execution platform in which
components must be blocked (a kind of quiescent state
[17]) before being involved in a reconfiguration, blocked
components are not considered when selecting a new con-
figuration, and all architectural elements provide two dif-
ferent types of interfaces, application and configuration ser-
vices interfaces, as explained in [10]. The Model trans-
lator component has been implemented based on EMF

Figure 8: Overview of the overall system architecture.

and Atlas Transformation Language3. This component re-
ceives architectural models as input, and applies a set of
ATL transformation rules for generating a problem descrip-
tion in PDDL. Figure 9 presents an example of a PDDL
problem description generated by the Model translator
component. This example considers the establishment of
the configuration presented in Figure 7. Thus, the inputs
used are an empty xADL description, corresponding to
the current configuration, and a xADL description of the
configuration of Figure 7, corresponding to the selected
configuration. The header has an identifier for the prob-
lem (reconfigurationProblem) and a reference to the do-
main representation where the actions and predicates are
described. The list of objects involved includes all com-
ponents (identified by logical names) and their provided
and required interfaces. In this example, all involved com-
ponents are unblocked, and all connections are not estab-
lished.

Since we consider the generation of peripheral work-
flows, the Tactical tasks selector component is deacti-
vated by removing the respective activity from the work-
flow that controls the reconfiguration. The generated work-
flow changes the configuration of the Target system. The
Registry is where all available components, their respec-
tive attributes, and a current model of the target system
are stored. We assume that the Registry is responsible
for monitoring the available resources, and for providing
an accurate view of the Target system. Any changes in

3http://www.eclipse.org/atl

10 Informatica 35 (2011) 3–13 C.E. da Silva et al.

Figure 9: Example of pre- and post-conditions in PDDL.

the resources’ availability should be reflected at the Reg-
istry. The Monitor component represents the mechanisms
used for the collect and analysis phases of the feedback
control loop. This component observes the components of
the established configuration, checking the values of the
component attributes (e.g., response time) against a defined
threshold. In case of violation, it starts a reconfiguration
by starting the execution of the reconfiguration workflow.
The Configurator is responsible for selecting a configu-
ration for the system. It has been implemented based on
the use of a utility function that is a linear combination of
the utilities of the different elements. The Configurations
repository stores the configuration models used during the
reconfiguration.

4.4 Discussion
In order to demonstrate and evaluate the proposed ap-
proach, we have conducted some experiments involving the
architectural reconfiguration of a case study application.

Among the experiments, we have considered the estab-
lishment of a particular configuration, which for the plan-
ner, is the toughest scenario, since it involves all compo-
nents of the configuration. In this experiment, we have ob-
served the search space (number of possible actions) of the
LPG-td planner, changing the number of resources avail-
able and the size of the generated workflow.

The size of the generated workflow depends on the num-
ber of components and connections in the selected con-
figuration. Every component of a configuration must be
blocked before being connected, and unblocked at the end
of the reconfiguration. In this way, a configuration with n
components and n-1 connections will have 3n-1 tasks. For
example, the configuration of Figure 7, with five compo-
nents and four connections, requires a workflow with 14
tasks (blocking the five components, establishing the four
connections, and unblocking the five components). In these
experiments we have considered three different abstract
configurations, which require three, four and five compo-
nents, and contains respectively two, three and four con-
nections.

We have implemented two variations of our approach.

Figure 10: Search space variation changing the resources
available.

Figure 11: Search space variation considering the selection
of a configuration by the planner.

The main difference between these variations is the amount
of information passed to the planner. Our approach (iden-
tified by A in the graphs) explores the division between
strategy and tactics using logical names for representing
the components of a configuration. The second approach
(identified by B) separates the selection of a configuration
from the generation of the plan, but includes all available
resources in the planner. While the third approach (iden-
tified by C), based on [4], uses the planner for selecting a
configuration for the system, including all possible config-
urations and all available resources in the planner.

Figure 10 shows the variation in the search space as we
vary the number of resources available. In this graph, A-
3 means the numbers obtained by our approach (A) for a
workflow related with a configuration that requires three
different components. Since we use logical names to rep-
resent the resources required by a configuration, and do not
consider all available resources in the planner, the number
of resources available does not affect the search space. We
notice a linear progression of the search space when we in-
clude all available resources in the planner (B-3, B-4 and
B-5). The starting points of each curve represents the min-
imum number of resources required by the correspondent
configuration.

Figure 11 presents the change in the search space when
the selection of a configuration is combined with the gen-
eration of the plan. Based on this experiment, it is clear the
overhead caused by mixing selection and plan generation.

A FRAMEWORK FOR AUTOMATIC . . . Informatica 35 (2011) 3–13 11

As expected, the search space increases with number of
resources known by the planner, and the selection of a con-
figuration by the planner further aggravate its scalability.
The division between strategy and tactics helps to reduce
the search space since the planner does not need to know
about all available resources, but only about those involved
in the reconfiguration, which are represented by logical
names.

5 Related work

The focus of this section is to review how existing ap-
proaches generate adaptation plans for self-adaptive soft-
ware, and we start with those approaches that specify adap-
tation plans at design-time. Cheng et al. [7] capture adapta-
tion plans as a set repair strategies, consisting of condition-
action rules, where conditions are evaluated based on util-
ity functions. Georgas and Taylor [15] propose the use of
adaptation policies, also captured as condition-action rules,
that indicate what actions should be taken in response to
events. Both approaches are focused on the definition of
the mechanisms for selecting one adaptation plan from the
set of available plans, where each available plan, identify-
ing what and how to adapt, is defined at design-time. A
major limitation with these approaches is the difficulty in
anticipating all possible contexts in which system adapta-
tion may take place. This has a major impact on identifying
the appropriate adaptation plans because of the combina-
torial nature between conditions and actions, which also
affects the management of the available plans. Different
from these approaches, our approach provides the means
for defining adaptation plans during run-time.

There are other approaches (such as [5]) that provide
support for selecting what to adapt at run-time. However,
there is a cost to be paid in these approaches, since the
adaptation is enacted by deactivating and reactivating the
whole software system, even for the case when a single el-
ement needs to be replaced. Moreover, the main focus of
these approaches is on the selection of what to adapt based
on the state of the environment and the resources required
for enabling it, and not on how to enact the selected adap-
tation. Differently from these approaches, our focus is on
the dynamic generation of the process that enacts the adap-
tation in a way that does not require the complete deactiva-
tion of the system.

Some approaches use model comparison techniques, in
the context of architectural reconfiguration, for generating
adaptation scripts that impact only those elements affected
by the adaptation. Alia et al [2] compare the models of
the current and the selected system configuration for iden-
tifying the actions of the adaptation script. Morin et al.
[20] build on top of model comparison by applying priority
rules for ordering the identified adaptation actions. How-
ever, model comparison and priority rules are not enough to
generate plans with complex relationships among the adap-
tation actions and the involved system components. For it,

it is necessary to consider pre- and post-conditions associ-
ated with the actions, as demonstrated in [22]. Moreover,
the focus of these approaches is not the generation of adap-
tation scripts, but the selection of the system configuration
[2], and coping with the exponential growth in the number
of possible configurations [20]. Thus, they do not consider
the possible issues associated with the generation of the
adaptation scripts. Our approach also applies model com-
parison for generating adaptation plans, but the results of
the comparison are used for identifying the inputs for an
AI planner, supporting the generation of plans that can deal
with complex relationships between its constituent tasks.

Other approaches have applied AI planning for selecting
a configuration and deciding how to change the system at
the same time [3], [4]. Both these approaches require the
inclusion of all available resources in the planner, which,
together with the mix of configuration selection and plan
generation, affects the scalability of the planer. Moreover,
both approaches require the specification of the current sys-
tem state and the target system state using PDDL. In our
approach, we are not restricted to a fixed set of resources
for generating adaptation plans, and we employ model-
based technology for translating domain specific models
into planning problems. The partition of our approach into
different levels of abstraction provides support for dealing
with variations in the resources availability and reduces the
search space considered by the planner, increasing its scal-
ability, while more specific and scalable techniques can be
used for selecting an adaptation for the system (such as
[2]).

Concerning workflow generation, several approaches ap-
ply AI planning techniques in different domains [21], such
as, grid computing [11] and web service composition [13];
however, these approaches are very specific to their respec-
tive domains. Our approach is based on ideas from [11]
[13], in which the generation is partitioned into strategi-
cal and tactical for increasing scalability. Differently from
these approaches, we are focused on providing an frame-
work that can be applied to different domains, and consider
two types of workflows, integral and peripheral, support-
ing different decision making and planning mechanisms ac-
cording with the application domain.

6 Conclusions and future work

This paper has presented a framework for the automatic
generation of processes for self-adaptive software systems
based on workflows, AI planning and model transforma-
tion. The framework can be applied to different applica-
tion domains by supporting the use of the most suitable
generation techniques according to the application domain.
Moreover, our approach reduces the search space consid-
ered by a planner by splitting the generation in two levels
of abstraction, and provides support for generating differ-
ent types of workflows. In order to evaluate the proposed
framework and its respective computational infrastructure,

12 Informatica 35 (2011) 3–13 C.E. da Silva et al.

a prototype was developed for experimenting our approach,
and comparing it with similar approaches. The effective-
ness of the whole approach was evaluated in the context of
a web-based self-adaptive application for obtaining stock
quotes reports, where the processes generated at run-time
are responsible for coordinating the architectural reconfig-
uration of the system.

Although the proposed approach for the dynamic gener-
ation of process for self-adaptive software systems has pro-
duced quite promising results, we have identified a couple
of limitations that if properly handled could enhance over-
all effectiveness of the approach. First, the type of work-
flows being generated are simple sequential workflows,
however, the intent is to incorporate non-determinism and
other planning techniques to capture uncertainty into the
generation of workflows, and to support different control
flow constructs, such as, conditional and parallel execu-
tion branches. Second, although the task templates for our
framework are structured using atomic actions, one issue
that was not yet fully investigated is how to exploit this
for the provision of fault tolerance. The intent is to incor-
porate exception handling mechanisms for tolerating faults
that might occur during the execution of generated work-
flows.

As future work, we would like to simplify the reuse of
the framework, and this could be achieved by using meta-
transformation languages for translating domain specific
models into pre- and post-conditions. Also in this direc-
tion, the intent is to incorporate ideas from software prod-
uct lines into our framework for dealing with the variabil-
ity of processes. Another future work would be the ap-
plication of the proposed framework into other application
areas to evaluate its overall effectiveness since our initial
idea was to see this framework applied to support software
self-adaptation whenever processes need to generated dur-
ing run-time. Concerning the domain of reconfiguration,
we intent to consider more complex scenarios in which,
for example, there exists transfer of state between compo-
nents).

Acknowledgement

Carlos Eduardo da Silva is supported by the Pro-
gramme Alβan, the European Union Programme of High
Level Scholarships for Latin America, scholarship No.
E07D401107BR.

References

[1] M. Adams et al. Worklets: A service-oriented im-
plementation of dynamic flexibility in workflows. In
Proc. of the OTM CoopIS’06, pages 291–308, 2006.

[2] M. Alia et al. A component-based planning frame-
work for adaptive systems. In Proc. of the OTM
DOA’06, pages 1686–1704, 2006.

[3] A. Andrzejak et al. Feedbackflow-an adaptive work-
flow generator for systems management. In Proc. of
the ICAC’05, pages 335–336, 2005.

[4] N. Arshad et al. Deployment and dynamic reconfigu-
ration planning for distributed software systems. Soft-
ware Quality J., 15(3):265–281, 2007.

[5] M. Autili et al. Towards self-evolving context-aware
services. In Proc. of the DisCoTec CAMPUS’08,
2008.

[6] Y. Brun et al. Engineering self-adaptive systems
through feedback loops. In Software Engineering for
Self-Adaptive Systems, pages 48–70. 2009.

[7] S.-W. Cheng et al. Architecture-based self-adaptation
in the presence of multiple objectives. In Proc. of the
ICSE SEAMS’06, pages 2–8, 2006.

[8] C. E. da Silva and R. de Lemos. Using dynamic
workflows for coordinating self-adaptation of soft-
ware systems. In Proc. of the ICSE SEAMS 2009,
pages 86–95, 2009.

[9] E. M. Dashofy et al. A comprehensive approach
for the development of modular software architec-
ture description languages. ACM Trans. Softw. Eng.
Methodol., 14(2):199–245, 2005.

[10] R. de Lemos. Architectural reconfiguration using
coordinated atomic actions. In Proc. of the ICSE
SEAMS’06, pages 44–50, 2006.

[11] E. Deelman et al. Mapping abstract complex work-
flows onto grid environments. Journal of Grid Com-
puting, 1(1):25–39, 2003.

[12] S. Dobson et al. A survey of autonomic communi-
cations. ACM Trans. Auton. Adapt. Syst., 1(2):223 –
259, 2006.

[13] S. Dustdar and W. Schreiner. A survey on web ser-
vices composition. International Journal of Web and
Grid Services, 1(1):1–30, 2005.

[14] M. Fox and D. Long. Pddl2.1: An extension to pddl
for expressing temporal planning domains. J. of AI
Research, 20:61–124, 2003.

[15] J. C. Georgas and R. N. Taylor. Towards a knowledge-
based approach to architectural adaptation manage-
ment. In Proc. of the WOSS’04, pages 59–63, 2004.

[16] D. Greenwood and G. Rimassa. Autonomic goal-
oriented business process management. In Proc. the
ICAS’07, page 43, 2007.

[17] J. Kramer and J. Magee. The evolving philosophers
problem: Dynamic change management. IEEE Trans.
Softw. Eng., 16(11):1293–1306, 1990.

A FRAMEWORK FOR AUTOMATIC . . . Informatica 35 (2011) 3–13 13

[18] J. Kramer and J. Magee. Self-managed systems: an
architectural challenge. In Proc. of the FOSE’07,
pages 259–268, 2007.

[19] J. Miller and J. Mukerji. MDA guide version 1.0.1.
Technical report, OMG, 2003.

[20] B. Morin et al. An aspect-oriented and model-driven
approach for managing dynamic variability. In Proc.
of the MoDELS’08, pages 782–796, 2008.

[21] D. Nau. Current trends in automated planning. AI
Magazine, 28(4):43–58, 2007.

[22] C. Shankar and R. Campbell. Ordering manage-
ment actions in pervasive systems using specification-
enhanced policies. In Proc. of the PERCOM’06,
pages 234–238, 2006.

[23] W. M. P. van der Aalst and A. H. M. ter Hofstede.
Yawl: Yet another workflow language. Inf. Syst.,
30(4):245–275, 2005.

14 Informatica 35 (2011) 3–13 C.E. da Silva et al.

Informatica 35 (2011) 15–27 15

An Aspect-Oriented Approach for Supporting Autonomic
Reconfiguration of Software Architectures

Cristóbal Costa-Soria
Universidad Politécnica de Valencia
Camino de Vera s/n, 46022 Valencia, Spain
E-mail: cricosso@upv.es

Jennifer Pérez
E.U. Informática, Technical University of Madrid (UPM)
Carretera de Valencia km.7, E-28031 Madrid, Spain
E-mail: jenifer.perez@eui.upm.es

Jose Ángel Carsí
Dept. of Information Systems and Computation, Universidad Politécnica de Valencia
Camino de Vera s/n, 46022 Valencia, Spain
E-mail: pcarsi@dsic.upv.es

Keywords: dynamic reconfiguration, AOSD, autonomic computing, software architecture

Received: February 6, 2010

The increasing complexity of current software systems is encouraging the development of self-managed
software architectures, i.e. systems capable of reconfiguring their structure at runtime to fulfil a set of
goals. Several approaches have covered different aspects of their development, but some issues remain
open, such as the maintainability or the scalability of self-management subsystems. Centralized
approaches, like self-adaptive architectures, offer good maintenance properties but do not scale well for
large systems. On the contrary, decentralized approaches, like self-organising architectures, offer good
scalability but are not maintainable: reconfiguration specifications are spread and often tangled with
functional specifications. In order to address these issues, this paper presents an aspect-oriented
autonomic reconfiguration approach where: (1) each subsystem is provided with self-management
properties so it can evolve itself and the components that it is composed of; (2) self-management
concerns are isolated and encapsulated into aspects, thus improving its reuse and maintenance.

Povzetek: Predstavljen je pristop s samo-preoblikovanjem programske arhitekture.

1 Introduction
The increasing complexity of current software systems is
becoming unmanageable: large complex systems are
more and more difficult to develop and maintain [35].
One of the most promising techniques to deal with the
design of large, complex software systems is Software
Architectures [39]. Software Architectures1 provide
techniques for describing the structure of complex
software systems (i.e. the key system elements and their
organization). Its aim is to hide low-level details and help
to understand the system. The structure of a software
system is described in terms of architectural elements
(components and connectors) and their interactions with
each other. This structure can be formally described

1 This work has been partially supported by the Spanish

Department of Science and Technology under the National
Program for Research, Development and Innovation project
MULTIPLE (TIN2009-13838), and by the Conselleria
d'Educació i Ciència (Generalitat Valenciana) under the
contract BFPI06/227.

using an Architecture Description Language (ADL),
which is used later to build the executable code of the
software system. In addition, most ADLs generally
support hierarchical composition (i.e. a composition
hiding technique for defining systems of systems), which
may be helpful for modelling large-scale complex
systems in a scalable way. However, although software
architecture helps in the description and development of
complex systems, this is not enough: the management
and maintenance of these systems still requires a great
effort. To minimize such effort, self-managed software
architectures were proposed [28]. According to the
definition of Kramer and Magee [23], a self-managed
software architecture is one in which components
automatically configure their interaction in a way that: (i)
is compatible with an overall architectural specification,
and (ii) achieves the goals of the system. However, the
development of self-managed architectures still remains
a challenge [23]. Although several works have been

16 Informatica 35 (2011) 15–27 C. Costa-Soria et al.

proposed [4], they generally do not scale well for large
systems or do not explicitly consider the maintainability
of the self-management subsystem itself.

On designing a self-management infrastructure, also
its maintenance, scalability and flexibility must be taken
into account. First, maintenance should be improved by
isolating dynamic change concerns from functional
concerns, as it has been stated from other works [8, 10,
26]. Second, scalability can be improved by providing a
decentralized self-management infrastructure. Finally,
flexibility should be a fundamental property of the self-
management subsystem. It should deal with not only
goal-oriented proactive changes (i.e. driven
autonomously), but also reactive changes (i.e. driven
externally) to cope with unanticipated situations, such as
the addition of new functionality.

Our work is focused on the design, construction and
maintenance of systems with self-management features,
from a Model-Driven Development (MDD) perspective
[36]. This paper takes a step forward from a previous
work [10], which proposed to isolate the dynamic
reconfiguration concern from the rest of the system and
its decomposition into reconfiguration specifications and
reconfiguration mechanisms. In this paper we detail these
ideas, addressing the description and design of composite
components (i.e. a component composed of other
components) capable of reconfiguring its architecture
without depending on a unique centralized entity in
charge of reconfiguration. In addition, the
reconfiguration of composite components is managed
without tangling evolution and functional concerns. We
have called this feature aspect-oriented autonomic
reconfiguration, since local autonomy for dynamic
reconfiguration is provided for each composite
component, and separation of concerns is provided by
means of Aspect-Oriented Software Development
techniques [22]. Moreover, dynamic reconfiguration is
platform-independent, by identifying the high-level
features that a reconfigurable technology should provide.
Our approach has been applied to PRISMA [32], which
provides a platform-independent Aspect-Oriented ADL
and is supported by a MDD framework.

This paper is structured as follows. Section 2
presents the design decisions that guided our approach.
Section 3 introduces PRISMA, where this approach has
been applied to. Section 4 presents a case study, which is
used to illustrate the key ideas of this work. Section 5
describes our approach for supporting autonomic
reconfigurations. Section 6 discusses the related works
addressing dynamic reconfiguration. Finally, section 7
presents the conclusions and further works.

2 Dynamic reconfiguration of
software architectures

Our work defines a design approach to build
reconfigurable software architectures, a key issue in the
development of self-managed software architectures.
Dynamic reconfiguration of software architectures [16]
is a term that is used to refer, generally, to those changes
that are produced in the topology of a composite system

at runtime, by preserving the system state and
consistency. Those dynamic changes may involve: (i)
addition of new functionality (i.e. new components), (ii)
replacement and/or removal of existing functionality, and
(iii) modification of connections between architectural
elements.

A dynamically reconfigurable system is
characterized by different dimensions or attributes (e.g.
change type, granularity, activeness, impact,
management, etc.) [4, 5]. We state here the attributes that
we have considered the most important to include in our
approach and the reasons that guided such decisions:

Abstraction level. Several works have addressed the
support for dynamic change, although at different levels
of abstraction. On the one hand, a lot of works focus on
the technical feasibility of dynamic updating [25, 33, 34].
These works are generally tied to a specific technology:
their reconfigurations are defined at a low abstraction
level (e.g. in Java). On the other hand, other works focus
on the specification of dynamic reconfigurations at a
high abstraction level (i.e. by means of ADLs [4, 7, 12,
16]). However, generally these works have not addressed
how to support the execution of such high level
reconfigurations. Since the dynamic reconfiguration of
software systems is highly related with the management
of running software artefacts, we should consider not
only the specification of how a system should be
reconfigured, but also the mechanisms that support the
execution of this reconfiguration process. One of the
major contributions of this paper is the definition of a
model that bridges the existing gap among high-level
reconfigurations and low-level supporting mechanisms.

Activeness of changes. Dynamic reconfigurations
can be reactive or proactive. On the one hand, reactive
reconfigurations are dynamic changes that are driven by
an external agent (usually the system architect or
developer) and through a user interface. Endler defined
them as ad-hoc reconfigurations [16]. An example of
their utility is to perform component updates: to correct
bugs or introduce new unanticipated behaviours. On the
other hand, proactive reconfigurations are dynamic
changes that are autonomously driven by the system
when some specific conditions or events apply. Proactive
reconfigurations are usually described by means of
reconfiguration specifications. A reconfiguration
specification describes when the architecture should
change (e.g. in response to certain events or state
changes) and what kind of changes must be performed on
the architecture for each situation. Proactive
reconfigurations can be described at design-time (called
programmed reconfigurations [16]) or synthesized at
run-time, according to high-level goals [38]. Both
programmed reconfigurations and high-level goals are
defined by the architect. An example of their utility is to
provide system dependability: if a component instance
does not adequately respond, the system might change its
connections to another suitable component instance or
recreate the instance again. Reactive and proactive
reconfigurations should be considered as complementary.
Both must be supported to allow a system: to reconfigure
itself autonomously (i.e. using programmed

AN ASPECT ORIENTED APPROACH FOR… Informatica 35 (2011) 15–27 17

reconfigurations), and to introduce unforeseen changes or
updates at runtime (i.e. using ad-hoc reconfigurations).
Since both kinds of reconfigurations rely on the same
mechanisms to carry out the runtime changes, a way to
support reactive and proactive reconfigurations is by
explicitly modelling these mechanisms. Thus, the system
architect can specify which kinds of reconfigurations are
provided, by appropriately enabling or disabling
reconfiguration mechanisms and providing proactive
behaviour. This provides the architect with a high level
of flexibility for defining reconfigurable systems. Our
proposal provides support for both reactive and proactive
reconfigurations.

Management of dynamic reconfigurations. Due to
the growing size of software systems, the scalability of
the reconfiguration subsystem is also an important issue
[4, 23]. The management of reconfigurations can be
addressed either in a centralized or in a decentralized
way. On the one hand, centralized approaches (e.g. self-
adaptive systems [14, 17, 28]) provide a single, global
entity (the Configuror) that contains (or generates) both
the reconfiguration specifications and mechanisms that
will change the overall software system. The main
disadvantage is a poor scalability: the larger the system,
the more complex and less maintainable the configuror
is, since the scope that it must supervise increases
proportionally. In addition, a centralized reconfiguration
manager turns into a single point of failure: if it fails, the
overall system would also lose the ability to reconfigure.
On the other hand, decentralized approaches (such as
self-organised architectures [18, 37]) distribute
reconfiguration management across the elements of the
architecture, which are capable of reconfiguring the
architecture to which they belong. These approaches
have better scalability, since all components can perform
reconfigurations. However, a disadvantage is that
reconfiguration specifications are spread among different
components, thus decreasing maintenance of such
specifications. Another disadvantage is that system-wide
properties are more difficult to control.

Our proposal follows a hierarchical decentralized
approach. It is decentralized because each composite
component of the architecture has autonomy to
reconfigure its internal composition, independently of
other components. It is hierarchical because each
composite component reconfigures not only its
composition, but also drives and coordinates the internal
reconfiguration of the composite components it is
composed of. That is, a composite component can
reconfigure itself autonomously, but in these cases where
changes could impact other components of its upper
level, the reconfigurations are coordinated by its upper
level self-management subsystem, to ensure the
architectural consistency.

Separation of concerns. In the context of software
evolution, the separation of concerns is important to
separate those parts of the software that exhibit different
rates of change [26]. This should be considered to
appropriately avoid the entanglement of functional and
reconfiguration concerns [8, 10], and improve their
design and maintainability. Aspect-Oriented Software

Development (AOSD) [22] proposes the separation of
the crosscutting concerns of software systems into
separate entities called aspects. This separation avoids
the tangled concerns of software, allowing the reuse of
the same aspect in different entities of the software
system as well as its maintenance. Although several
proposals have addressed the integration of aspects in
software architectures, very few of them have considered
the encapsulation of the reconfiguration concern into
aspects [3, 10, 15]. We consider that the separation
among the functional and reconfiguration concerns is a
first step to build adaptive systems easier to maintain.
Thus, the reconfiguration code will be able to change the
functional code without being affected. Our proposal
takes advantage of AOSD techniques to improve the
reconfiguration management.

This paper provides four contributions to the design
of autonomous dynamically reconfigurable systems.
First, it defines a model to bridge the gap among high-
level reconfiguration specifications and low-level
supporting mechanisms. Second, it considers the support
for both reactive and proactive reconfigurations, to
achieve a better level of flexibility. Third, it describes a
hierarchical decentralized approach to tackle the
problems of scalability present in self-adaptive
approaches and maintainability in self-organizing ones.
Fourth, it explicitly separates reconfiguration concerns to
improve their maintainability and reuse. These ideas
have been integrated in the PRISMA software
architecture model, which is briefly introduced next.

3 Background: the PRISMA model
PRISMA provides a model and a language for the
definition of complex software systems [30, 32]. Its main
contributions are the way in which it integrates elements
from aspect-oriented software development and software
architecture approaches, as well as the advantages that
this integration provides to software development.

Among the different Architecture Description
Languages (ADLs) from the literature, the PRISMA
ADL was selected because of the benefits it provides for
supporting the dynamic evolution of software
architectures. First, PRISMA allows modelling the
functional decomposition of a system and its crosscutting
concerns by using architectural elements and aspects,
respectively. Thus, we can easily isolate functional and
reconfiguration concerns. Second, PRISMA does not
only allow modelling the structure (i.e. the architecture)
of a system, but also allows describing precisely the
internal behaviour of each architectural element. The
behaviour is specified by using a modal logic of actions
and a dialect of the polyadic π-calculus. π-calculus is
used to specify and formalize the processes of the
PRISMA model and mobility capabilities [2], and the
modal logic of actions is used to formalize how the
execution of these processes affects the internal state of
aspects. Thus, since the internal behaviour is formally
described, this allows us to automatically interleave the
actions required to perform the runtime evolution of its
instances. Lastly, the PRISMA ADL is supported by a

18 Informatica 35 (2011) 15–27 C. Costa-Soria et al.

Model-Driven Development framework [36], which
allows the automatic generation of executable code from
PRISMA models/specifications [32]. This also benefits
the support for dynamic reconfiguration: the code
generation templates will only include reconfiguration
mechanisms in the final code when needed. Next, the
main concepts of the PRISMA ADL are introduced.

PRISMA introduces aspects as a new concept of
software architectures rather than simulating them using
other existing architectural terms (components,
connectors, views, etc). Aspects are first-order citizens of
software architectures and represent a specific behaviour
of a concern (safety, coordination, distribution,
reconfiguration, etc.) that crosscuts the software
architecture. PRISMA has three kinds of architectural
elements: components, connectors, and composites. Each
architectural element encapsulates its functionality as a
black box and publishes a set of services that they offer
to other architectural elements through their ports.
However, the internal view of these architectural
elements differs between simple and composite ones.

The internal view of components and connectors
(which are simple architectural elements) is an invasive
composition [1] of aspects, which can be shown as a
prism (see Figure 1). Each side of the prism is an aspect
that the architectural element imports. A component
differs from a connector in that it imports a functional
aspect, whereas a connector imports a coordination
aspect. Aspects are synchronized among them by means
of weavings, which indicate how the execution of an
aspect service can trigger the execution of services in
other aspects (see Figure 6).

Figure 1: Internal view of simple PRISMA elements

Figure 2: Internal view of composite elements

The internal view of composite components (called
in the PRISMA ADL as Systems) consists of a set of
architectural elements (components, connectors and other
composites) and the links among them (see Figure 2). A
link can be of two kinds: an attachment, if it links a

component and a connector; or a binding, if it links an
(internal) architectural element with one of the ports of
the composite (i.e. allowing the communication with
external architectural elements). Further details about the
semantics of the PRISMA ADL can be found in [30, 32].

4 Case study: Agrobot
To illustrate our approach, we present in this section the
software architecture of the Agrobot, an autonomous
agricultural robot for plague control. Its objective is to
patrol -at periodical intervals- a small field or delimited
area, looking for pests or disease attacks over a set of
growing crops. When a threat is detected, a pesticide is
applied to, as a first counter-attack measure, and a real-
time alarm is sent to the manager in order to take further
specialized actions. The Agrobot architecture is
hierarchically defined, i.e. as a system of systems. The
top level, shown in Figure 3, describes the set of
subsystems the robot is composed of and their
interactions with each other. Each subsystem is depicted
as a component, which provides and requires a set of
services through its ports. Each component not only
depicts the name of the instance (e.g. LeftCamera, see
Figure 3, bottom-left), but also the name of its
architectural type (e.g. VisionSystem), which defines the
structure, behaviour and constraints of the component.
The interaction among components is coordinated by
different connector types (represented as blue small
components), which are not detailed in this paper due to
space reasons.

Figure 3: Software architecture of the Agrobot

Each component of the Agrobot architecture
provides a different set of actions (e.g. image capturing,
pattern analysis, movement, sensing, communication,
pesticide activation, etc.), which are combined
appropriately to fulfil a task (e.g. to supervise a growing
crop, go to another crop, recharge energy, etc.). For
instance, task planning and selection is performed by the
AgrobotPlanner component, the energy management is
performed by the SolarEnergyController, the
communication is performed by the WirelessController,
etc. Among the different components, we will focus on
the image capturing subsystem, provided by the
RightCamera and LeftCamera components. Both
components are instances of the same architectural type,
VisionSystem, but are parameterized to use a right camera

AN ASPECT ORIENTED APPROACH FOR… Informatica 35 (2011) 15–27 19

or a left camera, respectively. These components capture
and pre-filter real-time images from the environment,
which are used by other components to look for crop
diseases (i.e. the PlagueAnalyzer component) or to guide
the movement (i.e. the MovementController component).
The RightCamera and LeftCamera components are
composite components, i.e. their behaviour is provided
by a composition of other architectural elements. They
are mainly composed of a video capture component,
VideoCaptureCard, a hardware device which captures
images from the environment at a constant frame rate;
and an image processing component, ImageProcCard, a
hardware device which pre-processes the images
captured. For instance, Figure 4 shows the internal
structure of the RightCamera component: an instance of
a VideoCaptureCard component, Right-VCapt, sends the
captured images to an instance of an ImageProcCard
component, ImgProc-1. These components are
coordinated by a connector, VCC-Conn. The pre-
processed images are sent to other subsystems by means
of another connector, the IPC-Conn connector.

Figure 4: Architecture of the RightCamera component

Self-management is used in the RightCamera and
LeftCamera components to reconfigure the internal
architecture when a fault is detected in one of its
components. Fault detection is performed by a watchdog
component, VisionSysWatchdog, which periodically
checks if images are being correctly captured and
processed. In case misbehaviour is detected, this
component sends an event to notify a failure. For
instance, if the image processing component does not
correctly process images or has a negative performance,
then the VisionSysWatchdog component sends an event,
which contains the name of the failing architectural type:

faultyOutput!(output `ImageProcCard`)

The events raised by the watchdog component will
be captured by the self-management mechanisms,
reacting appropriately for each kind of event. For
instance, in case of an occurrence of the previously
described event (i.e. faultyOutput), the failing component
instance must be removed (i.e. the hardware image-
processing device is deactivated) and another, different,
component must be used instead: the ImageProcSoftware
component. This component implements another
(compatible) image processing algorithm, but with less
performance than the removed one. Thus, the image
capturing subsystem can continue seamlessly working.

In the next section, the self-management
mechanisms that support the dynamic reconfiguration of
a composite component are described in detail.

5 Autonomic reconfiguration of
composite components

One of our previous works was the study and
identification of the active concerns in evolution
processes. As other authors also stated [4, 17, 20, 23, 28],
we observed that self-managed architectures usually
follow a closed control loop that periodically supervises
the architecture, plans if any (corrective) change needs to
be performed, and effects them. Similar control loops
have been proposed to develop autonomous systems (e.g.
robots), being the most extended the autonomic control
loop [21], which is usually referred to as the MAPE loop
(Monitor, Analyse, Plan, Execute). This loop performs
control operations on a managed resource to achieve a set
of predefined high-level goals, which are part of the
knowledge of an autonomic (i.e. self-controlled) element.
The autonomic control loop has the advantage that
clearly isolates the main concerns commonly present in
every process of (self-)change. Other architecture-based
proposals for self-management generally merge analysis
and planning, or planning and execution, or do not
explicitly model the knowledge required to perform the
changes.

Our proposal uses the autonomic control loop as a
reference model to define how a system reconfigures
itself, bridging the gap among high-level specifications
(i.e. ADLs) and technology-specific (dynamic updating)
mechanisms. We have adapted the original MAPE loop
for this purpose: the managed resource is the architecture
of a system, and the control operations performed on this
resource are mainly introspection operations (for
monitoring the architecture) and reconfiguration
operations (for changing the architecture). Another
adaptation that has been done to the original MAPE loop
is its implementation by means of aspects: each one of
the different controlling components (i.e. Monitor,
Analyse, Plan, etc.) has been encapsulated in a different
aspect. Next subsections describe the details of the
approach.

5.1 Aspects for reconfiguration

Our approach defines four aspects to encapsulate the
reconfiguration concerns. They are the following (see
Figure 5): (i) Monitoring, the concern that captures the
events that take place in the architecture of a composite
component (i.e. the managed resource); (ii)
Reconfiguration Analysis, the concern that analyses the
different events to detect if a reconfiguration must be
done, and that defines the set of reconfigurations to be
performed on the architecture; (iii) Reconfiguration
Coordination, the concern that plans/ coordinates how
the reconfigurations must be applied safely to the
architecture without interrupting current transactions, and
(iv) Reconfiguration Effector, the concern that applies
atomic reconfiguration operations on the running system.

20 Informatica 35 (2011) 15–27 C. Costa-Soria et al.

Each one of these aspects will be described in the
different subsections.

The reason of using aspects instead of modules for
encapsulating dynamic reconfiguration behaviour is
because of the advantages that AOSD provides [22], i.e.
better reuse and maintenance of the different concerns.
Although modules can be used to separate concerns, the
invocations among different modules (e.g. procedure
calls) are explicitly defined inside each module, thus
making each module dependent of the other. However, in
PRISMA aspects are, by definition, independent of each
other: there are not invocations among aspects, but there
are synchronizations among aspects. An aspect defines
provided and required services, and each service is
treated as a hook which can be intercepted. These
interceptions are performed by weavings, which are
defined outside the aspects and define how two aspects
are bound together (i.e. synchronized). Thus, aspects are
completely independent of each other: modifying an
aspect will only impact the weavings that are specifically
related to this aspect, but not other aspects.

Figure 5: Aspects for autonomic reconfiguration

For instance, Figure 6 shows some of the weavings
that have been defined in the VisionSystem architectural
type. The first weaving intercepts the execution of the
service create-ImageProcSoftware (provided by the
Reconfiguration Analysis aspect), and replaces it with
the execution of the service createArchElement
(provided by the Reconfiguration Coordination aspect).
In other words, this weaving binds the execution of a
domain-specific reconfiguration service (i.e. create-
ImageProcSoftware) to a generic reconfiguration service
(i.e. createArchElement). This weaving will be
invalidated if any of these services has its signature
changed. For instance, if a parameter is removed, the
weaving definition can be modified to provide a default
value to the other service (or the result of applying a
function). In both cases, the modification of an aspect
does not necessarily impact to the other aspects. The
analysis of this impact is outside the scope of this work;
however other authors have conveniently addressed this
problem, such as Pérez-Toledano et al. [31].

Another reason for using aspects is to avoid that
changes (i.e. maintenance operations) on technology-
specific reconfiguration mechanisms may have an impact
on the technology-independent reconfiguration
specifications, and vice versa. Each aspect has a different
role in the MDD process. On the one hand, the
Reconfiguration Analysis aspect is domain-specific: it is

defined by the architect and contains the high-level
specific reconfiguration policies (in terms of PRISMA
concepts) for the composite component it is weaved to.
On the other hand, the aspects Monitoring and
Reconfiguration Effector (depicted in Figure 5 in dark
grey) implement the technology-specific mechanisms
that provide support for supervising/changing the
architecture. They model the low-level services that are
provided by the infrastructure and allow us to combine
them to perform high-level reconfiguration operations.
This is performed by the aspect Reconfiguration
Coordination: it encapsulates the mappings from high-
level PRISMA concepts to low-level technological
services. Thus, code that has different rates of change
[26] is explicitly separated: dynamic updating
mechanisms (i.e. Monitoring and Effector aspects),
reconfiguration specifications (i.e. Analysis aspect), and
the mappings among them (i.e. Coordination aspect).

Weavings
...
ReconfCoord.createArchElement(“ImgProcSW”,

params, newID)
insteadOf

VisionSysRecAnalysis.create-ImageProcSoftware(
params, newID);

Monitoring.beforeServiceRequest(*, eventName,
eventParams)

insteadOf
VisionSysRecAnalysis.beforeEvent(eventName,

eventParams);
...

End_Weavings;

Figure 6: Example of weavings among aspects

5.1.1 The monitoring aspect
This aspect monitorizes the architecture of the composite
component where it has been imported to. It provides a
set of services for collecting information about: (i) the
events/messages that take place in the architecture, (ii)
the current configuration of the architecture, and (iii) the
runtime status of the different elements of the
architecture. These services are shown in Figure 7. Next,
they are explained in detail.

Services 1 to 3 are provided to intercept any event
triggered in the composite component and act before,
instead of, or after the event. Since this aspect supervises
the architecture of a composite component, the events
that it can capture are only those that take place at the
level of interactions, i.e. service requests among internal
components (i.e. through attachments), or coming
from/to external ports (i.e. through bindings). Thus,
internal components/connectors remain unaffected by
interception mechanisms (i.e. encapsulation is
preserved). For instance, the service 2 (see Figure 7)
intercepts a service request just before it is delivered to
the service provider. The parameter serviceName defines
the request to intercept, whereas elemID defines which
element sent the request (an external port, an
architectural instance, or a connection). As it will be
described in the following section, event capturing is
used to trigger reconfiguration processes.

AN ASPECT ORIENTED APPROACH FOR… Informatica 35 (2011) 15–27 21

Services 4 to 8 provide information about the current
configuration of the managed architecture. Since the
architecture of a dynamic reconfigurable system can
change substantially over time, information about the
configuration at any given moment is essential. For
instance, the service 4 returns a PRISMA specification
with the current configuration, so it can be analysed at
runtime. The other services are auxiliary and allow us to
get the instances of a particular type, the connections to a
given instance, etc. In this way, a composite component
can be aware of its internal configuration and use this
knowledge to decide if a reconfiguration is necessary.
Moreover, this information also allows us to verify
whether or not a set of reconfiguration actions has been
successfully executed.

Finally, service 9 provides information about the
runtime status of the elements the composite component
is made of: if the elements are idle, processing services
or stopped. This information allows a composite
component to be aware of whether its elements are ready
to be reconfigured or not.

Monitoring Aspect
...
Services

(1) afterServiceRequest(elemID, serviceName,
output paramList);

(2) beforeServiceRequest(elemID, serviceName,
output paramList);

(3) insteadOfServRequest(elemID, serviceName,
replacingService, output paramList);

(4) getConfigSpecification(output PRISMASpec);
(5) getArchElementInstances(typeName,

output instanceList);
(6) getConnections(archElemId,

output connectionList);
(7) getArchElementProperties(archElemID,

output propertiesList, output portList);
(8) getConnectionProperties(connID,

output archElem1, output archElem2);
(9) getStatus(elemID, output status);
...

End_Aspect;

Figure 7: Services of the Monitoring aspect

For instance, to be subscribed to (i.e. intercept) the
event faultyOutput when it is triggered by the
VisionSysWatchdog component (i.e. before the event is
processed), the following code must be executed:

beforeServiceRequest!(“VisionSysWatchdog”,
 “faultyOutput”, output paramList)

5.1.2 The reconfiguration analysis aspect
This aspect describes the proactive reconfiguration
behaviour of a composite component. This aspect is
application-specific: it is defined for a specific composite
component, and contains the policies that will drive the
reconfiguration of this component. The Reconfiguration
Analysis aspect defines when to perform a
reconfiguration, and how the different architectural
elements must be reconfigured. We have used the
PRISMA AOADL to define event-condition-action
(ECA) policies. These policies are expressive enough to
describe how a composite component should react in
presence of certain events or conditions. In our approach,

these policies are described at design-time, although they
can be changed at runtime by using reflective dynamic
evolution mechanisms, as described in a previous work
[11]. The system architect defines ECA policies by
means of configuration transactions (i.e. Actions) and
reconfiguration triggers (i.e. Events and Conditions). An
example of this aspect is shown in Figure 8: it shows the
Reconfiguration Analysis aspect of the VisionSystem
architectural type.

A configuration transaction is a specification that
describes an ordered set of domain-specific
reconfiguration operations to be executed transactionally
(all or none), in order to achieve a new type-conformant
configuration. Thus, reconfiguration operations will be
executed, and if anything fails, the reconfiguration will
be rollbacked. For instance, the transaction
RepairImageProcessUnit (see Figure 8, transactions
section) describes how the component ImageProcCard
must be replaced by the component ImageProcSoftware
in case of malfunction. The transaction consists of two
processes. The first one (see BEGIN process) obtains the
references to the instances that are going to be affected
by the reconfiguration process. Then, the second process
(see RECONF process) performs a set of configuration
actions: creates a new instance of the ImageProcSoftware
component, attaches this instance to the instance of the
VCC-Conn connector, detaches the failing
ImageProcCard instance from the VCC-Conn connector
instance, etc.

ReconfigurationAnalysis aspect VisionSysRecAnalysis
...
Triggers
RepairImageProcessingUnit() when
{eventParams==["ImageProcCard"]}
beforeEvent!(“faultyOutput”, out eventParams);

... [more reconfiguration triggers]

Transactions
in RepairImageProcessingUnit():
BEGIN::=
// Get IDs of instances subject to changes
oldImProcCardID=imageProcCard-list[0]
VCCConnID=VCC-Conn-list[0]
IPCConnID=IPC-Conn-list[0] RECONF;
RECONF::=
create-ImageProcSoftware!(cameraPos,

output newImProcID)
attach-Att_VCCConn_IPCSW!(VCCConnID,

newImProcID, output newAttID)
attach-Att_IPCSW_IPCConn!(newImProcID,

IPCConnID, output newAttID)
detach-Att_VCCConn_IPC!(VCCConnID,

oldImProcCardID)
detach-Att_IPC_IPCConn!(oldImProcCardID,

IPCConnID)
destroy-ImageProcCard!(oldImProcCardID)
END;

... [more transactions]
End_Aspect VisionSysRecAnalysis;

Figure 8: Example of a Reconfiguration Analysis aspect

A reconfiguration trigger is a condition which, if
true, activates a configuration transaction. This condition
may evaluate user-defined attributes (e.g. performance),
or be true when a certain event is intercepted (e.g. an
exception, a service request, the creation or destruction

22 Informatica 35 (2011) 15–27 C. Costa-Soria et al.

of connections, etc.). For instance, the reconfiguration
trigger shown in Figure 8 (see triggers section) activates
the configuration transaction RepairImageProcessUnit
when a certain event is intercepted in the architecture and
a certain condition is fulfilled. The event to intercept is
the service request faultyOutput, and the condition is that
one of the parameters of this service is “ImageProcCard”.
This denotes that an instance of ImageProcCard is failing
(see section 4).

Note that this aspect does not directly invoke
services from other aspects. For instance, the
reconfiguration trigger intercepts services by means of
the service BeforeEvent. This service is really a hook that
is bound to the Monitoring aspect by means of a weaving
relationship (see the second weaving in Figure 6).
Without this weaving, the service BeforeEvent does
nothing.

5.1.3 The reconfiguration coordination aspect
This aspect is in charge of driving the successful
execution of the reconfiguration plans that have been
triggered by the Reconfiguration Analysis aspect. It
ensures that these plans are transactionally performed (all
or none), and that the current state of the architecture is
preserved. When a reconfiguration transaction is
triggered, the service beginConfigurationTransaction is
implicitly executed. The execution of this service
prepares the architecture of the composite component to
be reconfigured. Then, the execution of each
configuration action belonging to a configuration
transaction implicitly triggers the execution of one of the
generic reconfiguration services provided by the
Reconfiguration Coordination aspect. The headers of
these services are shown in Figure 9. Their behaviour is
defined using the PRISMA AOADL syntax. For
illustration purposes only these services for creating and
destroying architectural elements are completely shown.

These generic reconfiguration services describe the
set of low-level actions to perform for each different kind
of reconfiguration action (i.e. creating instances,
disconnecting instances, replacing instances, etc.). Each
generic reconfiguration service performs three steps.
First, the running transactions of the elements affected by
a reconfiguration action are finished in a consistent way.
For instance, the affected elements when performing the
destroyArchitecturalElement operation are the instance to
destroy, its connections, and its adjacent architectural
element instances. Second, the set of required low-level
changes are applied. For instance, the destruction of an
instance and its connections. These low-level changes are
performed by the Reconfiguration Effector aspect (see
section 5.1.4). Third, when the reconfiguration has been
realized, it is verified whether or not the desired
configuration has been achieved, by querying to the
Monitoring aspect about the configuration information
(see section 5.1.1). Each generic reconfiguration service
successfully executed is registered in a data structure, in
order to undo the operation if anything fails.

Finally, if a reconfiguration transaction ends
successfully, the service EndConfigurationTransaction is

implicitly executed. Then, all the elements that were
stopped are restarted. It only makes sense to start
reconfigured elements when all the reconfiguration
operations have been performed successfully. If any of
the reconfiguration services fails, the configuration
transaction is rollbacked.

ReconfigurationCoordination Aspect
BeginConfigurationTransaction():

... // Initialisation of auxiliary structures
EndConfigurationTransaction():

CHECK::= |transState=valid|COMMIT +
|transState=fail|ROLLBACK.

COMMIT::=
Destroy!(DestructionStack_popElement())

... // [Commit and Rollback processes]
CreateArchitecturalElement(AEType, params,
output newID):

 CREATE::= CreateInstance!(typeof(AEType),
params, output newID) CHECK;

 CHECK::= CheckConsistence!(output transState)
|transState=fail|EndConfigurationTransaction!()

+ CONTINUE;
 CONTINUE::= ElementCreated(newID)

Start!(newID).
DestroyArchitecturalElement?(id):

 STOP::= CheckConnections!(id)
Stop!(id) Status!(id,status)
|status=“Blocked”|DESTROY + STOP;

 DESTROY::= DestructionStack_pushElement(id).
CreateAttachment(sourceArchElemID, srcPort,

targetArchElemID, trgPort,output attID):
 [... body ommitted for space reasons]
DestroyAttachment(attachmentID): [...]
CreateBinding(sysPortName, archElemID,

archElemPortName, out bindingID): [...]
DestroyBinding(bindingID): [...]
ReplaceArchitecturalElement(IDToBeReplaced,

newAEType, [initializationValues], out newID):
 [...]
End_Aspect;

Figure 9: Services of the Reconfig. Coordination aspect

5.1.4 The reconfiguration effector aspect
This aspect effects, or performs, changes on the
architecture it manages. It provides a set of atomic,
simple reconfiguration services to interact with the other
high-level aspects. These services are simple because
they do not take into account the status (i.e. whether the
element has been previously stopped or not) and/or the
relations with the adjacent architectural elements. They
must be correctly coordinated to carry out a safe
reconfiguration: this is performed by the Reconfiguration
Coordination aspect (see section 5.1.3). The most
relevant services are shown in Figure 10.

The implementation of each reconfiguration service
is technology-dependent: depending on the technology
selected and how the component execution model has
been implemented, the dynamic updating mechanisms to
use will be different. For instance, the current
implementation of the PRISMA model, PRISMANET,
has been done using .NET technology and a concurrent,
event-based, aspect-oriented execution model [29]. The
management of connections at runtime has been done by
the use of indirections and publish-subscribe
mechanisms, which are implemented in ports. Among the
available strategies for implementing the quiescence of

AN ASPECT ORIENTED APPROACH FOR… Informatica 35 (2011) 15–27 23

running, stateful components [19, 24, 40], finally a
variation of the tranquillity approach was implemented.
The support for instance replacement requires the
implementation of three features: type replacement, state
mapping and interface adaptation. Our current
implementation only provides type replacement and state
mapping, in a similar way as described by Ritzau et al.
[33], but adapted for event-based, aspect-oriented
components. An example of how interface adaptation can
be provided is described in Cámara et al. [6].

ReconfigurationEffector Aspect
...
Services
StartElement(elemID);// Reach an Active status
StopElement(elemID); // Reach a Quiescent status
CreateInstance(componentType, initParams,

out componentID);
DestroyInstance(componentID);
Connect(componentID1, port1, componentID2,

port2, out connectionID);
Disconnect(connectionID);
ReplaceArchitecturalElement(ID,type,[params]);

...
End_Aspect;

Figure 10: Services of the Reconfig. Effector aspect

5.2 The evolver component: weaving the
reconfiguration aspects

The previously described aspects provide autonomic
reconfiguration capabilities to those composite
components that import them. However, the
infrastructure for supporting dynamic reconfiguration is
not costless: it may introduce a performance overhead of
2% [41]. Since not all the components of a system
require this degree of flexibility, and to optimize
performance and system resources, the decision of which
composite components will support dynamic
reconfiguration or not is left to the architect. This
decision is reflected by importing the reconfiguration
aspects in those composite components that may undergo
dynamic changes. Only when the specification of a
composite component imports these aspects, the
PRISMA Model Compiler [32] includes the
reconfiguration mechanisms in the generated code of the
composite component.

To synchronize appropriately the aspects for
autonomic reconfiguration and ease their maintenance,
these aspects have been encapsulated into a component
called Evolver2. This component provides autonomic
reconfiguration capabilities to the composite component
that it has been imported to. It is integrated in the
architecture of a composite component like another
component, but it provides services that belong to the
meta-level. That is, it offers services that introspect and
change the architecture within the Evolver resides (i.e. a
composite component).

By default, the Evolver only imports the aspects that

2 This name has been chosen because this component also

imports other aspects, related to the dynamic evolution of
architectural types. See [11] for further details.

support dynamic reconfigurations, i.e. Monitoring,
Reconfiguration Coordination and Reconfiguration
Effector. The activeness of change (i.e. proactive,
reactive or both) is specified by the architect, depending
on its needs. On the one hand, to introduce proactive
reconfigurations, a Reconfiguration Analysis aspect must
be defined. This is done by completing an automatically
generated, empty Reconfiguration Analysis aspect with
the reconfiguration policies needed. On the other hand, to
allow reactive reconfigurations, two ports must be added
to the Evolver: one for introspection and another for
changing the architecture. The former publishes the
introspection services provided by the Monitoring aspect
(i.e. the services 4 to 8 shown in Figure 7). The latter
publishes the generic reconfiguration services provided
by the Reconfiguration Coordination aspect. These ports
allow performing unanticipated reconfigurations on a
composite component. These reconfigurations could be
requested by another component (such as another
Evolver, which would act as a configuror of other
elements), or by the architect itself (e.g. by connecting
these ports to a component that provides a user
interface).

Thus, a reconfigurable composite component will
have a fixed part, i.e. the Evolver, and a variable part
where the Evolver will act upon, i.e. all the other
components and connections of the composite
component. However, this does not mean that the
reconfiguration process is unconstrained. A
reconfiguration is limited by the constraints defined in
the type of a composite component [9]. This type defines
which components can be used in the architecture and
how they can be interconnected. Thus, although different
instances of the same composite component reconfigure
its architecture, they will always maintain type
conformance, so that the overall composition is
preserved.

5.3 Hierarchically decentralized evolvers
The Evolver provides a composite component with
dynamic reconfiguration capabilities, which can be
initiated both proactively (i.e. autonomously-driven) and
reactively (i.e. externally-driven). These kinds of
activeness are combined to build a hierarchical
decentralized approach for self-management.

Each reconfigurable composite component is
provided with an Evolver that proactively manages its
architecture. This proactivity makes a composite
component autonomous, and allows us to distribute (and
decentralize) reconfiguration policies among the
different composite components that build a system. In
addition, the decentralization we propose is hierarchical.
Since not all the reconfiguration policies are confined to
a single composite component, but can span different
composites, a coordination structure among different
Evolvers is needed. This coordination is performed
hierarchically: the Evolver of a composite component
coordinates the reconfigurations of lower-level Evolvers,
i.e. those that manage the reconfigurations of composite
components integrated in the architecture of the upper-

24 Informatica 35 (2011) 15–27 C. Costa-Soria et al.

level Evolver. For instance, the Agrobot system has an
Evolver that manages not only the reconfiguration of the
Agrobot architecture, but that also coordinates the
reconfigurations of the composite components that
compose this architecture (see Figure 11): e.g.
RightCamera, LeftCamera, the MovementController, etc.

This hierarchical decentralized reconfiguration is
supported by means of reconfiguration goals, reactive
reconfiguration ports (i.e. introspection and
reconfiguration ports), and reconfiguration events. The
details of this approach are described below.

Figure 11: Agrobot and the coordination of Evolvers

5.3.1 Hierarchical change coordination
Although reconfigurable composite components may
proactively reconfigure themselves, in certain cases these
changes cannot be only performed locally. This is the
case when reconfigurations impact several composite
components simultaneously. For instance, the
introduction of a new image encoding algorithm in the
Agrobot will not only impact the image capturing
subsystem (i.e. the VisionSystem), but also those
components that decode and analyse the images captured
(e.g. the PlagueAnalyzer). In these cases, changes must
be done in a coordinated manner among the different
composite components to preserve the architecture
consistency. Otherwise, a VisionSystem component may
produce images that other subsystems would be unable to
decode. In our approach, this coordination of changes is
performed hierarchically: the Evolver of a composite
component (i.e. the upper-level Evolver) drives the
reconfiguration of other composite components, through
their respective Evolvers. This can be done in two ways:
non-intrusively or intrusively.

Non-intrusive reconfigurations are driven by
changing the reconfiguration goals of reconfigurable
composite components. These goals are provided by the
Evolver of a composite component to allow its upper-
level Evolver to set reconfiguration preferences or to
initiate internal proactive reconfigurations. A
reconfiguration goal is an attribute defined by the
architect in the Reconfiguration Analysis aspect that: (1)
is externally visible and modifiable, and (2) is evaluated
in either: (i) a reconfiguration trigger, to determine if a
configuration transaction must be initiated; or (ii) a
configuration transaction, to decide how a
reconfiguration must be performed.

For instance, the Evolver of a VisionSystem
composite component provides a reconfiguration goal to
define the minimum performance that the VisionSystem
must provide. Depending on the value of this goal,
certain reconfigurations will be done or not. This goal is
set by means of an attribute called min_frame_rate,
which defines the minimum rate for producing images.
This attribute is evaluated to decide whether a
reconfiguration should be initiated to increase
performance or, by the contrary, to release resources. To
increase performance, the Evolver instantiates additional
image processing components, whereas to release
resources removes them and disables the watchdog
component (thus decreasing reliability). This way, the
upper-level Evolver, i.e. the Agrobot Evolver, can drive
how the reconfiguration of the VisionSystem should be
performed: preserving performance or reliability.

The advantage of using reconfiguration goals is that
they allow us to drive the reconfiguration of a composite
component without breaking its encapsulation, i.e.
without directly accessing its internal composition.
However, the disadvantage is that only anticipated
reconfigurations can be done (i.e. those defined by
reconfiguration goals). Unanticipated changes, such as
the addition of a new component to a composite
component, must be done intrusively. This is done
through reactive reconfiguration ports. These ports are
provided by the Evolver of a composite component to
allow externally-driven reconfigurations (see section
5.2). In this context, these ports are used to allow an
upper-level Evolver to explicitly introspect and change
the internal composition of a composite component.
Moreover, since reconfiguration services are internally
provided by the Reconfiguration Coordination aspect,
transactional reactive reconfiguration support is also
provided: even all the changes externally requested are
successfully executed, or all the changes are undone.

This way, an upper-level Evolver can reconfigure in
a coordinated way the internal composition of different
reconfigurable composite components. A coordinated
change can be also transactionally performed. Each
reconfiguration transaction initiated in a reactive port is
considered as a subtransaction of the coordinated change
transaction. If a subtransaction fails (i.e. a set of
reconfigurations cannot be performed inside a composite
component), then the coordinated change transaction can
be entirely aborted, by deferring the commits of each
subtransaction until the end of the coordinated change
process.

Note that both non-intrusive and intrusive
reconfigurations can be performed in a composite
component if and only if its Evolver has enabled them
(i.e. by exporting reconfiguration goals or reactive
reconfiguration ports, respectively). This way, the
architect of a reconfigurable composite component has a
great level of flexibility to determine whether a
composite component can be managed from outside or
not, and how it can be managed.

AN ASPECT ORIENTED APPROACH FOR… Informatica 35 (2011) 15–27 25

5.3.2 Bottom-up change notifications
Another functionality that is provided by an Evolver
component is the notification of changes to its upper-
level Evolver. This is needed when the Evolver of a
composite component has initiated changes that may
impact the upper-level, i.e. the architecture where the
composite component is located. For instance, consider
the removal of an internal component whose
functionality was being exported to other elements (e.g.
the removal of the ImageProcCard component in the
VisionSystem, due to a failure). These changes must be
notified to its upper-level Evolver, so it can initiate
additional actions to preserve architecture consistency:
disabling the VisionSystem instance that has reduced its
functionality. These changes are notified by means of
reconfiguration events.

A reconfiguration event is used to communicate
internal changes to outside, and has the following
signature: ReconfigurationEvent(type, message). The
message parameter gives a descriptive code about the
reconfiguration performed. The type parameter describes
the impact of change, i.e. what kind of change is going to
be performed: (i) local, an internal change: the existing
interfaces remain unchanged; (ii) medium, a conservative
change: new interfaces are added, or existing interfaces
are extended with new services (i.e. existing interactions
are still valid, but additional functionality is provided);
and (iii) system-wide, a potentially disruptive change:
existing interfaces are deleted, or some services removed.

Reconfiguration events can be triggered by the
Reconfiguration Coordination or the Reconfiguration
Analysis aspects. The Reconfiguration Coordination
aspect triggers a reconfiguration event automatically
when an external port or a binding to an internal
component are added, changed, or removed. The reason
is that external ports and binding are the means by which
a composite component interacts with its environment. If
an internal change impacts a port or a binding, this
change will also impact the environment, so it must be
notified. The Reconfiguration Analysis aspect may also
trigger reconfiguration events to notify about a situation
or reconfiguration performed. This is specified by the
architect in proactive specifications. For instance, in a
VisionSystem composite component, the
VideoCaptureCard component is a critical element. If
this element fails, and since the VisionSystem cannot
perform its functionality, then the environment (i.e. the
Agrobot architecture) must be notified about. This is
specified in the Reconfiguration Analysis: when the
event faultyOutput?(`VideoCaptureCard`) is
intercepted, then the following event is triggered:
ReconfigurationEvent!(“system-wide”, “VIDEOCARD

FAILURE”). This event will be captured by the upper-
level Evolver, which will disable the composite
component that has triggered this event to avoid
processing its results. Thus, although one VisionSystem
composite component failed, the robot would be able to
continue working, because it is provided with two
replicas of this component.

6 Related work
In the last years, a lot of research efforts have been done
to address the dynamic evolution of software systems [5,
25, 34] and the reconfiguration of software architectures
[4,16,19,24]. Some works have addressed the integration
of AOSD techniques in software architectures [13, 32],
although most of them have been mainly focused on
modelling the separation of concerns at the architectural
level. Only a few proposals have explicitly addressed the
use of aspects to separate the evolution concerns in
software architectures. AO-Plastik [3] isolates the
reconfiguration concern by using aspectualized
components and connectors to encapsulate the
reconfiguration specifications. SAFRAN [15] has
extended the FRACTAL component model to introduce
adaptation aspects, which decouple reconfiguration from
functional concerns. However, these approaches do not
take into account all the concerns involved in the
autonomous control loop, such as monitoring and
effecting changes. Greenwood and Blair [20] proposed
the use of dynamic aspects for monitoring and effecting
changes. However, this work is focused on a particular
technology whereas our approach is based at the
architecture level in a MDD context.

There are many ADLs that provide dynamic
reconfiguration support through specific language
primitives, such as Gerel [16], Darwin [24], LEDA [7] or
PiLaR [12]. These primitives are used in component
specifications to describe when and how the architecture
should be reconfigured. However, these works only focus
on reconfiguration specifications but do not address how
these specifications are finally applied on the
architecture. In addition, their functional specifications
are tangled with reconfiguration specifications. Several
architecture-based approaches that provide self-
adaptation capabilities have emerged [28]. Dashofy et al.
[14] and the Rainbow framework [17] describe an
architecture-based approach to provide self-healing and
self-adaptation of running systems, respectively.
However, both approaches use external and centralized
reconfiguration mechanisms instead of using localised
mechanisms to each composite component.

Morrison et al. [27] describe a conceptual framework
where evolvable systems are structured in Evolver-
Producer pairs (E-P). A Producer is a process that carries
out productive functionality. An Evolver is a process that
monitors the Producer and/or environmental stimulus,
and uses this information to generate a new version of
the Producer or even the locus (i.e. the context) where
the E-P pair is located. These concepts are recursively
applied to build composite systems: both an Evolver and
a Producer may be internally composed of an E-P pair.
Our approach shares several ideas with this conceptual
framework: (i) a composite component is the locus where
an E-P pair is located; (ii) the architectural elements
composing a composite component represent a Producer
process; and (iii) the Evolver component of a composite
component behaves as an Evolver process (i.e. it can
change the entire locus or generate a new version of the
Producer). Another similarity with our work is that each

26 Informatica 35 (2011) 15–27 C. Costa-Soria et al.

locus is provided with localised reconfiguration
capabilities, explicitly isolating functionality from
evolution. However, the framework is only conceptual,
the high-level mechanisms for change are not described,
and coordination issues among evolvers are not
addressed.

7 Conclusion and future work
This paper has described an approach for supporting the
autonomic reconfiguration of hierarchical software
architectures. Instead of using a centralized self-
management infrastructure to supervise the entire system
and its subsystems, a hierarchical decentralized approach
is proposed. Each subsystem (i.e. a composite
component): (i) manages its internal reconfiguration
independently of other subsystems, and (ii) provides
reconfiguration events and goals to its upper level (i.e.
the architecture within which it is used), to allow its
integration and management. The upper level then: (i)
uses these events to be informed about changes which
may affect other elements, and (ii) according to the new
situation, it reconfigures its architecture and/or changes
the reconfiguration goals of components to fit the new
needs. This approach can be recursively applied, because
the same set of aspects is used at each level (i.e.
Monitoring, Reconfiguration Coordination and
Reconfiguration Effector aspects). Only the architecture-
specific aspect (i.e. the Reconfiguration Analysis aspect)
changes at each level, because the context to manage (i.e.
the architecture) is different. Thus, this approach
provides a software architecture with the following
properties: (i) flexibility, due to the use of dynamic
reconfiguration mechanisms; (ii) maintainability, because
aspect-oriented techniques are used to separate
reconfiguration concerns from other concerns, and (iii)
scalability, because management is decentralized.

Further works remain, as the dynamic generation of
reconfiguration plans from high-level goals. We have
used the PRISMA AOADL to define simple ECA
policies, although other kind of approaches may be used,
such as those related to the synthesis of tasks from high-
level goals [38]. Our contribution is not the definition of
the reconfiguration specification, but the explicit
separation between the reconfiguration specifications and
the mechanisms that support them. This way, business
logic, reconfiguration specifications, and reconfiguration
mechanisms can be maintained separately. The business
logic can be dynamically changed by reconfiguration
specifications, by means of reconfiguration mechanisms.
And reconfiguration specifications can also be
dynamically changed by using the reconfiguration
mechanisms, treating them as any other concern of the
system, as we stated in [11].

References
1. Aßmann, U.: Invasive Software Composition. Springer,

2003.
2. Ali, N., Ramos, I., Solís, C.: Ambient-PRISMA: Ambients in

mobile aspect-oriented software architecture. Journal of
Systems and Software 83(6): 937-958, 2010.

3. Batista, T., Tadeu, A., Coulson, G., et al.: On the Interplay
of Aspects and Dynamic Reconfiguration in a Specification
to Deployment Environment. In: 2nd European Conf. on
Software Architecture. LNCS, vol. 5292. Springer, 2008.

4. Bradbury, J.S., Cordy, J.R., Dingel, J., Wermelinger, M.: A
Survey of Self-Management in Dynamic Software
Architecture Specifications. In: Workshop on Self-Managed
Systems. Newport Beach, CA, 2004.

5. Buckley, J., Mens, T., Zenger, M., Rashid, A., Kniesel, G.:
Towards a taxonomy of software change. Journal of
Software Maintenance and Evolution, 17(5). Wiley, 2005.

6. Cámara, J., Salaün, G., Canal, C.: Composition and Run-
time Adaptation of Mismatching Behavioural Interfaces. J.
of Universal Computer Science, 14(13), Springer, 2008.

