
Volume 32 Number 4 November 2008

Special Issue:
Intelligent Systems

Guest Editors:
Costin Badica
Maria Ganzha
Marcin Paprzycki

1977

EDITORIAL BOARDS, PUBLISHING COUNCIL

Informatica is a journal primarily covering the European com-
puter science and informatics community; scientific and educa-
tional as well as technical, commercial and industrial. Its basic
aim is to enhance communications between different European
structures on the basis of equal rights and international referee-
ing. It publishes scientific papers accepted by at least two ref-
erees outside the author’s country. In addition, it contains in-
formation about conferences, opinions, critical examinations of
existing publications and news. Finally, major practical achieve-
ments and innovations in the computer and information industry
are presented through commercial publications as well as through
independent evaluations.

Editing and refereeing are distributed. Each editor from the
Editorial Board can conduct the refereeing process by appointing
two new referees or referees from the Board of Referees or Edi-
torial Board. Referees should not be from the author’s country. If
new referees are appointed, their names will appear in the list of
referees. Each paper bears the name of the editor who appointed
the referees. Each editor can propose new members for the Edi-
torial Board or referees. Editors and referees inactive for a longer
period can be automatically replaced. Changes in the Editorial
Board are confirmed by the Executive Editors.

The coordination necessary is made through the Executive Edi-
tors who examine the reviews, sort the accepted articles and main-
tain appropriate international distribution. The Executive Board
is appointed by the Society Informatika. Informatica is partially
supported by the Slovenian Ministry of Higher Education, Sci-
ence and Technology.

Each author is guaranteed to receive the reviews of his article.
When accepted, publication in Informatica is guaranteed in less
than one year after the Executive Editors receive the corrected
version of the article.

Executive Editor – Editor in Chief
Anton P. Železnikar
Volaričeva 8, Ljubljana, Slovenia
s51em@lea.hamradio.si
http://lea.hamradio.si/˜s51em/

Executive Associate Editor - Managing Editor
Matjaž Gams, Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Phone: +386 1 4773 900, Fax: +386 1 251 93 85
matjaz.gams@ijs.si
http://dis.ijs.si/mezi/matjaz.html

Executive Associate Editor - Deputy Managing Editor
Mitja Luštrek, Jožef Stefan Institute
mitja.lustrek@ijs.si

Executive Associate Editor - Technical Editor
Drago Torkar, Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Phone: +386 1 4773 900, Fax: +386 1 251 93 85
drago.torkar@ijs.si

Editorial Board
Juan Carlos Augusto (Argentina)
Costin Badica (Romania)
Vladimir Batagelj (Slovenia)
Francesco Bergadano (Italy)
Marco Botta (Italy)
Pavel Brazdil (Portugal)
Andrej Brodnik (Slovenia)
Ivan Bruha (Canada)
Wray Buntine (Finland)
Hubert L. Dreyfus (USA)
Jozo Dujmović (USA)
Johann Eder (Austria)
Vladimir A. Fomichov (Russia)
Maria Ganzha (Poland)
Janez Grad (Slovenia)
Marjan Gušev (Macedonia)
Dimitris Kanellopoulos (Greece)
Hiroaki Kitano (Japan)
Igor Kononenko (Slovenia)
Miroslav Kubat (USA)
Ante Lauc (Croatia)
Jadran Lenarčič (Slovenia)
Huan Liu (USA)
Suzana Loskovska (Macedonia)
Ramon L. de Mantras (Spain)
Angelo Montanari (Italy)
Pavol Návrat (Slovakia)
Jerzy R. Nawrocki (Poland)
Nadja Nedjah (Brasil)
Franc Novak (Slovenia)
Marcin Paprzycki (USA/Poland)
Gert S. Pedersen (Denmark)
Ivana Podnar Žarko (Croatia)
Karl H. Pribram (USA)
Luc De Raedt (Belgium)
Dejan Raković (Serbia)
Jean Ramaekers (Belgium)
Wilhelm Rossak (Germany)
Ivan Rozman (Slovenia)
Sugata Sanyal (India)
Walter Schempp (Germany)
Johannes Schwinn (Germany)
Zhongzhi Shi (China)
Oliviero Stock (Italy)
Robert Trappl (Austria)
Terry Winograd (USA)
Stefan Wrobel (Germany)
Konrad Wrona (France)
Xindong Wu (USA)

 Informatica 32 (2008) 340

80th birthday of Prof. Anton P. Železnikar
– congratulations to the founder of
Informatica

This year passes by 80 years from the birth of Prof. Železnikar, one of the pioneers
of informatics and informational theory in Slovenia, as well as one of the initiators of
Slovenian society Informatika, the founder and the Editor-in-chief of the journal
Informatica which celebrates this year the 32nd years of uninterrupted publication. We

are using this opportunity to present some excerpts from his CV.
Anton Pavel Železnikar was born in Slovenj Gradec, Slovenia on June 8, 1928, as the seventh child of Vinko

Železnikar (1887), MD, and Pavla, (1898, born Rogina), a teacher. His father was an innovative surgeon and the head
physician of the hospital in Slovenj Gradec. There were ten children in the family: two half-brothers, two half-sisters,
three brothers, and two sisters.

In 1933, before the primary school, he began to learn German and piano. After five classes of the primary school in
Slovenj Gradec (1934-1939) he became a student of a real-gymnasium (special type of a classical secondary school) in
Maribor (1939-1941). During German occupation, first, he visited the third and the fourth class of Hauptschule in
Slovenj Gradec, and then the fifth and the sixth class of the Tegetthoff Gymnasium in Maribor. The schooling in the
German gymnasium was decisive for his later professional and value orientation. Majority of the teachers of the
gymnasium held the doctor of science degree, and did excellent teaching in German, English, mathematics, and also in
Latin.

In May, 1945, he was called in the State Security Troops of the National Liberation Army, serving as a soldier up
to February, 1946. The experience in this service helped him develop a strong pro-human stand, based on realizing the
most perverted human values, especially the cynicism of the then leading communists.

In 1946, he finished the so-called nostrification exams for the gymnasium classes three to six. Afterwards he
decided to study classes seven, eight, and gymnasium leaving exam (matura in Slovenian language) on a private basis.
In 1948, he finally passed the exams and matura.

In 1948, he became a student of the Technical Faculty of the University in Ljubljana and, later, of the Electronic
Department (altogether 10 semesters). His distinguished teachers at that time were J. Plemelj (mathematics), A.
Peterlin (physics), and V. Koželj (theoretical electro engineering). He defended his diploma work in 1956, entitled
"Magnetostrictive memory loop", being a part of the amplitude analyzer.

From 1955 to 1980 he was employed at Jozef Stefan Institute, in the Electronics Department. His work was
oriented into the then emerging digital engineering using vacuum tubes and transistors. On this path he became aware
of the significance of the modern technology, proceeding deeply into the sophisticated computer and software
engineering and research. Within this period, he received his M. Sc and Ph. D in Electrical Engineering from the
University of Ljubljana in 1966 and 1967, respectively. From 1961 to 1978 he served as the head of the Digital
Engineering Department and from 1968 to 1978 also as a head of Electronics division of Josef Stefan Institute. In
1968, he became the assistant professor and in 1972 the associated professor at the University of Ljubljana.

In 1980 he moved to a fast growing Slovenian company Iskra-Delta Computers where he stayed until his
retirement in 1990. Within the company he held the position of the head of Microcomputer lab between the years 1980
and 1982. In 1982 he was promoted to a position of the advisor of the general manager of Iskra-Delta Computers and a
member of the research and development strategy board of Iskra Corporation where he stayed until the end of his work
career.

In his long and fruitful scientific career he published over 100 scientific and research papers in four languages and
2 books. Most of his life was devoted to the research of the informational theory, including philosophy of the
informational, theory of informational phenomenalism, informational machines and informational operating systems,
informational investigations in literature, media, communication by theory and machines, informational theory of
consciousness and informational entity programming.

Prof. Železnikar was awarded many times for his work from the National science foundation and from different
professional associations from ex-Yugoslavia between the years 1968 – 1990. He is a member of New York academy
of science, International academy of science San Marino, Cybernetic Academy ``Stefan Odobleja'', Lugano and
International Association for Cybernetics, Belgium.

In 1971, he co-organized and was the program committee member of the IFIP '71 Congress in Ljubljana, one of the
biggest congresses in the area of electrical and computer science organized ever in ex-Yugoslavia.

In the prime of his life, Prof. Železnikar is still following the progress in information sciences and continues his
work. We wish him a happy anniversary and plenty more years among us.

Niko Schlamberger, president of the Slovenian society Informatika

340 Informatica 32 (2008) 340-340

Editor’s Introduction to the Special Issue

Intelligent Systems

The area of intelligent systems is rapidly developing and
reaching in multiple directions. In this mini-special issue
we present four papers that show some of the area that
current intelligent systems enclose.

The first paper, entitled “The Cross-Entropy Method

for policy search in Decentralized POMDPs,” was
written by Frans A. Oliehoek, Julian F.P. Kooij, and
Nikos Vlassis. It concerns possible approaches to
multiagent planning under uncertainty. One of possible
methods is utilization of Decentralized Partially
Observable Markov Decision Processes (Dec-POMDPs).
Unfortunately, solving a Dec-POMDP exactly is an
intractable combinatorial optimization problem. In the
paper, a new Cross-Entropy-based method is applied to
the problem. It operates by sampling pure policies from
an appropriately parameterized stochastic policy, and
then evaluates them to define the next stochastic policy
to sample from. This process is repeated until
convergence is reached. Experimental results
demonstrate that the proposed method can efficiently
search large solution spaces.

In the second paper, “On the Compilation of

Programs into their Equivalent Constraint
Representation,” Franz Wotawa and Mihai Nica present
a novel approach to program analyzing and debugging.
They convert programs into their loop-free equivalents
and, next, into the static single assignment form. This
allows them to derive a corresponding constraint
satisfaction problem, which can be used directly for
debugging. Specifically, they utilize the hyper-tree
representation of the constraint satisfaction problem for
debugging, while the width of the hyper-tree is an
indicator of the debugging complexity.

The next paper, “Automatic Streaming Processing of

XSLT Transformations Based on Tree Transducers,”
written by Jana Dvorakova, recognizes the fact that XML
streaming has become an ubiquitous mode for
information exchange over the Internet, and deals with an
important issue of transforming large XML documents or
XML data streams. Specifically, an automatic streaming
processor for XSLT transformations, which guarantees
bounds on resource usage, is presented. In the proposed
approach, resource bounding is achieved by employing
tree transducers associated with a set of streaming
algorithms. The input XSLT stylesheet is analyzed in
order to identify its transformation type, which in turn
allows application of the lowest resource-consuming
streaming algorithm.

Finally, Oana Nicolae, Adrian Giurca and Gerd

Wagner, in their paper “On Interchange between Drools
and Jess,” approach IT and business solutions based on

business rules and consider challenges related to the
target Platform Specific Implementation Model. The
paper discusses an example of the business rules
translation from a particular object oriented rule-system
(Drools), to another rule-system coming from the AI area
(Jess), using the R2ML as the interchange language. The
proposed transformation preserves the semantic
equivalence for a given rule set, taking also into account
the rules vocabulary.

Papers presented here are based on those that were

presented at the first edition of the International
Symposium on Intelligent and Distributed Computing
(IDC'2007), which took place on October 18-20, 2007 in
Craiova, Romania. Overall, out of 33 full papers
published in Symposium Proceedings we have selected
six. However, after further refereeing we have eliminated
two of them and left four best contributions.

Finally, we would like to thank all of our colleagues,

who acted as referees of the papers and made sure that
material presented here is of highest quality.

Costin Badica
University of Craiova, Romania

Maria Ganzha and Marcin Paprzycki
Systems Research Institute
Polish Academy of Sciences, Warsaw, Poland

Informatica 32 (2008) 341–357 341

The Cross-Entropy Method for Policy Search in Decentralized POMDPs

Frans A. Oliehoek and Julian F.P. Kooij
Intelligent Systems Lab, University of Amsterdam
Amsterdam, The Netherlands
E-mail: {faolieho,jkooij}@science.uva.nl, www.science.uva.nl/~faolieho

Nikos Vlassis
Dept. of Production Engineering and Management
Technical University of Crete
Greece
E-mail: vlassis@dpem.tuc.gr, http://www.dpem.tuc.gr/vlassis

Keywords: multiagent planning, decentralized POMDPs, combinatorial optimization

Received: March 15, 2008

Decentralized POMDPs (Dec-POMDPs) are becoming increasingly popular as models for multiagent plan-
ning under uncertainty, but solving a Dec-POMDP exactly is known to be an intractable combinatorial op-
timization problem. In this paper we apply the Cross-Entropy (CE) method, a recently introduced method
for combinatorial optimization, to Dec-POMDPs, resulting in a randomized (sampling-based) algorithm
for approximately solving Dec-POMDPs. This algorithm operates by sampling pure policies from an ap-
propriately parametrized stochastic policy, and then evaluates these policies either exactly or approximately
in order to define the next stochastic policy to sample from, and so on until convergence. Experimental
results demonstrate that the CE method can search huge spaces efficiently, supporting our claim that com-
binatorial optimization methods can bring leverage to the approximate solution of Dec-POMDPs.

Povzetek: Prispevek opisuje novo metodo multiagentnega načrtovanja.

1 Introduction

The construction of intelligent agents is one of the major
goals in Artificial Intelligence. In the last two decades more
and more research has concentrated on systems with mul-
tiple intelligent agents, or multiagent systems (MASs). In
this article we focus on the recently proposed model of de-
centralized partially observable Markov decision processes
(Dec-POMDPs) (7). A Dec-POMDP is a generalization
to multiple agents of the well-known POMDP model for
single-agent planning under uncertainty (19).

The Dec-POMDP model presents a decision theoretic
formalization of multiagent planning under uncertainty. It
models a team of cooperative agents that individually re-
ceive observations of their environment and cannot com-
municate. It is a very general model which has for instance
been applied in the context of cooperative robotics (5; 14),
communication networks (30), and sensor networks (26).
The Dec-POMDP does not explicitly consider communica-
tion, but communication actions can be modeled as regular
actions. Also, there are extensions that do explicitly incor-
porate communication (32), which can typically be used to
share observations.

In this paper we focus on the regular Dec-POMDP set-
ting in which the agents have to select their action based on
their private observation histories. During an off-line plan-

ning phase we try to find a policy for a fixed number of time
steps for each agent. The profile of all individual policies is
collectively called a joint policy. The policies should be se-
lected such that, when they are executed jointly during the
on-line execution phase, the resulting behavior is (near-)
optimal according to a predefined performance measure.

In the single-agent (i.e, POMDP) case, the history of ob-
servations results in a ‘belief’ (a probability distribution)
over states, which forms a sufficient statistic for the history
and can therefore be used to base the action choice on (19).
In the multiagent case, however, no such simplification is
possible, and the agents have to base their actions on their
entire history. This means that the number of possible de-
terministic policies for a single agent is finite, but grows
doubly exponentially with the planning horizon. Planning
for a Dec-POMDP requires finding a profile of such poli-
cies, one for each agent, which defines a very challenging
combinatorial optimization problem.

In this paper we examine the Cross-Entropy (CE)
method, a recently introduced and promising method for
combinatorial optimization problems (12) and its applica-
tion to Dec-POMDPs. The CE method provides a frame-
work for finding approximate solutions to combinatorial
problems, and has gained popularity for various applica-
tions (24; 9; 1; 11), due to its ability to find near-optimal
solutions in huge search spaces. Because of the combinato-

342 Informatica 32 (2008) 341–357 F.A. Oliehoek et al.

rial nature of the decentralized setting, the CE method may
be a valuable tool in many algorithms for Dec-POMDPs.

In this paper we show how the CE-method can be ap-
plied in the setting of Dec-POMDPs using a relatively di-
rect translation of the general CE optimization method.
This, however, is not entirely trivial, so we discuss the
difficulties and propose solutions. Our primary goal in
this paper is not to provide a state-of-the art method for
solving Dec-POMDPs. In fact, there are some algorithms
which are more advanced than the one we present here
(14; 35; 34; 3; 28). Rather, we show how the CE method
can be use to tackle the combinatorial nature of the prob-
lem. This will allow for improvement of existing algo-
rithms in two related ways. First, existing methods may
rely on exhaustive evaluation of restricted sets of (partial)
policies. The CE method may help to speed up these parts
of algorithms. Second, such speed-up may allow the con-
sideration of less restricted sets of policies, increasing the
accuracy of the method.

1.1 Related work

In the last decade, planning for multiagent systems under
uncertainty has received considerable attention. The Dec-
POMDP model has been introduced by Bernstein et al.
(6, 7), who also proved that finding a solution for a fi-
nite horizon Dec-POMDP is NEXP-complete. The infinite
horizon problem is undecidable, as it is for the single agent
case (i.e., solving a regular POMDP) (23). Pynadath and
Tambe (32) introduced the multiagent team decision prob-
lem (MTDP), an equivalent model to the Dec-POMDP and
a communicative extension, the COM-MTDP.

There are three main algorithms for the optimal solu-
tion of finite-horizon Dec-POMDPs apart from brute-force
policy search. Hansen et al. (17) proposed dynamic pro-
gramming (DP) for Dec-POMDPs, an algorithm that works
by incrementally constructing policies for longer horizons.
The second is multiagent A* (MAA∗), a form of heuris-
tic search (38). Finally Aras et al. (4) recently proposed a
method based on mixed integer linear programming.

Due to the complexity results for Dec-POMDPs, how-
ever, the focus of much research has shifted to two other
topics. First, people have tried to identify special instances
of the problem that are less hard. For instance, a lot
of research has focused on the case where there are spe-
cial assumptions on observability and/or communication
(10; 16; 21; 33; 36). Becker et al. (5) considered the spe-
cial case of Dec-POMDPs were agents have their local state
spaces and transitions and observations are independent.
Similar assumptions are made by Nair et al. (26); Kim et al.
(20); Varakantham et al. (39) who exploit resulting locality
of interaction in the context of sensor networks. Other spe-
cial cases are identified by Goldman and Zilberstein (15).

Second, research has focused on methods that find ap-
proximate solutions. For example, joint equilibrium search
for policies (JESP) is a method that settles for a local opti-
mum (25). Emery-Montemerlo et al. (13) proposed to con-

struct a policy by approximating the Dec-POMDP with a
series of compressed Bayesian games (BGs). Both Szer
and Charpillet (37) and Seuken and Zilberstein (35, 34)
proposed approximate extensions of DP for Dec-POMDPs.

Except for JESP, all these approximate methods in one
way or another restrict the search space to provide leverage.
This reduced search space is then searched exhaustively to
find the best approximate solution. In this work, rather than
searching a constrained policy space exhaustively, we ex-
amine ways to search the entire space approximately. In
particular, we show how the CE method can be used to
directly search spaces of up to 10243 joint policies fairly
effectively.

1.2 Overview of article

Section 2 provides a background on decentralized decision
making and formally introduces the Dec-POMDP frame-
work. In section 3 we treat the background of the CE
method. Section 4 introduces direct CE policy search for
Dec-POMDPs, detailing how we apply the CE method to
Dec-POMDPs. Section 5 introduces an extension of our al-
gorithm with approximate evaluation. In section 6 we give
an experimental evaluation and finally section 7 concludes
and discusses future work.

2 Decentralized POMDPs

Here we provide a formal background of decentralized
POMDPs. We start by introducing the decentralized tiger
(DEC-TIGER) problem, which is a standard benchmark.
Next, we introduce the formal Dec-POMDP model. Fi-
nally, we formalize histories, policies and the optimality
criterion and we discuss naive (i.e., brute force) policy
search.

2.1 The decentralized tiger problem

In the DEC-TIGER problem, two agents standing in a hall-
way are confronted with two doors. Behind one door lies
a treasure, while behind the other there is a tiger. As such,
there are two possible states the world can be in: sl, the
tiger is behind the left door, and sr the tiger is behind the
right door. Initially, these states have equal probability.
The goal is to open the door that holds the treasure, which
would result in a positive reward. But if at least one of them
opens the other (wrong) door they receive a large penalty.

Both agents can take three actions, namely OpenLeft

(aOL) and OpenRight (aOR) to open the left or right door,
and Listen (aLi) to try to observe carefully behind what
door the tiger growls. The two possible observations
HearLeft (oHL) and HearRight (oHR) indicate whether the
agent heard the tiger behind the left or right door respec-
tively. Observations are received at every time step but are
random and uninformative unless both agents performed
Listen, in which case they hear the tiger behind the correct
door with high probability (each agent has a 85% chance of

CROSS-ENTROPY FOR POLICY SEARCH IN DEC-POMDPS Informatica 32 (2008) 341–357 343

getting the correct observation). The action Listen has a
small cost associated with it, but can decrease the agents’
uncertainty about the state (which remains unchanged).

Furthermore, the rewards are specified such that it is al-
ways beneficial for the agents to act jointly: it is better to
open the wrong door jointly than doing it alone. After one
or both agents has opened a door, rewards are given and
the situation is reset to a random state. More details on the
DEC-TIGER problem are provided by Nair et al. (25).

2.2 The formal model

The decentralized partially observable Markov decision
process (Dec-POMDP) describes a stochastic, partially ob-
servable environment for a set of cooperating agents.

Definition 2.1. A Dec-POMDP is a tuple
〈Ag,S,A, T, R,O, O〉 where:

– Ag = {1, . . . , n} is the set of agents.

– S is a finite set of states.

– The set A = ×iAi is the set of joint actions, where
Ai is the set of actions available to agent i. Every time
step one joint action a = 〈a1, ..., an〉 is taken.1

– T is the transition function, a mapping from states
and joint actions to probability distributions over next
states: T : S ×A → P(S).2

– R is the reward function, a mapping from states and
joint actions to real numbers: R : S ×A → R.

– O = ×iOi is the set of joint observations, with Oi

the set of observations available to agent i. Every time
step one joint observation o = 〈o1, ..., on〉 is received.

– O is the observation function, a mapping from joint
actions and successor states to probability distribu-
tions over joint observations: O : A× S → P(O).

A Dec-POMDP is considered at a number of discrete
time steps, or stages, t. At every such stage each agent i
takes an individual action ai. As a result of the taken joint
action a, the state then stochastically transitions from s to a
new state s′ according to T . At that point, the environment
emits a joint observation o with probability P (o|a, s′), as
specified by O. From this o each agent i observes its indi-
vidual component oi, selects a new action, etc.

In this paper we are searching for plans that specify ac-
tions for a fixed number of stages h. That is, we assume
a finite planning horizon of h time steps. Furthermore, we
assume that there is a distribution over states at the initial
stage t = 0, also called the initial ‘belief’ b0 ∈ P(S).3

1Unless stated otherwise, subscripts denote agent indices.
2We use P(X) to denote the infinite set of probability distributions

over the finite set X.
3Unless stated otherwise, superscripts denote time indices.

aLi

aLi

aOL

oHLoHL

oHL

oHRoHR

oHR

aLi

aLi

aLi

oHLoHL

oHL

oHRoHR

oHR

Figure 1: A part of an arbitrary joint policy for DEC-
TIGER. Left shows to policy for agent 1, right for agent
2. The figure shows the actions taken at stages 0, 1 and
shows the observations received at stages 1, 2.

2.3 Histories and policies

In a Dec-POMDP, an agent i only knows its own taken ac-
tions ai and observations oi. As a result it has to base its
actions on the histories of those. Therefore, before we for-
malize the notion of a policy, we first formalize these his-
tories.

Definition 2.2. The action-observation history for agent
i �θ t

i is the sequence of actions taken and observations re-
ceived by agent i until time step t:

�θ t
i =

(
a0

i , o
1
i , a

1
i , ..., a

t−1
i , ot

i

)
. (2.1)

The joint action-observation history is a tuple with the
action-observation history for all agents �θ t = 〈�θ t

1 , ..., �θ t
n〉.

The set of all action-observation histories for agent i at time
t is denoted �Θi.

Definition 2.3. The observation history for agent i is the
sequence of observations an agent has received:

�o t
i =

(
o1

i , ..., o
t
i

)
, (2.2)

�o t denotes a joint observation history and �Oi denotes the
set of all observation histories for agent i.

Now we are ready to formalize policies.

Definition 2.4 (deterministic policy). A pure or determin-
istic policy πi for agent i in a Dec-POMDP is a mapping
from observation histories to actions, πi : �Oi → Ai. A
pure joint policy π = 〈π1 . . . πn〉 is a tuple containing a
pure policy for each agent. Π is the set of all pure joint
policies.

One could expect that the most general definition of a
policy is as a mapping from action-observation histories
to actions. This is indeed the case for stochastic policies
where an action is chosen at each action-observation his-
tory with a particular probability. For a deterministic pol-
icy, however, this is unnecessary because an agent can infer
the actions it took from its observation history.

A pure policy can be visualized as a tree, as is illustrated
in Figure 1, which shows a joint policy for the decentral-
ized tiger problem. In this figure, each node marks a point

344 Informatica 32 (2008) 341–357 F.A. Oliehoek et al.

where an agent has to decide upon an action. A path lead-
ing to such a node defines the observation history, and the
depth corresponds to the stage at which the decision should
be taken. A pure policy assigns to each node one action
fromAi, thereby defining what action the agent should take
given some observation history.

Solving a Dec-POMDP amounts to finding an optimal
joint policy π∗ such that when the agents act accordingly,
their expected shared reward is maximal. The quantity that
we want the agents to maximize is the expected cumulative
reward:

π∗ = argmax
π

Eπ

(
h−1∑
t=0

R(s,a)

)
. (2.3)

Bernstein et al. (7) have shown that optimally solving a
Dec-POMDP is NEXP-complete, implying that any opti-
mal algorithm will be doubly exponential in the horizon.
This becomes apparent when realizing that the number of
pure joint policies is:

O

[(
|A∗|

(|O∗|h−1)
|O∗|−1

)n]
, (2.4)

where |A∗| and |O∗| denote the largest individual action
and observation sets.

The naive way of going about is to enumerate each of
these joint policies and evaluate their expected cumulative
reward, or value. The value of a specific (state, joint obser-
vation history) pair under a joint policy π is given by:

Vπ(st, �o t) = R(st, π(�o t)) +
∑
st+1

P (st+1|st, π(�o t))

∑
ot+1∈O

P (ot+1|st+1, π(�o t))Vπ(st+1, �o t+1) (2.5)

where �o t+1 is the new joint observation history at stage
t+1: �o t+1 = (�o t,ot+1). The total expected reward V (π),
with respect to the initial state distribution b0 is then given
by

V (π) =
∑

s

Vπ(s,�o 0)b0(s), (2.6)

where �o 0 is the initial (empty) joint observation history.
For one joint policy this calculation requires evaluation of

(2.5) for each of the
∑h−1

t=0 |O|t = |O|h−1
|O|−1 joint observation

histories and |S| states, leading to a total cost of:

O

(
|S| ·

|O|h − 1

|O| − 1

)
. (2.7)

3 Cross-entropy optimization

de Boer, Kroese, Mannor, and Rubinstein (12) described
the Cross-Entropy (CE) method as a general framework to
both rare event estimation and combinatorial optimization.
We will focus only on the application to optimization. In

particular, it has been illustrated how the CE method can
be adapted to find good policies for a particular class of
Markov Decision Processes (MDPs) (24; 12). In this sec-
tion, we first provide a brief introduction to the CE method
for optimization, followed by a description of the men-
tioned application to MDPs.

3.1 General CE Optimization

The cross entropy method can be used for optimization in
cases where we want to find a—typically large—vector x
from a hypothesis space X that maximizes some perfor-
mance function V : X → R. That is, when we are looking
for

x∗ = arg max
x∈X

V (x). (3.1)

The CE method associates an estimation problem with this
optimization. It maintains a probability distribution fξ over
the hypothesis space, parametrized by a vector ξ. In par-
ticular, CE estimates the probability that the performance
V (x) of a sample x drawn according to fξ is higher than
some γ:

Pξ(V (x) ≥ γ) =
∑
x∈X

I(V (x), γ)fξ(x), (3.2)

where I(V (x), γ) is an indicator function:

I(V (x), γ) =

{
1 , V (x) ≥ γ

0 , V (x) < γ.
(3.3)

Let γ∗ be the optimal value, i.e., γ∗ ≡ V (x∗). Consid-
ering γ = γ∗ and a uniform distribution fξ in (3.2) gives
the correspondence to the optimization problem (3.1). Also
observe that Pξ(V (x) ≥ γ∗) is most likely very small un-
der a uniform fξ, which explains the link to rare event esti-
mation.

The core of the CE method is an iterative two-phase pro-
cess:

1. Generate a set of samples X according to fξ.

2. Select the best Nb of samples Xb, and use those to
update the parameter vector ξ.4

The first step is rather trivial. The second step, however,
deserves some explanation. Let γ(j) be defined as the min-
imum performance within the selected set of samples of the
j-th iteration. I.e.,

γ(j) ≡ min
x∈Xb

V (x). (3.4)

The CE method requires that this lower bound performance
is not allowed to decrease over time: γ(j+1) ≥ γ(j). This
implies that Xb can contain less than Nb samples because

∀x∈Xb
V (x) ≥ γ(j) (3.5)

4The number of best samples is often characterized as a fraction 0 ≤

ρ ≤ 1 of the set of samples X. I.e., Nb = round(ρ · N).

CROSS-ENTROPY FOR POLICY SEARCH IN DEC-POMDPS Informatica 32 (2008) 341–357 345

is a hard requirement. The set Xb is then used to create
ξ(j+1), a maximum-likelihood estimate of the parameters.
These new parameters can be smoothed using a learning
rate 0 ≤ α ≤ 1 by interpolating with ξ(j) the parameter
vector of the previous iteration:

ξ(j+1) = αξ(j+1) + (1 − α)ξ(j). (3.6)

This reduces the probability that some components of the
parameter vector will be 0 or 1 early in the CE process,
which could cause the method to get stuck in local optima.

Usually, the iterative process is stopped when γ(j) has
not improved over some predefined number of steps. But
other conditions such as a time limit or a fixed number of
iterations can be used. When the stop condition is finally
met, the best sample x found in the entire process is re-
turned as an approximation of x∗.

3.2 The CE Method for MDPs

In their work, Mannor et al. (24) show how the CE method
can be applied to shortest paths MDPs, a class of MDPs
for which the optimal value function is stationary, i.e., the
expected value of taking a particular action in a particu-
lar state is not dependent on the stage. The optimal pol-
icy for such a MDP is a mapping from states to actions
πMDP : S → A, which can be represented as an |S|-vector.
As in section 3.1, the goal is to find the vector that max-
imizes a performance function, in this case the expected
total reward. So rewriting (3.1), we are looking for

π∗
MDP = arg max

πMDP

V (πMDP), (3.7)

where the performance function now is the value of the
MDP-policy πMDP. The CE method tackles this problem by
maintaining a parameter vector ξ = 〈ξs1 , ..., ξs|S|

〉, where
each ξs is a probability distribution over actions. Using
these probabilities it is possible to sample N trajectories:
starting from some start state actions are randomly selected
according to the probabilities as described by ξ until the
goal state is reached. Using the Nb best (highest total re-
ward) trajectories Xb, the parameter vector can be updated
as follows:

P (a|s) =

∑
x∈Xb

I(x, s, a)∑
x∈Xb

I(x, s)
, (3.8)

where I(x, s, a) is an indicator function that indicates that
action a was performed at state s in trajectory x, and
I(x, s) indicates whether s was visited in trajectory x.

After updating the parameter vector ξ, a new set X of tra-
jectories can be sampled, etc. Empirical evaluation shows
that this process converges to (near-) optimal policy in only
a few iterations (24).

4 Direct CE policy search for
Dec-POMDPs

In this section we propose an adaptation of the CE method
for Dec-POMDP policy search, which we dub direct CE
(DICE) policy search for Dec-POMDPs because it directly
searches the space of joint policies withouth first restricting
it.

DICE is a direct translation of the ideas presented in the
previous section. Still, there are some problems when try-
ing to apply the procedure as outline in the previous section
to Dec-POMDPs: First, because we consider finite horizon
Dec-POMDPs, there is no stationary value function. Sec-
ond, the policies of the agents are not defined over states,
but over their individual observation histories �o t

i , and these
are not a Markovian signal. Third, there is no clear way to
sample traces and use those to update the distribution.

In the Dec-POMDP case, the hypothesis space is the
space of deterministic joint policies Π. In order to apply
the CE method, we are required to define a distribution
over this space and an evaluation function for sampled poli-
cies. Also, we show how the distribution can be adapted
using the best policies found in each iteration. First, we
will present two methods to define the distribution over the
joint policy space. After that we describe how the param-
eter updates are performed. Finally, a we give a summary
and complexity analysis of the DICE algorithm.

4.1 Policy distributions

In the case of Dec-POMDPs fξ denotes a probability dis-
tribution over pure joint policies, parametrized by ξ. We
will represent this probability as the product of probability
distributions over individual pure joint policies:

fξ(π) =

n∏
i=1

fξi
(πi). (4.1)

Here ξi is the vector of parameters for agent i, i.e., ξ =
〈ξ1, ..., ξn〉.

The question is how to represent the probability distri-
butions over individual pure policies. One clear solution
is to enumerate all the pure policies for an agent i and to
maintain an explicit discrete probability distribution over
this set of policies. I.e., the distribution is represented as
a mixed policy (31). However, this approach suffers from
two drawbacks. First, the number of pure individual poli-
cies πi might be huge, making such an explicit distribution
impractical to represent. Second, this representation is hard
to parametrize in a meaningful way using some vector ξi,
as it gives no access to the internals of the policies: param-
eters would specify probabilities for entire pure policies,
rather than specifying behavior for particular observation
histories as in figure 1.

Therefore, rather then using a mixed policy representa-
tion, we will use a behavioral- (31) or stochastic policy (22)
description: a mapping from decision points to probability

346 Informatica 32 (2008) 341–357 F.A. Oliehoek et al.

ξ()

ξ(o1)
ξ(ō1)

o1o1

o1

ō1ō1

ō1

P (a1)

P (ā1)

Figure 2: A part of a stochastic policy for an agent of a
fictitious Dec-POMDP.

distributions over actions. Note that this is similar to the
approach for MDPs, as described in section 3.2, were the
states are the decision points.

4.1.1 Observation history based

The simplest way to represent a policy distribution is to
make a direct translation from CE for MDPs: instead of
maintaining a simple probability distribution over actions
for each state, we now maintain one for each observation
history (OH). Figure 2 illustrates such a representation of
the policy distribution. It shows that for each observation
history �o t

i a parameter ξ�o t
i
, that specifies the distribution

over actions, is maintained:

∀ai
ξ�o t

i
(ai) ≡ P (ai|�o

t
i). (4.2)

Note that the distribution differs only from a pure policy
(Figure 1) by keeping distributions over actions instead of
a single action at the nodes of the tree. Consequently, the
parameter vector for agent i is defined as ξi ≡ 〈ξ�o t

i
〉�o t

i ∈
�Oi

,
and the probability of a particular policy πi for agent i as

fξi
(πi) =

∏
�o t

i ∈
�Oi

ξ�o t
i
(πi(�o

t
i)). (4.3)

We refer to this policy distribution representation as the
OH-based representation.

4.1.2 Action-observation history based

Defining the parameters as in section 4.1.1 is the most
straightforward approach, but does not take into account
the action history: the choice for action πi(�o

t
i) has no in-

fluence on the choice for the action at the next time step
πi(�o

t+1
i). As explained in section 2, in general a stochastic

policy does take into account the taken action. However,
we know that there is at least one deterministic joint pol-
icy for a Dec-POMDP (which consists of individual poli-
cies that are a mapping from observation histories to ac-
tions). Moreover, in previous research we did investigate

an action-observation history (AOH) based representation,
but the influence appeared to be minor (27). Therefore we
will not consider this further in this work.

4.2 Sampling and Evaluation

Unlike the MDP case, in the setting of Dec-POMDPs there
is no trivial way to sample some trajectories given the joint
policy distribution fξ and use that to update the distribu-
tion. Rather we propose to sample complete joint policies
and use those for the parameter update.

Selecting a random sample of joint policies from the dis-
tribution is straightforward. For all the observation histo-
ries �o t

i of an agent i an action can be sampled from action
distribution ξ�o t

i
. The result of this process is a determin-

istic policy for agent i. Repeating this procedure for each
agent samples a deterministic joint policy. The evaluation
of a joint policy can be done using (2.6).

4.3 Parameter update

We described how to represent and sample from the proba-
bility distribution over policies. This section describes how
the set of best policies Xb sampled from the previous dis-
tribution fξ(j) , can be used to find new parameters ξ(j+1).

Let I(πi, �o
t
i , a) be an indicator function that indicates

whether πi(�o
t
i) = a. In the OH-based distribution the

probability of agent i taking action at ∈ Ai after having
observed �o t

i can be re-estimated as:

ξ
(j+1)

�o t
i

(at) =
1

|Xb|

∑
π∈Xb

I(πi, �o
t
i , at), (4.4)

where |Xb| normalizes the distribution since

∀�o t
i

∑
a∈Ai

∑
π∈Xb

I(πi, �o
t
i , a) = |Xb|. (4.5)

Note that the thus computed new parameter vector ξ(j+1)

will afterward be smoothed using the learning rate α ac-
cording to (3.6).

4.4 Summary and complexity analysis

Algorithm 1 summarizes the DICE policy search
method. To start it needs I , the number of iterations, N ,
the number of samples taken at each iteration, Nb, the num-
ber of samples used to update ξ, and α, the learning rate.
The outer loop of lines 3–17 covers one iteration. The in-
ner loop of lines 5–13 covers sampling and evaluating one
joint policy. Lines 14–16 perform the parameter update.
Because the CE method can get stuck in local optima, one
typically performs a number of restarts. We have not incor-
porated these in the algorithm itself, however.

Now we consider the complexity of this algorithm. For
each iteration we draw N joint policies. The sampling of

CROSS-ENTROPY FOR POLICY SEARCH IN DEC-POMDPS Informatica 32 (2008) 341–357 347

Algorithm 1 The DICE policy search algorithm
Require: CE parameters: I, N, Nb, α

1: Vb ← −∞
2: initialize ξ(0) {typically uniform random}
3: for i ← 0 to I do
4: X ← ∅
5: for s ← 0 to N do
6: sample π from fξ(i)

7: X ← X ∪ {π}
8: V (π) ← Evaluate(π)
9: if V (π) > Vb then

10: Vb ← V (π)
11: πb ← π
12: end if
13: end for
14: Xb ← the set of Nb best π ∈ X

15: Compute ξ(i+1) {using (4.4) }
16: ξ(i+1) ← αξ(i+1) + (1 − α)ξ(i)

17: end for
18: return πb

such a joint policy involves, for each agent, selecting an ac-
tion for each of its observation histories and has complexity

O(n · |A∗| · | �O∗|) = O

(
n · |A∗| ·

|O∗|h − 1

|O∗| − 1

)
,

where ∗ denotes the agent index with the largest obser-
vation and action set respectively. The complexity of up-
dating ξ is similar, but includes the term Nb (rather then
being performed N times). Evaluation (i.e., computing
the total expected reward) of a policy V (π), is performed
by evaluating equation (2.6) and (2.5) from the last stage
h − 1 up to the first 0. The complexity of this calcula-
tion for a single pure joint policy scales exponentially with
the planning horizon, as explained in section 2. Because
|O| = O(|O∗|

n
) , we can rewrite (2.7) as

O

(
|S| ·

|O∗|
nh − 1

|O∗|
n − 1

)
,

This latter term typically dominates the complexity of sam-
pling and updating ξ, therefore the total time complexity of
DICE is given by

O

[
I · N ·

(
|S|

|O∗|
nh − 1

|O∗|
n − 1

)]
.

5 Approximate Evaluation

The complexity analysis showed that the time required for
DICE scales exponentially with the planning horizon, and
that policy evaluation forms the bottleneck of our algo-
rithm. In order to alleviate this bottleneck, we examine
the application of approximate evaluation. The idea is that
rather than computing the expected value, we sample this

value by simulating r episodes, or traces, and using the av-
erage of outcomes as an estimate Ṽ (π) for the actual value
V (π). We will refer to the resulting method as DICE policy
search with approximate evaluation (DICE-A).

Clearly, this approximation might introduce errors. No-
tice, however, that the CE method does not discriminate
between policies within the set Xb of best samples. There-
fore, as long as the relative ordering is preserved, the same
policies are used to update the policy distribution, yielding
the same results. In fact, only when the ranking of poli-
cies is disturbed near the cut-off threshold (around the Nb-
th joint policy), will approximate evaluation influence the
distribution updating process.

There is a second potential source of error, though.
When the fraction of best samples Xb is used to update γ
using (3.4), the new γ might in fact be an over-estimation.
This could make it very difficult to sample new instances
with a higher (approximate) value. In previous work, we
therefore also considered a version of our algorithm that
did not use the hard threshold γ, but rather always used the
best Nb samples (27). The results, however, did not show
a significant improvement, nor did we encounter any such
difference in further experiments we performed. Therefore
we will not consider this further in this paper.

5.1 Complexity

Simulating one trace of a joint policy involves looking up
the actions for each of the n agents and sampling one of
|S| successor states and one of |O| = O(|O∗|

n
) joint ob-

servations at each of the h stages. Such a simulation is
performed r times, so the time complexity of performing
approximate evaluation of a single joint policy is:

O (r · h · n · |O∗|
n · |S|) . (5.1)

DICE-A performs such an evaluation for each of the N
sampled policies in each of the I iterations. Therefore, to-
tal time complexity of DICE with approximate evaluation
is given by

O (I · N · r · h · n · |O∗|
n · S) , (5.2)

as long as approximate evaluation dominates the time
needed to sample a policy and update the parameter vec-
tor ξ.

5.2 Error bounds

The estimated value Ṽ (π) is only an approximation of the
true value V (π). However, we are able to establish bounds
on this error. In particular, we know that V (π) is bounded
when the immediate reward function is bounded. Let us
write Rmin, Rmax for the lower and upper bound of the re-
ward function, that is, ∀s,a R(s,a) ∈ [Rmin, Rmax]. Then
the value of a policy is bounded by

V (π) ∈ [hRmin, hRmax].

348 Informatica 32 (2008) 341–357 F.A. Oliehoek et al.

Wassily Hoeffding (18) proved that the probability that the
sum of r independent random variables X1, ..., Xr, each
bounded Xi ∈ [ai, bi], exceeds the expectation (of the sum)
with rε or more is bounded by

P ((X1 + ... + Xr) − E [X1 + ... + Xr] ≥ rε) ≤

exp

(
−

2r2ε2∑r
i=1 (bi − ai)

2

)
,

for any ε > 0.
In our setting, each Xi denotes the outcome of the simu-

lation of the i-th episode, and is an unbiased estimate of
V (π). Also, in our setting we are interested in a two-
sided error bound, and all Xi respect the same bound
Xi ∈ [hRmin, hRmax]. Therefore we can write

P (|(X1 + ... + Xr) − E [X1 + ... + Xr]| ≥ rε)

=P

(∣∣∣∣(X1 + ... + Xr)

r
−

E [X1 + ... + Xr]

r

∣∣∣∣ ≥ ε

)
=P

(∣∣∣∣∣1r
r∑

i=1

Xi − E(X)

∣∣∣∣∣ ≥ ε

)
=P

(∣∣∣Ṽ (π) − V (π)
∣∣∣ ≥ ε

)
≤2 exp

(
−

2r2ε2

r (hRmax − hRmin)
2

)
.

Using this result we can control the lower bound on the
probability that an error of size less than ε is made. Suppose
we want to approximate V (π) with accuracy ε with at least
probability δ. I.e., δ = �P (error < ε)� is the lower bound
on the probability of an error smaller than ε, yielding

P (error ≥ ε) = 1 − P (error < ε)

P (error ≥ ε) ≤ 1 − �P (error < ε)�

= 1 − δ.

Then we must have that

P

(∣∣∣∣∣1r
r∑

i=1

Xi − E(X)

∣∣∣∣∣ ≥ ε

)
≤

2 exp

(
−

2r2ε2

r (hRmax − hRmin)
2

)
≤ 1 − δ.

Solving the right-hand side for r goes as follows:

−
2r2ε2

r (b − a)2
≤ ln

(
1 − δ

2

)
2rε2 ≥ − (b − a)

2
ln

(
1 − δ

2

)
r ≥

(b − a)
2

2ε2
ln

2

1 − δ
.

with
(b − a)2 = h2 (Rmax − Rmin)2 .

So, to guarantee an error smaller than ε (with probability
δ), the required number of traces grows only quadratically
with the horizon.

5.3 Post-evaluation

When using DICE with approximate evaluation, the end re-
sult is a joint policy and its estimated value. In order to
know the true quality of the joint policy, an exact evalua-
tion can be started at this point. However, due to the expo-
nential complexity of such an exact evaluation, this is not
always feasible. In settings where it is not, we propose to
do a more accurate sample based estimation of the value of
the joint policy.

Of course, it may happen that the new exact (or more ac-
curately determined) value of the joint policy is less than
the previous estimate, and perhaps also less than the es-
timated value of other joint policies encountered during
DICE. To prevent this, one may keep a list of the best k
joint policies encountered. At the end of the procedure,
one can then exactly evaluate all these k joint policies and
select the best one. Alternatively, the CE process can be
augmented with one additional iteration, where all sampled
policies are evaluated exactly (or more accurately).

6 Experiments

Here we give an empirical evaluation of the proposed algo-
rithm. The implementation of DICE follows the description
without any further remarks. In our DICE-A implementa-
tion we have not implemented an additional evaluation iter-
ation or list of k best policies as suggested. We only apply
post-evaluation to the best ranked joint policy. This post-
evaluation consists of a more accurate evaluation of 20, 000
runs when the value function consists of more than 20, 000
(s,�o)-pairs, and exact evaluation otherwise.

First we examine the influence of all parameters of the
CE optimization procedure. Next, we briefly discuss some
benchmark problems and investigate the performance on
these benchmark problems of different horizons and com-
pare it to dynamic programming JESP. Finally, we investi-
gate how DICE scales with respect to the number of agents,
again comparing to JESP.

6.1 Different CE parameters

The CE method has quite a few configurable parameters:
the learning rate α, the number of iterations I , the number
of samples drawn per iteration N , the fraction of best sam-
ples kept for update ρ and the induced number of samples
used for this update Nb = ρ · N . We have empirically in-
vestigated different settings of these parameters for DICE

policy search. Additionally, for DICE-A we investigate the
parameter r for the number approximation simulations.

The results reported in this section are all obtained on the
DEC-TIGER problem. The non-varying parameters in these
experiments were set as follows α = 0.2, I = 30, N =
50, Nb = 5.

First we examine the influence of the learning rate α.
Figure 3 shows that low α (0.2) results in low variance,
but if too low (α = 0.1) the CE process cannot converge

CROSS-ENTROPY FOR POLICY SEARCH IN DEC-POMDPS Informatica 32 (2008) 341–357 349

0.2 0.4 0.6 0.8
-50

-40

-30

-20

-10

0

10

mean
max

V
al

ue

α

Dec-Tiger h = 4 for different α

0.2 0.4 0.6 0.8
-70

-60

-50

-40

-30

-20

-10

0

10

mean
max

V
al

ue

α

Dec-Tiger h = 5 for different α

Figure 3: Performance for varying α. Top: horizon 4. Bot-
tom: horizon 5.

to a good solution within a limited number of iterations.
Also shown is that DICE on DEC-TIGER with 30 iterations
α = 0.3−0.4 gives the best trade-off between learning and
convergence.

Next, we examine the number of CE iterations. The
complexity analysis shows that this parameter should affect
the running time linearly and this was experimentally con-
firmed. Figure 4 shows the value obtained by the algorithm
for different numbers of iterations. It indicates that the al-
gorithm converges after a fixed number of iterations. As
we might expect, convergence requires less iterations for
a smaller horizon (compare top and bottom figure). How-
ever, in both cases we see that the performance grows very
rapidly when first increasing the number of iterations and
then levels out. This indicates that even with a limited num-
ber of iterations, CE might be able to obtain fairly good
results fast.

Figure 5 shows the values obtained by varying N, the
number of joint policies sampled per iteration, which also
increases the complexity linearly. The results were ob-
tained using a fixed update fraction ρ = 0.1. Here too,
we see that improvement is strong initially, and then flat-
tens out later. Also note that the higher variance for h = 5
can be explained by looking at the performance for I = 30
in Figure 4.

The number of samples used to update the parameter
vector ξ only marginally influences the run-time, and we
were not able to determine this empirically. Also, using a
larger fraction ρ decreases the performance. In this case,

0 50 100 150 200
-120

-100

-80

-60

-40

-20

0

20

mean
max

V
al

ue

iterations

Dectiger h = 4 for different I

0 50 100 150 200
-160

-140

-120

-100

-80

-60

-40

-20

0

20

mean
max

V
al

ue

iterations

Dectiger h = 5 for different I

Figure 4: Performance for varying number of CE iterations.
Top: horizon 4. Bottom: horizon 5.

the quality of the sampled joint policies used to re-estimate
the distribution parameters degenerates and CE will not
converge towards good solutions. The results in figure 6
indicate optimal performance for ρ between 0.05 and 0.1.
We omitted the nearly identical graph for h = 5.

In case DICE-A is used for policy search, the number of
approximation runs influences the run time linearly. In fig-
ure 7 we can clearly see that the quality of the approximate
evaluation converges quickly for horizon 4. For horizon
5 the size of the policies increases exponentially and more
runs are needed to maintain approximation quality, but also
here we see no improvement beyond r = 1000.

6.2 Results on different problems

Here we report the results of the performance of DICE

on different Dec-POMDP problems and different horizon
lengths. In particular we consider the following problems:
BROADCAST CHANNEL, DEC-TIGER, MEETING ON A

GRID and FACTORED FIREFIGHTING. The DEC-TIGER

problem was discussed section 2.1. For the other problems
we now provide a brief description.

The BROADCAST CHANNEL problem involves two
agents that control a broadcast channel. Each agent decides
at every stage whether or not to send a message across it.
When both agents send a message at the same time a col-
lision occurs. When a message is successfully transmitted,
the agents get a reward of +1. More information can be
found in (30; 17).

350 Informatica 32 (2008) 341–357 F.A. Oliehoek et al.

20 40 60 80 100
-50

-40

-30

-20

-10

0

10

mean
max

V
al

ue

N

Dectiger h = 4 for different N

20 40 60 80 100
-90

-80

-70

-60

-50

-40

-30

-20

-10

0

mean
max

V
al

ue

N

Dectiger h = 5 for different N

Figure 5: Performance under varying number of samples
per CE iteration. Top: horizon 4. Bottom: horizon 5.

MEETING ON A GRID was introduced by Bernstein et al.
(8) and considers two robots on a 2x2 grid. Their goal is to
occupy the same square which gives them a +1 reward, but
they have imperfect sensors and actuators which compli-
cates the task. We consider the version with 2 observations
per agent (2).

Finally, FACTORED FIREFIGHTING is a problem with 3
agents that have to fight fires at 4 houses (29). Each agent
has 2 different houses it can go to (the sets are overlapping,
but not equal). Every stage each agent should choose which
of its 2 associated houses it wants to fight fire at. For each
house that is burning, the agents receive a penalty of −1 or
−2, depending on the level of fire.

Before showing results of the proposed CE approaches,

Dec-Tiger Broadcast Grid FFF

n 2 2 2 3
|S| 2 4 16 81
|Ai| 3 2 5 2
|Oi| 2 2 2 2

2 7.290e02 6.400e01 1.563e04 5.120e02
3 4.783e06 1.638e04 6.104e09 2.097e06
4 2.059e14 1.074e09 9.313e20 3.518e13
5 3.815e29 4.612e18 2.168e43 9.904e27
6 1.310e60 8.507e37 1.175e88 7.846e56
7 1.545e121 2.895e76 3.454e177 4.925e114
8 2.147e243 3.352e153 Inf 1.941e230

Table 1: The number of joint policies for different problems
and horizons. Inf denotes a value beyond double machine
precision.

0.0 0.1 0.2 0.3 0.4 0.5
-35

-30

-25

-20

-15

-10

-5

0

5

10

mean
max

V
al

ue

ρ (= Nb/N)

Dectiger h = 4 for different ρ

Figure 6: The fraction of samples ρ used to update the dis-
tribution fξ on horizon 4.

0 500 1000 1500 2000
-50

-40

-30

-20

-10

0

10

mean
max

V
al

ue

r

Dectiger h = 4 for different r

0 500 1000 1500 2000
-70

-60

-50

-40

-30

-20

-10

0

10

mean
max

V
al

ue

r

Dectiger h = 5 for different r

Figure 7: Performance for varying number of approximate
evaluation runs. Top: horizon 4. Bottom: horizon 5.

CROSS-ENTROPY FOR POLICY SEARCH IN DEC-POMDPS Informatica 32 (2008) 341–357 351

we first report the size of the joint policy space for differ-
ent considered problems in Table 1. Clearly we are dealing
with huge search spaces here. In fact for h = 8 MEET-
ING ON A GRID the number of joint policies was not rep-
resentable by a double precision float (the maximum repre-
sentable being 1.7977e+308). We emphasize that DICE di-
rectly searches these spaces, without first restricting them.

We report the results of DICE and DICE-A on these dif-
ferent test problems. We also compare against dynamic
programming JESP which was proposed by Nair et al. (25).
This method starts with a random joint policy and then
iterates over the agents, computing a best-response pol-
icy for the selected agent while keeping the other agents
fixed. The term “dynamic programming” indicates that
this best-response is computed by solving an augmented
POMDP for the selected agent. The reason to compare
against JESP is that, as mentioned in the introduction, it is
the only other approximate method that does not constrain
the search space in any way.

The settings for DICE used in these experiments are: a
learning rate of α = 0.2, N = 50 joint policies per itera-
tion, using the Nb = 5 best for update (i.e. ρ = 0.1). For
DICE-A we used the same settings and the approximation
was based on 1000 simulations. The results in this section
are averaged over 100 random initializations, or restarts, of
each solution method. However, due to the time needed for
higher horizons, we have not always restarted 100 times
for the highest horizon considered. The numerical results
and the number of restarts over which they are obtained are
listed in the appendix. The reported timing results are cpu-
user times and obtained on an Intel Xeon 3.4 GHz machine
with 2GB memory running Debian linux.

The results for the DEC-TIGER problem are shown in
Figure 8. Note that the run-time results in the right figure
use a log scale. Our evaluation shows that for low hori-
zons (h < 6) DICE outperforms JESP but has taken, under
these settings, more time to finish. However, the run-time
of JESP increases much faster for larger horizons: for hori-
zon 8 it is about ten times slower than DICE. The run-time
of DICE-A is affected least by the value of the horizon.

In terms of quality of the found policy, DICE outper-
forms JESP for lower horizons: although all methods found
(near-)optimal solutions for h = 2, 3, 4 within the 100
restarts, the variance of JESP is much higher. Unfortu-
nately, the joint policies found by DICE for h > 5 are not
very good, as the performance drops below JESP. How-
ever, this exposes the potential of approximate evaluation:
which allows for much more iterations in less time than
regular DICE. We also ran DICE-A with 200 iterations (20
restarts). While using approximation with the same set-
tings does not seem to significantly change the results of the
CE method by itself (DICE and DICE-A wth 50 iterations
perform roughly equal), it does allow for more iterations,
leading to good overall results while keeping the run-time
acceptable. Only for h = 8, JESP really seems to achieve a
better result, but with high variance, and high run-times.

For BROADCAST CHANNEL the results are shown in

Figure 9. It shows that CE achieves a higher mean value
and less variance with again little difference between DICE

and DICE-A. The run-time of DICE-A on the other hand
increases again much slower than the other two approaches,
which eventually is more beneficial.

As indicated by Table 1, the MEETING ON A GRID prob-
lem is somewhat larger than the previous problems. This
quickly makes exact evaluation problematic. For example,
to compute the value of a horizon 6 joint policy 2.18e4
(s,�o)-pairs have to be evaluated. Figure 10 shows that
while JESP requires much more time than DICE, it does not
result in better performance. The rightmost plot shows that
the run-time of DICE-A is significantly lower from hori-
zon 5 on. However, starting at h = 6 DICE-A seems to get
trapped in a local optimum. Still, it is the only method to
compute a policy for horizons 7 and 8.

The last problem, FACTORED FIREFIGHTING , is even
larger. Because there are now 3 agents, the number of
joint observation histories, and thus the number of entries
to compute for exact evaluation and for JESP grows much
faster. This is reflected by the results as the graphs in Fig-
ure 11 show. DICE and JESP can only find solutions for
at maximum h = 3 and h = 4 respectively. Again this
demonstrates the power of DICE-A, which does not en-
counter any problems computing results up to h = 8.

In general DICE and DICE-A seem to perform quite well
in comparison to JESP. Although JESP’s maximum value
is usually equal or greater than the maximum value found
by the DICE methods, its mean value is lower and the stan-
dard deviation is high. This indicates the need for many
restarts in order to find a good solution and performing a
lot of restarts becomes problematic for higher horizons, be-
cause of the exponential increase in run-time. The results
of DICE, however, have a much lower standard deviation,
indicating that less restarts are necessary. It still shares
the burden of exponentially increasing run-times, though.
DICE-A has proven to be a very powerful method. Even
though the standard deviations are somewhat greater than
regular DICE, it is able to trade off run-time and accuracy
and thus achieves reasonable results even for higher hori-
zons, when the other methods fail.

6.3 Varying the number of agents

In the previous section we investigated the ability of DICE

to scale with respect to the horizon. Here we investigate
the scaling behavior with respect to the number of agents.

So far, almost all available Dec-POMDP problems in-
volve only two agents. Two exceptions are the FIREFIGHT-
ING problem introduced by Oliehoek et al. (28), and the
FACTORED FIREFIGHTING already mentioned. Here we
will use the former (non-factored) version, since this al-
lows us to vary the number of agents, while keeping the
number of houses (and thus the number of states) constant.

Again we examined the performance of DICE, DICE-
A and JESP for this problem, now varying the number of
agents. We did this at two chosen horizons h = 3 and

352 Informatica 32 (2008) 341–357 F.A. Oliehoek et al.

2 3 4 5 6 7 8
-120

-100

-80

-60

-40

-20

0

20

DICE 50iter
DICE-A. 50iter
DICE-A. 200 iters
JESP 100 restarts

V
al

ue

horizon

Mean V

2 3 4 5 6 7 8
-100

-80

-60

-40

-20

0

20

DICE 50iter
DICE-A. 50iter
DICE-A. 200 iters
JESP 100 restarts

V
al

ue

horizon

Max. V

2 3 4 5 6 7 8
10-4

10-3

10-2

10-1

100

101

102

103

104

DICE 50iter
DICE-A. 50iter
DICE-A. 200 iters
JESP 100 restarts

T
im

e(
s)

horizon

Mean time

Figure 8: The DEC-TIGER problem. Left: average value. Middle: maximum value. Right: average run-time.

2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

DICE exact
DICE approx.
JESP 100 restarts

V
al

ue

horizon

Mean V

2 3 4 5 6 7 8
2

3

4

5

6

7

8

DICE exact
DICE approx.
JESP 100 restarts

V
al

ue

horizon

Max. V

2 3 4 5 6 7 8
10-4

10-3

10-2

10-1

100

101

102

103

DICE exact
DICE approx.
JESP 100 restarts

T
im

e(
s)

horizon

Mean time

Figure 9: The BROADCAST CHANNEL problem. Left: average value. Middle: maximum value. Right: average run-time.

2 3 4 5 6 7 8
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

DICE exact
DICE approx.
JESP 100 restarts

V
al

ue

horizon

Mean V

2 3 4 5 6 7 8
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

DICE exact
DICE approx.
JESP 100 restarts

V
al

ue

horizon

Max. V

2 3 4 5 6 7 8
10-2

10-1

100

101

102

103

DICE exact
DICE approx.
JESP 100 restarts

T
im

e(
s)

horizon

Mean time

Figure 10: The MEETING ON A GRID problem. Left: average value. Middle: maximum value. Right: average time.

2 3 4 5 6 7 8
-11

-10

-9

-8

-7

-6

-5

DICE exact
DICE approx.
JESP 100 restarts

V
al

ue

horizon

Mean V

2 3 4 5 6 7 8
-9.5

-9.0

-8.5

-8.0

-7.5

-7.0

-6.5

-6.0

-5.5

-5.0

DICE exact
DICE approx.
JESP 100 restarts

V
al

ue

horizon

Max. V

2 3 4 5 6 7 8
10-1

100

101

102

103

DICE exact
DICE approx.
JESP 100 restarts

T
im

e(
s)

horizon

Mean time

Figure 11: The FACTORED FIREFIGHTING problem with several restarts. Left: average value. Middle: maximum value.
Right: average run-time.

CROSS-ENTROPY FOR POLICY SEARCH IN DEC-POMDPS Informatica 32 (2008) 341–357 353

T
im

e(
s)

n

Mean time
V
al

ue

n

Mean value

Figure 12: Performance for varying number of agents for
h = 3 of the FIREFIGHTING problem.

h = 4, the results for which are shown in respectively Fig-
ure 12 and Figure 13. We used the same settings for the
DICE algorithms as before. The number of restarts for all
methods was set to 20.

The figures show that, for this problem, all methods per-
formed very well in terms of achieved value. The maxi-
mum found value of all policies coincided (therefore these
plots are omitted), which may indicate that these are true
global optima. More interesting are the run time results.
For h = 3, we see that JESP outperforms the DICE algo-
rithm for all number of agents. However, its increase of run
time when increasing the number of agents is higher than
for DICE and particularly DICE-A. This is emphasized by
the results for h = 4, that clearly show that run time for
JESP, but also for exact DICE, grow so fast that they are
unable to compute results for 5 agents within reasonable
time.5 The run times of the two different settings of DICE-
A, however, grow much slower and as a consequence these
methods are able to find a good solution for 5 agents. Note
that in accordance with (5.2), the run time still increases
exponentially in the number of agents, simply because sim-
ulating an episode (sampling joint observations) takes time
exponential in the number of agents. In problems that ex-
hibit observation independence (such as FIREFIGHTING),
it is possible to work around this. We have not consid-
ered this efficiency increasing measure further, but stress

5Each algorithm was given 8 hours to compute all results for a given
horizon.

T
im

e(
s)

n

Mean time

V
al

ue

n

Mean value

Figure 13: Performance for varying number of agents for
h = 4 of the FIREFIGHTING problem.

that the efficiency of DICE-A could be further improved
for such problems.

7 Discussion and future work

This article has focused on decentralized decision making
formalized in the Dec-POMDP framework. We argued that
planning in such settings in principle is a complex combi-
natorial decision process. We demonstrated how to apply
the CE-method, a recently introduced method for combina-
torial optimization, for policy search in Dec-POMDPs.

We detailed the resulting algorithm, direct CE (DICE)
policy search for Dec-POMDPs, and performed a complex-
ity analysis, which identified the exact evaluation of sam-
pled joint policies as a bottleneck. Consequently we pro-
posed DICE-A which performs an approximate evaluation,
and showed that, under some assumption, its time complex-
ity is polynomial in the CE parameters. We also presented
a formalization of the error bounds for this approximate
evaluation.

We presented an empirical evaluation of the influence
of the different CE parameters on policy search and also
tested performance on different test problems from litera-
ture, over different horizons. In these latter experiments
we compared against JESP, which, to our knowledge, is the
only other approximate planning method for Dec-POMDPs
that does not restrict the search space in any way. The re-
sults of this comparison were generally favorable for CE.

354 Informatica 32 (2008) 341–357 F.A. Oliehoek et al.

In particular, a nice feature of CE is that by adjusting the
parameters, one is able to control the run-time. On the
other hand, because JESP has no parameters, it is somewhat
more easy to apply. In a final comparison we investigated
how well the mentioned algorithms scale with respect to
the number of agents. Although still exponential, DICE-A
outperforms the other methods for larger problems.

However, this work does not intend to present a new
state-of-the-art Dec-POMDP solver: we compare against
JESP, which is one of the older Dec-POMDP algorithms,
and more advanced methods have since been proposed.
Rather our work shows that viewing these problems as
combinatorial optimization problems and applying corre-
sponding methods (such as CE optimization) can bring
leverage to the planning process.

An interesting direction for future work is the application
of the CE method (and potentially other methods for com-
binatorial optimization) in more recent algorithms. For in-
stance, a Dec-POMDP can be approximated by solving for
each stage t a pruned Bayesian game (BG) (13) or a com-
pressed BG (14). The optimal solution of such BGs, how-
ever, involves enumeration of all the corresponding joint
policies. CE might prove to be very effective to find ap-
proximate solutions for the BGs fast. In particular, it might
turn out that the pruning/compression is no longer neces-
sary for the same horizon when applying CE, and that when
combining pruning/compression and CE, the algorithm can
scale to higher h.

Another example is the method proposed by Seuken and
Zilberstein (34). This method is an extension of dynamic
programming for Dec-POMDPs that fixes the maximum
number of policy trees that are retained in each iteration
to a parameter maxTrees. The authors report that:

“Even for a small problem 2 actions and 5 ob-
servations, setting maxTrees=5 would be pro-
hibitive because (2 · 52)2 = 39, 062, 500 policy
tree pairs would have to be evaluated.”

It might be possible to apply CE to this smaller policy
search problem that occurs in each iteration of the DP pro-
cess. This could lead to in improved efficiency, or the space
could be less restricted in order to find a better approximate
solution.

Other directions for future research would involve im-
proving the efficiency of the CE method itself. One idea for
this would be to use crude value approximation in the first
iterations to quickly increase the probabilities of promising
policies. In the course of the process, evaluation can be per-
formed more accurately. Exact evaluation can most likely
be accelerated by caching (intermediate) evaluation results
of (parts of) joint policies. Also, the joint policies result-
ing from CE search might be improved by using those as
a starting point for JESP, leading to a hybrid optimization
scheme for multiagent settings.

Finally, and somewhat related, the success of approx-
imate evaluation raises the question whether it is neces-
sary to sample complete joint policies if they are only par-

tially inspected during approximate evaluation. The CE ap-
proach could benefit from a construction that samples parts
of (joint) policies.

Acknowledgments

We would like to thank Matthijs T.J. Spaan for his help and ad-
vice. The research reported here is part of the Interactive Col-
laborative Information Systems (ICIS) project, supported by the
Dutch Ministry of Economic Affairs, grant nr: BSIK03024.

References

[1] G. Alon, D. Kroese, T. Raviv, and R. Rubinstein. Ap-
plication of the cross-entropy method to the buffer
allocation problem in a simulation-based environ-
ment. Annals of Operations Research, 134(1):137–
151, 2005.

[2] C. Amato, D. S. Bernstein, and S. Zilberstein. Opti-
mal fixed-size controllers for decentralized POMDPs.
In Proc. of the AAMAS Workshop on Multi-Agent
Sequential Decision Making in Uncertain Domains
(MSDM), May 2006.

[3] C. Amato, A. Carlin, and S. Zilberstein. Bounded
dynamic programming for decentralized POMDPs.
In Proc. of the AAMAS Workshop on Multi-Agent
Sequential Decision Making in Uncertain Domains
(MSDM), May 2007.

[4] R. Aras, A. Dutech, and F. Charpillet. Mixed inte-
ger linear programming for exact finite-horizon plan-
ning in decentralized POMDPs. In The International
Conference on Automated Planning and Scheduling,
2007.

[5] R. Becker, S. Zilberstein, V. Lesser, and C. V. Gold-
man. Solving transition independent decentralized
Markov decision processes. Journal of Artificial In-
telligence Research (JAIR), 22:423–455, December
2004.

[6] D. S. Bernstein, S. Zilberstein, and N. Immerman.
The complexity of decentralized control of Markov
decision processes. In Proc. of Uncertainty in Artifi-
cial Intelligence, pages 32–37, 2000.

[7] D. S. Bernstein, R. Givan, N. Immerman, and S. Zil-
berstein. The complexity of decentralized control of
Markov decision processes. Math. Oper. Res., 27(4):
819–840, 2002.

[8] D. S. Bernstein, E. A. Hansen, and S. Zilberstein.
Bounded policy iteration for decentralized POMDPs.
In Proceedings of the 19th International Joint Con-
ference on Artificial Intelligence (IJCAI), 2005.

CROSS-ENTROPY FOR POLICY SEARCH IN DEC-POMDPS Informatica 32 (2008) 341–357 355

[9] Z. Botev and D. P. Kroese. Global likelihood opti-
mization via the cross-entropy method with an appli-
cation to mixture models. In WSC ’04: Proceedings
of the 36th conference on Winter simulation, pages
529–535, 2004.

[10] C. Boutilier. Planning, learning and coordination in
multiagent decision processes. In TARK ’96: Pro-
ceedings of the 6th conference on Theoretical aspects
of rationality and knowledge, pages 195–210, San
Francisco, CA, USA, 1996. Morgan Kaufmann Pub-
lishers Inc. ISBN 1-55860-417-9.

[11] I. Cohen, B. Golany, and A. Shtub. Manag-
ing stochastic finite capacity multi-project systems
through the cross-entropy method. Annals of Oper-
ations Research, 134(1):183–199, 2005.

[12] P.-T. de Boer, D. P. Kroese, S. Mannor, and R. Y. Ru-
binstein. A tutorial on the cross-entropy method. An-
nals of Operations Research, 134(1):19–67, 2005.

[13] R. Emery-Montemerlo, G. Gordon, J. Schneider, and
S. Thrun. Approximate solutions for partially observ-
able stochastic games with common payoffs. In Proc.
of Int. Joint Conference on Autonomous Agents and
Multi Agent Systems, pages 136–143, 2004.

[14] R. Emery-Montemerlo, G. Gordon, J. Schneider, and
S. Thrun. Game theoretic control for robot teams. In
Proceedings of the IEEE International Conference on
Robotics and Automation, pages 1175–1181, 2005.

[15] C. V. Goldman and S. Zilberstein. Decentralized con-
trol of cooperative systems: Categorization and com-
plexity analysis. Journal of Artificial Intelligence Re-
search (JAIR), 22:143–174, 2004.

[16] C. Guestrin, D. Koller, and R. Parr. Multiagent plan-
ning with factored MDPs. In Advances in Neural In-
formation Processing Systems 14, pages 1523–1530,
2002.

[17] E. A. Hansen, D. S. Bernstein, and S. Zilberstein. Dy-
namic programming for partially observable stochas-
tic games. In Proc. of the National Conference on
Artificial Intelligence, pages 709–715, 2004.

[18] W. Hoeffding. Probability inequalities for sums of
bounded random variables. Journal of the American
Statistical Association, 58(301):13–30, Mar. 1963.

[19] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra.
Planning and acting in partially observable stochas-
tic domains. Artificial Intelligence, 101(1-2):99–134,
1998.

[20] Y. Kim, R. Nair, P. Varakantham, M. Tambe, and
M. Yokoo. Exploiting locality of interaction in net-
worked distributed POMDPs. In Proceedings of the
of the AAAI Spring Symposium on Distributed Plan
and Schedule Management, 2006.

[21] J. R. Kok and N. Vlassis. Using the max-plus algo-
rithm for multiagent decision making in coordination
graphs. In RoboCup-2005: Robot Soccer World Cup
IX, Osaka, Japan, July 2005.

[22] D. Koller and A. Pfeffer. Representations and solu-
tions for game-theoretic problems. Artificial Intelli-
gence, 94(1-2):167–215, 1997.

[23] O. Madani, S. Hanks, and A. Condon. On the un-
decidability of probabilistic planning and infinite-
horizon partially observable Markov decision prob-
lems. In Proc. of the National Conference on Artifi-
cial Intelligence, pages 541–548, 1999.

[24] S. Mannor, R. Rubinstein, and Y. Gat. The cross en-
tropy method for fast policy search. In Proc. of the In-
ternational Conference on Machine Learning, pages
512–519, 2003.

[25] R. Nair, M. Tambe, M. Yokoo, D. V. Pynadath, and
S. Marsella. Taming decentralized POMDPs: To-
wards efficient policy computation for multiagent set-
tings. In Proc. of the Int. Joint Conf. on Artificial In-
telligence, pages 705–711, 2003.

[26] R. Nair, P. Varakantham, M. Tambe, and M. Yokoo.
Networked distributed POMDPs: A synthesis of dis-
tributed constraint optimization and POMDPs. In
Proc. of the National Conference on Artificial Intel-
ligence, pages 133–139, 2005.

[27] F. A. Oliehoek, J. F. Kooij, and N. Vlassis. A cross-
entropy approach to solving Dec-POMDPs. In In-
ternational Symposium on Intelligent and Distributed
Computing, pages 145–154, Oct. 2007.

[28] F. A. Oliehoek, M. T. J. Spaan, and N. Vlassis. Op-
timal and approximate Q-value functions for decen-
tralized POMDPs. Journal of Artificial Intelligence
Research, 32:289–353, 2008.

[29] F. A. Oliehoek, M. T. J. Spaan, S. Whiteson, and
N. Vlassis. Exploiting locality of interaction in fac-
tored Dec-POMDPs. In Proc. of Int. Joint Confer-
ence on AutonomousAgents and Multi Agent Systems,
pages 517–524, 2008.

[30] J. M. Ooi and G. W. Wornell. Decentralized control
of a multiple access broadcast channel: Performance
bounds. In Proc. 35th Conf. on Decision and Control,
1996.

[31] M. J. Osborne and A. Rubinstein. A Course in Game
Theory. The MIT Press, July 1994.

[32] D. V. Pynadath and M. Tambe. The communicative
multiagent team decision problem: Analyzing team-
work theories and models. Journal of AI research
(JAIR), 16:389–423, 2002.

356 Informatica 32 (2008) 341–357 F.A. Oliehoek et al.

[33] M. Roth, R. Simmons, and M. Veloso. Exploiting
factored representations for decentralized execution
in multi-agent teams. In Proc. of Int. Joint Confer-
ence on Autonomous Agents and Multi Agent Systems,
pages 467–463, May 2007.

[34] S. Seuken and S. Zilberstein. Improved memory-
bounded dynamic programming for decentralized
POMDPs. In Proc. of Uncertainty in Artificial In-
telligence, July 2007.

[35] S. Seuken and S. Zilberstein. Memory-bounded dy-
namic programming for DEC-POMDPs. In Proc. of
the Int. Joint Conf. on Artificial Intelligence, pages
2009–2015, 2007.

[36] M. T. J. Spaan and F. S. Melo. Interaction-driven
Markov games for decentralized multiagent planning
under uncertainty. In Proc. of Int. Joint Conference on
Autonomous Agents and Multi Agent Systems, pages
525–532, 2008.

[37] D. Szer and F. Charpillet. Point-based dynamic pro-
gramming for DEC-POMDPs. In Proc. of the Na-
tional Conference on Artificial Intelligence, 2006.

[38] D. Szer, F. Charpillet, and S. Zilberstein. MAA*: A
heuristic search algorithm for solving decentralized
POMDPs. In Proc. of Uncertainty in Artificial Intel-
ligence, 2005.

[39] P. Varakantham, J. Marecki, Y. Yabu, M. Tambe, and
M. Yokoo. Letting loose a SPIDER on a network of
POMDPs: Generating quality guaranteed policies. In
Proc. of Int. Joint Conference on Autonomous Agents
and Multi Agent Systems, 2007.

Appendix

Tables 2 to 5 give a numerical overview of the results pre-
sented in section 6.2 and 6.3.

DEC-TIGER

horizon avg. std. dev. max. avg.
value value value time

DICE (50 iterations)
2 -4.08 0.78 -4.00 0.02
3 5.19 0.00 5.19 0.08
4 3.81 1.28 4.80 0.34
5 -1.58 4.15 4.58 1.37
6 -22.75 4.40 -13.20 6.05
7 -57.11 5.85 -46.56 27.93
8 -98.23 8.47 -80.09 147.73

DICE-A (50 iterations)
2 -4.19 0.70 -4.00 5.90
3 5.19 0.00 5.19 8.43
4 3.35 2.76 4.80 10.55
5 -1.56 3.11 3.45 12.90
6 -24.05 5.14 -12.22 15.60
7 -59.45 6.61 -45.43 18.58
8 -103.59 8.04 -83.27 23.02

DICE-A (200 iterations)
2 -4.14 0.60 -4.00 23.26
3 5.19 0.00 5.19 33.54
4 4.16 0.87 4.80 40.20
5 2.50 1.93 5.63 48.10
6 -2.17 3.42 4.53 56.69
7 -11.46 4.39 -5.28 66.94
8 -31.30 4.38 -21.21 80.40

JESP

2 -17.09 10.22 -4.00 0.00
3 -21.36 10.76 5.19 0.00
4 -27.58 19.26 4.80 0.04
5 -22.72 17.44 7.03 0.49
6 -23.28 20.57 10.38 11.32
7 -21.42 19.16 9.99 144.21
8 -16.20 18.26 12.22 1741.39

Table 2: Results for the DEC-TIGER problem. Statistics
over 100 restarts, except for DICE-A with I = 200 (which
we performed with 20 restarts) and horizon 8 JESP (which
only completed 30 restarts).

CROSS-ENTROPY FOR POLICY SEARCH IN DEC-POMDPS Informatica 32 (2008) 341–357 357

FACTORED FIREFIGHTING

horizon avg. std. dev. max. avg.
value value value time

DICE (50 iterations)
2 -5.21 0.00 -5.21 36.45
3 -6.66 0.01 -6.65 347.89

DICE-A (50 iterations)
2 -5.22 0.02 -5.21 9.89
3 -6.69 0.03 -6.65 13.27
4 -7.74 0.12 -7.48 17.05
5 -8.46 0.22 -8.05 20.77
6 -9.05 0.25 -8.53 25.57
7 -9.51 0.35 -8.83 30.92
8 -9.88 0.44 -9.14 36.81

JESP

2 -5.28 0.09 -5.21 0.73
3 -6.71 0.06 -6.65 17.41
4 -7.52 0.07 -7.46 308.36

Table 3: Results for the FACTORED FIREFIGHTING prob-
lem over 100 restarts.

BROADCAST CHANNEL

horizon avg. std. dev. max. avg.
value value value time

DICE (50 iterations)
2 2.00 0.00 2.00 0.05
3 2.93 0.05 2.99 0.26
4 3.80 0.08 3.89 1.08
5 4.69 0.09 4.79 4.45
6 5.52 0.09 5.67 18.37
7 6.34 0.08 6.48 79.89
8 7.03 0.09 7.26 384.23

DICE-A (50 iterations)
2 2.00 0.00 2.00 6.38
3 2.92 0.05 2.99 8.32
4 3.80 0.07 3.89 10.20
5 4.65 0.09 4.79 12.26
6 5.50 0.08 5.66 14.47
7 6.28 0.08 6.46 16.93
8 6.98 0.11 7.22 19.74

JESP

2 1.92 0.21 2.00 0.00
3 2.59 0.44 2.99 0.01
4 3.43 0.48 3.89 0.04
5 4.27 0.47 4.79 0.36
6 5.04 0.55 5.69 3.03
7 5.88 0.57 6.59 24.71
8 6.81 0.59 7.49 202.46

Table 4: Results for the BROADCAST CHANNEL problem
over 100 restarts.