7. Canal, C., Pimentel, E., Troya, J.M.: Specification and
Refinement of Dynamic Software Architectures. In:
Working IFIP Conference on Software Architecture
(WICSA’99). San Antonio, Texas, USA, 1999.

8. Cazzola, W., Chiba, S., Saake, G.: Guest Editors'
Introduction: Aspects and Software Evolution.
Transactions on Aspect-Oriented Software Development, 4:
114-116. Springer, 2007.

9. Costa-Soria, C., Heckel R.: Modelling the Asynchronous
Dynamic Evolution of Architectural Types. In: Self-
Organizing Architectures. LNCS, vol. 6090, pp. 198-229.
Springer-Verlag, Berlin Heidelberg, July 2010.

10. Costa-Soria, C., Pérez, J., Carsí, J.A.: Handling the
Dynamic Reconfiguration of Software Architectures Using
Aspects. In: 13th European Conf. on Software Maintenance
and Reengineering. Kaiserslautern, Germany, 2009.

11. Costa-Soria, C., Hervás-Muñoz, D., Pérez, J., Carsí, J.A.: A
Reflective Approach for Supporting the Dynamic Evolution
of Component Types. In: 14th Int. Conf. on Engineering of
Complex Computer Systems (ICECCS'09). 2-4 June 2009.

12. Cuesta, C.E., Romay, P., Fuente, P., Barrio-Solórzano, M:
Reflection-Based Aspect-Oriented Software Architecture.
In: European Workshop on Software Architecture
(EWSA’04). LNCS, vol. 3047. Springer, 2004.

13. Cuesta, C.E., Romay, P., Fuente, P.d.l., Barrio-Solárzano,
M.: Architectural aspects of architectural aspects. In proc.
of: 2nd European Workshop on Software Architecture
(EWSA'05). LNCS, vol. 3527. Springer, 2005.

14. Dashofy, E.M., van der Hoek, A., Taylor, R.N.: Towards
Architecture-Based Self-Healing Systems. In: Workshop on
Self-Healing Systems. Charleston, South Carolina, 2002.

15. David, P., Ledoux, T.: An Aspect-Oriented Approach for
Developing Self-Adaptive Fractal Components. 5th Symp.
on Software Composition (SC’06). Vienna, Austria, 2006.

16. Endler, M., Wei, J.: Programming Generic Dynamic
Reconfigurations for Distributed Applications. In: First
International Workshop on Configurable Distributed
Systems. London, UK, 1992.

17. Garlan, D., Cheng, S., Huang, A., et al. Rainbow:
Architecture-Based Self-Adaptation with Reusable
Infrastructure. Computer, 37:46-54. IEEE, 2004.

18. Georgiadis, I., Magee, J., Kramer, J.: Self-organising
software architectures for distributed systems. In: Workshop
on Self-Healing Systems. Charleston, South Carolina, 2002.

19. Gomaa, H., Hussein, M.: Software reconfiguration patterns
for dynamic evolution of software architectures. 4th Int.
Conf on Software Architecture (WICSA’04). IEEE, 2004.

20. Greenwood, P., Blair, L.: A Framework for Policy Driven
Auto-adaptive Systems Using Dynamic Framed Aspects.
Transactions on AOSD II. LNCS, vol. 4242, pp. 30-65.
Springer, 2006.

21. Kephart, J.O., Chess, D.M.: The Vision of Autonomic
Computing. Computer, 36(1):41-50. IEEE, 2003.

AN ASPECT ORIENTED APPROACH FOR… Informatica 35 (2011) 15–27 27

22. Kiczales, G., Lamping, J., Mendhekar, A., et al.: Aspect-
Oriented Programming. In 11th ECOOP’97.

23. Kramer, J., Magee, J.: Self-managed systems: an
architectural challenge. In: ICSE - Future of Software
Engineering (FOSE’07), pp. 259–268. IEEE, 2007.

24. Kramer, J., Magee, J.: The Evolving Philosophers Problem:
Dynamic Change Management. Transactions on Software
Engineering, 16(11):1293-1306. IEEE, 1990.

25. McKinley, P.K., Sadjadi, S., Kasten, E., et al.: Composing
Adaptive Software. Computer, 37(7). IEEE, 2004.

26. Mens, T., Wermelinger, M.: Separation of concerns for
software evolution. Journal of Software Maintenance and
Evolution, 14(5):311-315. Wiley, 2002.

27. Morrison, R., Balasubramaniam, D., Kirby, G., et al.: A
Framework for Supporting Dynamic Systems Co-
Evolution. Automated Software Engineering, 14(3):261-
292. Springer, 2007.

28. Oreizy, P., Gorlick, M., Taylor, R.N. et al: An Architecture-
Based Approach to Self-Adaptive Software. Intelligent
Systems, 14:54-62. IEEE, 1999.

29. Pérez, J., Ali, N., Costa, C., et al.: Executing Aspect-
Oriented Component-Based Software Architectures on
.NET Technology. In: 3rd International Conference on
.NET Technologies. Pilsen, Czech Republic, June 2005.

30. Pérez, J: PRISMA: Aspect-Oriented Software Architectures.
PhD Thesis, Universidad Politécnica de Valencia, 2006.

31. Perez-Toledano, M.A., Navasa, A., Murillo, J.M., Canal,
C.: TITAN: a Framework for Aspect Oriented System
Evolution. In: International Conference on Software
Engineering Advances (ICSEA’07). IEEE, 2007.

32. Pérez, J., Ali, N., Carsí, J.A., et al.: Integrating aspects in
software architectures: PRISMA applied to robotic tele-
operated systems. Information & Software Technology,
50(9-10):969-990. Elsevier, 2008.

33. Ritzau, T., Andersson, J.: Dynamic Deployment of Java
Applications. In: Java for Embedded Systems Workshop.
London, 2000.

34. Segal, M.E., Frieder, O: On-the-Fly Program Modification:
Systems for Dynamic Updating.IEEE Software, 10(2) 1993.

35. Software Engineering Institute: Ultra-Large-Scale Systems:
Software Challenge of the Future. Technical Report.
Carnegie Mellon University, Pittsburgh, USA, 2006.

36. Selic, B.: The pragmatics of model-driven development.
Software, 20(5). IEEE, 2003.

37. Serugendo, G.D.M., Gleizes, M.P., Karageorgos, A.: Self-
organisation and emergence in MAS: An Overview.
Informatica (Slovenia), 30(1):45-54. 2006.

38. Sykes, D., Heaven, W., Magee, J. et al.: From goals to
components: a combined approach to self-management.
Workshop on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS’08). Germany, 2008.

39. Taylor, R.N., Medvidovic, N., et al.: Software Architecture:
Foundations, Theory and Practice. Wiley, 2009.

40. Vandewoude, Y., Ebraert, P. et al.: Tranquillity: A low
Disruptive Alternative to Quiescence for Ensuring Safe
Dynamic Updates. Transactions on Software Engineering,
33(12):856-868. IEEE, 2007.

41. Wang, Q., Shen, J., Wang, X., Mei, H.: A Component-
Based Approach to Online Software Evolution. J. of
Software Maintenance and Evolution, 18(3). Wiley 2006.

28 Informatica 35 (2011) 15–27 C. Costa-Soria et al.

Informatica 35 (2011) 29–37 29

Component Reconfiguration in Presence of Mismatch

Carlos Canal and Antonio Cansado
Department of Computer Science, University of Málaga, Spain
E-mail: canal@lcc.uma.es

Keywords: component substitution, dynamic reconfiguration, software adaptation

Received: February 20, 2010

This paper discusses how to reconfigure systems in which components present mismatch in both their
signature and behavioural interfaces. We are interested in performing component substitution without
stopping the system, though we assume components are not designed with reconfiguration capabilities in
mind. We also consider that components may need to be adapted before interacting with the system. In
this work we identify the basic requirements for achieving runtime component substitution, and define
several different interchangeability notions that are adequate to component substitution under behavioural
adaptation. Our approach is illustrated with a case-study of a client/server system where the server needs to
be substituted by a new one. Classic equivalence and compatibility notions fail to find a new server because
the only one available implements a different interface. We show how our interchangeability notions could
be used in order to let the system keep on working.

Povzetek: Opisano je preoblikovanje sistemov, ko se zgodi neskladje.

1 Introduction

Software reuse is of great interest because it reduces costs
and speeds up development time. Indeed, a vast number
of software components are already available through the
Internet, and many research and development efforts are
being invested in devising techniques for combining them
safely and efficiently. In particular, Software Adaptation
promotes the use of adaptors in order to compensate mis-
match among component interfaces. In fact, this is the
only known way to adapt off-the-shelf components since
designers usually only have access to their public inter-
faces. Without adaptation, components could not be put
together or their execution could lead to deadlocking sce-
narios [2, 9].

Still, one of the most challenging issues in Software
Adaptation is that systems need to adapt to environmen-
tal changes, server upgrades or failures, or even the avail-
ability of a new component more suitable to be used in the
system. Indeed, the need for finding a new component to
be integrated in the system may be either reactive or proac-
tive. The reactive case is caused by the system itself. For
instance as a consequence of connection loss or failure of
one its components, thus creating a hole in the system that
must be filled for its correct functioning. The proactive
case would be caused by the availability of a new compo-
nent that is suspected to be a good candidate for being inte-
grated in the system, replacing some of its current compo-
nents. In both cases, we have first to detect the need for re-
configuration by using runtime monitoring techniques both
on the system and on its environment. Then, the interface
of the candidate components —and its compatibility with
the rest of the system— must be evaluated, attending not

only to its signature interface (names of services, opera-
tions, messages, etc.), but also to its behavioural interface
(the order in which the elements in the signature interface
are expected to be used) and the QoS features provided/ex-
pected by the component and the system.

When dealing with this kind of dynamic reconfigura-
tion [14], component substitution must be applied without
stopping the complete system, and trying to affect mini-
mally its performance, in particular the functioning of those
of its parts that are not directly involved in the reconfigura-
tion. That means that components must collaborate to sup-
port reconfiguration capabilities. In fact, it is important to
determine when the system can be reconfigured and which
kind of properties the system holds after reconfiguration.

Few works have studied the interplay of behavioural
adaptation and reconfiguration so far. In most approaches
to reconfiguration, substituting a component by another
one requires the new component to implement the same
functionality as the former one. This means that substitu-
tion is usually limited to instances (or subtypes) of a given
component. However, it is possible that a component can-
not substitute another one, but an adapted version can.

This paper identifies some basic requirements for run-
time component substitution and we describe the opera-
tions required to achieve this reconfiguration. We also
define several different interchangeability notions that are
well fitted for component substitution under behavioural
adaptation. The paper is structured as follows: Firstly,
Section 2 provides some background on behavioural inter-
faces and adaptation. Then, Section 3 introduces a clien-
t/server system that is used as running example through
all this document. Section 4 presents our reconfiguration
model, for describing systems as a collection of static ar-

30 Informatica 35 (2011) 29–37 C. Canal et al.

chitectural views (configurations), and reconfiguration op-
erations for moving from one configuration to another one;
it also shows how reconfiguration states can be defined at
certain points of system execution, and how new compo-
nents must be initialised for arriving to these states. Next,
Section 5 defines different notions of substitutability that
we believe are adequate for component replacement under
behavioural adaptation. Then, Section 6 outlines the plat-
form that we plan to implement for validating our results.
Finally, Section 7 presents related works on reconfigura-
tion and behavioural adaptation, and Section 8 concludes
the paper.

This paper builds on our previous work in the field. It
is an extension of our position paper [10], developing the
ideas presented there, adding many explanations and more
detailed examples. In presents also our model for dy-
namic reconfiguration, and the notions of substitutability
discussed in [10] are formally defined here.

2 Background
We assume that component interfaces are equipped both
with a signature (set of required and provided operations),
and a protocol. For the protocol, we model the behaviour of
a component as a Labelled Transition System (LTS). The
LTS transitions encode the actions that a component can
perform in a given state. For reasons of space we omit the
signature interface when it can be easily inferred from the
corresponding protocol.

Definition 1. [LTS]. A Labelled Transition System (LTS)
is a tuple ⟨S,s0,L,→⟩ where S is the set of states, s0 ∈ S
is the initial state, L is the set of labels or alphabet, → is
the set of transitions : →⊆ S×L×S. We write s α−→ s′ for
(s,α ,s′) ∈→.

Communication between components are represented
using actions relative to the emission and reception of mes-
sages corresponding to operation calls, or internal actions
performed by a component. Therefore, in our model, a la-
bel is either the internal action τ or a tuple (M,D) where M
is the message name and D stands for the communication
direction (! for emission, and ? for reception).

LTSs are adequate as far as user-friendliness and de-
velopment of formal algorithms are concerned. However,
higher-level behavioural languages such as process alge-
bras can be used to define behavioural interfaces in a more
concise way. We can use for that purpose the part of the
CCS notation restricted to sequential processes, which can
be translated into LTS models: P ::= 0|a?P|a!P|τ.P|P1+
P2|P/L|A, where 0 denotes a do-nothing process; a?P a
process which receives a and then behaves as P; a!P a pro-
cess which sends a and then behaves as P; τ.P a process
which performs an internal action τ and then becomes P;
P1+P2 a process which may act either as P1 or P2; P/L
is the process P after hiding the names in L, preventing any
communication on those names; and A denotes the call to

a process defined by an agent definition equation A = P.
Additionally, we will use the parallel operator || for repre-
senting the composition of components —represented by
CCS processes— allowing the synchronisation of their in-
put and output actions.

In this paper we will use LTSs or CCS expressions in-
distinctly for representing components and adaptors. Both
could be easily obtained for standard notations such as WS-
BPEL or WWF.

2.1 Specification of adaptation contracts
Adaptors can be automatically generated based on an ab-
stract description of how mismatch can be solved. This is
given by an adaptation contract (A C). In this paper, the
adaptation contract between components is specified using
vectors [8]. Each action appearing in a vector is executed
by one of the components, and the overall result corre-
sponds to a loose synchronisation between all of them. A
vector may involve any number of components and does
not require interactions to occur on the same names of ac-
tions. For distinguishing between actions with the same
name occurring on different components, we prefix actions
with component names.

For example, ⟨C1.on!,C2.activate?⟩ is a vector denot-
ing that the action on! performed by component C1 cor-
responds to action activate? performed by component C2.
This does not mean that both actions have to take place si-
multaneously, nor one action just after the other; for the
transmission of C1’s action on! to C2 as activate?, the
adaptor will take into account the behaviour of these com-
ponents as specified in their LTS, accommodating the re-
ception and sending of actions to the points in which the
components are able to perform them (Fig. 1).

Figure 1: Components C1 and C2 connected through an
adaptor.

2.2 Adaptor generation
Thus, previously to the reconfiguration of the system by
the integration of a new component, we will likely need
to adapt the component for solving the problems of com-
patibility detected in the component discovery phase. This
will be accomplished by generating an adaptor, that will
play the role of wrapper or component in-the-middle, fil-
tering the interactions between the component and the sys-
tem and ensuring both a correct functioning of the system
(verifying for instance the absence of deadlocks or other
user defined properties) and the safety of the composition
(i.e., that the component is behaving as stated on its inter-
face). In previous works we have developed a methodology

COMPONENT RECONFIGURATION IN PRESENCE OF. . . Informatica 35 (2011) 29–37 31

for behavioural adaptation (see [9], where our approach for
generating adaptors is presented). Following this method-
ology, both contract specification and adaptor generation
are tool supported [8].

3 Running example
This section presents the running example used through-
out the paper. It consists of a client/server system in which
the server may be substituted by an alternative server com-
ponent. This may be necessary in case of server failure,
or simply for a change in the client’s context or network
connection that made unreachable the original server. Sup-
pose that the client wants to buy books and magazines as
shown in its behavioural interface in Fig. 2(a). The server
A can sell only one book per transaction (see Fig. 2(c)); on
the other hand, the server B can sell a bounded number of
books and magazines (see Fig. 3(b)). In both cases, sales
are represented by a pair of actions (one order and its ac-
knowledgement), and with these two actions we abstract all
the details of payment and shipment.

Initially, the client is connected to the server A; we shall
call this configuration cA. The client and the server agree
on an adaptation contract A C C,A (see Fig. 2(b)), which es-
tablishes action correspondences between the client and the
server A. Obviously, under configuration cA the client can
buy at most one book in each transaction but it is not al-
lowed to buy magazines because this is not supported by
the server A. The latter is implicitly defined in the adapta-
tion contract (Fig. 2(b)) since there is no vector allowing
the client to perform the action buyMagazine!. Finally, the
server A does not send the acknowledgement ack? expected
by the client; this must be worked out by the adaptor, too
(see v4 in Fig. 2(b)).

In an alternative configuration cB the client is connected
to the server B whose protocol is depicted in Fig. 3(b).
Similarly, the client and the server agree on an adaptation
contract A C C,B (see Fig. 3(a)). Under configuration cB,
the client can buy a bounded number of books and maga-
zines. In Fig. 3(a), we see that vector v5 allows the client
to buy magazines. Moreover, the server B sends a differ-
ent acknowledgement for each product (see v4 and v6 in
Fig. 3(a)).

Following the methodology for behavioural adaptation
presented in [9], adaptors can be automatically generated
for configurations cA and cB (see adaptors AC,A and AC,B
in Fig. 4). These adaptors ensure by construction that the
interaction between the client and servers A or B will take
place without deadlock and fulfilling the correspondences
of actions described in the corresponding adaptation con-
tracts [9].

4 Reconfiguration model
This section presents the model that enables both reconfig-
uration and behavioural adaptation. We define a reconfigu-

(a) LTS of Client C

v1 = ⟨C.login!,A.user?⟩
v2 = ⟨C.passwd!,A.passwd?⟩
v3 = ⟨C.buyBook!,A.buy?⟩
v4 = ⟨C.ack?,A.ε⟩
v5 = ⟨C.logout!,A.disconnect?⟩

(b) Adaptation Contract A CC,A

(c) LTS of Server A

Figure 2: Configuration cA.

v1 = ⟨C.login!,B.connect?⟩
v2 = ⟨C.passwd!,B.pwd?⟩
v3 = ⟨C : buyBook!,B : buyBook?⟩
v4 = ⟨C.ack?,B.bookOk!⟩
v5 = ⟨C.buyMagazine!,B.buyMagazine?⟩
v6 = ⟨C.ack?,B.magazineOk!⟩
v7 = ⟨C.logout!,B.disconnect?⟩

(a) Adaptation Contract A C C,B

(b) LTS of Server B

Figure 3: Configuration cB.

ration contract to determine how the system may evolve in
terms of structural changes.

First, a system architecture consists of a finite number of
components. Each configuration is a subset of these com-
ponents connected together by means of adaptation con-
tracts.

Definition 2. [Configuration]. A configuration
c = ⟨P,A C ,S⋆⟩ is a static structural representation

32 Informatica 35 (2011) 29–37 C. Canal et al.

(a) Adaptor AC,A (b) Adaptor AC,B

Figure 4: Adaptors

of a system’s architecture. P is an indexed set of compo-
nents. A C is an adaptation contract of components in P.
S⋆ is a set of reconfiguration states defined upon P; these
are the states in which reconfiguration is allowed.

Changing a configuration by another is what we call a re-
configuration. A reconfiguration is specified in a reconfig-
uration contract which separates reconfiguration concerns
from the business logic of the system. This way, each con-
figuration can be thought of as a static view of the system,
while its dynamic view is specified by a reconfiguration
contract.

Definition 3. [Reconfiguration Contract]. A reconfigu-
ration contract R = ⟨C,c0,→R⟩ is defined as:

C is a set of static configurations, c0 ∈ C is the initial
configuration. →R⊆C×Rop×C is a set of reconfiguration
operations, with reconfiguration operation Rop ⊆ S⋆i × S⋆j ,
S⋆i ∈ ci,S⋆j ∈ c j,ci, j ∈C.

From the definition above, reconfiguration can only take
place at predefined states, for guaranteeing system consis-
tency. One certain state of the source configuration (s⋆i)
defines when an architecture can be reconfigured. On the
other hand, one state of the target configuration (s⋆j) says
what is the starting state in the target configuration to re-
sume the execution. Notice also that the target configura-
tion may require a new adaptation contract (allowing re-
placing a component by another one that implements a dif-
ferent behavioural interface).

Example. In our running example, there are two config-
urations:
cA = ⟨{C,A},A C C,A,S⋆A⟩, and
cB = ⟨{C,B},A C C,B,S⋆B⟩.
The reconfiguration contract R = ⟨C,cA,→R⟩ is given by:
C = {cA,cB}, and →R= {cA

r−→ cB}, with
r = (s⋆A,s

⋆
B).

Hence, r specifies pairs of reconfiguration states on which
reconfiguration can be performed. Since both servers have
different behavioural interfaces, it is not straight-forward to
determine how reconfiguration can take place after a trans-
action between the client and the server has started.
In the simplest scenario, we may consider that reconfig-
uration from cA to cB and back is only allowed at the
initial states of the client and the server. This is spec-
ified as a unique reconfiguration state s0

i ∈ S⋆i , i ∈ {A,B}
for each configuration, (where s0

A = {C.s0,A.s0} and s0
B =

{C.s0,B.s0}), and a pair of reconfiguration operations

cA
rA,B−→ cB and cB

rB,A−→ cA, with rA,B = {s0
A,s

0
B} and rB,A =

{s0
B,s

0
A} (subindexes in states always refer to state numbers

as depicted in Figs. 2 and 3).

In the next section, we will study how other pairs of re-
configuration states —apart from the initial states here—
can be obtained.

4.1 Reconfiguration at runtime

In the previous section we have presented our reconfigura-
tion model considering that reconfiguration could be only
performed at the initial state of the system (i.e. at static
time). Now we will generalise our working scenario allow-
ing reconfiguration to occur when the interactions have al-
ready started and the components are in intermediate states
(i.e. at dynamic time).

Interactions already performed with the component be-
ing substituted cannot be merely ignored; they must be ei-
ther reproduced up to an equivalent state with the new com-
ponent, transparently to the rest of the system, or rolled
back and compensated when the reproduction of the state
is not possible. Both fault-tolerance algorithms, exception
handling and roll-back techniques must be developed to
this effect, and compensation procedures must be defined
when the initiated interactions cannot be correctly finished.

Example. In our running example, if the login phase has
already been performed with the system in configuration
cA, and then we need to move to configuration cB, the server
B should be initialised such that the client does not need to
re-log in the system. Suppose that the client C has per-
formed a trace {login!, passwd!}: Then, the initialisation
trace for the server B would be {connect?, pwd?}. Once the
server B is initialised as indicated, the system can be recon-
figured in order to use the new component. The substitution
of the server A by the server B does not affect the client C
in the sense it does not need to re-log in the system. In fact,

COMPONENT RECONFIGURATION IN PRESENCE OF. . . Informatica 35 (2011) 29–37 33

the client continues working on transparently, though it is
warned that the adaptation contract has changed.
This way, we have implicitly defined two new reconfig-
uration states: s2

A = {C.s2,A.s2} for configuration cA and
s2

B = {C.s2,B.s2} for cB, and one reconfiguration operation
cA

r2−→ cB, with r2 = {s2
A,s

2
B}.

In the next section, we will present several notions of
substitutability that will help us defining additional recon-
figuration states and operations for our system.

5 Notions of substitutability
One of the key elements in allowing safe reconfiguration
is to determine whether a certain component can be easily
replaced by another one.

A relation of equivalence —such as bisimulation (∼)
in CCS— cannot be used for these purposes. Indeed,
since there is mismatch among the interfaces of the com-
ponents, a test based on bisimulation would immediately
reject servers A and B as equivalent (A≁ B). Even if we ac-
commodated name mismatch between both servers by us-
ing the adaptation contracts A C C,A and A C C,B for build-
ing name substitutions σA, σB according to the correspon-
dence of names described in those contracts, the renamed
components AσA and BσB would still remain not bisimilar,
due to behavioural mismatch between them. Thus, we need
to define a notion of substitutability adequate for our pur-
poses, indicating whether the replacement of the server A
by the server B (or vice versa) is suitable in a certain system
willing to perform this reconfiguration.

5.1 Contextual equivalence

As we have seen, an equivalence relation like bisimulation
is not well suited for our purposes since it takes into ac-
count all visible actions possibly performed by the compo-
nents and ignores the context in which those components
operate, and how this context affects them. A proof of
equivalence would yield whether two components are in-
terchangeable in any system, while we just need to prove if
they can be exchanged in a given system.

Hence, we need to take into account the influence of the
context and to ignore the actions performed by the former
and novel components such that the rest of the system con-
tinues working transparently. This allows both former and
novel components to have different behavioural interfaces
as far as their adapted versions provide the same function-
ality from the point of view of the context. For representing
how the context affects the behaviour of a component, we
will use the adaptor generated for this component within
this context, as described in section 2.

Definition 4. [Contextual interchangeability]. Two com-
ponents A and B are interchangeable in the context of an-
other component C iff:

(A||AC,A)/LA ∼ (A||AC,B)/LB

where AC,A, (resp. AC,B) is the adaptor necessary for mak-
ing A (resp. B) interact successfully with C, and LA (resp.
LB) is the alphabet or set of labels used by A (resp. B) in
its communications.

In the definition above, for checking contextual inter-
changeability we just have to compose the components A
and B involved, together with the corresponding adaptors
generated for interacting with the context C, and to hide
the labels (LA or LB) through which the components and
their adaptors communicate. The resulting processes rep-
resent the components as seen from the point of view of
the context C. If they are equivalent —which can be easily
checked with CCS tools like the Concurrency Workbench
(CWB)—, they can be freely substituted one by another.
Any action performed by one of them in the context of C
can be exactly reproduced by the other one.

Example. In our running example, consider now a client
C2 that buys exactly one book in each transaction:
C2 = login! passwd! buybook! ack? logout! 0
C2 can interact with server A or B indistinctly. Therefore,
the client C2 (here playing the role of the context) enforces
a behaviour that makes both servers A and B equivalent in
the sense above. Hence, we should be able to build a sys-
tem that is able to reconfigure at any point from the server
A to the server B (or from the server B to the server A).
Similarly, it is easy to find out that servers A and B are not
equivalent in the context of the client C, as originally de-
fined in Fig. 2(a).

5.2 Minimal Disruption
Contextual interchangeability requires that once adapted
the components being considered are undistinguishable
from the point of view of the context they interact with. A
more relaxed notion of substitutability is what we call min-
imal disruption. Here, only the future actions performed
by the environment are taken into account as far as the
current system execution —but not any possible previous
interaction— can be simulated in the new configuration.
This is useful when the new configuration has an incom-
patible behaviour up to a certain point and a compatible
one afterwards, but for some specific trace —the current
execution— the incompatible part of the behaviour works
fine.

Before defining minimal disruption, we have to show
how can we enforce a certain component to execute a given
trace. This is the purpose of the Definition 5 below.

Definition 5. [Trace-enforcing processes]. Let t =
{⟨a0, ā0⟩, . . .⟨an, ān⟩} be a trace of actions pairs, where
each āi states for the complementary action of ai (i.e. if ai
is a! then āi is a? and vice versa). Then, we define Le f t(t)
and Right(t) as the processes:
Le f t(t) = a0 ... an 0

34 Informatica 35 (2011) 29–37 C. Canal et al.

Right(t) = ā0 ... ān 0
obtained by the sequential composition of the left (resp.
right) actions from each pair ⟩ai, āi⟩ in t.

Definition 6. [Minimal disruption]. Two components A
and B are minimal disrupting replaceable in the context of
another component C, and given a trace of actions t, iff
there exist At , Bt , Ct such that:

– At ∼ Right(t)||(A||AC,A)/LA,

– Bt ∼ Right(t)||(B||AC,B)/LB,

– Ct ∼ Le f t(t)||C, and

– At and Bt are equivalent in the context of Ct .

where as in Definition 4 AC,A, (resp. AC,B) is the adaptor
necessary for making A (resp. B) interact successfully with
C.

Hence, for finding out if two components A, B are in-
terchangeable up to minimal disruption in a certain context
C, and given a trace t already executed in that system, we
just have to make A, B (composed with their correspond-
ing adaptors), and C execute the corresponding part (left or
right actions) of the trace, and then prove if the future be-
haviour of these components is equivalent from the point of
view of the context. Again, all this can be easily checked
with the CWB. In that case, we can freely perform the sub-
stitution of A by B (or the other way round) at the execution
point defined by the trace.

Notice that the trace t used in this notion of minimal dis-
ruption shows us how to define a reconfiguration state for
each configuration (⟨C.si,A.s j⟩ for cA, and ⟨C.si,B.sk⟩ for
cB) which denote the states in which A, B and C are after be-
ing enforced to reproduce the trace t, and the corresponding
reconfiguration operations (from cA to cB and vice versa).

Example. In our running example, consider now that we
are in configuration cB —where the client C is interact-
ing with the server B (adapted through AC,B)— and they
have already executed the trace {⟨C.login!,B.connect?⟩,
⟨C.passwd!,B.pwd?⟩, ⟨C.buybook!,B.buybook?⟩}. If at
that point we have to replace the server B with a fresh ver-
sion of this server (let us call it B′) due to server break-
down or connection failure, we have to initialise the new
server B′ (still adapted through BC,B), with the process
connect! pwd! buybook! 0. Then, the reconfigured system
would be able to go on normally.

5.3 History-aware interchangeability
When dealing with component upgrade it is more useful
to define a notion of substitutability that we could name as
history-aware. Only the current execution needs to be sim-
ulated in the new configuration; future actions are allowed
to be different. After reconfiguration, the environment may
access the new services provided by the new component,
or be denied to others that cannot be handled in the new
configuration.

Definition 7. [History awareness]. Two components A
and B are history-awareness interchangeable in the context
of another component C, and given a trace of actions t, iff
there exists At , Bt , Ct such that:

– At ∼ Right(t)||(A||AC,A)/LA,

– Bt ∼ Right(t)||(B||AC,B)/LB,

– Ct ∼ Le f t(t)||C.

where all the processes involved in the definition above are
the same as indicated in Definitions 5 and 6.

As we can see, history-aware interchangeability is a pre-
condition for minimal disruption. However, we have pre-
ferred to present the notions in this order, from the finest
grained to more relaxed notions.

Example. Consider in our running example that we
initially are in configuration cA, with the client logged
to the server A (adapted through AC,A) and that they
have already executed the trace {⟨C.login!,A.user?⟩,
⟨C.passwd!,A.passwd?⟩, ⟨C.buybook!,A.buy?⟩}. If at that
point we have to move to configuration cB, replacing the
server A by the server B (for instance because the latter
just became available and the client prefers it since it offers
a wider functionality), we can check that both servers are
history-aware interchangeable in the context of C and for
the trace given. Thus, for performing the reconfiguration,
we will have to initialise the new server B (adapted through
BC,B), with the process connect! pwd! buybook! 0 and then
the reconfigured system would proceed without problems
(possibly with the client taking advantage of the extended
functionality provided by the new server).

Example. Consider now that we are in con-
figuration cB, and the trace already executed
is {⟨C.login!,B.connect?⟩, ⟨C.passwd!,B.pwd?⟩,
⟨C.buymagazine!,B.buymagazine?⟩}. If at that point
the server B became unavailable, we could not move
to configuration cA since for the trace already executed
both configurations do not fulfil the conditions of history
awareness substitutability (in fact, they would not fulfil
any of the notions of substitutability we have defined so
far).

5.4 Advanced notions of substitutability

Apart from those presented in previous sections, more ad-
vanced notions of substitutability could be envisioned. For
instance, we have identified that it would be useful to en-
dow components with (possibly nested) transactions. Once
a transaction is finished, there is no need to reproduce it
if the component is substituted. This would lead to a no-
tion of transaction-aware substitutability, whose utility is
shown with the following example:

COMPONENT RECONFIGURATION IN PRESENCE OF. . . Informatica 35 (2011) 29–37 35

Example. In our client/server example, the servers would
specify two nested transactions: one covers the full
servers’ protocol, from the login (either with A.user
or B.connect) to the logout phase (in both cases with
disconnect?). The other one, would be a sub-transaction,
that starts when receiving a buy order, and ends when
the acknowledgement has been sent to the client (e.g.
from B.buybook to B.bookok for the server B). Then,
it would be possible to start the system in config-
uration cB, buy some magazines from the server B
(which is not supported by the server A) executing
the trace {⟨C.login!,B.connect?⟩, ⟨C.passwd!,B.pwd?⟩,
⟨C.buymagazine!,B.buymagazine?⟩, ⟨C.ack?,B.bookok!⟩}
and then move to configuration cA, substituting B by A. As
the sale sub-transaction has finished, it can now be safely
ignored when substituting the server A. Hence, the trace
we would have to consider is just {⟨C.login!,B.connect?⟩,
⟨C.passwd!,B.pwd?⟩}, corresponding to the unfinished
full session transaction. Now we can find that the move
from configuration cB to cA fulfils the conditions of history-
awareness. Moreover, this would also prevent the client
from buying again an already bought product.

6 Component model support

We plan to validate the ideas presented above through real-
world applications on implementations using the Fractal
component model [5].

Fractal is a modular, extensible, and programming lan-
guage independent component model for designing, imple-
menting, deploying, and reconfiguring systems and appli-
cations. We consider that it is a suitable setting for showing
the benefits of our proposals because it deals explicitly with
system reconfiguration, and has been the origin of many in-
teresting formal underpinnings that can be applied to anal-
ysis of interface compatibility and verification of system
properties [6, 3].

The Fractal model is an open component model, and in
that sense it allows for arbitrary classes of controllers and
interceptor objects, including user-defined ones. This al-
lows us to define our own reconfiguration controllers that
will take care of component discovery, adaptation, initial-
isation, and system reconfiguration. Moreover, in Fractal
all remote invocations go through a membrane that con-
trols the component. This makes the membrane an ideal
container for a behavioural adaptor: the membrane will in-
tercept all incoming and outgoing messages and pass them
to the behavioural adaptor; the latter will compensate mis-
match accordingly to the adaptation rules and orchestrate
safe executions.

A good starting point for experimenting with our results
is to use the framework developed in [4]. The framework is
based on a Fractal-compliant component model and uses
custom reconfiguration controllers in order to allow the
system to self-adapt to changes in the environment. Their
model supports dynamic reconfiguration, dynamic compo-

nent instantiation, and support for interception of func-
tional requests. Moreover, controllers are implemented
in the form of a component-based system, which means
that each of our controllers would be seen as a component
plugged in the component’s membrane.

7 Related work
Dynamic reconfiguration [14] is not a new topic and many
solutions have already been proposed in the context of dis-
tributed systems and software architectures [9, 10], graph
transformation [1, 21], software adaptation [17, 16], meta-
modelling [8, 14], or reconfiguration patterns [7]. On
the other hand, Software Adaptation is a recent solution
to build component-based systems accessed and reused
through their public interfaces. Adaptation is known as
the only way to compose black-box components with mis-
matching interfaces. However, only few works have fo-
cused so far on the reconfiguration of systems whose cor-
rect execution is ensured using adaptor components. In the
rest of this section, we focus on approaches that tackled
reconfiguration aspects for systems developed using adap-
tation techniques.

First of all, in [17], the authors present some issues
raised while dynamically reconfiguring behavioural adap-
tors. In particular, they present an example in which a cou-
ple of reconfigurations is successively applied to an adaptor
due to the upgrade of a component in which some actions
have been first removed and next added. No solution is
proposed in this work to automate or support the adaptor
reconfiguration when some changes occur in the system.

Most of the current adaptation proposals may be con-
sidered as global, since they proceed by computing global
adaptors for closed systems made up of a predefined and
fixed set of components. However, notably an incremental
approach at the behavioural level is presented in [18, 16].
In these papers, the authors present a solution to build step
by step a system consisting of several components which
need some adaptations. To do so, they propose some tech-
niques to (i) generate an adaptor for each new component
added to the system, and (i) reconfigure the system (com-
ponents and adaptors) when a component is removed.

8 Conclusions
We have presented a new research track where compo-
nents must be adapted to allow the system to be dynam-
ically reconfigured. We have discussed some basic re-
quirements for a runtime component substitution, and we
have defined new interchangeability notions that allow to
accommodate mismatch in behavioural interfaces. These
notions are shown adequate for verifying compatibility of
such components. For the same reason, we believe com-
ponent discovery algorithms should also take into account
components that have some degree of mismatch, as far as
there is a specification of how mismatch can be worked out.

36 Informatica 35 (2011) 29–37 C. Canal et al.

Finally, before reconfiguring the system, we have shown
that the new component must be adapted and initialised ac-
cordingly to the current system state. These constitute new
requirements for the runtime platform that we plan to ad-
dress in the short-term.

The work presented here should be taken as an initial
step towards dynamic reconfiguration where component
candidates present both signature and behavioural mis-
match. For the sake of simplicity, we have constrained
ourselves to describe component protocols using LTS and
CCS. However, one major drawback comes from this deci-
sion: data values present in message parameters are omit-
ted. Since the protocols between components are often de-
pendent on the data values carried in message parameters
this limits the practical use of the proposal. An obvious
extension of this work is to consider more expressive no-
tations for describing behavioural interfaces, for instance
Symbolic Transitions Systems (STS), or a value-passing
process algebra. This will be part of our future work.

Acknowledgements
This work has been partially supported by the project
TIN2008-05932 funded by the Spanish Ministry of Science
and Innovation, and project P06-TIC-02250 funded by the
Andalusian local Government.

References
[1] N. Aguirre and T. Maibaum. A Logical Basis for the

Specification of Reconfigurable Component-Based
Systems. In Proc. of FASE’03, volume 2621 of LNCS,
pages 37–51. Springer, 2003.

[2] M. Autili, P. Inverardi, A. Navarra, and M. Tivoli.
SYNTHESIS: A Tool for Automatically Assembling
Correct and Distributed Component-based Systems.
In Proc. of ICSE’07, pages 784–787. IEEE Computer
Society, 2007.

[3] T. Barros, R. Ameur-Boulifa, A. Cansado, L. Henrio,
and E. Madelaine. Behavioural models for distributed
fractal components. Annals of Telecommunications,
64(1):25–43, 2009.

[4] F. Baude, D. Caromel, L. Henrio, and P. Naoumenko.
A Flexible Model And Implementation Of Component
Controllers. Coregrid. Springer, 2008.

[5] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq,
Vivien Quéma, and Jean-Bernard Stefani. The frac-
tal component model and its support in java: Experi-
ences with auto-adaptive and reconfigurable systems.
Softw. Pract. Exper., 36(11-12):1257–1284, 2006.

[6] L. Bulej, T. Bures, T. Coupaye, M. Decky, P. Jezek,
Pavel Parizek, F. Plasil, T. Poch, N. Rivierre, O. Sery,
and P. Tuma. CoCoME in Fractal. In Andreas Rausch,

Ralf Reussner, Raffaela Mirandola, and Frantisek
Plasil, editors, CoCoME, volume 5153 of Lecture
Notes in Computer Science, pages 357–387. Springer,
2008.

[7] TomÃąš Bureš, Petr Hnetynka, and František PlÃąšil.
Sofa 2.0: Balancing advanced features in a hierar-
chical component model. In SERA ’06: Proceed-
ings of the Fourth International Conference on Soft-
ware Engineering Research, Management and Appli-
cations, pages 40–48, Washington, DC, USA, 2006.
IEEE Computer Society.

[8] Javier Cámara, Jose Antonio Martin, Gwen Salaün,
Javier Cubo, Meriem Ouederni, Carlos Canal, and
Ernesto Pimentel. Itaca: An integrated toolbox for
the automatic composition and adaptation of web ser-
vices. In Proc. of ICSE’09, pages 627–630. IEEE
Computer Society, 2009.

[9] C. Canal, P. Poizat, and G. Salaün. Model-Based
Adaptation of Behavioural Mismatching Compo-
nents. IEEE Transactions on Software Engineering,
34(4):546–563, 2008.

[10] A. Cansado and C. Canal. On the reconfiguration of
components in presence of mismatch. In Proc. of the
2nd Workshop on Autonomic and SELF-adaptive Sys-
tems (WASELF09), pages 11–20. SISTEDES, 2009.

[11] A. Ketfi and N. Belkhatir. A Metamodel-Based
Approach for the Dynamic Reconfiguration of
Component-Based Software. In Proc. of ICSR’04,
volume 3107 of LNCS, pages 264–273. Springer,
2004.

[12] J. Kramer and J. Magee. The Evolving Philoso-
phers Problem: Dynamic Change Management. IEEE
Transactions on Software Engineering, 16(11):1293–
1306, 1990.

[13] J. Kramer and J. Magee. Analysing Dynamic Change
in Distributed Software Architectures. IEE Proceed-
ings - Software, 145(5):146–154, 1998.

[14] Jasminka Matevska-meyer, Wilhelm Hasselbring,
and Ralf H. Reussner. Software architecture descrip-
tion supporting component deployment and system
runtime reconfiguration. In In Proc. 9th Int. Work-
shop on Component-oriented Programming, 2004.

[15] N. Medvidovic. ADLs and Dynamic Architecture
Changes. In SIGSOFT 96 Workshop, pages 24–27.
ACM, 1996.

[16] P. Poizat and G. Salaün. Adaptation of Open
Component-Based Systems. In Proc. of
FMOODS’07, volume 4468, pages 141–156.
Springer, 2007.

COMPONENT RECONFIGURATION IN PRESENCE OF. . . Informatica 35 (2011) 29–37 37

[17] P. Poizat, G. Salaün, and M. Tivoli. On Dynamic Re-
configuration of Behavioural Adaptation. In Proc. of
WCAT’06, pages 61–69, 2006.

[18] P. Poizat, G. Salaün, and M. Tivoli. An Adaptation-
based Approach to Incrementally Build Component
Systems. In Proc. of FACS’06, volume 182, pages
39–55, 2007.

[19] M. Wermelinger, A. Lopes, and J. L. Fiadeiro. A
Graph Based Architectural (Re)configuration Lan-
guage. In Proc. of ESEC / SIGSOFT FSE 2001, pages
21–32. ACM, 2001.

38 Informatica 35 (2011) 29–37 C. Canal et al.

Informatica 35 (2011) 39–49 39

Realizability and Dynamic Reconfiguration of Chor Specifications

Nima Roohi
Sharif University of Technology, Tehran, Iran
E-mail: roohi@ce.sharif.edu

Gwen Salaün
INRIA Grenoble - Rhône-Alpes / VASY France
E-mail: gwen.salaun@inria.fr

Keywords: choreography, realizability, dynamic reconfiguration, process calculus, labeled transition systems

Received: January 6, 2010

Choreography description languages aim at specifying from a global point of view interactions among a
set of services involved in a new system. From this specification, local implementations or peers can be
automatically generated. Generation of peers that precisely implement the choreography specification is
not always possible: this problem is known as realizability. When peers corresponding to this specification
are being executed we may want to modify the choreography specification and reconfigure dynamically the
system. This is the case for instance if we add or remove interactions due to the addition of functionalities
to the system at hand or the loss of a service. In this article, we present our solutions to check if a
choreography is realizable and if a specific reconfiguration can be applied or not.

Povzetek: Opisana je metoda preverjanja možnosti implementacije sistema na osnovi opisa.

1 Introduction

A choreography describes how a set of services interact
together from a global point of view. Several formalisms
have already been proposed to specify choreographies:
WS-CDL, collaboration diagrams, process calculi (such
as Chor), BPMN, SRML, etc. Choreography specifica-
tion, correctness, realizability and implementation are cru-
cial issues in Service Oriented Computing. Several works
aimed at studying and proposing solutions to the realizabil-
ity problem [7, 18, 4, 2, 20] that consists in checking if a
set of existing peers implements a choreography. In this ar-
ticle, we first present some techniques to check realizabil-
ity of choreographies. Next, we focus on the dynamic re-
configuration of a choreography which has been distributed
and deployed. Such reconfigurations correspond to the ad-
dition or removal of some interactions (loss of a service,
extension of the functionalities, substitution of a service,
etc.).

We use the Chor calculus [18] as choreography speci-
fication language, because it is an abstract model of WS-
CDL coming with a formal syntax and semantics (not the
case of WS-CDL). Our goal here is first to check the realiz-
ability of a choreography. To do so, we propose an encod-
ing of Chor into the FSP process algebra and reuse equiv-
alence checking tools to verify that the behaviors of both
systems (centralized and distributed) are the same. Next,
we formalize a reconfigurability test that checks if a set of
peers that have been obtained from a choreography, can be
reconfigured with respect to a second choreography spec-
ification which consists in an extension (addition of some

interactions) or a simplification (removal of some interac-
tions) of the original choreography. If these reconfigura-
tions are possible, new peers are generated and replace the
former ones. In addition, we also propose some analysis
techniques to check some properties on the reconfiguration,
e.g., if modifications coming from the new choreography
specification impact current peer behaviors only after their
current execution state. Finally, if a choreography is realiz-
able or can be reconfigured, we can automatically generate
Java code for the corresponding peers for rapid prototyping
purposes.

The rest of this article is organized as follows: Sec-
tion 2 introduces Chor, Peer, and FSP, respectively as our
choreography, peer, and intermediate languages. Section 3
presents some automatic techniques to first convert chore-
ographies to an intermediate language, and then to check
whether this choreography is realizable or not. In Sec-
tion 4, we present our approach to check if some reconfig-
urations specified as a new choreography can be applied or
not. We also present some techniques to analyze the impact
of reconfigurations. In section 5 we describe our prototype
tool, and comment on some experimental results. Also, we
briefly overview code generation for peers. Section 6 com-
pares our approach to related works, and Section 6 ends the
article with some concluding remarks.

40 Informatica 35 (2011) 39–49 N. Roohi et al.

2 Preliminaries: Chor, Peer, and
FSP

2.1 Chor and Peer

Chor [18] is a simple process language, and a simplified
model of WS-CDL, for describing peers from a global
point of view. From this global specification, behavioral
specifications of peers can be generated by projection. In
this section, we will overview both the Chor language
(global view) and the Peer language (local view) introduced
in [18].

Table 1 shows the syntax and semantics of Chor (C, C1
and C2 are arbitrary Chor specifications). It uses weak
traces (τ actions are hidden) for specifying its semantics
(where [[C]] stands for the weak trace set of C). The reader
interested in more details on the language may refer to [18].
Also, operators on sets of traces which are used in Table 1
have been formally defined in [19].

The loop operator “∗” has the highest priority among the
others. After that, priority of the sequential composition
operator “;” is higher than the other operators, as an ex-
ample, ∗C1 ⊓C2;C3 is not ambiguous. Priority of paral-
lel “||” and choice “⊓” operators is equal, as an example,
C1∥∗C2 ⊓C3 = (C1∥(∗C2))⊓C3 (left associativity).

Chor is implemented by the coordination of a set of inde-
pendent processes. The Peer language is a simple calculus
for describing these processes. In this language, ε is an
empty process which means do nothing, and for an arbi-
trary trace t if P t

=⇒ ε we have t ∈ [[P]] (we use † to denote
deadlock). Table 2 gives the syntax and semantics of the
Peer language (P, P1 and P2 are arbitrary Peer specifica-
tions).

The Peer language mainly differs from Chor by the de-
scription of interactions. Peer specifies them from a local
point of view. Therefore, at the Peer level, an interaction
activity is either an emission or a reception, and peers inter-
act together by handshake communication (same channels,
opposite directions).

Using rules defined in Table 2, trace sets of Peer pro-
cesses are obtained as follows:

P σ−→ P′

P σ
=⇒ P′

P σ−→ P′ P′ σ ′
=⇒ P′′

P σ⌢σ ′
=⇒ P′′

Last, operator / : Peer×Activity → Peer returns the pro-
cess obtained after executing the activity which is speci-
fied as the second input parameter of the “/” operator, and
function fst (abbreviation for first) : Peer → P(Activity), in
which P(Activity) is the power set of all possible activities,
computes activities of a Peer process which can be exe-
cuted first. Formal definitions of operator “/” and function
fst are as follows (⊥ denotes an undefined process):
fst(α)=̂{α}
fst(ε) = fst(skip) = fst(P1 ⊓P2) = fst(∗P)=̂ /0
fst(P1;P2)=̂fst(P1) fst(P1∥P2)=̂fst(P1)∪ fst(P2)

skip/α=̂⊥ α/α ′=̂

{
ε if α = α ′

⊥ if α ̸= α ′

(P1;P2)/α=̂P1/α;P2 (P1 ⊓P2)/α = (∗P)/α=̂⊥

(P1∥P2)/α=̂

 P1/α∥P2 if α ∈ fst(P1)
P1∥P2/α if α ∈ fst(P2)
⊥ else

Example. We will use throughout this article a metal
stock market as running example. There are three peers in
our example. First, peer Broker selects one of two metals,
namely iron and steel, then look at the market as many
times as needed until a sale on the selected metal becomes
available. Broker sends his/her bid on the selected metal to
the second peer (Market) of our example. After receiving a
bid, Market performs the following two tasks concurrently:
saving the bid in its own database, and checking to see if
this bid is better than the best current one or not. Then,
Market sends the result of this check and the name of the
broker to the announcement Board (third peer of our exam-
ple). If this bid is the best so far, Board will change the
current winner and notifies the broker. Otherwise, Board
does nothing (skip). In the Chor specification below, bk,
mk, bd respectively stand for Broker, Market, and Board:
Stock=
(ironbk⊓ steelbk); lookbk;∗lookbk;bid[bk,mk];
(savemk||checkmk); result[mk,bd];
(changebd;notify[bd,bk]⊓ skip)

2.2 FSP
FSP is a process calculus that takes inspiration in Milner’s
Calculus of Communicating Systems (1980) and in Hoare’s
Communicating Sequential Processes (1985), as explained
by Magee and Kramer in [12]. FSP was originally designed
for distributed software architecture specification, and dis-
tinguishes sequential and composite processes. Table 3 in-
troduces FSP operators which are used in the rest of this
article (x, y, new, and old are actions, P and Q are FSP
processes).

3 Realizability of Chor specifications

3.1 Translating Chor into FSP
There are two main solutions in order to perform the re-
alizability check automatically: (i) generate and compare
sets of traces for Chor and Peer in an ad-hoc manner, or
(ii) translate Chor and Peer to some intermediate language
and use existing tools to compare their behaviours. We pre-
fer the second solution because it enables the designers to
take advantage of existing tools such as equivalence check-
ing to verify realizability, or model-checking tools for val-
idation and verification purposes. We chose FSP because
it relies on a simple language yet expressive enough to
encode Chor operators. Moreover, FSP is equipped with
the LTSA toolbox which provides efficient tools for state
space exploration and verification. This encoding allows

REALIZABILITY AND DYNAMIC RECONFIGURATION OF. . . Informatica 35 (2011) 39–49 41

Table 1: Syntax & Semantics of Chor
skip means do nothing, its trace set is equal to {⟨⟩}
ai is an arbitrary local activity performed by peer i, and its trace set is {⟨ai⟩}
c[i, j] is a communication between two peers i (sender) and j (receiver) through channel c, its

trace set is {⟨c[i, j]⟩}
C1;C2 means first C1 and then C2, [[C1;C2]] = [[C1]] ⌢ [[C2]]
C1 ⊓C2 means either C1 or C2, [[C1 ⊓C2]] = [[C1]]∪ [[C2]]
C1∥C2 means C1 and C2 run concurrently, [[C1∥C2]] = [[C1]] ◃▹ [[C2]]
∗C means execute C an arbitrary number of times, [[∗C]] = [[C]]∗

Table 2: Syntax & Semantics of Peer
P ::= BP (basics) BP ::= skip (no action)

| P;P (sequential) | a (local)
| P⊓P (choice) | c! (send)
| P∥P (parallel) | c? (receive)
| ∗P (loop)

Skip: skip
⟨⟩−→ ε Local: a

⟨a⟩−→ ε

Sequential:
P1

σ−→ P′
1

P1;P2
σ−→ P′

1;P2
ε;P

⟨⟩−→ P

Choice: P1 ⊓P2
⟨⟩−→ P1 P1 ⊓P2

⟨⟩−→ P2

Parallel: ε∥ε
⟨⟩−→ ε

P1
σ−→ P′

1

P1∥P2
σ−→ P′

1∥P2

c! ∈ fst(P1) c? ∈ fst(P2)

P1∥P2
⟨c⟩−→ P1/c!∥P2/c?

P2
σ−→ P′

2

P1∥P2
σ−→ P1∥P′

2

c? ∈ fst(P1) c! ∈ fst(P2)

P1∥P2
⟨c⟩−→ P1/c?∥P2/c!

Loop: ∗P
⟨⟩−→ skip ∗P

⟨⟩−→ P;∗P

to: (i) validate and verify Chor specifications using the
LTSA toolbox, (ii) generate peer protocols from its chore-
ography specified in Chor, (iii) test for realizability of the
Chor specification, and (iv) generate Java code from FSP
for rapid prototyping purposes. One could decide to spec-
ify choreographies and peers directly using FSP. However,
domain-specific languages such as Chor and Peer are more
adequate to write such specifications, since they provide
the exact level of expressiveness to do so.

Basic activities are translated into simple FSP processes
with one transition from the source to the final state (we
use τ for the skip action). The Chor sequential operator is
encoded using the FSP sequential operator. As regards the
choice operator, we prefix each operand by a τ transition,
therefore similarly to the Chor language, selecting a choice
operand is performed non-deterministically. In the FSP
parallel operator, actions which are in alphabets of both
operands can only evolve through synchronization, but the
Chor parallel operator does not synchronize activities of
its operands (interleaving). Consequently, we first prefix
operands of each parallel operator with a unique value, thus
no synchronization occurs. Then, we use the renaming op-
erator of FSP to replace these new action names with their
original values. The loop operator ∗C is specified in FSP
using a non-deterministic choice between performing skip,

or performing C and then a recursive call to the FSP process
that encodes the loop operator.

Definition 1 (Chor into FSP). Encoding a Chor specifica-
tion C into FSP is achieved using function c2f : Chor →
FSPdescription, as presented in Figure 1 (“\” operator
hides actions in the FSP process, “/” operator renames
actions in the FSP process, and ac(C) returns non-skip ba-
sic activities of its Chor operand).

FSP does not allow actions to have subscript or super-
script. Therefore, we respectively translate ai and c[i, j]

into a_i and c_i_ j. c2f pi is a one-to-one function of
type Chor →ProcessIdenti f ier generating fresh identifiers
(the same ones for identical Chor specifications) as out-
put, which obey naming rules1 of FSP process identifiers.
T.c2f pi returns a process identifier which is obtained by
prefixing the result of c2f pi by T . For all C and C′ such
that c2f(C) has a process identifier c2f pi(C′) in its specifi-
cation, the result of c2f(C′) must be included in the result
of c2f(C), because whenever we use one FSP identifier in
our specification, we must include the specification of that
process in our final specification. We proved that this trans-
lation preserves the semantics of the Chor language [19].

1These rules are defined in Section 2 of Appendix B in [12].

42 Informatica 35 (2011) 39–49 N. Roohi et al.

Table 3: FSP Operators and Informal Semantics
(x−>P) describes a process that initially executes action x and then behaves as P.
(P;Q) describes a process that first behaves as P, and then (after completion of P) behaves as Q.
(x−>P|y−>Q) describes a process that either executes action x and then P, or action y and then Q.
(P||Q) represents the concurrent execution of P and Q. This operator synchronizes shared actions of P

and Q.
x : P prefixes each label in the alphabet of P with x.
P/{new1/old1,
. . . ,newn/oldn}

renames action labels. Each old label in P is replaced by the new one.

P\{x1, . . . ,xn} removes action names x1, . . . ,xn from the alphabet of P and makes these actions “silent”. These
silent actions are labeled by τ . Silent actions in different processes are not shared.

P@{x1, . . . ,xn} hides all actions in the alphabet of P which do not belong to the set {x1, . . . ,xn}.

Figure 1: Encoding Chor into FSP
c2f(skip) =̂ SKIP = (skip−>END)\{skip}.
c2f(ai) =̂ c2f pi(ai) = (a_i−>END).

c2f(c[i, j]) =̂ c2f pi(c[i, j]) = (c_i_ j−>END).
c2f(C1;C2) =̂ c2f pi(C1;C2) = c2f pi(C1);SKIP;c2f pi(C2);END.
c2f(C1 ⊓C2) =̂ c2f pi(C1 ⊓C2) = (z−>c2f pi(C1);END|z−>c2f pi(C2);END)\{z}.

assuming z is neither in the alphabet of c2f pi(C1) nor c2f pi(C2).
c2f(C1∥C2) =̂ ∥T.c2f pi(C1∥C2)=(p1 : c2f pi(C1)∥p2 : c2f pi(C2)).

c2f pi(C1∥C2)=T.c2f pi(C1∥C2);SKIP;END/
{ba1/p1.ba1|ba1 ∈ ac(C1)}∪{ba2/p2.ba2|ba2 ∈ ac(C2)}.

c2f(∗C) =̂ c2f pi(∗C) = (z−>SKIP;END|z−>c2f pi(C);SKIP;c2f pi(∗C))\{z}.
assuming z is not in the alphabet of c2f pi(C).

Example. Let us illustrate our encoding with some of
the FSP processes generated for our example. In Table 4 we
can see for instance how the choice operator is performed
non-deterministically by prefixing the choice’s operands by
z and then hiding this action. Figure 2 shows the minimized
LTS, obtained by compilation with LTSA, of the generated
FSP code (c2f pi(Stock)). First, Broker decides what metal
(s)he wants, iron or steel. Then, (s)he looks at the market
as many times as needed until a sale on the selected metal
becomes available (there is a loop on state 2 in the LTS).
After that, (s)he sends his/her bid to the market. Next,
Market saves the price and checks it, concurrently (there
are two different paths from state 4 to state 6 in the LTS).
Then, Market sends the result of the performed check to
the board. Finally, Board either does nothing (if the result
says the bid was not good enough), or changes itself and
notifies the broker (if the result says the bid was the best
one so far). This LTS was run several times using LTSA
animation techniques, and the system behaved as expected.
Model-checking was not required here because we chose a
simple example in this article for the sake of comprehen-
sion.

3.2 Peer Generation

Given a Chor specification, one can generate the specifica-
tion of each Peer using natural projection. Natural projec-

tion2 of a Chor specification to Peer P first replaces each
observable action with skip iff P does not perform that ac-
tion. Chor and Peer share parallel, sequential, choice, and
loop operators. For these operators the natural projection
replaces each Chor operator by its equivalent in Peer, and
applies recursively to their operands. Projection of basic
activities from a Chor specification C to a Peer specifica-
tion P is achieved as follows:

1. each activity not performed by P is replaced by skip,

2. a local activity performed by P remains unchanged,

3. a communication activity involving P is replaced by a
channel input activity (if P is the receiver) or a channel
output activity (if P is the sender).

Generation of FSP processes for an arbitrary Chor speci-
fication is performed using function c2f, defined previously
in this section. The behavior of each Peer P in the chore-
ography C is generated by hiding in the corresponding FSP
(c2f pi(C)) all actions to which P does not participate (Def-
inition 2).

Definition 2. Given a Chor specification C and a Peer
identifier p, the FSP process corresponding to nproj(C, p),
the natural projection of the Chor specification C to the
Peer p, is generated as follows (p2f pi is defined similarly
to c2f pi):

2The reader may refer to [18] for the formal definition of natural pro-
jection.

REALIZABILITY AND DYNAMIC RECONFIGURATION OF. . . Informatica 35 (2011) 39–49 43

Table 4: Some FSP Processes Generated for the Running Example
Chor Specification FSP Process Specification
skip SKIP= (skip−>END)\{skip}.
ironbk Iron_bk= (iron_bk−>END).
lookbk Look_bk= (look_bk−>END).
bid[bk,mk] Bid_bk_mk= (bid_bk_mk−>END).
ironbk⊓ steelbk Ch= (z−>Iron_bk;END|z−>Steel_bk;END)\{z}.
∗lookbk L= (z−>SKIP;END|z−>Look_bk;SKIP;L)\{z}.
(ironbk⊓ steelbk); lookbk S= Ch;SKIP;Look_bk;END.
savemk||checkmk ||TP= (p1 : Check_mk||p2 : Save_mk).

P= TP;SKIP;END/{check_mk/p1.check_mk,
save_mk/p2.save_mk}.

Figure 2: Minimized LTS of the Stock Market Case Study

p2f(C, p)=̂p2f pi(C, p) =
c2f pi(C)@{b|b is an activity of p}.

As specified in [18] for projecting Chor to peers, the
name of each Peer process is taken as a part of each activ-
ity name (for instance, here we add it as suffix). Therefore,
local activities of different peers are pair-wise different,
and peers use exclusive channels for communicating with
each other. Thus, each channel synchronizes activities of
exactly two peers. Hence, in p2f pi(C,1)∥· · ·∥p2f pi(C,n),
only actions which represent communication activities are
synchronized with each other, and each of these actions be-
longs to alphabets of exactly two FSP processes of the par-
allel operator’s operands. We also proved that this transla-
tion preserves the semantics of the Peer language [19].

Example. For each Peer P, all actions in c2f pi(Stock) in
which P is not involved, are hidden. The three peers of our
example are encoded by the following FSP specifications:
Broker = c2fpi(Stock);END@{iron_bk,steel_bk,

bid_bk_mk, look_bk,notify_bd_bk}.
Market= c2fpi(Stock);END@{save_mk,check_mk,

bid_bk_mk, result_mk_bd}.
Board= c2fpi(Stock);END@{result_mk_bd,

notify_bd_bk,change_bd}.
Figure 3 shows the minimized LTSs of these peers gen-

erated from the FSP processes presented above.

3.3 Realizability

Definition 3 formalizes the notion of choreography realiz-
ability we use in this article. We chose a strong realizabil-
ity [2, 7] for experimentation purposes, but weak notions
could be used instead [7].

Definition 3 (Realizability of Chor). For a Chor specifica-
tion C with n peers, we say C is realizable under natural
projection, if and only if the following two conditions hold:

1. [[C]] = [[nproj(C,1)∥· · ·∥nproj(C,n)]]

2. @t �nproj(C,1)∥· · ·∥nproj(C,n) t
=⇒ †

Both Chor and Peer languages use trace semantics.
Therefore, for checking the realizability of a Chor speci-
fication we need to compare the trace set of a Chor speci-
fication with the trace set of the parallel composition of all
peers. We proved in [19] that the trace set of a Chor spec-
ification is equal to the trace set of its FSP encoding, we
also proved our encoding preserves the semantics of the
Peer language. Thus, we have to check that FSP specifi-
cations for Chor and peers produce the same set of traces
(in which τ actions are hidden) and terminate. Although
the Chor specification is deadlock-free, the specification of
the final system made of interacting peers (generated us-
ing natural projection) may cause deadlock. In addition to
check that both specifications have the same set of traces,
the parallel composition of the different peers has also to
be deadlock-free. This check is easily computed using the
LTSA toolbox. Also, one can perform any kind of test that
is provided by LTSA, such as checking temporal properties
between different activities in the Chor and Peer specifica-
tions.

Example. As for the realizability test, we first com-
pute LTSs from FSP processes Stock and Peers, using
LTSA. The FSP process for the whole system is: ∥Peers=
(Broker∥Market∥Board). Then, we compare trace sets of
these processes using ltscompare, one of the tools belong-
ing to the mCRL2 toolset3 [6], and find out they produce

3LTSA does not allow to compute trace equivalence of two LTSs.

44 Informatica 35 (2011) 39–49 N. Roohi et al.

Figure 3: Stock Market: Minimized LTSs of Peers

the same set of traces (first realizability condition, Defi-
nition 3). For a Chor specification to be realizable, it is
also required to satisfy the second condition of Definition 3.
LTSA helps us on validating this condition, and using the
check safety test, we find that the following trace causes
deadlock:

⟨iron_bk, look_bk,bid_bk_mk,check_mk,
save_mk, result_mk_bd⟩

Indeed, after Broker sends his/her bid to the market, (s)he
should decides if (s)he will be notified by the board or
not. On the other hand, Board also makes this decision
according to the result which is received from the market.
So if peers Broker and Board make different decisions, a
deadlock occurs. To make our specification realizable we
slightly change it as follows: Whatever value is received
from the market, Board always notifies the broker about
the result. Thus, the specification of the system becomes as
follows:
Stock=
(ironbk⊓ steelbk); lookbk;∗lookbk;bid[bk,mk];
(savemk||checkmk); result[mk,bd];
(changebd⊓ skip);notify[bd,bk]

This new specification satisfies both realizability condi-
tions.

4 Dynamic reconfiguration of Chor
specifications

4.1 Reconfigurability Definition
In this section, we show how we check whether a recon-
figuration can be applied or not. Note that here our goal
is not to verify the reconfiguration specification, it can be
checked beforehand on the choreography specification us-
ing validation and verification techniques (see Section 3).
Instead, we propose some techniques to check if, from
a protocol point of view, a reconfiguration preserves the
global flow of control executed so far.

This process accepts as input two choreographies (an ini-
tial one, say CI , and a reconfigured one, say CR) and a trace

Therefore, we first save them in a format ltscompare accepts, and then
use it to check if LTSs have the same set of traces or not.

t which corresponds to the history of the current execution
(sequence of local or communication activities, that inter-
acting peers have performed). Traces only contain observ-
able activities (τ corresponding to internal actions and used
to encode non-deterministic choices in peers are not stored
in these traces). From the choreography specification CR,
peer LTSs are obtained using techniques presented in Sec-
tion 3. If the trace t executed by peers obtained out of CI
can also be executed in reconfigured peers generated from
CR, then the reconfiguration can take place.

Definition 4 (Reconfigurability). Given two choreogra-
phies CI and CR, two sets of peers PI and PR respectively
obtained from those choreographies, and a trace t, the cur-
rent system consisting of peers PI is reconfigurable to peers
PR if there exists P′

R such that PR
t

=⇒ P′
R, where t

=⇒ stands
for the execution of local or communication activities as
specified in trace t.

In practice, a reconfiguration is applied as follows: First,
actual peers matching with abstract descriptions (LTSs) de-
rived from the choreography CR are seeked into databases
of peers (e.g., UDDI) or directly reused from the former
system for peers which have not been modified. Next, these
peers are instantiated and executed (using the history stored
in trace t) up to the point where the reconfiguration has
been applied (this last part can be enforced by an external
controller or a monitoring engine for instance). To sum up,
our reconfigurability check aims to be transparent from an
external point of view.