MEETING ON A GRID

horizon avg. std. dev. max. avg.
value value value time

DICE (50 iterations)
2 0.91 0.00 0.91 0.71
3 1.55 0.01 1.55 3.43
4 2.23 0.02 2.24 15.37
5 2.91 0.07 2.96 67.60
6 3.57 0.06 3.64 292.88

DICE-A (50 iterations)
2 0.91 0.00 0.91 10.77
3 1.54 0.01 1.55 16.51
4 2.21 0.02 2.24 21.86
5 2.85 0.05 2.93 27.19
6 2.64 0.07 2.73 32.86
7 2.97 0.06 3.07 37.66
8 3.23 0.09 3.37 42.63

JESP

2 0.86 0.08 0.91 0.02
3 1.38 0.17 1.55 0.50
4 1.97 0.24 2.24 12.11
5 2.53 0.30 2.97 287.02

Table 5: Results for the MEETING ON A GRID problem
over 100 restarts.

FIREFIGHTING

n avg. std. dev. max. avg.
value value value time

DICE (50 iterations)
2 −5.76 0.02 −5.74 13.77
3 −2.41 0.04 −2.39 59.07
4 −1.08 0.01 −1.07 249.88
5 −0.51 0.00 −0.51 1101.54

DICE-A (50 iterations)
2 −5.80 0.04 −5.74 17.86
3 −2.48 0.05 −2.39 35.05
4 −1.09 0.02 −1.07 91.02
5 −0.51 0.01 −0.51 263.92

JESP

2 −5.76 0.04 −5.74 0.47
3 −2.41 0.03 −2.39 4.17
4 −1.08 0.01 −1.07 20.15
5 −0.51 0.00 −0.51 83.61

Table 6: Results for the h = 3 FIREFIGHTING problem
with varying number of agents over 20 restarts.

FIREFIGHTING

n avg. std. dev. max. avg.
value value value time

DICE (50 iterations)
2 −6.66 0.06 −6.58 68.03
3 −2.52 0.02 −2.45 490.58
4 −1.07 0.00 −1.07 4227.08

DICE-A (50 iterations)
2 −6.81 0.08 −6.67 23.07
3 −2.59 0.08 −2.45 45.22
4 −1.09 0.02 −1.07 121.37
5 −0.51 0.00 −0.50 350.04

JESP

2 −6.62 0.03 −6.58 6.71
3 −2.45 0.03 −2.44 110.57
4 −1.08 0.01 −1.07 1040.75

Table 7: Results for the h = 4 FIREFIGHTING problem
with varying number of agents over 20 restarts. For n = 4
is DICE shows an average over 4 completed runs and JESP

over 18 completed runs.

358 Informatica 32 (2008) 341–357 F.A. Oliehoek et al.

Informatica 32 (2008) 359–371 359

On the Compilation of Programs into their Equivalent Constraint
Representation

Franz Wotawa and Mihai Nica
Technische Universität Graz, Institute for Software Technology, Inffeldgasse 16b/2, 8010 Graz, Austria
E-mail: {wotawa,mihai.nica}@ist.tugraz.at

Keywords: constraint satisfaction problems, hyper-graph decomposition, debugging

Received: March 15, 2008

In this paper we introduce the basic methodology for analyzing and debugging programs. We first convert
programs into their loop-free equivalents and from this into the static single assignment form. From the
static single assignment form we derive a corresponding constraint satisfaction problem. The constraint
representation can be directly used for debugging. From the corresponding hyper-tree representation of
the constraint satisfaction problem we compute the hyper-tree width which characterizes the complexity
of finding a solution for the constraint satisfaction problem. Since constraint satisfaction can be effectively
used for diagnosis the conversion can be used for debugging and the obtained hyper-tree width is an indi-
cator of the debugging complexity.

Povzetek: Članek opisuje analiziranje programov in iskanje napak v njih.

Figure 1: Interaction between the control and the debug-
ging system

1 Introduction
Ideally intelligent systems should provide self-reasoning
and reflection capabilities in order to react on internal faults
as well as on unexpected interaction with their environ-
ment. Reflection capabilities are highly recommended for
systems with strong robustness constraints, like space ex-
ploration probes or even mobile robots. A scenario, for
example, is a robot that although having a broken engine,
should reach a certain position. Without self-reasoning or
reflection such a robot would simple fail to reach its goal.
Another example would be a robot where the software fails
because of a bug. In this situation a robot should recover
and ideally repair itself. Note that even exhaustive testing
does not prevent a program from containing bugs which
might cause an unexpected behavior in certain situations.

In this paper we do not focus on whole systems which
comprise hardware and software. Instead we are discussing
how to represent programs to allow for reflection which
can be used for enhancing the system with debugging func-
tionality. In the context of this paper debugging is defined
as fault localization given a certain test-case. We do not

take care of verification and test-case generation which is
used for fault detection and repair. In order to compute
the fault location we follow the model-based diagnosis ap-
proach (22) but do not rely on logical models but use con-
straints instead for representing programs. The obtained
constraint representation can be directly used for comput-
ing diagnosis, e.g., by using specialized diagnosis algo-
rithms like the one described in (12; 25; 26).

Although, reflection and debugging capabilities are a
desired functionality of a system they provoke additional
computational complexity which can hardly be handled by
the system directly because of lack of computational power.
Note that model-based diagnosis is NP complete. Hence, a
distributed architecture would be required which separates
the running control program from the debugging capabili-
ties. In Figure 1 we depict the proposed architecture. The
debugging module takes the source code of the original sys-
tem which is in this case a control system and a test-case
to localize and repair the fault. The changed source code is
compiled and transferred back to the original system.

In the proposed architecture there are several open is-
sues which have to be solved. The first is regarding the test
case. In particular one is interest in the origin of the test
case. One way would be to have a monitoring system which
checks the internal state of the control system. In case of a
faulty behavior, the given inputs coming from the sensors,
the internal state and the computed output together with the
information regarding the expected output is used as a test
case. The second issue is related to fault localization and
repair. There is literature explaining fault localization and
repair which can be used, e.g., (13; 24; 17; 23).

In this paper we focus on modeling for fault localiza-
tion, i.e., for identifying the root cause of a detected mis-

360 Informatica 32 (2008) 359–371 F. Wotawa et al.

behavior. This does not necessarily directly lead to good
repair suggestions. Repair definitely requires knowledge
about further specification details and incorporating differ-
ent test-cases should help a lot. A detailed discussion of
repair is outside the scope of this paper and still an impor-
tant topic of research. The third and last issue is a more
technical one. After recompiling the new program has to
replace the old one on the fly which might cause additional
problems because of ensuring integrity and consistency of
the system’s behavior.

Making systems self-aware and giving those self-healing
capabilities increases their autonomy, which is important
in missions like space exploration where the system can-
not be directly controlled for whatever reason. The paper
contributes to this research in providing a methodology for
fault localization in programs. The methodology requires
the availability of the source code and test cases. It com-
piles the program into their equivalent constraint represen-
tation and uses a failure-revealing test case to compute di-
agnosis candidates.

The paper is organized as follows. We first introduce
the basic ideas behind our approach by means of an ex-
ample. Afterwards, we go through all necessary steps of
the conversion process, which finally leads to the constraint
representation of programs. This section is followed by a
presentation of experimental results we obtained from our
implementation. The experiments focus on structural prop-
erties of the programs’ constraint representation because
the structural properties have an impact on the complex-
ity of debugging. Finally, we discuss related research and
conclude the paper.

2 Diagnosis/debugging
In this section we motivate the idea behind our approach
by means of an example program that is expected to com-
pute the area and circumference of a circle from a given
diameter.

1. r = d/2;
2. c = r*pi;
3. a = r*r*pi;

Obviously the statement in line 2 is faulty. A possible
repair would be c = 2*r*pi; or c = d*pi;. We
know this because of our knowledge in mathematics. How-
ever, in the more general case where large programs are
involved, we have to rely on a process in order to detect,
localize, and correct a fault. Such a process deals with
the question: ‘How can we find out what’s wrong in the
program’ and is a standard in today’s software engineering
processes. In software engineering we first have to detect
the fault. This is done in practice using test-cases or proper-
ties together with formal verification methods. In our case
we rely on test cases. One test case which allow to detect
the faulty behavior would be setting d to 2 and requiring c
to be 2π and a to be π. The program computes the value π
for both variables c and a which contradicts the test case.

This contradiction can be used to locate the fault. One
way would be to have a look at the first definition of vari-
able c which has assigned a wrong value and trace back
using the dependencies between variables. In this case r is
defined in line 1 and used in line 2. Hence, line 1 and 2 are
possible fault candidates. This approach uses only struc-
tural information coded in the program and might overes-
timate the number of diagnosis candidates. Another ap-
proach would be to assume some line of the program to be
faulty. In this case the statement corresponding to the line
does not provide any known functionality. For example,
when assuming line 2 to be faulty, we do not know how
to compute a value for c. Therefore, we do not get any
contradicting information and the assumption is consistent
with the given test-case. Unfortunately, this is also the case
when assuming line 1 to be faulty and only considering the
computation of values like specified in the semantics of the
programming language, i.e., from the begin of the program
to its end.

The situation changes when considering the statement as
equations where no direction of information flow is given.
An equation like r = d/2 is a constraint which specifies
a relationship between r and d. When we now assume the
constraint corresponding to line 1 to be faulty we can com-
pute a value for r using the given test-case. From the con-
straint corresponding to line 3 a = r2π and a = π we
derive r = 1 and finally using c = rπ leads to c = π
which contradicts the given expected value for c which is
2π. Hence, the assumption in this case contradicts the ob-
servations and cannot be a single-fault candidate. Only line
2 remains as single fault. The reason for this improvement
is that when using constraints we have the capabilities for
reasoning backwards.

Summarizing the above discussion, a solution to the de-
bugging problem would be to convert programs into their
constraint representation and use it for debugging. We
choose a constraint representation because equations as
well as logical sentences can be represented and integrated,
and because of the availability of tools. However, there are
still some challenges we have to solve.

First, variables might be defined more than once in a
program. Every definition has to be considered separately.
Programs comprise conditional and loop statements. How
to handle them? For the first problem and the conditionals
we propose the use of the static single assignment (SSA)
form of programs which is used in compiler construction.

Another challenge is how to handle loops and recursive
procedure calls? In order to represent loops we make use
of the following observation. Loops can be represented
by nested if-statements where the nesting depth is infi-
nite. When restricting the nesting depth to a finite value
the nested if-statements still behave the same as the loop
statement when considering only inputs which do not cause
the number of loop-iterations to exceed the nesting depth.
Hence, under this assumption the nested if-statements are
good enough to represent loops and we have reduced the
problem of handling loops to the problem of handling con-

PROGRAMS AND THEIR CONSTRAINT REPRESENTATION Informatica 32 (2008) 359–371 361

1. if x < y {
2. min = x;

} else {
3. min = y;
}

Figure 2: A program com-
puting the minimum of two
numbers

1. i = 0;
2. r = 0;
3. while (i < x) {
4. r = r + y;
5. i = i + 1;

}

Figure 3: A program for
computing the product of
two natural numbers

ditionals. A similar technique can be applied to solve the
recursive procedure calls challenge.

Finally, we have to handle arrays and other programming
language constructs like pointers or objects. In this paper,
we present an approach for handling arrays. The other as-
pects of programming languages are ignored. This is due
to the fact that our main application area is the embedded-
systems domain. Programs used in embedded-systems usu-
ally are restricted and do not use of features like dynamic
memory allocation because such features are error prone
and likely lead to problems during operation.

3 Conversion
In this section, we describe the conversion process of pro-
grams into their equivalent CSP representation in detail.
For more information regarding CSPs we refer the reader
to Dechter (11). We start with converting programs into
their loop-free equivalents which are used as basis for the
conversion into the SSA form. Finally, we show how to
extract the CSP from the SSA form. The complexity of the
proposed compilation approach is composed of the com-
plexity of each conversion step. While SSA construction
and CSP extraction can be both handled in polynomial time
computing a loop-free equivalent depends on the number
of necessary iterations. This number depends on the pro-
gram’s complexity. In this section we use the programs
given in Figure 2 and 3 as running examples. We further
assume without restricting generality of the approach that
the programs to be converted have a Java like syntax (ig-
noring object-oriented elements).

3.1 Loop-free programs
When executing while-statements they behave like a con-
ditional statement in one step. If the condition is fulfilled
the statements in the block are executed and the while-
statement is executed again afterwards. Otherwise, the
while-statement is not executed. Hence, it is semantically
correct to represent while-statements using an infinite num-
ber of nested if-statements, i.e., while (C) { B }
is equivalent to

if (C) {
B if (C) {

B if (C) {
B if ... } } }

C represents the condition, and B the statements in the
sub-block of the while statement.

Of course it is not possible in practice to compile while-
statements into an infinite number of conditionals. In-
stead we assume that the number of iterations of the while-
statement never exceeds a certain limit say n. We argue that
faults can be detected using test-cases which cause a small
number of iteration and that it is therefore – for the pur-
pose of debugging – not necessary to consider larger val-
ues of n. Moreover, we might introduce a procedure which
is called whenever the limit is reached. This information
would give us back additional information which we might
use for increasing n in a further step. To set a small bound
for the number of iterations is also used in a different con-
text. Jackson (18) uses a similar idea which he called small
scope hypothesis in his Alloy system for verification.

We formalize the bounded conversion from while-
statements into nested if-statements by introducing the
function Γ : PL × N 7→ PL where PL represents the
programming language.

Γ(while (C) { B }, n) =

=

if (C) { BΓ(while (C) { B}, n− 1)}
if n > 0

if (C) { too_many_iterations; }
otherwise

Considering the above discussion it is obvious that the
following theorem which states the equivalence of the pro-
gram and its loop-free variant with respect to their behavior
has to hold.

Theorem 3.1. Given a program Π ∈ PL written in a pro-
gramming language PL and a number n ∈ N. Π behaves
equivalent to Γ(Π, n) for an input I iff the execution of
Γ(Π, n) on I does not reach too_many_iterations.

We now use the program from Figure 3 and n = 2 to
show the application of Γ which leads to the following pro-
gram:

1. i = 0;
2. r = 0;
3. if (i < x) {
4. r = r + y;
5. i = i + 1;
6. if (i < x) {
7. r = r + y;
8. i = i + 1;
9. if (i < x) {
10. too_many_iterations;

} } }

The loop-free variant can be used in all cases where
x = 0 or x = 1 without causing a different behavior to
the original program. It is interesting to note that the time

362 Informatica 32 (2008) 359–371 F. Wotawa et al.

complexity of a program which is corresponds to the num-
ber of iterations depending on the size of the inputs is now
represented by the size of the converted program. Hence,
we easily can give an estimate for the size of the converted
programs (and also the number of iterations) when limiting
the size of the input.

3.2 Static single assignment form
The SSA form is an intermediate representation of a pro-
gram, which has the property that no two left-side vari-
ables share the same name, i.e., each left-side variable has
a unique name. Because of this reason the SSA form is of
great importance when building the CSP. Since all variables
are only defined once the SSA form allows for a clear repre-
sentation of the dependencies that are established between
different variables inside the corresponding program. The
SSA representation of a program is sometime also an in-
termediate step in the compiling process; basically before
compiling a java file, first a transformation is undertaken
and the SSA form is obtained. The obtained form will be
the form used as input for the compiler.

In order to compile loop-free programs into SSA we
have to analyze the program and rename all variables such
that each variable is only defined once without changing
the behavior of the program. Basically, this compilation is
done by adding an unique index to every variable, which
is defined in a statement. Every use of this variable in the
succeeding statement is indexed using the same value. This
is done until a new definition of the same variable occur.

For example, the following program fragment on the up-
per side can be converted into its SSA representation bel-
low.

1. x = a + b;
2. x = x - c;

The SSA representation:

1. x_1 = a_0 + b_0;
2. x_2 = x_1 - c_0;

Although, converting programs comprising only assign-
ment statements is easy, it is more difficult for programs
with loop or conditional statements. In our case we only
need to consider conditional statements. The idea behind
the conversion of conditional statement is as follows: The
value of the condition is stored in a new unique variable.
The if- and the else-block are converted separately. In both
cases the conversion starts using the indices of the variables
already computed. Both conversions deliver back new in-
dices of variables. In order to get a value for a variable we
have to select the last definition of a variable from the if-
and else-part depending on the condition. This selection is
done using a function Φ. Hence, for every variable which is
defined in the if- or the else-branch we have to introduce a
selecting assignment statement which calls the Φ function.

For example, corresponding SSA form of the program
fragment

if (C) {
.. x = ..

} else {
.. x = .. }

is given as follows:

var_C = C;
.. x_i = ..
.. x_j = ..
x_k = Φ(x_i,x_j,var_C);

The function Φ is defined as follows: Φ(x, y, b) ={
x if b
y otherwise
For algorithms for computing the SSA form and more

information regarding the Φ function we refer the reader
to (9; 7; 27). The SSA representation for the programs
from Figure 2 and 3 are depicted in Figure 4 and 5 respec-
tively. Note that we represent the Φ function as a function
call phi in the program. It is possible to write a function
body for phi that exactly represents the behavior of the Φ
function. Hence, the program and its SSA representation
can be executed on the same input even at the level of the
programming language.

It is easy to see that the SSA form of a program always
behaves equivalent to the original program, which we state
in the following theorem.

Theorem 3.2. Given a program Π ∈ PL. The SSA rep-
resentation Π′ ∈ PL of Π is equivalent to Π with respect
to the semantics of PL, i.e., for all inputs I both programs
return the same output.

For debugging purposes the input output equivalence,
which is similar to the input output conformance (IOCO)
used in testing, is sufficient. The SSA representation allows
us to map, with little effort, the diagnosis set of program Π′

to the original equivalent program Π.
In the following subsection we describe how arrays and

function calls can be handled. Afterwards we discuss the
compilation of programs into constraint systems.

3.3 Extensions

In the previously described conversion process we still face
two important challenges as they are the conversion of ar-
rays and procedure calls. In this section, we tackle both
challenges and present conversion rules that have to be ap-
plied before converting the resulting source code in a SSA
form.

We start with the array conversion. We assume that ar-
rays are defined over a data type (although we do not con-
sider this information in the conversion) and are of fixed
length. Because of simplicity, we assume that we can only
access one element of the array after the other. Note that in
some languages there are constructs, which allow access-
ing an array partially, e.g., element 3 to 5.

PROGRAMS AND THEIR CONSTRAINT REPRESENTATION Informatica 32 (2008) 359–371 363

1. var_1 = (x_0 < y_0);
2. min_1 = x_0;
3. min_2 = y_0;
4. min_3 = phi(min_1,min_2,var_1);

Figure 4: The SSA form of the program from Fig. 2

1. i_1 = 0;
2. r_1 = 0;
3. var_3 = (i_1 < x_0);
4. r_2 = r_1 + y_0;
5. i_2 = i_1 + 1;
6. var_6 = (i_2 < x_0);
7. r_3 = r_2 + y_0;
8. i_3 = i_2 + 1;
9. r_4 = phi(r_3,r_2,var_6);
10. i_4 = phi(i_3,i_2,var_6);
11. r_5 = phi(r_4,r_1,var_3);
12. i_5 = phi(i_4,i_1,var_3);

Figure 5: The SSA form of the loop-free variant of the pro-
gram from Fig. 3

Given an array A of length n > 0 with elements
〈a1...ai...an〉. The access to elements is assumed to be
done using the [] operator, which maps from A and a
given index i to the array element ai. For example, z =
A[1] gives you back the first element of array A. So far,
arrays seem not to be very difficult to handle in our conver-
sion process. If reaching a statement z = A[1] during
SSA conversion A has only be represented as A_k where
k is the currently given unique index k for A. But how to
handle statements like A[m] = A[n] + 3? In this case,
obviously A has to be assigned a new index, but how to
handle the following program fragment?

. . .
A[1] = 2;
A[2] = 4;
. . .

A SSA translation into

. . .
A_1[1] = 2;
A_2[2] = 4;
. . .

would be wrong because this transformation does not
respect previously done array changes in the appropriate
manner. In order to respect the underlying semantics, we
have a closer look at it. Assume a program fragment A[i]
= f(~x) where the i-th element of A is set to the outcome
of function f given parameters ~x. This statement only
changes the i-th element but not the others. Formally, we
define the semantics as follows:

{ A } // A before the statement
A[i] = f(~x)
{ A’ } // A after the statement

with A’[i] = f(~x) and ∀j ∈ {1, . . . , n}, i 6= j:
A’[j] = A[j]. As a consequence, we introduce a func-
tion Ψ that implements this semantics and replace the orig-
inal statement with A = Ψ(A,i,f(~x)). The function

Ψ is similar to Φ and can be implemented such that the
converted program is equivalent to the original one with
respect to its semantics.

For example, consider the following program fragment:
1. A[1] = 5;
2. A[2] = A[1] + 5;
Accordingly to our conversion rule we obtain the new

fragment:

1. A = psi(A,1,5);
2. A = psi(A,2,A[1] + 5);

The SSA representation is not based on the new fragment
and captures the semantic in the appropriate way.

1. A_1 = psi(A_0,1,5);
2. A_2 = psi(A_1,2,A_1[1] + 5);

Note that Ψ or psi can be implemented as a function in
order to ensure the equivalent behavior even in the context
of program execution. Assume that psi has the formal
arguments A, i, e and that the length of an array can be ac-
cessed via a function length, then the body of the function
is given as follows:

j = 1;
while (j < length(A)) {

if (j==i) {
B[j] = e;

} else {
B[j] = A[j];

}
j = j + 1;

}
return B;

The function psi returns a new array B of A’s size.
We now consider the last challenge we want to tackle,

the procedure calls and in particular recursive procedure
calls. Given a procedure M with its formal parameters
x1, . . . , xn, and the body δ(M), which itself is a program

364 Informatica 32 (2008) 359–371 F. Wotawa et al.

written in the same programming language. A proce-
dure call M(a1, . . . , an) with actual parameters a1, . . . , an

causes the execution of M’s body where the formal parame-
ters are assigned to their corresponding actual parameters,
i.e., xi = ai. Hence, a transformation is easy. We only
have to assign values to the formal parameter, which can
be done using assignments, and use the body of the proce-
dure instead of the procedure call.

In cases where the procedure returns a value, we have to
introduce a new variable M_return. We further replace
return e with M_return = e, and finally, we intro-
duce a new assignment, where M_return is used appro-
priately. The described transformation of the return state-
ment is only correct, whenever a procedure has only one of
those statements. This is not a restriction because we al-
ways can modify a program to fulfill this requirement. For
simplicity, we also assume that the variables used in bod-
ies of procedures and the one used in the main program are
different except in cases of global variables.

We now explain the idea behind the conversion using an
example program where a procedure foo is called

. . .
x = foo(2,y,z-1);
. . .

Now assume that foo has three formal parameters
x1,x2,x3 and the following body:

v = x1 + x2;
v = v - x3;
return v;

When applying the described conversion rule, we obtain
the following program fragment:

x1 = 2;
x2 = y;
x3 = z-1;
v = x1 + x2;
v = v - x3;
foo_return = v;
x = foo_return;

This program can be easily compiled into its SSA form:

x1_1 = 2;
x2_1 = y_0;
x3_1 = z_0-1;
v_1 = x1_1 + x2_1;
v_2 = v_1 - x3;
foo_return_1 = v_2;
x_1 = foo_return_1;

We now extend the above idea to the general case, where
we might face recursive procedure calls. The idea behind
the conversion is the same, but similar to the handling of
iterations of a while statement, we have to set a bound
on the maximum number of recursive replacements dur-
ing conversion. For this purpose we assume that there is

such a bound MC given for a procedure M in a calling con-
text. Similar to while statements we introduce a function
Γ̂ : PL × N 7→ PL that defines the bounded compilation
of a not necessarily recursive procedure call:

Γ̂([x =]M(a1,...,an), i) =

=

x1 = a1;...xn = an;
Γ̂(δ′(M), i− 1)
[x = M_return;]

if i ≤ MC
too_many_recursions;

otherwise
Note that δ′ denotes the body of method M, where

the return statement return e has been changed to
M_return = e. Moreover, Γ̂ is assumed to be defined
for all other statements where the statement itself is re-
turned without any changes. Hence, when applying Γ̂ to
the body of a method, all statements are examined and left
as they are with the exception of a new method call. With
these additional assumptions the compilation function can
be generally applied.

We illustrate the conversion using a program only com-
prising the call x = foo(1,2); where the body of foo
is given as follows:

r = 0;
if (x1 > 0) {
r= foo(x1-1,x2);
r = r + x2;

}
return r;

The following program represents the recursion-free
variant of the program calling foowith 1 allowed iteration,
which is sufficient for specific procedure call foo(1,2)
in order to return the correct result.

x1 = 1;
x2 = 2;

// 1. recursive call
r = 0;
if (x1 > 0) {
x1 = x1 - 1;
x2 = x2;

// 2. recursive call
r = 0;
if (x1 > 0) {
too_many_iterations;

}
M_return = r;

// returning from 2. call
r = M_return;
r = r + x2;

M_return = r;
// returning from 1. call

x = M_return;

The converted program can be easily compiled in its
SSA form.

PROGRAMS AND THEIR CONSTRAINT REPRESENTATION Informatica 32 (2008) 359–371 365

3.4 Constraint representation
Constraint satisfaction problems (CSPs) have been intro-
duced and used in Artificial Intelligence as a general
knowledge representation paradigm of knowledge. A CSP
(V, D,CO) is characterized by a set of variables V , each
variable having a domain D, and a set of constraints CO
which define a relation between variables. The variables in
a relation r ∈ CO are called the scope of the relation. An
assignment of values from D to variables from V is called
an instantiation. An instantiation is a solution for a CSP,
iff it violates no constraint. A constraint is said to be vi-
olated by an instantiation, if the value assignment of the
variables in the scope of the constraint are not represented
in the relation of the constraint. There are many algorithms
available for computing valid instantiations, i.e., solutions
for a CSP. A straight-forward algorithm is backtrack search
where variable values are assigned and consistency checks
are performed until a valid solution is found. Moreover, it
is well known that CSPs can be solved in polynomial time
under some circumstances, i.e., the CSP must be acyclic,
which we discuss later. Yannakakis (30) proposed such an
algorithm. Based on this algorithm there are diagnosis al-
gorithms (12; 25) available, which can be used for debug-
ging directly providing there is a CSP representation for
programs. For more information and details on CSPs we
refer the reader to DechterŠs book (11).

The last step in the conversion process is to map pro-
grams in SSA form to their CSP representation. This ex-
traction of the constraints from the statements of the SSA
representation can be easily done. The algorithm is pretty
straight forward and only implies analyzing the SSA repre-
sentation line by line. In this conversion step, each line of
the SSA representation is mapped directly to a constraint.
Hence, all variables of a statement map directly to the scope
of the constraint. The constraint relation is given by the
statement itself by interpreting the assignment operator as
an equivalence operator. For example, the statement x_2
= x_1 + 2 is mapped to a constraint having 2 variables
x_2 and x_1 and where the relation is stated as an equa-
tion of the form x_2 = x_1 + 2. Note that the latter rep-
resentations is a more flexible one because it can also be
read, for example, as x_2− x_1 = 2.

The CSP representation of the program from Figure 2 is
given as follows:

Variables: V =
{ {var_1, x_0, y_0,

min_1,min_2,min_3}
}

Domains: D = {D(x) = N|x ∈ V }

Constraints: CO =

var_1 = (x_0 < y_0),
min_1 = x_0,
min_2 = y_0,

min_3 = phi(min_1,
min_2, var_1)

When comparing the CSP representation of the program
with its SSA form, which is depicted in Figure 4, we see
that both representations are very close to each other. It is

easy to prove that the SSA form of a program is equivalent
to its CSP representation with respect to the behavior.

Theorem 3.3. Given a program Π, its SSA representation
Π′, the corresponding CSP CΠ. The value assignments of
the variables in Π′, which are caused by executing Π′ on
an input I are a solution to the corresponding CSP CΠ and
vice versa.

From this theorem and the others we conclude that the
transformation is behavior neutral and in this way the CSP
representation captures the behavior of the program. As a
consequence, the CSP representation can be directly used
for debugging. As already mentioned there are circum-
stances under which the algorithm is more effectively and
there are situations where the computation of solutions is
hard. This holds now directly for debugging and we are in-
terested in classifying programs regarding their debugging
complexity. We define debugging complexity as a measure
that corresponds to the complexity of computing a solution
using CSP algorithms. In the following, we discuss struc-
tural properties of CSPs, which can be used for classifica-
tion and which are based on the hyper-graph representation
of programs.

In the hyper-graph representation of a CSP the variables
of the CSP represent vertices, and the constraint scopes the
hyper-edges. Thus hyper-edges connect possible more than
one vertex. Hyper-graphs can be used to classify CSPs re-
garding their complexity of computing a solution. As al-
ready mentioned, solutions for CSPs with corresponding
acyclic hyper-graphs can be computed in polynomial time
(see (30)). Such hyper-graphs can be directly represented
as hyper-trees. Unfortunately, not all CSPs are acyclic. But
the good story is that cyclic CSPs can be converted into an
equivalent CSP that is acyclic. What is needed is to join the
right constraints. Joining constraints, however, is a draw-
back because it is time and space consuming. In the worst
case all constraints have to be joined in order to finally re-
ceive the acyclic equivalent CSP representation, which is
of course intractable.

As a consequence, one only gains computational advan-
tages from the conversion of hyper-graphs into hyper-trees
if the number of constraints to be joined is as minimal as
possible. This number is referred to as hyper-tree width.
More information regarding hyper-graphs and hyper-tree
composition which allows to convert hyper-graphs into
hyper-trees can be found in (14; 15). The hyper-graph and
its corresponding hyper-tree for the CSP introduced above
is depicted in Figure 6. The hyper-tree width for this exam-
ple is 2.

Having a CSP representation of a program has the ad-
vantage of being able to use various algorithms for debug-
ging purposes. However, the performance of debugging
depends on the structure of the CSP. Hence, we are inter-
ested in the structural properties, i.e., the hyper-tree width,
of the CSPs for various example programs. If the hyper-
tree width for such examples is low, then computing diag-
noses can be done effectively. In the next section we focus

366 Informatica 32 (2008) 359–371 F. Wotawa et al.

Figure 6: Hyper-graph (left) and corresponding hyper-tree
(right) for the SSA form given in Fig. 4

therefore on the hyper-tree width of programs.

4 Experimental results on the
hyper-tree width

As explained in the previous section the hyper-tree width
has an impact on the complexity of debugging when using
constraints a means for intermediate representation formal-
ism. Gaining knowledge about the hyper-tree width of pro-
grams is therefore of importance. In this respect this sec-
tion reports on the hyper-tree width of several programs.
For this purpose, we implemented the conversion proce-
dure in Java and used a constraint system that was imple-
mented at out institute. For the hyper-tree decomposition
we used an implementation provided by the TU Wien (see
(16)). In particular, we made use of the Bucket Elimina-
tion algorithm based decomposition which is explained in
(29). All experiments were carried out on a PC (Pentium 4,
3 GHz, 1 GB Ram).

The experiments are based on small programs that vary
from 40 to 400 lines of code. The lines of code of the cor-
responding SSA forms and the size of constraint system in
terms of number of constraints and variables are higher due
to used while statement and their transformation to condi-
tional statements. In particular, we wanted to give an em-
pirical answer to the following research questions.

– Thorup (28) stated that there is limit of 6 for the hyper-
tree width of structured programs. The theorem is
based on using control dependence information and
does not consider data dependences. Because the lat-
ter is of importance for debugging and our compila-
tion respects those dependences, we wanted to know
whether given limit still applies.

– The compilation of while statements and recursive
procedure calls leads to an increase of statements and
to a nested if-then-else structure. The question is
how the nesting depth, i.e., the number of iterations
for unrolling the while statements or recursive proce-
dure calls, influences the hyper-tree width? Moreover,
one might be interested whether there is a maximum
bound on the hyper-tree with in such cases.

The environment for carrying out the empirical study is
not the optimal for answering the above research question
but the best one can expect today. The reason ist that the

ID LOC #W #I It HW T
1 70 1 6 3 5 1 s
1 70 1 6 50 5 364 s
2 110 0 11 - 5 1 s
3 70 4 5 3 5 11 s
3 70 4 5 20 6 2040 s
4 80 0 0 - 4 1 s
5 70 0 0 - 4 1 s
6 70 0 0 - 2 1 s
7 400 0 0 - 9 7 s
8 400 2 0 3 50 1000 s
8b 400 2 0 3 12 122 s
9 400 1 0 5 16 120 s
9 400 1 0 10 27 621 s
9 400 1 0 20 54 3959 s
9 400 1 0 35 51 16450 s
9 400 1 0 50 55 19245 s
10 400 1 0 10 20 80 s
10 400 1 0 20 23 274 s
10 400 1 0 50 25 2400 s
10 400 1 0 60 29 4120 s
10 400 1 0 70 25 4770 s
11 400 0 0 - 10 8 s
12 400 1 0 3 15 120 s
12 400 1 0 6 27 2580 s
12 400 1 0 10 43 3415 s
13 400 1 0 15 53 4010 s
14 60 0 0 - 2 1 s
15 50 1 4 3 6 1 s
15 50 1 4 10 6 5 s
15 50 1 4 100 6 456 s
16 40 7 0 1 2 1 s
16 40 7 0 10 3 600 s

Figure 7: Evolution of the hyper-tree width for different
complexity programs

Bucket Elimination based decomposition algorithm is only
an approximation algorithm and thus the solutions needs
not to be minimal once. However, because of the size of
the corresponding constraint systems other algorithms are
hardly of use because they would take too much time and
space.

The finally obtained results for the programs are de-
picted in Figure 7. There the programs are given a num-
ber (ID). The lines of codes (LOC) of the original program,
the number of while statements (#W), the number of if-
statements (#I), the number of iterations used to unroll the
while-statements (I), the hyper-tree width (HW) obtained,
and the time (T) required to compute the hyper-tree width
are given.

In the case of programs 1 to 6 and 14 to 16, the hyper-
tree width tends to be less influenced by the number of iter-
ation of the while-structure. Moreover, for these programs
the hyper-tree width reaches its maximal value after 2 to 3
iteration. This cannot be said for programs 7 to 13 were

PROGRAMS AND THEIR CONSTRAINT REPRESENTATION Informatica 32 (2008) 359–371 367

1. x = 10;
2. y = 20;
3. while (x<100){
4. x = x + y;
5. y = y + 2;

Figure 8: Small example program test

the hyper-tree width ranges from 9 to 55. Even in the case
where there is no unrolling of while statements (programs
7 and 11) the hyper-tree width ranges from 9 to 10. All
of these programs represent digital circuits including some
variants (like 8 and 8a) with a complex data flow.

Based on the obtained empirical results, we have to re-
tract Thorup’s theorem (28) because there are many pro-
grams that result in a constraint system of a larger hyper-
tree width than 6. Note that it is not very likely to find
a hyper-tree decomposition with a smaller width for the
given programs. Moreover, the approximation algorithm
seems to produce approximations, which are close to the
optimum.

The second research question is harder to answer. In all
experiments, we observed that after a certain number of it-
erations the hyper-tree width remains almost the same. For
example take a look at program 9 and 10. In both cases it
seems that the hyper-tree width reaches an upper bound. Of
course because of the used approximation algorithm there
is a variance in the obtained width. But it seems to be al-
ways around a certain value. More experiments have to be
carried out in order to justify these findings.

For the purpose of motivating why the hyper-tree width
stays constant after a certain number of considered iter-
ations of the while statement, we use a small program
test, which is given in Figure 8. For test we know
that the maximum hyper-tree width is 3. This upper bound
is reached after 2 times unrolling of the while statement,
i.e., replacements of the while statement with nested if-
statements.

In our example, we now compute the SSA form and the
corresponding constraint systems for program test using
3 nested if-statements. The resulting SSA form and the
constraint system are depicted in Figure 9 and Figure 10
respectively.

The hyper-graph corresponding to the constraint repre-
sentation of test is given in Figure 11. Note that for the
sake of clarity the graphical representation only comprises
the constraints from the while structure in which the vari-
able x is involved. From the hyper-graph it can be easily
seen that the edges follow a certain pattern, which is re-
peated in every unrolling of the while statements. Hence,
there is a possibility that the hyper-graph decomposition
can be applied to these subparts of the hyper-graph sepa-
rately and combined afterwards, which might lead to a con-
stant hyper-tree width after a certain amount of unrolling
steps.

In summary, we obtained the following results from the

experimental study:

– The hyper-tree width of programs might become very
large. Usually problems of hyper-tree width of 5 to 10
depending on the application domain are considered
hard problems.

– In case of unrolling while-statements or recursive
calls; it seems that the hyper-tree width reaches an
upper bound. This would be an indication that debug-
ging does not necessarily become more difficult, when
the number of iterations increases. Note that the num-
ber of unrolling steps of while statements does depend
on the considered test case, which is an independent
criteria.

– The time for computing the hyper-tree width can be
very large, which might be unacceptable in some cir-
cumstances. This can be for example the case when
interactive debugging is a requirement. For automated
debugging or off-line debugging the time for conver-
sions is not a limiting factor. However, decreasing the
overall analysis time is an open challenge.

What remains of interests is the question, why a certain
program has a larger hyper-tree width than another simi-
lar program? Obviously the data and control dependences
influence the overall hyper-tree width. But in case of sim-
ilar programs the differences regarding the dependencies
might not be large enough to justify high differences of the
obtained hyper-tree width. This holds especially in case
where a program comprises while statements. In the next
section, we focus on this aspect and discuss one cause that
leads to such an observation.

5 Discussion
In the performed experiments we observe that programs,
which have a high hyper-tree width and where the number
of iterations necessary to reach the maximum hyper-tree
width is large, have less data dependences in the sub-block
of the while statement. We illustrate these findings by
means of two example programs sum1 and sum2, which
are depicted in Figure 12 and Figure 13 respectively. Both
programs have about the same structure. In both programs
a variable i is increased in every iteration until it reaches
100. Moreover, the hyper-tree width of both programs is
about the same (2 and 1 for sum1 and sum2 respectively)
when the number of considered unrolling steps is 1.

However, the situation changes, when considering more
nested if-statements as a replacement for the while state-
ment. For sum1 the maximum hyper-tree width of 4 is
reached after 3 iterations. For sum2 the maximum hyper-
tree width of 8 is reached after 12 unrolling steps. If con-
sidering the difference between the minimum and the max-
imum hyper-tree width, we obtain another different out-
come. For sum1 the difference is only 1, whereas for
sum2 the difference is 7.

368 Informatica 32 (2008) 359–371 F. Wotawa et al.

1. x1_0 = 10;
2. y2_0 = 20;
3. cond_0=x1_0<100;
4. x1_1=x1_0+y2_0;
5. y2_1=y2_0+2;
6. cond_1=cond_0&&x1_1<100;
7. x1_2=x1_1+y2_1;
8. y2_2=y2_1+2;
9. cond_2=cond_1&&x1_2<100;
10. x1_3=x1_2+y2_2;
11. y2_3=y2_2+2;
12. x1_4=phi(x1_2,x1_3,cond_2);
13. y2_4=phi(y2_2,y2_3,cond_2);
14. x1_5=phi(x1_1,x1_4,cond_1);
15. y2_5=phi(y2_1,y2_4,cond_1);
16. x1_6=phi(x1_0,x1_5,cond_0);
17. y2_6=phi(y2_0,y2_5,cond_0);

Figure 9: The SSA form of program test (Fig. 8)

1. (x1_0),
2. (y2_0),
3. (X_cond_0 , x1_0),
4. (x1_1 , x1_0 , y2_0),
5. (y2_1 , y2_0),
6. (X_cond_1 , X_cond_0 , x1_1),
7. (x1_2 , x1_1 , y2_1),
8. (y2_2 , y2_1),
9. (X_cond_2 , X_cond_1 , x1_2),
10. (x1_3 , x1_2 , y2_2),
11. (y2_3 , y2_2),
12. (x1_4 , x1_2 , x1_3 , X_cond_2),
13. (y2_4 , y2_2 , y2_3 , X_cond_2),
14. (x1_5 , x1_1 , x1_4 , X_cond_1),
15. (y2_5 , y2_1 , y2_4 , X_cond_1),
16. (x1_6 , x1_0 , x1_5 , X_cond_0),
17. (y2_6 , y2_0 , y2_5 , X_cond_0).

Figure 10: The constraints for test (Fig. 8)

x1_6 x1_5 x1_4

x1_0

y2_1

x1_1 x1_2 x1_3

x_cond_1x_cond_0 x_cond_2

y2_2y2_0

Figure 11: The hyper-graph of the constraint system from Fig. 10

1. a = f + i;
2. b = g + h;
3. while (i < 100) {
4. x = x + a + b;
5. i = x + i + 1;
6. }

Figure 12: Program sum1

1. a = f + i;
2. b = g + h;
3. while (i < 100) {
4. x = a + b;
5. i = i + 1;
6. y = c + d;
7. }

Figure 13: Program sum2

PROGRAMS AND THEIR CONSTRAINT REPRESENTATION Informatica 32 (2008) 359–371 369

By having a closer look at the programs we detect a ma-
jor difference in their structure, which might explain this
high difference in the hyper-tree width. For the variable
x that is used in the block of program sum1 a new value
is computed in each iteration of the while statement. The
outcome of variable x depends on the number of iterations
and therefore on variable i (and the condition of the while
statement). This is not the case for variable x and variable
y in program sum2. Both variables are assigned the same
value in each iteration step. For performance reason such
assignment statements should be always placed outside a
loop. In case of program sum2 the values of variables in an
iteration not necessarily depends on the previous iteration
but on a variables that have been computed before calling
the while statement. It seems that this difference makes the
structure of the hyper-graph more complex, which leads fi-
nally to a higher hyper-tree width.

The given example shows that hyper-tree width may in-
dicate an unwanted program structure. In program sum2
either there are variables missing at the right side of state-
ments 4 and 6, or both statements should be given outside
the while statement because of performance reasons. Obvi-
ously, such problems can be detected using some rules like
the following:

If a variable v is defined in the sub-block of a while state-
ment, then there should be at least one not necessarily dif-
ferent statement in the same block that uses v.

Hyper-tree width offers another way for detecting such
problematic cases occurring in programs.

6 Related research

Collavizza and Ruehner (8) discussed the conversion of
programs into constraint systems and their use in software
verification. Their work is very close to ours. The conver-
sion steps are about the same and they also use the SSA
form as an intermediate representation from which con-
straints can be obtained. However, there are some impor-
tant differences. In their work the focus is on verification
and not on debugging. They do not explain how to handle
arrays and procedure calls as we did in the paper. More-
over, the structural analysis of programs using the concept
of tree-decomposition methods and in particular hyper-tree
decomposition is new. This holds also for the findings de-
rived from the empirical analysis, which are of importance
for automated debugging.

The authors of (31) proposed to diagnose errors in pro-
grams using constraint programming. Their approach re-
quires that the programmer provides contracts, i.e., pre-
and post-conditions, for every function. However, the au-
thors do not investigate the complexity of solving the re-
sulting problem and the scalability to larger programs. In
particular, they do not consider structural decomposition
or other methods which could make the approach feasible.
Moreover, the practical applicability of their approach is
also limited because it requires that contracts are specified

for every function, which is very often not the case in real-
world programs. Furthermore, their work does not properly
handle recursive function calls.

Various authors, e.g., (13; 24; 20; 21), have described
models to be used for fault localization using model-based
diagnosis. Almost all of the work makes assumptions re-
garding the program’s structure, uses abstractions which
lead to the computation of too many diagnosis candidates,
or does not handle all possible behaviors at once. The latter
models, for example, consider one execution trace which
prevent the diagnosis engine of remove some diagnosis
candidates. In our representation we consider all possible
behaviors up to a given boundary. This should lead to a re-
duction of the number of diagnosis candidates. In (19) Köb
and Wotawa discussed the use of Hoare logic for model-
based debugging which requires a Hoare logic calculus for
computing diagnosis. Although, we share the same ideas
on automated debugging, the described approach, which
comprises the conversion to CSPs and their direct use, is
new. From our point of view the described approach gen-
eralizes previous research directions.

Other work on debugging include (4; 5; 6). All of them
are mainly based on program slicing (10). (6) integrates
slicing and algorithmic program debugging (2) and (5) does
the same for slicing and delta debugging (1). Critical slic-
ing (4) which is an extension of dynamic slicing that avoids
some of the pitfalls, can also be used in debugging. Be-
cause of the nature of slicing and the other techniques these
approaches require more or less user interaction and cannot
be used for really automated debugging. More information
regarding other approaches to debugging and a good clas-
sification of debugging system is provided in (3).

7 Conclusion

In this paper we introduced a methodology for compil-
ing programs into their equivalent CSP representation.
The methodology comprises the conversion of while state-
ment into their equivalent nested if-statement representa-
tion from which the SSA form is generated. From the SSA
form itself we finally obtain the CSP representation. In the
paper we argued that the CSP representation can be effec-
tively used for debugging and allows for computing a com-
plexity metrics for debugging, i.e., the hyper-tree width.
This is due the fact that the complexity of debugging based
on CSPs depends on the hyper-tree width. For the purpose
of debugging we assume the existence of the source code
and test cases, which reveal the fault. Another advantage
of the CSP representation is that the available algorithms
for constraint solving and in particular diagnosis can be di-
rectly used.

The presented empirical analysis showed that the hyper-
tree width of programs varies a lot and can be more than
50. For the purpose of debugging this finding is not good,
because usually constraint systems with a hyper-tree width
of 5 to 10 are considered as complex. However, this fact

370 Informatica 32 (2008) 359–371 F. Wotawa et al.

shows that debugging itself is a complex task. From the
empirical analysis we also obtain that previous work, which
was mainly based on control dependences, on an upper
bound of 6 for the hyper-tree width of programs cannot
be justified in case of debugging in general. For a specific
program there might be an upper bound even when compil-
ing while statements in their equivalent nested if-statement
representation.

Future research includes to solve the upper bound prob-
lem in the general case and to apply the debugging ap-
proach to smaller and medium size programs. The inte-
gration of the CSP representation and given program asser-
tions like pre- and post-conditions is also of interest.

Acknowledgement

This work has been supported by the FIT-IT research
project Self Properties in Autonomous Systems project
(SEPIAS) which is funded by the Austrian Federal Min-
istry of Transport, Innovation and Technology and the
FFG and by the Austrian Science Fund (FWF) within the
project "Model-based Diagnosis and Reconfiguration in
Mobile Autonomous Systems (MoDReMAS)" under grant
P20199-N15. Moreover, we want to thank Nysret Musliu
for providing us with an implementation of the hyper-graph
decomposition.

References
[1] Andreas Zeller and Ralf Hildebrandt. Simplifying

and isolating failure-inducing input. IEEE Transac-
tions on Software Engineering, 28(2), feb 2002.

[2] Ehud Shapiro. Algorithmic Program Debugging.
MIT Press, 1983.

[3] Nahid Shahmehri, Mariam Kamkar, and Peter Fritz-
son. Usability criteria for automated debugging sys-
tems. J. Systems Software, 31:55–70, 1995.

[4] Richard A. DeMillo, Hsin Pan, and Eugene H. Spaf-
ford. Critical slicing for software fault localization.
In International Symposium on Software Testing and
Analysis (ISSTA), pages 121–134, 1996.

[5] Neelam Gupta, Haifeng He, Xiangyu Zhang, and Ra-
jiv Gupta. Locating faulty code using failure-inducing
chops. In Automated Software Engineering (ASE),
pages 263–272, November 2005.

[6] Mariam Kamkar. Application of program slicing in
algorithmic debugging. Information and Software
Technology, 40:637–645, 1998.

[7] Marc M. Brandis and H. Mössenböck. Single-pass
generation of static assignment form for structured
languages. ACM TOPLAS, 16(6):1684–1698, 1994.

[8] H. Collavizza and M. Rueher. Exploration of the ca-
pabilities of constraint programming for software ver-
ification. In Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS), pages 182–
196, Vienna, Austria, 2006.

[9] Ron Cytron, Jeanne Ferrante, Barry K. Rosen,
Mark N. Wegman, and F. Kenneth Zadeck. Efficiently
computing static single assignment form and the con-
trol dependence graph. ACM TOPLAS, 13(4):451–
490, 1991.

[10] Mark Weiser. Programmers use slices when debug-
ging. Communications of the ACM, 25(7):446–452,
July 1982.

[11] Rina Dechter. Constraint Processing. Morgan Kauf-
mann, 2003.

[12] Yousri El Fattah and Rina Dechter. Diagnosing tree-
decomposable circuits. In Proceedings 14th Inter-
national Joint Conf. on Artificial Intelligence, pages
1742 – 1748, 1995.

[13] Gerhard Friedrich, Markus Stumptner, and Franz
Wotawa. Model-based diagnosis of hardware designs.
Artificial Intelligence, 111(2):3–39, July 1999.

[14] Georg Gottlob, Nicola Leone, and Francesco Scar-
cello. On Tractable Queries and Constraints. In
Proc. 12th International Conference on Database and
Expert Systems Applications DEXA 2001, Florence,
Italy, 1999.

[15] G. Gottlob, N. Leone, and F. Scarcello. A comparison
of structural CSP decomposition methods. Artificial
Intelligence, 124(2):243–282, 2000.

[16] http://www.dbai.tuwien.ac.at/proj/hypertree/ in-
dex.html

[17] A. Griesmayer, R. Bloem, and B. Cook. Repair
of boolean programs with an application to C. In
Proc. 18th Conference on Computer Aided Verifica-
tion (CAV’06), pages 358–371, Seattle, Washington,
USA, August 2006.

[18] Daniel Jackson. Software abstractions: logic, lan-
guage, and analysis. MIT Press, 2006.

[19] Daniel Köb and Franz Wotawa. Fundamentals of
debugging using a resolution calculus. In Luciano
Baresi and Reiko Heckel, editors, Fundamental Ap-
proaches to Software Engineering (FASE’06), volume
3922 of Lecture Notes in Computer Science, pages
278–292, Vienna, Austria, March 2006. Springer.

[20] Cristinel Mateis, Markus Stumptner, and Franz
Wotawa. Modeling Java Programs for Diagnosis. In
Proceedings of the European Conference on Artificial
Intelligence (ECAI), Berlin, Germany, August 2000.

PROGRAMS AND THEIR CONSTRAINT REPRESENTATION Informatica 32 (2008) 359–371 371

[21] Wolfgang Mayer, Markus Stumptner, Dominik
Wieland, and Franz Wotawa. Can ai help to improve
debugging substantially? debugging experiences with
value-based models. In Proceedings of the European
Conference on Artificial Intelligence, pages 417–421,
Lyon, France, 2002.

[22] Raymond Reiter. A theory of diagnosis from first
principles. Artificial Intelligence, 32(1):57–95, 1987.

[23] S. Staber, B. Jobstmann, and R. Bloem. Finding and
fixing faults. In Proc. 13th Conference on Correct
Hardware Design and Verification Methods, pages
35–49. Springer-Verlag, 2005. LNCS 3725.

[24] Markus Stumptner and Franz Wotawa. Debugging
Functional Programs. In Proceedings 16th Inter-
national Joint Conf. on Artificial Intelligence, pages
1074–1079, Stockholm, Sweden, August 1999.

[25] Markus Stumptner and Franz Wotawa. Diagnos-
ing tree-structured systems. Artificial Intelligence,
127(1):1–29, 2001.

[26] M. Stumptner and F. Wotawa. Coupling CSP decom-
position methods and diagnosis algorithms for tree-
structured systems. In Proc. 18th International Joint
Conf. on Artificial Intelligence, pages 388–393, Aca-
pulco, Mexico, 2003.

[27] M.N. Wegman and F.K. Zadek. Constant propaga-
tion with conditional branches. ACM Transactions on
Programming Languages and Systems, 13(2), April
1991.

[28] Mikkel Thorup.All Structured Programs have
Small Tree-Width and Good Register Alloca-
tion,Information and Computation Journal, Volume
142,Number 2,Pages 159-181,1998.

[29] Artan Dermaku, Tobias Ganzow, Georg Gottlob, Ben
McMahan, Nysret Musliu, Marko Samer. Heuristic
Methods for hypertree Decompositions, DBAI-TR-
2005-53, Technische Universität Wien, 2005.

[30] M. Yannakakis. Algorithms for acyclic database
schemes. In C. Zaniolo and C. Delobel, editors,
Proceedings of the International Conference on Very
Large Data Bases (VLDB-81), pages 82–94, Cannes,
France, 1981.

[31] R. Ceballos and R. M. Gasca and C. Del Valle and D.
Borrego Diagnosing Errors in DbC Programs Using
Constraint Programming Lecture Notes in Computer
Science, Vol. 4177, Pages 200-210, 2006.

372 Informatica 32 (2008) 359–371 F. Wotawa et al.

Informatica 32 (2008) 373–382 373

Automatic Streaming Processing of XSLT Transformations Based on Tree
Transducers

Jana Dvořáková
Department of Computer Science
Faculty of Mathematics, Physics and Informatics
Comenius University, Bratislava, Slovakia
E-mail: dvorakova@dcs.fmph.uniba.sk

Keywords: XML transformation, XSLT, streaming processing, tree transducer

Received: March 15, 2008

Streaming processing of XML transformations is practically needed especially when large XML docu-
ments or XML data streams are to be transformed. In this paper, the design of an automatic streaming
processor for XSLT transformations is presented. Unlike other similar systems, our processor guarantees
bounds on the resource usage for the processing of a particular type of transformation. This feature is
achieved by employing tree transducers as the underlying formal base. The processor includes a set of
streaming algorithms, each of them is associated with a tree transducer with specific resource usage (mem-
ory, number of passes), and thus captures different transformation subclass. The input XSLT stylesheet is
analyzed in order to identify the transformation subclass to which it belongs. Then the lowest resource-
consuming streaming algorithm capturing this subclass is applied.

Povzetek: Obravnavano je avtomatično pretakanje XSLT transformacij.

1 Introduction
XML (28) is a meta-language defined by W3 Consortium
in order to store structured data. The initial W3C recom-
mendation for XML was published in 1998 and since then
XML has become a popular format. It is commonly used
for data exchange among applications since it enables them
to add semantics to data explicitly. Furthermore, XML is
a suitable tool in every field where it is necessary to cre-
ate document standards. XML usage is still growing fast
and new technologies for processing XML documents are
emerging.

Transformations of XML documents are needed in many
situations. For instance, let us consider two applications
exchanging data in XML format, each of them requiring
different structure for the same content. Then a transforma-
tion must be performed while the data are being transferred
between these applications. A typical XML transformation
processor reads the whole input document into memory and
then performs particular transformation steps according to
the specification. References to any part of the input docu-
ment are processed in a straightforward way by traversing
the in-memory representation, and the extracted parts are
combined to form the required output fragment. This ap-
proach is called tree-based processing of XML transforma-
tions. In early days of XML, this kind of processing was
sufficient since the existing XML documents were small
and stored in files. However, nowadays it is quite common
to encounter extensive XML data (e.g., database exports)
or XML data streams in practice. In both cases, the tree-
based processing is not suitable - in the former case it is not

acceptable or even possible to store the whole input docu-
ment in the memory, while in the later one the XML data
become available stepwise and need to be processed “on
the fly”.

In our case, the research on efficient process-
ing of XML transformations was in part motivated
by processing large XML data in the semantic
repository Trisolda (9). The repository contains
semantic annotation for various web resources.
A standard format for specify such semantics is Re-
source Description Framework (RDF) which is an instance
of XML. Since the amount of web resources annotated
tends to grow very fast, the transformation of RDF data
into other representations/views and vice versa cannot be
performed in the tree-based manner. At the same time, it
is not suitable to write the transformations by hand using
a SAX parser. The transformations needed are not trivial,
especially due to the complexity of RDF format, and along
with adding new functions into Trisolda repository new
transformations may become necessary. Therefore, a more
flexible approach is employed and a processor is proposed
such that the most efficient strategy for performing a given
transformation is automatically chosen.

A natural alternative to the classical tree-based process-
ing of XML transformations is the streaming (event-driven)
processing. Here the input document is read sequentially,
possibly in several passes; and the output document is gen-
erated sequentially in one pass. Only a part of the input
document is available at a time, and thus advanced tech-
niques must be used to process references to the input doc-

374 Informatica 32 (2008) 373–382 J. Dvořáková

ument and connect the extracted parts to the proper position
within the output document.

Currently, the most frequently used XML transformation
languages are XSLT (27) and XQuery (29), both general
(Turing-complete) languages intended for tree-based pro-
cessing. There is a great interest to identify XSLT and
XQuery transformations which allow efficient streaming
processing. When designing an XSLT/XQuery streaming
processor, the key task is to find the way of handling the
non-streaming constructs of the languages. The stream-
ing algorithms for XSLT and XQuery transformations are
however still under development and the complexity issues
such as memory requirements and the number of passes
needed for specific, clearly defined transformation classes
have not yet been analyzed.

The main contribution of this work is the design of a
system for automatic streaming processing of XSLT trans-
formations yielding the following properties:

– The transformation classes captured are clearly char-
acterized. Each such class contains transformations
with common properties - it represents an XSLT sub-
set obtained by restricting constructs used in the XSLT
stylesheet.

– A streaming algorithm is designed for each transfor-
mation class. The main design goal is to minimize
the upper bound of memory usage, i.e., to use optimal
(or close to optimal) amount of memory. Such upper
bound is explicitly stated for each algorithm.

These features are achieved by employing tree transduc-
ers as the underlying formal base. Specifically, the de-
sign of the processor is based on the formal framework for
XML transformations introduced in (10). In this paper, the
framework is simplified and customized in order to facili-
tate the implementation. It contains a general model – an
abstract model of general, tree-based transformation lan-
guages, and a set of streaming models that differ in the kind
of memory used and the number of passes over the input al-
lowed. Each streaming model can simulate some restricted
general model. The framework contains a simulation al-
gorithm for each such pair streaming model → restricted
general model. The framework is abstract, and thus can be
used to develop automatic streaming processors for other
general transformation languages as well (e.g., XQuery).

The implementation level of the framework for XSLT
language includes the implementation of streaming mod-
els and two modules: (1) an analyzer that associates the
input XSLT stylesheet with the lowest resource-consuming
streaming model that is able to process it, and (2) the trans-
lator that automatically converts the XSLT stylesheet into
the streaming model chosen according to the associated
simulation algorithm. The processor based on the frame-
work is easily extensible since new transducers and algo-
rithms may be specified and implemented, as well as op-
timizable since the current algorithms may be replaced by
the more efficient ones. Although there are some XML

transformations such that their streaming processing is al-
ways high resource-consuming (e.g., complete reordering
of element children), most of the practical transformations
can be processed with reasonable bounds on the resource
usage and thus, more effectively than when processed in
the tree-based manner.

The rest of this paper is organized as follows: Section
2 contains description of both approaches to processing
XML transformations and the complexity measures related
to streaming processing. In Section 3, the customized for-
mal framework for XML transformations is introduced and
the underlying tree transducers are described. An example
algorithm designed within the framework is presented in
Section 4. In Section 5, the design of our automatic stream-
ing processor for XSLT transformations is introduced. In
Section 6, the relation to other work is discussed. Sec-
tion 7 briefly introduces the implementation of the exam-
ple streaming algorithm and Section 8 concludes with sum-
mary and comments on future work.

2 Complexity of streaming
processing

In this section, the relevant complexity measures for the
streaming algorithms for XML transformations are speci-
fied.

An XML document contains the following basic con-
structs: elements, element attributes, and text values. The
document may be represented as a tree that is obtained by
a natural one-to-one mapping between elements and inter-
nal nodes of the tree. The text values appear in the leaves
of such tree. Reading a document in document order then
exactly corresponds to the preorder traversal of the con-
structed tree.

Figure 1: Two types of XML transformation processing:
(a) tree-based processing, (b) streaming processing.

The tree-based processing of XML transformations (Fig.
1a) is flexible in the sense that the input document is stored
in the memory as a tree and can be traversed in any di-
rection. On the contrary, during the streaming processing
(Fig. 1b) the elements of the input document become avail-
able stepwise in document order and similarly the output
elements are generated in document order. The actual con-
text is restricted to a single input node. Clearly, one-pass
streaming processor without an additional memory is able

AUTOMATIC STREAMING PROCESSING OF XSLT. . . Informatica 32 (2008) 373–382 375

to perform only simple transformations, such as renaming
elements and attributes, changing attribute values, filtering.
It must be extended to perform more complex restructur-
ing. The common extensions are (1) allowing more passes
over the input document, (2) adding an additional memory
for storing temporary data. The extensions can be com-
bined1. We obtain the corresponding complexity measures
for streaming processing of XML transformations:

1. the number of the passes over the input tree,

2. the memory size.

It is reasonable to consider the complexity of the stream-
ing processing in relation to the tree-based processing. As
mentioned in Section 1, all XML transformations can be
expressed in both XSLT and XQuery, and processed by
their tree-based processors. Various transformation sub-
classes can be then characterized by putting restrictions
on these general transformation languages, typically by ex-
cluding certain constructs.

When designing streaming algorithms, we have a choice
regarding three settings – the type of the memory used
(none, stack, buffers for storing XML fragments), and the
values of the two complexity measures mentioned. Stream-
ing algorithms with different settings may capture different
transformation subclasses. Since the transformation sub-
classes are characterized as some subsets of the general
transformation language considered, the key issue in the
algorithms is to realize a streaming simulation of the non-
streaming constructs included in the restricted language
(see Fig. 2).

Figure 2: The streaming simulation of subsets of a general
transformation language.

We use tree transducers to design the streaming algo-
rithms formally and to model transformation subclasses.
They are included in the formal framework for streaming
XML transformations that are described in the next section.

3 Formal framework
The framework is intended as a formal base for automatic
streaming processors of the general transformation lan-
guages. It does not cover all XML transformations. In
order to keep the models employed simple and comprehen-
sible, it is restricted to model primarily the transformations
that capture the relevant problems of streaming processing.
In Section 5, a way how some of the restrictions on the
transformation set can be overcome in the implementation
is described.

The framework consists of the following formal models:
1More passes over the input tree are not possible for XML data streams

that must be processed “on the fly".

Figure 3: A schema of the formal framework.

1. a basic general model for tree-based processing of
XML transformations and its restrictions,

2. a basic streaming model for streaming processing of
XML transformations and its extensions.

The design of both models results from an analysis of vari-
ous tree transformation models, XML transformation mod-
els as well as real-world XML transformation languages
and systems. They are based on tree transducers, mod-
els for tree transformations (25) originated in the formal
language theory. We introduce two novel models – a gen-
eral XML transducer (GXT) used as the general model, and
a streaming XML transducer (SXT) used as the streaming
model. They are defined in common terms in order to fa-
cilitate development of the simulation algorithms.

The overall schema of the framework is shown in Fig.
3. The basic SXT represents a simple one-pass streaming
model without an additional memory. Following the ideas
from Section 2, it can be extended by memory for storing
temporary data and by allowing more passes over the input
document. The basic GXT represents the most powerful
general model. As already mentioned, it does not capture
all XML transformations, but only a subset significant in
the case of streaming processing.

For each extended SXT, the transformation subclass cap-
tured is identified by imposing various restrictions on the
basic GXT. The inclusion is proved by providing an algo-
rithm for simulating this restricted GXT by the given ex-
tended SXT.

3.1 Notions and Notations
XML Document Abstraction. In what follows, element
attributes and data values are not considered2. Let Σ be an
alphabet of element names. The set of XML trees over Σ is
denoted by TΣ, the empty XML tree is denoted by ε. An
indexed XML tree may in addition have some leaves labeled
by symbols from a given set X . A set of XML trees over
Σ indexed by X is denoted by TΣ(X). In the rightmost
indexed XML tree, the element of the indexing set occurs
only as the rightmost leaf. The set of rightmost indexed
XML trees is denoted by TΣ(X)r.

A particular XML tree t ∈ TΣ(X) is uniquely specified
as a triple (Vt, Et, λt) where Vt is a set of nodes, Et ⊆
Vt×Vt is a set of edges, and λt : Vt → Σ∪X is a labeling
function.

2We refer the reader to (10) for the definition of the extended frame-
work including both element attributes and data values.

376 Informatica 32 (2008) 373–382 J. Dvořáková

Figure 4: An example of the XML tree.

Example 3.1. An XML tree t = (Vt, Et, λt) over the al-
phabet Σ = {α, β, γ} and the empty indexing set X = ∅ is
shown in Fig. 4. The nodes of t are uniquely identified by
dynamic level numbering. The sets Vt, Et and the labeling
function λt are defined as follows:

Vt = {1, 1.1, 1.2, 1.1.1, 1.2.1, 1.2.2},
λt(1) = α, λt(1.1.1) = β,
λt(1.1) = β, λt(1.2.1) = γ,
λt(1.2) = γ, λt(1.2.2) = γ.

Selecting Expressions. Simple selecting expressions,
derived from XPath expressions (26), are used to locate the
nodes within the XML tree. The selecting expression is
a path consisting of a sequence of steps. It can be either
absolute (starting with /), or relative. The step consists of
two components – an axis specifier axis and a predicate
pred. They are specified as outlined below. Comparing to
the XPath language, the set of expressions is restricted and
the syntax of some constructs is simplified – the meaning
is explained in parentheses. The semantics of the selecting
expressions follows the semantics of the equivalent XPath
expressions.

step : axis [pred]
axis : × (self),

↓ (child), ↓* (descendant),
↑ (parent), ↑* (ancestor),
← (left sibling), ∗← (preceding),
→ (right sibling), ∗→ (following)

pred : ∗ (select all elements)
name (select the elements named

name)
i (select the element on i-th

position within siblings)
step (select the elements having

context specified by step)

The names of the elements are taken from an alphabet Σ.
The set of selecting expressions over Σ is denoted by SΣ.
The evaluation of a selecting expression in the context of
some XML tree t and one of its nodes u ∈ Vt returns the
same set of nodes of t as the evaluation of the correspond-
ing XPath expression. Note that the context set contains a
single node only.

3.2 XML Transducers
General XML Transducer (Fig. 5a). The input heads of
GXT traverse the input tree in any direction and the output
is generated from the root to the leaves. At the beginning
of a transformation, the transducer has only one input head,
which aims at the root of the input tree, and one output
head, which aims at the root position of the empty output
tree. During a single transformation step, the whole input
tree is available as a context. One or more new computa-
tion branches can be spawned and the corresponding input
control is moved to the input nodes specified by selecting
expressions. At the same time, the output heads may gen-
erate a new part of the output.

Formally, the GXT is a 5-tuple T = (Q, Σ,∆, q0, R),
where

– Q is a finite set of states,

– Σ is an input alphabet,

– ∆ is an output alphabet,

– q0 ∈ Q is an initial state, and

– R is a set of rules of the form

Q× Σ → T∆(Q× SΣ) .

For each q ∈ Q and σ ∈ Σ, there is exactly one rhs
such that (q, σ) → rhs ∈ Q.

The right-hand side of a rule contains an XML tree over the
output alphabet indexed by rule calls – pairs of the form
(q, exp), where q is a state and exp is a selecting expres-
sion that returns a sequence of input nodes to be processed
recursively. A simple example of a GXT transformation
follows.

Example 3.2. Let T = (Q, Σ,Σ, q0, R) be a GXT where
Q = {q0}, Σ = {α, β, γ}. and R consists of the rules

(q0, α) → ε , (3.1)
(q0, β) → α((q0, ↓[∗])) , (3.2)
(q0, γ) → γ((q0, ↓[2]), (q0, ↓[1])) . (3.3)

The transducer processes the input trees over alphabet Σ.
The subtrees at nodes named α are completely removed
(rule 3.1), the nodes named β are renamed and get a new
name α (rule 3.2), and at last, when encountering a node
named γ, the first two children are processed in reversed
order (rule 3.3).

The GXT is inspired mainly by the tree-walking tree
transducer (TWR) (4) and data tree transducer (DTT) (23).
It works on unranked trees, but does not handle data values.
Similarly to TWR, the computation is high-level and based
on rule calls. However, the XPath language is used for pat-
tern matching on the paths of the input tree as it is in DTT.
This choice is natural since XPath is used in the common

AUTOMATIC STREAMING PROCESSING OF XSLT. . . Informatica 32 (2008) 373–382 377

general transformation languages (XSLT, XQuery). The
GXT is tree-walking, i.e., the input tree is traversed in any
direction. It allows more computation branches, but it is
still sequential model in the sense that during a transforma-
tion step only a single rule call is processed.

Figure 5: The processing model of the transducers: (a) the
GXT; (b) the SXT.

Streaming XML Transducer (Fig. 5b). The SXT has
a single input head that traverses the input tree in preorder,
and a single output head that generates the output tree in
preorder. Each node is visited twice during a single pass
– once when moving top–down, and once when moving
bottom–up. Thus, two types of SXT states are recognized
(1) the states indicating the first visit of nodes and (2) the
states indicating the second visit of nodes. During a single
transformation step, the input head either moves one step
in preorder or stays at the current position. At the same
time, an output action is performed, depending on the type
of rule applied. When applying a generating rule, a new
part of the output is connected to the current position of the
output head, and then the output head moves to the position
under the rightmost leaf of the new part. When applying a
closing rule, no output is generated, only the output head is
moved one step upwards in preorder within the output tree.

Formally, the streaming XML transducer (SXT) is a 5-
tuple T = (Q, Σ,∆, q0, R), where

– Q = Q1 ∪Q2, Q1 ∩Q2 = ∅ is a finite set of states,

– Σ, ∆ are the same as in the case of GXT,

– q0 ∈ Q1 is the initial state, and

– R = Rg ∪ Rc, Rg ∩ Rc = ∅ is a finite set of rules of
the form:

Rg : Q× Σ× Pos → T∆(Q× SΣ)r

Rc : Q× Σ× Pos → Q× SΣ

where Pos = {leaf, no-leaf} × {last, no-last}3.
For each q ∈ Q and σ ∈ Σ there is at most one
rhs such that for each pos ∈ Pos there is a rule

3If pos ∈ Pos is a node position, its first component is referred by
pos[1] and to its second component is referred by pos[2].

(q, σ, pos) → rhs ∈ R4. Furthermore, for each
(q, σ, pos) → rhs ∈ R, rec(rhs) = (q′, exp)5, one
of the following preorder conditions holds:

1. moving downwards: q ∈ Q1, and
– pos[1] = no-leaf , q′ ∈ Q1, exp =↓[1], or
– pos[1] = leaf , q′ ∈ Q2, exp = ×[∗],
2. moving upwards: q ∈ Q2, and
– pos[2] = no-last, q′ ∈ Q1, exp =→[1], or
– pos[2] = last, q′ ∈ Q2, exp =↑[∗],
3. no input move: q, q′ are of the same kind, exp =
×.

The left-hand side of a rule consists of a state, an element
name and a node position. The position is used to deter-
mine the preorder move within the input tree and it consists
of two predicates – the first one indicating a leaf node, and
the second one indicating a last node among the siblings.
The right-hand side is an XML tree rightmost indexed by a
rule call.

4 An example algorithm
In this section, a particular streaming simulation designed
within our framework is presented. In particular, a top-
down GXT is simulated by an SXT extended with stack of
the size proportional to the height of the input tree.

The stack-based simulation is efficient - in order to eval-
uate simple top-down selecting expressions in the branches
of the input XML tree the memory size proportional to the
length of the branches, which equals height of the input
tree, is needed. However, it is shown that a restriction to
stack is sufficient. First, the models considered are de-
scribed formally.

Restricted GXT. The restricted GXT, called the top-down
GXT (TGXT) differs from GXT in the rule definition - R
is a set of rules of the form

Q× Σ → T∆(Q× top-SΣ)

where top-SΣ is a set of simple top-down selecting expres-
sions. It is a subset of selecting expressions such that only
top-down axis (child and descendant) and name predi-
cates ([name]) are allowed. The simulated TGXT must in
addition satisfy two input-dependent conditions:

1. The TGXT is order-preserving if and only if, for each
of its rules, the input nodes returned by the selecting
expressions in the rhs are in preorder for arbitrary in-
put tree t and u ∈ Vt.

2. The TGXT is branch-disjoint if and only if, for each
of its rules, the input nodes returned by the selecting
expressions in the rhs are disjoint for arbitrary input
tree t and u ∈ Vt.

4This condition is necessary to keep the model deterministic.
5If rhs is a particular right-hand side, its rule call is referred by

rec(rhs).

378 Informatica 32 (2008) 373–382 J. Dvořáková

Intuitively, if any of the conditions is not satisfied, it may
happen that a part of the input tree disproportional to the
height of the input tree must be stored in the memory and
thus the stack-based simulation is not applicable.

Extended SXT. The extended SXT, called the stack-based
SXT (SSXT) is a 7-tuple T = (Q, Σ,∆, Γ, q0, z0, R)
where

– Q, Σ, ∆, q0 are the same as in the case of SXT,

– Γ is a finite set of stack symbols,

– z0 ∈ Γ is the initial stack symbol, and

– R is a finite set of rules of the form:

Rg : Q× Σ× Pos× Γ →
T∆(Q× SΣ × Γ∗)r

Rc : Q× Σ× Pos× Γ → Q× SΣ × Γ∗

The lhs now contains, in addition, the current top stack
symbol, and the rhs contains a sequence of stack symbols
to be put on the top of the stack. All other symbols have
the same meaning as in the SXT.

4.1 Construction of Simulating SSXT
The formal proposition follows. It says that, for each order-
preserving and branch-disjoint TGXT, it is possible to con-
struct an SSXT inducing equivalent translations.

Proposition 4.1. Let T = (Q, Σ, ∆, q0, R) be an order-
preserving and branch-disjoint TGXT. Then an SSXT T ′

exists such that, for each tin ∈ TΣ and tout ∈ T∆, if T
translates tin to tout then T ′ translates tin to tout.

The simulation proceeds in cycles. During a cycle, a sin-
gle transformation step of T is simulated, called the current
transformation step. Such simulation consists of several
transformation steps of T ′. A cycle is driven by the cycle
configuration that consists of three items:

1. current context node - the current input node of T dur-
ing the current transformation step,

2. current rule - the rule of T applied during the current
transformation step,

3. matched rule call - a rule call of the current rule.

During the whole simulation, the matched rule call repre-
sents the leftmost6 rule call, for which a match has been
already found.

At the beginning of the simulation, the current context
node is the root node of the input tree, the current rule is the
rule of T of the form (q0, σ) → rhs where q0 is the initial
state of T and σ is the name of the root of the input tree.
The matched rule call is the left sentinel rule call which is

6The positions of rule calls are always considered with respect to the
preorder of the rhs of the rule.

a virtual rule call positioned to the left from all other rule
calls. This special rule call is used to initialize a new cycle.
In case no error is encountered, a cycle includes two phases
- an evaluation phase and a generation phase.

Phase Alternation. During the evaluation phase the input
head of T ′ traverses the subtree at the current context node
in preorder, and at the same time it evaluates all selecting
expressions in the rule calls of the current rule. The evalu-
ation is accomplished in a standard way by means of finite
automata7. Three cases are distinguished depending on the
result of the evaluation phase:

1. A matching node is found for exactly one rule call,
and this rule call (newly-matched rule call) is either
positioned to the right of the matched rule call or it
equals the matched rule call.

This type of cycle is called an entering cycle since it takes
place when the input head of T ′ is moving downwards, and
a new rule call of the current rule is matched and “recur-
sively” processed. The generation phase follows: The out-
put head generates a specific part of the output fragment
of the current rule. The part is a set of nodes that appear
between the matched rule call and the newly-matched rule
call. After the generation, the current cycle configuration
is stored in the stack. The matched node becomes the new
current context node. The rule of the form (q′, σ′) → rhs
where q′ is the state in the newly-matched rule call and σ′

is the name of the matched node becomes the new current
rule, and the left sentinel rule call becomes the new cur-
rent rule call. A new cycle starts driven by the new cycle
configuration.

2. A matching node is found for two or more rule calls,
or a matching node is found for a rule call that is po-
sitioned to the left of the matched rule call.

This situation occurs in case T is non-order-preserving and
an error is reported.

3. No matching node is found and the whole subtree at
the current context node has been traversed.

This type of cycle is called a returning cycle since it takes
place when the input head of T ′ is moving upwards, the
processing of some rule call is finished, and the control
moves back to the processing of the rule containing this
rule call. The current rule is denoted by r. The generation
phase follows directly: The last part of the output fragment
of r is generated. The top stack configuration becomes the
new cycle configuration, and the new cycle starts.

5 Design of XSLT streaming
processor

An automatic streaming processor for XSLT transforma-
tions is described which is based on the framework intro-

7This method was, for example, presented in the Y-Filter algorithm
(5; 8).

AUTOMATIC STREAMING PROCESSING OF XSLT. . . Informatica 32 (2008) 373–382 379

duced. The models within the framework are abstract, and
thus the framework provides means to develop efficient
streaming algorithms for XML transformation subclasses
at abstract level, and to adapt them to an arbitrary general
transformation language. First, the general issues regard-
ing the framework implementation are described, and then
an adaptation for the XSLT transformation language is dis-
cussed in more detail.

5.1 Framework Restrictions
As mentioned in the previous section, the formal frame-
work is restricted in several ways. Some of the restrictions
can be easily overcome in the implementation, while others
require more complex handling.

1. Restrictions on the XML document. Attributes and
data values are associated with elements. They can
be easily added to the implementation – if such con-
struct needs to be processed, it is accessed using the
same path like the parent element. On the other hand,
if the construct needs to be generated in the output,
the action is performed together with the generation
of the parent element.

2. Restrictions on the selecting expressions. The simple
selecting expressions used capture the typical prob-
lems that arise during the streaming location of the
nodes in XML document (context references in pred-
icates, backward axis). Other constructs must be han-
dled separately – however, the techniques used for
constructs included in our restricted set may be often
exploited. Moreover, there has been already carried on
a research on the streaming processing of large subsets
of XPath language (see Section 6 for overview).

3. Restrictions on the general transformation language.
A part of the restrictions in GXT results from the
restrictions on selecting expressions, and others are
caused by excluding certain general transformation
constructs, such as loops, variables, functions. How-
ever, the GXT models transformations that reorder the
nodes within an XML tree with respect to the docu-
ment order, which is probably the most important is-
sue in streaming processing of XML transformations
if the specific issues concerning selecting expression
evaluation are not considered.

5.2 Adaptation for XSLT
Let us now describe the design of the prototype XSLT
streaming processor. The GXT represents an abstract
model for general transformation languages. Since our in-
tention is to adapt the framework for the XSLT language, it
does not need to be implemented directly. Instead, we are
looking for a correspondence between restricted GXTs and
XSLT subsets. The GXT models the XSLT transformations
driven by the structure of the input document. Thus, each

XSLT stylesheet consisting of a list of simple templates ac-
tivated by structure and mode can be directly converted to
GXT. The matching element of such simple template is ref-
erenced by a name only and the body of the template may
contain several output elements (possibly nested) and calls
for applying another templates. The template is called by a
selecting expression and a mode.

Specifically, an XSLT stylesheet xsl convertible to GXT
consists of (1) an initializing template and (2) several rule
templates. The initializing template sets the current mode
to the initial state of the GXT.

<xsl:template match="/">
<xsl:apply-templates

select="child::*" mode="q0"/>
</xsl:template>

Each rule template can be directly translated to a single rule
of GXT. It is of the following form.

<xsl:template match="name" mode="q">
... template body ...