Example. Now imagine that after peer Broker selects
iron (t = ⟨ironbk⟩), we want to reconfigure the current
choreography for Stock market, in a way that i) in addi-
tion to iron and steel, Broker can select gold, and ii) Broker
can send his/her bid to the Market without looking at the
market. The new specification of the system is as follows:
Stock=
(ironbk⊓ steelbk⊓goldbk);∗lookbk;bid[bk,mk];
(savemk||checkmk); result[mk,bd];
(changebd⊓ skip);notify[bd,bk]

Figure 4 shows the minimized LTS of the new peer
(Broker). We first compute the parallel composition of
peers PR using LTSA, then we check in this system if it is
possible to perform activities which are specified in t. The

REALIZABILITY AND DYNAMIC RECONFIGURATION OF. . . Informatica 35 (2011) 39–49 45

answer is yes, and PI is reconfigurable to PR. This is auto-
matically checked using a prototype tool we implemented
(see Section 5).

Figure 4: Minimized LTS of new Broker

4.2 Reconfigurability Analysis

Our reconfigurability definition, only says if the activities
that have occurred so far can be reproduced in the new sys-
tem, then peers PI are reconfigurable to peers PR. We want
to go further than this check since in some situations, one
may want these reconfigurations to have an immediate im-
pact on the running system, or to preserve the forthcoming
behaviour as specified in the former choreography (the sys-
tem can do at least what was possible before, but it can do
more as well).

Therefore, Definition 4 is completed with a couple of
analysis of where the modifications take place, that is we
check if modifications appear in peers after the current
global state, and if the evolutions possible from the cur-
rent global state are preserved with respect to the former
choreography. These analyses may help the designer to de-
cide whether (s)he wants to reconfigure the system or not.
Indeed, we can imagine situations in which for instance the
designer may want these modifications to immediately im-
pact the whole behaviour.

The first case, referred as preservative in the following,
is computed by first performing reconfigurability check and
finding P′

R. Then if P′
R is found, it is checked that all traces

which can be executed from P′
I (assuming PI

t
=⇒ P′

I) can
also be executed from P′

R.

Definition 5 (Preservative Reconfiguration). Given two
choreographies CI and CR, two sets of peers PI and PR re-
spectively obtained from previous choreographies, and a
trace t, new peers PR are preservative with respect to for-
mer peers PI , if PI is reconfigurable to PR and [[P′

I]]⊆ [[P′
R]],

assuming PI
t

=⇒ P′
I and PR

t
=⇒ P′

R.

Note that P′
I and P′

R obtained by application of trace t
are unique, because τ transitions have been removed from
peers and they have been determinized (no two transitions
holding the same label going out from the same state) after
performing the realizability check presented in Section 3.2.

The second case, referred as modificative in the follow-
ing, is computed by first extracting the current global state
from the trace t, and checking for each reconfigured peer
if all new interactions are reachable from its current execu-
tion state.

Definition 6 (Modificative Reconfiguration). Given two
choreographies CI and CR, two sets of peers PI and PR re-
spectively obtained from previous choreographies, and a
trace t, new peers PR are modificative with respect to for-
mer peers PI if in addition to be reconfigurable, for each
peer pi ∈ P′

R, si ∈ (s1, . . . ,sn), we have reachable(si, pi)∩
Mi = Mi, where PR

t
=⇒ P′

R, (s1, . . . ,sn) is the current global
state of peers P′

R, and Mi stands for all the modifications
(added or removed interactions) applied between CI and
CR for peer i.

Given a peer i, modifications for this peer between
choreographies CI and CR are obtained by computing the
difference of both alphabets AIi\ARi (ARi\AIi, resp.) if
some interactions are removed (added, resp.). Function
reachable from a state s and a peer LTS p is defined as
follows:
∀s, p � reachable(s, p) = /0 ⇔ @s′, l � (s, l,s′) ∈ T
∀s, p, l � l ∈ reachable(s, p)⇔∃s′ � (s, l,s′) ∈ T∨
(∃l′ � (s, l′,s′) ∈ T ∧ l ∈ reachable(s′, p))

where T is the transition relation belonging to the peer LTS
p = (A,S, I,F,T).

Last, realizability of choreography CR can be checked
using techniques presented in Section 3, and this realizabil-
ity result is another analysis on which the user can rely on
to decide whether or not applying the reconfiguration.

Example. Suppose that in addition to be reconfigurable,
we want our system to verify both properties. Since peers
PR are reconfigurable with respect to former peers PI , we
know P′

R exists such that PR
t

=⇒ P′
R. Therefore, assum-

ing PI
t

=⇒ P′
I , for reconfiguration to be preservative we

need [[P′
I]] ⊆ [[P′

R]]. This check can be performed using the
ltscompare tool, and by performing that check we find that
our reconfiguration example is preservative.

As regards the modificative reconfiguration property,
Mbk = {goldbk}, Mmk = Mbd = /0. After selecting iron,
there is no way to perform goldbk. Consequently, our re-
configuration is not modificative. We have to wait for the
current execution to get finished first, and then reconfigure
the peers if we want this property to be satisfied.

5 Prototype tool
All the steps of the approach we have presented in Sec-
tions 3 and 4 are automatically computed by a prototype
tool we implemented (see an overview in Figure 5). Boxes
and diamonds with dashed borders are optional. We explic-
itly wrote names of tools that we did not implement at the
bottom of each box or diamond. In Section 3 we have men-
tioned that one reason to choose an intermediate language,
is that we can reuse tools which have already been created
for that language. If we assume each box or diamond as
a unit of work, one can see that using our approach, we
only implemented 41.4 percent of our prototype tool, and
58.6 remaining percent are already implemented in existing
tools.

46 Informatica 35 (2011) 39–49 N. Roohi et al.

Figure 5: Overview of our prototype tool

5.1 Experimental Results

Table 5 shows experimental results on some of the exam-
ples of our database. Each row of this table shows results
for one reconfiguration request (CI , CR, and t), and respec-
tively presents the number of: peers, distinct basic activities
used in the Chor specification, basic activities used in the
Chor specification, basic activities in t (length of t), FSP
processes resulting while encoding the Chor specification
into FSP, and states and transitions in the minimized LTS
corresponding to the parallel composition of peers (PI and
PR). It also presents result of realizability plus different
types of reconfigurability checks and amount of consumed
time and memory. For keeping the table as simple as pos-
sible, we chose examples in which number of peers in CI
and CR are equal. Also number of (distinct) basic activities,
and FSP processes for CI and CR are close to each other (the
maximum is shown).

Note that measured time and memory for the reconfig-
urability check include time and memory required for the
realizability check. Also, time and memory for the two
other types of reconfigurability check include time and
memory required for the basic reconfigurability check in
addition to the realizability check.

Whenever a reconfigurability check fails, there is no
need to check the preservability or modificability proper-
ties, since being reconfigurable is a precondition for being
preservative or modificative.

5.2 Code Generation

As mentioned earlier, the final step is to produce Java code
following guidelines presented in [12]. Like the other steps,
this is completely automated by our tool. Figure 6 shows
a simplified version of some classes produced for our run-
ning example. We define an interface Channel and im-
plement it in a class ChannelImpl. For each channel in
the specification, one instance of ChannelImpl is created
in class ChannelServer and registered in a server. Also,
for each peer we create one interface and one class. The in-
terface contains methods for local and communication ac-
tivities performed by the peer and must be implemented by
the user, because the semantics of basic activities used in
the specification is not defined. Code in the class file im-
plements the peer protocol and should not be changed. The
user only needs to implement interfaces of peers and dis-
tributes classes to different locations, as (s)he needs.

Let us comment in more details, for illustration pur-
poses, method run in class mkController. We can no-
tice that for each operand of the parallel operator we cre-
ated one separate thread, and used class CyclicBarrier
(the Java utility class) to guarantee that the execution
of both threads must be finished before the next activ-
ities are performed (cb1.wait() and cb2.wait()). Also,
SynchronousQueue used in class ChannelImpl is an-
other Java class which synchronizes its read/write oper-
ations, therefore our communication mechanism remains
synchronous.

REALIZABILITY AND DYNAMIC RECONFIGURATION OF. . . Informatica 35 (2011) 39–49 47

Table 5: Experimental Results
P dBA BA t FSP States Trans. Realizability Reconf. Preservability Modificability

3 5 5 0 10 3 5 2 6
√

96ms 796K
√

174ms 754K
√

187ms 771K
√

173ms 870K

3 8 9 1 18 12 19 16 28
√

140ms 815K
√

224ms 824K
√

248ms 886K
√

243ms 949K

5 16 17 4 29 31 37 52 66
√

174ms 354K
√

392ms 900K
√

404ms 916K
√

378ms 1024K

5 16 36 6 30 65 194 108 449 × 146ms 978K × 146ms 978K × 1s 978K
√

146ms 978K

4 5 8 8 15 67 47 489 255
√

833ms 1187K
√

1.1s 2052K × 1.1s 2055K
√

1.1s 2056K

5 14 672 9 29 757 755 1428 1416
√

3.2s 2965K
√

12.1s 3116K × 80s 3130K × 12s 3014K

6 6 6 0 16 95 141 340 602
√

4.7s 2501K
√

5.2s 5212K
√

5.5s 5516K
√

5.2s 5559K

7 13 13 8 23 250 374 725 1277
√

1.3s 4170K
√

1.7s 6375K
√

1.7s 6942K
√

1.7s 6454K

7 17 834 11 35 932 934 1372 1372
√

8.5s 2739K
√

42s 2732K
√

244s 2947K × 42s 2982K

public class mkController extends Thread {
private final mk mk;
private final Channel bk;
private final Channel bd;
public mkController(mk mk, String server) throws

RemoteException,NamingException{
this.mk = mk;
final Context namingContext = new InitialContext();
bk = (Channel) namingContext

.lookup("rmi://"+server+"/bk_mk");
bd = (Channel) namingContext

.lookup("rmi://"+server+"/mk_bd");}
public void run() {

final Serializable msg1 = bk.recv();
mk.recv_from_bk(msg1);
final CyclicBarrier cb1 = new CyclicBarrier(2);
new Thread(new Runnable() {

public void run() {
mk.check();
cb1.wait();}}).start();

new Thread(new Runnable() {
public void run() {

mk.save();
cb1.wait();}}).start();

final Serializable msg2 = mk.send_bd_value();
bd.send(msg2);}}

public interface mk {
void save();
void check();
void recv_from_bk(Serializable value);
Serializable send_bd_value();}

public class ChannelImpl implements Channel {
public ChannelImpl() throws RemoteException {

UnicastRemoteObject.exportObject(this, 0);}
private final SynchronousQueue syncQueue = new

SynchronousQueue();
public void send(Serializable value) throws

RemoteException,InterruptedException{
syncQueue.put(value);}

public Serializable recv() throws
RemoteException,InterruptedException{
return syncQueue.take();}}

public class ChannelServer {
public ChannelServer() throws

RemoteException,NamingException{
final Channel bk_mk = new ChannelImpl();
final Channel mk_bd = new ChannelImpl();
final Channel bd_bk = new ChannelImpl();
final Context namingContext = new InitialContext();
namingContext.bind("rmi:bk_mk", bk_mk);
namingContext.bind("rmi:mk_bd", mk_bd);
namingContext.bind("rmi:bd_bk", bd_bk);}}

Figure 6: Stock Market: Java Code

6 Related works

Several works aimed at studying and defining the con-
formance and/or realizability problem for choreography.
In [3], the authors define models for choreography and or-
chestration, and formalise a conformance relation between
both models. These models are assumed given as input
whereas we focus on the generation of one from the other
(generation of peers from a global specification). In [22],
the authors focus on Let’s dance models for choreogra-
phies, and define for them an algorithm that determines if a
global model is locally enforceable, and another algorithm
for generating local models from global ones. In [15], the
authors show through a simple example how BPEL stubs
can be derived from WS-CDL choreographies. However,
due to the lack of semantics of both languages, correctness
of the generation cannot be ensured.

Some works define several realizability notions, and
classify them in a hierarchy [7]. Bultan and Fu [2] tackle
the realizability issue in the context of asynchronous com-
munication, and recently defined some sufficient condi-

tions to test realizability of choreographies specified with
collaboration diagrams. In [18, 11], formal languages
to describe choreographies were proposed. Conformance
with respect to an orchestration specification and imple-
mentability issues were studied from a formal point of
view.

Other works [4, 18] propose well-formedness rules to
enforce the specification to be realizable. For example,
in [4], the authors rely on a π-calculus-like language and
session types to formally describe choreographies. Then,
they identify three principles for global description under
which they define a sound and complete end-point projec-
tion, that is the generation of distributed processes from the
choreography.

Dynamic reconfiguration [14] is not a new topic and
many solutions have already been proposed in the context
of distributed systems and software architectures [9, 10],
graph transformation [1, 21], software adaptation [17, 16],
or metamodelling [8, 13]. However, to the best of our
knowledge, nobody has already worked on the reconfig-
uration of service interactions initially described using a

48 Informatica 35 (2011) 39–49 N. Roohi et al.

choreography specification.

As regards tools automating the realizability test,
WSAT [5] takes conversation protocols as input, and
checks a set of realizability conditions on them. Another
tool-supported approach [20] computes realizability using
a LOTOS encoding. However, in [20] the choreography
language, namely collaboration diagrams, is less expres-
sive than Chor (no choice and a loop operator restricted to
a single message), and the proposal focuses only on ab-
stract languages (no relationships with implementations or
real code).

7 Concluding remarks

In this article, we have presented an encoding of the chore-
ography calculus Chor into the process algebra FSP. This
encoding allows to generate a set of peers corresponding
to the choreography, and in a second step to check that
(i) they realize the original choreography, and (ii) they en-
sure some expected properties (by animation and model-
checking with LTSA). If the choreography is not realiz-
able or erroneous, the Chor specification can be corrected
and the process started again. If a choreography is as ex-
pected by the designer, Java code can be generated for rapid
prototyping purposes. We have also proposed some tech-
niques to verify if some reconfigurations can be applied dy-
namically on some peers that have been generated from a
choreography specification. For illustration purposes, we
have used the Chor language and transition systems to de-
scribe peers. Reconfigurations have been specified as a new
version of the choreography where some interactions have
been added or removed. Our approach is completely auto-
mated by a prototype tool we implemented and applied to
a large number of examples.

Our main perspective plans to extend our approach to
consider asynchronous communication. In this article,
we have focused on synchronous communication, and it
makes the realizability and reconfigurability checking eas-
ier. Dealing with asynchronous communication is a re-
alistic assumption with respect to implementation plat-
forms, however it complicates the analysis and verification
stage. Asynchronous communication can be specified us-
ing queues. In this context, realizability and reconfigura-
bility results depend on queue size, and some theoretical
issues are still open problems such as the relationships of
realizability results for queues of size one, queues of size
k, and infinite queues. We also plan to extend our analysis
techniques to take other kinds of reconfigurations into ac-
count. As an example, in some situations one may wish to
reduce the behaviour of the interacting peers while produc-
ing only traces that were executable before reconfiguring
the system (this is the opposite of the preservative property
presented in Section 4).

References

[1] N. Aguirre and T. Maibaum. A Logical Basis for the
Specification of Reconfigurable Component-Based
Systems. In Proc. of FASE’03, volume 2621 of LNCS,
pages 37–51. Springer, 2003.

[2] T. Bultan and X. Fu. Specification of Realiz-
able Service Conversations using Collaboration Di-
agrams. Service Oriented Computing and Applica-
tions, 2(1):27–39, 2008.

[3] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and
G. Zavattaro. Choreography and Orchestration Con-
formance for System Design. In Proc. of Coor-
dination’06, volume 4038 of LNCS, pages 63–81.
Springer, 2006.

[4] M. Carbone, K. Honda, and N. Yoshida. Structured
Communication-Centred Programming for Web Ser-
vices. In Proc. of ESOP’07, volume 4421 of LNCS,
pages 2–17. Springer, 2007.

[5] X. Fu, T. Bultan, and J. Su. WSAT: A Tool for Formal
Analysis of Web Services. In Proc. of CAV’04, vol-
ume 3114 of LNCS, pages 510–514. Springer, 2004.

[6] J. F. Groote, A. Mathijssen, M. Reniers, Y. Usenko,
and M. van Weerdenburg. The Formal Specification
Language mCRL2. In Proc. of MMOSS’07, Dagstuhl
seminar, 2007.

[7] R. Kazhamiakin and M. Pistore. Analysis of Realiz-
ability Conditions for Web Service Choreographies.
In Proc. of FORTE’06, volume 4229 of LNCS, pages
61–76. Springer, 2006.

[8] A. Ketfi and N. Belkhatir. A Metamodel-Based
Approach for the Dynamic Reconfiguration of
Component-Based Software. In Proc. of ICSR’04,
volume 3107 of LNCS, pages 264–273. Springer,
2004.

[9] J. Kramer and J. Magee. The Evolving Philoso-
phers Problem: Dynamic Change Management. IEEE
Transactions on Software Engineering, 16(11):1293–
1306, 1990.

[10] J. Kramer and J. Magee. Analysing Dynamic Change
in Distributed Software Architectures. IEE Proceed-
ings - Software, 145(5):146–154, 1998.

[11] J. Li, H. Zhu, and G. Pu. Conformance Validation
between Choreography and Orchestration. In Proc.
of TASE’07, pages 473–482. IEEE Computer Society,
2007.

[12] J. Magee and J. Kramer. Concurrency: State Models
& Java Programs, 2nd edition. Wiley, 2006.

REALIZABILITY AND DYNAMIC RECONFIGURATION OF. . . Informatica 35 (2011) 39–49 49

[13] J. Matevska-Meyer, W. Hasselbring, and R. Reussner.
Software Architecture Description Supporting Com-
ponent Deployment and System Runtime Reconfigu-
ration. In Proc. of WCOP’04, 2004.

[14] N. Medvidovic. ADLs and Dynamic Architecture
Changes. In SIGSOFT 96 Workshop, pages 24–27.
ACM, 1996.

[15] J. Mendling and M. Hafner. From Inter-
organizational Workflows to Process Execution: Gen-
erating BPEL from WS-CDL. In Proc. of OTM’05
Workshops, volume 3762 of LNCS, pages 506–515.
Springer, 2005.

[16] P. Poizat and G. Salaün. Adaptation of Open
Component-based Systems. In Proc. of FMOODS’07,
volume 4468 of LNCS, pages 141–156. Springer,
2007.

[17] P. Poizat, G. Salaün, and M. Tivoli. On Dynamic Re-
configuration of Software Adaptations. In Proc. of
WCAT’06, 2006.

[18] Z. Qiu, X. Zhao, C. Cai, and H. Yang. Towards the
Theoretical Foundation of Choreography. In Proc. of
WWW’07, pages 973–982. ACM Press, 2007.

[19] N. Roohi, G. Salaün, and S. H. Mirian. Analyzing
Chor Specifications by Translation into FSP. In Proc.
of FOCLASA’09, volume 255 of ENTCS, pages 159–
176, 2009.

[20] G. Salaün and T. Bultan. Realizability of Choreogra-
phies using Process Algebra Encodings. In Proc. of
IFM’2009, volume 5423 of LNCS, pages 167–182.
Springer, 2009.

[21] M. Wermelinger, A. Lopes, and J. L. Fiadeiro. A
Graph Based Architectural (Re)configuration Lan-
guage. In Proc. of ESEC / SIGSOFT FSE 2001, pages
21–32. ACM, 2001.

[22] J. Maria Zaha, M. Dumas, A. H. M. ter Hofstede,
A. P. Barros, and G. Decker. Service Interaction Mod-
eling: Bridging Global and Local Views. In Proc.
of EDOC’06, pages 45–55. IEEE Computer Society,
2006.

50 Informatica 35 (2011) 39–49 N. Roohi et al.

Informatica 35 (2011) 51–62 51

Model-Based Dependable Composition of Self-Adaptive Systems

Javier Cubo, Carlos Canal and Ernesto Pimentel
Dept. of Computer Science, University of Málaga, Campus de Teatinos, 29071, Málaga, Spain
Email: {cubo,canal,ernesto}@lcc.uma.es, Web: http://www.lcc.uma.es/∼{cubo,canal,ernesto}

Keywords: self-adaptive, context-aware, SOA, transition systems, model transformation, dependable composition, adap-
tation, evolution, fault tolerance, error recovery

Received: October 15, 2010

Building mobile and pervasive systems as a selection, composition, adaptation and evolution of pre-existing software
entities may arise dynamically and continuously different issues related to inconsistencies, changes or faults. We pro-
pose an approach to detect and handle these issues with the appropriate methodology in every case. This is performed
by tackling three great challenges in software engineering related to self-adaptive systems: (i) their formalisation, by
using model-based SOA, which bridge the business and software processes, (ii) their development and maintenance,
by performing adaptation and/or evolution when inconsistencies or changes occur, and (iii) their monitoring to handle
faults, by using error recovery techniques. We use an example based on an intelligent transportation system to validate
our proposal.

Povzetek: Opisana je sestava prilagodljivih sistemov na osnovi modela.

1 Introduction
The increased usage of mobile and portable devices has
given rise over the last few years to a new market of mo-
bile and pervasive applications. These applications may be
executed on either mobile computers (laptops, tabletPCs,
etc.), or wireless hand-held devices (PDAs, smart phones,
etc.), or embedded systems (PDAs, on-board computer, in-
telligent transportation or buildings systems, etc.), or even
use sensors or RFID tags. Their main goal is to provide
connectivity and services at any time, adapting and moni-
toring when required and improving the user experience.
These systems are different to the traditional distributed
computing systems. On one hand, a mobile system is able
to change location allowing the communication via mo-
bile devices. On the other hand, a pervasive application
attempts to create an ambient intelligence environment to
make the computing part of it and its enabling technolo-
gies essentially transparent. This results in some new is-
sues related to inconsistencies, changes or faults, which
arise dynamically and continuously whilst composing ser-
vices in these systems, and which have to be detected and
handled. These issues can be classified into four main cat-
egories [23]: (i) mismatch problems, (ii) requirement and
configuration changes (iii) network and remote system fail-
ures, and (iv) internal service errors. The first refers to
the problems that may appear at different interoperabil-
ity levels (i.e., signature, behavioural or protocol, qual-
ity of service and semantic or conceptual levels), and the
Software Adaptation paradigm tackles these problems in
a non-intrusive way [8].The second is prompted by con-
tinuous changes over time (new requirements or services
fully created at run-time), and Software Evolution (or Soft-
ware Maintenance) focuses on solving them in an intrusive-
way [19]. The third and fourth are related to networks (net-

work connection break-off or remote host unavailable) and
services (suspension of services during the execution or
system run-time error) failures respectively, that are both
addressed by Fault Tolerance (or Error Recovery) mecha-
nisms [24]. Developing real-world mobile and pervasive
systems handling all these faults is extremely complex and
error-prone. Therefore, it is essential to determine an effec-
tive methodology to develop this kind of system.

Self-adaptive software provides a broadly inclusive
adaptation methodology that spans a wide range of adap-
tive behaviours [22]. One of the key aspects of self-
adaptive software is that it supports both software adapta-
tion and evolution, by addressing mismatch problems and
requirement or configuration changes. Another advantage
of self-adaptive systems is that they adapt the software sys-
tems to changing operational contexts and environments,
thereby reducing human effort in the human-computer in-
teraction. Context-awareness provides the most relevant
information (location, identity, time and activity) to users
and stakeholders, adapting themselves to their changing sit-
uation, preferences and requirements, and optimising the
quality of service [12]. Therefore, context information
plays an important role in software adaptation and evolu-
tion to control the scope of change. However, current pro-
gramming technology offers only very weak support for
developing context-aware applications, and new research
is urgently needed to develop novel Context-Oriented Pro-
gramming (COP) mechanisms [21]. As regards failures
related to networks and services, fault tolerance mecha-
nisms to be exploited for the development of dependable
systems allow the handling of exceptions raised by adaptive
demand, returning back the self-adaptive system to any ear-
lier stable state. The choice of fault tolerance mechanisms
depends on the fault assumptions and on the system’s char-

52 Informatica 35 (2011) 51–62 J. Cubo et al.

acteristics and requirements. There are two main classes
of error recovery [24]:backward and forward error recov-
ery. The former is based on rolling services back to the
previous correct state in the presence of failure. The latter
involves transforming the system services into any correct
state, and relies on an exception handling mechanism.

Self-adaptive systems requires high reusability, depend-
ability, robustness, adaptability, and availability. In order to
reduce efforts and costs, these systems may be developed
using existing Commercial-Off-The-Shelf (COTS) compo-
nents or (Web) services. In contrast to the traditional ap-
proach in which software systems are implemented from
scratch, COTS and services can be developed by different
vendors using different languages and different computer
platforms. Although the reuse of software has matured
and has overcome some of the previously mentioned prob-
lems, it has not become standard practice yet, since reusing
components or services requires the selection, composi-
tion, adaptation and evolution of prefabricated software
parts, by means of their public interfaces, in order to solve
different problems. Thus, it is desired to reduce the ef-
fort of adapting and maintaining existing services in or-
der to achieve a cost-effective and dependable development
of self-adaptive systems. Component-Based Software En-
gineering (CBSE) [25] and Service-Oriented Architecture
(SOA) [13] promote software reuse by selecting and assem-
bling pre-existing software entities (COTS and services, re-
spectively)1. These software development paradigms al-
low the building of fully working systems as efficiently as
possible in order to improve the level of self-adaptive soft-
ware reusability, dependability and adaptability [8]. On
one hand, current industrial platforms using CBSE provide
only some of the means to describe components at their
signature level (e.g., CORBA’s IDL2). On the other hand,
one way to implement SOA is using WSDL for describ-
ing services, SOAP3 for communication, UDDI for service
registry and discovery, and BPEL [1] for service orchestra-
tion. However, BPEL is not yet widely considered in cur-
rent XML-based industrial service technology, which, in
addition, only supports queries based on keywords and cat-
egories. This may bring about erroneous executions and/or
low-precision results in realistic and complex applications,
as it neither handles the order in which the service mes-
sages are exchanged with its environment, nor is it able
to discover semantic capabilities of services (functionality)
nor can it be adapted to a changing environment without
human intervention. Therefore, behavioural descriptions,
and multiple context and semantic (e.g., by means of on-
tologies) information must be specified and managed in
real-world services to avoid undesirable situations during
their interaction, such as deadlocks or livelocks, and to im-
prove their features (such as QoS). In this sense, our pro-
posal tackles the need to support the variability of the adap-
tation process in self-adaptive systems by using context-

1In the sequel, we use service to refer both terms.
2www.omg.org/technology/documents/formal/components.htm
3http://www.w3.org/TR/soap/

aware, semantic-based, model-based adaptation, and de-
pendency analysis mechanisms.

Approach and Contributions. We propose an approach to
detect and handle the different inconsistencies, changes or
faults arisen in self-adaptive systems. This is performed
by tackling three great challenges in software engineer-
ing related to self-adaptive systems: (i) their formalisation,
by using model-based SOA, which bridges the business
and software processes, (ii) their development and main-
tenance, by performing adaptation and/or evolution when
required, and (iii) their monitoring to handle faults, by us-
ing error recovery techniques.

In order to achieve these goals, we make the following
contributions. Firstly (i) we develop a model transforma-
tion process to allow us the discovery, composition, adapta-
tion and maintenance of services. This process, according
to the Model-Driven Architecture (MDA)4, takes a source
model (BPEL or WF [10], both implemented as SOAs) and
produces a target model (in our case transition systems),
and vice versa. Secondly, (ii) we use software adaptation
and evolution concern respectively with adapting or chang-
ing the software during its execution. Both paradigms typi-
cally tackle the adapting and the evolving of software sepa-
rately depending on the changes being made. However, we
propose a model-based approach using self-adaptive tech-
niques through both paradigms to reduce the effort and cost
of modifying the system. In this way, our approach will as-
sist respectively to the application developers and software
designers to first apply software adaptation (non-intrusive
way) when that paradigm may solve the problem, and only
in the case it is not enough, software evolution (intrusive
way) will be used. Finally, (iii) we combine both backward
and forward error recovery techniques to maintain consis-
tency, correctness, and coordination of changes, and to han-
dle errors in self-adaptive systems. We have developed a
prototype tool on Python, which implements our approach,
integrated inside the toolbox ITACA [7]. ITACA5 (Inte-
grated Toolbox for the Automatic Composition and Adap-
tation of Web Services) is a toolbox under implementation
at the University of Málaga for the automatic composi-
tion and adaptation of services accessed through their in-
terfaces. The toolbox fully covers an adaptation process
which goes from behavioural model extraction from exist-
ing service interface descriptions, to the final adaptor im-
plementation.

Figure 1 is an overview of our approach, which focuses
on systems made up of a service repository, clients (con-
sidered as services as well), and a shared domain ontol-
ogy. When a user performs a request, e.g., from a mo-
bile device, our process is executed. First, (1) abstract in-
terface specifications (Context-Aware Symbolic Transition
Systems, CA-STSs, presented in Section 3.1) are extracted
from the BPEL or WF services, by means of our model
transformation process (Section 3.2). Then, (2) a discov-

4http://www.omg.org/docs/omg/03-06-01.pdf
5Accesible at http://itaca.gisum.uma.es

MODEL-BASED DEPENDABLE COMPOSITION OF. . . Informatica 35 (2011) 51–62 53

ery process based on semantic and compatibility mecha-
nisms finds the services satisfying that request, and iden-
tifies possible mismatches and changes that will determine
whether the services involved need adaptation and/or evo-
lution (Section 4.1). If mismatches or changes occur, then
(3) observation planning will determine when, where, what,
and how [6] to perform adaptation and/or evolution depend-
ing on whether the changes are related to anticipated or
unanticipated adaptation, respectively. Next, (4.a) in the
case that adaptation is required, a CA-STS adaptor will be
generated in a non-intrusive way (Section 4.1), and (4.b)
if evolution is needed, then first the designer will have
to modify the system in an intrusive way, and second the
adaptor will be generated (Section 4.1). Then, (5) from the
CA-STS adaptor, the corresponding BPEL or WF adaptor
service is generated using our model transformation pro-
cess (Section 4.1), and the whole system is deployed, al-
lowing the BPEL or WF services to interact via the BPEL
or WF adaptor. Finally, (6) a fault tolerance process han-
dles exceptions raised by adaptive demand, returning back
the system to any earlier stable situation, by using error re-
covery techniques (Section 4.2).

Service Discovery Process (SDP)

Semantic Matchmaking and Protocol Compatibility

Users (Clients)

Service
Repository

Context
Information

Context Profile

User/Services (SOAs)

WSDL>Signature

BPEL/WF>CA-STS Protocol

XML files XML files

TAU

reqDoc!
d:tdate

TAU

reqSpec!
d:tdate

user!usr:tstring

password!pwd:tstring

c0

c1

c2

c3 c6
TAU

reqDoc!

TAU

reqSpec!
d:tdate

user!usr:tstring

password!pwd:tstring

c0

c1

c2

c3 c6

Domain
Ontology

XML file

Service Monitoring Process (SMP)

Dependency Analysis and Error Recovery

Service Planning Process (SPP)

Observation and Adaptation Planning

Software Adaptation
- Service Adaptor -

(Application Developer)

Software Evolution
Reconfiguration

- Service Adaptor -
(Software Designer)

Self-Adaptive
Composition

Process (SCP)

2

3

4

6

CASTS2WFWF2CASTS

1 5

Figure 1: Overview of our proposal

Outline. The remainder of this article is structured as fol-
lows. In Section 2, we introduce a case study which will be
used throughout this article for illustrative purposes. Sec-
tion 3 presents our model-based SOA approach. In Sec-
tion 4.1 the dependable composition process is described.
Sections 5 presents works related to model-based transfor-
mation, and self-adaptive and error recovery techniques.
Finally, Section 6 ends the article with a discussion about
the evaluation of our approach and some concluding re-
marks.

2 Motivating example: ITS
To illustrate our proposal, we describe a case study in
which services connected to an Intelligent Transportation
System (ITS) require and provide context-aware trans-
portation facilities. We consider different scenarios where
city users of transport (passengers or drivers) are interested
in planning their route on their hand-held devices (mobile
phones or onboard computer), by receiving data from a

Route service. In addition to the Route service, a Map ser-
vice may also reply the user’s requests as the Route service
is not available anymore. We consider two kind of users:
1) bus/metro passenger, and 2) drivers. The latter have two
different profiles: driving a private vehicle (car), or a taxi.
Users receive different results of their route, depending on
their profiles. We assume services can respond to the users’
requests, but issues related to inconsistencies, changes or
faults may arise at run-time, making it necessary to detect
and handle them.

Passenger scenario. A passenger communicates with the
system to obtain the best itinerary to a destination by
bus/metro. The Route service response depends on certain
context information, i.e., the passenger location and desti-
nation, as well as the traffic or transport timetable, so the
result may vary frequently.

Driver scenario. Let us imagine the Route service typi-
cally calculates a route requested by drivers based on traf-
fic congestion (considering vehicles that enter and leave an
area). In a normal situation, a car/taxi driver can change the
route dynamically on being advised by the ITS of rerouting
alternatives. In this scenario, we describe three different
cases:

- A) Drivers request that the Route service considers the
context information related to the weather as a new require-
ment to calculate the rerouting.

- B) From the previous case, vehicles driving in a spe-
cific area discover a new Car Parking service provided by
the context of the new environment, but not considered ini-
tially by the system. Drivers would like to request this new
service, so the ITS should include that service into the sys-
tem.

- C) Considering the requirements of the two previous
cases, we imagine that in a certain moment the connection
with the Route service is lost. This service will be replaced
automatically and quickly at run-time by another service
with similar functions and considered at design-time by the
system, i.e., the Map service, which will also help to guide
the driver.

This case study presents a service-oriented pervasive
system with context-awareness features. Self-adaptive
software, in addition to tackle different adaptive be-
haviours, is useful for dealing with all forms of embedded
or pervasive software. We use a structured modelling ap-
proach to specify service-oriented architectures, because it
is easier to determine when a new service is needed, as
well as when it is more cost-effective and efficient to al-
ter an existing service, develop a new one, or acquire a
third-party service, and to manage fault tolerance mecha-
nisms. Since models tend to be represented using a graphi-
cal notation, the model-based methodology involves using
visual-modeling languages. We adopt an expressive and
user-friendly graphical notation based on transition sys-
tems, which reduces the complexity of modelling services,
as we will show in the next section.

54 Informatica 35 (2011) 51–62 J. Cubo et al.

3 Model-based SOA
In this section, we describe our formal model to specify
services using Context-Aware Symbolic Transition Sys-
tems (CA-STS). Different automata-based or Petri net-
based models can be used to describe behavioural inter-
faces. We have chosen CA-STS, which is based on transi-
tion systems, because it is simple, graphical, and provides
a good level of abstraction to tackle discovery, verification,
composition, or adaptation issues [14, 15]. Furthermore,
any formalism to describe dynamic behaviour may be ex-
pressed in terms of a transition system [14]. Thus, our
approach becomes general enough to be applied in other
applications. In addition, we relate our interface model to
implementation platforms. There exists several platforms
or languages that can be used to develop services, such as
UML6, BPEL or WF. First, we present the syntax and op-
erational semantics of our interface model. Second, we de-
scribe a textual grammar to abstract implementation details
of WF activities, and define our transformation process to
extract CA-STS specifications from WF services.

3.1 CA-STS Interface Model
We consider systems consisting of context-aware clients
and services. We assume both client and service inter-
faces are specified using context profiles, signatures and
protocols. Context profiles define information which may
change according to the client preferences and service en-
vironment. Signatures correspond to operations profiles.
Protocols are represented using transition systems. Client
and services interact according to the operational semantics
we will define later.

Context Profile, Signature and Protocol.
A context is defined as “the information that can be used
to characterise the situation of an entity. An entity is a
person, place, or object that is considered relevant to in-
teraction between a user and an application including the
user and application themselves” [12]. Context informa-
tion can be represented in different ways and can be clas-
sified in four main categories [17]: (i) user context: role,
preferences, language, calendar, social situation or privi-
leges, (ii) device/computing context: network connectivity,
device capabilities or server load, (iii) time context: current
time, day, year, month or season, and (iv) physical context:
location, weather or temperature. For our purpose, we only
need a simple representation where contexts in both clients
and services are defined by context attributes with asso-
ciated values. In addition, we differentiate between static
context attributes (e.g., role, day, ...) and dynamic ones
(e.g., network connectivity, current time, location, ...). Dy-
namic attributes can change continuously at run-time, so
they have to be dynamically evaluated during the service
composition. Finally, both clients and services are char-
acterised by public (e.g., weather, temperature, season, ...)
and private (e.g., personal data, local resources, ...) context
attributes. Thus, we represent and gather the service con-

6http://www.omg.org/technology/documents/formal/uml.htm

text information by using a context profile, which is a set of
tuples (CA,CV,CK,CT), where: CA is a context attribute
(or simply context) with its corresponding value CV , CK
determines if CA is static or dynamic, and CT indicates if
CA is public or private. For instance, (user, driver, static,
public), indicates that user is a public and static context
which corresponds to the user profile driver as value.

A signature corresponds to a set of operation profiles.
This set is a disjoint union of provided and required oper-
ations. An operation profile is the name of an operation,
together with its argument types (input/output parameters)
and its return type.

A protocol is represented using a Symbolic Transi-
tion Graph (STG) [16] extended with value passing, con-
text variables and conditions, that we call Context-Aware
Symbolic Transition System (CA-STS). Conditions spec-
ify how applications should react (e.g., to context changes).
We take advantage of using ontologies described in a spe-
cific domain to capture and manage the semantic informa-
tion of the services in a system by comparing concepts,
such as context information, operation names, arguments
and types. In this way, we can determine the relationship
between the different concepts that belong to that domain.

Let us introduce the notion of variable, expression, and
label required by our CA-STS protocol. We consider two
kinds of variables, those representing regular variables or
static context attributes, and those corresponding to dy-
namic context attributes (named context variables). In or-
der to distinguish between them, we will mark the context
variables with the symbol “∼” over the specific variable.
An expression is defined as a variable or a term constructed
with a function symbol f (an identifier) applied to a se-
quence of expressions, i ∈ f (F1, . . . ,Fn), Fi being expres-
sions.

Definition 1 (CA-STS label). A label corresponding to a
transition of a CA-STS is either an internal action τ (tau)
or a tuple (B,M,D,F) representing an event, where: B is
a condition (boolean expression that manages both con-
ditional choices and context changes), M is the operation
name, D is the direction of operations (! and ? represent
emission and reception, respectively), and F is a list of ex-
pressions if the operation corresponds to an emission, or a
list of variables if the operation is a reception.

Definition 2 (CA-STS Protocol). A Context-Aware Sym-
bolic Transition System (CA-STS) Protocol is a tuple
(A,S, I,Fc,T), where: A is an alphabet which corresponds
to the set of CA-STS labels associated to transitions, S is
a set of states, I ∈ S is the initial state, Fc ⊆ S are correct
final states (deadlock-free), and T ⊆ S×A×S is the tran-
sition function whose elements (s1,a,s2) ∈ T are usually
denoted by s1

a−→ s2.

Finally, a CA-STS interface is constituted by a tuple
(CP,SI,P), where: CP is a context profile, and SI is the
signature of the CA-STS protocol P. Both client and ser-
vices consist of a set of interfaces. For instance, let us

MODEL-BASED DEPENDABLE COMPOSITION OF. . . Informatica 35 (2011) 51–62 55

focus on the client shown in Figure 6. It has an inter-
face (CPU ,SIU ,PU), where CPU refers to the context in-
formation related to the user location (dynamic context
attribute loc), user profile and device used by the client
of the user (static context attributes user and dev respec-
tively), SIU is formed by all the operation profiles, such
as lu1 = reqR!dest, ˜loc, ˜user, and PU is the protocol which
indicates the CA-STS behaviour. For example, lu1 means
that a client with the context information loc and user is-
sues an emission looking for a route from his/her location
to a destination, and then this client receives a possible
route lu2 = getR?route, and so on. Note we have left out
the return types of the arguments to simplify the notation.
Initial and final states are depicted in CA-STSs using bul-
let arrows and hollow states, respectively. Our proposal
is suitable for synchronous systems where clients interact
with services, such as mobile systems. We adopt a syn-
chronous and binary communication model (explained in
next section, Figure 3). Clients can execute several proto-
cols simultaneously, i.e., concurrent interactions (in a bi-
nary model). Client and service protocols can be instanti-
ated several times.

At the user level, client and service interfaces can be
specified by using: (i) context information into XML
files for context profiles, (ii) WSDL for signatures, and
(iii) business processes defined in industrial platforms,
such as Abstract BPEL (ABPEL) [1] or WF workflows
(AWF) [10], for protocols. We assume context information
is inferred from the client requests (HTTP header of SOAP
messages), thereby as a change occurs the new value of the
context attribute is automatically sent to the corresponding
service (controlled in rules presented in Figure 2). We also
consider processes (clients and services) implemented as
business processes which provide the WSDL and protocol
descriptions.

Next, we define the CA-STS operational semantics.

Operational Semantics of CA-STS.
We formalise first the operational semantics for one CA-
STS service, and second for the composition of n CA-STS
services. In the following, we use a pair ⟨s,E⟩ to represent
an active state s ∈ S and an environment E. An environ-
ment is a set of pairs ⟨x,v⟩ where x is a variable, and v
is the corresponding value of x (it can be also represented
by E(x)). The function type returns the type of a variable.
We use boolean expressions b to describe CA-STS condi-
tions. Regular and context variables are evaluated in emis-
sions and receptions (by considering the current value of
the context, e.g., the current date), respectively. Therefore,
two evaluation functions are used to compute expressions
in an environment: (i) ev evaluates regular variables or ex-
pressions, and (ii) evc evaluates context variables changing
dynamically. We define ev as follows:

ev(E,x),
{

E(x) if x is a regular variable
x if x is a context variable

ev(E, f (v1, . . . ,vn)), f (ev(E,v1), . . . ,ev(E,vn))

Function evc is defined in a similar way to ev, only con-
sidering context variables, since we first apply ev to eval-
uate the regular variables: evc(E,x) , E(x), where x is a
context variable. We also define an environment overload-
ing operation “⊘” in such a way that given an environment
E, E ⊘⟨x,v⟩ denotes a new environment, where the value
corresponding to x is v.

We present in Figure 2 the semantics of a CA-STS (−→o),
with three rules that formalise the meaning of each kind of
CA-STS label: internal actions τ (INT), emissions (EM),
and receptions (REC); and one rule to simulate the dynamic
update of the environment according to the context changes
at run-time (DYN). Note that according to Definition 1,
b ∈ B is a condition, a ∈ M is an operation name, and x ∈ F
and v ∈ F correspond to a list of variables and expressions,
respectively. A condition b may contain regular and/or con-
text variables and both of them must be evaluated in the
environment of the source service (sender), because the de-
cision is taken in the sender. However, evaluation of ex-
pressions v only affects regular variables (rule EM), since
context variables will be evaluated in the target service (re-
ceiver) to consider the context values when the message
is received (see rule COM in Figure 3). We assume that
the dynamic modification of the environment will be de-
termined by different external elements depending on the
type of the context (e.g., user intervention, location update
by means of a GPS, time or temperature update, and so on).
Then, we model this situation by assuming a transition re-
lation which indicates the environment update as a change
occurs, denoted by E ; dE ′, where E ′(x) ̸= E(x) only if x
is a dynamic context variable, and in which case the new
value of x is automatically sent to the corresponding ser-
vice.

(s
b,τ−−→ s′) ∈ T evc(ev(E,b),b) = true

⟨s,E⟩ τ−→o ⟨s′,E⟩
(INT)

(s
b,a?x−−−→ s′) ∈ T evc(ev(E,b),b) = true

⟨s,E⟩ a?x−−→o ⟨s′,E⟩
(REC)

(s
b,a!v−−−→ s′) ∈ T evc(ev(E,b),b) = true v′ = ev(E,v)

⟨s,E⟩ a!v′−−−→o ⟨s′,E⟩
(EM)

E ; dE ′

⟨s,E⟩ τ−→o ⟨s,E ′⟩
(DYN)

Figure 2: Operational Semantics of one CA-STS

The operational semantics of n (n > 1) CA-STSs (−→c)
is formalised using two rules: a first synchronous commu-
nication rule (COM, Figure 3) in which value-passing and
variable substitutions rely on a late binding semantics [20]
and where the environment E is updated; and a second in-
dependent evolution rule (INEτ , Figure 3). A list of pairs
⟨si,Ei⟩ is represented by [as1, . . . ,asn]. Rule COM uses
the function evc to evaluate dynamically in the receiver the
context changes related to the dynamic context attributes
of the sender. Regular variables have been evaluated previ-
ously in the rule EM when the message is emitted. This dy-
namic evaluation handled in the operational semantics al-
lows the modelling of service protocols depending on con-

56 Informatica 35 (2011) 51–62 J. Cubo et al.

text changes. Rule INEτ is executed in the case of an in-
ternal service propagation that gives rise to either a state
(related to the rule INT) or an environment (rule DYN)
change. Thus, transitions −→c do not distinguish between
internal evolutions coming from either internal actions in
services or dynamic updates in the environment.

i, j ∈ {1..n} i ̸= j type(x) = type(v) ⟨si,Ei⟩
a!v−−→o ⟨s′i,Ei⟩

⟨s j,E j⟩
a?x−−→o ⟨s′j,E j⟩ E ′

j = E j ⊘⟨x,evc(E j,v)⟩

[as1, . . . ,⟨si,Ei⟩, . . . ,⟨s j,E j⟩, . . . ,asn]
a!v−−→c

(COM)[as1, . . . ,⟨s′i,Ei⟩, . . . ,⟨s′j,E ′
j⟩, . . . ,asn]

i ∈ {1..n} ⟨si,Ei⟩
τ−→o ⟨s′i,E ′

i ⟩
[as1, . . . ,⟨si,Ei⟩, . . . ,asn]

τ−→c [as1, . . . ,⟨s′i,E ′
i ⟩, . . . ,asn]

(INEτ)

Figure 3: Operational Semantics of n CA-STSs

Following, we present our model transformation process
by using WF services as illustration purpose.

3.2 Model Transformation Process
To perform the service discovery, composition, adaptation
and maintenance, we first need to define a textual notation
to abstract and formalise services implemented in the WF
platform. Second, we define our model transformation pro-
cess.

Abstraction of WF Workflows.
To relate our model transformation process with realistic
and complex examples, we use the WF platform, which be-
longs to the .NET Framework 3.5 and is supported by Vi-
sual Studio 2008. We have chosen WF because it makes the
implementation of services easier thanks to its workflow-
based graphical support and the automation of the code
generation, and it is an useful and interesting alternative
compared to the well-know BPEL. Nevertheless, we have
also validated our proposal using BPEL as shown in [7].
In addition, the .NET Framework is widely used in many
companies, and WF is increasingly prevalent in the soft-
ware engineering community [26].

In order to illustrate the motivating example presented
in Section 2, we use a representative kernel of the
WF activities, namely Code, Sequence, Terminate,
Receive, Send, IfElse, While, and Listen with
EventDriven activities, that are general enough to de-
scribe any service.

In Table 1, we formalise the textual grammar (left hand-
side) defined for the WF activities considered (on the
right hand-side the informal meaning of these activities is
provided), which abstracts several implementation details.
Our grammar considers as input textual workflows (defined
in XML files) corresponding to the graphical description of
the WF workflows, with WF activities A , where C, Ci are
boolean conditions, I, Ii (inputs), O, Oi (outputs) are pa-
rameters of activities, and Id are service identifiers.

The WF platform is capable of developing workflows in
different scenarios, from simple sequential ones to realistic
and complex state machine-based workflows involving hu-
man interaction. The programming languages available in

A ::= Code executes code
| Terminate ends WF
| Receive(Id,Op[,O,I1,. . . ,In]) receives msg
| Send(Id,Op[,O1,. . . ,On,I]) sends msg
| Sequence(A1,A2) executes A1,A2
| IfElse((C1,A1),. . . ,(Cn,An),A) Ai if Ci or A
| While(C,A) A while C
| Listen(E1,. . . ,En) fires one Ei
E ::= EventDriven(Receive(Id,Op[,Ii]),A) A when Id

Table 1: Grammar for the WF abstract notation

the platform are Visual Basic and C#. Our examples have
been implemented in C#.

Example. We have designed WF workflows for the User
Route request, and for the Route and Map services. WF
provides a WSDL description for each WF workflow. For
space reasons, in Figure 4 only the WF workflow that rep-
resents the behaviour of the User Route request is shown.

WF User

send_reqR

code_reqR

Sequential Workflow

send_showR

code_showR

code_ackR

receive_ackRreceive_getR

code_getR

Figure 4: WF workflow of the User’s request

Next, we present how we extract CA-STS specifications
from WF services.

From WF to CA-STSs.
CA-STSs are used as an abstraction to focus on behavioural
composition issues by describing service interfaces in a
standard notation. These CA-STSs are automatically gen-
erated from WF services. For each WF service, our model
transformation process parses the three XML files corre-
sponding to its context information, WSDL description,
and WF workflow. A new XML file containing the in-
formation about its context profile, signature, and CA-
STS protocol is automatically generated. This XML corre-
sponds to the behavioural interface of a CA-STS specifica-
tion. This process has been implemented following the pat-
terns of our transformation process presented in Figure 5.

We have developed an ad-hoc transformation language
to translate WF activities (WF workflows defined in XML
files) in CA-STS elements (XML files represented in a
graphical notation by means of transition systems) and vice
versa. The extracted CA-STS specifications must preserve
the semantics of workflows as encoded in the WF platform.
A formal proof of semantics preservation between both lev-
els has not been achieved yet since the WF formal seman-
tics is not rigorously documented. Our encoding has been
deduced from our experiments using the WF platform. The
main ideas of the CA-STS specification obtained from ab-
stract description of workflow constructs are the following:
(i) Code is an internal transition, (ii) Terminate corre-
sponds to a final state, (iii) Receive and Send are re-
ception and emission, respectively, (iv) Sequence must

MODEL-BASED DEPENDABLE COMPOSITION OF. . . Informatica 35 (2011) 51–62 57

Receive(Id,Op[,O,I1,…,In) s0 s1

Op?[I1,…,In] Op!O
s0 s1 s2

Send(Id,Op[,O1,…,On,I)
s0 s1

Op?I
s0 s1 s2

Op?[I1,…,In]

Op![O1,…,On] Op![O1,…,On]

or Terminate

s0

sn

Sequence (A1,A2)

or

or

Code

or FINAL
sn

WF workflow activities
abstraction

CA-STS protocol elements
abstraction

Internal actions such as
assignments or write to console

τ
s1

A1.A2

IfElse((C1,Send(Id1,Op1[,Oi,I1])),
…,(Cn,An),

Send(Idn+1,Opn+1[,Ok,In+1]))
s0

… s1

s1

s1

[C1]Op1![Oi]

[Cn] An

Opn+1![Ok]

s2

s2

[

[

Op1?I1

Opn+1?In+1

]

]

While(C,A) s0 …
[C] A

Listen(EventDriven(
Receive(Id1,Op1[,O1,Ii]),A1),

 …,EventDriven(
Receive(Idn,Opn[,On,Ij]),An))

s0
…

Op1?[Ii]

Opn?[Ij]

s1

s1

s2

s2

[

[

Op1!O1

Opn!On

]

]

Figure 5: Patterns of our model transformation process
from WF to CA-STS and vice versa

preserve the activities’ order, (v) IfElse corresponds to
an internal choice, (vi) While is translated as a looping
behaviour, and Listen corresponds to an external choice.
Initial and final states in the CA-STS come respectively
from the initial and final states that appear in the workflow.
There is a single initial state that corresponds to the begin-
ning of the workflow. Final states correspond either to a
Terminate or to the end of the workflow, so several final
states may appear in the CA-STS because several branches
in the workflow may lead to a final state.

Example. We apply the model transformation process to
the WF services of our case study in order to obtain the cor-
responding CA-STS specifications. Figure 6 shows the in-
terfaces of the User (passenger or driver) and the Route and
Map services modelled using our CA-STS interface model.
Each interface has a context profile, a signature and a CA-
STS protocol.

Route Service
User’s

Protocol (U)

u0

u1

Route Service
Protocol (R)

Context
Profile

loc (dyn)
user (static)
dev (static)

u2

u3

u4

lu1=reqR!
dest,lõc,usẽr

lu2=getR?route

lu3=showR!route,
dẽv

lu4=ackR?

r0

r1

r2

lr1=setR?dest,
loc,user

lr2=sendR!route

r3

r4

lr3=displayR?route,
dev

lr4=confirmR!

Map Service
Map Service
Protocol (M)

m0

m1

m2

lm1=setM?dest ,
loc,user

lm2=sendM!
route_map

m3

m4

lm3=displayM?
route_map,dev

lm4=confirmM!

Context
Profile

loc (dyn)
user (static)
traffic (dyn)
dev (static)

User

Figure 6: CA-STS of User and Route and Map services

4 Dependable composition of
self-adaptive SOA

This section presents our approach to tackle self-adaptive
systems changing dynamically over time and must con-
tinue offering services as inconsistencies, changes or faults
occur. We aim to combine self-adaptive composition and
error recovery techniques to perform adaptation and evolu-
tion strategies and to handle errors, respectively.

4.1 Self-Adaptive Composition
Composing services relates to dealing with assembly of au-
tonomous services given their interfaces. We need to ad-
dress the specification of the composition, and to ensure
the services are composed in a consistent way.

Firstly, our discovery process (SDP module in Figure 1)
finds the most appropriate services for a user’s request. To
do that, it is based on semantic matchmaking and protocol
compatibility techniques [9]. The first is used to establish
a ranked list of the services that better match the user’s re-
quest, by comparing the semantic matching of the context
profiles and all the operation profiles (names, arguments
and types) w.r.t. an ontology defined in the ITS domain.
The second checks if the services selected are compati-
ble with the user at the protocol level. There exists dif-
ferent notions of compatibility in synchronous communi-
cation, such as opposite behaviours, unspecified reception,
and deadlock-freeness [4]. We have chosen the deadlock-
freeness notion to illustrate our proposal, but other defi-
nitions could also be used. This compatibility definition
guarantees that all the interactions between two services
are performed in a satisfactory way, leading to a correct
final state.

Secondly, once our approach discovers services, changes
during the service composition may occur in many differ-
ent ways. On one hand, when adaptability is anticipated
and limited to some variation points (e.g., software product
line), the different changes to be adapted at run-time are
known at design-time. On the other hand, in the unantici-
pated adaption, the possible variations are recognised and
computed at run-time, being, for instance, new services dis-
covered and assembled dynamically using self-awareness
and environmental context information by means of plan-
ning techniques. Planning (SPP module in Figure 1) is a
key feature for self-adaptive systems. Observation plan-
ning determines when, where, what, and how [6] to perform
adaptation and/or evolution to solve faults. Adaptation
planning aims to prepare the system to be adapted by using
an adaptation contract. Software adaptation covers all the
changes related to the anticipated adaptation. In addition,
it is also characterised by highly dynamic run-time proce-
dures that occur as devices and applications move from net-
work to network, changing their contexts, and enhancing
the flexibility and maintainability of systems. Therefore,
software adaptation can also address these cases of unan-
ticipated adaptation. Software evolution refers to the con-
tinuous changes over time, tackling other cases of unan-

58 Informatica 35 (2011) 51–62 J. Cubo et al.

ticipated adaptation, such as new requirements or services
fully created at run-time.

Then, self-adaptive techniques by combining both adap-
tation and evolution paradigms (SCP module in Figure 1)
supposes a contribution of the approach presented in this
work, where the actors are the application developers and
the software designers, respectively. We have made the
distinction between software adaptation, where application
developers generate third-party adaptors (using the adap-
tation contract) in a non-intrusive way, and software evo-
lution, where software designers modify the software enti-
ties in an intrusive way and then an adaptor is generated.
To perform this, we follow a two-process methodology, by
modeling self-adaptive systems with a combination of an-
ticipated and unanticipated adaptation. First, the applica-
tion developers, who do not have knowledge of the source
code and documentation, take advantage of adaptors to au-
tomatically adapt software when it is not necessary to mod-
ify the code. When the first process is not enough to adapt
the system to the new situation because changes in the re-
quirements or an addition/removal of a service occur, then
our approach help the software designers to perform evo-
lution. Therefore, they select a minimal set of changes to
adapt software, as they are familiar with such software sys-
tem. Note that this intrusive way of adapting the system
requires that the designer has knowledge not only about
the system, but also about our approach.

From the (matching) tuples of sets of correspondences
obtained in the discovery process, we can automatically
generate an adaptation contract when any fault or change
occurs during the service interaction. Moreover, we also
want composition to distinguish between the available con-
texts when translating the messages among services. Using
a non-contextual approach, message correspondences are
fixed. This prevents inconsistencies or changes in these
connections being taken into account, and motivates the
need for the new capabilities that our approach provides
in order to achieve message translation depending on con-
texts. Therefore, we define the adaptation contract between
events in the CA-STS protocols by means of vectors ex-
pressing interactions among service messages to specify
the evolution of every service depending on its contexts.
These interactions denote a service communication and are
formalised through synchronisation vectors [2], which al-
low messages with different names and even different num-
bers of parameters to be synchronised. Each event appear-
ing in one vector is executed by one service, and the over-
all result corresponds to a synchronisation between all the
services involved. A vector may involve any number of
services.

Definition 3 (Synchronisation Vector). A synchronisation
vector (or vector for short) for a set of protocols Pi =
(Ai,Si, Ii,Fci,Ti), i ∈ {1, ..,n}, is a tuple ⟨v1, . . . ,vn⟩ with
vi ∈ Ai∪{ε}, ε meaning that a service does not participate
in a synchronisation.

However, vectors are not sufficient to support more
advanced adaptation scenarios such as contextual rules,

choice between vectors or, more generally, ordering (e.g.,
when one message in some service corresponds to several
in another service, which requires the application of sev-
eral vectors). The order in which vectors have to be ap-
plied can be specified using different notations such as reg-
ular expressions, Labelled Transition Systems (LTSs), or
(Hierarchical) Message Sequence Charts (MSCs). Due to
their readability and user friendliness, we chose to spec-
ify adaptation contracts using LTSs whose labels are tu-
ples. This tuple-LTS is made up of a set of tuples ⟨v,a⟩,
where v is a vector on transitions and a indicates if v
has been executed, interrupted or not executed (values
can be successful_execution, int_execution
or not_executed represented with S, I and N, respec-
tively). Therefore, this tuple-LTS is essential in some situa-
tions in which faults, such as deadlocks or livelocks, can be
avoided by applying some vectors in a specific order. If the
order among correspondences between services does not
matter, the tuple-LTS contains one state with all transitions
looping on it.

Next, we introduce the formal notion of adaptation con-
tract, which is used to model the composition of services
making use of vectors and tuple-LTS.
Definition 4 (Adaptation Contract). An adaptation con-
tract for a set of services Wsi, i ∈ 1, ...,n, is defined as a
couple (VWsi ,Tlts), where VWsi is a set of vectors for ser-
vices Wsi, and Tlts is a tuple-LTS that indicates the interac-
tion order of the vectors VWsi .

Finally, by using the adaptation contract and CA-STS
services, we generate a third-party CA-STS adaptor, that is
in charge of coordinating the services in the system w.r.t.
the set of interactions defined in the contract (according to
the rule COM, Figure 3). For limitations of space and since
it is not a new contribution of this article, the adaptor gen-
eration is detailed in our previous works [7, 10]. Adaptor is
platform independent, and it can be refined w.r.t. a specific
platform, such as the WF platform (using our transforma-
tion process, Figure 5).

Next, we describe our fault tolerance process, which
handles exceptions by using error recovery technique.

4.2 Error Recovery Mechanism
Monitoring (SMP module in Figure 1) is necessary to
maintain consistency, correctness, and coordination of
changes, as well as to handle errors. We focus on atomic
actions, that allow programmers to apply both backward
and forward error recovery. These techniques use appro-
priate exception handling mechanisms, which enable deal-
ing with dependability of composed services. Exception
handling is the method of building a system to detect and
recover from exceptional conditions (unexpected occur-
rences). Protecting a system from the effects of excep-
tional conditions is a difficult task, since all unexpected
occurrences can not be anticipated easily while designing
the system. It is necessary to build exception handlers in
order to detect and handle these exception conditions by
avoiding application failures. We perform fault tolerance

MODEL-BASED DEPENDABLE COMPOSITION OF. . . Informatica 35 (2011) 51–62 59

mechanisms to handle exceptions raised by adaptive de-
mand, returning back the system to any earlier stable state.
To do that, we define an error recovery algorithm based
on backward and forward error recovery, handling possible
failures.

First, we need to define a data structure, called vector
dependency, to track dependencies among the synchroni-
sation vectors of an adaptation contract. We base this on
the tuple-LTS previously generated to obtain the vector de-
pendencies, since the tuple-LTS indicates the order of in-
teractions of the vectors.
Definition 5 (Vector dependency). A vector dependency
between two vectors v1 and v2 is a link relationship such
as v1

P−→ v2, where P can define both either functional or
non-functional properties (such as temporal requirements
or resources), and it must always be true to move from v1
to v2.

Then, we define an interaction set, which is generated
as a set of vector dependencies. This set is used to handle
failures, by identifying all the vectors affected by these fail-
ures. Thus, an interaction set contains all the vectors in the
adaptation contract of the communication between services
involved in the interaction.

Our algorithm is executed when any failure related to
networks or services occurs, by performing the following
steps: (1) identify the last vector to be executed in the inter-
action set where the fail occurred, (2) change the status of
all vectors of that interaction set whose events are directly
involved in the error to int_execution, (3) change the
status of all vectors related to other interaction sets which
depended on the vectors involved in the failed interaction
set to int_execution, (4) wait for a timeout if the ser-
vice that provoked the error can be re-established, or swap
the failed service with another service capable of perform-
ing similar roles, (5) if there are not services to swap, then
an exception will be triggered to all the vectors involved
in the error and the execution will stop, otherwise (6) re-
execute all vectors in the interaction set that are labeled as
int_execution and therefore change the value of those
vectors to successful_execution.

Next, we illustrate both self-adaptive and error recovery
processes by using the different scenarios described in our
case study.

Example. Considering the full approach presented above,
we address the scenarios of our case study ITS.

Firstly, common to all the scenarios, to illustrate the dis-
covery process, we focus on the user’s request (passenger
or driver). Our process selects Route and Map services in
that order according to the semantic matchmaking, and two
(matching) tuples of sets of correspondences between oper-
ation profiles are returned and presented below (labels lu1 ,
lr1 , etc., are represented in Figure 6).
MTU,R = {(lu1 , lr1),(lu2 , lr2),(lu3 , lr3),(lu4 , lr4)}
MTU,M = {(lu1 , lm1),(lu2 , lm2),(lu3 , lm3),(lu4 , lm4)}

Once our process has discovered the services, we need
to handle the inconsistencies, changes or faults which have

arisen while composing services in our four scenarios.
Passenger scenario. In this scenario, our self-adaptive
process applies software adaptation due to the mismatch
problems in the behavioural interfaces. An adaptor is gen-
erated by means of the adaptation contract between the
User (passenger) and the Route service. The contract is
made up of the set of vectors presented below and the tuple-
LTS depicted in Figure 7. The ITS knows at design-time
the different contexts considered at run-time in this sce-
nario, so it is enough with anticipated adaptation for the
response given by the Route service.
{v1 = ⟨lu1 , lr1⟩,v2 = ⟨lu2 , lr2⟩,

v3 = ⟨lu3 , lr3⟩,v4 = ⟨lu4 , lr4⟩}

<v1,N> <v2,N> <v3,N> <v4,N>
Figure 7: Tuple-LTS indicating the interaction order be-
tween the User and the Route service

It is worth mentioning that in every tuple ⟨vi,a⟩, a is al-
ways initialised to N (not_executed), and during the
composition process this value will change to either S
(successful_execution) when the vector vi is ex-
ecuted or to I when it is interrupted (int_execution).
Driver scenario. Here we have three different cases.

- A) and - B) Both cases needs unanticipated adaptation
based on software evolution. Neither the new requirement
(the context information related to weather) requested by
drivers to obtain the rerouting, nor the new service (Parking
service) provided at run-time by the driver location, were
considered by the ITS at design-time. Therefore, the soft-
ware designer has to modify the code of the Route service
to include the weather in the context profile, and to incor-
porate the new Car Parking service into the ITS. Our ap-
proach will reconfigure dynamically the new full system
to allow to the Users (drivers) to carry on communicating
correctly with the Route service, and to discover the new
service when they require it. The new CA-STS interfaces
corresponding to the User and the Route, Map and Parking
services are shown in Figure 8.

Note that the modifications are represented by dashed
lines and bold text (e.g., weather). In addition, conditions
have been added (e.g., [user == “passenger”] in lu3) to de-
termine that only user profile driver will request the parking
service. The designer needs to know about the system and
our approach to perform these kinds of modifications.

We continue focusing on the interaction between the
User and Route service, but now also including the Parking
service. Then, software adaptation is applied in the new
service interfaces, by generating a new adaptation contract
to avoid the new mismatches. Below we present the set of
vectors (labels lu1 , lr1 , etc., are represented in Figure 8),
and the tuple-LTS (Figure 9).
{v1 = ⟨lu1 , lr1⟩,v2 = ⟨lu2 , lr2⟩,v3 = ⟨lu3 , lr3⟩,

v4 = ⟨lu4 , lr4⟩,v5 = ⟨lu5 , lp1⟩,v6 = ⟨lu6 , lp2⟩,
v7 = ⟨lu7 , lp3⟩,v8 = ⟨lu8 , lp4⟩,v9 = ⟨lu9 , lr3⟩,
v10 = ⟨lu10 , lp5⟩}

60 Informatica 35 (2011) 51–62 J. Cubo et al.

Route Service
User’s

Protocol (U)

u0

u1

Route Service
Protocol (R)

Context
Profile

loc (dyn)
user (static)
dev (static)
weather (dyn)

lu1=reqR!
dest ,lõc,usẽr,

weãther

lu2=getR?
route

r0

r1

r2

lr1=setR?dest,
loc ,user,weather

lr2=sendR!route

r3

r4

lr3=displayR?route,
 dev

lr4=confirmR!

Map Service
Map Service
Protocol (M)

m0

m1

m2

lm1=setM?dest,
 loc,user,
 weather

lm2=sendM!
 route_map

m3

m4

lm3=displayM?
route_map,dev

lm4=confirmM!