</xsl:template>

The resulting GXT rule r is of the form (q, name) → rhs Thus,
the left-hand side consists of the element name in the match at-
tribute and the state in the mode attribute. The rhs is created by
translation of the template body as described below.

The template body contains a sequence of (possibly nested)
output elements and apply-templates constructs. An out-
put element named name is specified directly as a pair of tags
(alternatively, the element construct might be used):

<name>
...element content ...

</name>

The apply-templates construct has a select attribute
that contains a selecting expression, and a mode attribute
that represents a state of the resulting GXT.

<xsl:apply-templates
select="selexp" mode="q’"/>

Each apply-templates construct can be translated to a
single rule call. For the case above, a rule call of the form
(q′, selexp) is obtained.

The rhs of the rule r is created from the template body
so that each output element corresponds to a single node of
rhs and each apply-templates construct corresponds to
a single rule call of rhs. The structure of rhs is determined
by nesting of the output elements and apply-templates

constructs in the template body. The resulting GXT is of
the form T = (Q, Σ, ∆, q0, R) where

– Q contains the modes appearing in xsl,

– R contains the rules created by translation from par-
ticular rule templates as described above. Moreover,
R contains rule of the form

(q, σ) → (q, child[∗])

380 Informatica 32 (2008) 373–382 J. Dvořáková

Figure 6: An implementation of the framework for XSLT
language.

for each mode q and name σ ∈ Σ such that xsl does
not contain a template matching σ in the mode q. Such
additional rules correspond to the XSLT implicit built-
in rule templates8.

In a similar way, XSLT subsets corresponding to restricted
GXTs can be identified. According to the principle of the
formal framework, a restricted GXT (GXTr) can be sim-
ulated by some extended SXT (SXTe) such that the sim-
ulation algorithm is known. Then XSLT stylesheets from
the XSLT subset associated with GXTr can be converted
to SXTe using the simulation algorithm. The conversion
can be performed automatically since the simulation algo-
rithm exactly determines how to convert constructs of the
given XSLT subset into the rules of SXTe. The resulting
SXTe is constructed explicitly as an object and its method
transform() performs streaming processing of the trans-
formation specified by the stylesheet. The relation between
the formal framework and the implementation for XSLT is
shown in Fig. 6.

5.3 Modules of Streaming Processor
To sum up, the streaming processor works in three steps
(see also Fig. 7):

1. Analysis. The analyzer examines the constructs in
the input XSLT stylesheet (both XPath constructs and
XSLT constructs themselves). It checks whether there
is specified an XSLT subset that allows all the con-
structs encountered. If there are more such subsets,
the smallest one is chosen.

2. Translation. The translator creates an object for the
extended SXT associated with the XSLT subset cho-
sen. The creation is automatic, following the simula-
tion algorithm provided for the XSLT subset.

3. Processing. The method transform() of the new
SXT object is run on the input XML document. The
streaming transformation performed is equivalent to
the one specified by the input XSLT stylesheet.

8The built-in XSLT rules actually ensure that the resulting GXT is
complete. Note that it is also deterministic since xsl cannot contain two
templates matching the same name in the same mode by definition of the
valid XSLT stylesheet.

Figure 7: Modules os the automatic streaming processor.

6 Related work
Most of the earlier work was devoted to analyzing the
streaming processing of the querying language XPath (1; 2;
6; 7; 14; 16; 22; 24). Recently, several streaming proces-
sors for the transformation languages XQuery and XSLT
have appeared.

XML Streaming Machine (XSM) (19) processes a subset
of XQuery on XML streams without attributes and recur-
sive structures. It is based on a model called XML stream-
ing transducer. The processor have been tested on XML
documents of various sizes against a simple query. Using
XSM the processing time grows linearly with the document
size, while in the case of standard XQuery processors the
time grows superlinearly. However, more complex queries
have not been tested.

BEA/XQRL (12) is a streaming processor that imple-
ments full XQuery. The processor was compared with
Xalan-J XSLT processor on the set of 25 transformations
and another test was carried on XMark Benchmarks. BEA
processor was fast on small input documents, however, the
processing of large documents was slower since the opti-
mizations specially designed for XML streams are limited
in this engine.

FluXQuery (17) is a streaming XQuery processor based
on a new internal query language FluX which extends
XQuery with constructs for streaming processing. XQuery
query is converted into FluX and the memory size is opti-
mized by examining the query as well as the input DTD.
FluXQuery supports a subset of XQuery. The engine
was benchmarked against XQuery processors Galax and
AnonX on selected queries of the XMark benchmark. The
results show that FluXQuery consumes less memory and
runtime.

SPM (Streaming Processing Model) (15) is a simple
one-pass streaming XSLT processor without an additional
memory. Authors present a procedure that tries to converts
a given XSLT stylesheet into SPM. However, no algorithm
for testing the streamability of XSLT is introduced, and
thus the class of XSLT transformations captured by SPM
is not clearly characterized.

The effectiveness of the processors mentioned was ex-
amined only through empirical tests. The test results show
that streaming processors tend indeed to be less time and
space consuming than tree-based processors. However,
since no formal characterizations of the transformation
class captured were given, the results hold only for a few

AUTOMATIC STREAMING PROCESSING OF XSLT. . . Informatica 32 (2008) 373–382 381

(typically one or two) XML transformations chosen for ex-
periments.

In other approaches (3; 13; 21), a new specification lan-
guage is developed which supports streaming processing,
and the streaming processor for this new language is de-
signed. In all cases the connection to the commonly used
transformation languages is not clearly stated and the com-
putational complexity of the streaming processing is not
addressed.

7 Implementation

The formal framework introduced has been implemented
on .Net platform. The pilot implementation includes the
stack-based algorithm described in Section 4. The evalua-
tion of the algorithm implementation shows that it is highly
efficient in practice - it requires memory proportional to the
depth of the input XML document. Since this depth is gen-
erally not depending on the document size and common
XML documents are relatively shallow (99% of XML doc-
uments have fewer than 8 levels whereas the average depth
is 4 according to (20)), the memory requirements for most
of the XML documents are constant, independent to the
document size. On the contrary, standard XSLT processors
are tree-based and thus require memory proportional to the
document size. We refer the reader to (11) for a more de-
tailed description of the stack-based algorithm implemen-
tation and evaluation.

8 Conclusion

A design of an automatic streaming processor for XSLT
transformations have been presented. Comparing to other
similar processors, the contribution of our approach is that
the resource usage for streaming processing of particular
types of XSLT transformations is known. Our processor
includes several streaming algorithms, and it automatically
chooses the most efficient one for a given XSLT stylesheet.
The process of choice has a solid formal base – a frame-
work consisting of tree transducers that serve as models
both for the streaming algorithms and for the transforma-
tion types.

In the future work, we plan to include algorithms for
the local and non-order-preserving transformations to ob-
tain a processor for a a large subset of practically needed
XML transformations. We intend to demonstrate the usage
of such processor by integration into the Trisolda semantic
repository and carry out performance tests and comparison
to other implementations subsequently.

Acknowledgement

This work was supported in part by the grant VEGA
1/3106/06.

References
[1] Z. Bar-Yossef, M. Fontoura, and V. Josifovski. On

the Memory Requirements of XPath Evaluation over
XML Streams. In PODS ’04: Proceedings of the
twenty-third ACM SIGMOD-SIGACT-SIGART sym-
posium on Principles of database systems, pages
177–188, New York, NY, USA, 2004. ACM.

[2] C. Barton, P. Charles, D. Goyal, M. Raghavchari,
M. Fontoura, and V. Josifovski. An Algorithm for
Streaming XPath Processing With Forward and Back-
ward Axis. In Proceedings of ICDE 2003, 2003.

[3] O. Becker. Transforming XML on the Fly. In Pro-
ceedings of XML Europe 2003, 2003.

[4] G. J. Bex, S. Maneth, and F. Neven. A Formal Model
for an Expressive Fragment of XSLT. Inf. Syst.,
27(1):21–39, 2002.

[5] N. Bruno, L. Gravano, N. Koudas, and D. Srivastava.
XML & Data Streams. In Stream Data Management,
pages 59–82. Springer Verlag, 2005.

[6] F. Bry, F. Coskun, S. Durmaz, T. Furche, D. Olteanu,
and M. Spannagel. The XML Stream Query Pro-
cessor SPEX. In Proceedings of ICDE 2005, pages
1120–1121, 2005.

[7] Y. Chen, S. B. Davidson, and Y. Zheng. An Efficient
XPath Query Processor for XML Streams. In Pro-
ceedings of ICDE 2006, pages 79–79, 2006.

[8] Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and
P. Fischer. Path Sharing and Predicate Evaluation
for High-performance XML Filtering. ACM Trans.
Database Syst., 28(4):467–516, 2003.

[9] J. Dokulil, J. Tykal, J. Yaghob, and F. Zavoral. Se-
mantic Web Repository And Interfaces. In Interna-
tional Conference on Advances in Semantic Process-
ing SEMAPRO 2007. IEEE Computer Society, 2007.

[10] J. Dvořáková and B. Rovan. A Transducer-Based
Framework for Streaming XML Transformations. In
Proceedings of SOFSEM (2) 2007, pages 50–60,
2007.

[11] J. Dvořáková and F. Zavoral. An Implementation
Framework for Efficient XSLT Processing. In Pro-
ceedings of IDC 2008, Studies in Computational In-
telligence, Springer-Verlag, 2008.

[12] D. Florescu, C. Hillery, D. Kossmann, P. Lucas,
F. Riccardi, T. Westmann, M. J. Carey, A. Sundarara-
jan, and G. Agrawal. The BEA/XQRL Streaming
XQuery Processor. In Proceedings of VLDB 2003,
pages 997–1008, 2003.

382 Informatica 32 (2008) 373–382 J. Dvořáková

[13] A. Frisch and K. Nakano. Streaming XML Trans-
formations Using Term Rewriting. In Proceedings of
PLAN-X 2007, 2007.

[14] P. Genevès and K. Rose. Compiling XPath for
Streaming Access Policy. In Proceedings of ACM
DOCENG 2005, pages 52–54, 2005.

[15] Z. Guo, M. Li, X. Wang, and A. Zhou. Scalable XSLT
Evaluation. In Advanced Web Technologies and Ap-
plications, LNCS 3007/2004. Springer Berlin / Hei-
delberg, 2004.

[16] K. Jittrawong and R. K. Wong. Optimizing XPath
Queries on Streaming XML Data. In ADC ’07: Pro-
ceedings of the eighteenth conference on Australasian
database, pages 73–82, Darlinghurst, Australia, Aus-
tralia, 2007. Australian Computer Society, Inc.

[17] C. Koch, S. Scherzinger, N. Schweikardt, and
B. Stegmaier. FluXQuery: An Optimizing XQuery
Processor for Streaming XML Data. In VLDB’2004:
Proceedings of the Thirtieth International Conference
on Very Large Databases, pages 1309–1312, 2004.

[18] X. Li and G. Agrawal. Efficient Evaluation of XQuery
over Streaming Data. In VLDB ’05: Proceedings of
the 31st international conference on Very large data
bases, pages 265–276. VLDB Endowment, 2005.

[19] B. Ludäscher, P. Mukhopadhyay, and Y. Papakon-
stantinou. A Transducer-Based XML Query Proces-
sor. In Proceedings of VLDB 2002, pages 227–238,
2002.

[20] I. Mlýnková, K. Toman and J. Pokorný. Statistical
Analysis of Real XML Data Collections. In CO-
MAD’06: Proc. of the 13th Int. Conf. on Management
of Data, pages 20–31, 2006.

[21] K. Nakano. An Implementation Scheme for XML
Transformation Languages through Derivation of
Stream Processors. In Proceedings of the Second
ASIAN Symposium on Programming Languages and
Systems (APLAS’04), 2004.

[22] D. Oltenau, H. Meuss, T. Furche, and F. Bry. XPath:
Looking Forward. In Proceedings of XMLDM Work-
shop, pages 109–127, 2002.

[23] T. Pankowski. Transformation of XML Data Using an
Unranked Tree Transducer. In EC-Web, pages 259–
269, 2003.

[24] F. Peng and S. S. Chawathe. XPath Queries on
Streaming Data. In Proceedings of ACM SIGMOD
2003, 2003.

[25] J. Thatcher. Tree automata: An informal survey. In A.
V. Aho, editor, Currents in the Theory of Computing,
chapter 4, pages 143–172. Prentice-Hall, 1973.

[26] W3C. XML Path Language (XPath), ver-
sion 1.0, W3C Recommendation, 1999.
http://www.w3.org/TR/xpath.

[27] W3C. XSL Transformations (XSLT) Ver-
sion 1.0, W3C Recommendation, 1999.
http://www.w3.org/TR/xslt.

[28] W3C. Extensible Markup Language (XML) 1.0
(Fourth Edition), W3C Recommendation, 2006.
http://www.w3.org/TR/REC-xml.

[29] W3C. XQuery 1.0: An XML Query
Language, W3C Recommendation, 2007.
http://www.w3.org/TR/xquery.

Informatica 32 (2008) 383–396 383

On Interchange between Drools and Jess

Oana Nicolae, Adrian Giurca and Gerd Wagner
Brandenburg University of Technology, Germany
E-mail: {nicolae, giurca, G.Wagner}@tu-cottbus.de

Keywords: Drools (aka JBossRules), Jess, RuleML, R2ML, RIF, Rete, ReteOO, business rules, interchange, standardis-
ation

Received: March 15, 2008

There is a growing demand for research in order to provide insights into challenges and solutions based on
business rules, related to target PSMs (Platform Specific Model in OMG’s MDA terms - Implementation
Model). As an answer to these needs, the paper argues on the relevance of business rules target platforms
for the actual IT and business context, by emphasising the important role of business rules interchange
initiatives. Therefore, the rule-system developers can do their work without any concern about a vendor-
specific format, and in particular without any concern about the compatibility between the technologies.
The paper provides a description of the business rules translation from a particular object oriented rule-
system such as Drools, to another rule-system as Jess coming from the AI area, using R2ML as interchange
language. The transformation preserves the semantic equivalence for a given rule set, taking also into
account the rules vocabulary.

Povzetek: Prispevk opisuje prenos pravil iz objektnega sistema Drools v AI sistem Jess.

1 Introduction
There is a growing request for business rules technology
standardisation from both UML and ontology architects
communities. Due to these reasons, business rules aim to
express rules in a platform independent syntax.

A number of initiatives on rules interchange have been
started. They include the RuleML (2), OMG Production
Rules Representation (PRR) (8), RIF (1), and the REW-
ERSE I1 Rule Markup Language (R2ML1) (10). We men-
tion here the efforts to establish some standards for express-
ing business rules and their vocabularies in natural lan-
guage such as OMG’s SBVR (9) and Attempto Controlled
English (ACE) (4). SBVR, this human readable format of
business rules comes under OMG’s Model Driven Archi-
tecture (MDA2) standards and is defined as Computation-
Independent Model (CIM3). CIM is most frequently used
in the context of the Model Driven Architecture (MDA) ap-
proach which corresponds the Object Management Group
(OMG) vision of Model Driven Engineering (MDE). The
Meta-Object Facility (MOF), is the OMG standard for
Model Driven Engineering.

The second layer in OMG’s MDA is Platform-
Independent Model (PIM)4 where rule interchange formats
(i.e. RuleML, RIF, R2ML) try to accomplish their gen-
eral purpose: a PSM to PSM business rules migration
through the PIM level. The third MDA level is Platform-

1R2ML - http://oxygen.informatik.tu-cottbus.de/
rewerse-i1/?q=node/6

2MDA - Model Driver Architecture is a framework for distinguishing
different abstraction levels defined by the Object Management Group.

3CIM - Computational Independent Model
4PIM - Platform Independent Model

Specific Model (PSM5) containing rule specific languages
together with their specific engines/platforms like: F-Logic
(5), JRules(ILOG6), Jess7 or Drools8.

The main purpose of an interchanging approach is to
provide means for reusing, publication and interchange of
rules between different systems and tools. Actually, it also
plays an important role in facilitating business-to-customer
(B2C) and business-to-business (B2B) interactions over the
Internet. Moreover, an interchange approach always sup-
poses less transformations than PSM-to-PSM translations.

Our rule interchange work addresses Drools as source
platform and Jess as a target platform, using the approach
suggested by OMG’s MDA, because these languages are
actually in business market interest as popular business
logic frameworks, used by Java developers to create com-
plex rule-based applications by combining Java platform
and business rule technology. Another reason for choos-
ing these two rule systems is their efficiency in "pattern"
matching, especially to handle updates to its working set
of facts, as both Drools and Jess use an algorithm known
as the Rete (i.e. Latin for "net") algorithm. Computational
complexity per iteration of this algorithm is linear in the
size of the fact base.

The main standardisation communities, OMG9 and
W3C10 focus their work on providing business rules spec-
ification languages for all MDA layers of models in order

5PSM - Platform Specific Model
6ILog, http://www.ilog.com
7Jess, http://herzberg.ca.sandia.gov/jess/
8JBossRules, http://labs.jboss.com/jbossrules/
9OMG - http://www.omg.org/

10W3C - http://www.w3.org/

384 Informatica 32 (2008) 383–396 O. Nicolae et al.

to obtain rules interchange. Their standards are not sus-
tained by most of business rules management system tools,
as they implement proprietary rule languages. The reasons
for this situation imply the existence of only a few inter-
change works in the academia i.e. RIF (1) language still
has no well defined guidelines of how to implement the
transformations and it also does not specify how to test the
correction of the translation.

In this context, EU network of Excelence REWERSE11

developed R2ML as an interchange language for deploy-
ing and sharing rules between different rule systems and
tools (e.g. Object Oriented rule languages, Semantic Web
rule languages, Artificial Intelligence rule languages). Ac-
tually, R2ML (now at version 0.5) is a mature and ex-
perienced enough rule interchange language to provide
a concrete interchange format for different rule systems
and languages (i.e.http://oxygen.informatik.
tu-cottbus.de/rewerse-i1/?q=node/15).

R2ML has a rich syntax, so it can represent business
rules from both Drools and Jess languages, providing this
way the interchange possibility. As an interchange lan-
guage, R2ML addresses the PIM level. The main idea is to
use a model transformation language (MTL), or an appli-
cation transformation language (ATL) to transform a PIM
model into a PSM as in the Figure 1.

Business rules are built following a business model rep-
resentation. In many cases, a business model is first repre-
sented in a natural language description based on core on-
tologic concepts like classes and variables (OMG’s MDA -
CIM level).

At this stage, we can identify all objects referenced in the
rules, and for each object we identify all referenced prop-
erties. For each property, we identify all its constraints.

2 Drools to R2ML mapping
In this section we describe the general JBoss business rules
transformation into R2ML interchange language. Drools
engine project, (now at version 4.0.x) is an open source
and standards-based business rule engine and it uses an en-
hanced implementation named ReteOO12.

Drools is classified as an Object-Oriented Production
Rules engine written entirely in Java language, and more
specifically it is a Forward-Chaining rule engine.

A Production Rules System (i.e. PRS) relies on an Infer-
ence Engine that is able to scale to a large number of rules
and facts. The Inference Engine matches facts and data,
against PRs, also called Productions or just Rules, to infer
conclusions which result in actions. The Rules are stored
in the Production Memory. The facts that the Inference En-
gine matches against the rules are stored in the Working
Memory.

R2ML is a visual rule markup, XML-based language,

11REWERSE - http://rewerse.net/
12RETE adaptation for an object-oriented language, a descendant of the

well-known RETE algorithm

whose purpose is to capture rules formalised in different
languages and to interchange them between rule systems
and tools. It provides support for all kind of rules:

– Integrity Rules

– Derivation Rules

– Production Rules

– Reaction Rules

A R2ML production rule has conditions and post-
conditions. The conditions and post-conditions of a R2ML
production rule are usually interpreted as logical formulae
which correspond to a general first order formula: quanti-
fied formula, existentially quantified or universally quanti-
fied (i.e. R2ML uses the concept of r2ml:QuantifiedFormula
and by default, all R2ML formulae are universally quan-
tified). Usually, PRS does not explicitly refer to events,
but events can be simulated in a production rule system by
externally asserting corresponding facts into the Working
Memory. The R2ML production rules metamodel is de-
picted in the Figure 2:

The mapping from Drools to R2ML is possible as R2ML
supports the representation of the PRs by relying on the
OMG’s PRR (8) Specification. Following sections describe
general principles of mapping from JBoss rules into R2ML
PRs.

2.1 Mapping rules vocabularies
Object oriented rules systems as Drools and ILOG JRules
are build on top of Java vocabularies. Drools is designed to
use Java beans as facts. These facts represent the domain of
the rules, meaning the rules vocabulary. Java beans objects
are defined by users in their applications.

These objects inserted into Working Memory represent
the valid facts that rules can access. Facts are the applica-
tion data, meanwhile the rules represent the logic layer of
the application. This vocabulary is used by rules through
the import declarations, which are specified inside of the
rules file (drl files or xml files). For example, a rule from
Drools may use one or many Java beans classes in order
to describe its own vocabulary. The Java bean classes rep-
resent a description of the facts used by the Drools rule
engine.

A R2ML rule always refers to a vocabulary which can
be R2ML own vocabulary or an imported one (i.e. UML13,
RDF(S)14 and OWL15 - see lines 3.-4. from Section 2.2 i.e.
an example of the importing an OWL external vocabulary
for an entire R2ML production rule set). R2ML vocab-
ulary is a serialisation of an UML fragment of class dia-
grams. Below, we describe the corresponding translation
class from a usual Java bean into R2ML elements of the
vocabulary namespace with the help of the optionally el-
ement r2mlv:Vocabulary i.e. Since almost all names from

13UML - http://www.uml.org
14RDF(S) - http://www.w3.org/TR/rdf-schema
15OWL - http://www.w3.org/2004/OWL

ON INTERCHANGE BETWEEN JBOSS RULES AND JESS Informatica 32 (2008) 383–396 385

Figure 1: Interchanging between Drools and Jess.

Figure 2: R2ML Production Rules Representation Metamodel.

1.<r2ml:RuleBase
2. xmlns:r2ml=

"http://www.rewerse.net/I1/2006/R2ML"
3. xmlns:dc=

"http://purl.org/dc/elements/1.1/"
4. xmlns:ex=

"http://www.businessrulesforum.com/2007/"
5. xmlns:xsi=

"http://www.w3.org/2001/XMLSchema-instance"
6. xsi:schemaLocation=

"http://www.rewerse.net/I1/2006/R2ML
7. http://oxygen.informatik.tu-cottbus.de/

R2ML/0.5/R2ML.xsd"
8.<r2mlv:Vocabulary>
9. <r2mlv:Class r2mlv:ID="Cheese">
10. <r2mlv:Attribute r2mlv:ID="type">
11. <r2mlv:range><r2mlv:Datatype

r2mlv:ID="xs:string"/>
12. </r2mlv:range>
13. </r2mlv:Attribute>
14. <r2mlv:Attribute r2mlv:ID="price">
15. <r2mlv:range><r2mlv:Datatype

r2mlv:ID="xs:integer"/>
16. </r2mlv:range>
17. </r2mlv:Attribute>
18. <r2mlv:Attribute r2mlv:ID="bestBefore">
19. <r2mlv:range><r2mlv:Datatype

r2mlv:ID="xs:dateTime"/>
20. </r2mlv:range>
21. </r2mlv:Attribute>
22. </r2mlv:Class>
23.</r2mlv:Vocabulary>
24.</r2mlv:RuleBase>

R2ML rule bases are qualified names (xs:QName), they
must have declared the corresponding namespaces (i.e. see
above lines 2.-5.). In the same manner, any Java qual-
ified class name will be translated into a qualified name
(xs:QName) together with the corresponding names dec-
larations.

For example, if we assume the Drools import declaration
(i.e. a Java qualified name): org.drools.usecase.Cheese,
this will translate into the following namespace declaration
xmlns:ex="http://www.drools.org/usecase" used in the qual-

ified name (i.e. ex:Cheese), in order to reference the class
name.

2.2 Rule Sets Mapping
All imported Java beans in Drools rule packages form the
rules vocabulary. The set of Drools rules is individualized
by its package namespace, declared at the beginning of the
rules file, namespace that can be equal or can differ from
Drools import declarations i.e. The Drools package of rules

package org.drools.rules;

import org.drools.usecase.Cheese;
/* set of Drools rules */

finds its correspondent into the r2ml:ProductionRuleSet ele-
ment. It contains three optional attributes:

– r2ml:ruleSetID - is the name of the rule set. The name
of the Java package of classes identifies in an unique
way the name of a R2ML ProductionRuleSet (i.e. see
line 2. from below R2ML code example).

– r2ml:externalVocabulary - represents an URI of an ex-
ternal vocabulary. We used OWL to represent the vo-
cabulary of the rule.

– r2ml:externalVocabularyLanguage - refers the language
of the external vocabulary.

1. <r2ml:ProductionRuleSet
2. r2ml:ruleSetID="org.drools.rules"
3. r2ml:externalVocabulary="http://..."
4. r2ml:externalVocabularyLanguage="OWL">

Excepting the rules and their import declarations, a Drools
package may contain other specific constructs like: glob-
als, user-defined functions and queries, but they do not rep-
resent the subject of our translation.

386 Informatica 32 (2008) 383–396 O. Nicolae et al.

1. rule "<name>"
2. when
3. <LHS>
4. then
5. <RHS>
6. end

// java-like, single line comment
single line comment
/* ...

java-like, multi lines comment
... */

2.3 Rule Mapping
In Drools, a rule consists of the rule identifier, the condi-
tions part called LHS (i.e. Left Hand Side) and the actions
part called RHS (i.e. Right Hand Side). The general princi-
ples of mapping a Drools rule into a R2ML production rule
is:

– Every JBoss production rule is translated into a
r2ml:ProductionRule element. An optional element
r2ml:Documentation can contain elements which com-
prise the rule text and also the representation of the
rule in a specific rules language.

– A R2ML r2ml:ruleID production rule attribute is
generated using the JBoss <name> value. The
r2ml:ruleID unique identifies a rule inside a rule set.

– A JBoss rule has a conditions part (i.e. when part)
and an action part (i.e. then part). The condition
part of a JBoss rule is mapped into the content of
r2ml:conditions role element. The RHS part of a
JBoss rule which contains multiple actions maps into
the content of r2ml:producedActionExpr role element.

– The Drools language syntax also contains the com-
ments expressed in Java-like syntax, such as:

When translated into R2ML syntax, they map into the
XML <[!CDATA[...]]> construct. For example:

1.<r2ml:Documentation>
2. <r2ml:RuleText r2ml:textFormat="plain">
3. <[!CDATA[
4. JBoss rule expressed in natural language...
5.]]>
6. </r2ml:RuleText>
7.</r2ml:Documentation>

In the following lines we describe the mapping of Drools
conditions into R2ML appropriate ones.

The LHS (i.e. when part) of a JBoss rule consists of
patterns (i.e. columns) and eval as Conditional Elements
(i.e. CE) in order to facilitate the encoding of propositional
logic and First Order Logic i.e. FOL. The entire LHS of
a Drools rule is in fact a tuple of facts (i.e. a tuple of pat-
terns). Each pattern may have zero or more field constraints
i.e. the pattern terms (see Figure 4). The and (i.e. &&) CE
is implicit when the JBoss rule condition contains multi-
ple patterns. Field constraints compare and assess the field
values from the fact object instances. Drools facts from

Working Memory are Java beans objects instances, there-
fore these field constraints can be accessed from the "no ar-
guments" methods, also called the accessors (i.e. getters).

2.3.1 Mapping Drools patterns without Field
Constraints

A Drools pattern without field constraints, will map into the
r2ml:ObjectClassificationAtom. For example, the following
Drools pattern, which corresponds to universally quantified
formula from classical logic: ∀?c Cheese(?c) is expressed
in Drools as following:

$c: Cheese()

This Drools pattern finds its R2ML translation into the
below code. As an explanation, we mention that all the
R2ML formulae are implicitly universal quantified:

1.<r2ml:ObjectClassificationAtom
2. r2ml:class="Cheese">
3. <r2ml:ObjectVariable r2ml:name="c"
4. r2ml:class="Cheese"/>
5.</r2ml:ObjectClassificationAtom>

Following RuleML, R2ML framework defines the
generic concepts of variable. However, R2ML makes a
clear distinction between object terms and data terms.

Typed terms are either object terms standing for objects,
or data terms standing for data values. The concrete syn-
tax of first-order non-Boolean OCL (7) expressions can be
directly mapped to R2ML abstract concepts of ObjectTerm
and DataTerm, which can be viewed as a predicate-logic-
based reconstruction of the standard OCL abstract syntax.

The bounded variable c represents the value of
the r2ml:name attribute of the corresponding term
(r2ml:ObjectName and/or r2ml:ObjectVariable) and the
name of the Java bean class (i.e. Cheese) is the value
of r2ml:class attribute. The above Drools pattern can
be declared inside rules conditions also without the c
variable, such as: Cheese(), but to be able to refer to the
matched facts, usually, the rules conditions use a pattern
binding variable such as c (i.e. in Drools terminology we
refer to it as a fact variable or declaration).

Any JBoss variables translate into R2ML variables. No-
tice that the translation of the Drools variables into R2ML
eliminates the $ symbol (used in Drools only as a notation
convention) from the names of the variables. The JBoss
fact variable used in the previous pattern example (i.e.
c:Cheese()) is mapped into r2ml:ObjectVariable using
the value of r2ml:name="c" property to describe the vari-
able name, which represents an instance of the Cheese
class (see lines 3.-4.). The usage of this instance gives us
the possibility to call properties and functions of Cheese
class in the actions part of a JBoss rule. The optional
r2ml:class property (see line 4. from the above example) spec-
ifies the type of the object variable (i.e. Cheese). An
r2ml:ObjectVariable is a variable that can be only instanti-
ated by objects.

ON INTERCHANGE BETWEEN JBOSS RULES AND JESS Informatica 32 (2008) 383–396 387

2.4 Mapping Drools patterns with Field
Constraints

In many cases, a JBoss pattern (see Figure 3) may contain
many field constraints, all of them referring to the same
context variable. The Drools field constraints may be of
the following possible types (i.e. string, numeric, boolean
and date). When separated by the following operators (i.e.
enumerated here in their priority order see also Figure 5):
&&, || and , (i.e. comma), they form a Drools pattern
formula.

A Drools pattern formula translates into R2ML for-
mula, using the R2ML simple/imbricated concepts of
r2ml:qf.Disjunction and r2ml:qf.Conjunction (qf stands
for "quantifier free") applied on R2ML atoms, in order to
serialize the Drools CE || and &&, respectively.

In the example below, we have two Drools patterns that
in classical logic have the following representation, taking
into account the operators order from Drools i.e.

∀?c ∀?p ∃?youngCheese (Person(?p) ∧
like(?p, ?youngCheese) ∧ (Cheese(?c) ∧
(type(?c, ?youngCheese) ∧ price(?c) < 10) ∨
bestBefore(?c) < ”27−Oct− 2010”))

1.$p:Person($youngCheese:like)
2.$c:Cheese(type == $youngCheese &&
3. price < 10 ||
4. bestBefore < "27-Oct-2010")

The Cheese pattern (see lines 2.-4.) has three field con-
straints combined with a conjunctive connector (i.e. &&)
and a disjunctive connector (i.e. ||). We mention that the
comma represents by default the conjunctive logic oper-
ator. The pattern refers literal constraints used to match
the facts (i.e. instances of Cheese class): type (i.e.
string constraint), price (i.e. numeric constraint) and
bestBefore (i.e. date type constraint). The valid op-
erators that apply for the numeric and date operands are:
==, !=, <,>, <=, >=.

The above Drools pattern translates into the following
R2ML formula (i.e. the example below describes only the
imbrication of the operators (&&, ||) inside the Drools pat-
tern):

1.<r2ml:qf.Disjunction>
2. <r2ml:qf.Conjunction>
3. <r2ml:DatatypePredicateAtom>
6. ...
7. </r2ml:DatatypePredicateAtom>
8. <r2ml:DatatypePredicateAtom>
9. ...
10. </r2ml:DatatypePredicateAtom>
11. </r2ml:qf.Conjunction>
12. <r2ml:DatatypePredicateAtom>
14. ...
15. </r2ml:DatatypePredicateAtom>
16.</r2ml:qf.Disjunction>

In the absence of the qf.Disjunction or qf.Conjunction,
all atoms from the R2ML rule body are implicitly con-
nected by conjunction.

First pattern from the Drools example above (see line
1.) contains as field constraint a bound variable, called

declaration. The JBoss variable $youngCheese is
bound to the like property, so it can later constrain
the type property of the Cheese class. Since the
like property is a data type property (i.e. String),
the R2ML mapping is an r2ml:AttributionAtom, while for
an object type property would find its mapping into the
r2ml:ReferencePropertyAtom.

<!--$p:Person($youngCheese:like)-->
1.<r2ml:AttributionAtom
2. r2ml:attribute="ex:Person.like">
3. <r2ml:subject>
4. <r2ml:ObjectVariable
5. r2ml:name="p"
6. r2ml:class="Person"/>
7. </r2ml:subject>
8. <r2ml:dataValue>
9. <r2ml:DataVariable
10. r2ml:name="youngCheese"
11. r2ml:datatype="xs:string"/>
12. </r2ml:dataValue>
13.</r2ml:AttributionAtom>

The r2ml:AttributionAtom contains the r2ml:subject el-
ement which encloses the object term we refer. This
can be expressed, for example, by an r2ml:ObjectVariable

(i.e. lines 4.-6.). The value of the JBoss property is re-
ferred by the r2ml:dataValue. In this example, the value
is encoded by the r2ml:DataVariable element (i.e. lines
9.-12.). The youngCheese variable borrows the type of
the youngCheese property. R2ML uses XML Schema
Datatypes16 as its default namespace for encoding basic
datatypes. The usage of this set of pre-declared datatypes
is not mandatory, the user can specify any other appropri-
ate URI and namespace for referring later in the rules its
datatypes declaration. The Java/XML type correspondence
it is done according to the JAXB17 binding style correspon-
dence principle, therefore a Java String value will be trans-
lated into xs:string qualified name (see line 11.).

The relational operations from Drools are serialized into
R2ML language using the r2ml:DatatypePredicateAtom con-
struct. Until this version, R2ML had not declared its
own built-in constructs, but it allows the use of external
ones, such as SWRL18 built-ins for representing the predi-
cate type of the relational operations (i.e. swrlb:lessThen).
We also use the construct of r2ml:DatatypePredicateAtom

to serialize the Drools literal field constraints that test
equality / inequality of data types properties. When se-
rializing object types literal field constraints we use the
r2ml:EqualityAtom to express the concept of equality and
the r2ml:InequalityAtom to express the concept of inequal-
ity (!=).

The following Drools pattern describes a Drools
literal String constraint. Drools pattern trans-
lates into r2ml:DatatypePredicateAtom using the
r2ml:datatypePredicate="swrlb:equal" SWRL build-

in to represent the equality operator and serialises the
type property into the r2ml:AttributeFunctionTerm (see

16XML Schema Part 2: Datatypes Second Edition - http://www.
w3.org/TR/xmlschema-2/

17Java Architecture for XML Binding - java.sun.com/
developer/technicalArticles/WebServices/jaxb/

18SWRL - http://www.w3.org/Submission/SWRL

388 Informatica 32 (2008) 383–396 O. Nicolae et al.

Figure 3: Drools Pattern concept.

Figure 4: Drools Field Constraint concept.

lines 4.-10.). The r2ml:dataArguments attribute comprises

$c:Cheese(type == $youngCheese)

the Drools operands translation into R2ML terms objects
or data types, depending on the types of the involved
properties. The Drools $youngCheese variable is
expressed using the concept of r2ml:DataVariable i.e.

<!--$c:Cheese(type == $youngCheese)-->
1.<r2ml:DatatypePredicateAtom
2. r2ml:datatypePredicate="swrlb:equal">
3. <r2ml:dataArguments>
4. <r2ml:AttributeFunctionTerm
5. r2ml:attribute="ex:Cheese.type">
6. <r2ml:contextArgument>
7. <r2ml:ObjectVariable r2ml:name="c"
8. r2ml:class="ex:Cheese"/>
9. </r2ml:contextArgument>
10. </r2ml:AttributeFunctionTerm>
11. <r2ml:DataVariable r2ml:name="youngCheese"
12. r2ml:datatype="xs:string"/>
13. </r2ml:dataArguments>
14.</r2ml:DatatypePredicateAtom>

The relational operation $c:Cheese(price < 10) is
expressed by the r2ml:DatatypePredicateAtom and the
build-in swrlb:lessThan. The case also involves the
r2ml:AttributeFunctionTerm for representing the property
price of the Cheese class (i.e. ex:Cheese.price
(see lines 4.-10.) and the r2ml:TypedLiteral term (see lines
11.-12.) for encoding the Java integer value into XML
xs:integer.

<!--$c:Cheese(price < 10)-->
1.<r2ml:DatatypePredicateAtom
2. r2ml:datatypePredicate="swrlb:lessThan">
3. <r2ml:dataArguments>
4. <r2ml:AttributeFunctionTerm
5. r2ml:attribute="ex:Cheese.price">
6. <r2ml:contextArgument>
7. <r2ml:ObjectVariable r2ml:name="c"
8. r2ml:class="ex:Cheese"/>
9. </r2ml:contextArgument>
10. </r2ml:AttributeFunctionTerm>
11. <r2ml:TypedLiteral r2ml:lexicalValue="10"
12. r2ml:datatype="xs:integer"/>
13. </r2ml:dataArguments>
14.</r2ml:DatatypePredicateAtom>

The Drools literal date type field constraints are repre-
sented into R2ML using XML qualified name xs:dateTime.

The Drools numeric operators work analogous for this
type of field constraint, so the serialization into R2ML code
is also the r2ml:DatatypePredicateAtom i.e.

<!--$c:Cheese(bestBefore<"27-Oct-2007")-->
1.<r2ml:DatatypePredicateAtom
2. r2ml:datatypePredicate="swrlb:lessThan">
3. <r2ml:dataArguments>
4. <r2ml:AttributeFunctionTerm
5. r2ml:attribute="bestBefore">
6. <r2ml:contextArgument>
7. <r2ml:ObjectVariable r2ml:name="c"
8. r2ml:class="Cheese"/>
9. </r2ml:contextArgument>
10. </r2ml:AttributeFunctionTerm>
11. <r2ml:TypedLiteral
12. r2ml:datatype="xs:dateTime"
13. r2ml:lexicalValue="2007-10-27Z"/>
14. </r2ml:dataArguments>
15.</r2ml:DatatypePredicateAtom>

Another meaningful example of Drools field constraints
is testing the equality or inequality of a property against the
Java null value i.e.

$c:Cheese(buyer == null)
$c:Cheese(buyer != null)

The corresponding formula from the classical logic
would be:

∀?c ∀?t Cheese(?c) ∧ ¬buyer(?c, ?t)

∀?c ∃?t Cheese(?c) ∧ buyer(?c, ?t)

Taking into account the above classical logi-
cal formula, the R2ML serialization results in the
r2ml:EqualityAtom, having its meaning negated using
r2ml:isNegated=true attribute. The child elements for
the r2ml:EqualityAtom are object terms. Our example
involves an r2ml:ReferencePropertyTerm with the attribute
r2ml:referenceProperty="ex:Cheese.buyer" and a generated
object term expressed using r2ml:ObjectVariable with the
generated attribute value r2ml:name="t_24535899" and the
r2ml:class="ex:Person" as the type of the buyer property.

The second logic formula involves the existence of
a Cheese fact into Working Memory, whose buyer prop-
erty is not null. The R2ML first step in the R2ML
serialization is the generation of an object term (i.e.
the r2ml:ObjectVariable t_57685642) of ex:Person type
which is bounded to buyer property. We use the
r2ml:ReferencePropertyAtom element i.e.