Context
Profile

loc (dyn)
user (static)
traffic (dyn)
dev (static)
weather (dyn)

User

u2

u3

u5

u6

u4

u7

u8

lu3=[user==
”passenger”]

showR!route ,dẽv lu6=getP?
park ,dist

lu4=
ackR?

lu9=
[user==”driver”]

showR!
route ,dẽv

lu7=[dist≤”1km”]
bookP!park

lu8=
ackP?

lu5=
[user==”driver”]

searchP!
route,dest

Parking
Service

Parking Service Protocol (P)
p0

p1

lp1=findP?
 route,dest

p2

p3

lp2=sendP!park ,dist

lp3=reserveP?
park

p4

lp4=
confirmP!

lp5=abortP?

Context
Profile

lu10=[dist>”1km”]
cancelP!

Figure 8: CA-STS of User and Route, Map and Parking
services after applying our process in A) and B)

<v1,N> <v2,N> <v5,N> <v6,N><v7,N> <v8,N>
<v9,N>

<v3,N> <v4,N><v10,N>
Figure 9: Tuple-LTS indicating the interaction order be-
tween the User and the Route and Parking services

Finally, we can generate an adaptor for the interaction
between the User and Route and Parking services.

- C) This case considers the modifications performed in
the previous cases. Our error recovery algorithm is applied
here, since a suspension of the Route service during the
service interaction occurred.

Before performing our algorithm, we generate the vec-
tor dependencies and the interaction sets corresponding to
the communication between the User and the Route and
Parking services, by means of the tuple-LTS presented in
Figure 9.

{v1
Pv1,v2−−−−→ v2, v2

Pv2 ,v3−−−−→ v3, v2
Pv2 ,v5−−−−→ v5,

v3
Pv3,v4−−−−→ v4, v5

Pv5 ,v6−−−−→ v6, v6
Pv6 ,v7−−−−→ v7,

v6
Pv6,v10−−−−→ v10, v7

Pv7 ,v8−−−−→ v8, v8
Pv8,v9−−−−→ v9,

v9
Pv9,v4−−−−→ v4, v10

Pv10 ,v4−−−−→ v4}

We assume properties Pvi,v j are defined correctly accord-
ing to the requirements of the user’s request. The in-
teraction sets are as follows: Iu,r = {v1,v2,v3,v4,v9} and
Iu,p = {v5,v6,v7,v8,v10}, corresponding to the communi-
cation of the User with the Route service and the User with
the Parking service, respectively.

Now, to illustrate the algorithm, we assume that during
the interaction between the User and the Route and Park-
ing services, a failure occurs in vector v4 (of the previous
contract) corresponding to the confirmation of the Route
service, i.e., the correspondence between lu4 = ackR? and
lr4 = con f irmR?). Therefore, our process changes to
int_execution all the vectors involved in that error,

and automatically selects another service previously con-
sidered and discovered, i.e., the Map service, which re-
places the Route service at run-time. This is possible be-
cause the designer developed the ITS to support a possible
connection loss of the Route service, so a reconfiguration
of the system is unnecessary, which reduces effort and cost.

A new adaptation contract (vectors and tuple-LTS), with
its corresponding adaptor, is generated to solve the new
mismatch problems in the interaction of the User and the
Map and Parking services.
{v1 = ⟨lu1 , lm1⟩,v2 = ⟨lu2 , lm2⟩,v3 = ⟨lu3 , lm3⟩,

v4 = ⟨lu4 , lm4⟩,v5 = ⟨lu5 , lp1⟩,v6 = ⟨lu6 , lp2⟩,
v7 = ⟨lu7 , lp3⟩,v8 = ⟨lu8 , lp4⟩,v9 = ⟨lu9 , lm3⟩,
v10 = ⟨lu10 , lp5⟩}
The corresponding tuple-LTS is equivalent to that pre-

sented in Figure 9, but replacing the synchronisation vec-
tors v1,v2,v3,v4,v9 of the previous contract (with Route
service) with the vectors v1,v2,v3,v4,v9 related to the new
contract (with Map service).

5 Related work
This section compares our approach with related works
in software composition, especially those which focus on
model-based transformation, software adaptation and/or
evolution, and error recovery.

With respect to the relationship between existing pro-
gramming languages and platforms, the work presented
in [5] outlines a methodology for the automated genera-
tion of adaptors capable of solving behavioural mismatches
between BPEL processes (some interaction scenarios can-
not be resolved). In [3], the authors present techniques to
provide semi-automated support for identification and res-
olution of mismatches between service interfaces and pro-
tocols, and generate adaptation behavioural specifications
based on SCA architecture. Compared to these works, we
generate WF adaptor services that consider not only signa-
ture and protocol mismatches, but also context-aware and
semantic issues. In addition, our approach is able to re-
order messages among services when required, since our
discovery process allows this facility automatically. This
is necessary to ensure correct interaction in the case where
communicating entities have messages which are not or-
dered as required.

Some research works have tackled software adapta-
tion and evolution in an architecture-driven style [22],
or repair programs by means of recommending adaptive
changes [11]. Another important dimension is using formal
methods to describe software systems more formally and to
understand the cause of changes (domain structure) [8, 21].
In [19], several approaches for supporting static or dynamic
adaptability and evolvability by means of a wide diversity
of research domains (requirements, architecture, data, run-
time and language evolution, SOAs), are presented. In our
approach, we take advantage of both adaptation and/or evo-
lution, in a model-based approach, depending on the needs
of anticipated and unanticipated adaptation, and the four

MODEL-BASED DEPENDABLE COMPOSITION OF. . . Informatica 35 (2011) 51–62 61

categorising features, when, where, what, and how.
As regards fault tolerance mechanisms, one of the most

beneficial ways of applying fault tolerance is by associating
its measures with system structuring units [24]. Structuring
units, which decrease system complexity and make it easier
for developers to apply fault tolerance, can be: distributed
transactions and atomic actions. Distributed transactions
use backward error recovery [18] as the main fault toler-
ance measure in order to satisfy the ACID (atomicity, con-
sistency, isolation, durability) properties. Transactions sup-
pose a powerful abstraction to address failures occurring in
closed systems. However, they impose highly severe con-
straints over systems in open environments such as SOA
(e.g., real-time systems do not have time to go back). In
our approach, we use atomic actions, that allow program-
mers to apply both backward and forward error recovery to
satisfy certain properties for composing service as a failure
occur. Forward error recovery uses appropriate exception
handling without impacting on the autonomy of services
whilst exploiting their possible support for dependability.
In addition, to handle exceptions optimally, our error re-
covery mechanism specifies that services return exceptions
quickly, since notification delay can affect the SOA perfor-
mance, especially in complex workflow systems.

Summarising, our approach combines efforts to detect
and handle the different changes or faults arising in self-
adaptive systems, by modelling SOA, performing adapta-
tion and/or evolution when required, and monitoring fail-
ures with error recovery techniques.

6 Discussion and conclusions
Self-adaptive software requires high dependability, robust-
ness, adaptability, and availability. Our approach maintains
system consistency and integrity by examining each change
and removing those that render the system inconsistent or
unsafe. We focus on the development and maintenance
of reliable software systems through self-adaptive and er-
ror recovery techniques. In addition, we give model-based
SOA a push showing its usefulness to manage self-adaptive
systems.

On one hand, in many occasions, the necessary effort to
develop and maintain the reliable software intensive sys-
tems can be solved by using third-party services. In fact,
if we weigh up the cost-effectiveness in terms of the ef-
fort required to adapt the system to changes occurred, the
best solution is not modifying the code when it is not re-
quired, because an intrusive way always requires a recon-
figuration of the system that is less efficient, w.r.t. time
required, than fixing mismatch problems between services
by using an adaptor. Regarding this consideration, our pro-
posal always performs with the least effort possible to adapt
the system. This is illustrated in our case study, where our
approach generated an adaptor in all the situations to fix
mismatches and manage context changes. Only in a 50%
of cases (driver scenarios A) and B)), our approach needed
to modify the system and apply reconfiguration. In a 25%

of cases (driver scenario C)), it was necessary to apply error
recovery mechanisms.

On the other hand, the development and maintenance of
self-adaptive systems using a model-based SOA approach
turns out cost-effective. First, because our self-adaptive
system provides dependable services to the user, reduces
the strong dependence on human resources, and reacts to
different events more quickly, being capable of changing
its behavior at run-time depending on the context informa-
tion. Second, due to the model-based SOA facilities, such
as integration, interoperability, flexibility, and incorporat-
ing of new requirements. Therefore, our model transforma-
tion process provides a level of abstraction to tackle discov-
ery, planning, monitoring, adaptation and evolution issues
easily and independently of the development platform. Our
case study consisted of two kinds of users (with two pro-
files) and four services in total, so it was not difficult to
manage. But, when an organization has a large number of
services connected, the management of the service network
can become extremely difficult, since all the services are
directly connected, which can be unmanageable. In those
cases, a model-based SOA may be even more beneficial. A
first evaluation to check the scalability of our approach was
obtained validating it in several examples with up to 10 ser-
vices (a booking on-line system, a travel agency, an on-line
computer material store, or the case study presented in this
work) applied to the dependable composition of services
implemented using indistinctly BPEL and WF. In a not far
future, we hope that a wide number of companies adopt
model-based SOA to definitively bridge the gap between
business and information technology, by making the devel-
opment and maintenance of large software projects more
agile.

As regards future work, we plan to develop a full-scale
system to check our approach that we successfully applied
to a small-scale system. We also want to extend our pro-
posal to deal with security properties in the vector depen-
dencies, by improving the exception management in our
fault tolerance mechanism, and tackling in further depth
the quality of service. In addition, our approach has some
limitations, such as the need of studying how to manage the
complexity of the hand-code in case designers must modify
the system.

Acknowledgement
This work is partially supported by the project TIN2008-05932 funded by
the Spanish Ministry of Science and Innovation (MICINN) and FEDER.
The authors are grateful to the anonymous referees who helped to improve
the contents and quality of this article.

References
[1] T. Andrews et al.. Business Process Execution Language for Web

Services (WSBPEL). 2005.

[2] A. Arnold. Finite Transition Systems. International Series in Com-
puter Science. Prentice-Hall, 1994.

[3] H. R. M. Nezhad et al. Semi-Automated Adaptation of Service In-
teractions. In Proc. of WWW’07, ACM, 2007.

62 Informatica 35 (2011) 51–62 J. Cubo et al.

[4] L. Bordeaux, G. Salaün, D. Berardi, and M. Mecella. When are Two
Web Services Compatible? In Proc. of TES’04, vol. 3324 of LNCS,
2004.

[5] A. Brogi and R. Popescu. Automated Generation of BPEL Adapters.
In Proc. of ICSOC’06, volume 4294 of LNCS, 2006.

[6] J. Buckley et al. Towards a Taxonomy of Software Change. Software
Maintenance and Evolution: Research and Practice, 17, 2005.

[7] J. Cámara, J.A. Martín, G. Salaün, J. Cubo, M. Ouederni, C. Canal,
and E. Pimentel. ITACA: An Integrated Toolbox for the Automatic
Composition and Adaptation of Web Services. In Proc. of ICSE’09,
IEEE CS, 2009.

[8] C. Canal, P. Poizat, and G. Salaün. Model-Based Adaptation of Be-
havioural Mismatching Components. IEEE Transactions on Soft-
ware Engineering, 34, 2008.

[9] J. Cubo, C. Canal, and E. Pimentel. Context-Aware Service Discov-
ery and Adaptation Based on Semantic Matchmaking. In Proc. of
ICIW’10. IEEE CS, 2010.

[10] J. Cubo et al. A Model-Based Approach to the Verification and
Adaptation of WF/.NET Components. In Proc. of FACS’07, vol.
215 of ENTCS, 2007.

[11] B. Dagenais and M.P. Robillard. Recommending Adaptive Changes
for Framework Evolution. In Proc. of ICSE’08, ACM, 2008.

[12] A. Dey and G. Abowd. Towards a Better Understanding of Context
and Context-Awareness. In Proc. of Workshop on the What, Who,
Where, When and How of Context-Awareness, 2000.

[13] T. Erl. Service-Oriented Architecture (SOA): Concepts, Technology,
and Design. Prentice Hall, 2005.

[14] H. Foster, S. Uchitel, and J. Kramer. LTSA-WS: A Tool for Model-
based Verification of Web Service Compositions and Choreography.
In Proc. of ICSE’06, ACM, 2006.

[15] X. Fu, T. Bultan, and J. Su. Analysis of Interacting BPEL Web
Services. In Proc. of WWW’04, ACM, 2004.

[16] M. Hennessy and H. Lin. Symbolic Bisimulations. Theor. Comput.
Sci., 138, 1995.

[17] S. Kouadri and B. Hirsbrunner. Towards a Context-Based Service
Composition Framework. In Proc. of ICWS’03, 2003.

[18] S. KumarGupta et al. Backward Error Recovery Protocols in Dis-
tributed Mobile Systems: A Survey. Journal of Theor. and Applied
Inform. Technology, 4, 2008.

[19] T. Mens and S. Demeyer. Software Evolution. Springer-Verlag.
2008.

[20] R. Milner, J. Parrow, and D. Walker. Modal Logics for Mobile Pro-
cesses. Theor. Comput. Sci., 114, 1993.

[21] O. Nierstrasz et al. Model-Centric, Context-Aware Software Adap-
tation. In SEAMS, vol. 5525 of LNCS, 2009.

[22] P. Oreizy et al. An Architecture-Based Approach to Self-Adaptive
Software. IEEE Intelligent Systems, 14, 1999.

[23] A. Gorbenko et al. Experimenting with Exception Propagation
Mechanisms in Service-Oriented Architecture. In Proc. of WEH’08,
ACM, 2008.

[24] F. Tartanoglu et al.Dependability in the Web Services Architecture.
In ADS, vol. 2677 of LNCS, 2003.

[25] C. Szyperski. Component Software: Beyond Object-Oriented Pro-
gramming. Adisson-Wesley, 2nd edition, 2003.

[26] M. Zapletal. Deriving Business Service Interfaces in Windows
Workflow from UMM Transactions. In Proc. of ICSOC’08, vol.
5364 of LNCS, 2008.

Informatica 35 (2011) 63–81 63

An Overview of Independent Component Analysis and Its Applications

Ganesh R. Naik and Dinesh K Kumar
School of Electrical and Computer Engineering
RMIT University, Australia
E-mail: ganesh.naik@rmit.edu.au

Overview paper

Keywords: independent component analysis, blind source separation, non-gaussianity, multi run ICA, overcomplete ICA,
undercomplete ICA

Received: July 3, 2009

Independent Component Analysis (ICA), a computationally efficient blind source separation technique,
has been an area of interest for researchers for many practical applications in various fields of science and
engineering. This paper attempts to cover the fundamental concepts involved in ICA techniques and review
its applications. A thorough discussion of the applications and ambiguities problems of ICA has been
carried out.Different ICA methods and their applications in various disciplines of science and engineering
have been reviewed. In this paper, we present ICA methods from the basics to their potential applications
to serve as a comprehensive single source for an inquisitive researcher to carry out research in this field.

Povzetek: Podan je pregled tehnike ICA (Independent Component Analysis).

1 Introduction

The problem of source separation is an inductive inference
problem. There is not enough information to deduce the
solution, so one must use any available information to in-
fer the most probable solution. The aim is to process these
observations in such a way that the original source signals
are extracted by the adaptive system. The problem of sep-
arating and estimating the original source waveforms from
the sensor array, without knowing the transmission chan-
nel characteristics and the source can be briefly expressed
as problems related to BSS. In BSS the word blind refers
to the fact that we do not know how the signals were mixed
or how they were generated. As such, the separation is
in principle impossible. Allowing some relatively indirect
and general constrains, we however still hold the term BSS
valid, and separate under these conditions.

There appears to be something magical about blind
source separation; we are estimating the original source
signals without knowing the parameters of mixing and/or
filtering processes. It is difficult to imagine that one can
estimate this at all. In fact, without some a priori knowl-
edge, it is not possible to uniquely estimate the original
source signals. However, one can usually estimate them
up to certain indeterminacies. In mathematical terms, these
indeterminacies and ambiguities can be expressed as arbi-
trary scaling, permutation and delay of estimated source
signals [1]. These indeterminacies preserve, however, the
waveforms of the original sources. Although these inde-
terminacies seem to be rather severe limitations, in a great
number of applications these limitations are not essential,
since the most relevant information about the source signals

is contained in the temporal waveforms or time-frequency
patterns of the source signals and usually not in their ampli-
tudes or the order in which they are arranged in the output
of the system. However, for some applications especially
biomedical signal models such as sEMG signals, there is
no guarantee that the estimated or extracted signals have
exactly the same waveforms as the source signals.

Independent component analysis (ICA) is one of the
most widely used BSS techniques for revealing hidden fac-
tors that underlie sets of random variables, measurements,
or signals. ICA is essentially a method for extracting in-
dividual signals from mixtures. Its power resides in the
physical assumptions that the different physical processes
generate unrelated signals. The simple and generic nature
of this assumption allows ICA to be successfully applied in
diverse range of research fields.

In this paper, we first set the scene of the blind source
separation problem. Then, Independent Component Anal-
ysis is introduced as a widely used technique for solving
the blind source separation problem. A general description
of the approach to achieving separation via ICA and the
underlying assumptions of the ICA framework and impor-
tant ambiguities that are inherent to ICA are discussed in
section 3. A description of specific details of different ICA
methods are given in Sections 4, and the paper concludes
with applications of BSS and ICA methods.

2 Blind source separation (BSS)

Consider a situation in which we have a number of sources
emitting signals which are interfering with one another. Fa-

64 Informatica 35 (2011) 63–81 G.R. Naik et al.

miliar situations in which this occurs are a crowded room
with many people speaking at the same time, interfering
electromagnetic waves from mobile phones or crosstalk
from brain waves originating from different areas of the
brain. In each of these situations the mixed signals are of-
ten incomprehensible and it is of interest to separate the
individual signals. This is the goal of Blind Source Separa-
tion. A classic problem in BSS is the cocktail party prob-
lem. The objective is to sample a mixture of spoken voices,
with a given number of microphones - the observations, and
then separate each voice into a separate speaker channel -
the sources. The BSS is unsupervised and thought of as a
black box method. In this we encounter many problems,
e.g. time delay between microphones, echo, amplitude dif-
ference, voice order in speaker and underdetermined mix-
ture signal.

Herault and Jutten [2] proposed that, in a artificial neu-
ral network like architecture the separation could be done
by reducing redundancy between signals. This approach
initially lead to what is known as independent component
analysis today. The fundamental research involved only a
handful of researchers up until 1995. It was not until then,
when Bell and Sejnowski [3] published a relatively sim-
ple approach to the problem named infomax, that many be-
came aware of the potential of ICA. Since then a whole
community has evolved around ICA, centralized around
some large research groups and its own ongoing confer-
ence, International Conference on independent component
analysis and blind signal separation. ICA is used today in
many different applications, e.g. medical signal analysis,
sound separation, image processing, dimension reduction,
coding and text analysis [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14].

In ICA the general idea is to separate the signals, as-
suming that the original underlying source signals are mu-
tually independently distributed. Due to the field’s rela-
tively young age, the distinction between BSS and ICA
is not fully clear. When regarding ICA, the basic frame-
work for most researchers has been to assume that the mix-
ing is instantaneous and linear, as in infomax. ICA is of-
ten described as an extension to PCA, that uncorrelates
the signals for higher order moments and produces a non-
orthogonal basis. More complex models assume for ex-
ample, noisy mixtures, [15, 16], nontrivial source distribu-
tions, [17, 18], convolutive mixtures [19, 20, 21], time de-
pendency, underdetermined sources [22, 23], mixture and
classification of independent component [4, 24]. A general
introduction and overview can be found in [25].

3 Independent component analysis

Independent Component Analysis (ICA) is a statistical
technique, perhaps the most widely used, for solving the
blind source separation problem [25, 26]. In this sec-
tion, we present the basic Independent Component Analy-
sis model and show under which conditions its parameters
can be estimated.

3.1 ICA model

The general model for ICA is that the sources are gener-
ated through a linear basis transformation, where additive
noise can be present. Suppose we have N statistically in-
dependent signals, si(t), i = 1, ...,N. We assume that the
sources themselves cannot be directly observed and that
each signal, si(t), is a realization of some fixed probability
distribution at each time point t. Also, suppose we observe
these signals using N sensors, then we obtain a set of N ob-
servation signals xi(t), i = 1, ...,N that are mixtures of the
sources. A fundamental aspect of the mixing process is that
the sensors must be spatially separated (e.g. microphones
that are spatially distributed around a room) so that each
sensor records a different mixture of the sources. With this
spatial separation assumption in mind, we can model the
mixing process with matrix multiplication as follows:

x(t) = As(t) (1)

where A is an unknown matrix called the mixing matrix
and x(t), s(t) are the two vectors representing the observed
signals and source signals respectively. Incidentally, the
justification for the description of this signal processing
technique as blind is that we have no information on the
mixing matrix, or even on the sources themselves.

The objective is to recover the original signals, si(t),
from only the observed vector xi(t). We obtain estimates
for the sources by first obtaining the “unmixing matrix” W,
where, W = A−1.

This enables an estimate, ŝ(t), of the independent
sources to be obtained:

ŝ(t) =Wx(t) (2)

The diagram in Figure 1 illustrates both the mixing
and unmixing process involved in BSS. The independent
sources are mixed by the matrix A (which is unknown in
this case). We seek to obtain a vector y that approximates
s by estimating the unmixing matrix W. If the estimate of
the unmixing matrix is accurate, we obtain a good approx-
imation of the sources.

The above described ICA model is the simple model
since it ignores all noise components and any time delay
in the recordings.

3.2 Independence

A key concept that constitutes the foundation of indepen-
dent component analysis is statistical independence. To
simplify the above discussion consider the case of two dif-
ferent random variables s1 and s2. The random variable s1
is independent of s2, if the information about the value of
s1 does not provide any information about the value of s2,
and vice versa. Here s1 and s2 could be random signals
originating from two different physical process that are not
related to each other.

AN OVERVIEW OF INDEPENDENT COMPONENT ANALYSIS AND. . . Informatica 35 (2011) 63–81 65

Figure 1: Blind source separation (BSS) block diagram. s(t) are the sources. x(t) are the recordings, ŝ(t) are the estimated
sources A is mixing matrix and W is un-mixing matrix

3.2.1 Independence definition

Mathematically, statistical independence is defined in
terms of probability density of the signals. Consider the
joint probability density function (pdf) of s1 and s2 be
p(s1,s2). Let the marginal pdf of s1 and s2 be denoted by
p1(s1) and p2(s2) respectively. s1 and s2 are said to be in-
dependent if and only if the joint pdf can be expressed as;

ps1,s2(s1,s2) = p1(s1)p2(s2) (3)

Similarly, independence could be defined by replacing
the pdf by the respective cumulative distributive functions
as;

E{p(s1)p(s2)}= E{g1(s1)}E{g2(s2)} (4)

where E{.} is the expectation operator. In the following
section we use the above properties to explain the relation-
ship between uncorrelated and independence.

3.2.2 Uncorrelatedness and Independence

Two random variables s1 and s2 are said to be uncorrelated
if their covariance C(s1,s1) is zero.

C(s1,s2) = E{(s1 −ms1)(s2 −ms2)}
= E{s1s2 − s1ms2 − s2ms1 +ms1ms2}
= E{s1s2}−E{s1}E{s2}
= 0

(5)

where ms1 is the mean of the signal. Equation 4 and 5
are identical for independent variables taking g1(s1) = s1.
Hence independent variables are always uncorrelated. How
ever the opposite is not always true. The above discussion
proves that independence is stronger than uncorrelatedness
and hence independence is used as the basic principle for
ICA source estimation process. However uncorrelatedness
is also important for computing the mixing matrix in ICA.

3.2.3 Non-Gaussianity and Independence

According to central limit theorem the distribution of a sum
of independent signals with arbitrary distributions tends to-
ward a Gaussian distribution under certain conditions. The
sum of two independent signals usually has a distribution
that is closer to Gaussian than distribution of the two orig-
inal signals. Thus a gaussian signal can be considered as a
liner combination of many independent signals. This fur-
thermore elucidate that separation of independent signals
from their mixtures can be accomplished by making the
linear signal transformation as non-Gaussian as possible.

Non-Gaussianity is an important and essential principle
in ICA estimation. To use non-Gaussianity in ICA es-
timation, there needs to be quantitative measure of non-
Gaussianity of a signal. Before using any measures of non-
Gaussianity, the signals should be normalised. Some of the
commonly used measures are kurtosis and entropy mea-
sures, which are explained next.

– Kurtosis

Kurtosis is the classical method of measuring Non-
Gaussianity. When data is preprocessed to have unit vari-
ance, kurtosis is equal to the fourth moment of the data.

The Kurtosis of signal (s), denoted by kurt (s), is defined
by

kurt(s) = E{s4}−3(E{s4})2 (6)

This is a basic definition of kurtosis using higher or-
der (fourth order) cumulant, this simplification is based on
the assumption that the signal has zero mean. To simplify
things, we can further assume that (s) has been normalised
so that its variance is equal to one: E{s2}= 1.

Hence equation 6 can be further simplified to

kurt(s) = E{s4}−3 (7)

Equation 7 illustrates that kurtosis is a nomralised form
of the fourth moment E{s4} = 1. For Gaussian signal,

66 Informatica 35 (2011) 63–81 G.R. Naik et al.

E{s4} = 3(E{s4})2 and hence its kurtosis is zero. For
most non-Gaussian signals, the kurtosis is nonzero. Kur-
tosis can be both positive or negative. Random variables
that have positive kurtosis are called as super Gaussian or
platykurtotic, and those with negative kurtosis are called
as sub Gaussian or leptokurtotic. Non-Gaussianity is mea-
sured using the absolute value of kurtosis or the square of
kurtosis.

Kurtosis has been widely used as measure of Non-
Gaussianity in ICA and related fields because of its com-
putational and theoretical and simplicity. Theoretically, it
has a linearity property such that

kurt(s1 ± s2) = kurt(s1)± kurt(s2) (8)

and

kurt(αs1) = α4kurt(s1) (9)

where α is a constant. Computationally kurtosis can be
calculated using the fourth moment of the sample data, by
keeping the variance of the signal constant.

In an intuitive sense, kurtosis measured how "spikiness"
of a distribution or the size of the tails. Kurtosis is ex-
tremely simple to calculate, however, it is very sensitive to
outliers in the data set. It values may be based on only a
few values in the tails which means that its statistical sig-
nificance is poor. Kurtosis is not robust enough for ICA.
Hence a better measure of non-Gaussianity than kurtosis is
required.

– Entropy

Entropy is a measure of the uniformity of the distribution
of a bounded set of values, such that a complete unifor-
mity corresponds to maximum entropy. From the informa-
tion theory concept, entropy is considered as the measure
of randomness of a signal. Entropy H of discrete-valued
signal S is defined as

H(S) =−∑P(S = ai)logP(S = ai) (10)

This definition of entropy can be generalised for a
continuous-valued signal (s), called differential entropy,
and is defined as

H(S) =−
∫

p(s)logp(s)ds (11)

One fundamental result of information theory is that
Gaussian signal has the largest entropy among the other
signal distributions of unit variance. entropy will be small
for signals that have distribution concerned on certain val-
ues or have pdf that is very "spiky". Hence, entropy can be
used as a measure of non-Gaussianity.

In ICA estimation, it is often desired to have a measure
of non-Gaussianity which is zero for Gaussian signal and
nonzero for non-Gaussian signal for computational sim-
plicity. Entropy is closely related to the code length of the
random vector. A normalised version of entropy is given
by a new measure called Negentropy J which is defined as

J(S) = H(sgauss)−H(s) (12)

where sgauss is the Gaussian signal of the same covari-
ance matrix as (s). Equation 12 shows that Negentropy is
always positive and is zero only if the signal is a pure gaus-
sian signal. It is stable but difficult to calculate. Hence
approximation must be used to estimate entropy values.

3.3 Mathematical Independence
Mathematical properties of matrices were investigated to
check the linear dependency and independency of global
matrices (Permutation matrix P)

3.3.1 Rank of the matrix

Rank of the matrix will be less than the matrix size for lin-
ear dependency and rank will be size of matrix for linear
independency, but this couldn’t be assured yet due to noise
in the signal. Hence determinant is the key factor for esti-
mating number of sources.

3.3.2 Determinant of the matrix

In real time applications Determinant value should be zero
for linear independency and should be more than zero
(close to 1) for linear independency [27].

3.4 ICA Assumptions and Ambiguities
ICA is distinguished from other approaches to source sep-
aration in that it requires relatively few assumptions on the
sources and on the mixing process. The assumptions and
of the signal properties and other conditions and the issues
related to ambiguities are discussed below:

3.4.1 ICA Assumptions

– The sources being considered are statistically inde-
pendent

The first assumption is fundamental to ICA. As dis-
cussed in Section 3.2, statistical independence is the key
feature that enables estimation of the independent compo-
nents ŝ(t) from the observations xi(t).

– The independent components have non-Gaussian dis-
tribution

The second assumption is necessary because of the close
link between Gaussianity and independence. It is impossi-
ble to separate Gaussian sources using the ICA framework
described in Section 3.2 because the sum of two or more
Gaussian random variables is itself Gaussian. That is, the
sum of Gaussian sources is indistinguishable from a single
Gaussian source in the ICA framework, and for this reason
Gaussian sources are forbidden. This is not an overly re-
strictive assumption as in practice most sources of interest
are non-Gaussian.

AN OVERVIEW OF INDEPENDENT COMPONENT ANALYSIS AND. . . Informatica 35 (2011) 63–81 67

– The mixing matrix is invertible

The third assumption is straightforward. If the mixing ma-
trix is not invertible then clearly the unmixing matrix we
seek to estimate does not even exist.

If these three assumptions are satisfied, then it is possi-
ble to estimate the independent components modulo some
trivial ambiguities (discussed in Section 3.4). It is clear
that these assumptions are not particularly restrictive and
as a result we need only very little information about the
mixing process and about the sources themselves.

3.4.2 ICA Ambiguity

There are two inherent ambiguities in the ICA framework.
These are (i) magnitude and scaling ambiguity and (ii) per-
mutation ambiguity.

– Magnitude and scaling ambiguity

The true variance of the independent components cannot
be determined. To explain, we can rewrite the mixing in
equation 1 in the form

x = As

=
N

∑
j=1

a js j
(13)

where a j denotes the jth column of the mixing matrix A.
Since both the coefficients a j of the mixing matrix and the
independent components s j are unknown, we can transform
Equation 13.

x =
N

∑
j=1

(1/α ja j)(α js j) (14)

Fortunately, in most of the applications this ambiguity
is insignificant. The natural solution for this is to use as-
sumption that each source has unit variance: E{s j2} = 1.
Furthermore, the signs of the of the sources cannot be de-
termined too. This is generally not a serious problem be-
cause the sources can be multiplied by -1 without affecting
the model and the estimation

– Permutation ambiguity

The order of the estimated independent components is
unspecified. Formally, introducing a permutation matrix P
and its inverse into the mixing process in Equation 1.

x = AP−1Ps

= A
′
s
′ (15)

Here the elements of P s are the original sources, ex-
cept in a different order, and A′ = AP−1 is another un-
known mixing matrix. Equation 15 is indistinguishable
from Equation 1 within the ICA framework, demonstrating

that the permutation ambiguity is inherent to Blind Source
Separation. This ambiguity is to be expected Ű in separat-
ing the sources we do not seek to impose any restrictions
on the order of the separated signals. Thus all permutations
of the sources are equally valid.

3.5 Preprocessing
Before examining specific ICA algorithms, it is instructive
to discuss preprocessing steps that are generally carried out
before ICA.

3.5.1 Centering

A simple preprocessing step that is commonly performed
is to “center” the observation vector x by subtracting its
mean vector m = E{x}. That is then we obtain the centered
observation vector, xc, as follows:

xc = x−m (16)

This step simplifies ICA algorithms by allowing us to
assume a zero mean. Once the unmixing matrix has been
estimated using the centered data, we can obtain the actual
estimates of the independent components as follows:

ŝ(t) = A−1(xc +m) (17)

From this point on, all observation vectors will be as-
sumed centered. The mixing matrix, on the other hand,
remains the same after this preprocessing, so we can al-
ways do this without affecting the estimation of the mixing
matrix.

3.5.2 Whitening

Another step which is very useful in practice is to pre-
whiten the observation vector x. Whitening involves lin-
early transforming the observation vector such that its com-
ponents are uncorrelated and have unit variance [27]. Let
xw denote the whitened vector, then it satisfies the follow-
ing equation:

E{xwxT
w}= I (18)

where E{xwxT
w} is the covariance matrix of xw. Also,

since the ICA framework is insensitive to the variances
of the independent components, we can assume without
loss of generality that the source vector, s, is white, i.e.
E{ssT}= I

A simple method to perform the whitening transforma-
tion is to use the eigenvalue decomposition (EVD) [27] of
x. That is, we decompose the covariance matrix of x as
follows:

E{xxT}=V DV T (19)

where V is the matrix of eigenvectors of E{xxT},
and D is the diagonal matrix of eigenvalues, i.e. D =

68 Informatica 35 (2011) 63–81 G.R. Naik et al.

diag{λ1,λ2, ...,λn}. The observation vector can be
whitened by the following transformation:

xw =V D−1/2V T x (20)

where the matrix D−1/2 is obtained by a
simple component wise operation as D−1/2 =

diag{λ−1/2
1 ,λ−1/2

2 , ...,λ−1/2
n }. Whitening transforms

the mixing matrix into a new one, which is orthogonal

xw =V D−1/2V T As = Aws (21)

hence,

E{xwxT
w}= AwE{ssT}AT

w

= AwAT
w

= I

(22)

Whitening thus reduces the number of parameters to be
estimated. Instead of having to estimate the n2 elements of
the original matrix A, we only need to estimate the new or-
thogonal mixing matrix, where An orthogonal matrix has
n(n−1)/2 degrees of freedom. One can say that whitening
solves half of the ICA problem. This is a very useful step
as whitening is a simple and efficient process that signifi-
cantly reduces the computational complexity of ICA. An il-
lustration of the whitening process with simple ICA source
separation process is explained in the later section.

3.6 Simple Illustrations of ICA
To clarify the concepts discussed in the preceding sections
two simple illustrations of ICA are presented here. The
results presented below were obtained using the FastICA
algorithm, but could equally well have been obtained from
any of the numerous ICA algorithms that have been pub-
lished in the literature (including the Bell and Sejnowsiki
algorithm).

3.6.1 Separation of Two Signals

This section explains the simple ICA source separation pro-
cess. In this illustration two independent signals, s1 and s2,

0 200 400 600 800 1000
−1

−0.5

0

0.5

1

0 200 400 600 800 1000
−1

−0.5

0

0.5

1
Original source “ s2 ”

Original source “ s1 ”

Figure 2: Independent sources s1 and s2

0 200 400 600 800 1000
−2

−1

0

1

2
Mixed signal “ x1 ”

Mixed signal “ x2 ”

0 200 400 600 800 1000
−2

−1

0

1

2

Figure 3: Observed signals, x1 and x2, from an unknown
linear mixture of unknown independent components

0 200 400 600 800 1000
−2

−1

0

1

2

0 200 400 600 800 1000
−2

−1

0

1

2
Estimated signal “ s1 ”

Estimated signal “ s2 ”

Figure 4: Estimates of independent components

are generated. These signals are shown in Figure2. The in-
dependent components are then mixed according to equa-
tion 1 using an arbitrarily chosen mixing matrix A, where

A =

(
0.3816 0.8678
0.8534 −0.5853

)
The resulting signals from this mixing are shown in Fig-

ure 3. Finally, the mixtures x1 and x2 are separated using
ICA to obtain s1 and s2, shown in Figure 4. By comparing
Figure 4 to Figure 2 it is clear that the independent compo-
nents have been estimated accurately and that the indepen-
dent components have been estimated without any knowl-
edge of the components themselves or the mixing process.

This example also provides a clear illustration of the
scaling and permutation ambiguities discussed in Section
3.4. The amplitudes of the corresponding waveforms in
Figures 2 and 4 are different. Thus the estimates of the in-
dependent components are some multiple of the indepen-
dent components of Figure 3, and in the case of s1, the
scaling factor is negative. The permutation ambiguity is
also demonstrated as the order of the independent compo-
nents has been reversed between Figure 2 and Figure 4.

3.6.2 Illustration of Statistical Independence in ICA

The previous example was a simple illustration of how ICA
is used; we start with mixtures of signals and use ICA to

AN OVERVIEW OF INDEPENDENT COMPONENT ANALYSIS AND. . . Informatica 35 (2011) 63–81 69

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

s1

s2

Figure 5: Original sources

−4 −3 −2 −1 0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x1

x2

Figure 6: Mixed sources

separate them. However, this gives no insight into the me-
chanics of ICA and the close link with statistical indepen-
dence. We assume that the independent components can
be modeled as realizations of some underlying statistical
distribution at each time instant (e.g. a speech signal can
be accurately modeled as having a Laplacian distribution).
One way of visualizing ICA is that it estimates the optimal
linear transform to maximise the independence of the joint
distribution of the signals Xi.

The statistical basis of ICA is illustrated more clearly
in this example. Consider two random signals which are
mixed using the following mixing process:(

x1
x2

)
=

(
1 2
1 1

)(
s1
s2

)
Figure 5 shows the scatter-plot for original sources s1

and s2. Figure 6 shows the scatter-plot of the mixtures. The

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

x1

x2

Figure 7: Joint density of whitened signals obtained from
whitening the mixed sources

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Estimated s1

E
st

im
a
te

d
 s

2

Figure 8: ICA solution (Estimated sources)

distribution along the axis x1 and x2 are now dependent and
the form of the density is stretched according to the mixing
matrix. From the Figure 6 it is clear that the two signals are
not statistically independent because, for example, if x1 =
-3 or 3 then x2 is totally determined. Whitening is an inter-
mediate step before ICA is applied. The joint distribution
that results from whitening the signals of Figure 6 is shown
in Figure 7. By applying ICA, we seek to transform the
data such that we obtain two independent components.

The joint distribution resulting from applying ICA to
x1 and x2 is shown in Figure 7. This is clearly the joint
distribution of two independent, uniformly distributed ran-
dom variables. Independence can be intuitively confirmed
as each random variable is unconstrained regardless of the
value of the other random variable (this is not the case for
x1 and x2. The uniformly distributed random variables in

70 Informatica 35 (2011) 63–81 G.R. Naik et al.

Figure 8 take values between 3 and -3, but due to the scal-
ing ambiguity, we do not know the range of the original
independent components. By comparing the whitened data
of Figure 7 with Figure 8, we can see that, in this case, pre-
whitening reduces ICA to finding an appropriate rotation to
yield independence. This is a simplification as a rotation is
an orthogonal transformation which requires only one pa-
rameter.

The two examples in this section are simple but they il-
lustrate both how ICA is used and the statistical underpin-
nings of the process. The power of ICA is that an identical
approach can be used to address problems of much greater
complexity.

3.7 ICA Algorithms
There are several ICA algorithms available in literature.
How ever the following three algorithms are widely used
in numerous signal processing applications. These includes
FastICA, JADE, and Infomax. Each algorithm used a dif-
ferent approach to solve equation.

3.7.1 FastICA

FastICA is a fixed point ICA algorithm that employs higher
order statistics for the recovery of independent sources.
FastICA can estimate ICs one by one (deflation approach)
or simultaneously (symmetric approach). FastICA uses
simple estimates of Negentropy based on the maximum en-
tropy principle, which requires the use of appropriate non-
linearities for the learning rule of the neural network.

Fixed point algorithm is based on the mutual informa-
tion. Which can be written as:

I(s) =
∫

fs(s)log
fs(s)

∏ fsi(si)
ds (23)

This measure is kind of distance of independence. Min-
imising mutual information leads to ICA solution. For the
fast ICA algorithm the above equation is re written as

I(s) = J(s)−∑
i

Jsi +
1
2

log
∏Cii

detCss
(24)

where ŝ = Wx, Css is the correlation matrix, and cii is
the ith diagonal element of the correlation matrix. The last
term is zero because si are supposed to be uncorrelated.
The first term is constant for a problem, because of the in-
variance in Negentropy. The problem is now reduced to
separately maximising the Negentropy of each component.

Estimation of Negentropy is a delicate problem. The pa-
pers [28][[1] and [2] [29]

have addressed this problem. For the general version
of fixed point algorithm, the approximation was based on
a maximum entropy principle. The algorithm works with
whitened data, although aversion of non-whitened data ex-
ists.

– Criteria

The maximisation is preferred over the following index

JG(w) = [E{G(wT v)}−E{G(ν)}2 (25)

to find one independent component, with ν standard gaus-
sian variable, and G, the one unit contrast function.

– Update rule

Update rule for the generic algorithm is

w∗ = E{vg(wT v)}−E{g
′
(wT v)}w

w = w∗/∥w∗∥
(26)

to extract one component. There is symmetric version of
the FP algorithm, whose update rule is

W ∗ = E{g(Wv)vT}−Diag(E{g
′
(Wv)})W

W = (W ∗W ∗T)−1/2W ∗
(27)

where Diag(v) is a diagonal matrix with Diagii(v) = vi.

– Parameters

FastICA uses the following nonlinear parameters for
convergence.

g(y) =
{

y3

tanh(y)
(28)

The choice is free except that the symmetric algorithm
with tanh non linearity does not separate super Gaus-
sian signals. Otherwise the choice can be devoted to the
other criteria, for instance the cubic non linearity is faster,
whereas the tanh linearity is more stable. These questions
are addressed in [25]

In practice, the expectations in FastICA must be replaced
by their estimates. The natural estimates are of course the
corresponding sample means. Ideally, all the data available
should be used, but this is often not a good idea because the
computations may become too demanding. Then the aver-
ages can be estimated using a smaller sample, whose size
may have a considerable effect on the accuracy of the final
estimates. The sample points should be chosen separately
at every iteration. If the convergence is not satisfactory,
one may then increase the sample size. This thesis uses
FastICA algorithm for all applications.

3.7.2 Infomax

The BSS algorithm, proposed by Bell and Sejnowski, [3],
is also a gradient based neural network algorithm, with
a learning rule for information maximization of informa-
tion. Infomax uses higher order statistics for the informa-
tion maximization. In perfect cases, it does provide the
best estimate to ICA components. The strength of this al-
gorithm comes from its direct relationship to information
theory.

AN OVERVIEW OF INDEPENDENT COMPONENT ANALYSIS AND. . . Informatica 35 (2011) 63–81 71

The algorithm is derived through an information max-
imisation principle, applied here between the inputs and the
non linear outputs. Given the form of joint entropy

H(s1,s2) = H(s1)+H(s2)− I(s1,s2) (29)

Here for two variables s= g(Bx), it is clear that maximis-
ing the joint entropy of the outputs amounts to minimising
mutual information I(y1,y2), unless it is more interesting to
maximise the individual entropies than to reduce the mu-
tual information. This is the point, where the nonlinear
function plays an important role.

The basic idea of the information maximisation is to
match the slope of the nonlinear function with the input
probability density function. That is

s = g(x,θ)≃
∫ x

− inf
fx(t)dt (30)

In case of perfect matching fs(s) looks like an uniform
variable, whose entropy is large. If this is not possible be-
cause the shapes are different, the best solution found in
some case is to mix the input distributions so that the re-
sulting mix matches the slope of the transfer function better
than a single input distribution. In this case the algorithm
does not converge, and the separation is not achieved.

– Criteria

The algorithm is a stochastic gradient ascent that max-
imises the joint entropy (Eqn. 12).

– Update rule

In its original form, the update rule is

∆B = λ [[BT]−1 +(1−2g(Bx+b0))xT]

∆b = λ [1−2g(Bx+b0)]
(31)

– Parameters

The nonlinear function used in the original algorithm is

g(s) =
1

1+ e−s (32)

and in the extended version, it is

g(s) = s± tanh(s) (33)

where the sign is that of the estimated kurtosis of the
signal.

The information maximization algorithm (often referred
as infomax) is widely used to separate super-Gaussian
sources. Infomax is a gradient-based neural network algo-
rithm, with a learning rule for information maximization.
Infomax uses higher order statistics for the information
maximization. The information maximization is attained
by maximizing the joint entropy of a transformed vector.
z = g(Wx), where g is a point wise sigmoidal nonlinear
function.

4 ICA for different conditions
One of the important conditions of ICA is that the num-
ber of sensors should be equal to the number of sources.
Unfortunately, the real source separation problem does not
always satisfy this constraint. This section focusses on
ICA source separation problem under different conditions
where the number of sources are not equal to the number
of recordings.

4.1 Overcomplete ICA
Overcomplete ICA is one of the ICA source separation
problem where the number of sources are greater than the
number of sensors, i.e (n > m). The ideas used for over-
complete ICA originally stem from coding theory, where
the task is to find a representation of some signals in a given
set of generators which often are more numerous than the
signals, hence the term overcomplete basis. Sometimes this
representation is advantageous as it uses as few ‘basis’ ele-
ments as possible, referred to as sparse coding. Olshausen
and Field [30] first put these ideas into an information the-
oretic context by decomposing natural images into an over-
complete basis. Later, Harpur and Prager [31] and, inde-
pendently, Olshausen [32] presented a connection between
sparse coding and ICA in the square case. Lewicki and
Sejnowski [22] then were the first to apply these terms to
overcomplete ICA, which was further studied and applied
by Lee et al. [33]. De Lathauwer et al. [34] provided
an interesting algebraic approach to overcomplete ICA of
three sources and two mixtures by solving a system of lin-
ear equations in the third and fourth-order cumulants, and
Bofill and Zibulevsky [35] treated a special case (‘delta-
like’ source distributions) of source signals after Fourier
transformation. Overcomplete ICA has major applications
in bio signal processing, due to the limited number of elec-
trodes (recordings) compared to the number active muscles
(sources) involved (in certain cases unlimited).

Figure 9: Illustration of “overcomplete ICA"

In overcomplete ICA, the number of sources exceed
number of recordings. To analyse this, consider two
recordings x1(t) and x2(t) from three independent sources
s1(t), s2(t) and s3(t). The xi(t) are then weighted sums

72 Informatica 35 (2011) 63–81 G.R. Naik et al.

of the si(t), where the coefficients depend on the distances
between the sources and the sensors (refer Figure 9):

x1(t) = a11s1(t)+a12s2(t)+a13s3(t) (34)
x2(t) = a21s1(t)+a22s2(t)+a23s3(t)

The ai j are constant coefficients that give the mixing
weights. The mixing process of these vectors can be repre-
sented in the matrix form as (refer Equation 1):

(
x1
x2

)
=

(
a11 a12 a13
a21 a22 a23

)s1
s2
s3

The unmixing process and estimation of sources can be
written as (refer Equation 2):s1

s2
s3

=

w11 w12
w21 w22
w31 w32

(
x1
x2

)
In this example matrix A of size 2×3 matrix and unmix-

ing matrix W is of size 3×2. Hence in overcomplete ICA
it always results in pseudoinverse. Hence computation of
sources in overcomplete ICA requires some estimation pro-
cesses.

4.1.1 Overcomplete ICA methods

There are two common approaches of solving the overcom-
plete problem.

– Single step approach where the mixing matrix and the
independent sources are estimated at once in a single
algorithm

– Two step algorithm where the mixing matrix and the
independent component values are estimated with dif-
ferent algorithms.

Lewicki and Sejnowski [22] proposed the single step ap-
proach, which is a natural solution to decomposition by
finding the maximum a posteriori representation of the
data. The prior distribution on the basis function coeffi-
cients removes the redundancy in the representation and
leads to representations that are sparse and are nonlinear
functions of the data. The probabilistic approach to de-
composition also leads to a natural method of denoising.
From this model, they derived a simple and robust learning
algorithm by maximizing the data likelihood over the basis
functions. Another approach in single step was proposed
by Shriki et al. [36] using recurrent model, i.e., the es-
timated independent sources are computed taking into ac-
count the influence of other independent sources.

One of the disadvantage of single step approach is that
it is complex and computationally expensive. Hence many
researchers have proposed the two step method, where the
mixing matrix is estimated in the first step and the sources
are recovered in the next step. Zibulevsky et al. [35] pro-
posed a sparse overcomplete ICA with delta distributions.

Fabian Theis [37, 38] proposed geometric overcomplete
ICA. Recently Waheed et. al [39, 40] demonstrated alge-
braic overcomplete ICA. In this thesis Zibulevsky’s sparse
overcomplete ICA is utilised, which is explained in the next
section.

4.1.2 Sparse overcomplete ICA

Sparse representation of signals which is modeled by ma-
trix factorisation has been receiving a great deal of inter-
est in recent years. The research community has investi-
gated many linear transforms that make audio, video and
image data sparse, such as the Discrete Cosine Transform
(DCT), the Fourier transform, the wavelet transform and
their derivatives. [41]. Chen et al. [42] discussed sparse
representations of signals by using large scale linear pro-
gramming under given overcomplete basis (e.g., wavelets).
Olshausen et al. [43] represented sparse coding of im-
ages based on maximum posterior approach but it was
Zibulevsky et al. [35] who noticed that in the case of sparse
sources, their linear mixtures can be easily separated us-
ing very simple “geometric" algorithms. Sparse represen-
tations can be used in blind source separation. When the
sources are sparse, smaller coefficients are more likely and
thus for a given data point t, if one of the sources is sig-
nificantly larger, the remaining ones are likely to be close
to zero. Thus the density of data in the mixture space, be-
sides decreasing with the distance from the origin shows a
clear tendency to cluster along the directions of the basis
vectors. Sparsity is good in ICA for two reasons. First the
statistical accuracy with which the mixing matrix A can be
estimated is a function of how non-Gaussian the source dis-
tributions are. This suggests that the sparser the sources are
the less data is needed to estimate A. Secondly the quality
of the source estimates given A, is also better for sparser
sources. A signal is considered sparse when values of most
of the samples of the signal do not differ significantly from
zero. These are from sources that are minimally active.
Zibulevsky et al. [35] have demonstrated that when the
signals are sparse, and the sources of these are indepen-
dent, these may be separated even when the number of
sources exceeds the number of recordings. [35]. The over-
complete limitation suffered by normal ICA is no longer a
limiting factor for signals that are very sparse. Zibulevsky
also demonstrated that when the signals are sparse, it is
possible to determine the number of independent sources
in a mixture of unknown signal numbers.

– Source estimation

The first step in two step approach is source separation.
Here the source separation process is explained by taking
sparse signal as an example. A signal is considered to be
sparse if its pdf is close to Laplacian or super-Gaussian. In
this case, the basic ICA model in Equation 1 is modified
to have more robust representation which can be expressed
as,

AN OVERVIEW OF INDEPENDENT COMPONENT ANALYSIS AND. . . Informatica 35 (2011) 63–81 73

x = As+ξ (35)

where ξ represents noise in the recordings. It is assumed
that the independent sources s can be sparsely represented
in a proper signal dictionary

si =
K

∑
k=1

Ck
i φk (36)

where φk are the atoms or elements of the dictionary. Im-
portant examples are wavelet-related dictionaries such as
wavelet and wavelet packets [41]. Equation 36 can be ex-
pressed in matrix notation as

s =CΦ (37)

by substituting Equation 37 into 35 gives

x = ACΦ+ξ (38)

The goal is to estimate the mixing matrix A and the coef-
ficients C at the same time so that C is as sparse as possible.
and X ≈ ACΦ, given only the observed data x and the dic-
tionary Φ
Using maximum a posteriori approach, the above goal can
be expressed as

max
A,C

P(A,C|x) ∝ maxA,CP(x|A,C)P(A)P(C) (39)

Taking into account Equation 35 and Gaussian noise, the
conditional probability P(x|A,C) can be expressed as

P(x|A,C) ∝ ∏
i

exp[− (xi − (ACΦ)i)
2

2σ2] (40)

Since C is assumed to be sparse, it can be approximated
with the following pdf

pi(Ck
i) ∝ exp[−(βih(Ck

i))] (41)

and hence

p(C) ∝ ∏
i,k

exp[−(βih(Ck
i))] (42)

Assuming the pdf of P(A) to be uniform, Equation 39 can
now be simplified as

max
A,C

P(A,C|x) ∝ maxA,CP(x|A,C)P(C) (43)

Finally, the optimisation problem can be formed by substi-
tuting 40 and 42 into 43, taking the logarithm and inverting
the sign

max
A,C

P(A,C|x) ∝ minA,C
1

2σ2 |ACΦ− x∥2
F+

∑
i,k
(βih(Ck

i))
(44)

There are several measures of sparsity. The simplest
measure is the l0 norm. One of the drawback of this mea-
sure is that, it is discontinuous and difficult to optimise, and
also very sensitive to noise. The closest approximation of
l0 is l1 norm. The validity of this measure can be shown
by simplifying equation 44 under zero noise assumption
and under Laplacian prior distributions with h(Ck

i) = |Ck
i |.

Under these assumptions the optimisation problem can be
decomposed into K smaller problems for each data point ck

at time point
k = 1...K as

min
ck

∑
i
|ck

i | (45)

subject to Ackφk = xk. If small signal s is sparse in time
domain then ck in equation 45 can be uploaded with sk.

min
sk

∑
i
|sk

i | (46)

subject to Ask = xk. Equation 46 can be formulated as linear
programming in basic form as

min
sk

cT sk| (47)

subject to Ask = xk, sk ≥ 0 where sk ⇔ [uk;vk],A ⇔ [A;−A]
and c ⇔ [1;1].

– Estimating the mixing matrix

The second step in two step approach is estimating the
mixing matrix. There exists various methods to compute
the mixing matrix in sparse overcomplete ICA. The most
widely used techniques are:

(i) C-means clustering

(ii) Algebraic method and

(iii) Potential function based method

All the above mentioned methods are based on the clus-
tering principle. The difference is the way they estimate the
direction of the clusters. The sparsity of the signal plays an
important role for estimating the mixing matrix. A simple
illustration that is useful to understand this concept can be
found in

4.2 Undercomplete ICA
The mixture of unknown sources is referred to as under-
complete when the numbers of recordings m, more than
the number of sources n. In some applications, it is de-
sired to have more recordings than sources to achieve better
separation performance. It is generally believed that with
more recordings than the sources, it is always possible to
get better estimate of the sources. This is not correct un-
less prior to separation using ICA, dimensional reduction
is conducted. This can be achieved by choosing the same

74 Informatica 35 (2011) 63–81 G.R. Naik et al.

number of principal recordings as the number of sources
discarding the rest. To analyse this, consider three record-
ings x1(t), x2(t) and x3(t) from two independent sources
s1(t) and s2(t). The xi(t) are then weighted sums of the
si(t), where the coefficients depend on the distances be-
tween the sources and the sensors (refer Figure 10):

Figure 10: Illustration of “undercomplete ICA"

x1(t) = a11s1(t)+a12s2(t)

x2(t) = a21s1(t)+a22s2(t) (48)
x3(t) = a31s1(t)+a32s2(t)

The ai j are constant coefficients that gives the mixing
weights. The mixing process of these vectors can be repre-
sented in the matrix form as:x1

x2
x3

=

a11 a12
a21 a22
a31 a32

(
s1
s2

)
The unmixing process using the standard ICA requires a di-
mensional reduction approach so that, if one of the record-
ings is reduced then the square mixing matrix is obtained,
which can use any standard ICA for the source estimation.
For instance one of the recordings say x3 is redundant then
the above mixing process can be written as:(

x1
x2

)
=

(
a11 a12
a21 a22

)(
s1
s2

)
Hence unmixing process can use any standard ICA algo-

rithm using the following:(
s1
s2

)
=

(
w11 w12
w21 w22

)(
x1
x2

)
The above process illustrates that, prior to source signal

separation using undercomplete ICA, it is important to re-
duce the dimensionality of the mixing matrix and identify
the required and discard the redundant recordings. Princi-
pal Component Analysis (PCA) is one of the powerful di-
mensional reduction method used in signal processing ap-
plications, which is explained next.

4.2.1 Undercomplete ICA using dimensional
reduction method

When the number of recordings n are more than the num-
ber of sources m, there must be information redundancy in
the recordings. Hence the first step is to reduce the dimen-
sionality of the recorded data. If the dimensionality of the
recorded data is equal to that of the sources, then standard
ICA methods can be applied to estimate the independent
sources. An example of this stages methods is illustrated in
[44].

One of the popular method used in dimensional reduc-
tion method is PCA. PCA uses the decorrelated method to
reduce the recorded data x using a matrix V

z =V x (49)

such that EzzT = I. The transformation matrix V is given
by

V = D
1
2 ET (50)

where D and E are the Eigenvalue and Eigenvector decom-
position of covariance matrix Cx

Cx = ED
1
2 ET (51)

Now it can be proven that

E{zzT}=V E{xxT}V T

= D−1/2ET EDET ED−1/2

= I

(52)

The second stage is using any of the standard ICA al-
gorithms discussed in Section 3.2 to estimate the sources.
In fact, whitening process through PCA is standard prepro-
cessing in ICA. It means that applying any standard ICA al-
gorithms that incorporates PCA will automatically reduce
the dimension before running ICA.

4.3 Sub band decomposition ICA

Despite the success of using standard ICA in many appli-
cations, the basic assumptions of ICA may not hold for cer-
tain situations where there may be dependency among the
signal sources. The standard ICA algorithms are not able
to estimate statistically dependent original sources. One
proposed technique [13] is that while there may be a de-
gree of dependency among the wide band source signals,
narrow band filtering of these signals can provide indepen-
dence among these signal sources. This assumption is true
when each unknown source can be modeled or represented
as a linear combination of narrow-band sub-signals. Sub
band decomposition ICA, an extension of ICA, assumes
that each source is represented as the sum of some indepen-
dent subcomponents and dependent subcomponents, which
have different frequency bands.

AN OVERVIEW OF INDEPENDENT COMPONENT ANALYSIS AND. . . Informatica 35 (2011) 63–81 75

Figure 11: Sub band ICA block diagram.

Such wide-band source signals are a linear decomposi-
tion of several narrow-band sub components (refer Figure
11):

s(t) = s1(t)+ s2(t)+ s3(t), . . . ,sn(t) (53)

Such decomposition can be modeled in the time, fre-
quency or time frequency domains using any suitable lin-
ear transform. A set of unmixing or separating matrices:
W1,W2,W3,. . . ,Wn are obtained where W1 is the unmixing
matrix for sensor data x1(t) and Wn is the unmixing matrix
for sensor data xn(t). If the specific sub-components of in-
terest are mutually independent for at least two sub-bands,
or more generally two subsets of multi-band, say for the
sub band “p" and sub band “q" then the global matrix

Gpq =Wp ×W−1
q (54)

will be a sparse generalized permutation matrix P with spe-
cial structure with only one non-zero (or strongly dominat-
ing) element in each row and each column [27]. This fol-
lows from the simple mathematical observation that in such
case both matrices Wp and Wq represent pseudo-inverses (or
true inverse in the case of square matrix) of the same true
mixing matrix A (ignoring non-essential and unavoidable
arbitrary scaling and permutation of the columns) and by
making an assumption that sources for two multi-frequency
sub-bands are independent. This provides the basis for sep-
aration of dependent sources using narrow band pass fil-
tered sub band signals for ICA.

4.4 Multi run ICA

One of the most effective ways of modeling vector data for
unsupervised pattern classification or coding is to assume
that the observations are the result of randomly picking out
of a fixed set of different distributions. ICA is an iterative
BSS technique. At each instance original signals are es-
timated from the mixed data. The quality of estimation of
the original signals depends mainly on the unmixing matrix
W . Due to the randomness associated with the estimation

of the unmixing matrix and the iterative process, there is a
randomness associated with the quality of separation.

Figure 12: Multi run ICA mixing matrix computation flow
chart

Multi run ICA has been proposed to overcome this asso-
ciated randomness. [45]. It is the process where the ICA
algorithm will be computed many times; at each instance
different mixing matrices will be estimated. A1,A2, ...,An.
Since it is an iterative technique with inbuilt quantisation,
repeat analysis yields similarity matrices at some stage.
Hence mixing matrices A1,A2 etc, will repeat after certain
iterations. To estimate the sources from the mixed data ICA
requires just one mixing matrix, the best unmixing matrix
would give clear source separation, hence the selection of
the best matrix is the key criterion in multi run ICA. There
exists several methods to compute the quality of the mixing
matrices, they are

– Signal to Noise Ratio (SNR)

– Signal to Interference Ratio (SIR)

– Signal to Distortion Ratio (SDR) and

– Signal to Artefacts Ratio (SAR)

In bio signal and audio applications, SIR has found to be
a popular tool to measure the quality separation. Once the

76 Informatica 35 (2011) 63–81 G.R. Naik et al.

best unmixing matrix is estimated, then any normal ICA
method can be used for source separation. The multi run
ICA computational process flow chart is shown in Figure
12.

5 Applications of ICA
The success of ICA in source separation has resulted in a
number of practical applications. These includes,

– Machine fault detection [46, 47, 48, 49]

– Seismic monitoring [50, 51]

– Reflection canceling [52, 53]

– Finding hidden factors in financial data [54, 55, 56]

– Text document analysis [4, 5, 6]

– Radio communications [57, 58]

– Audio signal processing [20, 13]

– Image processing [13, 14, 59, 60, 61, 62, 63]

– Data mining [64]

– Time series forecasting [65]

– Defect detection in patterned display surfaces [66, ?]

– Bio medical signal processing [7, 67, 8, 9, 10, 11, 12,
68, 69].

Some of the major applications are explained in detail next:

5.1 Biomedical Applications of ICA
Exemplary ICA applications in biomedical problems in-
clude the following:

– Fetal Electrocardiogram extraction, i.e removing/fil-
tering maternal electrocardiogram signals and noise
from fetal electrocardiogram signals [70, 71].

– Enhancement of low level Electrocardiogram compo-
nents [70, 71]

– Separation of transplanted heart signals from residual
original heart signals [72]

– Separation of low level myoelectric muscle activities
to identify various gestures [73, 74, 75, 76]

One successful and promising application domain of
blind signal processing includes those biomedical signals
acquired using multi-electrode devices: Electrocardiogra-
phy (ECG), [77, 70, 72, 71, 78, 79, 69], Electroencephalog-
raphy (EEG)[70, 71, 72, 80, 81, 82], Magnetoencephalog-
raphy (MEG) [83, 84, 85, 86, 80, 87] and sEMG. Surface
EMG is an indicator of muscle activity and related to body
movement and posture. It has major applications in biosig-
nal processing, next section explains sEMG and its appli-
cations.

5.2 Telecommunications
Telecommunication is one of the emerging application with
respect to ICA, it has major application in code Division
Multiple Access (CDMA) mobile communications. This
problem is semi-blind, in the sense that certain additional
prior information is available on the CDMA data model
[88]. But the number of parameters to be estimated is often
so high that suitable BSS, techniques taking into account
the available prior knowledge, provide a clear performance
improvement over more traditional estimation techniques.

5.3 Feature extraction
ICA is successfully applied for face recognition and lip
reading. The goal in the face recognition is to train a sys-
tem that can recognise and classify familiar faces, given
a different image of the trained face. The test images may
show the faces in a different pose or under different lighting
conditions. Traditional methods for face recognition have
employed PCA-like methods. Barlett and Sejnowski com-
pare the face recognition performance of PCA and ICA for
two different tasks:

1. different pose and

2. different lighting conditions

they show that for both the tasks, ICA outperforms PCA.

5.4 Sensor Signal Processing
A sensor network is a very recent, widely applicable and
challenging field of research. As the size and cost of sen-
sors decrease, sensor networks are increasingly becoming
an attractive method to collect information in a given area.
Multi-sensor data often presents complimentary informa-
tion about the region surveyed and data fusion provides an
effective method to enable comparison, interpretation and
analysis of such data. Image and video fusion is a sub area
of the more general topic of data fusion, dealing with image
and video data. Cvejic et al [89] have applied the ICA for
improving the fusion of multimodal surveillance images in
sensor networks. ICA is also used for robust speech recog-
nition using various sensor combinations

5.5 Audio signal processing
One of the most practical uses for BSS is in the audio
world. It has been used for noise removal without the need
of filters or Fourier transforms, which leads to simpler pro-
cessing methods. There are various problems associated
with noise removal in this way, but these can most likely
be attributed to the relative infancy of the BSS field and
such limitations will be reduced as research increases in
this field [90, 25].

Audio source separation is the problem of automated
separation of audio sources present in a room, using a set
of differently placed microphones, capturing the auditory

AN OVERVIEW OF INDEPENDENT COMPONENT ANALYSIS AND. . . Informatica 35 (2011) 63–81 77

scene. The whole problem resembles the task a human
listener can solve in a cocktail party situation, where us-
ing two sensors (ears), the brain can focus on a specific
source of interest, suppressing all other sources present
(also known as cocktail party problem) [20, 25].

5.6 Image Processing
Recently, Independent Component Analysis (ICA) has
been proposed as a generic statistical model for images
[90, 59, 60, 61, 62, 63]. It is aimed at capturing the sta-
tistical structure in images that is beyond second order in-
formation, by exploiting higher-order statistical structure
in data. ICA finds a linear non orthogonal coordinate sys-
tem in multivariate data determined by second- and higher-
order statistics. The goal of ICA is to linearly transform the
data such that the transformed variables are as statistically
independent from each other as possible. ICA generalizes
PCA and, like PCA, has proven a useful tool for finding
structure in data. Bell and Sejnowski proposed a method
to extract features from natural scenes by assuming linear
image synthesis model [90]. In their model, a set of digi-
tized natural images were used. they considered each patch
of an image as a linear combination of several underlying
basic functions. Later Lee et al [91] proposed an image
processing algorithm, which estimates the data density in
each class by using parametric nonlinear functions that fit
to the non-Gaussian structure of the data. They showed
a significant improvement in classification accuracy over
standard Gaussian mixture models. Recently Antoniol et
al [92] demonstrated that the ICA model can be a suitable
tool for learning a vector base for feature extraction to de-
sign a feature based data dependent approach that can be
efficiently adopted for image change detection. In addi-
tion ICA features are localized and oriented and sensitive
to lines and edges of varying thickness of images. Further-
more the sparsity of ICA coefficients should be pointed out.
It is expected that suitable soft-thresholding on the ICA
coefficients leads to efficient reduction of Gaussian noise
[60, 62, 63].

6 Conclusions
This paper has introduced the fundamentals of BSS and
ICA. The mathematical framework of the source mixing
problem that BSS/ICA addresses was examined in some
detail, as was the general approach to solving BSS/ICA.
As part of this discussion, some inherent ambiguities of
the BSS/ICA framework were examined as well as the
two important preprocessing steps of centering and whiten-
ing. Specific details of the approach to solving the mixing
problem were presented and two important ICA algorithms
were discussed in detail. Finally, the application domains
of this novel technique are presented. Some of the futuristic
works on ICA techniques, which need further investigation
are discussed. The material covered in this paper is impor-
tant not only to understand the algorithms used to perform

BSS/ICA, but it also provides the necessary background to
understand extensions to the framework of ICA for future
researchers.