We have mentioned before that implicitly, the and oper-
ator binds the Drools patterns inside the rule condition.

ON INTERCHANGE BETWEEN JBOSS RULES AND JESS Informatica 32 (2008) 383–396 389

<!--$c:Cheese(buyer==null)-->
1.<r2ml:EqualityAtom
2. r2ml:isNegated="true">
3. <r2ml:ReferencePropertyFunctionTerm
4. r2ml:referenceProperty="ex:Cheese.buyer">
5. <r2ml:contextArgument>
6. <r2ml:ObjectVariable
7. r2ml:name="c"
8. r2ml:class="ex:Cheese"/>
9. </r2ml:contextArgument>
10. </r2ml:ReferencePropertyFunctionTerm>
11. <r2ml:ObjectVariable
12. r2ml:name="t_24535899"
13. r2ml:class="ex:Person"/>
14.</r2ml:EqualityAtom>

<!--$c:Cheese(buyer!=null)-->
1.<r2ml:ReferencePropertyAtom
2. r2ml:referenceProperty="ex:Cheese.buyer">
3. <r2ml:subject>
4. <r2ml:ObjectVariable
5. r2ml:name="c" r2ml:class="ex:Cheese"/>
6. </r2ml:subject>
7. <r2ml:object>
8. <r2ml:ObjectVariable r2ml:name="t_57685642"
9. r2ml:class="ex:Person"/>
10. </r2ml:object>
11.</r2ml:ReferencePropertyAtom>

//$p:Person()
1.$c:Cheese(buyer == $p, inStock == true)

A Drools pattern containing a formula that implies only
field constraints conjunctions, can be split into as many
Drools patterns as field constraints it contains i.e.

//$p:Person()
1.$c:Cheese(buyer == $p)
2.$c:Cheese(inStock == true)

There are two possibilities to markup the above Cheese

patterns (see lines 1.-2.): to use a conjunction of R2ML
appropriate atoms or to use the r2ml:ObjectDescriptionAtom

construct.
First option implies the use of the

r2ml:ReferencePropertyAtom in order to markup the
first pattern (see line 1. from Drools example) and a
r2ml:AttributionAtom for the data type boolean field
constraint (see line 2. from Drools example) i.e.

<!--$c:Cheese(buyer == $p)-->
1.<r2ml:ReferencePropertyAtom
2. r2ml:referenceProperty="ex:Cheese.buyer">
3. <r2ml:subject>
4. <r2ml:ObjectVariable
5. r2ml:name="c"
6. r2ml:class="ex:Cheese"/>
7. </r2ml:subject>
8. <r2ml:object>
9. <r2ml:ObjectVariable
10. r2ml:name="p"

Figure 5: Drools constraints inside a pattern.

11. r2ml:class="ex:Person"/>
12. </r2ml:object>
13.</r2ml:ReferencePropertyAtom>

A r2ml:ReferencePropertyAtom associates two object
terms, having different meanings: subject (see lines 3.-7.)
and object (see lines 8.-12.). For example, to express the
concept of: "buyer of cheese" we use the code above, where
the subject is a Cheese instance and the object is a Person in-
stance.

The second solution translates directly the two Cheese

patterns of the rule using the r2ml:ObjectDescriptionAtom.
The referred R2ML serialization is a conjunction of equal-
ity constraints i.e. an enumeration of r2ml:DataSlot(s) or
r2ml:ObjectSlot, depending on the type of the involved
properties objects or data, respectively. The attribute
r2ml:class="Cheese" corresponds to the patterns name from
Drools implementation i.e.

1.<r2ml:ObjectDescriptionAtom
2. r2ml:class="Cheese">
3. <r2ml:subject>
4. <r2ml:ObjectVariable r2ml:name="c"/>
5. </r2ml:subject>
6. <r2ml:ObjectSlot
7. r2ml:referenceProperty="Cheese.buyer">
8. <r2ml:object>
9. <r2ml:ObjectVariable r2ml:name="p"
10. r2ml:class="Person"/>
11. </r2ml:object>
12. </r2ml:ObjectSlot>
13. <r2ml:DataSlot
14. r2ml:attribute="ex:Cheese.inStoc">
15. <r2ml:value>
16. <r2ml:DataVariable
17. r2ml:name="true"
18. r2ml:datatype="xs:boolean"/>
19. </r2ml:value>
20. </r2ml:DataSlot>
21.</r2ml:ObjectDescriptionAtom>

Another CE from the LHS of a Drools rule is the pattern
disjunction (|| / or). The Drools disjunction of multi-
ple patterns results in multiple rule generation, called sub-
rules, for each possible outcome i.e.
∀?c Cheese(?c) ∧ (type(?c, stilton) ∨
type(?c, cheddar))

1.Cheese(type=="stilton") or Cheese(type=="cheddar")
2.Cheese(type=="stilton") || Cheese(type=="cheddar")

In the above examples the Drools or CE is a shortcut
for generating two additional rules. There can be multi-
ple activations for a rule, if both sides of the CE are true.
The R2ML serialization uses the r2ml:qf.Disjunction that
contains each of the Cheese properties mapped with the
r2ml:AttributionAtom.

The Drools negation not represents the existential
quantifier that checks for the non existence of some facts
in Working Memory. Currently, this existential quantifier it
is applied only for patterns i.e. ∀?c ¬Cheese(?c).

not Cheese()

The above pattern tests if there are not Cheese facts in
the Working Memory. The "not" pattern (see Figure 7) can

390 Informatica 32 (2008) 383–396 O. Nicolae et al.

Figure 6: Drools "or" CE.

not have a pattern binding. We still can not serialize the
existentially quantifier concept into R2ML language.

But, by applying the negation to the entire formula, we
obtain the following expression from the classical logic:
∀?c ¬ Cheese(?c). The R2ml serialization of the above
formula uses the concept of r2ml:qf.Negation which em-
beds a r2ml:ObjectClassificationAtom.

1. <r2ml:ObjectClassificationAtom r2ml:isNegated="true"
2. r2ml:classID="Car">
3. <r2ml:ObjectVariable r2ml:name="c_974376"/>
4. </r2ml:ObjectClassificationAtom>

not Cheese(type == "stilton")

The above pattern tests if there are not Cheese facts of
type stilton in the Working Memory. In the classical
logic would be i.e.

∀?c Cheese(?c) ∧ ¬ type(?c, stilton)

. We serialize it using the r2ml:AttributionAtom i.e.

1.<r2ml:AttributionAtom
2. r2ml:attribute="ex:Cheese.type"
3. r2ml:isNegated="true">
4. <r2ml:subject>
5. <r2ml:ObjectVariable r2ml:name="c_6587483"
6. r2ml:class="ex:Cheese"/>
7. </r2ml:subject>
8. <r2ml:dataValue>
9. <r2ml:TypedLiteral
10. r2ml:lexicalValue="stilton"
11. r2ml:datatype="xs:string"/>
12. </r2ml:dataValue>
13.</r2ml:AttributionAtom>

2.4.1 Mapping Drools Actions

Java beans objects/instances are defined by users in their
applications. These objects inserted into Working Mem-
ory (i.e. WM) represent the valid facts which the rules can
access. Facts are the application data, meanwhile the rules
represent the logic layer of the application. The term Work-
ing Memory Actions is used to describe assertions, retrac-
tions and modifications of facts within Working Memory.
When discussing about the Drools - R2ML mapping of ac-
tions, we are only referring to the JBoss rule actions that
find their mapping into R2ML.

R2ML actions are built according with the OMG
PRR Specification (8), which stipulates that an ac-
tion is either an r2ml:InvokeActionExpression or an
r2ml:UpdateStateActionExpr. The R2ML actions are
encoded by the content of r2ml:producedActionExpr role
element i.e.

r2ml:InvokeActionExpression - invokes an operation (by
means of the r2ml:operation attribute) with an ordered,
possible empty list of parameter arguments represented as
R2ML terms. In the following example, we map a Java
output operation, which has as r2ml:arguments the Cheese
instance (i.e. c), previously, supposed to be declared in the
JBoss rule condition (see lines 4.-5.) and a String argument,
that is translated into r2ml:TypedLiteral (see lines 6.-8.).

then
System.out.println($c+" out of stock.");
end

The R2ML translation:

1.<r2ml:InvokeActionExpression
2. r2ml:operation="System.out.println">
3. <r2ml:arguments>
4. <r2ml:ObjectVariable r2ml:name="c"
5. r2ml:Class="ex:Cheese"/>
6. <r2ml:TypedLiteral
7. r2ml:lexicalValue=" out of stock"
8. r2ml:datatype="xs:string"/>
9. </r2ml:arguments>
10.</r2ml:InvokeActionExpression>

AssertActionExpr - contains a collection of slots i.e.
property-value pairs (e.g. r2ml:DataSlot / r2ml:ObjectSlot)
in order to represent the data/object type properties of
a fact. We use this R2ML action call in order to map
the JBoss insert(object) / insertLogical(object) Working
Memory Actions, which has the purpose to insert new
memory data.

then
// Offer(cheese, price)
Offer offer = new Offer($cheese,100)
insert(offer);

end

The R2ML translation needs an instance of the
Offer class for its r2ml:contextArgument, which en-
code the context of the action call, so we generate an
r2ml:ObjectVariable with the r2ml:name="offer". We trans-
late the instance of the Cheese class to a r2ml:ObjectSlot

and the direct value 100 as a r2ml:TypedLiteral having
the type of the price property of the Offer class (i.e.
xs:integer).

1.<r2ml:AssertActionExpr
2. r2ml:class="ex:Offer">
3. <r2ml:contextArgument>
4. <r2ml:ObjectVariable
5. r2ml:name="offer"
6. r2ml:class="ex:Offer"/>
7. </r2ml:contextArgument>
8. <r2ml:ObjectSlot
9. r2ml:referenceProperty="ex:Offer.cheese">
10. <r2ml:object>
11. <r2ml:ObjectVariable
12. r2ml:name="cheese"

ON INTERCHANGE BETWEEN JBOSS RULES AND JESS Informatica 32 (2008) 383–396 391

Figure 7: Drools "not" CE.

13. r2ml:class="ex:Cheese"/>
14. </r2ml:object>
15. </r2ml:ObjectSlot>
16. <r2ml:DataSlot
17. r2ml:attribute="ex:Offer.price">
18. <r2ml:value>
19. <r2ml:TypedLiteral
20. r2ml:datatype="xs:integer"
21. r2ml:lexicalValue="100"/>
22. </r2ml:value>
23. </r2ml:DataSlot>
24.</r2ml:AssertActionExpr>

RetractActionExpr - deletes an object. Its
r2ml:contextArgument always evaluates to an object
term. We use this R2ML construct to map the JBoss
WM Action for removing a previously declared fact (i.e.
c:Cheese()) from the memory i.e.

then
retract($c);

end

The R2ML translation is:

1.<r2ml:RetractActionExpr r2ml:class="ex:Cheese">
2. <r2ml:contextArgument>
3. <r2ml:ObjectVariable
4. r2ml:name="c"
5. r2ml:class="ex:Cheese"/>
6. </r2ml:contextArgument>
7.</r2ml:RetractActionExpr>

UpdateActionExpr - updates a property of a specific ob-
ject term specified by the r2ml:contextArgument. The below
Drools example modifies the type property of a particular
Cheese instance (i.e. c). The update(c) is necessary
in order to notify the Drools engine about the changes from
WM.

then
$c.setType("cheddar");
update($c);
end

The R2ML translation is:

1.<r2ml:UpdateActionExpr
2. r2ml:property="ex:Cheese.type">
3. <r2ml:contextArgument>
4. <r2ml:ObjectVariable r2ml:name="c"
5. r2ml:class="ex:Cheese"/>
6. </r2ml:contextArgument>
7. <r2ml:TypedLiteral
8. r2ml:lexicalValue="cheddar"
9. r2ml:datatype="xs:string"/>
10.</r2ml:UpdateActionExpr>

3 R2ML to Jess mapping
In this section we describe how R2ML rules are translated
into Jess rule language. In Jess, rules are defined using the

defrule construct. They are, in fact written as lists where
the head is the special symbol defrule.

Jess provides two main categories of rules: forward-
chaining rules and backward-chaining rules. Forward-
chaining rules are the most common and used rules in Jess,
and our translation will obtain Jess forward-rules. Jess is
a forward-chaining reasoning engine, backward-chaining
rules being simulated in terms of forward chaining (3).

To translate a R2ML rule into a Jess rule we will use Jess
unordered facts. Unordered facts from Jess are alternatives
for Java bean instances: objects that have named fields (i.e.
properties) in which data appears (although the properties
are traditionally called slots (see code example from 3.1)).

Any R2ML rule will translate into a Jess rule which
uses unordered facts, because they are nice structured and
are better emulating the internal structure of a R2ML rule
(which includes the rule vocabulary).

We also use the new-style, simplified syntax of the Jess
language, introduced in version 7.019. We mention that
the Drools language syntax had received and still receives
a strong influence from Clips/Jess made and ongoing re-
searches.

3.1 Mapping rules vocabulary

Jess business rules vocabulary consists of
deftemplate(s) structures.

A deftemplate describes a fact, in the same way
as a Java class describes an object. In particular, a
deftemplate is a Jess concept which includes a name,
an optional documentation string, an optional "extends"
clause, an optional list of declarations, and a list of zero
or more member variables (called slot descriptions) with a
type qualifier. Each slot description can optionally include
a type qualifier or a default value qualifier.

Using vocabulary classes from R2ML, corresponding
Jess deftemplates are generated. The deftemplate20

structure corresponds to the class description from the
R2ML vocabulary 2.1 i.e. They can be placed in the same

(deftemplate Cheese
(slot type (type STRING))
(slot price (type INTEGER))
(slot bestBefore (type OBJECT)))

19Jess 7.0 - http://herzberg.ca.sandia.gov/docs/70/
release_notes.html

20http://herzberg.ca.sandia.gov/docs/71/api/
jess/Deftemplate.html

392 Informatica 32 (2008) 383–396 O. Nicolae et al.

file as the rules, or in a separate file, which need to be im-
ported into the rules file, using the import keyword.

3.2 Rule Sets Mapping

The output of the translation from R2ML to Jess is a
.jess batch file (i.e. a Jess knowledge base). This batch
file contains the facts and the rules which represent the in-
put data and the logic for the Jess Rete engine, of which the
current version is 7.0. A Jess rule set is a Jess batch file.
The name of this file is obtained from the r2ml:ruleSetID

attribute (see Section 2.2).

3.3 Rule Mapping

– The r2ml:ruleID attribute value is used to obtain a Jess
rule ID, which is not allowed to contain spaces.

– In R2ML framework the content of r2ml:conditions

role element which corresponds to an universally
quantified formula is translated into the conditions
part of a Jess rule i.e. LHS pattern. The LHS of a
Jess rule consists of patterns that match facts.

– The content of a r2ml:producedActionExpr is markup as
the actions part of a Jess rule i.e. RHS pattern intro-
duced by the symbol => , which roughly denotes
implication. The actions of a Jess rule are composed
only of function calls.

– Jess language supports two kinds of comments: Lisp-
style line comments (;) and C-style block comments
(/*...*/), in order to translate the R2ML comments.

(defrule ruleName
(pattern1)
(pattern2)
;; ...

=>
(function calls))

3.3.1 Mapping r2ml:ObjectClassificationAtom

An R2ML atom corresponds to a Jess pattern. The
r2ml:ObjectClassificatioAtom is used to capture the in-
stanceOf relationship between objects and classes. Any
R2ML object classification atom consists from a manda-
tory attribute r2ml:class with a (xs:QName) value and an ob-
ject term as an argument.

A positive r2ml:ObjectClassificationAtom (see Sec-
tion 2.3.1) is mapped into a Jess pattern without
field constraints i.e. ?fact_variable <- (PatternName{})

where ?fact_variable is the corresponding term (i.e.
r2ml:ObjectVariable) and PatternName is the value of
r2ml:class attribute i.e.

?c <- (Cheese{})

3.3.2 Mapping R2ML Formulae

Any r2ml:qf.Conjunction (qf stands from quantifier free) of
atoms corresponds to a conjunction inside of Jess patterns.
It represents an enumeration of Jess field constraints. If
conjunctions contain conditions referring to the same con-
text, then we translate all the R2ML atoms (i.e. the R2ML
formula) into a Jess single pattern with a number of field
constraints. Every R2ML atom finds its mapping into the
Jess field constraint concept.

Any R2ML variable name is mapped into Jess vari-
able identifier by adding the ? symbol as first charac-
ter: ?fact_variables and ?field_variables. R2ML vari-
ables are provided in the form of r2ml:ObjectVariable

and r2ml:DataVariable. r2ml:ObjectVariable are variables
that can be only instantiated by objects, meanwhile
r2ml:DataVariable are variables that can be only instanti-
ated by data literals.

The r2ml:ObjectVariable is mapped into the Jess concept
of ?fact_variable using the value of the r2ml:name attribute
as the variable name with type xs:NCName. The optional
r2ml:class attribute specifies the membership of the object
variable.

The r2ml:DataVariable with attribute
r2ml:typeCategory=’individual’ is mapped into Jess
as ?field_variable, being instantiated only by data literal
types properties.

The r2ml:AttributionAtom captures data
valued properties of objects. Any
r2ml:AttributionAtom maps into a Jess pattern i.e.
?fact_variable<-(PatternName {property ?value}) where
?fact_variable is the content of the child role element
r2ml:subject of the involved atom (see Section 2.4 lines
3.-7.), PaternName represents the content of attribute
r2ml:class (see Section 2.4 line 6.), property is the value
of the attribute r2ml:attribute and ?value is the content
of the child role element r2ml:dataValue of the atom (see
Section 2.4 lines 8.-12.). The appropriate translation into
Jess language is:

?p <- (Person{} (like ?youngCheese))

The r2ml:DatatypePredicateAtom is designed to capture
built-in predicates. It refers to a user-defined datatype pred-
icate by its mandatory r2ml:datatypePredicate attribute and
consists of a number of data terms as data arguments (the
children of r2ml:dataArguments attribute).

Current translation in Jess supports only op-
erations which have two arguments. The
r2ml:datatypePredicate, represents qualified names
which express the appropriate build-ins: (e.g. swrlb:equal,
swrlb:lessThan, swrlb:lessThanOrEqual, swrlb:greaterThan,
swrlb:greaterThanOrEqual), and corresponds to appropriate,
Jess operators used inside the patterns (==, <, <=, >, >=,
!=, <>).

The r2ml:DatatypePredicateAtom code examples from
Section 2.4 find their mapping into the following Jess pat-
tern with field constraints i.e.

ON INTERCHANGE BETWEEN JBOSS RULES AND JESS Informatica 32 (2008) 383–396 393

?c <- (Cheese{type == ?youngCheese &&
price < 10 ||
bestBefore <= "27/10/2010"})

The r2ml:AttributeFunctionTerm is used by R2ML in
order to express data valued properties of objects.
The name of the attribute is revealed through the
mandatory r2ml:attribute value. Usually, a R2ML
r2ml:AttributeFunctionTerm is contained, as a child
of r2ml:dataArguments construct in R2ML atoms (i.e.
r2ml:DatatypePredicateAtom), in order to assign values to
object properties (i.e. type, price, bestBefore).

The Jess translation will always take into consideration,
the relation between r2ml:AttributeFunctionTerm and other
R2ML atoms (see Section 2.4 lines 3.-10.).

R2ML data literals i.e. r2ml:TypedLiteral are mapped
into Jess using the values of the r2ml:lexicalValue and
r2ml:datatype attributes, into corresponding, Jess valid
types. Internally, all Jess values (symbols, numbers,
strings, lists etc) are represented by instances of the class
jess.Value. Its possible values are enumerated by a set
of constants defined into the jess.RU (i.e. Rete Utilities)
class (i.e. ANY, INTEGER, FLOAT, NUMBER, SYM-
BOL, STRING, LEXEME, and OBJECT).

As Jess language does not provide a particular datatype
in order to express the XML xs:dateTime value, a possible
translation could be the use of the Jess class: jess.RU (i.e.
OBJECT constant). As a consequence, the bestBefore slot
from the cheese deftemplate construct has the type OBJECT

and encapsulates the java.util.Date class.
An R2ML r2ml:ReferencePropertyAtom associates an ob-

ject term as r2ml:subject with other object term as
r2ml:object.

Therefore, the R2ML example of
r2ml:ReferencePropertyAtom (see Section 2.4) will translate
into the following Jess patterns:

?p <- (Person{})
?c <- (Cheese{buyer == ?p &&

inStock == true})

The r2ml:EqualityAtom is intended to express equality of
two object terms (i.e. r2ml:ObjectVariable). The corre-
sponding translation into Jess implementation is the sym-
bol of == operator. The r2ml:isNegated attribute set to
true value, involves the use of != operator.

The r2ml:InequalityAtom is just a convenience construct
to express the negation of the object terms equality. The
corresponding translation into Jess implementation is the
symbol of != operator. The r2ml:isNegated attribute set to
true value, involves the use of == operator.

The Jess nil value has an equivalent meaning with the
null value from Java language. Therefore, the corre-
sponding mappings from Section 2.4 are the following i.e.

?c <- (Cheese{type == nil})
?c <- (Cheese{type != nil})

The r2ml:ObjectDescriptionAtom is a convenience con-
struct to describe a set of property-object value pairs and/or

a set of attribute-value pairs which refer to the same object
as r2ml:subject.

We translate the r2ml:ObjectDescriptionAtom into a Jess
pattern with field constraints. These constraints refer
to the same child role element r2ml:subject and can
be object terms (i.e. r2ml:ObjectVariable) captured in
r2ml:ObjectSlots, or data terms (i.e. r2ml:DataVariable)
captured in r2ml:DataSlots.

The R2ML code example from Section 2.4 will translate
into:

?p <- (Person{})
?c <- (Cheese{buyer == ?p &&

inStock == true})

Any r2ml:qf.Disjunction (qf stands from quantifier free)
is translated into a disjunctive list of Jess patterns, using
the Jess conditional element or, all bound to the same fact-
variable. Any number of patterns can be enclosed in a list
with or conditional element as the head.

This structure is a shortcut for generating two or more
additional rules. For a rule which contains such disjunction
of patterns, there could be multiple activations if multiple
sides of the or are true i.e.

(or (Cheese{type=="stilton"})
(Cheese{type=="cheddar"}))

All R2ML negations i.e. r2ml:qf.Negation, and
here we refer to both r2ml:qf.StrongNegation, and
r2ml:qf.NegationAsFailure collapse in the Jess negation de-
noted by the keyword not, which currently applies only
for patterns (see R2ML example from Section 2.4).

not(Cheese{})

Any R2ML atom has an optional, boolean property
r2ml:isNegated which tells if the atom is, or is not
negated. The corresponding Jess translation describes
the negated R2ML atom. If the attribute r2ml:isNegated

is missing, this is interpreted in R2ML by the default
r2ml:isNegated="false". The example from Section 2.4 de-
scribes an r2ml:AttributionAtom which supports a negation
through its property r2ml:isNegated="true". The Jess corre-
sponding translation pattern is:

not (Cheese{type == "stilton"})

We mention that a not pattern cannot define any vari-
ables that are used in subsequent patterns (since a not pat-
tern does not match any facts, it can not be used to define
the values of any variables). Also, in our both previous
examples a not pattern can not have a pattern binding.

3.4 Mapping R2ML actions into Jess
Function Calls

The possibles actions of a R2ML production rule are
defined using OMG’s PRR Proposal (the content of
r2ml:producedActionExpr role element). They are mapped
into the corresponding Jess function calls i.e.

394 Informatica 32 (2008) 383–396 O. Nicolae et al.

3.4.1 Mapping r2ml:InvokeActionExpression

An r2ml:InvokeActionExpression will map into Jess into a
function call with/without arguments. Notice that ?c is a
bound variable to the Cheese pattern in the LHS of the
rule. The R2ML code example from Section 2.4.1 finds its
translation into the following Jess code:

(printout t ?c " out of stock!")

3.4.2 Mapping r2ml:AssertActionExpr

The r2ml:AssertActionExpr assert a new data into Working
Memory. The analogous construct in Jess is the assert
function containing the name of the deftemplate name
and (slot value) pairs. The R2ML code example from Sec-
tion 2.4.1 translates into:

(assert(offer (cheese ?c) (price 100)))

3.4.3 Mapping r2ml:RetractActionExpr

The r2ml:RetractActionExpr deletes an object term from
WM. According with the R2ML code from Section 2.4.1
the corresponding Jess translation is:

(retract (?c))

3.4.4 Mapping r2ml:UpdateActionExpr

The r2ml:UpdateActionExpr from our R2ML rule example
(see Section 2.4.1) corresponds to the modify function
invocation from Jess language, which updates an unordered
fact from WM. Notice that ?c is a bound variable to the
score field value i.e.

(modify ?c (type cheddar))

4 Limitations of the proposed
interchange

The translation process from PSM to PSM using interme-
diate R2ML (as PIM level) demands also the mapping of
rules vocabulary. The Drools to R2ML Translator is a Java
application that requests access to the Drools vocabulary
(Java compiled classes) in order to establish the types of ob-
jects and primitives. As R2ML supports Production Rules
format(8), the Drools to R2ML translation of rule condi-
tions part relies naturally.

Interchange limits appear in the translation of the actions
part of a JBoss rule, which may contain any Java valid
code: variable declaration, non-declarative structures like
if...then structures or cycling structures(i.e. while,
for).

R2ML intends to solve this problem by providing in its
future version an <r2ml:OpaqueExpression> with the role to
encapsulate the code which do not find its semantic equiv-
alent into R2ML <r2ml:producedActionExpr> role element.

Also Drools tries to emerge its syntax from the OMG pro-
posal for PRR, therefore the future design will take much
more into consideration the standard actions.

The purpose of R2ML, as PIM level markup language,
is to provide PSM to PSM rules translation by sharing
a vocabulary model (actually R2ML vocabulary), which
can easily be mapped into Jess vocabulary (deftemplate(s)
structures) i.e.

VDrools → VR2ML → VJess

Therefore, it makes possible the translation from R2ML to
Jess language, as the business rules expressed in R2ML for-
mat do not require any conceptual changes in order to be
implemented in PSM target platforms (e.g. Jess, F-Logic,
RuleML, OCL, SWRL, Drools, Jena21). However, R2ML
is not concerned with the vocabulary interchange issues,
therefore this interchange of rules depends of the capabil-
ities of a vocabulary interchange format. In this case, we
use the R2ML vocabulary but rules may come with differ-
ent vocabularies (for example UML, RDF(S) or OWL).

5 Interchange soundness
The soundness of the discussed interchange brought under
attention the lack of a well established semantics for both
languages (i.e. Drools and Jess). Our solution to establish
the interchange soundness is by testing rules.

Let W0 = {f1, . . . , fm} the initial facts from Drools
Working Memory andR = {R1, . . . , Rn} the current rules
set of Drools encapsulating the logic of a specific applica-
tion. The inference engine (Drools) will execute the rule
set R against W0 obtaining W = {g1, . . . , gp}.

We encode the logic of the same application using the
following set of Jess rules: R′ = {R′1, . . . , R′n} and as
data the initial set of facts W ′

0 = {f ′1, . . . , f ′m}. Running
the Jess Inference Engine, we obtain a set of final Jess facts
i.e. W ′ = {g′1, . . . , g′p}.

We translate the JBoss production rules into Jess imple-
mentation via R2ML and we execute those rules based on
analogous facts from the Working Memory. The correct-
ness of the translation implies the same obtained results
regarding the facts from Working Memory.

A translation from Drools to Jess involves:

– a transformation function

Tr(Drools,R2ML) : Drools → R2ML

describing the serialisation from Drools to R2ML,
where: Drools = (VDrools x W x R)

– a transformation function

Tr(R2ML,Jess) : R2ML → Jess

describing the mapping from R2ML to Jess, where:
Jess = (VJess x W ′ x R′)

21Jena Framework - http://jena.sourceforge.net/

ON INTERCHANGE BETWEEN JBOSS RULES AND JESS Informatica 32 (2008) 383–396 395

Table 1: Drools to Jess Mapping Rules
Excerpt from Mapping from Drools to Jess

Drools R2ML Jess
Drools rule R2ML PR Jess rule

import JavaBeans files declare R2ML vocabulary import deftemplates
fact variable ObjectVariable fact variable
field variable ObjectVariable field variable

Drools pattern ObjectClassificationAtom LHS’s pattern
conjunction of field constraints ObjectDescriptionAtom conjunction of field constraints

field variable binding AttributionAtom field variable binding
relational operators on data DatatypePredicateAtom relational operators
==/!= operators on objects ReferencePropertyAtom ==/!= on object terms

not isNegated="true" Jess negation
Drools pattern conjunction qf.Conjunction Jess conjunction
Drools pattern disjunction qf.Disjunction Jess disjunction

function call InvokeActionExpression Jess function call
create/assert an object AssertActionExpr assert function call

delete an object RetractActionExpr retract function call
setter call UpdateActionExpr modify function call

– a translation function T(Drools,Jess) =
Tr(Drools,R2ML)(Tr(R2ML,Jess))

and results in:

– T(Drools,Jess)(VDrools x W x R) = (VJess x W ′

x R′) (i.e. by applying the translation function
T(Drools,Jess) on the W = {g1, . . . , gp} set of
facts, we obtain the following set of facts Wh =
{h1, . . . , hp} which is semantically and syntactically
equivalent with the set W ′ = {g′1, . . . , g′p}, obtained
from Jess inference process.

An informal rules translation from Drools to Jess, using
R2ML as interchange language is presented in Table 1. The
reverse translation, from Jess to Drools is also possible, as
Jess supports a new richer syntax22 which offers the capa-
bility to represent object types using deftemplate structures.
One limitation of this syntax is that it can only be used with
unordered facts.

6 Conclusion and future works
The paper provides a description of rule translation from
Drools, an Object Oriented rule language, into Jess, an
Artificial Intelligence rule language using R2ML as in-
terchange format. The results presented in this paper are
based on our previous work (6).

Our future works intend to establish a mathematical
model of semantic soundness of rule interchange. Also
compatibility of the interchange with the work in progress
of W3C (i.e. RIF) will be analysed. Further results will be
reported in a future work.

22http://herzberg.ca.sandia.gov/docs/71/memory.html

Acknowledgements
We would like to thanks to Edson Tirelli and Kris Verlae-
nen from the Drools Team for their helpful comments on
our questions as well to Ernest Friedman-Hill, a precious
mentor in all issues concerning the Jess language.

References
[1] H. Boley, M. Kifer (2007). RIF Core Design, W3C

Working Draft, March 30, 2007 http://www.w3.
org/TR/rif-core/

[2] H. Boley, S. Tabet and G.Wagner (2001) Design Ra-
tionale of RuleML: A Markup Language for Seman-
tic Web Rules,In Proc. of Int. Semantic Web Working
Symposium (SWWS), Stanford University, California,
USA.

[3] E.Friedman-Hill (2003), Jess in Action - Rule-Based
Systems in Java, Manning Publications Co.

[4] N. E. Fuchs, U. Schwertel, R. Schwitter (1997),
Attempto Ů Englisch als (formale) Spezifikation-
ssprache, In: F. Bry, B. Freitag, D. Seipel (eds.), Pro-
ceedings of the Twelfth Workshop on Logic Program-
ming WLP, Munich.

[5] M. Kifer, G. Lausen and J. Wu, Logical Foun-
dations of Object-Oriented and Frame-Based Lan-
guages, Journal of ACM, May 1995.

[6] Oana Nicolae, Adrian Giurca and Gerd Wagner.On
Interchange between JBossRules and Jess Proceed-
ings of 1st International Symposium on Intelligent

396 Informatica 32 (2008) 383–396 O. Nicolae et al.

and Distributed Computing (IDC 2007), October,
2007.

[7] OMG (2005). OCL 2.0 Specification, June 06, 2005,
www.omg.org/docs/ptc/05-06-06

[8] OMG (2007). Production Rule Representation Ver.
1.0 , March 5, 2007, http://www.omg.org/
docs/bmi/07-03-05.pdf

[9] OMG (2006). Semantics of Business Vocabulary and
Business Rules (SBVR), http://www.omg.org/
docs/dtc/06-03-02.pdf

[10] G. Wagner, A. Giurca and S. Lukichev (2005),
R2ML: A General Approach for Marking up Rules,
Dagstuhl Seminar Proceedings 05371, In F. Bry,
F. Fages, M.Marchiori, H. Ohlbach (Eds.) Prin-
ciples and Practises of Semantic Web Reasoning,
ISSN:1862-4405.

Informatica 32 (2008) 397–420 397

An Approach to Extracting Sub-schema Similarities from Semantically
Heterogeneous XML Schemas

Pasquale De Meo and Giovanni Quattrone
Università Mediterranea di Reggio Calabria
Via Graziella, Località Feo di Vito
89122 Reggio Calabria, Italy
E-mail: demeo@unirc.it, quattrone@unirc.it

Giorgio Terracina
Dipartimento di Matematica
Università della Calabria
Via Pietro Bucci
87036 Rende (CS), Italy
E-mail: terracina@mat.unical.it

Domenico Ursino
Università Mediterranea di Reggio Calabria
Via Graziella, Località Feo di Vito
89122 Reggio Calabria, Italy
E-mail: ursino@unirc.it

Keywords: XML Schema, sub-schema similarities, interschema properties, semantically heterogeneous information
sources

Received: November 7, 2007

This paper presents a semi-automatic approach to deriving sub-schema similarities from semantically het-
erogeneous XML Schemas. The proposed approach is specific for XML, almost automatic and light. It
consists of two phases: the first phase selects the most promising pairs of sub-schemas, the second one
examines them and returns only those which are similar. This paper describes the approach in all details
and illustrates a large variety of experiments to test its performance. Furthermore, it presents a comparison
between this approach and others which have already been proposed in the literature.

Povzetek: Opisano je iskanje podobnosti podshem v XML.

1 Introduction

The derivation of semantic matchings among concepts of
different sources (known also as “schema matching” ac-
tivity in the literature) has become a challenging issue in
the field of Information Systems; as a matter of fact, their
knowledge allows the improvement of source interoper-
ability and plays a key role in various applications, such as
data source integration, ontology matching, e-commerce,
semantic query processing, data warehousing, source clus-
tering and cataloguing, and so on.

In the past, most of the proposed approaches to deriv-
ing matchings were manual (1); today, due to the enor-
mous number of available sources, it is widely recognized
the need of semi-automatic techniques (4; 5; 11; 13; 20).
Moreover, most of the matching derivation theory has been
developed to operate on classical, structured databases,
and the main focus has been on deriving similarities and

dissimilarities between single classes of objects (e.g., two
entities, two relationships, an entity and a relationship, and
so on).

However, in the last few years, the Web is becoming the
reference infrastructure for many applications conceived to
handle the interoperability among different partners. Web
sources are quite different from classical databases, since
they are semi-structured. In order to make Web activi-
ties easier, World Wide Web Consortium (W3C) proposed
XML (eXtensible Markup Language) as a new standard in-
formation exchange language, that aims at unifying rep-
resentation capabilities, typical of HTML, and data man-
agement features, typical of classical DBMSs. In order to
improve the capability of representing and handling the in-
tensional component of XML sources, W3C proposed to
associate XML Schemas with XML documents. An XML
Schema can be considered as a catalogue of the information
that can be found in the corresponding XML documents.

398 Informatica 32 (2008) 397–420 P. De Meo et al.

The exploitation of the semi-structured paradigm in gen-
eral, and of XML in particular, makes it evident the ne-
cessity to develop new approaches to deriving semantic
matchings; these approaches are quite different from the
traditional ones. As a matter of fact, in semi-structured in-
formation sources, a concept is not generally expressed by
a single class of objects but it is represented by a group
of them; as an example, in XML, concepts are expressed
by elements which can be, in their turn, described by sub-
elements.

In such a situation, the emphasis shifts away from the
extraction of semantic correspondences between object
classes to the derivation of semantic correspondences be-
tween portions of information sources (i.e., sub-sources).
We call sub-schema a self contained sub-source such that a
concept represented therein is connected to other concepts
of the sub-source by means of at least one relationship. We
call sub-schema similarity a similarity between two sub-
schemas belonging to different sources.

Due to its intrinsic complexity, the sub-schema similar-
ity extraction problem goes beyond the classic problem of
deriving semantic correspondences among single concepts
belonging to different schemas and allows more complex
relationships to be handled.

This paper aims at providing a contribution in this set-
ting; in fact, it presents an approach to extracting similari-
ties between XML sub-schemas. Our approach is charac-
terized by the following features:

– It is almost automatic, in that it requires the user in-
tervention only for validating obtained results; the
present overwhelming amount of available informa-
tion sources on the Web makes such a feature particu-
larly relevant.

– It has been specifically conceived for operating on
XML Schemas; in fact, the framework underlying our
approach has been defined for directly covering the
XML specificities (see, below, Section 2.1). With re-
gard to this choice, we point out that XML source in-
teroperability will play a more and more relevant role
in the future; as a consequence, it will be more and
more common the necessity to handle the interoper-
ability of a group of information sources that are all
XML-based. In this scenario, the possibility to exploit
a technique specifically tailored for XML sources ap-
pears extremely useful; our approach has been con-
ceived exactly for providing such a chance.

– It is light, since it does not exploit any threshold or
weight; as a consequence, it does not need any tuning
activity; in spite of this, obtained results are satisfac-
tory, as pointed out in Section 3.

Our approach assumes the existence of an Interschema
Property Dictionary (IPD), i.e., a catalogue storing re-
lationships between single concepts represented in the in-
volved XML Schemas. Specifically, it assumes that IPD

stores the following properties: (i) Synonymies: a syn-
onymy indicates that two concepts have the same mean-
ing; (ii) Hyponymies/Hypernymies: given two concepts c1

and c2, c1 is a hyponym of c2 (which is, in its turn, a hy-
pernym of c1) if c1 has a more specific meaning than c2;
(iii) Overlappings: an overlapping exists between two con-
cepts if they are neither synonyms nor one a hyponym of
the other but represent, to some extent, the same reality.
In the literature, many approaches to deriving synonymies,
hyponymies and overlappings have been proposed (see, for
example, (4; 5; 13; 19)); any of them could be exploited for
constructing IPD. However, in the prototype implement-
ing our approach, we have adopted the technique described
in (6) for deriving properties to be stored in IPD.

It is worth pointing out that the exploitation of IPD does
not introduce scalability problems; in fact, even if IPD
must be computed for each pair of XML Schemas into con-
sideration, the worst case time complexity of its derivation
is smaller than that associated with the extraction of sub-
schema similarities (see (6), Theorems 2.2, 2.4 and 2.5 and
Section 3.9).

Given an XML Schema, the number of possible sub-
schemas that could be derived from it is extremely high; in
certain circumstances it could be even exponential against
the number of elements and attributes of the Schema. In
order to avoid huge numbers of pairs of sub-schemas to
be handled, we propose a heuristic technique for singling
out only the most promising ones. A pair of sub-schemas
is considered “promising” if the sub-schemas at hand in-
clude a large number of pairs of concepts whose similarity
has been already stated (i.e., a large number of pairs of con-
cepts for which a synonymy, a hyponymy or an overlapping
has been already derived). In this way it is probable that the
overall similarity of the promising pair of sub-schemas will
be high.

After the most promising pairs of sub-schemas have
been selected, they must be examined for detecting those
ones that are really similar. The similarity degree associ-
ated with each pair of sub-schemas is determined by ap-
plying some matching functions defined on suitable bipar-
tite graphs, constructed from the components of the sub-
schemas into consideration (see below). The idea underly-
ing the adoption of graph matching algorithms as the core
step for “measuring” the similarity of two sub-schemas is
motivated by the following reasoning: two sub-schemas
can be detected to be similar only if it is possible to state
that there exists a form of similarity (e.g., a synonymy, a
hyponymy or an overlapping) for many of their elements.
The graph matching algorithm is, thus, used to carry out
such a verification.