References
[1] L. Tong, Liu, V. C. Soon, and Y. F. Huang, “Inde-

terminacy and identifiability of blind identification,”
Circuits and Systems, IEEE Transactions on, vol. 38,
no. 5, pp. 499–509, 1991.

[2] C. Jutten and J. Karhunen, “Advances in blind source
separation (bss) and independent component analy-
sis (ica) for nonlinear mixtures.” Int J Neural Syst,
vol. 14, no. 5, pp. 267–292, October 2004.

[3] A. J. Bell and T. J. Sejnowski, “An information-
maximization approach to blind separation and blind
deconvolution.” Neural Comput, vol. 7, no. 6, pp.
1129–1159, November 1995.

[4] Kolenda, Independent components in text, ser.
Advances in Independent Component Analysis.
Springer-Verlag, 2000, pp. 229–250.

[5] E. Bingham, J. Kuusisto, and K. Lagus, “Ica and som
in text document analysis,” in SIGIR ’02: Proceed-
ings of the 25th annual international ACM SIGIR
conference on Research and development in informa-
tion retrieval. ACM, 2002, pp. 361–362.

[6] Q. Pu and G.-W. Yang, “Short-text classification
based on ica and lsa,” Advances in Neural Networks -
ISNN 2006, pp. 265–270, 2006.

[7] C. J. James and C. W. Hesse, “Independent compo-
nent analysis for biomedical signals,” Physiological
Measurement, vol. 26, no. 1, pp. R15+, 2005.

[8] B. Azzerboni, M. Carpentieri, F. La Foresta, and F. C.
Morabito, “Neural-ica and wavelet transform for arti-
facts removal in surface emg,” in Neural Networks,
2004. Proceedings. 2004 IEEE International Joint
Conference on, vol. 4, 2004, pp. 3223–3228 vol.4.

[9] F. De Martino, F. Gentile, F. Esposito, M. Balsi,
F. Di Salle, R. Goebel, and E. Formisano, “Clas-
sification of fmri independent components using ic-
fingerprints and support vector machine classifiers,”
NeuroImage, vol. 34, pp. 177–194, 2007.

[10] T. Kumagai and A. Utsugi, “Removal of artifacts and
fluctuations from meg data by clustering methods,”
Neurocomputing, vol. 62, pp. 153–160, December
2004.

[11] Y. Zhu, T. L. Chen, W. Zhang, T.-P. Jung, J.-R. Du-
ann, S. Makeig, and C.-K. Cheng, “Noninvasive study
of the human heart using independent component
analysis,” in BIBE ’06: Proceedings of the Sixth IEEE

78 Informatica 35 (2011) 63–81 G.R. Naik et al.

Symposium on BionInformatics and BioEngineering.
IEEE Computer Society, 2006, pp. 340–347.

[12] J. Enderle, S. M. Blanchard, and J. Bronzino, Eds.,
Introduction to Biomedical Engineering, Second Edi-
tion. Academic Press, April 2005.

[13] A. Cichocki and S.-I. Amari, Adaptive Blind Signal
and Image Processing: Learning Algorithms and Ap-
plications. John Wiley & Sons, Inc., 2002.

[14] Q. Zhang, J. Sun, J. Liu, and X. Sun, “A novel
ica-based image/video processing method,” 2007, pp.
836–842.

[15] Hansen, Blind separation of noicy image mixtures.
Springer-Verlag, 2000, pp. 159–179.

[16] D. J. C. Mackay, “Maximum likelihood and covari-
ant algorithms for independent component analysis,”
University of Cambridge, London, Tech. Rep., 1996.

[17] Sorenson, “Mean field approaches to independent
component analysis,” Neural Computation, vol. 14,
pp. 889–918, 2002.

[18] KabÂt’an, “Clustering of text documents by skewness
maximization,” 2000, pp. 435–440.

[19] T. W. Lee, “Blind separation of delayed and con-
volved sources,” 1997, pp. 758–764.

[20] ——, Independent component analysis: theory and
applications. Kluwer Academic Publishers, 1998.

[21] H. Attias and C. E. Schreiner, “Blind source separa-
tion and deconvolution: the dynamic component anal-
ysis algorithm,” Neural Comput., vol. 10, no. 6, pp.
1373–1424, August 1998.

[22] M. S. Lewicki and T. J. Sejnowski, “Learning over-
complete representations.” Neural Comput, vol. 12,
no. 2, pp. 337–365, February 2000.

[23] A. Hyvarinen, R. Cristescu, and E. Oja, “A fast algo-
rithm for estimating overcomplete ica bases for im-
age windows,” in Neural Networks, 1999. IJCNN ’99.
International Joint Conference on, vol. 2, 1999, pp.
894–899 vol.2.

[24] T. W. Lee, M. S. Lewicki, and T. J. Sejnowski, “Un-
supervised classification with non-gaussian mixture
models using ica,” in Proceedings of the 1998 confer-
ence on Advances in neural information processing
systems. Cambridge, MA, USA: MIT Press, 1999,
pp. 508–514.

[25] A. Hyvarinen, J. Karhunen, and E. Oja, Indepen-
dent Component Analysis. Wiley-Interscience, May
2001.

[26] J. V. Stone, Independent Component Analysis : A
Tutorial Introduction (Bradford Books). The MIT
Press, September 2004.

[27] C. D. Meyer, Matrix Analysis and Applied Linear Al-
gebra. Cambridge, UK, 2000.

[28] P. Comon, “Independent component analysis, a new
concept?” Signal Processing, vol. 36, no. 3, pp. 287–
314, april 1994.

[29] A. Hyvrinen, “New approximations of differential en-
tropy for independent component analysis and projec-
tion pursuit,” in NIPS ’97: Proceedings of the 1997
conference on Advances in neural information pro-
cessing systems 10. MIT Press, 1998, pp. 273–279.

[30] Olshausen, “Sparse coding of natural images pro-
duces localized, oriented, bandpass receptive fields,”
Department of Psychology, Cornell University, Tech.
Rep., 1995.

[31] G. F. Harpur and R. W. Prager, “Development of
low entropy coding in a recurrent network.” Network
(Bristol, England), vol. 7, no. 2, pp. 277–284, May
1996.

[32] B. A. Olshausen, “Learning linear, sparse, factorial
codes,” Tech. Rep., 1996.

[33] T. W. Lee, M. Girolami, M. S. Lewicki, and T. J. Se-
jnowski, “Blind source separation of more sources
than mixtures using overcomplete representations,”
Signal Processing Letters, IEEE, vol. 6, no. 4, pp. 87–
90, 2000.

[34] D. Lathauwer, P. L. Comon, B. De Moor, and J. Van-
dewalle, “Ica algorithms for 3 sources and 2 sensors,”
in Higher-Order Statistics, 1999. Proceedings of the
IEEE Signal Processing Workshop on, 1999, pp. 116–
120.

[35] Bofill, “Blind separation of more sources than mix-
tures using sparsity of their short-time fourier trans-
form,” Pajunen, Ed., 2000, pp. 87–92.

[36] O. Shriki, H. Sompolinsky, and D. D. Lee, “An infor-
mation maximization approach to overcomplete and
recurrent representations,” in In Advances in Neural
Information Processing Systems, vol. 14, 2002, pp.
612–618.

[37] F. J. Theis, E. W. Lang, T. Westenhuber, and C. G.
Puntonet, “Overcomplete ica with a geometric al-
gorithm,” in ICANN ’02: Proceedings of the Inter-
national Conference on Artificial Neural Networks.
Springer-Verlag, 2002, pp. 1049–1054.

[38] F. J. Theis and E. W. Lang, “Geometric overcomplete
ica,” in Proc. of ESANN 2002, 2002, pp. 217–223.

AN OVERVIEW OF INDEPENDENT COMPONENT ANALYSIS AND. . . Informatica 35 (2011) 63–81 79

[39] K. Waheed and F. M. Salem, “Algebraic independent
component analysis: an approach for separation of
overcomplete speech mixtures,” in Neural Networks,
2003. Proceedings of the International Joint Confer-
ence on, vol. 1, 2003, pp. 775–780 vol.1.

[40] ——, “Algebraic independent component analysis,”
in Robotics, Intelligent Systems and Signal Process-
ing, 2003. Proceedings. 2003 IEEE International
Conference on, vol. 1, 2003, pp. 472–477 vol.1.

[41] S. Mallat, A Wavelet Tour of Signal Processing. Aca-
demic Press, 1998.

[42] S. S. Chen, D. L. Donoho, and M. A. Saunders,
“Atomic decomposition by basis pursuit,” SIAM Rev.,
vol. 43, no. 1, pp. 129–159, 2001.

[43] B. A. Olshausen and D. J. Field, “Sparse coding with
an overcomplete basis set: a strategy employed by
v1?” Vision Res, vol. 37, no. 23, pp. 3311–3325, De-
cember 1997.

[44] M. Joho, H. Mathis, and R. Lambert, “Overdeter-
mined blind source separation: Using more sensors
than source signals in a noisy mixture,” 2000.

[45] G. R. Naik, D. K. Kumar, and M. Palaniswami,
“Multi run ica and surface emg based signal process-
ing system for recognising hand gestures,” in Com-
puter and Information Technology, 2008. CIT 2008.
8th IEEE International Conference on, 2008, pp.
700–705.

[46] A. Ypma, D. M. J. Tax, and R. P. W. Duin, “Ro-
bust machine fault detection with independent com-
ponent analysis and support vector data description,”
in Neural Networks for Signal Processing IX, 1999.
Proceedings of the 1999 IEEE Signal Processing So-
ciety Workshop, 1999, pp. 67–76.

[47] Z. Li, Y. He, F. Chu, J. Han, and W. Hao, “Fault recog-
nition method for speed-up and speed-down process
of rotating machinery based on independent compo-
nent analysis and factorial hidden markov model,”
Journal of Sound and Vibration, vol. 291, no. 1-2, pp.
60–71, March 2006.

[48] M. Kano, S. Tanaka, S. Hasebe, I. Hashimoto, and
H. Ohno, “Monitoring independent components for
fault detection,” AIChE Journal, vol. 49, no. 4, pp.
969–976, 2003.

[49] L. Zhonghai, Z. Yan, J. Liying, and Q. Xiaoguang,
“Application of independent component analysis to
the aero-engine fault diagnosis,” in 2009 Chinese
Control and Decision Conference. IEEE, June 2009,
pp. 5330–5333.

[50] de La, C. G. Puntonet, J. M. Górriz, and I. Lloret,
“An application of ica to identify vibratory low-level
signals generated by termites,” 2004, pp. 1126–1133.

[51] F. Acernese, A. Ciaramella, S. De Martino,
M. Falanga, C. Godano, and R. Tagliaferri, “Polari-
sation analysis of the independent components of low
frequency events at stromboli volcano (eolian islands,
italy),” Journal of Volcanology and Geothermal Re-
search, vol. 137, no. 1-3, pp. 153–168, September
2004.

[52] H. Farid and E. H. Adelson, “Separating reflections
and lighting using independent components analysis,”
cvpr, vol. 01, 1999.

[53] M. Yamazaki, Y.-W. Chen, and G. Xu, “Separating re-
flections from images using kernel independent com-
ponent analysis,” in Pattern Recognition, 2006. ICPR
2006. 18th International Conference on, vol. 3, 2006,
pp. 194–197.

[54] M. Coli, R. Di Nisio, and L. Ippoliti, “Exploratory
analysis of financial time series using independent
component analysis,” in Information Technology In-
terfaces, 2005. 27th International Conference on,
2005, pp. 169–174.

[55] E. H. Wu and P. L. Yu, “Independent component
analysis for clustering multivariate time series data,”
2005, pp. 474–482.

[56] S.-M. Cha and L.-W. Chan, “Applying independent
component analysis to factor model in finance,” in
IDEAL ’00: Proceedings of the Second International
Conference on Intelligent Data Engineering and Au-
tomated Learning, Data Mining, Financial Engineer-
ing, and Intelligent Agents. Springer-Verlag, 2000,
pp. 538–544.

[57] R. Cristescu, T. Ristaniemi, J. Joutsensalo, and
J. Karhunen, “Cdma delay estimation using fast ica
algorithm,” vol. 2, 2000, pp. 1117–1120 vol.2.

[58] J. P. Huang and J. Mar, “Combined ica and fca
schemes for a hierarchical network,” Wirel. Pers.
Commun., vol. 28, no. 1, pp. 35–58, January 2004.

[59] O. Déniz, M. Castrillón, and M. Hernández, “Face
recognition using independent component analysis
and support vector machines,” Pattern Recogn. Lett.,
vol. 24, no. 13, pp. 2153–2157, 2003.

[60] S. Fiori, “Overview of independent component anal-
ysis technique with an application to synthetic aper-
ture radar (sar) imagery processing,” Neural Netw.,
vol. 16, no. 3-4, pp. 453–467, 2003.

[61] H. Wang, Y. Pi, G. Liu, and H. Chen, “Applications
of ica for the enhancement and classification of po-
larimetric sar images,” Int. J. Remote Sens., vol. 29,
no. 6, pp. 1649–1663, 2008.

[62] M. S. Karoui, Y. Deville, S. Hosseini, A. Ouamri,
and D. Ducrot, “Improvement of remote sensing mul-
tispectral image classification by using independent

80 Informatica 35 (2011) 63–81 G.R. Naik et al.

component analysis,” in 2009 First Workshop on Hy-
perspectral Image and Signal Processing: Evolution
in Remote Sensing. IEEE, August 2009, pp. 1–4.

[63] L. Xiaochun and C. Jing, “An algorithm of image
fusion based on ica and change detection,” in Pro-
ceedings 7th International Conference on Signal Pro-
cessing, 2004. Proceedings. ICSP ’04. 2004. IEEE,
2004, pp. 1096–1098.

[64] J.-H. H. Lee, S. Oh, F. A. Jolesz, H. Park, and
S.-S. S. Yoo, “Application of independent component
analysis for the data mining of simultaneous eeg-
fmri: preliminary experience on sleep onset.” The
International journal of neuroscience, vol. 119,
no. 8, pp. 1118–1136, 2009. [Online]. Available:
http://view.ncbi.nlm.nih.gov/pubmed/19922343

[65] C.-J. Lu, T.-S. Lee, and C.-C. Chiu, “Financial time
series forecasting using independent component anal-
ysis and support vector regression,” Decis. Support
Syst., vol. 47, no. 2, pp. 115–125, 2009.

[66] D.-M. Tsai, P.-C. Lin, and C.-J. Lu, “An indepen-
dent component analysis-based filter design for de-
fect detection in low-contrast surface images,” Pat-
tern Recogn., vol. 39, no. 9, pp. 1679–1694, 2006.

[67] F. Castells, J. Igual, J. Millet, and J. J. Rieta, “Atrial
activity extraction from atrial fibrillation episodes
based on maximum likelihood source separation,”
Signal Process., vol. 85, no. 3, pp. 523–535, 2005.

[68] H. Safavi, N. Correa, W. Xiong, A. Roy, T. Adali,
V. R. Korostyshevskiy, C. C. Whisnant, and
F. Seillier-Moiseiwitsch, “Independent component
analysis of 2-d electrophoresis gels,” ELEC-
TROPHORESIS, vol. 29, no. 19, pp. 4017–4026,
2008.

[69] R. Llinares and J. Igual, “Application of con-
strained independent component analysis algorithms
in electrocardiogram arrhythmias,” Artif. Intell. Med.,
vol. 47, no. 2, pp. 121–133, 2009.

[70] E. Niedermeyer and F. L. Da Silva, Electroen-
cephalography: Basic Principles, Clinical Applica-
tions, and Related Fields. Lippincott Williams and
Wilkins; 4th edition , January 1999.

[71] J. C. Rajapakse, A. Cichocki, and Sanchez, “Indepen-
dent component analysis and beyond in brain imag-
ing: Eeg, meg, fmri, and pet,” in Neural Informa-
tion Processing, 2002. ICONIP ’02. Proceedings of
the 9th International Conference on, vol. 1, 2002, pp.
404–412 vol.1.

[72] J. Wisbeck, A. Barros, and R. Ojeda, “Application of
ica in the separation of breathing artifacts in ecg sig-
nals,” 1998.

[73] S. Calinon and A. Billard, “Recognition and repro-
duction of gestures using a probabilistic framework
combining pca, ica and hmm,” in ICML ’05: Proceed-
ings of the 22nd international conference on Machine
learning. ACM, 2005, pp. 105–112.

[74] M. Kato, Y.-W. Chen, and G. Xu, “Articulated hand
tracking by pca-ica approach,” in FGR ’06: Proceed-
ings of the 7th International Conference on Automatic
Face and Gesture Recognition. IEEE Computer So-
ciety, 2006, pp. 329–334.

[75] G. R. Naik, D. K. Kumar, V. P. Singh, and
M. Palaniswami, “Hand gestures for hci using ica of
emg,” in VisHCI ’06: Proceedings of the HCSNet
workshop on Use of vision in human-computer inter-
action. Australian Computer Society, Inc., 2006, pp.
67–72.

[76] G. R. Naik, D. K. Kumar, H. Weghorn, and
M. Palaniswami, “Subtle hand gesture identification
for hci using temporal decorrelation source separa-
tion bss of surface emg,” in Digital Image Comput-
ing Techniques and Applications, 9th Biennial Con-
ference of the Australian Pattern Recognition Society
on, 2007, pp. 30–37.

[77] M. Scherg and D. Von Cramon, “Two bilateral
sources of the late aep as identified by a spatio-
temporal dipole model.” Electroencephalogr Clin
Neurophysiol, vol. 62, no. 1, pp. 32–44, January 1985.

[78] R. Phlypo, V. Zarzoso, P. Comon, Y. D’Asseler, and
I. Lemahieu, “Extraction of atrial activity from the
ecg by spectrally constrained ica based on kurtosis
sign,” in ICA’07: Proceedings of the 7th international
conference on Independent component analysis and
signal separation. Berlin, Heidelberg: Springer-
Verlag, 2007, pp. 641–648.

[79] J. Oster, O. Pietquin, R. Abächerli, M. Krae-
mer, and J. Felblinger, “Independent compo-
nent analysis-based artefact reduction: appli-
cation to the electrocardiogram for improved
magnetic resonance imaging triggering,” Phys-
iological Measurement, vol. 30, no. 12, pp.
1381–1397, December 2009. [Online]. Available:
http://dx.doi.org/10.1088/0967-3334/30/12/007

[80] R. Vigário, J. Särelä, V. Jousmäki, M. Hämäläinen,
and E. Oja, “Independent component approach to the
analysis of eeg and meg recordings.” IEEE transac-
tions on bio-medical engineering, vol. 47, no. 5, pp.
589–593, May 2000.

[81] J. Onton, M. Westerfield, J. Townsend, and
S. Makeig, “Imaging human eeg dynamics using
independent component analysis,” Neuroscience &
Biobehavioral Reviews, vol. 30, no. 6, pp. 808–822,
2006.

AN OVERVIEW OF INDEPENDENT COMPONENT ANALYSIS AND. . . Informatica 35 (2011) 63–81 81

[82] B. Jervis, S. Belal, K. Camilleri, T. Cassar, C. Bi-
gan, D. E. J. Linden, K. Michalopoulos, M. Zervakis,
M. Besleaga, S. Fabri, and J. Muscat, “The indepen-
dent components of auditory p300 and cnv evoked po-
tentials derived from single-trial recordings,” Physi-
ological Measurement, vol. 28, no. 8, pp. 745–771,
August 2007.

[83] J. C. Mosher, P. S. Lewis, and R. M. Leahy, “Mul-
tiple dipole modeling and localization from spatio-
temporal meg data,” Biomedical Engineering, IEEE
Transactions on, vol. 39, no. 6, pp. 541–557, 1992.

[84] M. Hämäläinen, R. Hari, R. J. Ilmoniemi, J. Knuu-
tila, and O. V. Lounasmaa, “Magnetoencephalogra-
phy—theory, instrumentation, and applications
to noninvasive studies of the working human brain,”
Reviews of Modern Physics, vol. 65, no. 2, pp. 413+,
April 1993.

[85] A. C. Tang and B. A. Pearlmutter, “Independent com-
ponents of magnetoencephalography: localization,”
pp. 129–162, 2003.

[86] J. Parra, S. N. Kalitzin, and Lopes, “Magnetoen-
cephalography: an investigational tool or a routine
clinical technique?” Epilepsy & Behavior, vol. 5,
no. 3, pp. 277–285, June 2004.

[87] K. Petersen, L. K. Hansen, T. Kolenda, and E. Ros-
trup, “On the independent components of functional
neuroimages,” in Third International Conference on
Independent Component Analysis and Blind Source
Separation, 2000, pp. 615–620.

[88] T. Ristaniemi and J. Joutsensalo, “the performance of
blind source separation in cdma downlink,” 1999.

[89] N. Cvejic, D. Bull, and N. Canagarajah, “Improv-
ing fusion of surveillance images in sensor networks
using independent component analysis,” Consumer
Electronics, IEEE Transactions on, vol. 53, no. 3, pp.
1029–1035, 2007.

[90] A. J. Bell and T. J. Sejnowski, “The "independent
components" of natural scenes are edge filters.” Vi-
sion Res, vol. 37, no. 23, pp. 3327–3338, December
1997.

[91] T.-W. W. Lee and M. S. Lewicki, “Unsupervised im-
age classification, segmentation, and enhancement
using ica mixture models.” IEEE transactions on im-
age processing : a publication of the IEEE Signal
Processing Society, vol. 11, no. 3, pp. 270–279, 2002.

[92] G. Antoniol, M. Ceccarelli, P. Petrillo, and A. Pet-
rosino, “An ica approach to unsupervised change de-
tection in multispectral images,” in Biological and
Artificial Intelligence Environments, B. Apolloni,
M. Marinaro, and R. Tagliaferri, Eds. Springer
Netherlands, 2005, ch. 35, pp. 299–311.

82 Informatica 35 (2011) 63–81 G.R. Naik et al.

Informatica 35 (2011) 83–90 83

An Identity-Based Mediated Signature Scheme Without Trusted PKG

Xiaofeng Wang and Shangping Wang
School of Science, Xi’an university of technology, Xi’an 710048, P.R.China
E-mail: xfwang66@sina.com.cn

Keywords: ID-based signature, ID-based mediated signature, without trusted PKG, immediate revocation, GDH group

Received: July 14, 2008

Mediated Signature Scheme provides an efficient method for fast revocation of a user’s identity in identity
(ID)-based cryptosystems. The only ID-based mediated signature scheme was proposed by Cheng et al.
from bilinear pairing in [8]. Unfortunately, their scheme has an inherent flaw that the PKG is fully capable
to generate a valid mediated signature of some message on behalf of its signers by only utilizing the
public information of the system. In this paper, an efficient ID-based mediated signature scheme without
trusted PKG is proposed. Compared with the scheme [8], the proposed scheme has other property besides
achieving immediate revocation of a signer’s ID. That is, proposed scheme is ID-based, but without any
assumption of pre-fixed trusted relationship between users and PKG, which effectively solves the problem
that exists in some existing ID-based public key cryptosystems in which a trusted PKG and key escrow are
needed.

Povzetek: Predstavljena je metoda elektronskega podpisovanja.

1 Introduction

The ID-based public key cryptosystems allow public keys
of a user to be computed easily and publicly from a string
to correspond with his (her) identity (such as name, tele-
phone number, email address or an IP address). This char-
acteristic avoids the necessity of using certificates and PKI
system. Compared with certificate-based cryptosystems,
ID-based cryptosystems have simplified key management
since there is no need to maintain a great database con-
taining a list of public keys and their respective owners.
Therefore, ID-based public key cryptosystems have a wide
application foreground in information security field. How-
ever, two inherent limitations of ID-based cryptosystems
have hindered its development in implementing.

The first limitation is the necessity of a trusted party, re-
ferred to as Private Key Generator (PKG) and key escrow.
In ID-based cryptosystems, a user’s identity (ID) is used as
his/her public key, for this work, users cannot generate their
own key-pairs. As alternative, this is done by a PKG. The
PKG uses a master key to generate private keys for users.
Usually, PKG is supposed to be trusty. However, there is
not a fully trusted PKG in practice. Since PKG knows pri-
vate key of each user, a dishonest PKG can impersonate
any user and forge their signatures. Recent research shows
that this problem can be mitigated by splitting PKG’s mas-
ter key between a numbers of PKGs[1], but this adds extra
complexity to key generation.

The second limitation is that current ID-based cryptosys-
tems cannot provide an efficient solution to immediately
revoke a user’s identity. The typical way of revoking a
user’s identity is to concatenate a valid period to the iden-
tity string. Revocation is achieved by instructing PKG to

stop issuing new private keys for revoked identities. This
involves the need to periodically re-issue all private keys
in the system, and the PKG must be online most of the
time, otherwise, the user’s identity cannot be immediately
revoked using this method.

Boneh et al. introduced a method for obtaining fast revo-
cation of a user’s public key privilege in RSA-based cryp-
tosystems. They call it mediated RSA (mRSA)[2]. The
main idea behind mRSA is to introduce a special online en-
tity in standard RSA, called Security Mediator (SEM). To
sign or decrypt a message, user must first obtain a message-
specific token from the SEM, and he(she) cannot use his
(her) private key without this token. To revoke user’s abil-
ity to sign or decrypt, the administrator instructs the SEM
to stop issuing tokens for user’s public key. Mediated RSA
(mRSA) is a simple and practical method of splitting RSA
private keys between the user and the SEM. Neither the
user nor the SEM can cheat one another since each sig-
nature or decryption must involve both parties. mRSA al-
lows fast revocation of user’s security privileges. However,
mRSA still relies on public key certificates to derive public
keys. Boneh et al.[3] and Ding et al.[4] proposed Identity-
based mRSA schemes, respectively. The basic idea behind
identity-based mRSA is the use of a single common RSA
modulus n among all users of a system. This modulus is
assumed to be public and contained in a public key certifi-
cate, and the certificate is issued, as usual, by a Certificate
Authority (CA). This method cannot essentially avoid the
necessity of using certificates and CA.

Boneh et al. first gave a practical ID-based encryp-
tion scheme from Weil pairing [5] in 2001. Based on this
scheme, Libert et al. [6], Baek et al. [7] proposed an ID-
based mediated encryption scheme, respectively, using the

84 Informatica 35 (2011) 83–90 X. Wang et al.

similar method given in mRSA. Both schemes provide ef-
ficient methods to immediately revoke a user’s identity.

Very recently, Cheng et al. proposed an ID-based medi-
ated signature scheme [8]. Their scheme avoids the using
of certificates and CA. The main idea behind it is to in-
troduce a SEM, in a general ID-based signature scheme.
A signer’s private key is split into two parts. One part is
hold by himself(herself), and another is given to the SEM.
Therefore, only with the help of the SEM, can a signer gen-
erate a valid signature. As a result, an immediate revocation
of a signer’s ID (i.e. a signer’s signing privilege) is possi-
ble by instructing the SEM not to help the revoked user
anymore. Unfortunately, their scheme has an inherent flaw,
it is that the PKG is fully capable to generate a valid medi-
ated signature of some message on behalf of its signers by
only utilizing the public information of the signers and the
SEM.

In this paper, we propose an ID-based mediated signa-
ture scheme from bilinear pairing. Proposed scheme has
other properties besides achieving immediate revocation of
signer’s ID. First, our scheme is ID-based, but without any
assumption of pre-fixed trusted relationship between users
and PKG, it solves the problem that exists in some exist-
ing ID-based public key cryptosystems, in which a trusted
PKG and key escrow are needed, in certain extent. Second,
our scheme is able to prevent the dishonest PKG from im-
personating the signer to generate a valid mediated signa-
ture. To construct such a scheme, we first improve Cheng’s
ID-based signature scheme [8], to make it has the property
that the PKG is unable to generate a valid signature on be-
half of any signers even if it knows the private keys of the
signers, then used it to construct an efficient ID-based me-
diated signature scheme without trusted PKG.

The remaining sections are organized as follows. In
Section 2 we briefly introduce some related mathematical
knowledge. In Section 3 we recall the Cheng’s ID-based
mediated signature scheme. In Section 4 we propose an
ID-based signature scheme, based on this scheme, we pro-
pose a new ID-based mediated signature scheme without
trusted PKG and analysis its security in Section 5, then we
conclude this paper in Section 6.

2 Preliminaries

2.1 Bilinear pairings
Let q be a prime with l bits length. Let G1 be an additive
cyclic group generated by P, whose order is q. Let G2 be a
multiplicative cyclic group of the same order q. A bilinear
pairing is a map ê : G1 ×G1 → G2 satisfies the following
properties:

(1) Bilinear: For any aP,bP ∈ G1, ê(aP,bP) = ê(P,P)ab,
where a,b ∈ Z∗

q ;
(2) Non-degenerate: There exists P,Q ∈ G1 such that

ê(P,Q) ̸= 1G2 ;
(3) Computable: There exists an efficient algorithm to

compute ê(P,Q) for all P, Q ∈ G1.

2.2 Gap Diffie-Hellman (GDH) group

We consider the following problems in G1.
(1) Discrete logarithm problem (DLP): Given Q ∈ G1, to

find an integer x ∈ Z∗
q , such that Q = xP (Assuming such an

integer exists.).
(2) Computational Diffie-Hellman problem (CDHP):

Given aP,bP ∈ G1, to compute abP.
(3) Decisional Diffie-Hellman problem (DDHP): Given

P,aP,bP,cP ∈ G1, to decide whether c = ab mod q, if so,
(P,aP,bP,cP) is called a valid Diffie-Hellman quaternion.

Definition 2.1 We call G1 a gap Diffie-Hellman (GDH)
group if DDHP can be solved in polynomial time but there
is no polynomial time algorithm to solve CDHP on G1 with
non-negligible probability.

Such a group can be found in super-singular elliptic
curve or hyper-elliptic curve over finite fields. For more de-
tails, see [9,10,11,12,13,14]. An efficient method to solve
DDHP is introduced in [15]: assuming there is a bilinear
map ê, then (P,aP,bP,cP) is a valid Diffie-Hellman quater-
nion ⇔ ê(aP,bP) = ê(P,cP).

Schemes in this paper can work on any GDH group.
Throughout this paper, we define the system parameters in
all schemes as follows: G1, G2, P, q and ê are as described
above. These system parameters can be obtained using
a GDH Parameters Generator [5,15]. Define two crypto-
graphic hash functions: H1 : {0,1}∗ → G1, H2 : {0,1}∗ →
Z∗

q .

3 Cheng’s ID-based mediated
signature scheme and its security
analysis

3.1 The scheme

Cheng’s ID-based mediated signature scheme (for short
CMSS) consists of three entities: PKG, SEM and signers.
There are four algorithms: Setup, MeExtract, MeSign and
Verify. They are described as follows:

(1) Setup: Sharing the same system parameters with
above. PKG picks s ∈ Z∗

q at randomly as a master key and
computes the system public key Ppub = sP. Ppub is pub-
lished but s is kept secretly.

(2) MeExtract: Given an identity ID, PKG chooses sID ∈
Z∗

q at randomly, computes:

QID = H1(ID)

Duser
ID = sID ·QID

DSEM
ID = (s− sID) ·QID

Duser
ID is sent secretly to the signer whose identity is ID, as

the private key of the signer, and (DSEM
ID , ID) is sent secretly

to the SEM.
(3) MeSign: To sign a message M, the signer interacts

with the SEM as follows:

AN IDENTITY-BASED MEDIATED SIGNATURE SCHEME. . . Informatica 35 (2011) 83–90 85

The signer chooses r̃1 ∈ Z∗
q at randomly, and computes:

R̃1 = r̃1P. The triple (M, R̃1, ID) is sent to the SEM.
After having received (M, R̃1, ID), the SEM first checks

the ID of the signer is not revoked. It then picks r̃2 ∈ Z∗
q at

randomly, and computes:

R̃2 = r̃2P

R̃ = R̃1 + R̃2

h̃ = H2(M, R̃)

S̃SEM = r̃2Ppub + h̃DSEM
ID

Then (R̃, S̃SEM) is sent back to the signer.
After having received (R̃, S̃SEM), the signer computes:

h̃ = H2(M, R̃)

S̃user = r̃1Ppub + h̃Duser
ID

S̃ = S̃user + S̃SEM

He verifies whether ê(P, S̃) = ê(Ppub, R̃ + h̃QID) holds.
If so, the signature on message M under ID is set to be
σ̃ = (R̃, S̃).

(4) Verification: Given a signature σ̃ = (R̃, S̃) on mes-
sage M under ID, the verifier computes:

h̃ = H2(M, R̃)

QID = H1(ID)

He accepts the signature if ê(P, S̃) = ê(Ppub, R̃+ h̃QID).

3.2 Security analysis
The signature on message M under ID is:

S̃ = S̃user + S̃SEM

= r̃1Ppub + h̃Duser
ID + r̃2Ppub + h̃DSEM

ID

= s(R̃1 + R̃2)+ h̃sQID

= sR̃+ h̃sQID

It is obvious that not only can the dishonest PKG gen-
erate every user’s private key and impersonate any user to
forge their signatures, but also generate a valid mediated
signature on message M under ID by only utilizing the pub-
lic information (M, R̃, ID).

4 Improved ID-based signature
scheme and its security

4.1 Improved ID-based signature scheme
Our ID-based signature scheme is based on GDH groups.
It is a variant of the ID-based signature scheme given by Yi
[16]. Similar variants can be seen in [8,23,24]. The security
analysis of the scheme can be found in [17]. In some ID-
based signature scheme such as [12,16,18], the PKG can
directly forge signature by using of the signature’s public

information. Our construction avoids this flaw. Our ID-
based signature scheme consists of four algorithms: Setup,
Extract, Signing and Verification, which is described as fol-
lows.

(1) Setup: Given a security parameter l, PKG runs the
GDH Parameters Generator to obtain Params = {G1, G2, P,
q , ê, H1, H2}. Then it picks a random number s ∈ Z∗

q as a
master key and computes the system public key Ppub = sP.
Ppub is published but s is kept secretly.

(2) Extract: It is a key extraction algorithm engaged by
PKG and a user. A user submits and authenticates his/her
identity ID ∈ {0,1}∗ to PKG, PKG inputs system parame-
ters, master key and the user’s identity ID; and outputs the
user’s public key and private key.

The signer randomly chooses an integer ru ∈ Z∗
q , sets

Ru = ruP, submits (ID, Ru) to PKG, and authenticates
his(her) identity to PKG by out-band mechanism. PKG
generates signer’s public key and private key: Qu =
H1(ID,Ru), Du = sQu, and sends Du to the signer via a
secure channel.

(3) Signing: Given a message M, the signer picks a ran-
dom number rv ∈ Z∗

q such that rvru mod q ̸= 1, and com-
putes:

Rv = rvP

h = H2(M, ID,Ru,Rv)

X = rurvP+hDu

The signature on message M is set to be δ = (X ,Ru,Rv).
(4) Verification: Given a signature δ = (X ,Ru,Rv) on

message M under ID, the verifier computes:

h = H2(M, ID,Ru,Rv)

Qu = H1(ID,Ru)

He accepts the signature if ê(X ,P) =
ê(Ru,Rv)ê(hQu,Ppub).

4.2 Security analysis
Theorem 4.1 The improved ID-based signature scheme is
secure against existential forgery under adaptively chosen
message and ID attack in the random oracle model.

Analysis: Generally, an ID-based signature scheme in-
volving two security models[10]. The first is adaptively
chosen message and ID attack, the second is adaptively
chosen message and given ID attack. The latter is in fact
the security notion of a general signature scheme. Using
the same methodology as Lemma 1 in [10], we can prove
that, if there exists a forger A who performs an existen-
tial forgery under an adaptively chosen message and ID at-
tack against our scheme, then, making use of A , we can
construct an algorithm B, with the same advantage as A ,
against our scheme under adaptively chosen message and
given ID attack.

Following certification process shows, if there exists a
adversary B which performs an existential forgery against
our scheme under adaptively chosen message and given ID

86 Informatica 35 (2011) 83–90 X. Wang et al.

attack, then we can construct an algorithm F that solves
the CDHP by running the adversary B as a subroutine.

Proof: We cannot directly reduce the security of our
ID-based signature scheme to the hardness of the CDHP
because our scheme contains a random value in its signa-
ture [13]. We reduce the security of our ID-based signature
scheme to the hardness of the CDHP by making use of the
oracle replay technology and the forking lemma [20,21].

Given an identity ID, the corresponding public/private
key pair is (Qu,Du). If there exists an efficient algo-
rithm B against our scheme under adaptively chosen mes-
sage and given ID attack, then an algorithm F can be
constructed as follows: inputs P, Ppub = sP and Qu =
tP for some t ∈ Z∗

q , if B chooses a message M, uses
the oracle replay method and the forking lemma [20,21],
F can obtain two valid signatures (M,Ru,Rv,h1,X1) and
(M,Ru,Rv,h2,X2) such that h1 ̸= h2, and satisfying equa-
tions ê(X1,P) = ê(Ru,Rv)ê(h1Qu,Ppub) and ê(X2,P) =
ê(Ru,Rv)ê(h2Qu,Ppub). That is, ê(X1 − X2,P) = ê((h1 −
h2)Du,P). We have ê((X1 −X2)− (h1 − h2)Du,P) = 1G2 .
Since ê has the property of non-degeneracy, we have (X1 −
X2)− (h1 −h2)Du = O (here O is an ideally defined point,
namely the point at infinity, and is also recognized as a
point on elliptic curve.), and Du = (h1 − h2)

−1(X1 − X2)
(see [8]). It means that F can solve an instance of CDHP
in G1 since Du = sQu = stP = (h1 −h2)

−1(X1 −X2).

5 Proposed scheme and its security
analysis

The idea behind ID-based mediated signature is to intro-
duce a trusted online party SEM in a general ID-based sig-
nature scheme. A private key of the signer is split into two
parts. One part is given to the signer, and another is given
to the SEM. Therefore, only with the help of the SEM, can
a signer generate a valid mediated signature. As a result, an
immediate revocation of a signer’s signing privilege is pos-
sible by instructing the SEM not to help the revoked user
anymore.

5.1 Our scheme
Now we give the mediated version of the improved ID-
based signature scheme in Section 4.1, and show how can
avoid forging signature by dishonesty PKG in our scheme.
Our scheme consists of three entities: PKG, SEM and
signer, and four algorithms: Setup, MeExtract, MeSign and
Verification, they are described as follows:

(1) Setup: Given a security parameter l, PKG runs the
GDH Parameters Generator to obtain Params= {G1, G2, P,
q , ê, H1, H2}. PKG picks two different random numbers
s1 ∈ Z∗

q and s2 ∈ Z∗
q , lets s = s1 + s2 as the master key, and

generates system public key Ppub = sP. Ppub is published
but s1,s2 are kept secretly.

(2) MeExtract: the signer randomly chooses an integer
rs ∈ Z∗

q , sets Rs = rsP, submits (ID,Rs) to PKG and authen-

ticates his/her identity ID to PKG by out-band mechanism.
PKG generates the public key and private key of the signer:
Qs =H1(ID,Rs), Ds = s1Qs. PKG generates the private key
of the SEM: DSEM = s2Qs. Then sent Ds to the signer, sent
(DSEM, ID) to the SEM, respectively, over a confidential
and authentic channel.

(3) MeSign: To sign a message M, the signer must
present a service requisition to SEM. He interacts with the
SEM as follows:

The signer chooses a random number r1 ∈ Z∗
q such that

r1rs mod q ̸= 1 and r2
1 mod q ̸= 1, computes:

R1 = r1P

Zs = rsr1P+H2(M, ID,Rs,R1)Ds

Signer sends (M, ID,Rs,R1,Zs) to the SEM.
After having received (M, ID,Rs,R1,Zs), the SEM

checks that the ID of the signer is not revoked, then com-
putes:

vs = H2(M, ID,Rs,R1)

Z = Zs + vsDSEM

and verifies:
ê(Z,P) = ê(Rs,R1)ê(vsH1(ID,Rs),Ppub)
If so, the signer is a legitimate participant, and the SEM

provides service for him/her.
SEM then picks a random number r2 ∈ Z∗

q such that
r2

2 mod q ̸= 1, and computes:

R2 = r2P

SSEM = r2
2P+H2(M, ID,Rs,R1,R2)DSEM

The pair (R2,SSEM) is sent to signer.
After having received (R2,SSEM), the signer computes:

v = H2(M, ID,Rs,R1,R2)

Ss = r2
1P+ vDs

S = Ss +SSEM

and verifies:
ê(S,P) = ê(R1,R1)ê(R2,R2)ê(vQs,Ppub)
If so, the mediated signature on message M under ID is

set to be σ = (Rs,R1,R2,S).
(4) Verification: Given a signature σ = (Rs,R1,R2,S) on

message M under ID, the verifier computes:

v = H2(M, ID,Rs,R1,R2)

Qs = H1(ID,Rs)

He accepts the signature if and only if ê(S,P) =
ê(R1,R1)ê(R2,R2)ê(vQs,Ppub).

5.2 Security analysis
Theorem 5.1 In our scheme, the dishonest PKG can not
impersonate its signer to generate a valid mediated signa-
ture.

AN IDENTITY-BASED MEDIATED SIGNATURE SCHEME. . . Informatica 35 (2011) 83–90 87

Analysis: We discuss the Theorem 5.1 from the follow-
ing two aspects:

First, dishonest PKG can not generate a valid medi-
ated signature by only utilizing the public information of
a signer and the SEM.

For the valid mediated signature on message M under
signer U’s identity ID :

S = Ss +SSEM = r2
1P+ r2

2P+ vsQs

Consider following impersonation attack[19]: PKG
wants to impersonate the signer U to forge a mediated sig-
nature, it can do as follows:

Chooses r′s, r′1, r′2 ∈ Z∗
q at randomly, computes:

R′
s = r′sP

R′
1 = r′1P

R′
2 = r′2P

Lets Q′
s = H1(ID,R′

s) as the U’s public key, then PKG
computes:

v′ = H2(M, ID,R′
s,R

′
1,R

′
2)

S′ = r′1
2P+ r′2

2P+ v′sQ′
s

Mediated signature is σ ′ = (R′
s,R

′
1,R

′
2,S

′). Because
ê(S′,P) = ê(R′

1,R
′
1)ê(R

′
2,R

′
2)ê(v

′Q′
s,Ppub), PKG forged a

valid mediated signature.
However, signer U can provide a proof to convince

that the mediated signature is forged by PKG. To do so,
he firstly sends Rs = rsP to an arbiter, and provides a
knowledge proof that he knows Qs = H1(ID,Rs) and pri-
vate key Ds = s1Qs; the arbiter randomly chooses a se-
cret integer a ∈R Z∗

q and sends aP to U ; U then com-
putes B = ê(Ds,aP) and sends B to arbiter. If the equa-
tion B = ê(H1(ID,Rs),Ppub)

a holds, i.e., identity ID corre-
sponds to both Rs = rsP and R′

s = r′sP. The arbiter deduces
PKG dishonest because the master-key s is only known to
PKG.

Second, dishonest PKG can not generate a valid me-
diated signature by replacing signer’s secret value r1 and
SEM’s secret value r2.

Consider the following impersonation attack: PKG
wants to impersonate a signer with identity ID. To do
so, PKG chooses r′s ∈ Z∗

p at randomly, lets R′
s = r′sP, Q′

s =
H1(ID,R′

s), lets D′
s = s1Q′

s as signer’s private key. To sign
a message M, PKG must firstly present the service requisi-
tion to SEM. It interacts with the SEM as follows:

PKG chooses r′1 ∈ Z∗
q at randomly, computes:

R′
1 = r′1P

v′s = H2(M, ID,R′
s,R

′
1)

Z′
s = r′sr

′
1P+ v′sD

′
s

Then he sends (M, ID,R′
s,R

′
1,Z

′
s) to the SEM.

The SEM checks that the signer’s ID is not revoked, then
computes:

v′s = H2(M, ID,R′
s,R

′
1)

Q′
s = H1(ID,R′

s)

Z′ = Z′
s + v′sDSEM

It is able to find immediately ê(Z′,P) ̸=
ê(R′

s,R
′
1)ê(v

′
sH1(ID,R′

s),Ppub). Therefore, the SEM
refuses to provide service for it.

Theorem 5.2 In our scheme, the only functionality of
the SEM is to revoke signer’s signing privilege. It cannot
generate valid mediated signatures of some message on be-
half of its signers.

Supposing that an attacker is able to compromise the
SEM and expose the secret key DSEM , it enables the SEM
to un-revoke previously revoked, or blocks possible future
revocation of current valid identities. However, the knowl-
edge of DSEM does not enable the attacker to sign messages
on behalf of its signers, since the generation of a valid me-
diated signature needs a cooperation of the SEM and the
signer. Let us consider an attacker trying to forge a signer’s
mediated signature on some message. Recall that the token
sent to the signer by the SEM, it is a pair (R2,SSEM), where
R2 = r2P and SSEM = r2

2P+vDSEM , respectively. We notice
that they are all random elements in G1, which is useless to
the attacker.

Theorem 5.3 The proposed ID-based mediated signa-
ture scheme is unforgeable under the random oracle model
with the assumption that G1 is a GDH group.

According to the analysis of Theorem 4.1, if we want
to proof that our scheme is secure against adaptively cho-
sen message and ID attack, we only need to proof that our
scheme is secure against adaptively chosen message and
given ID attack [10]. Now we proof the latter under the
random oracle model.

Lemma 5.1 If there is a forger F for an adaptively cho-
sen message and given ID attack against our ID-based me-
diated signature scheme, F can ask queries to the oracle
H1, H2, MeExtract, and MeSign, at most qH1 ,qH2 ,qE ,qS
times, and has running time T0 and advantage ε0 ≥ 10(qS+
1)(qS +qH2)/l, then CDHP can be solved with probability
ε ≥ 1/9 within running time T ≤ (23qH2 T0)/ε0.

Proof : Let G1 be a cyclic additive group defined in Sec-
tion 2. We show how to construct an algorithm B that
compute abP for a randomly given instance P,aP,bP ∈ G1
(where a,b ∈ Z∗

q) by running F as a subroutine.
During the game, F will consult B for answers to the

random oracles H1, H2. Roughly speaking, these answers
are randomly generated, but to maintain the consistency
and to avoid collision, B keeps two lists L1 and L2 to store
the answers. We assume that F will ask for H1(ID, ·) be-
fore ID is used as an input of any other queries.

Initialization: Fix an identity ID, lets Ppub = aP as sys-
tem public key.

ID-Hash Queries (H1): When IDi is submitted to H1
oracle, B first scans L1 of sorted elements (IDi,Qsi) (where

88 Informatica 35 (2011) 83–90 X. Wang et al.

1 ≤ i ≤ qH1) to check whether H1 was already defined for
that input. If it was, the previously defined value Qsi is
returned. Otherwise, B picks ri ∈ Z∗

q at randomly, defines

Qsi =

{
bP, i f IDi = ID
riP, otherwise , and stores (Di,Qsi) in

L1.
Private Key Extraction Queries (MeExtract): When

F requests the private key associated with an identity
IDk (where 1 ≤ k ≤ qE), B recovers the corresponding
(IDk,Qsk) from L1. Then B picks uk ∈ Z∗

q at randomly,
lets Dk = ukQsk as the private key corresponding to IDk.
Note that F must not ask the private key corresponding to
the IDk = ID.

Message-Hash Queries (H2): When a message
(M j, ID j) is submitted to the H2 oracle, B first scans L2
of sorted elements (M j, ID j,Rs j ,R1 j ,R2 j ,v j) (where 1 ≤
j ≤ qH2) to check whether H2 was already defined for that
input. If it was, the previously defined value v j is re-
turned. Otherwise, B picks r1 j ,r2 j ,v j ∈R Z∗

q at randomly,
returns v j as the answer to F , lets Rs j = r jP, R1 j = r1 j P,
R2 j = r2 j P, and stores (M j, ID j,Rs j ,R1 j ,R2 j ,v j) in L2.

Signing Queries (MeSign): If F asks the signature
on Mt of IDt , B first scans L1 to recover the previ-
ously defined value (IDt ,Qst), then scans L2 to recover the
previously defined value (Mt , IDt ,Rst ,R1t ,R2t ,vt). Then
B lets St = r2

1t
P + r2

1t
P + rtvt(aP), and returns σt =

Sign(Mt , IDt) = (Mt , IDt ,Rst ,R1t ,R2t ,vt ,St) to F as the
answer. Obvious, σt is a valid ID-based mediated sig-
nature, i.e. it satisfies the verify equation ê(St ,P) =
ê(R1t ,R1t)ê(R2t ,R2t)ê(vtQst ,Ppub).

Output: We need to take care of a nasty problem of
collisions of the query result of MeSign and H2, as men-
tioned in [20] (Proof of Lemma 4). This may cause some
“collision”; a query result of MeSign may produce a value
that is inconsistent with other query results of MeSign
or H2. In this case, B just outputs fail and exits. If
no collisions have appeared, B outputs a valid signature
σ = (M, ID,Rs,R1,R2,v,S) with probability ε0, which is
expected to be valid for the fixed ID, without accessing
any oracles except H1, H2. i.e. it satisfies the verifi-
cation equation ê(S,P) = ê(R1,R1)ê(R2,R2)ê(vQs,Ppub).
Considering Ppub = aP, Qs = bP, we have ê(S,P) =
ê(R1,R1)ê(R2,R2)ê(vabP,P) (1).

We apply the oracle replay technique which was in-
vented by Pointcheval and Stern in [20,21], in which,
B replays the same random tape but different choices
of H2, as done in the forking lemma [20], we ob-
tain signature (M, ID,Rs,R1,R2,v′,S′) with v ̸= v′, which
are expected to be valid with respect to hash func-
tion H ′

2 on (M, ID,Rs,R1,R2). So we have ê(S′,P) =
ê(R1,R1)ê(R2,R2)ê(v′abP,P)(2).

From (1) and (2), we have:
ê(S−S′,P) = ê((v− v′)abP,P)
Then we obtain abP = S−S′

v−v′ .
Since the oracle H1, H2, MeExtract, and MeSign gen-

erate random distribution and are indistinguishable from
the original scheme, F learns nothing from query re-

sults. Therefore, B works as expected if no collisions ap-
pear in Output. Intuitively, since v is random, the possi-
bility of collisions is negligible; in [20] (Proof of Theo-
rem 3), this probability was computed explicitly, and fur-
thermore, it was proved that the oracle replay in Out-
put produces valid signatures (M, ID,Rs,R1,R2,v,S) and
(M, ID,Rs,R1,R2,v′,S′) with the expected properties such
that v ̸= v′ with probability ε ≥ 1/9 within the time T ≤
(23qH2T0)/ε0.

5.3 Discussion

There are two types of possible attacks against the proposed
scheme. The first comes from the choice of the random
numbers used in our scheme; the second comes from the at-
tacks on the discrete logarithm of elliptic curves. We show
the details as following:

(1) Choosing appropriate random numbers
In our ID-based signature scheme (see the Section

4.1(3)), if rvru mod q = 1, then X = rurvP+ hDu can be
represented as X = P+ hDu, thus the signer’s private key
can be computed from Du = h−1(X −P).

In our ID-based mediated signature scheme (see the Sec-
tion 5.1(3)), if r1rs mod q = 1, then Zs = rsr1P+ vsDs can
be represented as Zs = P+ vsDs, thus the signer’s private
key can be computed by SEM from Ds = v−1

s (Zs −P). If
r2

1 mod q = 1, then Ss = r2
1P+ vDs can be represented as

Ss = P+vDs, thus the signer’s private key can be computed
by the verifier from Ds = v−1(Ss −P). If r2

2 mod q = 1,
then SSEM = r2

2P+ vDSEM can be represented as SSEM =
P+ vDSEM , thus the SEM’s private key can be computed
by the signer from DSEM = v−1(SSEM −P).

The probability of both rvru mod q= 1 and r1rs mod q=
1 are all 1/(q− 1), and the probability both r2

1 mod q = 1
and r2

2 mod q = 1 are all 1/(q−1). It is neglectable when
q is large enough. (e.g., The bit length of q exceed the
length that defined in the international standards for ellip-
tic curve cryptography, such as ANSIX9.62, ANSIX9.63,
IEEE-P1363, ISO/IEC14888,etc..)

In our scheme, we restrict that rvru mod q ̸= 1, r1rs mod
q ̸= 1, r2

1 mod q ̸= 1, and r2
2 mod q ̸= 1 to avoid these

events taking place. Though similar ID-based signature
scheme[16] and its variants [8,23,24] have not any restric-
tion for choosing random numbers, and do not discuss this
security flaw, but we especially emphasize such a restric-
tion in order to make our scheme more perfect.

(2) The attacks on the discrete logarithm of elliptic
curves

Our scheme is based on elliptic curve cryptography
whose security relies on the difficulty to solve the discrete
logarithm problem of the elliptic curve abelian group (The
Elliptic Curve Discrete Logarithm Problem, ECDLP). The
results show, the time complexity is exponential to break
the ECDLP using the Pollard rho algorithm that is acknowl-
edged most effective attack method for ECDLP [25,26].
However, not all the elliptic curves are suitable for cryptog-
raphy. In order to guarantee the security, we must choose

AN IDENTITY-BASED MEDIATED SIGNATURE SCHEME. . . Informatica 35 (2011) 83–90 89

secure elliptic curves whose orders are large prime num-
bers (e.g. Its bit length exceeds 234[26]) or include large
prime factors. The result [27] provided four efficient meth-
ods to select secure elliptic curves. As long as select ap-
propriate secure elliptic curves, as far as we know, there
are not efficient methods to break ECDLP.

6 Conclusions
We improved an ID-based signature scheme and con-
structed an efficient ID-based mediated signature scheme
from the bilinear pairing. Our ID-based mediated signa-
ture scheme has a character that the dishonest PKG can not
impersonate signer to generate a valid mediated signature.
Our scheme not only provides an efficient method for im-
mediate revocation of a user’s identity in ID-based public
key cryptosystems, but also solves the problem that exists
in some existing ID-based signatures scheme, in certain ex-
tent, in which, a trusted PKG and key escrow are needed.

Acknowledgement

This work was supported by the National Natural
Science Foundation of China (60873268); the China
Postdoctoral Science Foundation (No.20080431238 and
No.200902596); the Natural Science Foundation Research
Plan of Shaanxi province of China (No.08JK382 and
No.2009JM8004-5).

References
[1] T.Candebat, C.R.Dunne and D.Gray. (2005)

Pseudonym Management using Mediated Identity-
Based Cryptography, In Advances in 2005 ACM
Workshop on Digital Identity Management (DIM’05),
Fairfax, Virginia, USA, pp.1-10.

[2] D.Boneh, X.Ding, G.Tsudik and C.Wong. (2001)
A method for fast revocation of public key certifi-
cates and security capabilities, In Advances in the
10th USENIX Security Symposium, Washington D.C.,
pp.297-308.

[3] D.Boneh, X.Ding, G.Tsudik, Identity-based Medi-
ated RSA.(2002) In Advances in 3rd. International
Workshop on Information and Security Applications,
Jeju Island, Korea, pp.192-209.

[4] X.Ding,G.Tsudik.(2003) Simple Identity-Based
Cryptography with Mediated RSA. volume 2612 of
LNCS, Springer-Verlag, pp.192-209.

[5] D.Boneh, M.Franklin.(2001) Identity-based en-
cryption from the Weil pairings, In Advances in
Cryptology-Crypto2001,volume 2139 of LNCS,
Springer-Verlag, pp.213-229.

[6] B.Libert,J.Quisquater.(2003) Efficient revocation and
threshold pairing based cryptosystems. In Advances
in 22nd Symposium on Principles of Distributed
Computing, ACM Press, pp.163-171.

[7] J.Baek and Y.Zheng.(2004) Identity-based threshold
decryption. In Advances in PKC’04, volume 2947 of
LNCS. Springer-Verlag, PP.248-261.

[8] X.Cheng, L.Guo, X.Wang.(2006) An Identity-based
Mediated Signature Scheme from Bilinear Pairing.
International Journal of Network Security, Vol.2,
No.1, pp.29-33.

[9] Q.Wu, W.Susilo, Y.Mu, F.Zhang.(2006) Efficient
Partially Blind Signatures with Provable Security.
In Advances in ICCSA 2006, volume 3982 of
LNCS,Springer-Verlag, pp.345-354.

[10] J.C.Cha and J.H.Cheon, An identity-based signature
from gap Diffie-Hellman groups, In Advances in PKC
2003, volume 2567 of LNCS, Springer-Verlag, pp.18-
30.

[11] S.D.Galbraith, K.Harrison and D.Soldera.(2002) Im-
plementing the Tate pairings. In Advances in ANTS
2002, volume 2369 of LNCS, Springer-Verlag,
pp.324-337.

[12] F.Hess.(2003) Efficient identity based signature
schemes based on pairings. In Advances in Select
Areas in Cryptography, SAC 2002, volume 2595 of
LNCS, Springer-Verlag, pp.310-324.

[13] J.H.Cheon, Y.Kim, H.J.Yoon.(2004) A New ID-based
Signature with Batch Verification, Cryptology ePrint
Archive, Report 2004/131.

[14] X.Huang,Y.Mu,W.Susilo,F.Zhang.(2005) Short Des-
ignated Verifier Proxy Signature from Pairings. In
Advances in EUC Workshops 2005, volume 3823 of
LNCS. Springer-Verlag, pp.835-844.

[15] D.Boneh, B. Lynn and H. Shacham.(2001) Short sig-
natures from the Weil-pairing. In Advances in Asi-
acrypt’01, volume 2248 of LNCS, Springer-Verlag,
pp.514-532.

[16] X.Yi.(2003) An identity-based signature scheme from
the Weil pairing, IEEE Communications Letters,
vol.7, no.2, pp.76-78.

[17] X.Cheng,J.Liu,X.Wang.(2005) Identity-based aggre-
gate and verifiably encrypted signatures from bilinear
pairing. In Advances in ICCSA 2005, volume 3483 of
LNCS, Springer-Verlag, pp.1046-1054.

[18] K.Paterson.(2002) ID-based signatures from pairings
on elliptic curves. Electronics Letters, vol.38, no.18,
pp.1025-1026.

90 Informatica 35 (2011) 83–90 X. Wang et al.

[19] X.Chen, F.Zhang, K.Kim.(2002) A new ID-based
group signature scheme from bilinear pairings.
Cryptology ePrint Archive, Report2002/184,
http://eprint.iacr.org/

[20] D.Pointcheval and J.Stern.(2000) Security arguments
for digital signatures and blind signatures, Journal of
Cryptology, vol.13, no.3, pp.361-396.

[21] D.Pointcheval and J.Stern.(1998) Security proofs
for signature schemes. In Advances in Cryptology-
Eurocrypt 96, volume 1163 of LNCS, Springer-
Verlag, pp.387-405.

[22] R.Gennaro, S.Jarecki, H.Krawczyk and T. Ra-
bin.(1996) Robust threshold DDS signatures. In Ad-
vances in Cryptology-Eurocrypt’96, volume 1070 of
LNCS, New York,Springer-Verlag, pp.354-371.

[23] J.Malone-Lee.(2002) Identity-Based Signcryption.
Cryptology ePrint Archive, http://eprint.iacr.org
/2002/098/.

[24] B.Libert, J.Quisquater.(2003) New identity based
signcryption schemes from pairings. IEEE Informa-
tion Theory Workshop 2003. Paris, France, Available
from http://eprint.iacr.org/2003/023.

[25] Ma DaPeng, Huang JianHua.(2007) The ellip-
tic curve cryptosystem and its security analysis.
http://www.paper.edu.cn/ downloadpaper.php/serial-
number=200707-432.

[26] Huang BaoQing. The elliptic curve cryptosys-
tem(ECC). http://www.hids.com.cn/ data.asp.

[27] J.H. Silverman.(1986) The Arithmetic of Elliptic
Curves. Graduate Texts in Math., vol.106, Springer-
Verlag, Berlin, Heidelberg, New York, pp.130-136.

Informatica 35 (2011) 91–100 91

Factors Affecting Acceptance and Use of Moodle: An Empirical
Study Based on TAM

Boštjan Šumak, Marjan Heričko, Maja Pušnik and Gregor Polančič
Faculty of Electrical Engineering and Computer Science, Smetanova ulica 17, 2000 Maribor, University of Maribor,
Slomškov trg 15, 2000 Maribor, Slovenia
E-mail: {Bostjan.Sumak, Marjan.Hericko, Maja.Pusnik, Gregor.Polancic}@uni-mb.si,
tel.: +386 2 220 7378, Fax: +386 2 220 7272

Keywords: e-learning, Moodle, acceptance, TAM

Received: September 19, 2009

Advancements in web technologies and the increased influence of the World Wide Web are leading to
new and innovative ways of learning. New e-learning system technologies and services enable activities
that allow users to be active learners, actively participating in the on-line learning process. When an e-
learning system with new technologies and services is presented, it needs to be adopted by its users. The
acceptance and use of an e-learning system can be influenced by different factors. The objective of this
research is to examine the factors that have an impact on students’ perceptions about the use and
acceptance of Moodle - an open source e-learning system. In this study, the technology acceptance
model (TAM) was used as an underlying theory. The data, collected from 235 students, was used to test
the hypothesized research model. A data analysis was performed using structural equation modelling
(SEM). The results of the analysis have revealed that the actual use of Moodle depends on two main
factors: behavioural intentions and attitudes toward using Moodle. Perceived usefulness was found as
the strongest and the most important predictor of attitudes toward using Moodle. Several practical and
theoretical implications of the present study are discussed at the end of the paper.

Povzetek: Analizirana je uporaba sistema Moodle, odprtokodnega sistema za e-učenje.

1 Introduction
An e-learning system is a system that provides services
that are necessary for handling all aspects of a course
through a single, intuitive and consistent web interface.
Such services are, for example: (1) course content
management, (2) synchronous and asynchronous
communication, (3) the uploading of content, (4) the
return of students’ work, (5) peer assessment, (6) student
administration, (7) the collection and organization of
students’ grades, (8) online questionnaires, (9) online
quizzes, (10) tracking tools, etc. With the advent of Web
2.0 technologies and services (like wikis, blogs, RSS, 3D
virtual learning spaces, etc) e-learning systems will
provide services that enable students to shift from
passive to active learners where they can actively
participate in the on-line learning process. E-learning
environments that provide access to synchronous and
asynchronous learning resources and activities are going
to continue growing [1].

In addition to educational organizations, business
organizations are also using e-learning technologies and
services for cost-effective online training for their
employees. In spite of the fact that educational and/or
business institutions are investing a lot of money and
resources in implementing e-learning systems, such
systems will not be fully utilized if the users fail to use
the system. When a new e-learning environment is
presented, it needs to be adopted by its users. User’s

perceptions regarding the use and acceptance of an e-
learning system can be affected by different factors,
which can be combined into two main groups: (a)
technological characteristics (like reliability,
responsiveness, efficiency, security, etc.) and (b)
individual characteristics (like age, gender, e-learning
experience, etc.). The main challenge for e-learning
system developers is to provide an e-learning system
with appropriate services that will positively affect a
user’s experience. E-learning content providers must
attract learners with appropriate e-learning content and
they have to adequately incorporate e-learning services
and technologies in the e-learning process. For these
reasons, developers, designers and purchasers of e-
learning systems must carefully consider the needs,
trends and values of e-learning users and ensure that the
system will meet their demands.

This study aimed to investigate the factors that affect
the acceptance and use of an e-learning system, namely
Moodle. Moodle provides different activity modules (like
Assignments, Forums, Wikis, Blogs, Quizzes, Tracking,
etc.), and can therefore be applied in different ways.
Moodle can be used as a tool for delivering content to
students and assess learning using assignments or quizzes
and, more interestingly, it can be used to build rich
collaborative learning communities. At the Faculty of
Electrical Engineering and Computer Science, students

92 Informatica 35 (2011) 91–100 B. Šumak et al.

use Moodle to enroll in courses, download learning
materials, communicate with other participants using
forums, write blogs, contribute in content creation using
wikis, communicate with professors and teaching
assistants through a built-in messaging system, finish
their activities and upload files, check grades, etc.
Professors and teaching assistants use Moodle to manage
learning content materials, manage students and their
grades, check the uploaded students’ work, prepare
quizzes, create content using Wikis, aggregate news from
different RSS feeds, etc. To understand students’
perceptions about using Moodle, the technology
acceptance (TAM) research model and hypothesized
relationships between TAM constructs were empirically
tested using the structural equation modelling (SEM)
approach.

This paper is organized as follows: In the next
section, theoretical backgrounds and a summary of the
literature review in the field of e-learning system
acceptance are given. In section three, the research model
and the causal hypotheses are stated. In the section that
follows, the research methodology that guided this study
is described. In section five, data analysis and results are
given. The last section concludes the paper with the
implications and limitations of the study.

2 Theoretical backgrounds
Adoption of an e-learning system by learners may be
treated as technology adoption. The most common theory
in the field of IT/IS (information technology/information
system) adoption is the Technology Acceptance Model –
TAM. Davis [2] proposed TAM to explain the potential
user’s behavioural intentions when using a technological
innovation, because it explains the causal links between
beliefs (the usefulness of a system and ease of use of a
system) and users’ attitudes, intentions, and the actual
usage of the system. The principal TAM concepts are
(see Figure 1):

 perceived ease of use (PEOU) – the degree to
which a person believes that using a particular
system would be free of effort,

 perceived usefulness (PU) – the degree to which
a person believes that using a particular system
would enhance his or her job performance, and

 the dependent variable behavioural intention
(BI) – the degree to which a person has
formulated conscious plans to perform or not
perform some specified future behaviour.

Figure 1: Technology Acceptance Model (TAM) [2].

Davis et al. [3] stated that one purpose of TAM is to
serve as a starting point for examining the impact that
external variables can have on behavioural intentions.
Over time, TAM has progressed through a rigorous
development process, since its enormous flexibility
allows it to be extended. TAM has become one of the
most widely used models in IS research because of its
understandability and simplicity [4]. Because of TAM’s
demonstrated adaptability [5], it can also be used as a
model for investigating user requirements and factors
important for e-services, or specifically, the usefulness
and simplicity of e-learning.

When doing a research about acceptance and use of
an information technology, authors usually perform one
of the following two types of studies: (1) an empirical
validation of TAM (or other theory) in the context of a
specific information technology, and (2) an extension of
the theoretical model (for example the TAM model) with
user specific factors. In existing literature, we can find
mixed results (see also Table 1) about the importance of
these determinants. For example, in [6] the PEOU was
not a significant predictor of attitudes toward use (ATU)
and intent of using an e-learning system. Van Raaij and
Schepers [7] also did not find a significant connection
between PEOU and intention of using the e-learning
system. On the other hand, in the study performed by
Ngai, Poon, & Chan [8], PEOU demonstrated it to be a
dominant determinant of the attitude of students using an
e-learning system. The statistical significance of the path
between the PEOU and attitudes towards using an e-
learning system was also found by Liu, Liao, & Pratt [9]
where the authors studied a user’s acceptance of
streaming media for e-learning. Results across different
studies revealed several antecedent factors to PU and
PEOU. In TAM2 [10] the subjective norm, image, job
relevance, and result demonstrability were found to be
significant determinants of PU. It was also shown that
subjective norms, PU and PEOU were direct
determinants of intentions of use. We performed a meta-
analysis of existing literature in the field of e-learning
acceptance, where TAM was used as a ground theory.
The goal of the literature review was to analyze the
findings about the causal links between the main TAM
constructs. The literature review in the field of e-learning
acceptance showed that PEOU is the factor that mostly
affects PU. PU is also an important determinant of BI.
ATU is mostly positively affected by PU and PEOU.
Table 1 summarizes the positive and negative causal
links between main TAM constructs together with some
user specific factors, which were shown to be a direct
determinant for a specific TAM construct in several
studies. The list of all user-specific factors is actually
larger, but because of the space limit we enlisted only
those that were discussed in two or more studies. These
factors are: computer self efficacy (CSE), confidentiality
(CONF), computer anxiety (CANX), self efficacy
(SEFF), subjective norms (SN), and enjoyment (ENJ).

FACTORS AFFECTING ACCEPTANCE AND… Informatica 35 (2011) 91–545 93

Figure 2: Meta-analysis of e-learning acceptance
literature.

Figure 2 is a summary of the literature review where
links between TAM constructs are described with four
values (x1, x2, x3, x4) indicating: (x1) number of
positive relations, (x2) number of non-significant
positive relations, (x3) number of negative relations, and
(x4) number of non-significant negative relations.

3 Research model and hypotheses
The main reasons why TAM was used as a ground theory
in this study are: (1) TAM is focused on information
technology, (2) TAM has been used by different
researchers, (3) TAM is a simple and generic model that
can be used to study initial and continued intention, and
(4) so far, TAM has not been used in the context of
Moodle.

The main purpose of this study is to empirically
validate the model TAM in the context of Moodle,
therefore the research model (see Figure 3) was adapted
from TAM. In the following sub-sections, the variables,
their relationships and consequent causal links are
hypothesised.

Figure 3: The research model.

3.1 E-learning system ease of use
Ease of use refers to the effort required by the user to
take advantage of the application. PEOU can have impact
on a user’s belief about PU when using a system [2]. In
case of e-learning, a positive link between PEOU and PU
was found in several studies [11-13],[9],[7],[14-
16],[8],[6],[17],[18]. However, Ya-Ching Lee [17]
showed that this link is not significant when an e-
learning system is being used voluntarily. We propose
the following hypothesis:

H1: PEOU will have a positive effect on PU.

In existing literature, PEOU was shown to be a
positive determinant on ATU [9],[16],[8],[6]. We
therefore propose the following hypotheses:

H2: PEOU will have a positive effect on student’s
attitudes towards using Moodle.

Table 1: The results of existing research in the field of e-learning acceptance.

Causal Relationship

Positive Positive NS Negative Negative NSIndependent Variable Dependent Variable

PEOU PU 14 1 0 0

PU BI 13 0 0 0

PEOU BI 6 2 0 0

PU ATU 6 0 0 0

PEOU ATU 5 1 0 0

ATU BI 4 0 0 0

BI U 2 0 0 0

ATU U 0 1 0 0

User specific or contextual factors affecting TAM constructs

CSE PEOU 6 0 0 0

CSE PU 2 2 0 0

CONF PU 3 0 0 0

CANX PEOU 0 1 2 0

SN PU 3 0 0 0

SEFF PU 3 0 0 0

ENJ BI 3 0 0 0

ENJ ATU 2 0 0 0

ENJ PU 2 0 0 0

94 Informatica 35 (2011) 91–100 B. Šumak et al.

The use of a system is theorised to be influenced by
PEOU [2]. BI can be influenced by PEOU as has been
demonstrated by different authors [11-15],[17]. In case of
the voluntary use of an e-learning system these results
can differ, as has been shown by [18] and [17]. We
propose the following hypothesis:

H3: PEOU will have a positive effect on Moodle
usage intention.

3.2 E-learning system usefulness
Among the many variables that may influence system
use, PU has been demonstrated as the main precondition
for BI and system acceptance. According to the results of
the meta-analysis, PU is the most important predictor of
BI. The positive effect between PU and BI was found in
different studies [11-13],[9],[19],[14],[15],[6],[17],[18].
It was also shown that PU has a positive effect on ATU
[9],[16],[8],[6]. We therefore suggest the following
hypotheses:

H4: PU will have a positive effect on student’s
attitudes towards using Moodle.

H5: PU will have a positive effect on student’s
intention to use Moodle.

3.3 Attitude toward using an e-learning
system

An attitude is “a summary evaluation of a psychological
object captured in such attribute dimensions as good-bad,
harmful-beneficial, pleasant-unpleasant, and likable-

dislikable“ [20]. A learner’s BI can be caused by their
feelings about the system. If the learners don not like an
e-learning system or if they feel unpleasant when using
it, they will probably want to replace the system with a
new one. Liu et al. [9] and Matthew K.O. Lee et al. [6]
have demonstrated that ATU is a direct determinant of
BI. We propose the following hypotheses:

H6: ATU will have a positive effect on a student’s
intention to use Moodle.

H7: ATU will have a positive effect on a student’s
actual use of Moodle.

3.4 Behavioural intentions for using an e-
learning system

BI is an indication of an individual's readiness to perform
a given behaviour. It is assumed to be an immediate
antecedent of behaviour. Existing studies [11],[14] have
demonstrated that BI can be a determinant for the actual
use of an e-learning system. Thus, we propose the
following hypothesis:

H8: Students’ BI will have a positive effect on his or
her actual use of Moodle.

4 Research methodology
Quantitative research in the form of an online
questionnaire based survey was performed to test the
stated hypotheses. In this section, the development of the
measurement instrument, the sampling process and data
analysis approach are described.

Table 2: Profile of the respondents.
Demographic characteristics Frequency Percentage
Gender Male

Female
188

47
80.0
20.0

Age 18 – 20 years
21 – 22 years
23 – 24 years
25 – 26 years
more than 26 years

45
124

48
15
3

19.1
52.8
20.4
6.4
1.3

Internet experience No experience
Some experience
Experienced
Very experienced

0
2

117
116

0.0
.9

49.8
49.4

Moodle experience No experience
Some experience
Experienced
Very experienced

1
33

164
37

0.4
14.0
69.8
15.7

Number of courses where Moodle is used
(for the present academic year)

1
2
3-5
5-8
8-13
13-21

4
28

127
61
16
3

1.7
11.9
54.0
26.0
6.8
1.3

Frequency of Moodle use A couple times a year
A couple times a month
Weekly
Daily

2
4

81
148

0.9
1.7

34.5
63.0

FACTORS AFFECTING ACCEPTANCE AND… Informatica 35 (2011) 91–545 95

4.1 Instrument development
Empirical data were collected by means of an online
questionnaire containing 22 questions. The questions
were organized into the following two groups: (1)
demographic questions about the respondents’ gender,
age, years of study, internet experience, Moodle
experience, voluntariness, etc. (see Table 1 for the
characteristics list); and (2) measures for the TAM
constructs. The TAM constructs were adapted into the
context of Moodle (see in Appendix A). The TAM
measuring items were Likert-like items on a 7-point scale
from ‘‘strongly agree” to ‘‘strongly disagree”. To reduce
measurement error, the development of the online
questionnaire involved the following steps. First, a pre-
test of the questionnaire was performed. The main goal
of the pre-test was to improve the content of the
measuring items, therefore colleagues from the faculty
were asked to examine the questionnaire for
meaningfulness, relevance and clarity. According to the
feedback, few measurement items were refined in
wording. After the pre-test, a pilot test of the
questionnaire was performed with a non-random sample
of twenty-five volunteers constituting faculty staff and
students. The main goal of the pilot test was to
empirically validate the reliability of the questionnaire –
to check whether the measurement instrument lacked
accuracy or precision. Data collected from the pilot test
was analysed using SPSS to conduct internal consistency
of the measurement items. The statistical test results
confirmed a solid reliability for all measurement items.

4.2 Sampling process
Moodle is an open-source system and can be
downloaded, deployed and used for free. Therefore, it is
hard to identify the exact number of Moodle users. The
number increases by approximately 1,300 new registered
users every month. The statistical report from April 2010
[21] indicates that at the time of this report, 44,171
Moodle sites from 207 countries had been registered and
validated. So far, over three million online courses using
Moodle have been established and there are more than 31
million registered Moodle users. Our sample frame was
limited to students that use Moodle at the Faculty of
Electrical Engineering and Computer Science in Maribor.
Our sample frame covered full-time students of technical
studies. At the time of our research, 115 online courses
were established and 1,566 users were registered. A
systematic random sampling process, where every
member of the sample frame had an equal chance of
being selected, produced a sample of 800 Moodle users.
The students that participated in the pilot test were
excluded from the sample frame in the random sampling
process. A request form for participation in the online
survey was sent to the selected students. 284 online
surveys were started, of which 235 were successfully
finished and 49 returned incomplete. The usable response
rate was thus 29%.

4.3 Statistical analysis
To describe the main features of an average participant in
this study, descriptive statistics was used on the
respondents’ characteristics data. Structural equation
modelling (SEM) was used to test the fit of the proposed
theoretical model (Fig. 3) with empirical data. The
measurement model was estimated using confirmatory
factor analysis to test whether the proposed constructs
possessed sufficient validation and reliability. To assess
the reliability and validity of the measurement instrument
used in this study, internal consistency, composite
reliability and convergent validity were demonstrated.
After assessing the reliability and validity of the
measurement instrument, the measurement model was
estimated. After the final measurement model passed the
goodness-of-fit tests, the structural part of the research
model was estimated using SEM on the structural model.
The structural model was also tested for a data fit with
appropriate goodness-of-fit indices. A statistical analysis
was performed using the SPSS statistical package
together with AMOS 17.0 software.

5 Data analysis and results
In this section, the data analysis and results are given. In
the first subsection, the profile of the respondents is
presented using descriptive statistics. In the following
subsection, the methods for measurement instrument
validity and reliability assessment are explained. Finally,
the measurement and structural model analysis are used
to explain the results of the study.

5.1 Demographic characteristics
The characteristics of the respondents are presented in
Table 2. The typical respondent is a 21-22 year old male
with less than a year of 1-2 years of study. The
respondent has solid internet experience and already has
had experience with Moodle. 63% of the respondents use
Moodle daily and more than a half use Moodle for 3-5
courses.

5.2 Measure reliability and validity
Before testing the hypotheses, measurement items in the
questionnaire were first assessed for content and
construct reliability and validity. The results of the tests
for unidimensionality, reliability and convergent validity
provided evidence of the internal and external validity of
the measurement instrument and scales. Table 3
summarizes the results of internal reliability, composite
reliability and convergent validity for measurement
instrument constructs. The internal consistency of the
constructs was assessed by Cronbach’s α, which is used
for estimating the extent to which multiple indicators for
a latent variable belong together. All the estimated
Cronbach’s α values for TAM constructs exceeded the
cut-off value of 0.70 [22] , thus the constructs showed a
reasonable level of reliability. Composite reliability was
estimated using the following equation:

96 Informatica 35 (2011) 91–100 B. Šumak et al.

The composite reliability measures for all of the
constructs exceeded the recommended level of 0.70 [23].
As the third indicator of convergent validity, average
variance extracted (AVE) was estimated. If the AVE is

less than 0.5, then the variance due to measurement error
is greater than the variance captured by the respective
construct [23]. AVE was estimated using the following
equation:

Table 3: Instrument reliability and validity.

Construct Item
Factor
loading

Internal
consistency
Cronbach α

>= 0.70

Composite
factor

reliability
>= 0.70

Convergent validity
Average Variance

Extracted
>= 0.50

Perceived Usefulness PU2
PU3
PU4

0.77
0.84
0.72

0.815 0.821 0.605

Perceived Ease of Use PEOU1
PEOU2
PEOU3

0.82
0.89
0.90

0.899 0.902 0.755

Behavioural Intention BI1
BI2
BI3

0.77
0.89
0.81

0.848 0.865 0.682

Attitude Toward Using ATU2
ATU3
ATU4

0.77
0.85
0.80

0.848 0.850 0.654

5.3 The measurement model
According to the modification indices provided by
AMOS, some indicators (PEOU4, PU1 and ATU1) have
been cut off from the initial measurement model and then
the overall fit model for the final measurement model
was estimated to ensure a good data fit with the model. A
variety of fit indices were assessed to identify model
goodness-of-fit as proposed by Rainer and Miller [24].

These indices include χ2, the goodness-of-fit index
(GFI), the adjusted goodness-of-fit index (AGFI), the
comparative fit index (CFI), the root mean squared
residual (RMSR), the root mean square error of
approximation (RMSEA), the normed fit index (NFI), the
non-normed fit index or Tucker Lewis index (NNFI) and
the parsimonious fit index (PNFI).
Table 4 provides a summary of estimated fit indices for
the final measurement model.

Perceived
Ease of Use

Perceived
Usefulness

Attitude
Toward Using

Behavioural
Intention

,80

PEOU3e2

,89

,80

PEOU2e3 ,89

,66

PEOU1e4 ,81

,51

PU4

e5

,71
,71

PU3

e6

,84
,60

PU2

e7

,77

,59

ATU2

e10

,77

,73

ATU3

e11

,85

,64

ATU4

e12

,80

,65

BI3

e13

,81
,80

BI2

e14

,60

BI1

e15

CHI SQUARE = 106,944
DEGREES OF FREEDOM = 80

P-Value = ,024
AGFI (>=0.8) = ,915

CFI (>=0.9) = ,984
GFI (>=0.9) = ,943

RMSR (<=0.1) = ,043
RMSEA (<=0.08) = ,038

NFI (>=0.9) = ,939
NNFI (TLI) (>=0.9) = ,979

PNFI (>=0.6) = ,715

,89,77

Actual Use

,45

FFOU0 e16,67 ,26

FFOU1 e17
,51

,12

FFOU2 e18

,34
,47

,46

,25

,30

,74

,44

,43

,42

,40

,55

Figure 4 The measurement model

FACTORS AFFECTING ACCEPTANCE AND… Informatica 34 (2010) 91–100 97

Table 4: Model fit summary for the final measurement and structural model.

Fit index
Recommended value

[25]
Measurement

model
Structural

Model
χ2 Non-significant 106.944 109.309
Degrees of freedom (df) n/a 80 82
p 0.024 0.024
χ2/df < 3.00 1.337 1.318
Goodness-of-fit index (GFI) > 0.90 0.943 0.942
Adjusted Goodness-of-fit index (AGFI) > 0.80 0.915 0.915
Comparative fit index (CFI) > 0.90 0.984 0.983
Root mean square residuals (RMSR) < 0.10 0.043 0.044
Root mean square error of approximation (RMSEA) < 0.08 0.038 0.038
Normed fit index (NFI) > 0.80 0.939 0.938
Non-normed fit index (NNFI) > 0.90 0.979 0.979
Parsimony normed fit index (PNFI) > 0.60 0.715 0.732

5.4 The structural model
The estimated values of fit indices have proven the good
structural model fit to the data. The values of fit indices
are presented in
Table 4: The results of the final structural model (see

Figure 6) provide support for H1, meaning that PEOU
(β=0.473; p<0.001) positively influences the PU. The
final structural model results also show that PEOU

(β=0.139; p<0.05) and PU (β=0.680; p<0.001) positively
affect attitudes toward using Moodle. These results
provide support for hypotheses H2 and H4. Students’
behavioural intentions using Moodle are also positively
affected by perceived usefulness (β=0.279; p<0.05), thus
the hypothesis H5 was supported. Actual use of Moodle
is positively affected both by attitudes toward using
Moodle (β=0.220; p<0.05) and students’ behavioural
intentions (β=0.454; p<0.001), meaning that hypotheses
H7 and H8 were supported. However, there was
statistically insufficient evidence regarding the impact of
PEOU and ATU on BI. This means, that the results did
not provide support for hypotheses H3 and H6. Table 5
summarizes the hypothesis testing results and the results
of the multiple-group analysis.

,77

Perceived
Ease of Use

Perceived
Usefulness

Attitude
Toward Using

Behavioural
Intention

PEOU3

,19

e1

1,00
1

PEOU2

,20

e2
1,001

PEOU1

,33

e3 ,92
1

PU4

,75

e5

1,00

1
PU3

,43

e6

1
PU2

,47

e7

,95

ATU2

,61

e10

1,00

1

ATU3

,50

e11

1,22

1

ATU4

,57

e12

1,09

1

BI3

,18

e13

1,00

1
BI2

,11

e14

1
BI1

,29

e15

1

CHI SQUARE = 109,309
DEGREES OF FREEDOM = 82

P-Value = ,024
AGFI (>=0.8) = ,915

CFI (>=0.9) = ,983
GFI (>=0.9) = ,942

RMSR (<=0.1) = ,044
RMSEA (<=0.08) = ,038

NFI (>=0.9) = ,938
NNFI (TLI) (>=0.9) = ,979

PNFI (>=0.6) = ,732

,61

e16

,38

e17

,26

e18

Actual Use

FFOU0

,18

e19

1,00

1

FFOU1

,30

e20

,81

1

FFOU2

,62

e21

,75

1

,10

e22

1

1

1

1,14

,12,72

1

1,151,15

,09

,31

,18

,15

,48

1

,02

Figure 5: The final structural model.
Table 5: Hypothesis testing results.

Hypothesis Effects Path coefficient Remarks
H1 PEOU PU 0.473*** Supported
H2 PEOU ATU 0.139* Supported
H3 PEOU BI 0.025NS Not Supported

98 Informatica 34 (3010) 91–100 B. Šumak et al.

H4 PU ATU 0.680*** Supported
H5 PU BI 0.279* Supported
H6 ATU BI 0.203NS Not Supported
H7 ATU U 0.220* Supported
H8 BI U 0.454*** Supported
Notes: * p< 0.05; ** p< 0.01; *** p < 0.001; NS p > 0.05

Figure 6: The research model results.

The final hypothesis results are also presented in Figure
6, where the values of size and the significance of
individual causal links are written above the arrows

between TAM constructs. A dotted arrow between two
constructs means that there was no significant
relationship found between these two constructs.

Table 6 summarizes the results of the study, where
the discovered relationships are added to existing
knowledge in the field of e-learning acceptance. The
questionnaire and the items were confirmed with
adequate discriminant and convergent validity metrics.
For the measurement and structural model, several data
fit indices were estimated in order to test the fit of the
data with the proposed research model.

Table 6: The contribution of the study to existing knowledge.

Causal Relationship

Positive Positive NS Negative Negative NSIndependent Variable
Dependent
Variable

PEOU PU 14(+1) 1 0 0

PU BI 13(+1) 0 0 0

PEOU BI 6 2(+1) 0 0

PU ATU 6(+1) 0 0 0

PEOU ATU 5(+1) 1 0 0

ATU BI 4 0(+1) 0 0

BI U 2(+1) 0 0 0

ATU U 0(+1) 1 0 0

6 Conclusion
The present study resulted in the empirical validation of
the TAM research model in the context of Moodle and
therefore contributes to the body of research in the field
of e-learning acceptance based on the state-of-the-art
theory: TAM.

The results of the study revealed that the perceived
usefulness and perceived ease of use are factors that
directly affect students’ attitudes toward using Moodle,
whereas perceived usefulness is the strongest and most
significant determinant of students’ attitudes toward
using Moodle. This means that students like to use
Moodle if they have good feelings about the usefulness
of Moodle in getting better grades and knowledge.
Several existing studies have also revealed that perceived
usefulness can play an important role in affecting
students’ attitudes towards using an e-learning system
[6],[9],[8],[26]. Students’ perceptions regarding the
“likeness” of using the system are also reflected by their
comprehensions about how easy it is to use the system.
The same results were also demonstrated in several other
studies [9],[8],[26]. Perceived ease of use has a strong
and significant impact on perceived usefulness. Students’

intentions for using Moodle is not a result of students’
perceptions about how much they like to use it. The SEM
analysis also did not show a direct causal link between
perceived ease of use and students’ intention of using
Moodle. The students’ intention of using Moodle is
mainly prompted by its perceived usefulness, meaning
that students will use the e-learning system if they find it
useful in their learning process. According to the results,
the actual use of Moodle is a result of two factors:
attitudes toward using and behavioural intention, where
the latter is the most significant and strongest predictor of
actual use of Moodle.

The results of this study have implications that are
important to different e-learning stakeholders. As was
discovered in this research, in the majority of cases,
students are experienced internet users that are not
worried about dealing with new technologies. Students
mostly like to use an e-learning system because they find
it useful for their studies, meaning that the e-learning
system has to provide all the necessary e-learning
services that a modern student needs in his or her
learning process. E-learning system developers have to
keep up with new web technologies and properly build
them into the e-learning system. The usefulness of the e-

FACTORS AFFECTING ACCEPTANCE AND… Informatica 35 (2011) 91–100 99

learning system is also closely connected to the content
of e-learning materials that students are downloading
from it. Learning content providers have to take
advantage of an e-learning system to make the best of it
when providing students with learning materials, news,
asynchronous and synchronous communication, etc. We
believe that students would find the e-learning system
more useful if they would get adequate learning
materials. The findings, presented in this study, can also
be a direction for researchers in their future work. The
research model should be extended in order to find
external variables to investigate which factors have a
significant influence on students’ perceptions regarding
ease of use and the usefulness of the e-learning system.

As in all empirical research, this study has
limitations that need to be identified and discussed. First,
the sample is limited to students at a faculty that is more
or less technically oriented. Although the results from
this study are useful for describing the characteristics of a
large population of students, the generalizations of the
results are limited to full-time undergraduate students.
The students that participated in this study are mostly
obliged to use Moodle in their studies. An average
student is male and already possesses technical skills
when it comes to internet use. Next, this study is only
limited to a particular e-learning system. Although
Moodle is a modern and well accepted e-learning system,
the generalization of the results is limited to the
characteristics and features provided by it. Moodle is an
open-source product and therefore extensions can be
implemented. The actual implementation and
deployment of Moodle can affect different students’
perceptions, such as usefulness and easiness. Because
Moodle deployments’ primary objectives are not the
same in every case, this is another variable that will have
to be addressed in future work as well.

In our future work, we will try to examine new
variables that could be used to extend the TAM model
for the e-learning domain. Together with future internet
developments, new technologies and services will enable
the creation of new and innovative e-learning system
extensions and modules. We believe there are many
constructs related to the user, technology and service
domain characteristics. Such constructs can have a direct
or indirect (but significant) impact on users’ attitudes and
intention for using the system. Our future research will
therefore be dedicated to finding and evaluating such
potential constructs.

7 References
[1] J. Massy (2005). “The eLearning industry and

market in Europe”. Available at
http://ec.europa.eu/education/archive/elearning/doc
/studies/market_annex1_en.pdf. [Accessed April
15, 2010].

[2] F.D. Davis (1989). Perceived Usefulness,
Perceived Ease of Use, and User Acceptance of
Information Technology. MIS Quarterly, vol. 13,
pp. 319-340.

[3] F.D. Davis, R.P. Bagozzi, and P.R. Warshaw

(1989). User Acceptance of Computer
Technology: A Comparison of Two Theoretical
Models. Management Science, vol. 35, pp. 982-
1003.

[4] W. King and J. He (2006). A meta-analysis of the
technology acceptance model. Information &
Management, vol. 43, pp. 740-755.

[5] J.H. Sharp (2006). Development, Extension and
Application: A Review of the Technology
Acceptance Model. Proc ISECON, vol. 23.

[6] M.K. Lee, C.M. Cheung, and Z. Chen (2005).
Acceptance of Internet-based learning medium: the
role of extrinsic and intrinsic motivation.
Information & Management, vol. 42, pp. 1095-
1104.

[7] E.M. van Raaij and J.J. Schepers (2008). The
acceptance and use of a virtual learning
environment in China. Computers & Education,
vol. 50, pp. 838-852.

[8] E. Ngai, J. Poon, and Y. Chan (2007). Empirical
examination of the adoption of WebCT using
TAM. Computers & Education, vol. 48, pp. 250-
267.

[9] S. Liu, H. Liao, and J.A. Pratt (2009). Impact of
media richness and flow on e-learning technology
acceptance. Computers & Education, vol. 52, pp.
599-607.

[10] V. Venkatesh and F.D. Davis (2000). A
Theoretical Extension of the Technology
Acceptance Model: Four Longitudinal Field
Studies. Management Science, vol. 46, pp. 186-
204.

[11] S. Zhang, J. Zhao, and W. Tan (2008). Extending
TAM for Online Learning Systems: An Intrinsic
Motivation Perspective. Tsinghua Science &
Technology, vol. 13, pp. 312-317.

[12] C. Ong, J. Lai, and Y. Wang (2004). Factors
affecting engineers' acceptance of asynchronous e-
learning systems in high-tech companies.
Information & Management, vol. 41, pp. 795-804.

[13] C. Ong and J. Lai (2006). Gender differences in
perceptions and relationships among dominants of
e-learning acceptance. Computers in Human
Behavior, vol. 22, pp. 816-829.

[14] C. Yi-Cheng, C. Chun-Yu, L. Yi-Chen, and Y.
Ron-Chen (2007). Predicting College Student’ Use
of E-Learning Systems: an Attempt to Extend
Technology Acceptance Model. Available at:
http://www.pacis-net.org/file/2007/1295.pdf
[Accessed April 10, 2010].

[15] P.D. Chatzoglou, L. Sarigiannidis, E. Vraimaki,
and A. Diamantidis (2009). Investigating Greek
employees' intention to use web-based training.
Computers & Education, vol. 53, pp. 877-889.

[16] M. Lee (2010). Explaining and predicting users'
continuance intention toward e-learning: An
extension of the expectation-confirmation model.
Computers & Education, vol. 54, pp. 506-516.

[17] Y. Lee (2006). An empirical investigation into
factors influencing the adoption of an e-learning
system. Online Information Review, vol. 30, pp.

100 Informatica 35 (2011) 91–100 B. Šumak et al.

517 - 541.
[18] J. Shen and L.B. Eder (2009). Intentions to Use

Virtual Worlds for Education. Journal of
Information Systems Education, vol. 20, pp. 225-
233.

[19] S. Liaw, H. Huang, and G. Chen (2007).
“Surveying instructor and learner attitudes toward
e-learning. Computers & Education, vol. 49, pp.
1066-1080.

[20] I. Ajzen (2001). Nature and operation of attitudes.
Annual Review of Psychology, vol. 52, pp. 27-58.

[21] Moodle, Moodle.org: open-source community-
based tools for learning. Moodle.org, 2010.
Available at: http://www.moodle.org [Accessed
April 15, 2010].

[22] N. Schmitt (1996). Uses and abuses of coefficient
alpha. Psychological Assessment, vol. 8, pp. 350-

353.
[23] A. Segars (1997). Assessing the unidimensionality

of measurement: a paradigm and illustration within
the context of information systems research.
Omega, vol. 25, pp. 107-121.

[24] R.K. Rainer and M.D. Miller (1996). An
assessment of the psychometric properties of the
computer attitude scale. Computers in Human
Behavior, vol. 12, Spring. pp. 93-105.

[25] S. Hong, J.Y.L. Thong, and K.Y. Tam (2006).
Understanding continued information technology
usage behavior: a comparison of three models in
the context of mobile internet. Decis. Support
Syst., vol. 42, pp. 1819-1834.

[26] T. Teo (2009). Modelling technology acceptance
in education: A study of pre-service teachers
Computers & Education, vol. 52, pp. 302-312.

8 Appendix A. TAM items and scales

Item Question I
st

ro
n

gl
y

ag
re

e

I
ag

re
e

I
so

m
ew

h
at

ag
re

e

C
an

’t
 d

ec
id

e

I
so

m
ew

h
at

d

is
ag

re
e

I
d

is
ag

re
e

I
st

ro
n

gl
y

d
is

ag
re

e

Perceived Usefulness (PU)
PU1 I would find Moodle useful for learning.
PU2 Using Moodle enables me to accomplish tasks more quickly.
PU3 Using Moodle for learning increases my productivity.
PU4 If I use Moodle, I will increase my chances of getting knowledge.

Perceived Ease Of Use (PEOU)
PEU1 My interaction with Moodle would be clear and understandable.
PEU2 It would be easy for me to become skilful at using the system.
PEU3 I would find Moodle easy to use.
PEU4 Learning to operate Moodle is easy for me.

Attitude Toward Using Technology (ATU)
ATU1 Using Moodle is a bad idea (negative).
ATU2 Moodle makes learning more interesting.
ATU3 Working with Moodle is fun.
ATU4 I like working with Moodle.

Behavioural intention (BI)
BI1 I intend to use Moodle in the next 6 months.
BI2 I predict I would use Moodle in the next 6 months.
BI3 I plan to use Moodle in the next semester.

Informatica 35 (2011) 101–112 101

Resource Control and Estimation Based Fair Allocation (EBFA) in
Heterogeneous Active Networks

K. Vimala Devi
Department of Computer Science and Engineering
Anna University, Trichirappalli,
Trichirappalli, 620024, India.
E-mail: k_vimadevi@yahoo.co.in

C. Thangaraj
Kalasalingam University,
Krishnankoil – 626190, India.
E-mail: thangaraj@akce.ac.in

K.M. Mehata
Anna University,
Chennai - 600025, India
E-mail: mehata@annauniv.edu

Keywords: active network management, resource control, fair allocation, resource estimation, estimation based
allocation

Received: July 11, 2009

Active networks perform customized computation on the messages flowing through them. Individual
packets carry executable code, or references to executable code. Active networks are changing
considerably the scenery of computer networks and consequently, affect the way network management is
conducted. In a heterogeneous networking environment, each node must understand the varying
resource demands associated with specific network traffic. This paper describes and evaluates an
approach to control the CPU utilization of malicious packets and to estimate the CPU demand for good
packets in a heterogeneous active network environment. We also describe a new approximation for
estimation based fair allocation. The proposed algorithm called Estimation Based Fair Allocation
Algorithm (EBFAA) avoids the ill-behaved flows to utilize more CPU time and achieves perfect fairness
for all flows during allocation.

Povzetek: Prispevek opisuje obravnavo zlonamernih paketov v aktivnih heterogenih mrežah.

1 Introduction
In classical packet-switched communication networks,
when a packet transits through an intermediate node
along the path from source to destination, each
intermediate node has a measured rating for per-message
and per-byte throughput. Thus a linear extrapolation
from packet size and arrival rate should provide the node
a reasonable estimate for the CPU demand associated
with individual packets or with sets of packets.
Unfortunately, this simple approach cannot work for
active networks because individual packets can require
substantially different processing.

In active networks [15], when a packet arrives at an
intermediate node, the data may include program code
that can be accessed, interpreted, and executed by the
node. The code may specify a compression algorithm to
be applied on the data if congestion has been detected in
the area of the node, or may specify which packets to
drop first, or may modify the destination address to route

around congestion. Thus, in active networks, some more
sophisticated technique is needed to estimate CPU
demand associated with active packets.

1.1 Active network architecture
Active networks [15] allow individual user, or groups of
users, to inject customized programs into the nodes of the
network. "Active" architectures enable a massive
increase in the complexity and customization of the
computation that is performed within the network

 Node operating system (node os)
A NodeOS [7,9] is a special-purpose operating system
that runs on the routers of an active network and supports
active network execution environments (A router in an
active network is called an active node, and hence the
name NodeOS). In order to prevent active applications

102 Informatica 35 (2011) 101–112 K.V. Devi et al.

Figure 1: Active-network architecture [3, 5].

from misbehaving, active network execution
environments enforce fine-grained control over the
resources consumed by active applications. For example,
an execution environment may restrict the number of
CPU cycles an active application can consume, or it may
enforce a limit on the number and type of packets an
active application can receive and send. The interface/API
provided by traditional operating systems is inadequate
for such needs of execution environments. For example,
in traditional Unix, where all resources are associated
with a process, it is very difficult to enforce an absolute
limit on resources consumed by an active application if it
is not a process, and active networks would be very slow
if each active application is run in a separate Unix
process. A NodeOS provides the exact interface needed
by active network execution environments. A NodeOS is
also different from a traditional OS in terms of the
overhead it imposes to do its job. Further, a NodeOS
should be capable of handling as many network packets
per second as possible. Therefore, the NodeOS should
impose minimum overhead to perform operating system
functions. The above requirements raise interesting
operating system design issues, primarily in the areas of
API design and effificent resource control.

The Node operating System (NodeOS) provides the
basic functions from which Execution Environments
build the abstractions that make up the network APIs. The
NodeOS isolates EEs from details of resource
management and the existence of other EEs. The EEs in
turn, hide most of the details of their interaction with the
end user from the NodeOS. The NodeOS defines four
primary abstractions: threads pools, memory pools,
channels and flows. The first three encapsulate a system’s
three types of resources: computation, storage and
communication. The fourth is used to aggregate control
and scheduling of the other three in a form that more
closely resembles network application programs[11].

Examples of NodeOS: -Scout and Amp. A number
of other NodeOS implementations, such as xbind and
EROS, are also under development and testing.

 Execution environment (ee)
Active networks rely on the ability to add programs
easily to the network infrastructure, so the choice of the
Execution Environment’s runtime environment and
programming language is critical. Below are some of the
Execution Environments for setting up of Active
Networks.

1. Ants: Active Node Transfer System

The Massachusetts Institute of Technology’s ANTS aims
at standardizing on a communication model rather than
individual communication protocols, such as IP, UDP
etc. The major design goal is to build a system that
allows rapid transfer and deployment of protocol code
across the network. ANTS uses Java as its programming
language, and the Java Virtual Machine as its runtime
environment. Java’s features make ANTS suitable for a
variety of applications [19].

2. Magician

Magician [1], a toolkit for creating a prototype
Active Network was developed at the University of
Kansas. In an Active Network, program code and data is
placed inside specialized packets called SmartPackets.
The nodes of an Active Network are called active nodes
and they are programmable in the sense that when a
SmartPacket reaches an active node, the code inside the
SmartPacket is extracted and executed. Depending on the
nature of the code inside the SmartPacket, the
SmartPacket either modifies the behavior of the active
node or transforms the data it is carrying. The basic
implementation uses UDP/IP combination for transport
and routing.

1.2 Current network management and its
limitations

Currently, networks are monitored and controlled mainly
through SNMP commands that read or set variables in the
MIBs of the elements. Current MIB implementations,
which defined by their manufacturers, have several
significant limitations.

1. A well-known limitation of SNMP is
related to its inability to handle high volumes of
processed network data.
2. Another limitation of the current management

techniques is that all management decisions are
usually made centrally. This approach is
inefficient when the network is congested, or
when a part of it is inefficient when the network
is congested, or when a part of it is unreachable,
since the management commands may arrive
late or get lost. Active nodes can be
programmed to make such decisions, thus
allowing the distribution of the decision centers
across the network [8, 12].

 …

 NodeOS System Calls
 NodeOS Interface Layer

 Mapping of NodeOs to Real OS

EE1

EEn

AA

AA AA

AA

Node OS Layer

Network
device
driver

OS
Scheduler
(Threads)

OS
(Resource

Mgmt)

RESOURCE CONTROL AND ESTIMATION BASED… Informatica 35 (2011) 101–112 103

1.3 Suitability of active networks for
network management

The use of Active Networks technologies to network
management has the following advantages:

 The information returned can be controlled
and managed according to needs.

 The management rules can be shifted from the
management centers to the active nodes.

 The monitoring and control loop is shortened.

Active networks for the functional areas of network
management

The functional areas of Network Management are
Fault Management, Configuration Management,
Accounting Management, Performance Management and
Security Management (FCAPS).

 Fault management
In fault management as well as other areas of

Network Management such as configuration and
performance management, predicting and preventing
undesirable situations is important. Current predictive
algorithms take into consideration only a few parameters.
However active network technologies enable deployment
of efficient predictive management, since the
computations can be distributed to the whole network.
Each node predicts and transmits to its neighbors its
future state and also the prediction of each node depends
on its current state and the predictions of its neighbors.
Congestion can also be predicted with satisfactory
accuracy [12].

 Configuration management
Configuration management techniques may be

enhanced in an AN environment. For instance, MAs can
be used for inventory management. Those MAs can be
used to discover and report changes to the existing
configuration. For example agents could be programmed
to propagate DNS updates to the entire network.

AN can also facilitate VPN deployment. VPNs are
independent private networks built over a shared public
network. Practically this means that network resources
are partitioned and allocated (dynamically or statically)
to each group. In AN access to the resources of active
nodes can be controlled; hence partitioning of resources
can easily be implemented. An attempt in this direction is
Virtual Active Network (VAN) architecture [12].

 Accounting management
One of the important tasks accounting management

tools carry out is monitoring network usage. Most AN
architectures, for security and safety reasons,
authenticate the users before any resources are allocated
to them to access any service. Thus the monitoring of the
resources is integrated to the network architecture, rather
than being an additional function. With AN, all resource
usage, such as bandwidth, CPU, memory, or scheduling
priorities, can be accounted.

 Finally, AN may be manageable even when some
areas cannot be reached by the management stations.
This is crucial for accounting management, because
those situations usually lead to unreported network use,
and therefore loss of profit. Such situations can be
prevented in active environments [12].

 Performance management
With AN, the way devices handle traffic can easily

be customized on a per-device and per-user basis. Hence
scheduling and routing, traffic shaping, admission
control, and priorities can easily be controlled in order to
manipulate traffic. The deployment of QoS services can
easily be achieved in AN, since protocols that perform
the necessary reservations and computation can be
installed on active nodes. AN is also flexible in installing
protocols. Complex QoS protocols, such as Resource
Reservation Protocol (RSVP) or qGSMP, could be
deployed easily too: the reservation of resources and
scheduling algorithms of active nodes can be
manipulated in any desired way. The ability to
implement QoS protocols without relying on legacy and
rigid protocols (e.g., IP) makes those protocols
lightweight and efficient [12, 19].

 Security management
The AN architectures implement modules that relate

to security and safety. These modules authenticate access
to resources hence; several of the current security
management tasks are architecturally integrated in to
these modules. This relieves NM tools from the
enforcement of policies and SLAs. Apart form traditional
policing; intrusion detection can become much easier and
effective by agents that reside on sensitive nodes. Attacks
such as TCP SYN attack can also be effectively detected
and prevented. For instance Phonix framework allows
the existence of MAs that are programmed to perform
specific tasks, such as safeguarding the network. [12]

1.4 The resource demand in active
networks

Performance management aims to keep network
performance within predefined levels. It is strongly
related to resource management and QoS provisioning
[12, 17] and to the parameter, resource utilization.
Performance management tools measure various
parameters, such as network throughput, delays, and
CPU and bandwidth utilization, and attempt to control
them. To use the Active Network technology safely and
efficiently, individual nodes must understand the varying
resource demands associated with specific network
traffic.

Three types of resources in active networks:
Computation, Storage and Communication (Network)

104 Informatica 35 (2011) 101–112 K.V. Devi et al.

Figure 2: Resource management (QoS- parameters).

Inability to estimate the CPU demands of active packets
can lead to some significant problems. First, a
maliciously or erroneously programmed active packet
might consume excessive CPU time at a node, causing
the node to deny services to valid active packets.
Alternatively, a node might terminate a valid active
packet prematurely, wasting the CPU time used prior to
termination, and ultimately denying service to a correctly
programmed application. Second, an active node may be
unable to schedule CPU resources to meet the
performance requirements of packets. Third, an active
packet may be unable to discover a path that can meet its
performance requirements. Devising a method for active
packets to specify their CPU demands and fair resource
allocation can help to resolve these problems, and can
open up some new areas of research. Unfortunately, there
exists no well-accepted metric for expressing CPU
demands in a platform independent form. This is the
problem that motivated our research.

The paper is organized as follows: In section 2, the
existing solutions to the problem are presented. Section 3
discusses the problem with the applied models. The
implementation of a heterogeneous active network setup
using Magician, a tool for active networks is discussed in
section 4 and the evaluation and comparison of the
results with various active applications is also presented.
The resource estimation methods are presented in section
5. Section 6 proposes the Estimation Based Fair
Allocation algorithm (EBFAA) and evaluates the
performance of the algorithm. Section 7 draws
conclusions on the effectiveness of our solution and
suggests some possible future work.

2 A survey of existing approaches
While the outlines of our solution appear complex, we
believe that success along these lines will enable more
effective control of CPU usage by mobile programs and
will enable node operating systems to more efficiently
manage CPU resources. Others also see a need to provide
such capabilities. In this section we present the existing
solutions to prevent excessive CPU resource
consumption in active networks and in mobile agent
systems. Next we examine the research conducted
outside of active networks that could help to provide
effective resource management in active-network nodes.

2.1 Existing solutions to control the CPU
usage

In order to prevent malicious or erroneous active packets
from consuming excessive CPU time, most execution
environments implement specific control mechanisms. In
this section, we discuss the most common mechanisms.

Limit fixed by the packet
Some execution environments, such as ANTS [23],
assign a timeto-live (TTL) to each active packet. An
active node decreases this TTL as a packet transits the
node, or whenever the node creates a new packet. In this
way, each active packet can only consume resources on a
limited number of nodes, but individual nodes receive no
protection. The current TTL recommendation for the
Internet protocol (IP) is 64 hops [13], which is supposed
to roughly correspond to the maximum diameter of the
Internet. This value might prove large enough for an
active packet that propagates a configuration from node
to node between two videoconferencing machines. But if
the active packet creates numerous additional packets (to
which it delegates a part of its own TTL), then the
assigned TTL could prove insufficient. And it is usually
difficult to predict how many new packets will be
generated since these predictions might depend on
network parameters, such as congestion and topology,
which can rarely be known in advance. This TTL
mechanism could contribute to protect individual nodes
if the TTL is given in CPU time units instead of hop
count. But the problem remains: how to choose the initial
value for the TTL?

In the related context of mobile agents, Huber and
Toutain [7] propose to enable packets that did not
complete their “mission” to request additional credits.
The decision to grant more credit would be taken by the
originating node for its packets, or by the generating
packet for packets created while moving among nodes.
The decision must be made after examining a mission
report included with the request for more credits. The
proposed solution remains unimplemented, perhaps
because the reports proved difficult to generate and
evaluate.

Limit fixed by the node
In some execution environments (e.g., ANTS), a node
limits the amount of CPU time any one packet can use.
This solution protects the node but does not allow
optimal management of resources. For instance, imagine
that a node limits each packet to 10 CPU time units.
Suppose that a packet requiring 11 CPU time units
arrives when the node is not busy. In this case, the node
will stop the execution of the packet just before it
completes.

Use a restricted language
The SNAP language [10] is designed with limited
expressiveness so that a SNAP program uses CPU in
linear proportion to the packet’s length. While this
approach supports effective management of resource
usage, it could prove too restrictive for expressing
arbitrary processing in active applications. For instance,

Resource

Computation

CPU Special H/W

Storage

Memory

RAM

Disk

SWAP

Network

RESOURCE CONTROL AND ESTIMATION BASED… Informatica 35 (2011) 101–112 105

only forward branches are allowed; as a result, if
repetitive processing is required, the packet must be
resent repeatedly in loop-back mode until the task is
completed.

Market based approach
Yamamoto and Leduc [23] describe a model for trading
resources inside an active-network node, based on the
interaction between a “reactive user agents” included in
the packet and resource manager agents that reside in the
network nodes. The manager agents propose resources
(such as link bandwidth, memory, or CPU cycles) to the
user agents at a price that varies as a function of the
demand for the resource (the higher the demand, the
higher the price). Packets carry a budget that allows them
to afford resources on active nodes. Based on the posted
price of the resources and on its remaining credit, the
user agent of a packet makes decisions about the
processing to apply. For instance, if the CPU is in high
demand and thus expensive to use, then a packet may
decide to apply a simple compression algorithm to its
data, instead of a more efficient but more costly
algorithm, which the packet would have applied if the
resource were more affordable. This approach, which
might prove appropriate for mobile agent platforms,
could increase the packet complexity too much to be
used efficiently in active networks.

The two most common approaches to resource
control in active networks apply a fixed limit on the CPU
time allocated to an active packet. In one approach, each
node applies its own limit to each packet, while in the
other approach each packet carries its own limit, a limit
that might prove insufficient on some nodes a packet
encounters and overly generous on other nodes.

Neither approach provides a means to establish an
appropriate limit for a variety of active packets,
executing on a variety of nodes. Our research aims to
solve this problem, while at the same time we intend to
develop a solution that does not reduce the
expressiveness of an active packet, nor make a packet too
complex.

2.2 Existing attempts to quantify the CPU
demand units

The survey of research related to quantify the CPU
requirements initiates us to devise an effective solution.
The following sections outline and discuss some of the
ideas we found.

RISC cycles
The active-network architecture documents specify that a
node is responsible to allocate and schedule its resources,
and more particularly CPU time. Calvert [4] emphasizes
the need to quantify the processing demands of an active
application in a context where such demands can vary
greatly from one node to another, and he suggests using
RISC (Reduced Instruction Set Computer) cycles as a
unit to express processing demands. He does not address
two crucial questions. First, for a given active
application, how can a programmer evaluate the number
of RISC cycles required to execute a packet on a given

node? Second, how can this number be converted into a
meaningful unit for non-RISC machines?

Extra information provided by the programmer
In the AppLeS (application-level scheduling) project [3],
the programmer provides information about the
application that she wishes to execute on a distributed
system. She must indicate for instance whether the
application is more communication oriented or
computation-oriented or balanced, the type of
communication (e.g., multicast or point-to-point), and the
number of floating-point operations (in millions)
performed on each data structure. Using this information,
a scheduling program produces a schedule expected to
lead to the best performance for the application. This
method can yield acceptable predictions only if the
programmer is both willing and able to provide the
required characteristics of the program. Discussions with
software performance experts led us to think this is rarely
the case.

Combined node-program characterization
Saavedra-Barrera and colleagues [14] attempted to
predict the execution time of a given program on various
computers. To describe a specific computer, they used a
vector to indicate the CPU time needed to execute 102
well-defined FORTRAN operations. In addition, they
provided a means to analyze a FORTRAN program,
reducing it to the set of well-defined operations. The
program execution time can then be predicted by
combining the computer model with the program model.
The approach yielded good results for predicting the
CPU time needed to execute one specific run of a
program on different computer nodes. These results
encouraged us to model platforms separately from
applications; however, we need to capture multiple
execution paths through each application, rather than a
single path. We are pursuing a separate thread of
research, discussed under future work, which aims to
apply insights from Saavedra-Barrera to the active-
network environment.

Use acyclic path models
To measure, explain, or improve program performance, a
common technique is to collect profile information
summarizing how many times each instruction was
executed during a run. Compact and inexpensive to
collect, this information can be used to identify
frequently executed code portions. Unfortunately, such
profiles provide no detail on the dynamic behavior of the
program (for instance, these techniques do not capture
and report iterations). To solve this problem a detailed
execution trace must be produced, listing all instructions
as they are executed. But as program runs become
longer, the trace becomes larger and more difficult to
manipulate. Ball and Larus [2] propose an intermediate
solution: to list only loop-free paths, along with their
number of occurrences. Among other things, the authors
demonstrate how the use of these acyclic paths can
improve the performance of branch predictors. We might
be able to exploit such algorithms to efficiently capture
looping behaviors; however, to collect acyclic path

106 Informatica 35 (2011) 101–112 K.V. Devi et al.

information we would need to instrument the program
code for each application to be modeled. Given the
variety of execution environments and active
applications being devised by researchers, we decided to
first evaluate some simpler approaches.

3 CPU control and demand
prediction models

Any effective model of CPU demand by a mobile
program, which we call an active-application model,
seems likely to require delineating the processing paths
through the program in terms of elements of a platform
independent abstraction that the program will invoke on
every node. We refer to such platform-independent
abstractions as node models. In the context of active
networks, two types of node model seem feasible: (1)
white-box models and (2) black-box models. White-box
models specify the functions offered to active
applications by a specific execution environment. Black-
box models specify the system calls offered to execution
environments by a standard node operating system
interface. While we are investigating both approaches, in
this paper we focus mainly on a white-box model
because, if successful, such models can be developed for
each execution environment that a node intends to
support. In addition to seeking techniques to improve
black-box models, we have begun to investigate white-
box models as an alternative approach. In our
conception, white-box models represent the processing
logic within an active application as it invokes services
offered by an execution environment.

3.1 Proposed approach and significance
Now, we illustrate how our CPU demand models can be
used in two sample applications. In one application, we
decide when to terminate an active packet based on its
consumption of CPU time. In a second application, we
predict the CPU demand for nodes in an active network.
In both applications, we compare results obtained using
our white-box models (without considering the system
calls) against results obtained using CPU control and
estimation techniques typically available in execution
environments. As active packets traverse a series of nodes
along a path from source to destination, each active node
will wish to enforce CPU usage limits on each packet.
This permits a node to protect itself from malicious or
erroneously programmed active packets.

While innovative and radical when considered for
use inside networks, active-network execution
environments share much in common with virtual
machines used in Internet-based software architectures,
and active applications appear quite similar to other
forms of dynamically injected software, such as applets,
scripts, servlets, and dynamically linked libraries. These
similarities encourage us to believe that our model can be
applied generally to the problem of specifying CPU
demand in distributed applications that rely on the use of
mobile code.

4 Implementation of white-box
model

4.1 A heterogeneous active network setup
For the test setup, a three node heterogeneous active
network is constructed: the machine "AH-1” is the
sending node and "AN-1" is the destination. The
following figure (Figure 3) represents this topology:

 Requests SmartPacket

Response (Topology infn)

Figure 3: Test network setup.

The Smartpacket is transmitted from the Sender AH-1 to
the Destination AN-1.

Network setup using MAGICIAN:
MAGICIAN was loaded in Linux environment. The tool
provides an additional Execution Environment for setting
up the Active Network and for sending the active packets
using ANEP (Active Network Encapsulation Protocol).
A Network Environment was created by giving specific
host names to the machines forming the network.

One server (Four11) and two nodes have been setup:

Host name IP address
magicserver 192.168.1.60 - Server
magicclient1 192.168.1.168 – (AN-1)
magicclient2 192.168.1.169 – (AH-1)

The tool was installed in all nodes. A network
configuration (topology) file was created with the
filename as similar to netname:magicserver

magicserver.conf consists of the following topology
information:

(net:magicserver
(node: AN-1
host:magicserver
IP:192.168.1.60
gateway: (AN-2)
ports: (3325 3322 3324)

nbors; ((AN-2 192.168.1.168 3325 10000))

node: AN-2
host:magicclient1
IP:192.168.1.168
gateway: (AN-2)
ports: (3323 3324)
nbors: ((AN-1 192.168.1.60 3324 10000))
……………..

A configuration file is created for Four11 server which is
to be read by all the clients to know where the server is

Fo
ur11Se
rver

AH-
1
(Sender)

AN-
1
(Destinat
ion)

RESOURCE CONTROL AND ESTIMATION BASED… Informatica 35 (2011) 101–112 107

running and to setup a connection from the client side to
the server.

Four11.conf consists of:
host: magicserver port: 9411

Starting and testing the active network:

Starting the Four11 server:

The server has to be started from the directory where the
tool has been stored

Java magician.Four11.Four11 magicserver
arguments:
magicserver - the netname-which in turn the name of the
network config file-magicserver.conf

Starting the active node from the magicclient1 (host
m/c):
The Node has also to be started from the directory where
the tool has been stored in client machine.
Java magician.Node.NetworkNode magicclient1
magicserver log.txt

arguments:
magicclient1- host name where the node has to be setup
– must be present in the n/w config file
magicserver - netname
log.txt - trace filename is the name of some file where we
want the results to be stored

4.2 Evaluations and comparison
The white box model is implemented over Magician, a
tool for implementing the Active networks. Magician is
modified in order to incorporate CPU usage control. The
CPU time needed for the execution of each packet in the
first node is found out and stored. Here, the execution
time of each packet in the first node is taken as the
predicted value. SmartPing and SmartRoute are the
applications which send the active packets. One
malicious packet is intruded in between 5 good packets.
Each malicious packet is programmed to consume as
much CPU time as possible on each node. The EE
monitors the execution of each active packet, interrupting
them on a regular basis to query their execution time. If
this execution time is below the predicted, then the
packet continues its execution. Otherwise the EE kills it.
Once the packet completes its execution, or when it's
killed, the EE writes the information about the packet in
the MIB (trace file): increments the number of packets
killed or completed, and modifies the average CPU time
used (computed over the last 20 packets) and all these
information about the packet are stored. The average
CPU time, the mean time and the variance CPU time are
calculated and also stored in the trace file. The
percentage of error, (i.e) the difference between the
predicted time and the executed time is found out. The
CPU time wasted for identifying and killing the
malicious packet is also stored in MIB.

The characteristics of the heterogeneous platform
selected for the control demo is presented in TABLE I.

Characteristics of three computer platform selected:

Table 1: CPU control and prediction demo-platform.

The results from the control demo and prediction are
again analyzed and compared against two applications
and two nodes. TABLE II gives the node-wise CPU
utilization between two applications. The time taken for
executing the two applications like Smartping and
SmartRoute are given in the table II. The CPU time spent
in Node1 and Node2 resembles the predicted value,
which is shown in Table III. CPU predicted timings-
report is presented in TABLE III. The predicted value is
the time taken for executing the packet in the first node.
If any packet with the active application executes beyond
the predicted time in other nodes, the packet is identified
as the malicious packet and it is killed. The average
CPU time and variance in CPU time, calculated and
stored in a log file by the Execution Environment is
presented in TABLE III. The average CPU time and the
variance in CPU time almost resembles the predicted
time.

Comparison between applications

Table 2: CPU time usage-node wise report.

Table 3: CPU predicted timings-report (instruction
cycles).

The percentage of error is presented in TABLE IV
and the wasted CPU time for identifying and killing the
malicious packets is also found. Percentage error is
calculated as: Percentage Error = 100 * (prediction –
actual) / actual. The actual CPU time is the one measured

Platform Description

Node Name Server Node1 – AN-1 Node2 – AH-1

Processor Speed 3 GHz 2.4 GHz 1.2 GHz
Processor
Architecture

Pentium IV Pentium III Celeron

O.S / Version
Red hat Linux /
7.0

Red hat
Linux / 7.0

Red hat
Linux / 7.0

Java Virtual
Machine /
Version

Jdk1.3.1_02 Jdk1.3.1_02 Jdk1.3.1_02

Memory
size(Mega bytes)

512 MB 256 MB 128 MB

CPU time Used (instruction cycles)

Application In Source
During Transition

Node1 Node2

SmartPing 13,500 13,700 13,740

SmartRoute 65,084 65,110 65,169

EE
EE

AA
Predicted
value

Avg CPU
Time

Var CPU
time

Magician

SmartPing 113,750 13,587 13,587

SmartRoute 65,200 65,104 65,104

108 Informatica 35 (2011) 101–112 K.V. Devi et al.

in the first node. The percentage error between the
predicted and actual CPU time is presented in TABLE
IV. The variation is minimum between the predicted and
actual timings.

Table 4: Error report.

Control demo – results: - 30 packets were sent and out of
which 6 malicious packets were identified between 5
good packets and discarded.

The malicious packets were distinguished by
evaluating their execution time, which goes beyond the
estimated. It was found that the avg-wasted time for
identifying and killing the malicious packets is 8.29 ms
per packet. The total time taken per node is 49.74 ms.
The CPU demand is calculated and reported for a
heterogeneous setup.

5 Estimation of CPU time
The simplest estimation scheme is to measure the actual
computation time offline as done in the above models,
and include this value in all packets. The Estimation
Based Fair Allocation algorithm can use this value for
the estimation. This scheme has some drawbacks. The
execution time of a program is dependent of the data and
also dependent on the particular machine where it is
executed. Different cache sizes, for example, can cause a
program to take different amount of times, although the
same sequence of instructions is executed. Additionally,
a protocol is required to include the estimates in the
packets, which is a considerable overhead. To avoid
these problems, we have focused on estimation schemes
[16, 18] that use local results to predict the next packet’s
execution time. We identified the estimation techniques
for CPU estimation:

Constant

The constant estimate is the simplest estimator. The
estimated computation time for queue i in round n,
estimate i n, is always the same for all packets. If queues
correspond to different traffic classes, this information
can be used to select the constant.

estimate i,n = estimatei,n-1 = const.

Exponential average

The exponential average is a common method for an
adaptive estimation [15, 18] that combines the most
current execution time, actualn , with the previous results.
It is defined as:

estimate i,n = α . actual i,n + (1- α) . estimate i,n-1

The parameter α specifies how much of the previous
history is preserved. This scheme is used in many of
practical applications, e.g TCP round-trip delay
estimation.

Packet size dependent estimate

While the exponential average works well in practice, it
ignores the size of the packet [14] that is going to be
processed. The packet size dependent estimate is defined
as:

estimate i,n = fn (size(Pn));

where the function fn maps the packet size pn, to a
processing time. The function fn is adopted by the
estimator E as

fn = E (fn-1 , actuali,n)

The estimator E maps a packet size dependent estimation
function to a new estimation function under
consideration of the actual processing time. Any function
can be used for estimation but polynomial functions
seem to be most suitable, especially since a polynomial
of order 0 can be represented with 0+1 variables.
Depending on the precision of the required estimation,
higher or lower order polynomials can be used.

6 Estimation based fair allocation

6.1 Estimation based fair allocation
algorithm

We propose an allocation algorithm based on
Adaptive estimations and DRR for servicing flows
(queues) in an active node. For each queue, a deficit
counter and an estimate is maintained. The deficit
represents the amount of processing that this queue can
use. The estimate represents the amount of processing
that is expected for the next packet of this queue. The
scheduler forwards the packets of a queue to the
processor as long as the deficit is larger than the estimate
of the next packet. When a packet uses excessive
processing, the packet is interrupted by the timer. When
the processing is finished or terminated, the actual
processing time is used to adjust the deficit, as well as
the estimate that is used for the next packet. The
architecture is shown in Figure 4.

Figure 4: Estimation based fair allocation architecture.

Each network node stores packets coming from
different flows in different queues. There are n queues.
Each queue has initially no deficit and the estimated

EE AA Node
Percentage
Error

Magician

SmartPing

Source 1.85

Node1 0.36

Node2 0.07

SmartRoute

Source 0.18

Node1 0.14

Node2 0.05

que
ues

interrupt

 adjusted
deficit

 adjusted
estimate

 actual
time

packet

d
eficitdefi

cit

esti
defi

cit

esti
Estima

Packet
Scheduler

Proces
sor

Time

RESOURCE CONTROL AND ESTIMATION BASED… Informatica 35 (2011) 101–112 109

processing time set to a default. The calculation of the
estimation time is done using the exponential average
method given under section V. The scheduling algorithm
at the node selects a packet from the input queue, assigns
it to CPU and runs the program associated with it until
completion and then deposits it in the output queue. The
algorithm (Figure 5) defines round to be a state in which
the maximum number of packets allowable has been
processed from all flows. The algorithm associates
Quantum units with each flow i in each round. Each flow
maintains a state variable deficit that is initialized to
Quantum before the start of each round of processing.
The variable cpu_estimate maintains the number of CPU
cycles required for a packet p in a flow during a round.

The main loop checks whether the deficit is positive,
the deficit and the estimated processing time for the next
packet is compared. If the cpu_estimate is less than the
deficit, the packet is processed by process_packet_p. If
the current packet was previously interrupted, the old
state is restored. A timer is also set to the deficit and
started. The processing ends by means of two
possibilities:

 If the packet used more time than it was
permitted (the timer expires), the processing is
preempted. The state of the processing is saved
and the packet is pushed back into the head of
the queue. The processing can then continue
with that packet in the next round.

 If the processing is finished before the time
expires, the packet is sent on and the next packet
in the queue is considered.

The processing function returns the actual time that
was used by the packet. The actual time is subtracted
from the deficit. The estimator uses the actual time in
adjust_estimate(), to adjust the estimation for the queue.
If there is remaining deficit for the computation, then the
next packet is considered for processing, otherwise the
next queue is considered.

The total number of CPU cycles consumed by a flow
in a round is maintained in a variable total_cpu_con.
During each round, after a packet is processed from each
flow, cpu_estimate is added to total_cpu_con. The
number of packets processed from each flow in a round
is within the restriction that deficit > total_cpu_con. At
the start of every new round, deficit of the previous round
is added to quantum. The ratio of quantum given to any
flows i, j is equal to the ratio of resource allocations for
flows i, j. Also the algorithm only examines non-empty
and backlogged flows.

6.2 Fairness
The algorithm is fair based on the following

properties:
 The deficit counter is increased only once per

round by the allotted quantum.
 If a queue does not make use of its entire share

in a round, the amount is carried over to the next
round in the deficit counter.

 The difference in total number of CPU cycles
consumed between any two backlogged flows is
bounded by a small constant.

 No queue receives more processor time than the
deficit counter indicates. If the processing is
interrupted by the timer, then the queue used its
whole deficit and has to wait for the next round
to receive more. If the processing terminates
earlier, the deficit was not exceeded either.

 The deficit is charged only for the actual time
that the processor was used.

For each flow i, get quantum
Assign Deficit for flow i as Quantum of i + Deficitof i
Calculate cpu_estimatei

While (deficiti >0 && deficit > total_cpu_coni)
 If (deficiti >=cpu_estimatei),
 Start_timer(deficiti);
 P = head(queue);
 If (is_interrupted_packet(p)) then
 Restore_state(i);
 end if;
 Start_timer(deficit);
 actual_time = process_packet_p;
 if (process_interrupted) then
 save_state(i);
 enqueue_at_head(p,queue);
 end if;
 deficiti = deficiti - actual_time;
 Cpu_estimate =
 adjust_estimate(estimate,actual_time);
 else
 break;
 end if;
end while;
if (empty(queue)) then

 deficiti = 0;
end if;
total_cpu_con[i]= cpu_estimate+total_cpu_con[i];
increment totalround with total_cpu_con[i]
increment the round by one
assign prevround as totalround
end For

Figure 5: Estiamtion based fair allocation algorithm.

6.3 Results of EBFAA
To find out the performance of the EBFAA, we

implemented the algorithm. In Figure 6, we used a
single active node and one host configuration with
twenty flows sending packets. The only exception is that
Flow 10 is a misbehaving flow. While the ill behaved
flow grabs an arbitrary share of bandwidth when the
EBFAA is not used. While in EBFAA, there is nearly
perfect fairness.

The quantum / timeslice ranges from .1 times to 100
times the average processing time of a packet. The
algorithm is implemented using three estimates ‘e’ (e =
.1, e = 1 or e = 10 times the average actual processing
time). Here ‘e’ is the scalar constant chosen as the

110 Informatica 35 (2011) 101–112 K.V. Devi et al.

estimates. The estimation time is closer to actual
processing time when e = 1. The algorithm incurs fewer
context switches for quantum sizes in the range of the
actual processing time.

Figure 6: Control of the malicious flow.

We measured the delay rates for 20 flows. Each
flow reserves the same processing rate, and sends packets
randomly at specified average time intervals to just
saturate its share. The sum of average processing rates of
all flows is just under the processor capacity. Therefore,
the delays measured are mainly due to scheduling not
due to queuing backlog. The results in Figure 7 show that
EBFAA provides lower maximum delays to all flows,
when compared with WFQ, SFQ and SWFQ. EBFAA
also gives smaller delay standard deviations than SFQ
and SWFQ for all flows. Reduction in delay standard
deviations would reduce the delay jitters. We expect that
EBFAA would give better delay behavior due to its more
accurate system virtual time, especially, where variations
in processing requirements of packets are large. Figure 6
shows that WFQ provide smaller maximum delays than
SWFQ, SFQ and EBFAA for application flows that have
low processing time per packet to reserved rate ratio.
However, EBFAA can provide lower maximum delays
for all packets in flows when compared with WFQ. We
propose to use EBFAA for processing resource
scheduling in programmable networks to support QoS in
two categories: processing resource reservation, and best-
effort. We believe that EBFAA is also applicable for
processor scheduling in operating systems in general.

Figure 7: Delay measures

7 Conclusion and future work
This paper examines a way to analyze the CPU resource
control and Fair Resource Allocation to improve the
Quality of Service (QoS) in a heterogeneous active
network environment. It is discussed that some means are
needed to accurately specify the CPU demand in order to
safely and efficiently deploy mobile code among
heterogeneous platforms in a network. This paper has
described an approach (White Box model) and an
algorithm (EBFAA) to control the CPU utilization of
malicious packets and to estimate the CPU demand for
good packets in a heterogeneous active network
environment and evaluated the approach. In the control
application, it is demonstrated to identify the malicious
packets, when malicious or erroneous code is injected in
to a node and that the amount of CPU time stolen or
wasted has been found out and can be reduced. The
results from the control demo and prediction model are
again analyzed and compared against various
applications and nodes. The percentage error between the
predicted and the actual CPU time is also less for this
prediction model. The algorithm (EBFAA) also provides
near-perfect fairness during resource control and
allocation. Thus using this resource control model, the
network management systems can allocate the capacity
better by anticipating varying demands and the network
operators can better estimate the quality of service (QoS)
that customers can expect.

This work can be extended and can be compared
with different Execution environments. White-box
models could be combined with histograms and Monte-
Carlo simulations to yield reasonably accurate estimates.
In the case of white-box models, the histograms would
represent the CPU usage observed during calibration for
each primitive provided by the execution environment.
We have future plans to investigate these ideas in the
context of resource management for mobile code loaded
into call-processing servers. The issue of determining the
CPU requirement for active packet can also be resolved
by introducing a policy base [6, 18] at the active node.
Combined scheduling algorithms which could schedule
both CPU and bandwidth resources adaptively and fairly
among all the competing flows can be applied. This work
can also be extended for the prediction of the resources
in wireless and sensor networks.