It is worth pointing out that, in the past, we have pre-
sented in this journal an approach to extracting interschema
properties from XML Schemas (see (6)); this approach was
explicitly conceived to extract synonymies, homonymies,
hyponymies and overlappings. The approach proposed in
this paper derives another kind of interschema properties
(i.e., sub-schema similarities), particularly important in the

AN APPROACH TO EXTRACTING SUB-SCHEMA. . . Informatica 32 (2008) 397–420 399

current Internet era, by following the same guidelines fol-
lowed in (6). As a consequence, the two papers, in the
whole, define a new complete approach for uniformly ex-
tracting a large variety of interschema properties. In our
opinion, this is a particularly important issue; in fact, as we
pointed out also in (6), the capability of uniformly deriving
distinct properties appears a crucial feature for a new inter-
schema property derivation approach. As a matter of fact,
different strategies for extracting distinct interschema prop-
erties could lead to different interpretations of the same re-
ality, and this is a situation that should be avoided.

The outline of the paper is as follows: Section 2 provides
a detailed illustration of our approach. Section 3 is devoted
to present the results of several tests we have carried out
for verifying its performance. In Section 4 we compare it
with several approaches previously proposed in the litera-
ture. Finally, in Section 5, we draw our conclusions.

2 Approach description

2.1 Preliminary concepts

In this section we introduce some preliminary concepts
that will be largely exploited in this paper. Preliminarily,
we point out that XML Schemas are usually designed by
adopting one of the following three classical techniques:
(i) the “Russian doll” design, in which the schema struc-
ture mirrors the document structure; in particular, it defines
one single global element whereas all other elements are
local; (ii) the “Salami slice” approach, in which, contrar-
ily to the Russian doll, all elements declarations are global;
(iii) the “Venetian blind” technique, which defines one sin-
gle global element, as the Russian doll design, but exploits
named complex types and element groups instead of ele-
ment declarations.

Since simple rules have been defined to switch among
these three representations, in the following, for the sake
of simplicity, we assume that XML Schemas have been de-
signed with the “Salami slice” approach.

First of all we introduce the concept of x-component; it
denotes an element or an attribute of a Schema S. Given
two x-components xS and xT of an XML Schema S:

– xS is defined veryclose to xT if and only if: (i) xT =
xS , or (ii) xT is an attribute of xS , or (iii) xT is a
simple sub-element of xS .

– xS is defined close to xT if and only if xT is a com-
plex sub-element of xS .

– xS is defined near to xT if and only if xS is either
veryclose or close to xT .

– xT is defined reachable from xS if and only if
there exists a sequence of k distinct x-components
x1, x2, . . . , xk such that xS = x1, x1 is near to x2,
x2 is near to x3, . . ., xk−1 is near to xk, xk = xT .

We now introduce the concept of Connection Cost
CC(xS , xT) from an x-component xS to an x-component
xT . Specifically, (i) CC(xS , xT) = 0 if xS is veryclose
to xT ; (ii) CC(xS , xT) = 1 if xS is close to xT ; (iii)
CC(xS , xT) = CST if xT is reachable from xS and
xS is not near to xT ; CC(xS , xT) = +∞ if xT is not
reachable from xS . Here CST = minxA (CC(xS , xA) +
CC(xA, xT)) for each xA such that reachable(xS , xA) =
reachable(xA, xT) = true.

We are now able to introduce the concept of neighbor-
hood of an x-component, that plays a key role in our ap-
proach.

Definition 2.1. Let S be an XML Schema and let xS be an
x-component of S. The dth neighborhood of xS is defined
as:

nbh(xS , d) = {xT | xT is an x-component of S,
CC(xS , xT) ≤ d} 2

We call significant neighborhoods of xS all neighbor-
hoods nbh(xS , d) such that nbh(xS , d) 6= nbh(xS , d− 1).

As far as the previous concepts are concerned, the
following propositions and the following theorem can
be introduced; the interested reader can find the corre-
sponding proofs in the Appendix available at the address
http://www.ing.unirc.it/ursino/informatica/

Appendix.pdf.

Proposition 2.1. Let S be an XML Schema; let xS and
xT be two x-components of S; let m be the number of
complex elements of S. If CC(xS , xT) 6= +∞, then
CC(xS , xT) < m. 2

Proposition 2.2. Let S be an XML Schema; let xS be an x-
component of S; let m be the number of complex elements
of S; then nbh(xS , d) = nbh(xS ,m − 1) for each d such
that d ≥ m. 2

Theorem 2.1. Let S be an XML Schema; let n be the num-
ber of x-components of S. The worst case time complexity
for constructing all neighborhoods of all x-components of
S is O(n3). 2

Theorem 2.1 is particularly important since it guarantees
that our approach is polynomial (see, below, Theorems 2.4
and 2.5). It could appear that a polynomial complexity
to the degree of three for neighborhood derivation causes
scalability problems for the whole approach. Actually, this
is not the case. In fact, in an XML source exploited as a
database, the intensional component (i.e., the schema-level
information, corresponding, in our application context, to
XML Schemas) is generally much smaller than the exten-
sional one (i.e., the instance-level information, correspond-
ing, in our application context, to XML documents); as a
consequence, the number of involved x-components (i.e.,
n) is generally very small. Moreover, the derivation of the
neighborhoods of a Schema S must be carried out once and
for all when S is examined for the first time; derived neigh-
borhoods can be, then, exploited each time a sub-schema

400 Informatica 32 (2008) 397–420 P. De Meo et al.

similarity extraction task involving S is performed. Only
a change in the intensional component of S requires to up-
date the corresponding neighborhoods; such a task, how-
ever, is uncommon and, in any case, it does not imply to
re-compute, but simply to incrementally update, them.

A more detailed analysis concerning the scalability of
our approach can be found in Section 3.9.

2.1.1 A case example

Consider the XML Schema S1, shown in Figure 1, repre-
senting a University. Here, professor is veryclose to iden-
tifier because identifier is an attribute of professor; analo-
gously, university is close to professor because professor
is a complex sub-element of university; as a consequence,
university is near to professor and professor is near to
identifier; finally, identifier is reachable from university be-
cause university is near to professor and professor is near
to identifier. As for neighborhoods, we have that:

nbh(university, 1) = {university, professor, phd-
student, paper, course, student, identifier, name, cul-
tural_area, papers, advisor, thesis, research_interests,
authors, type, volumes, pages, argument, duration,
attended_by, taught_by, program, students, enroll-
ment_year, attends}

For instance, professor belongs to nbh(university, 1) be-
cause CC(university, professor) = 1. All the other neigh-
borhoods can be determined analogously.

2.2 Selection of the most promising pairs of
sub-schemas

2.2.1 Overview

The first problem our approach must face is the extremely
high number of possible sub-schemas that could be derived
from an XML Schema S; in fact, this number might be
exponential against the number of x-components of S.

In order to avoid huge numbers of pairs of sub-schemas
to be examined, we have designed a heuristic technique
for singling out only the most promising ones. This tech-
nique receives two XML Schemas S1 and S2 and an In-
terschema Property Dictionary IPD, storing synonymies,
hyponymies and overlappings holding between complex el-
ements of S1 and S2. The most promising pairs of sub-
schemas are derived as follows: for each pair 〈x1j , x2k

〉
belonging to IPD, such that x1j ∈ S1 and x2k

∈ S2, x1j

and x2k
are taken as the “seeds” for the construction of

promising pairs of sub-schemas.
Specifically, our technique:

– considers the pairs 〈nbh(x1j , δ), nbh(x2k
, γ)〉, such

that nbh(x1j , δ), (resp., nbh(x2k
, γ)) is a significant

neighborhood (see Section 2.1) of x1j (resp., x2k
);

– derives a pair of sub-schemas
〈prosub1jδ

, prosub2kγ 〉, from each pair
〈nbh(x1j , δ), nbh(x2k

, γ)〉, such that prosub1jδ

(resp., prosub2kγ
) is obtained from nbh(x1j

, δ)
(resp., nbh(x2k

, γ)) by removing from it those
portions that are dissimilar with nbh(x2k

, γ) (resp.,
nbh(x1j

, δ)), i.e., those x-components not involved
in semantic relationships with x-components of
nbh(x2k

, γ) (resp., nbh(x1j
, δ)) - see below for more

details.

2.2.2 Technical Details

In this section we formalize our technique for selecting the
most promising pairs of sub-schemas. Specifically, given
two XML Schemas S1 and S2, the set SPS of the most
promising pairs of sub-schemas associated with them is ob-
tained by calling a suitable function Φ as follows:

SPS = Φ(S1, S2, IPD)

For each tuple 〈x1j , x2k
〉 ∈ IPD, Φ invokes a function

Ψ for deriving the set of the most promising pairs of sub-
schemas having x1j and x2k

as their seeds. The formal
definition of Φ is:

Φ(S1, S2, IPD) =⋃
〈x1j

,x2k
〉∈IPD Ψ

(
S1, S2, x1j , x2k

, IPD
)

The function Ψ receives two XML Schemas S1 and S2,
two complex elements x1j ∈ S1 and x2k

∈ S2 and an Inter-
schema Property Dictionary IPD; for each pair of signifi-
cant neighborhoods nbh(x1j , δ) and nbh(x2k

, γ), Ψ calls a
function ξ, which extracts the most promising pair of sub-
schemas 〈prosub1jδ

, prosub2kγ 〉 associated with it. Ψ can
be defined as follows:

Ψ
(
S1, S2, x1j , x2k

, IPD
)

=⋃
0≤δ<µ(S1)
0≤γ<µ(S2)

ξ
(
S1, S2, nbh(x1j , δ), nbh(x2k

, γ),

ν
(
IPD, nbh(x1j , δ), nbh(x2k

, γ)
))

Here, the function µ receives an XML Schema and re-
turns the number of its complex elements. The function ν
receives an Interschema Property Dictionary IPD and two
neighborhoods nbh(x1j , δ) and nbh(x2k

, γ); it returns the
set IPDδγ ⊆ IPD of interschema properties involving
only pairs of x-components belonging to both nbh(x1j , δ)
and nbh(x2k

, γ).
The function ξ receives two XML Schemas S1 and S2,

two neighborhoods nbh(x1j , δ) and nbh(x2k
, γ) and the

set IPDδγ , as constructed by ν; in order to extract the most
promising pair of sub-schemas 〈prosub1jδ

, prosub2kγ 〉,
associated with nbh(x1j , δ) and nbh(x2k

, γ), ξ acti-
vates functions ζ, θ and π for pruning nbh(x1j , δ) and
nbh(x2k

, γ) in such a way as to eliminate the most dis-
similar portions. ξ can be formalized as follows:

ξ
(
S1, S2, nbh(x1j , δ), nbh(x2k

, γ), IPDδγ

)
=

〈ζ(θ(nbh(x1j , δ), π(S1, IPDδγ)), S1),
ζ(θ(nbh(x2k

, γ), π(S2, IPDδγ)), S2)〉

AN APPROACH TO EXTRACTING SUB-SCHEMA. . . Informatica 32 (2008) 397–420 401

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:attribute name="identifier" type="xs:ID"/>
<xs:attribute name="name" type="xs:string"/>
<xs:attribute name="cultural_area" type="xs:string"/>
<xs:attribute name="papers" type="xs:IDREFS"/>
<xs:attribute name="advisor" type="xs:IDREF"/>
<xs:attribute name="thesis" type="xs:string"/>
<xs:attribute name="research_interests" type="xs:string"/>
<xs:attribute name="authors" type="xs:IDREFS"/>
<xs:attribute name="type" type="xs:string"/>
<xs:attribute name="volumes" type="xs:integer"/>
<xs:attribute name="pages" type="xs:integer"/>
<xs:attribute name="argument" type="xs:string"/>
<xs:attribute name="duration" type="xs:duration"/>
<xs:attribute name="attended_by" type="xs:IDREFS"/>
<xs:attribute name="taught_by" type="xs:IDREFS"/>
<xs:attribute name="program" type="xs:string"/>
<xs:attribute name="students" type="xs:IDREFS"/>
<xs:attribute name="enrollment_year" type="xs:date"/>
<xs:attribute name="attends" type="xs:IDREFS"/>

<xs:element name="professor">
<xs:complexType>

<xs:attribute ref="identifier"/>
<xs:attribute ref="name"/>
<xs:attribute ref="cultural_area"/>
<xs:attribute ref="papers"/>

</xs:complexType>
</xs:element>
<xs:element name="phd-student">

<xs:complexType>
<xs:attribute ref="identifier"/>
<xs:attribute ref="advisor"/>
<xs:attribute ref="thesis"/>
<xs:attribute ref="research_interests"/>
<xs:attribute ref="papers"/>

</xs:complexType>
</xs:element>
<xs:element name="paper">

<xs:complexType>

<xs:attribute ref="identifier"/>
<xs:attribute ref="authors"/>
<xs:attribute ref="type"/>
<xs:attribute ref="volumes"/>
<xs:attribute ref="pages"/>

</xs:complexType>
</xs:element>
<xs:element name="course">

<xs:complexType>
<xs:attribute ref="identifier"/>
<xs:attribute ref="name"/>
<xs:attribute ref="argument"/>
<xs:attribute ref="duration"/>
<xs:attribute ref="attended_by"/>
<xs:attribute ref="taught_by"/>
<xs:attribute ref="program"/>
<xs:attribute ref="students"/>

</xs:complexType>
</xs:element>
<xs:element name="student">

<xs:complexType>
<xs:attribute ref="identifier"/>
<xs:attribute ref="name"/>
<xs:attribute ref="enrollment_year"/>
<xs:attribute ref="attends"/>

</xs:complexType>
</xs:element>
<!-- root -->
<xs:element name="university">

<xs:complexType>
<xs:sequence>

<xs:element ref="professor" maxOccurs="unbounded"/>
<xs:element ref="phd-student" maxOccurs="unbounded"/>
<xs:element ref="paper" maxOccurs="unbounded"/>
<xs:element ref="course" maxOccurs="unbounded"/>
<xs:element ref="student" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

Figure 1: The XML Schema S1

Here, the function π receives an XML Schema Sh, h ∈
{1, 2}, and the set IPDδγ , computed by ν; it returns the
set AtLeastOne of the complex elements belonging to Sh

and involved in at least one property of IPDδγ .
The function θ receives a neighborhood nbh(xS , d), as-

sociated with an XML Schema S, and the set AtLeastOne
as computed by the function π. It constructs a set of x-
components XSetSd

⊆ nbh(xS , d) by removing from
nbh(xS , d) each complex element xR (along with all its
sub-elements and attributes) that satisfies both the follow-
ing conditions: (i) xR /∈ AtLeastOne; (ii) for each com-
plex element xRi

such that reachable(xR, xRi
) = true

and xRi ∈ nbh(xS , d), xRi /∈ AtLeastOne.
In other words a complex element xR, belonging to

nbh(xS , d), is not inserted in XSetSd
if both it and all

complex elements in nbh(xS , d) reachable from it are not
involved in any interschema property stored in IPDδγ .
Note that the two conditions above guarantee that if xR is
not inserted in XSetSd

, then no x-components reachable
from it are inserted therein. In fact, if the two conditions
above are valid for xR, then they must be also valid for all
x-components reachable from it.

The function ζ receives the set of x-components XSetSd

returned by θ and constructs a sub-schema prosubSd
tak-

ing into account the initial structure of S. Specifically,
prosubSd

is constructed from XSetSd
in such a way that

the following two conditions hold: (i) it must contain
all, and only, the x-components of XSetSd

; (ii) all x-
components of XSetSd

must preserve, in prosubSd
, the

same hierarchical organization they have in S1.

1Note that the sub-schema prosubSd
obtained by the function ζ is

a well-formed and self contained XML Schema because of the function
θ. In fact, this function constructs XSetSd

in such a way that, if an x-

The next theorems state the worst case time complexity
for computing all promising pairs of sub-schemas, as well
as an upper bound to the number of promising pairs of
sub-schemas returned by the function Φ. Their proofs
can be found in the Appendix available at the address
http://www.ing.unirc.it/ursino/informatica/

Appendix.pdf.

Theorem 2.2. Let S1 and S2 be two XML Schemas. Let
IPD be the Interschema Property Dictionary associated
with S1 and S2; let m be the maximum between the num-
ber of complex elements of S1 and S2; let n be the max-
imum between the number of x-components of S1 and
S2. The worst case time complexity for computing, by
means of the function Φ, the set SPS of the most promis-
ing pairs of sub-schemas associated with S1 and S2 is
max{O(m7), O(m4 × n2)}. 2

Theorem 2.3. Let S1 and S2 be two XML Schemas; let
IPD be the corresponding Interschema Property Dictio-
nary; let m be the maximum between the number of com-
plex elements of S1 and S2. The maximum cardinality of
SPS is O(m4). 2

As for these two theorems, all considerations about the
value of n, that we have drawn after Theorem 2.1, are still
valid. Moreover, since in an XML document the number
of attributes and simple elements is generally much greater
than the number of complex elements, the value of m is
even much smaller than that of n.

component is not inserted in XSetSd
, then no x-components reachable

from it are inserted therein.

402 Informatica 32 (2008) 397–420 P. De Meo et al.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:attribute name="ID" type="xs:ID"/>
<xs:attribute name="first_name" type="xs:string"/>
<xs:attribute name="last_name" type="xs:string"/>
<xs:attribute name="type" type="xs:string"/>
<xs:attribute name="roles" type="xs:string"/>
<xs:attribute name="research" type="xs:string"/>
<xs:attribute name="argument" type="xs:string"/>
<xs:attribute name="budget" type="xs:string"/>
<xs:attribute name="funds" type="xs:string"/>
<xs:attribute name="responsibles" type="xs:IDREFS"/>
<xs:attribute name="termination" type="xs:date"/>
<xs:attribute name="authors" type="xs:IDREFS"/>
<xs:attribute name="title" type="xs:string"/>
<xs:attribute name="volume" type="xs:integer"/>
<xs:attribute name="pages" type="xs:integer"/>
<xs:attribute name="year" type="xs:date"/>
<xs:attribute name="booktitle" type="xs:string"/>
<xs:attribute name="address" type="xs:string"/>
<xs:attribute name="publisher" type="xs:string"/>
<xs:attribute name="chief" type="xs:IDREF"/>
<xs:attribute name="people" type="xs:IDREF"/>
<xs:attribute name="projects" type="xs:IDREFS"/>
<xs:attribute name="locations" type="xs:string"/>
<xs:attribute name="labs" type="xs:string"/>
<xs:element name="article">

<xs:complexType>
<xs:choice>

<xs:element ref="journal"/>
<xs:element ref="conference"/>

</xs:choice>
</xs:complexType>

</xs:element>
<xs:element name="researcher">

<xs:complexType>
<xs:attribute ref="ID"/>
<xs:attribute ref="first_name"/>
<xs:attribute ref="last_name"/>
<xs:attribute ref="type"/>
<xs:attribute ref="roles"/>
<xs:attribute ref="research"/>

</xs:complexType>
</xs:element>
<xs:element name="project">

<xs:complexType>
<xs:attribute ref="ID"/>
<xs:attribute ref="argument"/>
<xs:attribute ref="budget"/>

<xs:attribute ref="funds"/>
<xs:attribute ref="responsibles"/>
<xs:attribute ref="termination"/>

</xs:complexType>
</xs:element>
<xs:element name="journal">

<xs:complexType>
<xs:attribute ref="ID"/>
<xs:attribute ref="authors"/>
<xs:attribute ref="title"/>
<xs:attribute ref="volume"/>
<xs:attribute ref="pages"/>
<xs:attribute ref="year"/>

</xs:complexType>
</xs:element>
<xs:element name="conference">

<xs:complexType>
<xs:attribute ref="ID"/>
<xs:attribute ref="authors"/>
<xs:attribute ref="title"/>
<xs:attribute ref="booktitle"/>
<xs:attribute ref="address"/>
<xs:attribute ref="year"/>
<xs:attribute ref="pages"/>
<xs:attribute ref="publisher"/>

</xs:complexType>
</xs:element>
<xs:element name="department">

<xs:complexType>
<xs:attribute ref="ID"/>
<xs:attribute ref="chief"/>
<xs:attribute ref="people"/>
<xs:attribute ref="projects"/>
<xs:attribute ref="locations"/>
<xs:attribute ref="labs"/>

</xs:complexType>
</xs:element>
<!-- root -->
<xs:element name="university">

<xs:complexType>
<xs:sequence>

<xs:element ref="article" maxOccurs="unbounded"/>
<xs:element ref="project" maxOccurs="unbounded"/>
<xs:element ref="researcher" maxOccurs="unbounded"/>
<xs:element ref="department" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

Figure 2: The XML Schema S2

x-component of S1 x-component of S2 interschema property typology

university university synonymy
professor researcher overlapping

phd-student researcher overlapping
paper article synonymy
paper journal hyponymy
paper conference hyponymy

Table 1: The Interschema Property Dictionary IPD asso-
ciated with S1 and S2

2.2.3 A case example (cnt’d)

Consider the XML Schemas S1 and S2, associated with
a University and illustrated in Figures 1 and 2. Consider
the corresponding Interschema Property Dictionary IPD
shown in Table 1 2.

In order to construct SPS, first the function Φ is ac-
tivated. For each tuple of IPD, Φ calls the function Ψ.
In order to show the behaviour of Ψ, we consider its ap-
plication to the pair of complex elements 〈university[S1],
university[S2]〉 3.

For each pair 〈nbh(university[S1], δ), nbh(uni-
versity[S2], γ)〉 of significant neighborhoods, Ψ activates
the function ξ. In order to illustrate the behaviour of ξ,

2As previously pointed out, we have chosen to construct IPD by ap-
plying the approaches described in (6); however, any other approach pro-
posed in the literature for deriving synonymies, hyponymies and overlap-
pings among elements of different XML Schemas could be exploited.

3Here and in the following, whenever necessary, we use the notation
x[S] for indicating the x-component x of an XML Schema S.

we consider its application to nbh(university[S1], 1) and
nbh(university[S2], 2); nbh(university[S1], 1) has been
shown in the previous section; nbh(university[S2], 2) is
as follows:

nbh(university[S2], 2) = {university, article,
project, researcher, department, journal, conference,
ID, first_name, last_name, type, roles, research,
argument, budget, funds, responsibles, termination,
authors, title, volume, pages, year, booktitle, address,
publisher, chief, people, projects, locations, labs}

For this pair of neighborhoods the set IPDδγ , returned
by the function ν, is equal to IPD. ξ activates θ for prun-
ing nbh(university[S1], 1) and nbh(university[S2], 2) in
such a way as to remove the most dissimilar portions. As
an example, the complex element student[S1] and all its at-
tributes are pruned from nbh(university[S1], 1) because:
(i) student[S1] is not involved in any interschema prop-
erty of IPDδγ ; (ii) there does not exist any complex el-
ement xRi such that reachable(student[S1], xRi) = true,
xRi ∈ nbh(university[S1], 1), and xRi is involved in
some interschema property of IPDδγ .

The final sets of x-components returned by the func-
tion θ, when applied on nbh(university[S1], 1) and
nbh(university[S2], 2), are:

{university, professor, phd-student, paper, identifier,
name, cultural_area, papers, advisor, thesis, re-
search_interests, authors, type, volumes, pages}

AN APPROACH TO EXTRACTING SUB-SCHEMA. . . Informatica 32 (2008) 397–420 403

{university, article, researcher, journal, conference,
ID, first_name, last_name, type, roles, research, au-
thors, title, organization, year, booktitle, address,
pages, publisher}

After this, ξ activates ζ that constructs the promising
sub-schemas corresponding to nbh(university[S1], 1) and
nbh(university[S2], 2).

The final promising pair of sub-schemas corresponding
to nbh(university[S1], 1) and nbh(university[S2], 2) re-
turned by ξ is illustrated in Figure 3. All the other promis-
ing pairs of sub-schemas can be determined analogously.

2.3 Derivation of sub-schema similarities

In the previous section we have seen how the most promis-
ing pairs of sub-schemas can be determined. In this section
we illustrate how these pairs can be analyzed in order to
derive sub-schema similarities. Before describing this task
in detail some preliminary considerations are needed.

Applications possibly exploiting sub-schema similari-
ties (and, more in general, interschema properties) are ex-
tremely heterogeneous. Some of them (i.e., the most crit-
ical ones) require, for each pair of involved sub-schema
similarities, a high level of trustworthiness; in other words
they require the correspondences between the elements be-
longing to the involved sub-schemas to be precisely and
unambiguously determined. In order to achieve this guar-
antee, it is necessary to pay the price of filtering out the
weakest sub-schema similarities, i.e., those involving sub-
schemas whose elements might have a form of similarity
different from synonymy. In fact, synonymy represents the
strongest form of similarity; it is the only one capable of
guaranteeing that the similar elements belonging to the in-
volved sub-schemas can be precisely and unambiguously
mapped each other.

By contrast, other (possibly non critical) applications
could prefer to have a more complete picture of exist-
ing sub-schema similarities and, therefore, could choose to
consider also the weakest ones. As previously pointed out,
while a strong similarity requires most of the elements of
the corresponding schemas to be related by a synonymy, a
weak similarity can accept other kinds of similarity prop-
erty, e.g., hyponymies and overlappings; it can also ex-
ist between two schemas characterized by quite a differ-
ent structure. As a consequence of these reasonings, even
if weak similarities cannot be considered in critical appli-
cations, in non-critical scenarios they can provide a richer
vision of the reality.

Clearly, the two exigencies outlined above (i.e., strength
and breadth of discovered similarities) are divergent and,
consequently, it appears extremely difficult to satisfy both
of them simultaneously.

In order to address this issue, our technique allows the
derivation of two levels of sub-schema similarities, namely
strong similarities, that guarantee a strong correspondence
between the x-components of similar sub-schemas, and

weak similarities, that allow the existence of less charac-
terizing semantic relationships between the corresponding
x-components. Specifically, strong sub-schema similari-
ties are derived by taking only synonymies into account;
weak sub-schema similarities cannot be derived with the
only support of synonymies but need also the contribution
of hyponymies and overlappings.

Our technique for deriving sub-schema similarities be-
tween two XML Schemas S1 and S2 receives the set SPS
of the most promising pairs of sub-schemas and the Inter-
schema Property Dictionary IPD associated with S1 and
S2 and selects two sets of pairs of similar sub-schemas,
namely:

SSSstrong = ρstrong(SPS, IPD)
SSSweak = ρweak(SPS, IPD)

Here, the function ρstrong derives the strong sub-schema
similarities, whereas the function ρweak extracts the weak
ones.

2.3.1 Derivation of strong similarities

ρstrong operates by computing the objective func-
tion associated with a maximum weight matching de-
fined on a suitable bipartite graph. Specifically, let
〈prosub1jδ

, prosub2kγ 〉 ∈ SPS be a promising pair of
sub-schemas; let BGδγ = 〈NSet,ESet〉 be the bipartite
graph associated with prosub1jδ

and prosub2kγ . NSet =
PSet∪QSet is the set of nodes of BGδγ ; there is a node in
PSet (resp., QSet) for each complex element of prosub1jδ

(resp., prosub2kγ). ESet is the set of edges of BGδγ ;
in ESet there exists an edge 〈p, q〉 between two nodes
p ∈ PSet and q ∈ QSet if and only if, in IPD, there
exists a synonymy between the element corresponding to p
and that corresponding to q.

The maximum weight matching on BGδγ is the set
ESet∗ ⊆ ESet such that, for each node x ∈ NSet,
there exists at most one edge of ESet∗ incident onto x and
|ESet∗| is maximum (the interested reader is referred to
(15) for details about the maximum weight matching prob-
lem). The objective function we associate with the max-
imum weight matching is χBG = 2|ESet∗|

|PSet|+|QSet| . Here
|ESet∗| represents the number of matches associated with
BGδγ , as well as the number of synonymies involving
prosub1jδ

and prosub2kγ . 2|ESet∗| indicates the number
of matching nodes in BGδγ , as well as the number of simi-
lar complex elements present in prosub1jδ

and prosub2kγ .
|PSet| + |QSet| denotes the total number of nodes in
BGδγ as well as the total number of complex elements
associated with prosub1jδ

and prosub2kγ . Finally, χBG

represents the share of matching nodes in BGδγ , as well as
the share of similar complex elements present in prosub1jδ

and prosub2kγ .
We assume that prosub1jδ

and prosub2kγ are similar if
χBG > 1

2 . Such an assumption derives from the consider-
ation that two sets of objects can be considered similar if
the number of similar elements is greater than the number

404 Informatica 32 (2008) 397–420 P. De Meo et al.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:attribute name="identifier" type="xs:ID"/>
<xs:attribute name="name" type="xs:string"/>
<xs:attribute name="cultural_area" type="xs:string"/>
<xs:attribute name="papers" type="xs:IDREFS"/>
<xs:attribute name="advisor" type="xs:IDREF"/>
<xs:attribute name="thesis" type="xs:string"/>
<xs:attribute name="research_interests" type="xs:string"/>
<xs:attribute name="authors" type="xs:IDREFS"/>
<xs:attribute name="type" type="xs:string"/>
<xs:attribute name="volumes" type="xs:integer"/>
<xs:attribute name="pages" type="xs:integer"/>
<xs:element name="professor">

<xs:complexType>
<xs:attribute ref="identifier"/>
<xs:attribute ref="name"/>
<xs:attribute ref="cultural_area"/>
<xs:attribute ref="papers"/>

</xs:complexType>
</xs:element>
<xs:element name="phd-student">

<xs:complexType>
<xs:attribute ref="identifier"/>
<xs:attribute ref="advisor"/>

<xs:attribute ref="thesis"/>
<xs:attribute ref="research_interests"/>
<xs:attribute ref="papers"/>

</xs:complexType>
</xs:element>
<xs:element name="paper">

<xs:complexType>
<xs:attribute ref="identifier"/>
<xs:attribute ref="authors"/>
<xs:attribute ref="type"/>
<xs:attribute ref="volumes"/>
<xs:attribute ref="pages"/>

</xs:complexType>
</xs:element>
<!-- root -->
<xs:element name="university">

<xs:complexType>
<xs:sequence>

<xs:element ref="professor" maxOccurs="unbounded"/>
<xs:element ref="phd-student" maxOccurs="unbounded"/>
<xs:element ref="paper" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:attribute name="ID" type="xs:ID"/>
<xs:attribute name="first_name" type="xs:string"/>
<xs:attribute name="last_name" type="xs:string"/>
<xs:attribute name="type" type="xs:string"/>
<xs:attribute name="roles" type="xs:string"/>
<xs:attribute name="research" type="xs:string"/>
<xs:attribute name="authors" type="xs:IDREFS"/>
<xs:attribute name="title" type="xs:string"/>
<xs:attribute name="organization" type="xs:string"/>
<xs:attribute name="year" type="xs:date"/>
<xs:attribute name="booktitle" type="xs:string"/>
<xs:attribute name="address" type="xs:string"/>
<xs:attribute name="pages" type="xs:integer"/>
<xs:attribute name="publisher" type="xs:string"/>
<xs:element name="article">

<xs:complexType>
<xs:choice>

<xs:element ref="journal"/>
<xs:element ref="conference"/>

</xs:choice>
</xs:complexType>

</xs:element>
<xs:element name="researcher">

<xs:complexType>
<xs:attribute ref="ID"/>
<xs:attribute ref="first_name"/>
<xs:attribute ref="last_name"/>
<xs:attribute ref="type"/>
<xs:attribute ref="roles"/>
<xs:attribute ref="research"/>

</xs:complexType>

</xs:element>
<xs:element name="journal">

<xs:complexType>
<xs:attribute ref="ID"/>
<xs:attribute ref="authors"/>
<xs:attribute ref="title"/>
<xs:attribute ref="organization"/>
<xs:attribute ref="year"/>

</xs:complexType>
</xs:element>
<xs:element name="conference">

<xs:complexType>
<xs:attribute ref="ID"/>
<xs:attribute ref="authors"/>
<xs:attribute ref="title"/>
<xs:attribute ref="booktitle"/>
<xs:attribute ref="address"/>
<xs:attribute ref="year"/>
<xs:attribute ref="pages"/>
<xs:attribute ref="publisher"/>

</xs:complexType>
</xs:element>
<!-- root -->
<xs:element name="university">

<xs:complexType>
<xs:sequence>

<xs:element ref="article" maxOccurs="unbounded"/>
<xs:element ref="researcher" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

Figure 3: The promising pair of sub-schemas associated with nbh(university[S1], 1) and nbh(university[S2], 2)

of the dissimilar ones or, in other words, if the number of
similar elements is greater than half of the total number of
elements.

The following theorem states the worst case
time complexity for computing all strong similar-
ities. Its proof can be found in the Appendix at
the address http://www.ing.unirc.it/ursino/

informatica/Appendix.pdf.

Theorem 2.4. Let S1 and S2 be two XML Schemas; let
IPD be the corresponding Interschema Property Dictio-
nary; let m be the maximum between the number of com-
plex elements of S1 and S2. The worst case time complex-
ity for computing SSSstrong is O(m7). 2

With regard to this result, the same reasoning about
the extremely small number of complex elements in an
XML Schema, that we have presented after Theorems 2.2
and 2.3, is still valid.

2.3.2 Derivation of weak similarities

ρweak receives SPS and IPD and returns weak sub-
schema similarities. We call them “weak” because, differ-

ently from ρstrong , which takes only synonymies into ac-
count, ρweak considers also overlappings and hyponymies,
that are weaker properties than synonymies in the represen-
tation of concept similarities.

When we introduce hyponymies and overlappings in the
computation of sub-schema similarities we must consider
that, often, more than one element of a schema could be
hyponymous or overlapping with an element of the other
schema.

A consequence of this reasoning is that, in order to de-
rive weak sub-schema similarities, it is not suitable to apply
maximum weight matching techniques; in fact, they would
associate an element of a schema with at most one element
of the other schema.

Taking into account the reasoning above, ρweak has
been defined as follows. Let 〈prosub1jδ

, prosub2kγ 〉 ∈
SPS be a promising pair of sub-schemas; let BG′δγ =
〈NSet′, ESet′〉 be a bipartite graph associated with
prosub1jδ

and prosub2kγ . Here, NSet′ = PSet′ ∪QSet′

is the set of nodes of BG′δγ ; there is a node in PSet′

(resp., QSet′) for each complex element of prosub1jδ

(resp., prosub2kγ). ESet′ is the set of edges of BG′δγ ;

AN APPROACH TO EXTRACTING SUB-SCHEMA. . . Informatica 32 (2008) 397–420 405

Figure 4: The bipartite graph BGδγ associated with the
promising pair of sub-schemas illustrated in Figure 3

in ESet′ there exists an edge 〈p, q〉 between two nodes
p ∈ PSet′ and q ∈ QSet′ if and only if, in IPD, a syn-
onymy, a hyponymy or an overlapping holds between the
element corresponding to p and that corresponding to q.

Let ηp and ηq be the sets of nodes of PSet′ and QSet′

involved in at least one interschema property; specifically,
ηp = {p ∈ PSet′ such that at least one edge of BG′δγ

is incident onto it} and ηq = {q ∈ QSet′ such that
at least one edge of BG′δγ is incident onto it}; we as-
sume that prosub1jδ

and prosub2kγ are weakly similar if
χ′BG′ = |ηp|+|ηq|

|PSet′|+|QSet′| > 1
2 . Such an assumption indi-

cates that two sub-schemas are weakly similar if at least
half of their elements are someway related by an inter-
schema property. The justification underlying such an as-
sumption is analogous to that we have seen for strong sim-
ilarities.

The following theorem states the worst case
time complexity for computing all strong similar-
ities. Its proof can be found in the Appendix at
the address http://www.ing.unirc.it/ursino/

informatica/Appendix.pdf.

Theorem 2.5. Let S1 and S2 be two XML Schemas; let
IPD be the corresponding Interschema Property Dictio-
nary; let m be the maximum between the number of com-
plex elements of S1 and S2. The worst case time complex-
ity for computing SSSweak is O(m6). 2

2.3.3 A case example (cnt’d)

Consider the XML Schemas illustrated in Figures 1 and 2
and the promising pair of sub-schemas derived in Sec-
tion 2.2.3 and illustrated in Figure 3.

For this pair, BGδγ is shown in Figure 4; the objective
function χBG computed on it is equal to 4

9 < 1
2 ; as a con-

sequence, we can conclude that the sub-schemas of the pair
are not strongly similar.

For the same pair, BG′δγ is shown in Figure 5; the value
of χ′BG′ , computed by ρweak, is equal to 9

9 > 1
2 , which

allows us to conclude that a weak similarity holds between
the two sub-schemas into consideration.

Figure 5: The bipartite graph BG′δγ associated with the
promising pair of sub-schemas illustrated in Figure 3

3 Experimental results

3.1 Introduction
In this section we provide a detailed description of the ex-
periments we have carried out in order to test the perfor-
mance of our approach. Specifically, in Section 3.2 we
describe the characteristics of the sources exploited in our
experimental tests. The adopted accuracy measures are il-
lustrated in Section 3.3; the results we have obtained by ap-
plying these measures are presented in Section 3.4. In Sec-
tion 3.5 we compare the accuracy of our approach with that
achieved by some other approaches previously proposed
in the literature. Section 3.6 illustrates our study about
the role of our heuristics for the extraction of promising
pairs of sub-schemas in the improvement of the efficiency
of our approach. An analysis about the improvements of
our approach against manual “naive” approaches, based on
identifying synonyms and expanding around them for con-
structing sub-schemas, is illustrated in Section 3.7. The
robustness of our approach is estimated in Section 3.8. Fi-
nally, Section 3.9 is devoted to discuss our experimental
results about its scalability.

3.2 Characteristics of the exploited sources
In our tests we have exploited a large variety of XML
Schemas associated with disparate application contexts,
such as Biomedical Data, Project Management, Property
Register, Industrial Companies, Universities, Airlines, Sci-
entific Publications and Biological Data.

Specifically, we have compared all pairs of schemas
within a particular domain. Biomedical Schemas have
been derived from various sites; one of these sites
has been http://www.biomediator.org. Schemas
concerning Project Management, Property Register
and Industrial Companies have been derived from
Italian Central Government Office sources and are
shown at the address http://www.mat.unical.it/

terracina/tests.html. Schemas con-
cerning Universities have been downloaded
from the Web address http://anhai.cs.

uiuc.edu/archive/domains/courses.html.
Schemas concerning Airlines have been found in
(26). Schemas concerning Scientific Publications
have been supplied by the authors of (17). Fi-
nally, Biological Schemas have been downloaded
from the addresses http://smi-web.stanford./

406 Informatica 32 (2008) 397–420 P. De Meo et al.

edu.projects/helix/pubs/ismb02/schemas/,
http://www.cs.toronto.edu/db/clio/

testSchemas.html and http://www.genome.ad.jp/
kegg/genes.html.

Examined sources were characterized by the following
properties: (i) Number of schemas: we have considered 30
XML Schemas whose characteristics are reported in Ta-
ble 2. (ii) Maximum depth of schemas: for each domain
we have computed the maximum depth of the involved
schemas; it is shown in the third column of Table 2. In
our opinion, this parameter is particularly interesting for
an approach specifically conceived for XML Schemas; in
fact, the maximum depth is an indicator of the complex-
ity of the sub-schemas that can be generated. (iii) Size of
schemas: the size of the evaluated XML Schemas, i.e., the
number of their elements and attributes, are shown in the
fourth column of Table 2. The size of a test schema is rele-
vant because it influences the quality of obtained results; in
fact, as mentioned in (8), the bigger the input schemas are,
the greater the search space for candidate pairs is, and the
lower the quality of obtained results will be.

The total number of pairs of schemas we have compared
for each domain is shown in the last column of Table 2.