Acknowledgment
This work is supported by Technology Information
Forecasting and Assessment Council (TIFAC) under the
Department of Science and Technology (DST),
Government of India and the Centre of Relevance and
Excellence (CORE) in Network Engineering at
Kalasalingam University, Krishnankoil-626190, Tamil
Nadu, India.

References
[1] Amit. B. Kulkarni, “Magician–An Active

NetworkingToolkit”, http://ittc.ukans.edu/projects/-
Magician, 2000.

Delay Measures

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Flow Numbers

D
el

ay
 (

m
s)

WFQ

SFQ

SWFQ

EBFAA

0

500

1000

1500

2000

2500

3000

1 3 5 7 9 11 13 15 17 19

T
h

ro
u

g
h

p
u

t
(K

b
p

s)

Flow numbers

with
EBFAA

without
EBFAA

ill behaved flow

RESOURCE CONTROL AND ESTIMATION BASED… Informatica 35 (2011) 101–112 111

[2] Ball. T and Larus. J.R, “Using paths to measure,
explain, and enhance program behavior”, IEEE
Computer, July 2000.

[3] Berman. F, Wolski. R., Figueira. S, Schopf. J, and
Shao. G, “Application-level scheduling on
distributed heterogeneous networks”, in
Supercomputing ’96, September, 1996.

[4] Calvert K. L., Griffioen J., Mullins B., Sehgal A.
and Wen S., “Concast: “Design and Implementation
of an Active Network Service”, IEEE Journal on
Selected Area in Communications (JSAC), Volume
19, Issue 3, 2001.

[5] Calvert. K. L., “Architectural Framework for
Active Networks”, Version 1.0 Draft July 27, 1999.

[6] Christos Tsarouchis et.al. , “A Policy-Based
Management Architecture for Active and
Programmable Networks”, IEEE Network,
May/June 2003.

[7] Huber O.r J. and Toutain. L, "Mobile Agents in
Active Networks", ECOOP'97, Workshop on
Mobile Object Systems, June 1997.

[8] Rohan De Silva, ,” A Security Architecture for
Active Networks”, Proceedings of the 4th ACM
WSEAS International Conference on Applied
Informatics and Communications, 2004.

[9] Larry Peterson and AN Node OS Working Group,
“NodeOS Interface Specification”, January 2000.

[10] Moore J.T., Hicks M., and Nettles S. “Practical
programmable packets”, In IEEE InfoCom 2001.

[11] Peterson. L, Gottlieb. Y, Schwab. S, Rho. S, Hibler.
M, Tullmann. P, Lepreau. J, and Hartman. J, “An
OS Interface for Active Routers”, IEEE Journal on
Selected Areas in Communications, 2001.

[12] Rauf Bautaba, University of Waterloo, Andreas
Polyrakis, University of Toronto, “Projecting
Advanced Enterprise Network and Service
Management to Active Networks”, IEEE Network,
Jan/Feb 2002.

[13] Reynolds. J and Postel. J. “RFC 1700 Assigned
Numbers”, October 1994.

[14] Saavedra-Barrera R. H. Smith A. J., and Miya. E.,
“Machine characterization based on an abstract
high-level language machine”. IEEE Transactions
on Computers, December 1989.

[15] Sohil Munir, ”A survey of Active Network
Research”, IEEE Communications Magazine: vol.
35, no.1, pp 80-86, Jan 1997.

[16] VimalaDevi K. & Mehata K.M., “Resource
Estimation and Policy Based Allocation for
Qualityof Service in Active Networks”, IEEE
workshop on Coordinated Quality of Service in
Distributed Systems (COQODS-II), held in
conjunction with 14th IEEE ICON2006, in
Singapore from September 13 to 15, 2006.

[17] VimalaDevi K. &. Mehata, K.M “Advancing
Performance Management using Active Network
Technology”, NCCN’03, S.R.M.Engg.
College, Chennai, India, Feb 2003.

[18] Cen, et al. “A distributed real-time MPEG video
audio player”, In Proceedings of Internal Workshop
on Network and Operating System support for

Digital and video (NOSSDAV), Lecture Notes in
Computer Science, pages 151-162, Durham, New
Hampshire, April 1995, Springer.

[19] Wetherall,. D, Guttag. J and Tennenhouse. D,
"ANTS: Network Services without the Red Tape",
IEEE Computer, pp. 42-48. (8), April 1999.

[20] Yamamoto. L and Leduc. G, “An agent-inspired
active network resource-trading model applied to
congestion control”. In MATA 2000, pages 151–
169, Sep 2000.

112 Informatica 35 (2011) 101–112 K.V. Devi et al.

Informatica 35 (2011) 113-122 113

Identification and Prediction Using Neuro-Fuzzy Networks with
Symbiotic Adaptive Particle Swarm Optimization

Cheng-Jian Lin and Chun-Cheng Peng
Department of Computer Science and Information Engineering
National Chin-Yi University of Technology, Taichung County, Taiwan 411, R.O.C.
E-mail: cjlin@ncut.edu.tw, goudapeng@gmail.com

Chi-Yung Lee
Department of Computer Science and Information Engineering
Nankai University of Technology, Nantou, Taiwan 542, R.O.C.
E-mail: cylee@nkut.edu.tw

Keywords: particle swarm optimization, symbiotic evolution, neuro-fuzzy network, identification, prediction

Received: October 16, 2009

This study presents a novel symbiotic adaptive particle swarm optimization (SAPSO) for neuro-fuzzy
network design. The proposed SAPSO uses symbiotic evolution and adaptive particle swarm
optimization with neighborhood operator (APSO-NO) to improve the performance of the traditional
PSO. In APSO-NO, we combine the neighborhood operator and the adaptive particle swarm
optimization to tune the particles that are most significant. Simulation results have shown that the
proposed SAPSO performs better and requires less computation time than the traditional PSO.

Povzetek: Razvita je nova metoda nevronskih mrež z uporabo roja delcev.

1 Introduction
Neuro-fuzzy networks (NFNs) have been demonstrated
to be successful [1]-[9]. Two typical types of NFNs are
the Mamdani-type and TSK-type models. In Mamdani-
type NFNs [3]-[4], the minimum fuzzy implication is
used in fuzzy reasoning. In TSK-type NFNs [5]-[8], the
consequent of each rule is a function input variable. The
generally adopted function is a linear combination of
input variables plus a constant term. Many researchers
[6]-[7] have shown that using TSK-type NFNs achieve
superior performance in network size and learning
accuracy than using Mamdani-type NFNs.

Training parameters is a problem in the design of a
NFN. To solve this problem, back-propagation (BP)
training is widely used [3]-[8]. It is a powerful training
technique that can be applied to networks. Nevertheless,
the steepest descent technique is used in BP training to
minimize the error function. The algorithm may allow
the local minima to be reached very quickly, yet the
global solution may never be found. In addition, the
performance of BP training depends on the initial values
of the system parameter, and for different network
topologies, new mathematical expressions for each
network layer have to be derived. Considering the
disadvantages mentioned above, one might be faced with
suboptimal performances, even for a suitable NFN
topology. Hence, techniques capable of training network
parameters and finding a global solution while
optimizing the overall structure are needed.

In this respect, a new algorithm, called particle
swarm optimization (PSO), appears to be a better
algorithm than the BP algorithm. It is an evolutionary

computation technique developed by Kennedy and
Eberhart in 1995 [10]. The underlying motivation for the
development of the PSO algorithm was the social
behavior of animals, such as birds flocking together, fish
swimming in schools, and insects swarming together.
Several researchers have used the PSO method to solve
some optimization problems, like control problems [11]-
[13] and neural network design [14]-[15].

The performance of most stochastic optimization
algorithms, including the PSO and genetic algorithms
(GAs), declines as the dimensionality of the search space
increases. These algorithms stop when they generate a
solution that falls in the optimal region, a small volume
of the search space surrounding the global optimum. The
probability in stochastic optimization algorithms
decreases exponentially as the dimensionality of the
search space increases. It is clear that, in a similar
topology, it is harder to find the global optimum in a
high-dimensional problem than it is in a low-dimensional
problem. One way to overcome this exponential increase
in difficulty is to partition the search space into lower
dimensional subspaces, as long as the optimization
algorithm can guarantee that it will be able to search
every possible region of the search space.

In this paper, a novel learning algorithm, called
symbiotic adaptive particle swarm optimization (SAPSO),
that tunes the parameters of NFNs is proposed. The
proposed SAPSO is different from the traditional PSO. In
the traditional PSO, each particle represents a fuzzy
system. But in SAPSO, each particle represents only one
fuzzy rule. A R-rule fuzzy system is constructed by

114 Informatica 35 (2011) 113–122 C.-J. Lin et al.

selecting and combining R particles from a given swarm.
The proposed SAPSO consists of symbiotic evolution
and adaptive particle swarm optimization with
neighborhood operator to improve the performance of the
traditional PSO.

The advantages of the proposed SAPSO are
summarized as follows: (1) SAPSO can reduce
population sizes; (2) the computation request of SAPSO
is less than that of the traditional PSO in each generation;
(3) in the learning process, the relative parameters in a
fuzzy system are searched; they prevent interference
from other parameters that can find what the best
parameter values are; (4) the adjusting parameter strategy
of SAPSO is more significant than the traditional PSO.

The rest of this paper is organized as follows. After
reviewing of training algorithms for NFNs in Section 2,
Section 3 illustrates the structure of the TSK-type fuzzy
model. An overview of PSO is given in Section 4. A
novel symbiotic adaptive particle swarm optimization
(SAPSO) is proposed in Section 5. Sections 6 and 7
respectively present the simulation results and discussion.
Finally, the conclusion is given in the last section.

2 Related works
Besides the most-applied BP algorithm, some other
traditional optimization approaches had been applied to
training NFNs, such as the Broyden-Fletcher- Goldfarb-
Shanno (BFGS) [16]-[17], conjugate gradient (CG) [18]-
[19], and Levenberg-Marquardt (LM) [20]-[21] methods.

In the context of deterministic unconstrained
optimisation, quasi-Newton (QN) methods, sometimes
called variable metric methods, are well-known
algorithms for finding local minima of specific functions.
QN methods are based on Newton's method to find the
stationary point of a function, where the gradient is zero.
Newton's method assumes that the function can be
locally approximated as a quadratic in the region around
the optimum, and requires the first and second
derivatives [22], i.e. the gradient vector and the Hessian
matrix, to find the stationary point. Moreover, the
Newton's method and its variants require that the Hessian
is positive definite - a condition that is difficult to
guarantee in practice.

Conjugate Gradient methods are in principle
approaches suitable for large-scale problems [23]. The
basic idea of CG methods is to find the stepsize along a
linear combination of the current gradient vector and the
previous search direction. On the other hand, equipped
with a damping factor, the LM (so-called damped Gauss-
Newton) methods are capable of relaxing the difficulties
of Hessian-based training, i.e. the ill-conditioning of the
Hessian matrix. In addition, when the damping factor is
zero, the LM methods become identical to the Gauss-
Newton approach; while as the damping factor gets close
to infinity, the LM methods are then get equivalent to the
steepest descent method.

As indicating in the Introduction section, although
the traditional second-order approaches generally have
faster convergent speeds, they are still in the situation of
local optimization. Evolutional approaches such as

particle swarm optimization (PSO) [10], differential
evolution (DE) [21], and symbiotic evolution (SE) [25]
have been developed for training NFNs [26]-[28],
respectively. Since this paper focuses on the PSO
approach, the concepts of DE and SE methods are
omitted here and suggested to refer the relevant literature
for further details, whereas the overview of the PSO and
our proposed symbiotic adaptive PSO are presented in
this paper.

3 Structure of a TSK-type neuro-
fuzzy network (TNFN)

A fuzzy model is a knowledge-based system
characterized by a set of rules that model the relationship
between the control input and output. The reasoning
process is defined by means of the inference method,
aggregation operators, and fuzzy connectives. The fuzzy
knowledge base contains the definitions of fuzzy sets,
which are stored in a fuzzy database, and a collection of
fuzzy rules.

Fuzzy rules are defined by their antecedents and
consequents, which relate an observed input state to a
desired control action. Most fuzzy systems employ the
inference method proposed by Mamdani, in which the
consequent parts are defined by fuzzy sets [1]. A
Mamdani-type fuzzy rule has the form:
IF x1 is A1j (m1j , 1j)and x2 is A2j(m2j , 2j)…and

xn is Anj (mnj , nj)

THEN y’ is Bj (mj ,j) (1)

where ijm and ij represent a Gaussian membership

function with mean and deviation, respectively, of the ith
dimension and the jth rule node. The consequents Bj of
the jth rule are aggregated into one fuzzy set for the
output variable y’. Crisp action is obtained through
defuzzification, which calculates the centroid of the
output fuzzy set. The more common fuzzy inference
method proposed by Mamdani, Takagi, Sugeno, and
Kang introduced a modified inference scheme [5]. The
first two parts of the fuzzy inference process, fuzzifying
the inputs and applying the fuzzy operator, are exactly
the same. A Takagi-Sugeno-Kang (TSK)-type fuzzy
model employs different implications and aggregation
methods than the standard Mamdani controller. Instead
of fuzzy sets being used, the conclusion part of a rule is a
linear combination of the crisp inputs.
IF x1 is A1j (m1j , 1j)and x2 is A2j(m2j , 2j)…and xn is

Anj (mnj , nj)

THEN y’=w0j+w1jx1+…+wnjxn (2)

Since the consequent of a rule is crisp, the
defuzzification step becomes obsolete in the TSK
inference scheme. Instead, the control output is computed
as the weighted average of the crisp rule outputs. This
computation is less expensive than calculating the center
of gravity.

IDENTIFICATION AND PREDICTION USING… Informatica 35 (2011) 113–122 115

The structure of the TSK-type neuro-fuzzy
network (TNFN) is shown in Fig. 1, where n and R are,
respectively, the number of input dimensions and the
number of rules. It is a five-layer network structure. The
functions of the nodes in each layer are described as
follows:
Layer 1 (Input Nodes): No function is performed in this
layer. The node only transmits input values to layer 2.

nixu ii 1 ,)1((3)

Layer 2 (Membership Function Nodes): Nodes in this
layer correspond to one linguistic label of the input
variables in layer 1; that is, the membership value
specifying the degree to which an input value belongs to
a fuzzy set is calculated in this layer. For an external

input ix , the following Gaussian membership function is

used:

Rj

mu
u

ij

iji
ij 1 ,exp

2

2)1(
)2(

(4)

where ijm and ij are, respectively, the center and the

width of the Gaussian membership function of the jth

term of the ith input variable ix .

Layer 3 (Rule Nodes): The output of each node in this
layer is determined by the fuzzy AND operation. Here,
the product operation is utilized to determine the firing
strength of each rule. The function of each rule is

i

ijj uu)2()3((5)

Layer 4 (Consequent Nodes): Nodes in this layer are
called consequent nodes. The input to a node in layer 4 is
the output delivered from layer 3, and the other inputs are
the input variables from layer 1, as depicted in Fig. 1. For
this kind of node, we have

)(
1

0
)3()4(

n

i
iijjjj xwwuu (6)

where the summation is over all the inputs, and wij are
the corresponding parameters of the consequent part. wij

can be any real value. If wij=0, i >0, the TNFN model in
this case will be called the zero-order TNFN model.
Layer 5 (Output Node): Each node in this layer
corresponds to one output variable. The node integrates
all the actions recommended by layers 3 and 4 and acts
as a defuzzifier with

R

j
j

R

j

n

i
iijjj

R

j
j

R

j
j

u

xwwu

u

u

uy

1

)3(

1 1
0

)3(

1

)3(

1

)4(

)5(

)(
(7)

Figure 1: Structure of the TNFN model.

4 An overview of particle swarm
optimization

Particle swarm optimization (PSO) [10] is a recently
invented high performance optimizer that possesses
several highly desirable attributes, including a basic
algorithm that is easy to understand and implement. This
algorithm is similar to genetic algorithms and
evolutionary algorithms, but requires less computational
memory and fewer lines of code. The PSO conducts
searches using a population of particles which
correspond to individuals in GA. Each particle has a

velocity vector

iv and a position vector

ix to represent a

possible solution.
Consider an optimization problem that requires the

simultaneous optimization of variables. A collection or
swarm of particles are defined, where each particle is
assigned a random position in the N-dimensional
problem space so that each particle’s position
corresponds to a possible solution of the optimization
problem. The particles fly rapidly, moving at their own
respective velocities, and search the space. PSO has a
simple rule, namely, that each particle has three choices
in evolution: (1) insist on itself; (2) move towards its
own current best position; each particle remembers its
own personal best position that it has found, called the
local best; (3) move towards the current best position of
the population; each particle also knows the best position
found by any other particle in the swarm, called the
global best. PSO reaches a balance among these three
choices.

At each time step, each of the particle positions is
scored to obtain a fitness value based on how well it
solves the current problem. Using the local best position
(Lbest) and the global best position (Gbest), a new
velocity for each particle is updated using

116 Informatica 35 (2011) 113–122 C.-J. Lin et al.

))((

))(()()1(

2

1

kxGbestrand()

kxLbestrand()kvkv

i

iii

 (8)

where 1 , , and 2 are called the coefficient of inertia,

the cognitive study, and the society study, respectively.
The term rand() refers to uniformly distributed random

numbers in [0, 1]. The term iv

is limited to the

range max

 v . If the velocity violates this limit, it will be
set to its proper limit. The concept of the updated
velocity is illustrated in Fig. 2.

Figure 2: The diagram of the updated velocity in the PSO.

A variable velocity enables every particle to search
around its individual best position and the global best
position. Based on the updated velocities, each particle
changes its position according to the following:

)1()()1(

kvkxkx iii (9)

When every particle is updated, the fitness value of
each particle is calculated again. If the fitness value of
the new particle is higher than those of the local
best/global best, then the local best/global best will be
replaced with the new particle. When the above updating
processes are repeated step-by-step, the whole population
will evolve toward the optimum solution. A detailed
flowchart is shown in Fig. 3.

Setup problem and
define constrains

Initialze swarm:

1. Random positions
2.Random velocities
3.Score each particle

Score solution represented by new particle position

Update velocity of i th particle

Updtae position of i th particle

Is this particle the best found
by this particles so far ? Update Local best

Is terminate ?

Solution is final Global best

Is this particle the best found
by any particles so far ? Update Global best

YES

No

YESNo

YES

No

)1()()1(

kvkxkx iii

))((()))((())()1(21 kxGbestrandkxLbestrandkvkv iiii

When an iteration finish

Figure 3: The typical PSO flowchart illustrates the steps
and update equations.

5 The symbiotic adaptive particle
swarm optimization (SAPSO)

In this section, we will introduce the symbiotic adaptive
particle swarm optimization (SAPSO) for NFN design.
SAPSO uses symbiotic evolution and adaptive particle
swarm optimization with neighborhood operator. The
detailed process is described below.

5.1 The Design of Neuro-Fuzzy Network
Using SAPSO

Symbiotic evolution was first proposed in an implicit
fitness-sharing algorithm that was used in an immune
system model [31]. Unlike the traditional PSO that uses
each particle in a swarm as a full solution to a problem,
in symbiotic evolution, each individual in a population
represents only a partial solution to a problem. The goal
of each individual is to form a partial solution that will be
combined with other partial solutions currently in the
population to build an effective full solution. In a normal
evolution algorithm, a single individual is responsible for
the overall performance, and is assigned a fitness value
according to its performance. In symbiotic evolution, the
fitness of an individual (a partial solution) is calculated
by summing up the fitness values of all possible
combinations of that individual with other current
individuals (partial solutions) and then dividing the sum
by the total number of combinations. The representation
of a fuzzy system using SAPSO is shown in Fig. 4.

In Fig. 4, we can see that if we need R rules to
construct a fuzzy system, we will have R sub-swarms.
Each sub-swarm produces its own sub-particles. The
current best parameters, called the cooperative best
(Cbest), of the fuzzy system are recorded. As with the
traditional PSO, the velocities and sub-particles in every
sub-swarm need to be updated.

The evolution process of SAPSO includes coding,

...

...
...

...
...

Figure 4: The representation of a fuzzy system by
SAPSO.

jm1 j1 jm2 j2 … njm nj … jw0 jw1 … njw

Figure 5: Coding a rule of SAPSO into a sub-particle.

IDENTIFICATION AND PREDICTION USING… Informatica 35 (2011) 113–122 117

initialization, fitness assignment, and sub-particle
updating. The coding step is concerned with the
membership functions and the fuzzy rules of a fuzzy
system that represent the particles in SAPSO. The
initialization step assigns the sub-swarm values before
the evolution process. The fitness assignment step gives a
suitable fitness value to each fuzzy system during the
evolution process. The complete learning process is
described step by step below.

A. Coding step: The first step in SAPSO is to code a
fuzzy rule into a sub-particle. Figure 5 shows a fuzzy
rule that is given by Eq. (2),

where ijm and ij represent a Gaussian membership

function with mean and deviation in the ith
dimension and the jth rule node, respectively.

B. Initialization step: Before SAPSO is designed, an
initial sub-swarm should be generated. As in the
traditional PSO, an initial sub-swarm is generated
randomly within a fixed range.

C. Fitness assignment step: As mentioned before for
SAPSO, the fitness value of a rule (a sub-particle) is
calculated by summing up the fitness values of all
the possible combinations, which are randomly
selected, and then dividing the sum by the total
number of combinations. The details for assigning
the fitness value are described step-by-step as
follows.
Step 1: Randomly choose one sub-particle from
each sub-swarm and assemble it to form a particle.
This particle represents a fuzzy system derived from
these sub-particles.
Step 2: Evaluate the performance of every fuzzy
system that is generated from Step 1 to obtain a
fitness value.
Step 3: The fitness records are initially set to zero.
Accumulate the fitness value of the selected sub-
particles to the fitness records.
Step 4: Repeat the above steps until each rule (sub-
particle) in a sub-swarm has been selected a
sufficient number of times, and record how many
times each sub-particle has participated in the fuzzy
systems.
Step 5: Divide the accumulated fitness value of each
sub-particle by the number of times it has been
selected. The average fitness value represents the
performance of a rule. In this paper, the fitness value
is designed according to the follow formulation:

Fitness Value=)/),(1/(1
_

TyyE (10)

where 2
_

1

_

)(),(ii

T

i

yyyyE

(11)

where
iy represents the true value of the ith output,

iy
 represents the predicted value,),(

_

yyE is an error

function, and T represents the number of the training
data of each generation.

D. Updating velocities and sub-particles: When the
fitness value of each sub-particle is obtained from

the fitness assignment step, the Lbest of each sub-
particle and the Gbest of each sub-swarm are
updated simultaneously using adaptive particle
swarm optimization with neighborhood operator
(APSO-NO). The algorithm of APSO-NO is
described in subsection 4.2.

E. Updating cooperative best (Cbest): When the
fitness value of every fuzzy system is obtained, we
can find the best fuzzy system in each generation. If
the fitness value of any fuzzy system is higher than
the best cooperative one, the cooperative best will be
replaced.

The steps mentioned above are repeated until the
predetermined condition is achieved.

5.2 The Adaptive Particle Swarm
Optimization with Neighborhood
Operator (APSO-NO)

In recent years, many researchers [30], [32] have
proposed using stability analysis on dynamic PSO in
order to obtain an understanding on how it searches for a
global optimal solution and the strategy it uses to tune
parameters.

In this paper, the velocity of a particle at the (k+1)-th
iteration is redefined for SAPSO as follows:

))((

))((

))(()()1(

3

2

1

kxCbestrand()

kxGbestrand()

kxLbestrand()kvkv

i

i

iii

(12)

where
1 , , 2 ,and 3 are called the coefficient of inertia,

cognitive study, group study, and society study,
respectively. We hope to accelerate every sub-particle in
a direction toward the best self (Gbest), the best of a
partial solution (Lbest), and the best of the full solution
(Cbest). The particle will be reduced to one dimension
for easy analysis. Thus, Eq. (12) is rewritten as follows:

))(()()1(kxZkvkv (13)

where rand()rand()rand() 321 (14)

 Cbestrand()Gbestrand()Lbestrand()

Z

 321 (15)

The reduced formulas of APSO-NO can be
expressed as follows:

)()(

)()1()()1(

)()()1(

kxZkywhere

kykvky

kykvkv

(16)

The reduced system can then be written into a form using
matrix algebra.

1
 ,

)(

)(

 1

M
ky

kv
Pwhere

MPP

k

kk (17)

More generally,
0PMP kk . Thus, the system is defined

completely by M. The eigenvalues of M are

118 Informatica 35 (2011) 113–122 C.-J. Lin et al.

2

4)1(

22

1
2

4)1(

22

1

2

2

2

1

 (18)

According to stability theory, the behavior of a particle is
stable if and only if 1and1 21 . Since the

eigenvalues
21, are a function of the parameters

1 , ,
2 ,

and 3 , eigenvalue analysis will be carried out under the

following four conditions to find the stable condition of
the system. The detailed proofs refer to [30].

10 ,21)4(

10 ,2121)3(

10 ,21)2(

20 ,0)1(

(19)

Based on the above analysis and with the use of the
parameters and , the criterion of
convergence 1and1 21 can be written as follows:

10
220

 (20)

The analysis of vibration for a period is also investigated
in [30]. In condition (3) of Eq. (29),
since 04)-1(2 when 2121
, becomes a complex number, and can be described
as follows:

10

421

where
(21)

Because is a complex number, it can be expressed as a
polar coordinate e . If T is to be the period of the

reduced system,

1 ,

2

1
2

4)1(

tan

2

Re

Im
tan

22

2

1

1

T

 (22)

If Eq. (21) is used instead of , then Eq. (22) can be
written as follows:

0.5)(

21

2
tan

2

0.5)(

21
2

tan

2

2
1

2
1

T

(23)

It was shown from Eq. (14) that is a random number
distributed in [0, (

321)] and that its average value

is
3

321 . We use three parameters,
321 and, ,

where 10 321 . Therefore,
321 and,, is

33

22

11

321321

3

3

3

 ::::
(24)

We can redefine Eq. (12) based on the above results
as follows:

))((3

))((3

))((3)()1(

3

2

1

kxCbestrand()

kxGbestrand()

kxLbestrand()kvkv

i

i

iii

(25)

 421 where (26)
The qualitative relation between the search trajectory

of the reduced system and the parameters is summarized
as follows:
(1).If 0 tocloses and10 , the convergence
tendency of the system will increase.
If tofaces and 1 , the divergence tendency of
the system will increase.
(2).If 1 tocloses and10 , the dynamics of the
system becomes a vibration.
(3). If the parameters 10 321 and any of the

other coefficients closes to 1, Z moves toward the
corresponding best (Lbest, Gbest or Cbest).

In addition to the above method, another concept,
called the neighborhood operator, is introduced in [15]. It
prevents a swarm from tending to the global best
prematurely in the search process. If it commits early to
the global best in the search process, it may be trapped in
a poor local minimum. In the neighborhood operator, the
Gbest is not a fixed value. Therefore, Eq. (25) can be
rewritten as follows:

))((3

))((3

))((3)()1(

3

2

1

kxCbestrand()

kxVbestrand()

kxLbestrand()kvkv

i

i

iii

(27)

where Vbest is defined as the best solution in the
neighborhood around the sub-particles that are waiting to
be updated. The neighborhood is identified by
calculating the distances between the candidate sub-
particles and the other sub-particles. The pseudo code is
shown in Fig. 6. We can see that the number of
neighborhoods gradually increases according to the
generations. When the generations are close to terminal
conditions, Vbest tends toward Gbest.

Figure 6: The pseudo code for finding Vbest in every
iteration.

6 Simulation results
In this section, the proposed SAPSO is applied to

the TNFN design and compared with the traditional PSO.
Both SAPSO and the traditional PSO are used to adjust

1. Get dist[i] by calculating distances between the
candidate sub-particle and all other sub-particle.

2. Find the maxdist from dist[i].

3. Define a threshold

 =)/(*5.05.0 maxiterationiterationnow
4. if <0.8

if > dist[i]/ maxdist

IDENTIFICATION AND PREDICTION USING… Informatica 35 (2011) 113–122 119

the antecedent and consequent parameters of fuzzy rules
in TNFN.

We use three different simulations for all methods.
The first simulation uses the example given by Narendra
and Parthasarathy [33]. The second simulation predicts
the chaotic time series [34], and the third example
approximates a piecewise function [35]. In our
simulations, the numbers of swarms and sub-swarms are
set to 50 and 10. The initial parameters of the traditional
PSO and SAPSO are given in Table 1. In SAPSO, we use
different parameter values to observe the effect on
performance. All the programs are developed using
MATLAB 6.1 software, and each problem is simulated

on a Pentium Ⅲ 1GHz desktop computer. Each
experiment is run 20 times.

Parameter
Model

)(11)(22 3

Traditional PSO 0.4 2.0 2.0 NA NA
SAPSO1 0.4 0.3 0.3 0.3 0.5
SAPSO2 0.4 0.5 0.5 0 0.5
SAPSO3 0.4 0.5 0 0.5 0.5
SAPSO4 0.4 0.2 0.4 0.4 0.5
SAPSO5 0.4 0.2 0.4 0.4 0.6-0.4
SAPSO6 0.4 0.1 0.3 0.6 0.3
SAPSO7 0.4 0.1 0.3 0.6 0.5
SAPSO8 0.4 0.1 0.3 0.6 0.7
SAPSO9 0.4 0.1 0.3 0.6 0.6-0.4

Table 1: The initial parameters of the traditional PSO and
the SAPSO.

Example 1-Identification of Nonlinear Dynamic System
The first example used for identification is described

by the difference equation

)(
)(1

)(
)1(3

2
ku

ky

ky
ky

 (28)

The output of this equation depends nonlinearly on both
its past value and the input, but the effects of the input
and output values are not additive. The training input
patterns are randomly generated in the interval [-2, 2] for
the training data. In this problem, we use five fuzzy rules,
and evolution progressed for 1000 generations.

After 1000 generations, the average best root mean
square error (RMSE) of the output approximates 0.016.
Figures 7 (a)-(b) show the outputs of the two methods for

the input u(k)=sin(2πk/25). Figure 8 and Table 2 show
the learning curves and the performance of PSO and
SAPSO with different parameter values.

 RMSE
Model

RMSE(Ave) RMSE(Best)

Traditional PSO 0.023 0.011

SAPSO1 0.100 0.059

SAPSO2 0.068 0.024

SAPSO3 0.066 0.035

SAPSO4 0.031 0.012

SAPSO5 0.038 0.024

SAPSO6 0.099 0.057

SAPSO7 0.037 0.020

SAPSO8 0.119 0.108

SAPSO9 0.016 0.012

Table 2: The performance comparison with two methods.

Figure 8: The learning curves of the PSO and the SAPSO
with different parameter values.

Example 2-Prediction of the Chaotic Time Series
The Mackey-Glass chaotic time series x(t) in
consideration here is generated from the following delay
differential equation:

)(1.0
)(1

)(2.0)(
10

tx
tx

tx

dt

tdx

(29)

Crowder [34] extracted 1000 input-output data pairs {x,
yd} which consisted of four past values of x(t), i.e.

)]6();(),6(),12(),18([txtxtxtxtx (30)

where τ=17 and x(0)=1.2. There are four inputs into the
model, corresponding to the values of x(t), and one
output representing the value x(t+Δt), where Δt is a time
prediction into the future. The first 500 pairs (from x(1)
to x(500)) are the training data set, while the remaining
500 pairs (from x(501) to x(1000)) are the testing data set
used for validating the proposed method. The number of
fuzzy rules is set to 6. The average best RMSE of the
prediction output approximates 0.009 after 1000
generations.

Figures 9 (a) and (b) show the prediction results of
PSO and SAPSO. Table 3 shows the comparison results
of the prediction performance of all methods. Figure 10
shows the RMSE curves of the two models.

(a) (b)
Figure 7: Results of the desired output and the model
output of (a) the PSO method, and (b) the SAPSO
method.

120 Informatica 35 (2011) 113–122 C.-J. Lin et al.

(a) (b)

Figure 9: The prediction results of (a) the PSO and (b)
the SAPSO.

Figure 10: The learning curves of the PSO and the
SAPSO with different parameter values for prediction
problem.

RMSE
Model

RMSE(Ave) RMSE(Best)

Traditional PSO 0.012 0.006

SAPSO1 0.025 0.013

SAPSO2 0.015 0.010

SAPSO3 0.015 0.012

SAPSO4 0.010 0.006

SAPSO5 0.010 0.007

SAPSO6 0.029 0.012

SAPSO7 0.011 0.008

SAPSO8 0.019 0.010

SAPSO9 0.009 0.006

Table 3: The performance comparison with two methods

Example 3-Approximation of the Piecewise Function
The piecewise function was studied by Zhang [35] and
Xu [36] and is defined as:

100

02

210

])7.003.0sin[(10

246.4

864.12186.2

)(
5.005.0

 x

x

x

xxe

x

x

xf
x

(31)

over the domain D = [-10, 10]. The piecewise function is
continuous and can be analyzed. However, traditional
analytical tools are inadequate and often fail. This failure
may be due to two reasons, namely, the wide-band
information hidden at the turning points and the
amalgamation of linearity and nonlinearity.

In this example, 200 training input patterns are
uniformly generated from Eq. (31). Seven fuzzy rules are
generated in this example. The RMSE curve is shown in
Fig. 11 with all methods. Figures 12 (a)-(b) show the

outputs of the function f with the PSO method and the
SAPSO9 method. The solid line represents the output of
function f, and the dotted line represents the
approximation of various methods. The results
comparing our model with PSO are tabulated in Table 4.

Figure 11: The learning curves of the PSO and the
SAPSO with different parameter values for piecewise
problem.

(a) (b)

Figure 12: The results of approximation using (a) the
PSO method and (b) the SAPSO9 method.

RMSE
Model

RMSE(Ave) RMSE(Best)

Traditional PSO 0.28 0.12

SAPSO1 3.35 3.15

SAPSO2 1.15 0.45

SAPSO3 0.33 0.16

SAPSO4 0.43 0.14

SAPSO5 0.24 0.13

SAPSO6 2.96 2.18

SAPSO7 0.21 0.09

SAPSO8 0.64 0.36

SAPSO9 0.20 0.09

Table 4: The performance comparison with two methods.

The average computation time per generation for
three examples with the PSO and SAPSO is tabulated in
Table 5. We only update the value of sub-particles in
each sub-swarm for SAPSO, and the total adjusted
parameters of SAPSO are less than that of PSO.
Therefore, the computation time required by SAPSO is
less than that by PSO.

IDENTIFICATION AND PREDICTION USING… Informatica 35 (2011) 113–122 121

Example

Model

Identification

of Nonlinear

Dynamic

System

Prediction of

the Chaotic

Time Series

Approximation

of the Piecewise

Function

PSO 1.21 7.5 3.15

SAPSO 0.35 1.70 0.65

Table 5: The average computation time of three
examples for the PSO and the SAPSO (Unit: sec).

7 Discussion
From the above experimental results, we find that the
parameters and,, 321 affect the performance of

SAPSO. In order to test the relationship between the
search trajectory and the parameter , we use the same
value of and,, 321

in SAPSO6, SAPSO7, SAPSO8,

and SAPSO9. We define the collection degree (CD) of a
sub-swarm for each generation as follows:

N

i

N

ij

jparticleiparticleCD
1 1

)()((32)

where N is the number of sub-swarms and is the 2-

norm (the Euclidean one for a vector). When CD is small,
the particles are close to each other.

Figures 13 (a)-(c) and figures 14 (a)-(c) show the
simulation results of example 1 when is 0.3, 0.7, and
0.6, diminishing to 0.4 gradually by increasing the
learning steps. It is observed that the convergence speed
of sub-particles in five sub-swarms is fastest when is
0.3, and the dynamics of five sub-swarms are always
vibration when is 0.7, as seen in Fig. 13 (b).

The two situations mentioned are detrimental to the
performance of the system. In Fig. 14 (a), the RMSE
curves are sharp in the beginning and do not move
afterwards. In Fig. 14 (b), the RMSE curves are like a
ladder and drop slowly. Therefore, we hope to combine
the advantages of the two situations mentioned and find
the appropriate method for setting the parameters. We
make the value of big enough to increase the chance of
search in the beginning and then gradually reduce
generations in number. We find that the performance of
SAPSO5 and SAPSO9 is better than the others from the
experiments. Moreover, from the above experimental
results, the performance of the system is better
when

321 .

8 Conclusion
In this paper, a novel symbiotic adaptive particle swarm
optimization (SAPSO) that adjusts the parameters of
fuzzy systems was presented. The proposed SAPSO
approach allows control over the dynamic characteristics
of particles. The efficiency of the proposed SAPSO was
demonstrated by its application to identification,
prediction, and approximation of function problems.
Simulation results show that the proposed SAPSO has
better learning performance and less computation time
requirements than the traditional PSO method.

(a) (b)

(c)
Figure 13: The collection degree for five sub swarm of
example1 in learning processes when is (a) 0.3, (b) 0.7,
and (c) 0.6~0.4.

(a) (b)

(c)
Figure 14: The RMSE curves for five sub-swarm of
example1 in learning processes when is (a) 0.3, (b) 0.7,
and (c) 0.6~0.4.

References
[1] C. T. Lin and C. S. G. Lee (1996), Neural Fuzzy

Systems: A Neuro-Fuzzy Synergism to Intelligent
System, NJ: Prentice-Hall.

[2] G. G. Towell and J. W. Shavlik (1993). Extracting
refined rules from knowledge-based neural
networks. Machine Learning, vol. 13, pp. 71-101.

[3] C. J. Lin and C. T. Lin (1997). An ART-based
fuzzy adaptive learning control network. IEEE
Trans. on Fuzzy Systems, vol. 5, no. 4, pp. 477-496.

[4] L. X. Wang and J. M. Mendel (1992). Generating
fuzzy rules by learning from examples. IEEE Trans.
on Systems, Man, Cybern., vol. 22, no. 6, pp. 1414-
1427.

[5] T. Takagi and M. Sugeno (1985). Fuzzy
identification of systems and its applications to
modeling and control. IEEE Trans. on Systems,
Man, Cybern., vol. SMC-15, pp. 116-132.

122 Informatica 35 (2011) 113–122 C.-J. Lin et al.

[6] J.-S. R. Jang (1993). ANFIS: Adaptive-network-
based fuzzy inference system. IEEE Trans. on
Systems, Man, and Cybern., vol. 23, pp. 665-685.

[7] C. F. Juang and C. T. Lin (1998). An on-line self-
constructing neural fuzzy inference network and its
applications. IEEE Trans. on Fuzzy Systems, vol. 6,
no.1, pp. 12-31.

[8] F. J. Lin, C. H. Lin, and P. H. Shen (2001). Self-
constructing fuzzy neural network speed controller
for permanent-magnet synchronous motor drive.
IEEE Trans. on Fuzzy Systems, vol. 9, no. 5, pp.
751-759.

[9] H. Takagi, N. Suzuki, T. Koda, and Y. Kojima
(1992). Neural networks designed on approximate
reasoning architecture and their application. IEEE
Trans. on Neural Networks, vol. 3, no. 5, pp. 752-
759.

[10] J. Kennedy and R. Eberhart (1995). Particle swarm
optimization. Proc. IEEE Int’l Conf. Neural
Networks, pp. 1942-1948.

[11] Z. L. Gaing (2004). A particle swarm optimization
approach for optimum design of PID controller in
AVR system. IEEE Trans. on Energy Conversion,
vol. 19, Issue: 2, pp. 384-391.

[12] H. Yoshida, K. Kawata, Y. Fukuyama, S.
Takayama, and Y. Nakanishi (2000). A particle
swarm optimization for reactive power and voltage
control considering voltage security assessment.
IEEE Trans. on Power Systems, vol. 15, Issue: 4,
pp. 1232-1239.

[13] M. A. Abido (2002). Optimal design of power-
system stabilizers using particle swarm
optimization. IEEE Trans. on Energy Conversion,
vol. 17, Issue: 3, pp. 406-413.

[14] C. F. Juang (2004). A hybrid of genetic algorithm
and particle swarm optimization for recurrent
network design. IEEE Trans. on Systems, Man and
Cybernetics, Part B, vol. 34, Issue: 2, pp. 997-1006.

[15] R. Mendes, P. Cortez, M. Rocha, and J. Neves
(2002). Particle swarms for feedforward neural
network training. Proc. Int’l Joint Conf. Neural
Networks, pp. 1895-1899.

[16] A. Savran (2007). an adaptive recurrent fuzzy
system for nonlinear identification. Applied Soft
Comp., vol. 7, pp. 593-600.

[17] Y. Oysal and S. Yilmaz (2010). an adaptive wavelet
network for function learning. Neural Comp. Appli.,
vol. 19, pp. 383-392.

[18] B. Cetisli and A. Barkana (2010). Speeding up the
scaled conjugate gradient algorithm and its
application in neuro-fuzzy classifier training. Soft
Comt., vol. 14, no. 4, pp. 365-378.

[19] B. Cetisli (2010). Development of an adaptive
neuro-fuzzy classifier using linguistic hedges: part
1. Expert Syst. Appli., vol. 37, pp. 6093-6101.

[20] Y. Bodyanskiy, V. Kolodyazhniy, and A. Stephan
(2001). An Adaptive Learning Algorithm for a
Neuro-fuzzy Network. Proc. Int’l Conf. 7th Fuzzy
Days, Dortmund, Germany, pp. 68-75.

[21] A. K. Palit and R. Babuska (2001). Efficient
Training Algorithm for Takagi-Sugeno Type

Neuro-Fuzzy Network. Proc. IEEE Int’l Conf.
Fuzzy Systems, Vol. 3, pp. 1367-1371.

[22] R. Fletcher (reprinted 2006). Practical methods of
optimization. Edn. 2nd, West Sussex: Wiley.

[23] P. E. Gill, W. Murray, and M. H. Wright (1981).
Practical Optimization. London: Academic Press.

[24] R. Storn and K. V. Price (1997). Differential
evolution – a simple and efficient heuristic for
global optimization over continuous spaces. J.
Global Opt., vol. 11, no. 4, pp. 341-359.

[25] A. E. Douglas (1994). Symbiotic Interactions.
Oxford: Oxford University Press.

[26] C. J. Lin and C. F. Wu (2009). An Efficient
Symbiotic Particle Swarm Optimization for
Recurrent Functional Neural Fuzzy Network
Design. International Journal of Fuzzy Systems,
vol. 11, no. 4, pp. 262-271.

[27] C. H. Chen, C. J. Lin, and C. T. Lin (2009),
Nonlinear System Control Using Adaptive Neural
Fuzzy Networks Based on a Modified Differential
Evolution. IEEE Trans. on Systems, Man, and
Cybernetics--Part C: Applications and Reviews,
vol. 39, no. 4, pp. 459-473.

[28] C. H. Chen, C. J. Lin, and C. T. Lin (2009). Using
an Efficient Immune Symbiotic Evolution Learning
for Compensatory Neuro-Fuzzy Controller. IEEE
Trans. on Fuzzy Systems, vol. 17, no. 3, pp. 668-
682.

[29] P. N. Suganthan (1999). Particle swarm optimizer
with neighborhood operator. Proc. Congress on
Evolutionary Computation, vol. 3.

[30] K. Yasuda, A. Ide, and N. Iwasaki (2003). Adaptive
particle swarm optimization. Proc. IEEE Int’l Conf.
Systems, Man and Cybernetics, vol. 2, pp. 1554-
1559.

[31] D. E. Moriarty and R. Miikkulainen (1996).
Efficient reinforcement learning through symbiotic
evolution. Mach. Learn., vol. 22, pp. 11-32.

[32] M. Clerc and J. Kennedy (2002). The particle
swarm - explosion, stability, and convergence in a
multidimensional complex space. IEEE Trans. on
Evolutionary Computation, vol. 6, Issue: 1, pp. 58-
73.

[33] K. S. Narendra and K. Parthasarathy (1990),
Identification and control of dynamical systems
using neural networks. IEEE Trans. on Neural
Networks, vol. 1, no. 1, pp. 4-27.

[34] R. S. Crowder (1990). Predicting the Mackey-Glass
timeseries with cascade-correlation learning. Proc.
of the 1990 Connectionist Models Summer School,
Carnegie Mellon University, pp. 117–123.

[35] Q . Zhang and A. Benveniste (1992). Wavelet
Networks. IEEE Trans. on Neural Networks, pp.
889-898.

[36] D.W.C. Ho, P. A. Zhang, and J. Xu (2001). Fuzzy
Wavelet Networks for Function Learning. IEEE
Trans. on Fuzzy Systems, vol.9, pp. 200-211.

Informatica 35 (2011) 123-137 123

Order Statistics Bayesian–Mining Agent Modelling for Automated
Negotiation

Samir Abdel Rahman, Reem Bahgat and George M. Farag
Computer Science Department,
Faculty of Computers and Information, Cairo University, Egypt
E-mail: {s.abdelrahman, r.bahgat}@fci-cu.edu.eg, gmf.deary@gmail.com

Keywords: bayesian mining, order statistics, automated negotiation, multi-issue, multi-session, opponent modelling

Received: May 27, 2010

The availability of qualitative knowledge has been recently used to simulate human negotiations accurately.
During real-life negotiation sessions, people accumulate their knowledge to opt for most adequate bids by
which both negotiating parties reach a win-win agreement. Unfortunately, existing research mainly
concentrates on few negotiation bids. This paper proposes order statistics Bayesian-mining agent approach to
automate bilateral multi-issue multi-session win-win negotiation problems. The proposed agent applies a real-
life social bid ranking based on historical bids of all previous negotiation sessions to dynamically update all
issues’ weights and preferences. Moreover, it uses our proposed deterministic Trade-Off counter offer method,
rather than the existing haphazard estimation method, to estimate precisely the next bid. Experiments are
conducted on 3-issue, 5-issue, 6-issue and 10-issue having 27, 3169, 3122 and 13219200 bids respectively. The
selected evaluation analysis methods are mainly Pareto optimality, utility, cost and step-wise measurements.
Compared with existing agent sorts, such as ABMP, Trade-Off, Bayesian and Mining agents, the proposed
agent approach is proved that it is more efficient, effective, scalable and sensitive (adaptable to the opponent
steps). Also, it works better to maximize its utilities and to minimize the negotiation costs (the number of
rounds).

Povzetek: Opisana je agentna metoda pogajanj, ki se odloča na osnovi Bayesovske statistike.

1 Introduction
The paper aims to automate bilateral multi-issue multi-
session win-win human negotiation. Negotiation is the
process in which two or more parties, having conflicts in
their interests, can mutually reach a beneficial agreement
on the related set of issues by exchanging some bids. In
any bilateral negotiation [20], there are only two parties
who exchange their bids using some negotiation
protocols. In multi-issue negotiations [20], each bid has
many issues such that each issue consists of several
discrete items. The negotiator goal is to adjust all issues’
preferences to maximize his bid utility. The essential
assumption of win-win multi-issue bilateral negotiation
is that the two negotiators are rational and they are eager
to find a solution of bid utilities that is acceptable to both
parties [19]. So, each party has to know the preferences
of its opponent to reach an agreement. In reality, the
negotiators are hardly willing to disclose their private
preferences. Consequently, both parties have incomplete
information about each other and so may hardly reach an
optimal deal. A typical real-life negotiation may need
more than one session to reach a successful deal such
that each party commences the new session having some
gained knowledge about his opponent from previous
sessions, where a session is defined as the time duration
in which the negotiators decide to communicate with
each other to reach a satisfied agreement, if any.

Automated negotiation recently has become a
disputed solution to compensate the human disability to
do complicated negotiation calculations accurately.

Automated negotiation applications range from simple
auctions, in which agents merely have to bid truthfully
[29], to complex strategic models, in which agents argue
for positions and aim to persuade their opponents of the
particular course of action [24].

Some multi-agent research [2, 9, 12] presented
strategies to automate multi-issue negotiation. Such
research was usually motivated with the high
complexity of multi-issue negotiation calculations
executed with the lack of available knowledge about the
opponent. Recently, some research [7, 12] investigated
the use of available knowledge about the environment’s
bids, issues, or opponent preferences while negotiation
sessions move forward. However, they either
concentrated on cases having one issue or they
depended on few bids from previous/current single
session negotiation. Moreover, their assumptions of
issue ranking and the data distribution are theoretical
rather than experimental; real-life applications are
complex in which the agreement is met after successive
negotiations having massive hidden information about
the environment’s preferences and issues that could be
mined, i.e. extracted and accumulated, while the
negotiation sessions ensue.

This paper presents non-parametric Bayesian-
mining agent modelling that depends on all historical
successive sessions to solve the complexity of real-life
applications. It proposes the following two crucial ideas.

First, while negotiation sessions advance, the

124 Informatica 35 (2011) 123–137 S.A. Rahman et al.

proposed model gradually learns how to reduce the
number of session rounds and to maximize the expected
utility upon the ratio of accepted bids. To do that, the
model weighs the bids, similar to the human ranking, by
which the first bid from each session is the most
significant bid and the current session is the most vital
session. The model then utilizes order statistics, non-
parametric, Bayesian learning to model the opponent
preferences and profiles which deals with any unknown
data distribution.

Second, a proposed trade-off counter-offer method
is used to estimate the next bid more precisely. This is
done by replacing existing randomness trade-off method
with a proposed partial derivative utility function.

Our experiments are set up against some well-known
existing agent approaches using 3-issue, 5-issue, 6-issue
and 10-issue applications. We use some evaluation
criteria, namely Pareto optimality, utility, cost (number
of rounds), step-wise (sensitivity analysis and class
studies), and confidence interval calculations. It is
experimentally proved that any agent following our
proposed model is efficient, effective and sensitive to the
opponent steps. Also, the proposed agent scalability is
verified as the agent guarantees these features on 10-
issue applications.

In comparison with current negotiation approaches,
the contributions of the proposed non-parametric
Bayesian-mining approach are as follows:

1-It works with any negotiation data distribution; all
current approaches assume normal distribution of
data, which is not necessarily true.

2-The agent outcomes are more effective and sensitive
as the agent can benefit from the historical data of all
previous negotiation sessions.

3-When our agent is involved in the negotiation, better
agreement is reached fast.

4-When our agent is involved in the negotiation, both
negotiators tend to maximize their utilities.

5- Our approach is scalable for large data set, while
authors of the other approaches state that they have to
adapt their models, if possible, to make them acquire
such a feature.
The remainder of this paper is organized as follows.

The next section discusses other negotiation approaches.
Section 3 outlines the evaluation methods stated in the
literature. Section 4 presents the overall proposed
approach with its assumptions and parameters. Section 5
demonstrates the proposed Bayesian-mining approach.
Section 6 presents the proposed counter-offer
enhancement. Section 7 shows the experimental results.
The paper is concluded with Section 8.

2 Related work
ABMP strategy [15, 16] takes the agent’s own utility
space in which the next bid utility has less value than the
previous one. Unfortunately, the strategy does not use
any domain or opponent knowledge. Also it does not
search through the negotiation outcome space for results
that are mutually beneficial for both parties. Therefore,
this strategy is inefficient in complex negotiation

domains although it is shown that it outperforms humans
in small domains [1].

Trade-off strategy [9] is based on similarity and iso-
curve criteria. In this strategy, the agent tries to find a
bid similar to his previously proposed one and to be
simultaneously suitable for his opponent. However the
random nature of its search impacts on its efficiency.
Another disadvantage is its difficulty to determine the
bid suitability for the opponent’s utility without having
any knowledge about his preferences. So, it always
needs a complement strategy to detect the opponent
preferences.

Bazaar model [33] is a learning approach for
sequential decision making in a single session single
issue (the price) negotiation. It works by generating
random numbers of upper and lower limits for the
agent’s reservation price to ensure the existence of
agreement zone. However, the negotiation model is
dedicated only to the price issue which is already known
earlier to both agents.

A Bayesian Markov chain model [21] was
presented to learn the opponent preferences in single
issue negotiation. Its major defect is that it does not
have a state-memory to save all negotiation movements
since it depends only on the negotiation current state to
predict the future bids. Moreover, it works only on a
single issue.

Kernel Density Estimator model [7], based on [9],
provided a kernel estimation method that depends on the
difference between two bids to predict the issue weight.
Therefore, the estimator doesn’t use its whole available
negotiation history to define its kernel. Moreover, it
does not provide a learning method for estimating the
issue weights, hence, it may be used effectively only
with single issue negotiations.

A Bayesian learning modelling [12] was presented
to learn an opponent model, i.e. the issue preferences
and priorities of the opponent. Unfortunately, the model
uses single session only to know the opponent
preferences. In most cases, the session has few bids to
learn and thus the gained knowledge is often imperfect.
Also, it enumerates all possible issue-weight ranks to
form the weighted issue hypothesis space which makes
the space considerably huge. Moreover, as most
strategies do, it assumingly considers the negotiation
data to follow the normal distribution which contradicts
with real human negotiations.

[18] proposed a theoretical means to acquire
negotiation knowledge from a batch of previous bids in
previous sessions of negotiations within the e-
Marketplace field. The model gives weights for each
issue and related items based on the accept/reject
probabilities. Then it sums these probabilities to weigh
the related bid and finally it ranks the bids’ weights to
select the bid with the highest weight given that it was
not previously selected. The authors report that they
theoretically open the door for mining negotiation
research. Unfortunately, the issue weight calculation
doesn’t consider the shape of issue evaluation function
which yields some wrong bid selections. Moreover, the
selected bid may not be the optimum choice for both

ORDER STATISTICS BAYESIAN–MINING... Informatica 35 (2011) 123–137 125

buyers.
As shown above, current automated negotiation

strategies don’t exploit all historical bids to enhance the
negotiation outcomes. Moreover, they follow some
theoretical assumptions which make the negotiation
relatively far from reality.

We compare our work with the above mentioned
approaches to prove our approach’s efficiency,
effectiveness, sensitivity to the opponent steps, and
scalability. Fortunately, some research, such as [12, 23],
tried to prove the scalability of their approaches. They
report that it is not easy for any model to sustain high
dimensional specifications. The authors of Bayesian
Learning model [12] show that they modify their model
to make it scalable for 10-issue applications and when
compared with the Trade-Off agent, both performances
were similar to each other as the agents stay close to the
Pareto frontier. In [23], a system of artificial adaptive
agents (AAAs), is created and tested for 10-issue against
the human agents to evaluate their performance. The
authors find that in high dimensions, such as 10-issue, it
is very complicated to make a suitable comparison of
the behavior and the performance between AAA and
human agents since neither the two agents may
outperform each other.

Before presenting the proposed framework strategy
(Sections 4, 5 and 6), it is also worth exploring the real-
life win-win bilateral game strategy. Three cases are
possible. The first case is when both players are
unprofessional or not able to accumulate knowledge
about each other, then the game outcomes are weak. The
second case is when one of them is skilful to gain
experience from his opponent tactics, then he
outperforms his opponent even if he commences the
game weakly. Moreover, the game outcomes are
relatively high. The last case is when both players are
professional, i.e. they can benefit or learn knowledge
about the tactics of each other, which may positively
affect both of them on the general results of the game. If
such game is negotiation, then people benefit from the
past/current sessions to achieve the best, even if they
have little initial data about their opponents. People
always give the highest priority to the first bid in each
session and lower priorities to successive bids. Also,
they give weights to previous sessions and their bids but
the weights reduce as the sessions are further away from
the current session.

3 Evaluation methods
Most existing automated negotiation approaches consider
mainly Pareto optimality [6, 8, 27], utility [17, 31], cost
(number of rounds) [33] and step-wise (sensitivity
analysis and class studies) [13] criteria as their evaluation
methods. They consider the negotiation of an agent
efficient if its outcomes have rapidly reached the Pareto
Frontier with the maximum utilization and the minimum
number of rounds. Also, they prove the agent
effectiveness using Pareto optimality and sensitivity
analysis. People, then, apply sensitivity analysis and
class studies to test the negotiator adaptability to the

opponent preferences. We use all these methods to
evaluate our proposed model.

3.1 Pareto Optimality
This method is to measure the distance of the negotiation
outcome to the Pareto Frontier. A deal is Pareto optimal
(or Pareto efficient), if it is not dominated by any other
deal. In other words, a deal is Pareto optimal if it is the
best agreement among all negotiation agents. When the
deal is Pareto optimal, the negotiation should end with
such an agreement [17, 31].

3.2 Cost Analysis
The cost of a negotiation process is measured by the
number of proposals (rounds) exchanged before reaching
an agreement [33]. The agent is efficient if it does fewer
rounds to reach optimum agreement with its opponent.

3.3 Utility Analysis
An automated negotiation strategy should guarantee its
agent to reach the maximum utilities when the agreement
deal is committed. An efficient negotiation strategy
models its agent such that it swiftly increases the
outcomes while the negotiation sessions advance.

3.4 Sensitivity Analysis
In the sensitivity analysis [13], not only the study of
negotiation outcomes is essential, but also the
investigation of the agent faults which are realized
throughout the negotiation activities. Another useful
sensitivity analysis of the opponent preferences is to
dynamically find out the negotiation characterizations. It
can be defined by comparing the percentage (Equation
1) of fortunate, nice and concession steps that increases
the opponent’s utility to the percentage of selfish,
unfortunate and silent steps that decreases it.
Spontaneously, an agent which only achieves steps
increasing its opponent utility can be said to be sensitive
to its opponent requirements.

A single negotiation step between an agent current
bid and the previous one for that agent which is written
as [13] based on utilities as follows:

 bUbUs aaa (1)

For a step aa bbs , OSa , , for the Agent

S and its Opponent O , to denote the utility difference
of two bids b and b’ in the utility space of agent A. From
the point of view of the agent S, the negotiation step s is
classified as [13]:

 Fortunate Step, denoted by (S+, O+), iff:
∆S(s)>0, and ∆O(s)>0.

 Selfish Step, denoted by (S+, O≤), iff:
∆S(s)>0, and ∆O(s)≤ 0.

 Concession Step, denoted by (S-, O≥), iff:
∆S(s)<0, and ∆O(s)≥ 0.

 Unfortunate Step, denoted by (S≤, O-), iff:
∆S(s) ≤0, and ∆O(s) <0.

126 Informatica 35 (2011) 123–137 S.A. Rahman et al.

 Nice Step, denoted by (S=, O+), iff:
∆S(s)=0, and ∆O(s)>0.

 Silent Step, denoted by (S=, O=), iff:
∆S(s)=0, and ∆O(s)=0.

The measure for sensitivity of the agent A
(Equation 2) to its opponent’s preferences is defined for a
given trace t [13] which includes all session bids for both
agents.

)(%)(%)(%

)(%)(%)(%

)(

aSilentaeUnfortunataSelfish

aconcessionaNiceaFortunate

a

ttt

ttt

tysensitivit

 (2)

If sensitivitya(t)<1, then an agent is more or less
insensitive to opponent preferences. If sensitivitya(t)>1,
then an agent is more or less sensitive to the opponent’s
preferences. The sensitivity notion is asymmetric, i.e.
one agent may be sensitive to the other’s preferences,
but not vice-versa.

3.5 Class Studies
Given a trace (session offers) ...,, 321

sos bbbt of

offers, it denotes the ith element of this sequence,

st (ot) denotes the sequence of steps from t that are

made by the agent himself (opponent), ct denotes the

subsequent steps that belong to a class c and finally

cat ,
, written tac, denotes the subsequent steps by

 OSa , that belong to class c; where the class c

{Fortunate, Nice, Concession, Selfish, Unfortunate,
Silent} (Section 3.4). In this research, we are interested
in two essential metric measures namely:

 Total utility difference per class

The pair Totalc(t) of sums of utility differences in all
steps of class c in a sequence t of steps is defined by:

 Totalc(t) = TotalSc(t) (3)

Where for any agent

i

i
caac ttTotalOSa :,

 Average Utility Difference per Class

The pair u-Avec(t) of average differences in utility in
all steps in class c in a sequence t of steps is defined by:

 u-Avec(t) = u-AveSc(t) (4)

Where for any agent
 ci

i
caac tttTotalOSa #/:,

Here #tc is the number of steps of class c in trace t.

This metric measures the average utility conceded
per negotiation step [8]. Negotiation strategies could be
observable as negotiation dance patterns. For example,
the success of a strategy that is supposed to learn its
opponent’s preferences can be verified by checking
whether the frequency and/or the size of unfortunate
steps over a negotiation trace decreases. Such patterns

can be seen as a measure of adaptability of a party to its
opponent.

4 The proposed approach
The proposed framework handles a bilateral multi-issue
multi-session win-win negotiation (Section 1); the
agents are rational to be involved in such negotiation.
All negotiating agents work independently to maximize
their utilities such that all of them win. The negotiation
bids are independent which means that the values of bid
preferences and issues are not derived from the other bid
values. One essential assumption is that the data
distribution is unknown. Two other crucial assumptions
are related to bids’ ranking and bid selection (Section 5).
Finally, the model utility function is assumed to be a
linear summation (Equation 5)

n

i
ii ewU

1

[8, 12] (5)

Where
iw is the issue weight and

ie is the issue

evaluation function;]1,0[ie .

Beside the model utility function, the main model
equations are issue hypothesis space function (Equation
13) and order statistics Bayesian-mining conditional
probability function (Equation 14). Using the evaluation
methods (Section 3) to test the proposed model, the
following steps are orderly done:
1. The model utility function is calculated.
2. Using the above assumptions, bid weighted issues W is
calculated (Sections 5.2 and 5.3).
3. Issue hypothesis space (Equation 13) of all bids is
defined as the Cartesian product of the shapes of the

issue evaluation functions ie (Equation 5) and W (Step 2).

4. At each bid arrival, the prior probability)(jHP ; HH j

is updated using Bayesian-Mining Learning approach
(Section 5.4) and the Bayesian rule of historical bids
order statistics (Equation 14).
5. The proposed counter-offer

1tb (Equation 22) using

expected utility)(tbu (Equation 21) is updated using

(Equations 20 and 5).
Throughout the Steps (2-5), all possible bids

transactions are recorded including session id, bid
<issues, items, weights, utility, rank>, and opponent
acceptance status (Yes/No).

5 Mining the opponent profiles
The order statistics Bayesian-mining strategy is to
minimize the number of session rounds of an agent as
well as to maximize its utility. The agent rationality is
increased whilst the negotiation sessions advance. Also,
it is proportionally boosted with the opponent
rationality. The opponent results depend on its
preferences and behaviour. Fortunately, any opponent
always gains from playing against the proposed agent
since the game session rounds are extremely diminished,
hence, the agreement is reached faster.

ORDER STATISTICS BAYESIAN–MINING... Informatica 35 (2011) 123–137 127

In order to apply skilfully its strategy, the proposed
agent should have twofold essential properties. First, it
mines all historical data from all previous sessions
regardless of the underlying data distribution. Second, it
uses order statistics Bayesian-mining approach to learn
successfully the opponent profiles/preferences and to
make good weight estimation for all negotiation issues
based on the proposed ranking and bid weighing.

5.1 Ranking Bids
In a multi-session negotiation, the current session is
considered the most important session. All current (last)
session bids take higher ranks than other previous
sessions bids. Also, each session first bid is considered
the most important one [22] so it takes higher rank than
the consequent bids in the same session. Thus the bids
are proposed orderly in sequence such that no bid is
proposed twice in the same session. The session ranks

(the first bid in each session) s
ir is assigned and to a

negotiation session i according to:

 yxsessions
i er int (6)

Where x, y is user defined according to the
importance of the session, taking a reasonable x for the
starting session ranking; in this research y=1, x=3.

In addition, the rank of each bid j, ijr , inside the

session is ranked in sequential order as follows:

i

s
i

s
i

iij
N

rr
jrr 11

 [18] (7)

Where
iN is the total number of bids in the

negotiation session i.

5.2 Bid Selection
All framework agents are assumed to be rational such
that the agent selects the bid once to allow win-win
situation for both negotiating parties. Through the
session activities, the utilities of bids are calculated to
gauge the bid acceptance/rejection status. Hence, if the
proposed bid utility is less than or equal to the opponent
expected utility, then the agent has to make an
agreement and the related session is accordingly
stopped. Otherwise, the agent rejects the opponent bid
and the agent bid is proposed.

5.3 Bid Weighing
As follows, the weight factor can be estimated using the
historical sequence of bids, each bid items, the status of
the opponent acceptance, and the rank of each bid.

P(accept) = bid ranks (opponent accept = YES) / N (8)

P(reject)= bid ranks(opponent accept = NO)/ N (9)

Where N is the summation of all ranks. Thus the
weight of each item in the issues can be estimated using
[30, 5] as follows:

wi = P(item(i)|accept)= bid ranks containing

item i of (opponent accept = YES) / total ranks of
accepted bids in all sessions for all issues. (10)

If each issue is composed of more than one item, then
the bigger item weight is considered as the issue weight
with the normalization as follows:

n

i
iii www

1

/ (11)

 1;
n

1i
i1

 wwW n

ii (12)

Where n is the number of issues. Then, the remaining
item set in each issue is adjusted.

5.4 Issue Hypothesis Space
[12] utilizes the issue weighted hypothesis space H as a
Cartesian Product of e

n
eew HHHH ...21

. wH presents

all combinations of issues’ weights related to each

possible issue ranks and e
iH is the shape of issue

evaluation function; the function shape may be downhill,

uphill, or triangular. However, since wH is calculated
based on all enumerations of issue weights and the
related ranks, its size is relatively huge.

Fortunately, the proposed weighting issue mechanism
(Section 5.3) estimates the issue weights based on the
accepted ranked bids and hence the combinations
of wH weights are limited to the estimated issue weights
W (Equation 12). Therefore, the size of the proposed
H (Equation 13) becomes smaller, the number of session
bids is reduced, and the bid acceptance likelihood is
increased.

e
n

ee HHHWH ...21 (13)

5.5 Bayesian-Mining Opponent Modelling
In the proposed Bayesian-Mining approach, it is needed
to update the probability associated with all hypotheses
given to the new bid, i.e. the posterior probability given
by Eq.14. In reality, the negotiation information about
bids may be too imperfect or hidden to be easily
estimated, i.e. there is no specific distribution for the
historical negotiation data. So, it is decided to utilize the
nonparametric and order statistics techniques.

Let bt-n, bt-n+1, bt-n+2,…, bt denote the order statistics of
size n of a total number of opponent bids; the utilities of
these bids are previously estimated. Let H be the class in
which some of these utilities exist. In the proposed
Bayesian approach, the most likely class value

jH is the

one that maximizes Equation 14:

128 Informatica 35 (2011) 123–137 S.A. Rahman et al.

))(...,),(),(,),((

))(...,),(),(,)((

))(...,),(),(),((

21

21

21

tntntnt

jtntntntj

tntntntj

bubububuP

HbubububuPHP

bubububuHP

 (14)

Using similar thinking as presented in [10], where
the conditional probability [14] is:

 jtntntnt HbubububuP))(...,),(),(,),((21
=

 jtjntjnt HbuPHbuPHbuP)(...)()(1
 (15)

Equation 14 dominator could be calculated from
Equation 16, which is the joint probability density
function using the equation used in [4, 10, 14] and
defined as follows

.0

1)()(0

,)(1)()(
!!1!1

!

))(),((

11

elsewhere

bubu

bubububu
jniji

n

bubuP

ij

jn
j

ij
ij

i

ii

ji

 (16)

The conditional probability jt HbuP)((Equation

15) can be estimated effectively using M-estimate
approach [26] as follows:

mn

pmn
HbuP c

jt

)((17)

Where
cn is the number of transactions from

class jH that takes the value)(tbu ; n is the total number of

transactions from class jH . p is a user-defined parameter

and can be computed as the prior probability))((tbup .

m is a parameter known as the equivalent sample size
and it determines the trade-off between the prior
probability p and the observed probability nnc / [26];

the parameter m is set to 2.0 (this setting is usually used
as a default and experimentally it gives satisfactory
results) [32].

)(tbu is estimated as))((tbup (Equation 16) which

could be calculated as follows using the equation used in
[4, 14] :

))|()(())|()((

)|()(

))(()(

rejectIPrejectPacceptIPacceptP

acceptIPacceptP

buP

ijij

ij

bacceptedt t (18)

Where ijI is the item of the issue iI ,)(acceptP

calculated by (Equation 8), and)|(acceptIP ij
calculated

by (Equation 10).

)(...,),(),(),(21 tntntntj bubububuHP
normalization

[21, 25] is as follows:

c

k
ktntntntk

jtntntntj

tntntntj

HbubububuPHP

HbubububuPHP

bubububuHP

1
21

21

21

))(...,),(),(,)((

))(...,),(),(,)((

))(...,),(),(),((
(19)

)(jHP is updated proportional to Equation 8 to get:

H

j
jHP

1

(20)

The expected utility u (bt) is updated when the
current opponent counter-offer is proposed during the
negotiation process, as follows, using Equation 5:

 UHPbu
H

j
jt

1

[12, 21] (21)

Where

 HH j is a hypothesis, and
tb is the new bid.

)(jHP is the prior probability of jH : the probability

that jH is correct before the new bid
tb is seen or it is the

current probability of hypothesis jH [12].

 jt HbuP)(is the conditional (likelihood) probability

of the new bid
tb that its utility might be proposed given

that the hypothesis
jH is true.

))((tbup is the marginal probability of)(tbu

6 The proposed counter-offer
It is assumed that any agent starts any negotiation session
by proposing the offer (bid) which has the maximum
utility for his owner. The opponent can accept the
proposed offer if the utility of that proposal is higher than
the offer he last proposed or the offer he intends to
propose, else he rejects and proposes a counter-offer. The
trade-off algorithm [9], based on the iso-curve concept,

starts at the opponent’s last bid with a utility tbu
(Equation 21); where the process is performed in S steps
and E is the utility difference between steps. In each
step, N children are generated which is closer to the

agents iso-curve with small tolerance , the most
similar to the opponent’s bids is selected as a stating bid
for another step until the S steps are completed. This last
selected one is sent to the opponent. Thus the counter-
offer is estimated as follows:

)(maxarg

arg)(

1 bub
ettown uxuxb

t

 [9] (22)

This is similar to what was mentioned in [12, 9].
However, in [9] the children are generated by distributing
the utility gain randomly among the issues under
negotiation as being mentioned in the algorithm [9] line
(5):

)),(min(
i

n
ii w

EE
Erandomr

 [9] (23)

Where
iE is the maximum evaluation gain for the

issue i at this step and En is the total amount of consumed
utility.

i

n

w

EE is used to limit the final gain to E .

ORDER STATISTICS BAYESIAN–MINING... Informatica 35 (2011) 123–137 129

The weak point in this algorithm is that it may
increase the utility of a certain issue that has less effect
on the opponent utility due to randomization.

Thus it needs to insert a third item to ensure that the
increased utility E is distributed fairly among the issues,
and to increase the search effectiveness by performing a
more directed search for the children at each step in the
direction that causes the smallest amount of satisfaction
loss to the opponent while increasing the agent’s own
utility. To do so, the proposed solution is as follows:

Consider a vector };..1|{; j< njivvIv i ,

the set of issues under negotiation, where n is the total
number of issues, and vi is computed by normalizing the
partial derivatives

i

t

I

bU

)(. Thus, the proposed

enhancement to (Equation 23) is written as:

),)(,(min
i

n
i

i

i
i w

EE
E

v

E
randomr

 (24)

This equation is repeated for all issues similar to the
algorithm in [9].

7 Experimental work
The experimental environment is built as follows. First,
all the previously mentioned aspects (Sections 3, 4 and 5)
are implemented. Second, four agent types are selected
and implemented to compete namely, ABMP (A) [15,
16], Trade-Off (T) [9], Bayesian (B) [12], Mining (M)
[18] and the proposed Bayesian-Mining (BM) Agent.
Finally, three data sets are generated with 3-issue [33], 5-
issue [12], 6-issue1 and 10-issue [8] having respectively
27, 3169, 3122 and 13219200 bids. For each data set, the
following bilateral experiments (Opponent vs. Me)/(A
vs. B) are carried out:

- Single-Session Experiments
- ABMP vs. ABMP
- ABMP vs. Trade-Off
- ABMP vs. Bayesian
- ABMP vs. Mining
- Trade-Off vs. ABMP
- Trade-Off vs. Trade-Off
- Trade-Off vs. Bayesian
- Trade-Off vs. Mining
- Bayesian vs. ABMP
- Bayesian vs. Trade-Off
- Bayesian vs. Bayesian
- Bayesian vs. Mining
- Mining vs. Mining
- ABMP vs. Bayesian-Mining
- Trade-Off vs. Bayesian-Mining
- Bayesian vs. Bayesian-Mining
- Mining vs. Bayesian-Mining
- Bayesian-Mining vs. Bayesian-Mining

- Multi-Session Experiments(1, 3, and 5 sessions)
- ABMP vs. Mining
- Trade-Off vs. Mining
- Bayesian vs. Mining

1 We use the online-site: http://interneg.concordia.ca/

- Mining vs. Mining
- ABMP vs. Bayesian-Mining
- Trade-Off vs. Bayesian-Mining
- Bayesian vs. Bayesian-Mining
- Mining vs. Bayesian-Mining
- Bayesian-Mining vs. Bayesian-Mining

7.1 Enhanced Trade-Off Experiments

(3-issue)
(1 session)

Enhanced-
TRADE-OFF

Basic
TRADE-OFF

Mean 0.658 0.510
std dev. 0.080 0.087

Confidence 0.070 0.077
confidence interval 1 0.728 0.587
confidence interval2 0.588 0.4328

Table 1: Statistical Results for 3-issues

(5-issue)
(1 session)

Enhanced-
TRADE-OFF

Basic
TRADE-OFF

Mean 0.4132 0.2168
std dev. 0.1084 0.1200

Confidence 0.0487 0.0539
confidence interval 1 0.4620 0.2708
confidence interval2 0.3645 0.1628

Table 2: Statistical Results for 5-issues

(6-issue)
(1 session)

Enhanced-
TRADE-OFF

Basic
TRADE-OFF

Mean 0.560 0.421
std dev. 0.145 0.155

Confidence 0.079 0.096
confidence interval 1 0.639 0.517
confidence interval2 0.481 0.325

Table 3: Statistical Results for 6-issues

(10-issue)
(1 session)

Enhanced-
TRADE-OFF

Basic
TRADE-OFF

Mean 0.560 0.421
std dev. 0.145 0.155

Confidence 0.079 0.096
confidence interval 1 0.639 0.517
confidence interval2 0.481 0.325

Table 4: Statistical Results For 10-issues

Sensitivity
Enhanced-

TRADE-OFF
Basic TRADE-

OFF
3-issue 2 1.5
5-issue 1.5 0.923077
6-issue 1.06666 0.380952

10-issue 3.083333 2.466667

Table 5: Sensitivity for The Basic/Enhanced Trade-Off

130 Informatica 35 (2011) 123–137 S.A. Rahman et al.

A
ge

n
t

T
ra

d
e-

of
f

vs
.

T
ra

d
e-

of
f

T
ra

d
e-

of
f

vs
.

E
n

h
an

ce
d

tr

ad
e-

of
f

P
er

fo
rm

an
ce

in

cr
ea

se
d

3-issue
A 0.6733 0.7566 12.376%
B 0.7 0.76 8.51%

5-issue
A 0.555 0.6675 20.27%
B 0.81 0.8125 0.309%

6-issue
A 0.82 0.85 3.659%
B 0.861 0.8656 0.455%

10-issue
A 0.703 0.707 0.624%
B 0.6436 0.7345 14.126%

Table 6: Performance for Both Algorithms for All issues

In order to weigh the enhanced trade-off contribution on
the negotiation process, experiments are done on the
mentioned data to compare both the enhanced trade-off
and the basic trade-off algorithms (Tables 1, 2, 3 and 4)
for (3-issue, 5-issue, 6-issue and 10-issue) respectively.
95% confidence interval is used and the increase in the
confidence interval is found that it is between 24%-
36%. It is noticed that the standard deviation, the data
population variability measure and the confidence
intervals, of the enhanced algorithm is smaller than the
basic algorithm standard deviation. This means that the
data is spread in smaller range of values leading to less
marginal error (confidence). It is found that the
agreement offers become more closely to the Pareto
frontier raising the utilities for both the agent and his
opponent (Table 6).

In 3-issue experiments, while the performance (the
utility) of the agent is increased by 8.571%, it is
increased by 12.376% for the opponent. In 5-issue
experiments, while the performance of the agent is
increased by 0.309%, it is increased by 20.270% for the
opponent. In 6-issue experiments, while the
performance of the agent is increased by 0.455%, it is
increased by 3.659% for the opponent. In 10-issue
experiments, while the performance of the agent is
increased by 14.126%, it is increased by 0.624% for the
opponent. Also the enhanced algorithm is more sensitive
than the basic algorithm (Table 5).

7.2 Bayesian Mining Experiments
Experiments were run based on 3-issue, 5-issue, 6-issue,
and to test the scalability of the approach, 10-issue is
used. To compare the performance of the Bayesian
mining approach, the agents using opponent modelling
were compared with agents using the ABMP, Trade-off,
Bayesian and mining strategies. All agents played against
the same opponent to compare both negotiation trace
(intra-transaction) and the final agreement (inter-
transaction). Negotiation takes place between agents A
and B assuming that the latter is the experiment target.

7.2.1 Pareto analysis
The main objective for any automated negotiation is to
stay as close as possible to the Pareto efficient frontier.
However in current automated negotiation strategies, no
player has prior information about the preferences of the
negotiating parties, and so all players don’t know where
the Pareto efficient frontier is located. It thus remains a
challenge to stay close to that Frontier. In this research,
the Bayesian–mining approach tries to predict the
opponent preferences and to select a suitable bid near the
Pareto Frontier. Figures 1, 2, 3 and 4 conclude that the
Bayesian-mining approach often makes the best
prediction to the opponent preferences compared with
other strategies; hence, it selects the bids which are
preferable to the opponent reaching an agreement close
to the Pareto frontier. It may also be concluded that the
Bayesian-mining approach gets the shortest distance
between the final agreement and the Pareto Efficient
Frontier. This is because the accumulated knowledge
regarding the opponent behaviour and preferences
shortens the distance between the final agreement and the
Pareto Efficient Frontier. In 3-issue experiments (Figure
1), after 5 sessions, when the agent B applies Bayesian–
mining strategy to negotiate with the opponent A
following the same strategy, Bayesian, Trade-off, Mining
or ABMP, it gets the distances of the final agreement to
the Pareto Frontier equal to 0.020, 0.192, 0.192, 0.170 or
0.209 respectively. Compared with these results, when a
Mining strategy agent has opponents, Bayesian, Trade-
off, Mining or ABMP, its distances would be 0.2618,
0.1828, 0.3753 or 0.261 respectively. Also, in 10-issue
experiments (Figure 4), 5 sessions, when the agent B,
having our proposed strategy, negotiates with its
opponent A which follows the same strategy, Bayesian,
Trade-off, Mining or ABMP, the distances of the final
agreement to the Pareto Frontier are 0.009, 0.028, 0.072,
0.042, 0127 respectively. Comparing these results with
the agent using Mining strategy having the opponents,
Bayesian, Trade-off, Mining or ABMP, the distances
become 0.144, 0.164, 0.1266 or 0.129 respectively.

Figure 1:3-issue Pareto Frontier Closeness Outcomes

ORDER STATISTICS BAYESIAN–MINING... Informatica 35 (2011) 123–137 131

It is also noticed that when agent B follows the
It is also noticed that when agent B follows the

Bayesian–mining strategy, it generally achieves the
shortest distance between the agreement and the Pareto
Frontier when its opponent is more rational. However,
when the agent uses the Mining strategy, there is no
general rule to judge which opponent strategy would be
better. When agent B follows the Trade-off strategy, it
reaches better agreement when the opponent uses the
Trade-off, then the Bayesian, and lastly ABMP. When
agent B follows the Bayesian strategy (Figures 1, 2 and
3), it reaches better agreements when the opponent is the
ABMP, then the Trade-off, and lastly the Bayesian
itself. However, in 10-issue experiments (Figure 4), the
order of its opponent strategies are the Bayesian, then
the Trade-off and lastly ABMP. When agent B follows
the ABMP, it reaches better agreements when the
opponent uses the Trade-off, then the Bayesian and
lastly ABMP.

7.2.2 Negotiation Cost and Utility

Strategy Vs. Strategy (3 Issues)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

A
 v

s.
A

T
 V

s.
 A

B
 V

s.
A

A
 v

s.
 T

T
 v

s.
 T

B
 V

s.
T

A
 V

s.
 B

T
 V

s.
 B

B
 V

s.
B

A
 v

s.
M

[1
]

T
 v

s.
M

[1
]

B
 v

s.
M

[1
]

M
[1

] v
s.

M
[1

]

A
 V

s
B

M
[1

]

T
 V

s.
 B

M
[1

]

B
 V

S
. B

M
[1

]

M
[1

] V
S

 B
M

[1
]

B
M

[1
] V

S
 B

M
[1

]

U
ti

lit
y

0
2
4
6
8
10
12
14
16
18
20

R
o

u
n

d
s Rounds

Ua

Ub

Strategy Vs. Strategy (5 Issues)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

A
 v

s.
A

T
 v

s.
 A

B
 v

s.
A

A
 v

s.
 T

T
 v

s.
 T

B
 v

s.
T

A
 v

s.
 B

T
 v

s.
 B

B
 v

s.
B

A
 v

s.
M

[1
]

T
 v

s.
M

[1
]

B
 v

s.
M

[1
]

M
[1

] v
s.

M
[1

]

A
 v

s
B

M
[1

]

T
 v

s
B

M
[1

]

B
 v

s
B

M
[1

]

M
[1

] v
s

 B
M

[1
]

B
M

[1
] v

s
 B

M
[1

]

U
ti

lit
y

0
10
20
30
40
50
60
70
80

R
o

u
n

d
s Rounds

Ua

Ub

Strategy Vs. Strategy (6 Issues)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

A
 v

s.
A

T
 V

s.
 A

B
 V

s.
A

A
 v

s.
 T

T
 v

s.
 T

B
 V

s.
T

A
 V

s.
 B

T
 V

s.
 B

B
 V

s.
B

A
 v

s.
M

[1
]

T
 v

s.
M

[1
]

B
 v

s.
M

[1
]

M
[1

] v
s.

M
[1

]

A
 V

s
B

M
[1

]

T
 V

s.
 B

M
[1

]

B
 V

S
. B

M
[1

]

M
[1

] V
S

 B
M

[1
]

B
M

[1
] V

S
 B

M
[1

]

U
til

ity

0
10
20
30
40
50
60
70

R
o

u
n

d
s Rounds

Ua

Ub

Figure 2:5-issue Pareto Frontier Closeness Outcomes

Figure 3:6-issue Pareto Frontier Closeness Outcomes

Figure 4:10-issue Pareto Frontier Closeness Outcomes

Figure 5:3-issue Single-Session experiments

Figure 6. 5-issue Single-Session Experiments

Figure 7: 6-issue Single-Session Experiments

Figure 8: 10-issue Single-Session Experiments

132 Informatica 35 (2011) 123–137 S.A. Rahman et al.

ABMP VS. BAYESIAN-MINING
(3 issues)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 session 3 sessions 5 sessions

SESSIONS

U
ti

li
ty

8.4
8.6
8.8
9
9.2
9.4
9.6
9.8
10
10.2

R
o

u
n

d
s Rounds

Ua

Ub

Trade-Off VS. BAYESIAN-MINING
(3 issues)

0

0.2

0.4

0.6

0.8

1

1 session 3 sessions 5 sessions

SESSIONS

U
ti

li
ty

0

2

4

6

8

10

12

R
o

u
n

d
s Rounds

Ua

Ub

Bayesian VS. BAYESIAN-MINING
(3 issues)

0

0.2

0.4

0.6

0.8

1

1 session 3 sessions 5 sessions

SESSIONS

U
ti

li
ty

0

2

4

6

8

10

R
o

u
n

d
s Rounds

Ua

Ub

MINING VS. BAYESIAN-MINING
(3 issues)

0

0.2

0.4

0.6

0.8

1

1 session 3 sessions 5 sessions

SESSIONS

U
ti

li
ty

0
1
2
3
4
5
6
7
8
9

R
o

u
n

d
s Rounds

Ua

Ub

MINING VS. MINING
(3 issues)

0.48
0.5

0.52
0.54
0.56
0.58
0.6

0.62
0.64
0.66

1 session 3 sessions 5 sessions

SESSIONS

U
ti

li
ty

13

13.5

14

14.5

15

15.5

16

16.5

R
o

u
n

d
s Rounds

Ua

Ub

BAYESIAN-MINING VS. BAYESIAN-MINING
(3 issues)

0

0.2

0.4

0.6

0.8

1

1 session 3 sessions 5 sessions

SESSIONS

U
ti

li
ty

0
1
2
3
4
5
6
7
8

R
o

u
n

d
s Rounds

Ua

Ub

ABMP VS. BAYESIAN-MINING
(5 issues)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1 session 3 sessions 5 sessions

SESSIONS

U
ti

li
ty

0
5

10
15

20
25

30
35

40

R
o

u
n

d
s Rounds

Ua

Ub

Trade-Off VS. BAYESIAN-MINING [5 issues]

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1 session 3 sessions 5 sessions

SESSIONS

U
ti

li
ty

0

5

10

15

20

25

30

R
o

u
n

d
s Rounds

Ua

Ub

Bayesian VS. BAYESIAN-MINING [5 issues]

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1 session 3 sessions 5 sessions

SESSIONS

U
ti

li
ty

0

5

10

15

20

25

R
o

u
n

d
s Rounds

Ua

Ub

MINING VS. BAYESIAN-MINING [5 issues]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 session 3 sessions 5 sessions

SESSIONS

U
ti

lit
y

0

5

10

15

20

25

R
o

u
n

d
s Rounds

Ua

Ub

MINING VS. MINING
(5 issues)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1 session 3 sessions 5 sessions

SESSIONS

U
til

ity

0

5

10

15

20

25

30

35

40

R
ou

nd
s Rounds

Ua

Ub

BAYESIAN-MINING VS. BAYESIAN-MINING
(5 issues)

0

0.2

0.4

0.6

0.8

1

1 session 3 sessions 5 sessions

SESSIONS

U
til

ity

0
2
4
6
8
10
12
14
16
18

R
ou

nd
s Rounds

Ua
Ub

Figure 10: 5-issue Opponent vs. Bayesian-Mining
Agent

Figure 9: 3-issue Opponent vs. Bayesian-Mining
Agent

ORDER STATISTICS BAYESIAN–MINING... Informatica 35 (2011) 123–137 133

ABMP VS. BAYESIAN-MINING
(6 issues)

0.79
0.8

0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89

1 session 3 sessions 5 sessions

SESSIONS

U
til

ity

0

5

10

15

20

25

30

R
o

u
n

d
s Rounds

Ua

Ub

Trade-Off VS. BAYESIAN-MINING
(6 issues)

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

1 session 3 sessions 5 sessions

SESSIONS

U
til

ity

0

5

10

15

20

25

30

R
o

u
n

d
s Rounds

Ua

Ub

Bayesian VS. BAYESIAN-MINING
(6 issues)

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

1 session 3 sessions 5 sessions

SESSIONS

U
ti

lit
y

0
2
4
6
8
10
12
14
16
18

R
o

u
n

d
s Rounds

Ua

Ub

MINING VS. BAYESIAN-MINING
(6 issues)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 session 3 sessions 5 sessions

SESSIONS

U
ti

lit
y

0

2

4

6

8

10

12

14

16

18

R
o

u
n

d
s Rounds

Ua

Ub

MINING VS. MINING
(6 issues)

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

1 session 3 sessions 5 sessions

SESSIONS

U
til

ity

0

5

10

15

20

25

R
ou

nd
s Rounds

Ua

Ub

BAYESIAN-MINING VS. BAYESIAN-MINING
(6 issues)

0.76
0.78

0.8
0.82
0.84
0.86
0.88

0.9
0.92
0.94
0.96
0.98

1 session 3 sessions 5 sessions

SESSIONS

U
til

ity

0

2

4

6

8

10

12

14

R
o

u
n

d
s Rounds

Ua

Ub

ABMP Vs Bayesian-Mining [10 issues]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 session 3 session 5 session

sessios

U
ti

lit
y

0

20

40

60

80

100

120

R
o

u
n

d
s Rounds

Ua

Ub

Trade-OFF Vs. Bayesian-Mining [10 issues]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 session 3 session 5 session

sessions

U
til

ity

0

20

40

60

80

100

120

R
ou

nd
s Rounds

Ua

Ub

Bayesian VS. Bayesian-Mining [10 issues]

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 session 3 session 5 session

sessions

U
ti

lit
y

0

20

40

60

80

100

120

140

R
o

u
n

d
s Rounds

Ua

Ub

Mining VS Bayesian-Mining [10 issues]

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 session 3 session 5 session

sessions

U
ti

li
ty

0
10
20
30
40
50
60
70
80

R
o

u
n

d
s Rounds

Ua

Ub

Mining VS Mining [10 issues]

0.52

0.54

0.56

0.58

0.6

0.62

0.64

1 session 3 session 5 session

100
105
110
115
120
125
130
135

Rounds

Ua

Ub

Bayesian-Mining VS Bayesian-Mining [10 issues]

0.6
0.62
0.64
0.66
0.68
0.7

0.72
0.74
0.76
0.78
0.8

1 session 3 session 5 session

sessions

U
ti

lit
y

0

10

20

30

40

50

60

R
o

u
n

d
s

Rounds

Ua

Ub

Figure 11: 6-issue Opponent vs. Bayesian-Mining Figure 12: 10-issue Opponent vs. Bayesian-Mining
Agent

134 Informatica 35 (2011) 123–137 S.A. Rahman et al.

Table 7: Average Sensitivities for all strategies

The negotiation cost is presented by the number of
rounds and increase in utility. It should be noticed that
single session experiments are the baseline to compare
all agent strategies (Figures 5, 6, 7and 8). Additionally,
in all multi-session experiments (Figures 9, 10, 11 and
12), the curves of all existing agent strategies, except for
our proposed strategy, are presented only by points as
they never have previous session knowledge to shorten
the negotiation rounds thus the related experiments are
independent. To sum up the results, the following points
may be stated.
 In all Bayesian–mining experiments, the agent

wins its opponent from the first session. It gains
more experience through negotiation steps and
sessions such that gradually its utility is increased
and the session rounds are decreased. For example,
when Agent B follows Bayesian–mining and plays
against an opponent Agent A which follows
ABMP on 5-issue data set (Figure 10), Agent B
utilities outcomes are (0.825, 0.83, 0.842) and the
game session rounds are (35, 25, 17) in 1, 3 and 5
sessions respectively. Moreover, when the
opponent agent A is Bayesian on 6-issue data set
(Figure 11), Agent B utilities are (0.9125, 0.92,
0.92566) and the game session rounds are (17, 15,
13) in 1, 3 and 5 sessions respectively. One may
notice that the first session between these parties
has 17 rounds only, which are less than 29 rounds
of Bayesian (Agent A) vs. Bayesian (Agent B)
single session experiment (Figure 7).

 All other opponents (agent A) gain from playing
with a Bayesian–mining agent (agent B). For
example, agent A which follows ABMP (Figure 6)
on 5-issue data set gets session rounds (75, 57, 43,
35) vs. Agent B which follows ABMP, Trade-Off,
Bayesian, Bayesian–mining respectively. Also, the
Trade-Off fastest single-session agreements
(Figures 5, 6 and 7) occurred with the Bayesian–
mining agent; 9 session rounds (3-issue data set)
and 25 session rounds (5-issue and 6-issue data
set).

 The Bayesian–mining agent outcomes (agent B) in
all its experiments on 3-issue, 5-issue, 6-issue and
10-issue data sets effectively prove its principles.

 It is illustrated that the Bayesian–mining approach
has less offers to reach rapidly the final agreement
and the final utility. In most cases, especially in
10-issue experiments, it raises the opponent

utilities. The Bayesian–mining approach works
with larger number of sessions having several
issues as the accumulated knowledge becomes
valuable.

 It is noticed that in terms of the overall negotiation
quality and number of proposals exchanged to
reach an agreement, the Bayesian–mining
approach outperformed the other strategies. This
confirmed the intuition that building mining and
learning capability into agents help the agents to
work more accurate with its opponent with better
performance and less expensive process.

7.2.3 Sensitivity analysis
The sensitivity analysis is interested only in the
negotiation intra-transaction. Table 7 summarizes the
average sensitivity for all negotiation strategies used in
this research. Figures 13, 14, 15 and 16 illustrate the
values of this study for all the negotiation experiments.

The average sensitivity for the Bayesian-mining
strategy is greater than all other strategies, which is also
influenced by the preferences’ alternatives of each kind
of issue (Table 7). In 3-issue experiments, the sensitivity
increment ratio between Bayesian-mining (2.50) and the
second highest sensitivity, i.e. Mining approach, (1.629)
is 53%. In 5-issue experiments, the sensitivity increment
ratio between Bayesian-mining (3.443) and second
highest sensitivity, i.e. Bayesian approach, (1.571) is
119%. In 6-issue experiments, the sensitivity increment
ratio between Bayesian-mining (3.750) and the second
highest sensitivity, i.e. Bayesian approach, (1.703) is
120%. In all 10-issue experiments, the sensitivity
increment ratio between Bayesian-mining (8.622) and
the second highest sensitivity, i.e. Bayesian approach
(3.03) is 184%. Figures 13, 14, 15 and 16 show that the
sensitivity has increased after the first session due to the
nature of the Bayesian-mining strategy which ranks the
proposed offers during the session at the end of each
session; the higher sensitivity value means that the agent
who owns the related strategy has more information
about the behaviour and the weights of preferences
which the opponent gives to the issues.

In the sensitivity deep analysis, it can be found that
for 3-issue, the Bayesian–mining approach sensitivity is
between 2 and 4, but for other agent strategies, the
sensitivity is between 0.667 and 2. For 5-issue, the
Bayesian–mining approach is between 1.4 and 6, but for
other agent strategies, the sensitivity is between 1.0 and
2.33. For 6-issue, the Bayesian–mining approach
sensitivity is between 2.143 and 7, but for other agent
strategies, the sensitivity is between 0.5 and 2.50. For
10-issue, the Bayesian–mining approach strategy is
between 5.824 and 13, but for other agent strategies, the
sensitivity is between 0.915 and 4.058.

To sum up the sensitivity results, the following
points should be clarified:
 Increasing the issues number leads to increasing

the sensitivity values of all strategies, because the

3-issue 5-issue 6-issue 10-issue

ABMP 1.085 1.269 0.843 1.58

Trade-off 1.250 1.315 1.260 2.68

Bayesian 1.618 1.571 1.703 3.03

Mining 1.629 1.568 1.581 2.213

Bayesian-
Mining 2.500 3.443 3.750 8.622

ORDER STATISTICS BAYESIAN–MINING... Informatica 35 (2011) 123–137 135

ability to select among great number of offers
having many alternatives is increased.

 The sensitivity is proportional to the agent
rationality. Table 7 shows evidence that the
descending rationality order would be Bayesian-
Mining, Bayesian, Mining, Trade-off, and ABMP.

 The sensitivity for the agent uses the Bayesian–
mining strategy to the opponent in negotiation is
more than any other strategy, which means that the
agent outcomes are nearly closed to Pareto frontier.

 If the agent has several history proposals, it has
enough knowledge to be more sensitive and more
close to the Pareto Frontier. Consequently, the
proposed agent records most sensitive steps to its
opponent.

 The sensitivity feature is asymmetric; one agent
may be sensitive to the other's preferences, but not
vice-versa.

Strategy A VS. Strategy B [number of sessions]
(3 discrete issues)

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

A
 v

s.
 A

A
 v

s.
 T

T
 v

s.
 T

A
 v

s.
 B

T
vs

. B
B

 v
s.

 B
B

 v
s.

 A

B
 v

s.
 T

T
vs

. A
A

 v
s.

 M
 [1

]
A

 v
s.

 M
 [3

]
A

 v
s.

 M
 [5

]
T

vs
. M

 [1
]

T
vs

. M
 [3

]
T

vs
. M

 [5
]

B
 v

s.
 M

 [1
]

B
 v

s.
 M

 [3
]

B
 v

s.
 M

 [5
]

M
 v

s.
 M

 [1
]

M
 v

s.
 M

 [3
]

M
 v

s.
 M

 [5
]

A
 v

s.
 B

M
 [1

]
A

 v
s.

 B
M

 [3
]

A
 v

s.
 B

M
 [5

]
T

 v
s.

 B
M

 [1
]

T
 v

s.
 B

M
 [3

]
T

 v
s.

 B
M

 [5
]

B
 v

s.
 B

M
 [1

]
B

 v
s.

 B
M

 [3
]

B
 v

s.
 B

M
 [5

]
M

 v
s.

 B
M

 [1
]

M
 v

s.
 B

M
 [3

]
M

 v
s.

 B
M

 [5
]

B
M

 v
s.

 B
M

 [1
]

B
M

 v
s.

 B
M

 [3
]

B
M

 v
s.

 B
M

 [5
]

S
en

si
tv

it
y

Agent A
Agent B

Strategy A VS. Strategy B [number of sessions]
(5 discrete issues)

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

A
 v

s.
 A

A
 v

s.
 T

T
vs

. T
A

 v
s.

 B
T

vs
. B

B
 v

s.
 B

B
 v

s.
 A

B

 v
s.

 T
T

vs
. A

A
 v

s.
 M

 [1
]

A
 v

s.
 M

 [3
]

A
 v

s.
 M

 [5
]

T
vs

. M
 [1

]
T

vs
. M

 [3
]

T
vs

. M
 [5

]
B

 v
s.

 M
 [1

]
B

 v
s.

 M
 [3

]
B

 v
s.

 M
 [5

]
M

 v
s.

 M
 [1

]
M

 v
s.

 M
 [3

]
M

 v
s.

 M
 [5

]
A

 v
s.

 B
M

 [1
]

A
 v

s.
 B

M
 [3

]
A

 v
s.

 B
M

 [5
]

T
vs

. B
M

 [1
]

T
vs

. B
M

 [3
]

T
vs

. B
M

 [5
]

B
 v

s.
 B

M
 [1

]
B

 v
s.

 B
M

 [3
]

B
 v

s.
 B

M
 [5

]
M

 v
s.

 B
M

 [1
]

M
 v

s.
 B

M
 [3

]
M

 v
s.

 B
M

 [5
]

B
M

 v
s.

 B
M

 [1
]

B
M

 v
s.

 B
M

 [3
]

B
M

 v
s.

 B
M

 [5
]

S
en

si
tv

ity Agent A
Agent B

Strategy A VS. Strategy B [number of sessions]
(6 discrete issues)

0.000

1.000
2.000

3.000
4.000

5.000

6.000
7.000

8.000

A
 v

s.
 A

A
 v

s.
 T

T
 v

s.
 T

A
 v

s.
 B

T
 v

s.
 B

B
 v

s.
 B

B
 v

s.
 A

B

 v
s.

 T
T

 v
s.

 A
A

 v
s.

 M
 [1

]
A

 v
s.

 M
 [3

]
A

 v
s.

 M
 [5

]
T

 v
s.

 M
 [1

]
T

 v
s.

 M
 [3

]
T

 v
s.

 M
 [5

]
B

 v
s.

 M
 [1

]
B

 v
s.

 M
 [3

]
B

 v
s.

 M
 [5

]
M

 v
s.

 M
 [1

]
M

 v
s.

 M
 [3

]
M

 v
s.

 M
 [5

]
A

 v
s.

 B
M

 [1
]

A
 v

s.
 B

M
 [3

]
A

 v
s.

 B
M

 [5
]

T
 v

s.
 B

M
 [1

]
T

 v
s.

 B
M

 [3
]

T
 v

s.
 B

M
 [5

]
B

 v
s.

 B
M

 [1
]

B
 v

s.
 B

M
 [3

]
B

 v
s.

 B
M

 [5
]

M
 v

s.
 B

M
 [1

]
M

 v
s.

 B
M

 [3
]

M
 v

s.
 B

M
 [5

]
B

M
 v

s.
 B

M
 [1

]
B

M
 v

s.
 B

M
 [3

]
B

M
 v

s.
 B

M
 [5

]

S
en

si
tv

ity Agent A

Agent B

Strategy A vs. Strategy B [Number of sessions]
10 Discrete issues

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

A
 v

s
.

A
 [

1
]

A
 v

s
.

T
 [

1
]

T
 v

s
.

T
 [

1
]

A
 v

s
.

B
 [

1
]

T
 v

s
.

B
 [

1
]

B
 v

s
.

B
 [

1
]

T
 v

s
.

A
 [

1
]

B
 v

s
.

A
 [

1
]

B
 v

s
.

T
 [

1
]

A
 v

s
.

M
 [

1
]

A
 v

s
.

M
 [

3
]

A
 v

s
.

M
 [

5
]

T
 v

s
.

M
 [

1
]

T
 v

s
.

M
 [

3
]

T
 v

s
.

M
 [

5
]

B
 v

s
.

M
 [

1
]

B
 v

s
.

M
 [

3
]

B
 v

s
.

M
 [

5
]

M
 v

s
.

M
 [

1
]

M
 v

s
.

M
 [

3
]

M
 v

s
.

M
 [

5
]

A
 v

s
.

B
M

 [
1

]

A
 v

s
.

B
M

 [
3

]

A
 v

s
.

B
M

 [
5

]

T
 v

s
.

B
M

 [
1

]

T
 v

s
.

B
M

 [
3

]

T
 v

s
.

B
M

 [
5

]

B
 v

s
.

B
M

 [
1

]

B
 v

s
.

B
M

 [
3

]

B
 v

s
.

B
M

 [
5

]

M
 v

s
.

B
M

 [
1

]

M
 v

s
.

B
M

 [
3

]

M
 v

s
.

B
M

 [
5

]

B
M

 v
s
.

B
M

 [
1

]

B
M

 v
s
.

B
M

 [
3

]

B
M

 v
s
.

B
M

 [
5

]

S
e

n
s
it
iv

it
y

Agent A

Agent B

7.2.4 Class studies
In the class studies, Bayesian–mining sensitivity
calculations, i.e. Fortunate Step, Selfish Step,
Concession Step, Unfortunate Step, Nice Step, and
Silent Step, are dependent on all historical bids. Hence,
the selection of suitable bids which satisfy the
conditions of these steps becomes almost granted. This
may lead to more accurate/rational calculations than the
other models’ criteria. In this section, the study focuses
on the effect of the presence of the Bayesian mining
strategy in any agent (A or B) in the negotiation process.

The average unfortunate step over a negotiation
trace decreases by 0.217 to 0.453 when the Bayesian–
mining approach is included (average of all cases of 3-
issue, 5-issue, 6-issue and 10-issue experiments),
However; the average unfortunate steps is between
0.431 and 0.531 when the Bayesian–mining approach is
not included.

The average concession step is between 0.477 and
0.952 when the Bayesian–mining approach is included;
however, the average concession step is between 0.475
and 0.78 when the Bayesian–mining approach is not
included. Also the average fortunate step is between
0.056 and 0.424 when the Bayesian–mining approach is
included while the average fortunate step is between
0.019 and 0.392 when the Bayesian–mining approach is
not included.

In 5-issue experiments (Table 8), the average
unfortunate steps over a negotiation trace decreases with
using Bayesian-Mining. When Bayesian–mining
approach is included, the average unfortunate step is
0.369, while the average unfortunate step is 0.444 when
Bayesian–mining approach is not included. Also the
average fortunate step is 0.262 when the Bayesian–
mining approach is included while the average fortunate
step is 0.182 when the Bayesian–mining approach is not
included.

In 6-issue experiments (Table 8), the average
unfortunate steps over a negotiation trace decreases with
using Bayesian-Mining. When Bayesian–mining
approach is included the average unfortunate steps is
0.365, while the average unfortunate steps is 0.528
when Bayesian–mining approach is not included. Also
the average fortunate step is 0.224 when the Bayesian–
mining approach is included while the average fortunate
step is 0.106 when the Bayesian–mining approach is not
included. Also the average concession step is 0.635

Figure 15: 6-issue Sensitivity Outcomes

Figure 14: 5-issue Sensitivity Outcomes

Figure 13: 3-issue Sensitivity Outcomes

Figure 16: 10-issue Sensitivity Outcomes

136 Informatica 35 (2011) 123–137 S.AbdelRahman et al.

when the Bayesian–mining approach is included while
the average concession step is 0.545 when the
Bayesian–mining approach is not included.

Bayesian-Mining

Not included Included

Is
su

es

F
or

tu
n

at
e

C
on

ce
ss

io
n

U
n

fo
rt

u
n

at
e

F
or

tu
n

at
e

C
on

ce
ss

io
n

U
n

fo
rt

u
n

at
e

10 0.375 0.673 0.473 0.409 0.828 0.294

6 0.106 0.545 0.528 0.224 0.635 0.365

5 0.182 0.541 0.444 0.262 0.580 0.396

3 0.041 0.522 0.448 0.231 0.552 0.363

Table 8: Averages of Some Class Studies

For 10-issue as illustrated in Table 8, the average
unfortunate steps over a negotiation trace decreases with
using Bayesian-Mining. When Bayesian–mining
approach is included the average unfortunate steps is
0.294, while the average unfortunate steps is 0.473
when Bayesian–mining approach is not included. Also
the average fortunate step is 0.409 when the Bayesian–
mining approach is included while the average fortunate
step is 0.375 when the Bayesian–mining approach is not
included.

From the previous analysis, it is illustrated that the
size of the unfortunate steps for an agent that uses the
Bayesian–mining approach is lower than other agent
strategies. The frequency size of the concession and
fortunate steps for the Bayesian–mining agent is higher
than other types of agent. Consequently, the Bayesian–
mining agent, in most cases, performs the steps that
increase its opponent's utility being sensitive to its
opponent needs.

8 Conclusion and future work
This paper proposes an agent approach for automated
multi-session multi-issue win-win competitive bilateral
negotiation. The proposed approach exploits the
historical and accumulated knowledge while negotiation
advances between two competitive agents having the
same number of issues, to select the suitable bid for both
negotiating sides. In this research, the order statistics
Bayesian–mining agent is used to estimate the opponent
thinking, and then the enhanced trade-off is used to
propose the counter-offer, reducing the processing cost in
terms of number of rounds and increasing the chances of
reaching an agreement with higher utilities for both
competitive agents.

Extensive experiments are carried out to prove that
the assumptions, hypothesis, and opponent modelling are
effective. Furthermore, many proposed agent imperative
features are verified. The proposed Bayesian–mining

agent is sensitive and rational. When the agent meets its
opponent, both parties win since they reach the
negotiation agreement fast. Moreover, the Bayesian–
mining agent utility is increased while negotiation
sessions advance. However, its opponent utility is
dependent on the related opponent preferences. Further
experiments are conducted on large-scale data sets
having 10-issue data set. It is proved that the Bayesian–
mining strategy is valid for scalable number of issues.

Handling continuous issues should be investigated in
the future. Studying how to minimize the large number
of offers before starting the negotiation process is
another topic that needs further investigations. It is also
needed to get benefit from the domain knowledge to spur
the negotiation skilfully. Our approach is based on
negotiation strategies among rational agents; it could be
worth investigating how to handle cases when our
rational agent negotiates with irrational or emotional
agent.

Acknowledgement
The authors are deeply indebted to Prof. Atef
AbdelMeneim who have thoroughly revised the proposed
statistical approach; his valuable input has enriched our
work.

References
[1] T. Bosse, C.M. Jonker (2005). Human vs.

Computer Behaviour in Multi-Issue Negotiation,
Proceedings of the 1st International Workshop on
Rational, Robust, and Secure Negotiations in Multi-
Agent Systems, IEEE Computer Society Press, pp.
11-24.

[2] T. Bosse, C.M. Jonker, L.V der Meij, V. Robu, J.
Treur (2005). A System for Analysis of Multi-
Issue Negotiation, Software Agent-Based
Applications, Platforms and Development Kits, R.
Unland, M. Klusch and M. Calisti, eds, Birkhaeuser
Publishing Company. pp. 253-280.

[3] L. Breierova, M. Choudhari (2001), An
Introduction to Sensitivity Analysis, Massachusetts
Institute of Technology MIT.

[4] G. Casella, S. Fienberg, I. Olkin (1999).
Mathematical Statistics A Unified Introduction,
Springer-Verlag New York, Inc.

[5] S. Chakrabarti, E. Cox, E. Frank, R.H. Güting, J.H.,
X. Jiang, M. Kamber, S.S. Lightstone, T.P. Nadeau,
R.E.N.D Pyle, M. Refaat, M. Schneider, T.J.
Teorey, I.H. Witten, (2009). Data mining know it
all, Elsevier Inc.

[6] Y.M. Chen, P. Huang (2009). "Agent-based
bilateral multi-issue negotiation scheme for e-
market transactions", Elsevier Science Publishers B.
V. Amsterdam, , The Netherlands, Volume 9, pp.
1057-1067.

[7] R.M. Coehoorn, N.R. Jennings (2004). Learning an
Opponent’s Preferences to Make Effective Multi-
Issue Negotiation Trade-Offs, Proc. of 6th
International Conference on E-Commerce, pp. 59-
68.

ORDER STATISTICS BAYESIAN–MINING... Informatica 35 (2011) 123–137 137

[8] H. Faiffa (2006). "THE ART & SCIENCE OF
NEGOTIATION", Belknap Press of Harvard
University Press.

[9] P. Faratin, C. Sierra, N. Jennings (2003). Using
Similarity Criteria to Make Negotiation Trade-Offs
in automated Negotiations, Journal of Artificial
Intelligence, 142 (2), pp. 205-237.

[10] P. Giudici (2005). Applied Data mining, John Willy
& Sons, Ltd.

[11] K. Hindriks, D. Tykhonov (2008), Towards a
Quality Assessment Method for Learning
Preference Profiles in Negotiation, The Tenth
International Workshop on Agent Mediated
Electronic Commerce (AMEC 2008).

[12] K. Hindriks, D. Tykhonov (2008). Opponent
Modeling in Automated Multi-Issue Negotiation
Using Bayesian Learning, Proc. of 7th Int. Conf. on
Autonomous Agents and Multiagent Systems
(AAMAS08), pp. 331-338.

[13] K. Hindriks, C.M. Jonker, D. Tykhonov (2007).
Negotiation Dynamics: Analysis, concession
tactics, and outcomes, Intelligent Agent Technology,
IAT '07. IEEE/WIC/ACM International Conference,
2-5 Nov. pp. 427-433.

[14] R.V. Hogg, A. Craig, J.W. McKean (2005).
Introduction to Mathematical Statistics, Prentice
Hall.

[15] C.M. Jonker, J. Treur (2001). An Agent
Architecture for Multi-Attribute Negotiation, Proc.
of the 17th Int. Joint Conference on AI (IJCAI'01),
pp. 1195-1201.

[16] C.M. Jonker, V. Robu, J. Treur (2007). An Agent
Architecture for Multi-Attribute Negotiation Using
Incomplete Preference Information, Autonomous
Agents and Multi-Agent Systems Journal, Springer
Netherlands Publisher, Volume 15, pp. 221-252.

[17] S. Kraus (2001). Automated Negotiation and
Decision Making in Multiagent Environments,
Springer-Verlag Berlin Heidelberg.

[18] R.Y.K. Lau, O. Wong (2007). Mining Negotiation
Knowledge for Adaptive Negotiation Agents in e-
Marketplaces, Proceedings of the 40th Hawaii
International Conference on System Sciences.

[19] R.J. Lewicki, A. Hiam (2006). Mastering business
negotiation: a working guide to making deals and
resolving conflict, Published by Jossey-Bass A
Wiley Imprint.

[20] R. Lin, S. Kraus, J. Wilkenfeld, J. Barry (2006). An
Automated Agent for Bilateral Negotiation with
Bounded Rational Agents with Incomplete
Information. ECAI 2006, pp. 270-274.

[21] V. Narayanan, N.R. Jennings (2006). Learning to
Negotiate Optimally in Non-stationary
Environments, CIA 2006, LNAI 4149, pp. 288-300.

[22] J. Oesch, A. Galinsky (2003). First Offers in
Negotiations: Determinants and Effects. 16th
Annual IACM Conference Melbourne, Australia.

[23] J.R. Oliver (1997). "A Machine-Learning Approach
to Automated Negotiation and Prospects for
Electronic Commerce", Journal of Management

Information Systems. Vol. 13 No. 3, Winter pp. 83
– 112

[24] S. Parsons, C. Sierra, N.R. Jennings (1998). Agents
that reason and negotiate by arguing, Journal of
Logic and computation, 8(3), pp. 261-292.

[25] S.T. Rachev, J.S.J. Hsu, B.S. Bagasheva, F.J.
Fabozzi, (2008). Bayesian Methods in Finance,
John Wiley & Sons, Inc. Hoboken, New Jersey.

[26] P. Tan, M. Steinbach, V. kumar (2006).
Introduction to Data mining, Pearson Education,
Inc.

[27] D.A. Van Veldhuizen, G.B. Lamont (1998).
Evolutionary Computation and Convergence to a
Pareto Front, Morgan Kaufmann, pp. 221—228.

[28] T. Velden, K.W. Carsten (2007). Person Perception
in Negotiation: When Perceiving is (Not) for Doing
(February 2, 2007). IACM 2007 Meetings Paper,
Working Paper Series.

[29] N. Vulkan N.R. Jennings (2000). Efficient
Mechanisms for the Supply of Services in Multi-
Agent Environments, Int. Journal of Decision
Support Systems, 28 (1-2). pp. 5-19.

[30] L. Wang, X. Fu (2005). Data Mining with
Computational Intelligence, Springer-Verlag Berlin
Heidelberg.

[31] M. Wooldridge (2005). An introduction to
Multiagent Systems, John Wiley & Sons, ltd.

[32] I. Zelic, I. Kononenko, N. Lavrac, V. Vuga (1997).
Induction of decision trees and Bayesian
classification, Journal of Medical Systems, Volume
21, Number 6, Springer Netherlands, pp. 429-
444(16).

[33] D. Zeng, K. Sycara, (1997). Benefits of Learning in
Negotiation, in Proc. of the Fourteenth National
Conference on Artificial Intelligence (AAAI-97),
Providence, RI, pp. 36-41.

138 Informatica 35 (2011) 123–137 S.AbdelRahman et al.

Informatica 35 (2011) 139

JOŽEF STEFAN INSTITUTE

Jožef Stefan (1835-1893) was one of the most prominent
physicists of the 19th century. Born to Slovene parents,
he obtained his Ph.D. at Vienna University, where he was
later Director of the Physics Institute, Vice-President of the
Vienna Academy of Sciences and a member of several sci-
entific institutions in Europe. Stefan explored many areas
in hydrodynamics, optics, acoustics, electricity, magnetism
and the kinetic theory of gases. Among other things, he
originated the law that the total radiation from a black
body is proportional to the 4th power of its absolute tem-
perature, known as the Stefan–Boltzmann law.

The Jožef Stefan Institute (JSI) is the leading indepen-
dent scientific research institution in Slovenia, covering a
broad spectrum of fundamental and applied research in the
fields of physics, chemistry and biochemistry, electronics
and information science, nuclear science technology, en-
ergy research and environmental science.

The Jožef Stefan Institute (JSI) is a research organisation
for pure and applied research in the natural sciences and
technology. Both are closely interconnected in research de-
partments composed of different task teams. Emphasis in
basic research is given to the development and education of
young scientists, while applied research and development
serve for the transfer of advanced knowledge, contributing
to the development of the national economy and society in
general.

At present the Institute, with a total of about 900 staff,
has 700 researchers, about 250 of whom are postgraduates,
around 500 of whom have doctorates (Ph.D.), and around
200 of whom have permanent professorships or temporary
teaching assignments at the Universities.

In view of its activities and status, the JSI plays the role
of a national institute, complementing the role of the uni-
versities and bridging the gap between basic science and
applications.

Research at the JSI includes the following major fields:
physics; chemistry; electronics, informatics and computer
sciences; biochemistry; ecology; reactor technology; ap-
plied mathematics. Most of the activities are more or
less closely connected to information sciences, in particu-
lar computer sciences, artificial intelligence, language and
speech technologies, computer-aided design, computer ar-
chitectures, biocybernetics and robotics, computer automa-
tion and control, professional electronics, digital communi-
cations and networks, and applied mathematics.

The Institute is located in Ljubljana, the capital of the in-
dependent state of Slovenia (or S♡nia). The capital today
is considered a crossroad between East, West and Mediter-

ranean Europe, offering excellent productive capabilities
and solid business opportunities, with strong international
connections. Ljubljana is connected to important centers
such as Prague, Budapest, Vienna, Zagreb, Milan, Rome,
Monaco, Nice, Bern and Munich, all within a radius of 600
km.

From the Jožef Stefan Institute, the Technology park
“Ljubljana” has been proposed as part of the national strat-
egy for technological development to foster synergies be-
tween research and industry, to promote joint ventures be-
tween university bodies, research institutes and innovative
industry, to act as an incubator for high-tech initiatives and
to accelerate the development cycle of innovative products.

Part of the Institute was reorganized into several high-
tech units supported by and connected within the Technol-
ogy park at the Jožef Stefan Institute, established as the
beginning of a regional Technology park "Ljubljana". The
project was developed at a particularly historical moment,
characterized by the process of state reorganisation, privati-
sation and private initiative. The national Technology Park
is a shareholding company hosting an independent venture-
capital institution.

The promoters and operational entities of the project are
the Republic of Slovenia, Ministry of Higher Education,
Science and Technology and the Jožef Stefan Institute. The
framework of the operation also includes the University of
Ljubljana, the National Institute of Chemistry, the Institute
for Electronics and Vacuum Technology and the Institute
for Materials and Construction Research among others. In
addition, the project is supported by the Ministry of the
Economy, the National Chamber of Economy and the City
of Ljubljana.

Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Tel.:+386 1 4773 900, Fax.:+386 1 251 93 85
WWW: http://www.ijs.si
E-mail: matjaz.gams@ijs.si
Public relations: Polona Strnad

Informatica 35 (2011)

INFORMATICA
AN INTERNATIONAL JOURNAL OF COMPUTING AND INFORMATICS

INVITATION, COOPERATION

Submissions and Refereeing

Please submit a manuscript at:
http://www.informatica.si/Editors/PaperUpload.asp. At least two
referees outside the author’s country will examine it, and they are
invited to make as many remarks as possible from typing errors to
global philosophical disagreements. The chosen editor will send
the author the obtained reviews. If the paper is accepted, the edi-
tor will also send an email to the managing editor. The executive
board will inform the author that the paper has been accepted,
and the author will send the paper to the managing editor. The
paper will be published within one year of receipt of email with
the text in Informatica MS Word format or Informatica LATEX
format and figures in .eps format. Style and examples of papers
can be obtained from http://www.informatica.si. Opinions, news,
calls for conferences, calls for papers, etc. should be sent directly
to the managing editor.

QUESTIONNAIRE
Send Informatica free of charge

Yes, we subscribe

Please, complete the order form and send it to Dr. Drago Torkar,
Informatica, Institut Jožef Stefan, Jamova 39, 1000 Ljubljana,
Slovenia. E-mail: drago.torkar@ijs.si

ORDER FORM – INFORMATICA

Name: .

Title and Profession (optional): .

. .

Home Address and Telephone (optional): .

. .

Since 1977, Informatica has been a major Slovenian scientific
journal of computing and informatics, including telecommunica-
tions, automation and other related areas. In its 16th year (more
than seventeen years ago) it became truly international, although
it still remains connected to Central Europe. The basic aim of In-
formatica is to impose intellectual values (science, engineering)
in a distributed organisation.

Informatica is a journal primarily covering intelligent systems in
the European computer science, informatics and cognitive com-
munity; scientific and educational as well as technical, commer-
cial and industrial. Its basic aim is to enhance communications
between different European structures on the basis of equal rights
and international refereeing. It publishes scientific papers ac-
cepted by at least two referees outside the author’s country. In ad-
dition, it contains information about conferences, opinions, criti-
cal examinations of existing publications and news. Finally, major
practical achievements and innovations in the computer and infor-
mation industry are presented through commercial publications as
well as through independent evaluations.

Editing and refereeing are distributed. Each editor can conduct
the refereeing process by appointing two new referees or referees
from the Board of Referees or Editorial Board. Referees should
not be from the author’s country. If new referees are appointed,
their names will appear in the Refereeing Board.

Informatica is free of charge for major scientific, educational and
governmental institutions. Others should subscribe (see the last
page of Informatica).

Office Address and Telephone (optional): .

. .

E-mail Address (optional): .

Signature and Date: .

Informatica WWW:

http://www.informatica.si/

Referees from 2008 on:

Ajith Abraham, Siby Abraham, Renato Accornero, Raheel Ahmad, Cutting Alfredo, Hameed Al-Qaheri, Gonzalo
Alvarez, Wolfram Amme, Nicolas Anciaux, Rajan Arora, Costin Badica, Zoltán Balogh, Andrea Baruzzo, Borut
Batagelj, Norman Beaulieu, Paolo Bellavista, Steven Bishop, Marko Bohanec, Zbigniew Bonikowski, Borko
Bosković, Marco Botta, Pavel Brazdil, Johan Brichau, Andrej Brodnik, Ivan Bruha, Maurice Bruynooghe, Wray
Buntine, Dumitru Dan Burdescu, Yunlong Cai, Juan Carlos Cano, Tianyu Cao, Norman Carver, Marc Cavazza,
Jianwen Chen, L.M. Cheng, Chou Cheng-Fu, Girija Chetty, G. Chiola, Yu-Chiun Chiou, Ivan Chorbev, Shauvik
Roy Choudhary, Sherman S.M. Chow, Lawrence Chung, Mojca Ciglarič, Jean-Noël Colin, Vittorio Cortellessa,
Jinsong Cui, Alfredo Cuzzocrea, Darko C̈erepnalkoski, Gunetti Daniele, Grégoire Danoy, Manoranjan Dash, Paul
Debevec, Fathi Debili, Carl James Debono, Joze Dedic, Abdelkader Dekdouk, Bart Demoen, Sareewan
Dendamrongvit, Tingquan Deng, Anna Derezinska, Gaël Dias, Ivica Dimitrovski, Jana Dittmann, Simon
Dobrišek, Quansheng Dou, Jeroen Doumen, Erik Dovgan, Branko Dragovich, Dejan Drajic, Jozo Dujmovic, Umut
Riza ErtÃijrk, CHEN Fei, Ling Feng, YiXiong Feng, Bogdan Filipič, Iztok Fister, Andres Flores, Vladimir
Fomichov, Stefano Forli, Massimo Franceschet, Alberto Freitas, Jessica Fridrich, Scott Friedman, Chong Fu,
Gabriel Fung, David Galindo, Andrea Gambarara, Matjaž Gams, Maria Ganzha, Juan Garbajosa, Rosella Gennari,
David S. Goodsell, Jaydeep Gore, Miha Grčar, Daniel Grosse, Zhi-Hong Guan, Donatella Gubiani, Bidyut Gupta,
Marjan Gusev, Zhu Haiping, Kathryn Hempstalk, Gareth Howells, Juha Hyvärinen, Dino Ienco, Natarajan
Jaisankar, Domagoj Jakobovic, Imad Jawhar, Yue Jia, Ivan Jureta, Dani Juričić, Zdravko Kačič, Slobodan
Kalajdziski, Yannis Kalantidis, Boštjan Kaluža, Dimitris Kanellopoulos, Rishi Kapoor, Andreas Kassler, Daniel S.
Katz, Samee U. Khan, Mustafa Khattak, Elham Sahebkar Khorasani, Ivan Kitanovski, Tomaž Klobučar, Ján
Kollár, Peter Korošec, Valery Korzhik, Agnes Koschmider, Jure Kovač, Andrej Krajnc, Miroslav Kubat, Matjaz
Kukar, Anthony Kulis, Chi-Sung Laih, Niels Landwehr, Andreas Lang, Mohamed Layouni, Gregor Leban, Alex
Lee, Yung-Chuan Lee, John Leggett, Aleš Leonardis, Guohui Li, Guo-Zheng Li, Jen Li, Xiang Li, Xue Li,
Yinsheng Li, Yuanping Li, Shiguo Lian, Lejian Liao, Ja-Chen Lin, Huan Liu, Jun Liu, Xin Liu, Suzana
Loskovska, Zhiguo Lu, Hongen Lu, Mitja Luštrek, Inga V. Lyustig, Luiza de Macedo, Matt Mahoney, Domen
Marinčič, Dirk Marwede, Maja Matijasevic, Andrew C. McPherson, Andrew McPherson, Zuqiang Meng, France
Mihelič, Nasro Min-Allah, Vojislav Misic, Vojislav Mišić, Mihai L. Mocanu, Angelo Montanari, Jesper
Mosegaard, Martin Možina, Marta Mrak, Yi Mu, Josef Mula, Phivos Mylonas, Marco Di Natale, Pavol Navrat,
Nadia Nedjah, R. Nejabati, Wilfred Ng, Zhicheng Ni, Fred Niederman, Omar Nouali, Franc Novak, Petteri Nurmi,
Denis Obrul, Barbara Oliboni, Matjaž Pančur, Wei Pang, Gregor Papa, Marcin Paprzycki, Marek Paralič,
Byung-Kwon Park, Torben Bach Pedersen, Gert Schmeltz Pedersen, Zhiyong Peng, Ruggero G. Pensa, Dana
Petcu, Marko Petkovšek, Rok Piltaver, Vid Podpečan, Macario Polo, Victor Pomponiu, Elvira Popescu, Božidar
Potočnik, S. R. M. Prasanna, Kresimir Pripuzic, Gabriele Puppis, HaiFeng Qian, Lin Qiao, Jean-Jacques
Quisquater, Vladislav Rajkovič, Dejan Rakovic, Jean Ramaekers, Jan Ramon, Robert Ravnik, Wilfried Reimche,
Blagoj Ristevski, Juan Antonio Rodriguez-Aguilar, Pankaj Rohatgi, Wilhelm Rossak, Eng. Sattar Sadkhan, Sattar
B. Sadkhan, Khalid Saeed, Motoshi Saeki, Evangelos Sakkopoulos, M. H. Samadzadeh, MariaLuisa Sapino,
Piervito Scaglioso, Walter Schempp, Barabara Koroušić Seljak, Mehrdad Senobari, Subramaniam Shamala,
Zhongzhi Shi, LIAN Shiguo, Heung-Yeung Shum, Tian Song, Andrea Soppera, Alessandro Sorniotti, Liana
Stanescu, Martin Steinebach, Damjan Strnad, Xinghua Sun, Marko Robnik Šikonja, Jurij Šilc, Igor Škrjanc,
Hotaka Takizawa, Carolyn Talcott, Camillo J. Taylor, Drago Torkar, Christos Tranoris, Denis Trček, Katarina
Trojacanec, Mike Tschierschke, Filip De Turck, Aleš Ude, Wim Vanhoof, Alessia Visconti, Vuk Vojisavljevic,
Petar Vračar, Valentino Vranić, Chih-Hung Wang, Huaqing Wang, Hao Wang, Hui Wang, YunHong Wang, Anita
Wasilewska, Sigrid Wenzel, Woldemar Wolynski, Jennifer Wong, Allan Wong, Stefan Wrobel, Konrad Wrona, Bin
Wu, Xindong Wu, Li Xiang, Yan Xiang, Di Xiao, Fei Xie, Yuandong Yang, Chen Yong-Sheng, Jane Jia You, Ge
Yu, Borut Zalik, Aleš Zamuda, Mansour Zand, Zheng Zhao, Dong Zheng, Jinhua Zheng, Albrecht Zimmermann,
Blaž Zupan, Meng Zuqiang

Informatica
An International Journal of Computing and Informatics

Web edition of Informatica may be accessed at: http://www.informatica.si.

Subscription Information Informatica (ISSN 0350-5596) is published four times a year in Spring, Summer,
Autumn, and Winter (4 issues per year) by the Slovene Society Informatika, Vožarski pot 12, 1000 Ljubljana,
Slovenia.
The subscription rate for 2011 (Volume 35) is
– 60 EUR for institutions,
– 30 EUR for individuals, and
– 15 EUR for students
Claims for missing issues will be honored free of charge within six months after the publication date of the issue.

Typesetting: Borut Žnidar.
Printing: Dikplast Kregar Ivan s.p., Kotna ulica 5, 3000 Celje.

Orders may be placed by email (drago.torkar@ijs.si), telephone (+386 1 477 3900) or fax (+386 1 251 93 85). The
payment should be made to our bank account no.: 02083-0013014662 at NLB d.d., 1520 Ljubljana, Trg republike
2, Slovenija, IBAN no.: SI56020830013014662, SWIFT Code: LJBASI2X.

Informatica is published by Slovene Society Informatika (president Niko Schlamberger) in cooperation with the
following societies (and contact persons):
Robotics Society of Slovenia (Jadran Lenarčič)
Slovene Society for Pattern Recognition (Franjo Pernuš)
Slovenian Artificial Intelligence Society; Cognitive Science Society (Matjaž Gams)
Slovenian Society of Mathematicians, Physicists and Astronomers (Bojan Mohar)
Automatic Control Society of Slovenia (Borut Zupančič)
Slovenian Association of Technical and Natural Sciences / Engineering Academy of Slovenia (Igor Grabec)
ACM Slovenia (Dunja Mladenič)

Informatica is surveyed by: ACM Digital Library, Citeseer, COBISS, Compendex, Computer & Information
Systems Abstracts, Computer Database, Computer Science Index, Current Mathematical Publications, DBLP
Computer Science Bibliography, Directory of Open Access Journals, InfoTrac OneFile, Inspec, Linguistic and
Language Behaviour Abstracts, Mathematical Reviews, MatSciNet, MatSci on SilverPlatter, Scopus, Zentralblatt
Math

The issuing of the Informatica journal is financially supported by the Ministry of Higher Education, Science and
Technology, Trg OF 13, 1000 Ljubljana, Slovenia.

Volume 35 Number 1 March 2011 ISSN 0350-5596

Editors’ Introduction to the Special Issue on
Autonomic and Self-Adaptive Systems

J. Cámara, C. Cuesta,
M.Á. Pérez-Toledano

1

A Framework for Automatic Generation of Processes
for Self-Adaptive Software Systems

C.E. da Silva, R. de Lemos 3

An Aspect-Oriented Approach for Supporting
Autonomic Reconfiguration of Software
Architectures

C. Costa-Soria, J. Pérez,
J.Á. Carsí

15

Component Reconfiguration in Presence of
Mismatch

C. Canal, A. Cansado 29

Realizability and Dynamic Reconfiguration of Chor
Specifications

N. Roohi, G. Salaün 39

Model-Based Dependable Composition of
Self-Adaptive Systems

J. Cubo, C. Canal,
E. Pimentel

51

End of Special Issue / Start of normal papers

An Overview of Independent Component Analysis
and Its Applications

G.R. Naik, D.K. Kumar 63

An Identity-Based Mediated Signature Scheme
Without Trusted PKG

X. Wang, S. Wang 83

Factors Affecting Acceptance and Use of Moodle:
An Empirical Study Based on TAM

B. Šumak, M. Heričko,
M. Pušnik, G. Polančič

91

Resource Control and Estimation Based Fair
Allocation (EBFA) in Heterogeneous Active
Networks

K.V. Devi, C. Thangaraj,
K.M. Mehata

101

Identification and Prediction Using Neuro-Fuzzy
Networks with Symbiotic Adaptive Particle Swarm
Optimization

C.-J. Lin, C.-C. Peng,
C.-Y. Lee

113

Order Statistics Bayesian-Mining Agent Modelling
for Automated Negotiation

S.A. Rahman, R. Bahgat,
G.M. Farag

123

Informatica 35 (2011) Number 1, pp. 1–139

	00_Informatica-front.pdf
	01_Camara - Editorial.pdf
	02_daSilva - A Framework for Automatic Generation of Preocesses for...pdf
	03_Costa-Soria - An Aspect-Oriented Approach for Support.pdf
	04_Canal - Component Reconfiguration in Presence of Mismatch.pdf
	05_Roohi - Realizability and Dynamic Reconfiguration of Chor Specifications.pdf
	06_Cubo - Model-Based Dependable Composition of Self-Adaptive Systems.pdf
	10_Naik - An Overview of Independent Component Analysis and Its Applications.pdf
	11_Wang - An Identity-Based Mediated Signature Scheme Without Trusted PKG.pdf
	12_Sumak-Factors affecting acceptance and use of Moodle..pdf
	13_Devi-Resource Control and Estimation Based Fair Alloc.pdf
	14_Lin-Identification and Prediction Using Neuro-Fuzzy N.pdf
	15_AbdelRahman-Order Statistics Bayesian–Mining Agent Mo.pdf
	99_Informatica-back.pdf