3.3 Accuracy Measures exploited in our
experimental tests

All accuracy measures adopted in our experimental tests
have been computed according to the following general
framework: (i) a set of experts has been asked to iden-
tify the sub-schema similarities existing among involved
schemas; (ii) sub-schema similarities among the same
schemas have been determined by running our algorithm;
(iii) the sub-schema similarities provided by the experts
and those returned by our algorithm have been compared
and accuracy measures have been computed.

The number of experts that have been involved in manu-
ally solving the match tasks is as follows: 6 for Biomedical
Data, 3 for Project Management, 3 for Property Register, 4
for Industrial Companies, 4 for Universities, 2 for Airlines,
2 for Scientific Publications and 7 for Biological Data.

Let A be the set of sub-schema similarities provided by
the experts and let C be the set of sub-schema similarities
returned by our approach; two basic accuracy measures are:

– Precision (hereafter Pre), that specifies the share of
correct sub-schema similarities detected by the system
among those it derived. It is defined as: Pre = |A∩C|

|C| .

– Recall (hereafter Rec), that indicates the share of cor-
rect sub-schema similarities detected by the system
among those the experts provided. It is defined as:
Rec = |A∩C|

|A| .

Precision and Recall are typical measures of Information
Retrieval (see (29)). Both of them fall within the real inter-
val [0, 1]; in the ideal case (i.e., when A ≡ C) they are both
equal to 1.

Property Typology Average Average Average Average
Precision Recall F-Measure Overall

weak similarities 0.89 0.77 0.83 0.67
strong similarities 0.92 0.72 0.81 0.66

Table 3: Accuracy measures of our approach for weak and
strong similarities

However, neither Precision nor Recall alone can accu-
rately measure the quality of an interschema property ex-
traction algorithm; in order to improve the quality of re-
sults, it appears necessary the computation of a joint mea-
sure of them. Two very popular measures satisfying these
requirements are:

– F-Measure (3; 29), that represents the harmonic mean
between Precision and Recall. It is defined as: F -
Measure = 2 · Pre·Rec

Pre+Rec .

– Overall (9; 22), that measures the post-match effort
needed for adding false negatives and removing false
positives from the set of similarities returned by the
system to evaluate. It is defined as: Overall = Rec ·
(2− 1

Pre).

F-Measure falls within the interval [0, 1] whereas Overall
ranges between −∞ and 1; the higher they are, the better
the accuracy of the tested approach will be.

3.4 Discussion of obtained results
As for the evaluation of Precision and Recall associated
with our approach we considered particularly interesting
to compute them by distinguishing weak and strong sim-
ilarities. Before the experiments we expected that pass-
ing from weak to strong similarities would have caused an
increase of the Precision and a decrease of the Recall of
our approach. This intuition was motivated by considering
that strong similarities are a subset of the weak ones, ob-
tained from them by eliminating the most uncertain ones;
this should cause the set of strong similarities to be more
precise than the set of the weak ones. However, this filter-
ing task could erroneously discard some valid similarities;
for this reason the set of strong similarities could have a
lower Recall w.r.t. the set of the weak ones.

In order to verify this intuition and, possibly, to quan-
tify it, we have applied our approach on all pairs of XML
Schemas belonging to the same application domain and we
have computed Precision, Recall, F-Measure and Overall
for each pair into consideration; after this, we have com-
puted the average values of all obtained measures for weak
and strong similarities; they are reported in Table 3. From
the analysis of this table we can draw the following conclu-
sions:

– As for weak similarities, (i) Precision is quite high,
even if our approach returns some false positives; (ii)
Recall is quite high, given the specificity of the in-
terschema property typology we are studying in this

AN APPROACH TO EXTRACTING SUB-SCHEMA. . . Informatica 32 (2008) 397–420 407

Application context Number of Schemas Maximum depth Minimum, Average and Minimum, Average and Total Number
of Schemas Maximum Number of Maximum Number of of Comparisons

x-components complex elements

Biomedical Data 6 8 15 - 26 - 38 4 - 8 - 16 15
Project Management 3 4 37 - 40 - 42 6 - 7 - 8 3
Property Register 2 4 64 - 70 - 75 14 - 14 - 14 1
Industrial Companies 5 4 23 - 28 - 46 6 - 8 - 9 10
Universities 5 5 15 - 17 - 19 3 - 4 - 5 10
Airlines 2 4 12 - 13 - 13 4 - 4 - 4 1
Scientific Publications 2 6 17 - 18 - 18 8 - 9 -9 1
Biological Data 5 8 70 - 136 - 262 21 - 41 - 103 10

Table 2: Characteristics of the XML Schemas exploited for testing the performance of our approach

paper (see below); as a consequence, our approach re-
turns most of the valid properties or, in other words, it
returns a very small number of false negatives.

– If we consider the strong similarities, (i) the set of sim-
ilarities returned by our approach contains a smaller
number of false positives w.r.t. the previous case;
specifically, Precision increases about 4%; (ii) Recall
decreases of about 6% w.r.t. the previous case; in
other words, a certain increase of false negatives can
be observed.

All these experiments confirm our original intuition
about the trend of Precision and Recall when passing from
weak to strong similarities.

Note that in the weak similarity context a user is willing
to accept false positives if this allows him to obtain a wide
set of similarities. On the contrary, in the strong similar-
ity context, a user is willing to receive an incomplete set
of similarities by the system but he desires that proposed
properties are (almost surely) correct. These observations
fully agree with the trend of Precision and Recall registered
in our tests.

As a final remark about this experiment, we observe that
the not particularly high values of Recall are explained by
considering that: (i) the possible number of sub-schema
similarities might be exponential against the number of x-
components of the corresponding XML Schemas; (ii) we
have used a heuristics for selecting the most promising
pairs of sub-schemas.

After this, we have computed the variation of our ac-
curacy measures in presence of a variation of the dimen-
sion of the input schemas. Specifically, given two XML
Schemas S1 and S2 such that n1 = |XCompSet(S1)| and
n2 = |XCompSet(S2)|, we have computed the average
values of Precision, Recall, F-Measure and Overall for the
extraction of weak and strong similarities for different val-
ues of the number of involved x-components nt = n1+n2.

The obtained results are shown in Figures 6, 7, 8 and 9.
From their analysis it is possible to conclude that all our
accuracy measures slightly decrease in presence of an in-
crease of nt. Such quite an intuitive result confirms obser-
vations and results presented in (8).

Finally, we have verified if the accuracy of our approach
depends on the application domain which the test XML
Schemas belong to. The value of each accuracy measure
for a domain has been determined by computing the accu-

racy measure for all possible pairs of XML Schemas be-
longing to the domain and, then, by averaging these values.
The results we have obtained are shown in Figures 10, 11,
12 and 13. From the analysis of these figures it is possi-
ble to conclude that the accuracy of our approach is quite
independent of the application domain (the only, quite sig-
nificant, differences can be found in the biological domain).
As far as our experiments are concerned, we have obtained
the best accuracy for the Airlines domain; here, Precision
reaches its best value, i.e., 0.94, obtained for the deriva-
tion of strong similarities; Recall, F-Measure and Overall
are maximum for the extraction of weak similarities and
are 0.79, 0.84 and 0.71, respectively. The worst accuracy
results have been obtained in the Biological domain; here,
Precision is maximum for the strong similarity derivation
and is 0.86; Recall, F-Measure and Overall reach their best
values for the weak similarity extraction and are 0.70, 0.76
and 0.55, respectively.

3.5 Comparison of the accuracy of our
approach with that achieved by some
related approaches

In this section we report the results of some experimental
tests aiming to compare the accuracy of our approach with
that achieved by other approaches already presented in the
literature.

Our experimental comparison has been inspired by the
ideas and methodologies proposed in (8). The authors of
(8) considered the following systems: Autoplex (2), Au-
tomatch (3), COMA (9), Cupid (20), LSD (10), GLUE
(12), SemInt (18) and SF (Similarity Flooding) (22); they
ran each of these prototypes on the same data sources. For
each prototype, Precision, Recall, F-Measure and Overall
were computed; these measures were averaged across all
input data sources.

We believe that the authors of (8) have provided a mean-
ingful survey which can help us to objectively assess the
accuracy of our system with that achieved by the systems
mentioned above. To this purpose, we ran our system
on the same data sources exploited in (8) and computed
the Precision, the Recall, the F-Measure and the Overall
achieved by it. Obtained results are reported in Table 4
4. Before discussing them, we point out that the accuracy

4It is worth pointing out that the values of the accuracy measures of
the other systems reported in this table are exactly those specified in (8).

408 Informatica 32 (2008) 397–420 P. De Meo et al.

0,80

0,82

0,84

0,86

0,88

0,90

0,92

0,94

0,96

0,98

1,00

40 60 80 100 120 140 160 180 200 220 240 260 280 300

Number of x-components

A
v
e
ra

g
e

P
re

c
is

io
n

Weak

Strong

Figure 6: Variation of the Average Precision when the di-
mension nt of involved XML Schemas grows

0,62

0,64

0,66

0,68

0,70

0,72

0,74

0,76

0,78

0,80

0,82

40 60 80 100 120 140 160 180 200 220 240 260 280 300

Number of x-components

A
v
e
ra

g
e

R
e
c
a
ll Weak

Strong

Figure 7: Variation of the Average Recall when the dimen-
sion nt of involved XML Schemas grows

0,70

0,72

0,74

0,76

0,78

0,80

0,82

0,84

0,86

0,88

0,90

40 60 80 100 120 140 160 180 200 220 240 260 280 300

Number of x-components

A
v
e
ra

g
e

F
-M

e
a
s
u

re

Weak

Strong

Figure 8: Variation of the Average F-Measure when the
dimension nt of involved XML Schemas grows

0,52

0,54

0,56

0,58

0,60

0,62

0,64

0,66

0,68

0,70

0,72

40 60 80 100 120 140 160 180 200 220 240 260 280 300

Number of x-components

A
v
e
ra

g
e

O
v
e
ra

ll Weak

Strong

Figure 9: Variation of the Average Overall when the di-
mension nt of involved XML Schemas grows

System Precision Recall F-Measure Overall

Our system (weak) 0.88 0.78 0.84 0.67
Our system (strong) 0.94 0.71 0.81 0.66
Autoplex & Automatch 0.84 0.82 0.82 & 0.72 0.66
COMA 0.93 0.89 0.90 0.82
Cupid − − − −
LSD ∼ 0.80 0.80 ∼ 0.80 ∼ 0.60
GLUE ∼ 0.80 0.80 ∼ 0.80 ∼ 0.60
SemInt 0.78 0.86 0.81 0.48
SF − − − ∼ 0.60

Table 4: Comparison of the accuracy of our approach with
that of the other approaches evaluated in (8)

measures of the other approaches described in (8) concern
both the derivation of sub-schema similarities and the ex-
traction of similarities between single concepts; this last
problem is simpler and, generally, the corresponding task
shows better accuracy measures, especially for Recall.

From the analysis of Table 4 we can conclude that:

– If strong similarities are computed, our approach
achieves the highest Precision and the lowest Recall.
This result confirms the main findings emerging from
Section 3.4 stating that if strong sub-schema similari-
ties are computed then only few similarities are found
but, generally, they are characterized by a high level

of reliability. As for weak similarities, our approach
achieves the third highest value of Precision and its
Recall is high if we consider that we are extracting
sub-schema similarities that are complex properties.
This result points out the great flexibility of our ap-
proach which can be adapted to prioritize Precision
over Recall (or vice versa) depending on the exigen-
cies of the application context which it operates in.

– Approaches like Autoplex, Automatch, LSD, GLUE
(12) and SemInt (18) use machine learning techniques
and, as will be clear in Section 4, analyze data in-
stances along with a wealth of auxiliary information
(i.e., data type information or key constraints) to de-
rive semantic matchings. This explains the high val-
ues of Precision and Recall achieved by them. The
flip side of the coin is that they require a meaningful
human effort to provide an initial set of training ex-
amples; moreover, if these examples are incomplete
and/or incorrect, the accuracy achieved by these ap-
proaches may drastically decrease (7; 8; 10; 11).

– Approaches like SF and COMA may yield highly ac-
curate results; however, their accuracy strongly de-
pends on the feedbacks provided by human operators.

AN APPROACH TO EXTRACTING SUB-SCHEMA. . . Informatica 32 (2008) 397–420 409

Figure 10: Average Precision of our approach in different
application domains

Figure 11: Average Recall of our approach in different ap-
plication domains

Figure 12: Average F-Measure of our approach in different
application domains

Figure 13: Average Overall of our approach in different
application domains

In fact, SF iteratively computes semantic matchings;
a human user is asked to check the matchings gen-
erated at each iteration and to fix a threshold beyond
which no further iteration must be performed. Clearly,
this threshold influences the number and the quality of
discovered matchings.

COMA is a flexible library of matchers; a user exploit-
ing COMA can select the matchers best fitting both his
needs and the scenario he is operating in and can suit-
able combine them to improve the quality of obtained
results. Clearly, the combination strategy adopted by
him influences the overall quality of the results re-
turned by COMA.

3.6 Role of our heuristics for the extraction
of the most promising pairs of
sub-schemas

In order to evaluate the role of our heuristics for the ex-
traction of the most promising pairs of sub-schemas in the
improvement of the efficiency of our approach, we have
implemented a simple prototype that receives an XML
Schema and evaluates the number of possible pairs of
(well-formed and self contained) sub-schemas that can be
derived from it. The prototype has been exploited for com-
puting the following parameter:

Application context Average EP romising

Biomedical Data 2.47 × 10−8

Project Management 1.61 × 10−10

Property Register 9.18 × 10−13

Industrial Companies 2.36 × 10−8

University 3.88 × 10−5

Airlines 5.07 × 10−4

Scientific Publications 3.66 × 10−5

Biological Data 1.97 × 10−20

Table 5: Values of EPromising for the various application
domains

EPromising =
Number of promising pairs of sub-schemas
Number of possible pairs of sub-schemas

We have carried out some tests for evaluating this param-
eter; Table 5 shows the average values we have obtained
in the various application domains; these values have been
computed by following a procedure analogous to that pre-
viously illustrated for accuracy measures.

From the analysis of this table it is possible to conclude
that the value of EPromising is extremely low in all ap-
plication domains; this confirms the importance, for our
approach, of the task that singles out the most promising
pairs of sub-schemas. The results shown in this table, cou-
pled with the results about the accuracy measures reported
previously, allow us to conclude that the extraction of the
most promising pairs of sub-schemas plays a fundamental

410 Informatica 32 (2008) 397–420 P. De Meo et al.

role for obtaining a scalable approach, applicable on real
cases and producing good results. Such an idea is further
enforced if we consider that the number of possible sub-
schemas in an XML Schema might be exponential against
the number of its x-components and, consequently, neither
a manual approach nor an automatic one, exhaustively ex-
amining all pairs of sub-schemas, might be applied.

3.7 Improvement w.r.t. “naive” approaches
This class of experiments has been performed for veri-
fying the improvements of our approach against manual,
“naive” ones; here we use the term “naive” for indicating
an approach that is capable of constructing only immediate
and quite simple pairs of similar sub-schemas; it is gener-
ally based on identifying synonyms and expanding around
them for constructing sub-schemas. Usually, a “naive” ap-
proach is little time expensive, but it tends to detect only
immediate sub-schema similarities, whereas it tends to ex-
clude many complex and potentially significant similari-
ties. In our opinion, a comparison between our approach
and the “naive” one is useful to identify the capabilities of
our approach of finding complex sub-schema similarities
that could be discovered by a human expert only spend-
ing a great amount of time in the analysis of the involved
Schemas.

In order to carry out such a comparison, we applied our
approach to our test schemas by following the guidelines il-
lustrated in the previous experiments. For each considered
pair of sub-schemas we asked human experts to determine
the number NNaive of sub-schema similarities, identified
by our approach, that, in their opinion, had a “naive” struc-
ture. After this, we have computed the following parame-
ter:

RNaive = NNaive

NT otal

where NTotal indicates the total number of sub-schema
similarities derived by our approach. Clearly, the lower
RNaive is, the higher the improvement caused by our ap-
proach will be.

Table 6 shows the average value of RNaive for weak and
strong sub-schema similarities in the various application
domains. The average values have been computed by fol-
lowing the same guidelines illustrated in the previous ex-
periments.

From the analysis of this table we can observe that the
best values of RNaive can be obtained for domains char-
acterized by large information sources, such as Biological
Data and Property Register. This fact is explained by con-
sidering that, if involved information sources have a great
number of x-components, the structures of the sub-schemas
can be more complex and, consequently, NTotal can be ex-
tremely greater than NNaive.

This result is confirmed by Figure 14 that illustrates the
values of the average RNaive for the extraction of weak
and strong similarities for different values of the dimen-
sion of the input XML Schemas, i.e., of the parameter nt,

Application context RNaive for RNaive for
Application context weak similarities strong similarities

Biomedical Data 0.53 0.62
Project Management 0.36 0.43

Property Register 0.21 0.28
Industrial Companies 0.51 0.60

University 0.61 0.70
Airlines 0.64 0.72

Scientific Publications 0.51 0.63
Biological Data 0.08 0.09

Table 6: Values of RNaive for the extraction of weak and
strong sub-schema similarities in the various application
domains

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

40 60 80 100 120 140 160 180 200 220 240 260 280 300

Number of x-components

R
N

ai
ve

Weak

Strong

Figure 14: Variation of RNaive for the extraction of weak
and strong similarities when the parameter nt, measuring
the dimension of involved XML Schemas, grows

measuring the dimension of involved XML Schemas (see
Section 3.4).

From the analysis of this figure we can observe that
RNaive significantly decreases, for both weak and strong
sub-schema similarities, when nt grows. This implies
that, for large XML Schemas, the fraction of “naive” sub-
schema similarities identified by our approach is actually
negligible if compared with the total number of similarities
it derives. This further confirms that a “naive” approach,
even if it is less time expensive, might exclude many po-
tentially significant similarities.

3.8 Robustness analysis

3.8.1 Robustness against structural dissimilarities

XML is inherently hierarchical; it allows nested, possibly
complex, structures to be exploited for representing a do-
main. As a consequence, two human experts might model
the same reality by means of two XML Schemas character-
ized by deep structural dissimilarities. We have performed
a robustness analysis of our approach, devoted to verify if
it is resilient to structural dissimilarities.

Before describing our experimental tests about this is-
sue, we point out that the particular features of our ap-
proach make it intrinsically robust for a specific case, that
is very common in practice. Specifically, if the typology
of an x-component x1j of an XML Schema S1 is changed
from “simple element” to “attribute”, or vice versa, no

AN APPROACH TO EXTRACTING SUB-SCHEMA. . . Informatica 32 (2008) 397–420 411

modifications of the sub-schema similarities involving x-
components of S1 occur. This result directly derives from
the definitions of veryclose and neighborhood (see Sec-
tion 2.1).

There are further structural modifications that could in-
fluence the results of our approach and for which it is not
intrinsically robust; for these cases an experimental mea-
sure of its robustness appears necessary. As an exam-
ple, consider Figure 15 illustrating two portions of XML
Schemas representing persons; in the first XML Schema,
the concept “Person” is represented by means of a nested
hierarchical structure; on the contrary, in the second XML
Schema, the same concept is represented by means of a flat
structure.

In order to determine the robustness of our approach
in the management of these cases, for each pair of XML
Schemas into consideration, we have progressively altered
the structure of one of them by transforming a certain per-
centage of its x-components from a nested structure to a flat
one. For each of these transformations, we have derived
the sub-schema similarities associated with the “modified”
versions of the XML Schemas and we have computed the
corresponding average values of the accuracy measures.
Specifically, for each pair of XML Schemas within each
domain, we have considered five cases, corresponding to
a percentage of flattened x-components (hereafter FXP -
Flattened X-component Percentage) equal to: (a) 0%; (b)
7%; (c) 14%; (d) 21%; (e) 28%. The results we have ob-
tained are shown in Figures 16, 17, 18 and 19.

From the analysis of these figures it is possible to ob-
serve that our approach shows a good robustness against
increases of FXP . In fact, even if structural dissimilari-
ties occur, the changes in the accuracy measures are gen-
erally quite small. However, we stress that if the increases
of FXP would be significantly greater than those consid-
ered above, the changes in the accuracy measures could
be significant; this behaviour is correct since it guarantees
that our approach shows the right degree of sensitivity to
changes to the structure of involved XML Schemas.

3.8.2 Robustness against errors in IPD

In this experiment we have tested the effects of errors and
inaccuracies in the IPD received in input by our approach.
We have performed the experiment as follows. First, we
have exploited the approaches described in (6) for con-
structing IPD5; then, we have asked experts to validate
IPD properties in such a way as to remove any possible
error.

After this, we have performed some variations on the
correct IPD and, for each of them, we have computed
the Average Precision, the Average Recall, the Average F-
Measure and the Average Overall; this activity has been
performed by following the same guidelines illustrated for

5We point out again that any other approach conceived for deriving
synonymies, hyponymies and overlappings could be exploited for con-
structing IPD.

Case Average Average Average Average
Precision Recall F-Measure Overall

No errors 0.89 0.77 0.83 0.67

(a) 0.88 0.71 0.79 0.62
(b) 0.88 0.65 0.75 0.56
(c) 0.87 0.60 0.71 0.51
(d) 0.87 0.51 0.64 0.43

(e) 0.82 0.77 0.79 0.59
(f) 0.75 0.76 0.76 0.51
(g) 0.69 0.76 0.72 0.42
(h) 0.58 0.76 0.66 0.22

Table 7: Variation of the Average Precision, the Average
Recall, the Average F-Measure and the Average Overall
w.r.t. possible errors in IPD for the extraction of weak
similarities

Case Average Average Average Average
Precision Recall F-Measure Overall

No errors 0.92 0.72 0.81 0.65

(a) 0.91 0.67 0.77 0.61
(b) 0.91 0.62 0.74 0.56
(c) 0.90 0.58 0.71 0.52
(d) 0.90 0.50 0.64 0.44

(e) 0.86 0.72 0.78 0.60
(f) 0.80 0.71 0.75 0.54
(g) 0.75 0.71 0.73 0.47
(h) 0.65 0.71 0.68 0.33

Table 8: Variation of the Average Precision, the Average
Recall, the Average F-Measure and the Average Overall
w.r.t. possible errors in IPD for the extraction of strong
similarities

the previous experiments. Specifically, we have performed
two different typologies of variations on IPD; in a first
series of experiments we have discarded a certain percent-
age of correct properties from the correct IPD, without
adding any new wrong property; in a second series of ex-
periments, we have added a certain percentage of wrong
properties to the correct IPD, without removing any ex-
isting correct property. Variations we have carried out on
IPD are: (a) 10% of correct properties have been filtered
out; (b) 20% of correct properties have been filtered out; (c)
30% of correct properties have been filtered out; (d) 50% of
correct properties have been filtered out; (e) 10% of wrong
properties have been added; (f) 20% of wrong properties
have been added; (g) 30% of wrong properties have been
added; (h) 50% of wrong properties have been added.

Tables 7 and 8 present the values of Precision, Recall,
F-Measure and Overall we have obtained for the extraction
of weak and strong similarities in all these tests. These re-
sults show that our system is quite robust w.r.t. errors and
inaccuracies in IPD. In fact, its accuracy significantly de-
creases only for cases (d) and (h); i.e., when the correct
properties of IPD that are filtered out or the wrong prop-
erties of IPD that are added are greater than 30%. This
shows, also, that our system presents a good sensitivity in
addition to a satisfying robustness.

412 Informatica 32 (2008) 397–420 P. De Meo et al.

<xs:element name="person">
<xs:complexType>

<xs:sequence>
<xs:element ref="address"/>

</xs:sequence>
<xs:attribute name="first_name" type="xs:string"/>
<xs:attribute name="last_name" type="xs:string"/>
<xs:attribute name="gender" type="xs:string"/>
<xs:attribute name="birthdate" type="xs:date"/>

</xs:complexType>
</xs:element>
<xs:element name="address">

<xs:complexType>
<xs:attribute name="city" type="xs:string"/>
<xs:attribute name="state" type="xs:string"/>
<xs:attribute name="country" type="xs:string"/>
<xs:attribute name="zip" type="xs:string"/>

</xs:complexType>
</xs:element>

<xs:element name="person">
<xs:complexType>

<xs:attribute name="first_name" type="xs:string"/>
<xs:attribute name="last_name" type="xs:string"/>
<xs:attribute name="gender" type="xs:string"/>
<xs:attribute name="birthdate" type="xs:date"/>
<xs:attribute name="city" type="xs:string"/>
<xs:attribute name="state" type="xs:string"/>
<xs:attribute name="country" type="xs:string"/>
<xs:attribute name="zip" type="xs:string"/>

</xs:complexType>
</xs:element>

Figure 15: Example of “nested” and “flat” structures

Figure 16: Average Precision of our approach for various
values of FXP

Figure 17: Average Recall of our approach for various val-
ues of FXP

3.9 Scalability Issues
3.9.1 Analysis of the cardinality of SPS

One of the most important factors that may influence the
scalability of our system is the number of the most promis-
ing pairs of sub-schemas, i.e., the cardinality of SPS. In
the previous sections we have shown that our heuristics for
the construction of SPS allow both a very high accuracy
of results to be maintained and the number of pairs of sub-
schemas into examination to be significantly reduced. In
this section we analyze how this number grows when the
number of complex elements of the input Schemas grows.
Specifically, Figure 20 plots the increase of the cardinality
of SPS against m, i.e., the maximum between the number
of complex elements of S1 and that of S2.

From the analysis of this figure we can observe that this
increase is much lower than that we could expect from the
theoretical worst case analysis (see Theorem 2.3). This
result is quite interesting because it further confirms that
the number of promising sub-schemas generated by our ap-
proach is large enough to yield accurate results (see Section
3.4) but small enough to prevent a untenable computational
effort.

This result depends on the following factors:

– In order to construct SPS, we need to apply the func-
tion Ψ, introduced in Section 2.2, on all pairs of com-
plex elements belonging to the Interschema Property
Dictionary (IPD) associated with the input sources.
In real cases, a complex element is involved in a very

0

20

40

60

80

100

120

140

160

6 10 14 18 22 26 30 34 38 42 46 50

m

A
ve

ra
ge

ca
rd

in
al

it
y

of
S

PS

Figure 20: Cardinality of SPS against the number m of
complex elements

AN APPROACH TO EXTRACTING SUB-SCHEMA. . . Informatica 32 (2008) 397–420 413

Figure 18: Average F-Measure of our approach for various
values of FXP

Figure 19: Average Overall of our approach for various
values of FXP

low number of interschema properties and, conse-
quently, the cardinality of IPD is much less than the
overall number of possible pairs of complex elements
existing between S1 and S2. As a consequence, the
number of times our approach needs to call the func-
tion Ψ is significantly lower than that we could expect
from the theoretical analysis, and this produces a sig-
nificant time saving.

– In order to construct a promising sub-schema we need
to apply also functions ξ and θ (see Section 2.2). Re-
call that θ receives a pair 〈nbh(x1j , δ), nbh(x2k

, γ)〉,
where x1j (resp., x2k

) is a complex element of S1

(resp., S2) and δ (resp., γ) is an integer ranging from 0
to m. It may be that θ receives a pair of neighborhoods
〈nbh(x1j , δ), nbh(x2k

, γ)〉 such that no elements of
nbh(x1j , δ) share any interschema property with any
element of nbh(x2k

, γ). In this case nbh(x1j , δ)
and nbh(x2k

, γ) would be completely “pruned” by
θ and, then, ξ would not return any promising sub-
schema. This contributes to reduce the overall number
of promising sub-schemas w.r.t. the theoretical upper
bound specified by Theorem 2.3.

3.9.2 Analysis of the average size of a promising
sub-schema

A second, important, factor that can influence the scala-
bility of our approach concerns the average cardinality of
promising sub-schemas; in fact, in order to derive sub-
schema similarities, our approach computes some match-
ings on suitable bipartite graphs constructed starting from
the complex elements of the involved sub-schemas (see
Section 2.3). According to the reasoning illustrated in Sec-
tion 2.2, measuring the average cardinality of a promising
sub-schema is equivalent to measure the average cardinal-
ity of the set of complex elements generated by applying
the function θ.

In Figure 21 we plot the Average Cardinality AC
of a promising sub-schema against the number n of x-
components of the corresponding XML Schema. From
the analysis of this figure we can observe that AC de-
pends on n in a sub-linear fashion. This result is encourag-

30

35

40

45

50

55

60

40 60 80 100 120 140 160 180 200 220 240 260 280 300

Number of x-components of the corresponding Schema

A
ve

ra
ge

ca
rd

in
al

it
y

of
a

p
ro

m
is

in
g

su
b
-s

ch
e
m

a

Figure 21: Average Cardinality against the number n of
involved x-components

ing because it shows that the size of the promising sub-
schemas generated by our approach does not “explode”
when the number of x-components of the corresponding
input Schemas grows; this influences the scalability of our
approach positively.

This behaviour can be justified by the following reason-
ing: if the overall number of x-components of an XML
Schema grows then both the number of its complex ele-
ments and that of its simple elements and attributes grows.
However, in real cases, this growth is not “balanced”, in the
sense that the number of complex elements does not grow
as quick as the number of simple elements and attributes;
as a consequence, if n becomes large, we expect that the
number of complex elements of the Schema into consider-
ation grows slowly, whereas the number of its simple ele-
ments/attributes increases significatively. This implies that
the Interschema Property Dictionary IPD associated with
input Schemas grows slowly in presence of an increase of n
because IPD contains only pairs of complex elements and
they must be also semantically related. Now, the number
of interschema properties stored in IPD has a substantial
impact on the pruning activity performed by θ (see Sec-
tion 2.2) and, ultimately, on the average cardinality of a
promising sub-schema; this impacts on the scalability of

414 Informatica 32 (2008) 397–420 P. De Meo et al.

our approach positively.

3.9.3 Analysis of the Response Time

A third important parameter that we have considered in or-
der to evaluate the scalability of our approach is its Re-
sponse Time. To this purpose we have conducted an ex-
perimental study on our test XML Schemas to compute the
increase of the Response Time caused by an increase of the
sizes of schemas. All these tests have been performed on a
machine with a Pentium IV 3 GHz CPU and 1 Gb of RAM.

This experiment was carried out as follows: given
two XML Schemas S1 and S2 such that n1 =
|XCompSet(S1)| (resp., n2 = |XCompSet(S2)|) and
m1 (resp., m2) is the number of complex elements of
S1 (resp., S2), we have computed the average values of
the Response Time of our approach against the values of
nt = n1 + n2 and mt = m1 + m2. The obtained results
are shown in Figures 22 and 23.

From the analysis of Figure 22 we can observe that the
increase of the Response Time against mt is much “softer”
than that we could expect from the theoretical, worst case,
analysis (see Theorems 2.4 and 2.5). In our opinion this
result is even more important if we consider that:

– in real XML Schemas the number of complex ele-
ments is generally very low;

– even when the number of complex elements in one
or both of the involved XML Schemas is quite high
(e.g., mt ' 50) the time necessary to our system to
determine sub-schema similarities is quite low (e.g.,
at most some minutes for mt ' 50);

– the extraction of sub-schema similarities is generally
an activity to be performed offline.

All these considerations are further strengthened by Fig-
ure 23 where we analyze the increase of the Response Time
of our system against the increase of nt i.e., against the in-
crease of the total number of x-components belonging to
the involved XML Schemas (which is a reliable and pre-
cise indicator of the complexity of the involved Schemas).

All the reasonings above allow us to conclude that our
approach is scalable and really adequate in those contexts
characterized by numerous and large information sources.

Finally, Figures 22 and 23 show also that the Response
Time for deriving the strong properties is comparable with
that required for extracting the weak ones. This confirms
the theoretical results illustrated in Theorems 2.4 and 2.5.

3.9.4 Analysis of the percentage of Response Time
spared by a human expert

Finally, an interesting study, someway related to scalabil-
ity, regards the computation of the average percentage of
time spared by the experts by applying our approach and
validating its results w.r.t. doing the same task manually.

Figure 24: Average percentage of time spared by the ex-
perts by applying our approach and validating its results
than doing the same task manually

Actually, this percentage is not a direct measure of the
scalability of our approach; however, in our opinion, it pro-
vides a precise idea of the positive impact of our approach
on the daily life of a human expert working in this applica-
tion context.

The obtained results are shown in Figure 24. From the
analysis of this figure we can see that the exploitation of
our system really allows experts to save a great amount of
time, especially in those domains involving large source
schemas, such as the Property Register domain (97% of
spared time) and the Biological Data domain (99% of
spared time).

4 Related works

4.1 Introduction
The problem of deriving interschema properties is also
called schema matching or ontology alignment in the
Information Systems and Artificial Intelligence research
communities; the corresponding algorithms are known as
matchers (27). The problem of extracting semantic sim-
ilarities between two single elements of different schemas
or ontologies is often referred as 1:1 matching, whereas the
problem of deriving similarities between two groups of el-
ements or attributes is also known as 1:n, n:1 or, more in
general, m:n matching.

In the literature various classification criteria have been
proposed for comparing schema matching approaches (see,
for example, (27)). They allow approaches to be examined
from various points of view. In the following we report
those criteria appearing particularly interesting in our con-
text and exploit them to compare our approach with the
other ones already presented in the past. The most com-
mon of these criteria are the following:

– Schema Types: Some matching algorithms can operate
only on a specific kind of data source (e.g., XML, rela-
tional, and so on); these approaches are called specific
in the following. On the contrary, other approaches
are able to manage various kinds of data source; we

AN APPROACH TO EXTRACTING SUB-SCHEMA. . . Informatica 32 (2008) 397–420 415

0

20

40

60

80

100

120

140

160

5 10 15 20 25 30 35 40 45 50

Number of complex elements

A
ve

ra
ge

R
e
sp

on
se

ti
m

e
(s

e
c)

Weak

(s)

Strong

(s)

Figure 22: Response Time of our approach against the
number mt of involved complex elements

0

20

40

60

80

100

120

140

160

40 60 80 100 120 140 160 180 200 220 240 260 280 300

Number of x-components

A
ve

ra
ge

R
e
sp

on
se

ti
m

e
(s

e
c)

Weak

(s)

Strong

(s)

Figure 23: Response Time of our approach against the
number nt of involved x-components

call them generic in the following. A generic ap-
proach is usually more versatile than a specific one
because it can be applied on data sources character-
ized by heterogeneous representation formats. On the
contrary, a specific approach can take advantage of the
peculiarities of the corresponding data model.

– Instance-Based versus Schema-Based: In order to de-
tect interschema properties, matching approaches can
consider data instances (i.e., the so-called extensional
information) or schema-level information (i.e., the so-
called intensional information). The former class of
approaches is called instance-based; the latter one is
known as schema-based. An intermediate category is
represented by mixed approaches, i.e. those ones ex-
ploiting both intensional and extensional information.

Instance-based approaches are generally very precise
because they look at the actual content of the involved
sources; however, they are quite expensive since they
must examine the extensional component of the in-
volved sources; moreover, the results of an instance-
based approach are valid only for the sources it has
been applied to. On the contrary, schema-based ap-
proaches look at the intensional information only and,
consequently, they are less expensive; however, they
could be also less precise; the results of a schema-
based approach are valid for all sources conforming
to the considered schemas.

– Exploitation of Auxiliary Information: Some ap-
proaches could exploit auxiliary information (e.g.,
dictionaries, thesauruses, and so on) for their activ-
ity; on the contrary, this information is not needed
in other approaches. Auxiliary information represents
an effective way to enrich the knowledge that an ap-
proach can exploit. However, in order to maintain its
effectiveness, the time required to compile and/or re-
trieve it must be negligible w.r.t. the time required by
the whole approach to perform its matches. For this

reason, pre-built or automatically computed auxiliary
information would be preferred to the manually pro-
vided one.

– Individual versus Combinatorial: An individual
matcher exploits just one matching criterion; on the
contrary, combinatorial approaches integrate differ-
ent individual matchers to perform schema match-
ing activities. Combinatorial matchers can be fur-
ther classified as: (i) hybrid matchers, if they di-
rectly combine several schema matching approaches
into a unique matcher; (ii) composite matchers, if they
combine the results of several independently executed
matchers; they are sometimes called multi-strategy
approaches. The individual matchers are simpler, and
consequently less time-consuming, than the combina-
torial ones; however, the results they obtain are often
not very accurate.

4.2 Some related approaches

In (23) the authors propose a logic-based matcher called
SKAT (Semantic Knowledge Articulation Tool). In SKAT
the user has to initially specify matching and mismatch-
ing relationships existing between two ontologies/schemas.
After this, the system exploits a set of first-order logic rules
to refine available relationships and derive new semantic
matchings. These matchings can be approved or rejected
by the user. Obtained results can be reused in the subse-
quent schema matching activities.

In (22) the Similarity Flooding (SF) algorithm, capa-
ble of operating on a wide variety of data sources, is pro-
posed. SF is a graph-based matcher; first it converts input
schemas into labeled graphs; then it uses a fixpoint compu-
tation to determine semantic matchings between the nodes
of the graphs; these matchings are refined by means of spe-
cific software modules called filters. Generated matchings
are checked by the human experts at each iteration of the
fixpoint computation.

416 Informatica 32 (2008) 397–420 P. De Meo et al.

In (20) Cupid, a system for deriving interschema prop-
erties among heterogeneous information sources, is pre-
sented. Cupid takes an external thesaurus as input; its ap-
proach consists of two phases, named linguistic and struc-
tural. Cupid exploits sophisticated techniques, taking into
account various characteristics of involved schemas; as a
consequence, it is particularly suited when the precision of
results is compulsory and the involved schemas are not nu-
merous.

In (7) the authors propose the iMAP prototype. iMAP
operates in two phases: the first one exploits Artificial
Intelligence techniques (like Bayesian Network or beam
search) to generate a set of rough matchings; the second
one uses auxiliary information (like domain integrity con-
straints, past matchings, etc.) for refining these matchings.
Interesting properties of iMAP are its modularity and its ex-
tensibility, since new matching algorithms might be easily
embodied in it. It is worth observing that in iMAP the re-
quired user effort is (quite) limited; in this aspect it follows
the same philosophy of our approach.

In (18) the system SemInt is presented. SemInt operates
on relational schemas. First it associates each attribute with
a coefficient (signature), computed by taking into account
both intensional and extensional information. Then, it ex-
ploits the signatures of the attributes of the first schema to
train a neural network that is used to cluster similar at-
tributes of the first schema. Finally, it feeds the neural
network with the signatures of the attributes of the second
schema to find the attributes (resp., the groups of attributes)
of the first schema best mapping the attributes (resp., the
groups of attributes) of the second schema.

In (9) the authors describe a graph-based system called
COMA (COmbining MAtch). It first transforms input
schemas into rooted, directed, acyclic graphs; then, it
activates different schema matching algorithms on these
graphs; finally, it suitably combines the results produced
by each algorithm to generate accurate matchings. Interest-
ingly enough, COMA allows a user to specify the matching
strategy, i.e., to choose the algorithms for performing the
schema matching task.

(32) proposes a schema matching approach operating as
follows: first it represents a schema by means of a rooted
graph; in this way it can uniformly manage different data
source typologies; after this, it combines four different
techniques for computing semantic similarities between the
elements of the two schemas; this last information is further
exploited to derive m:n matchings.

In (31) an approach to deriving 1:1 and 1:n seman-
tic matchings holding among Web query interfaces (i.e.,
among data sources containing the results of the execu-
tion of queries posed through Web interfaces) is proposed.
First, it derives 1:1 matchings by means of a hierarchical
agglomerative clustering algorithm. After this, it extracts
1:n matchings by applying a suitable clustering algorithm
on derived 1:1 matchings.

In (16) an algorithm exploiting data mining techniques
for deriving interschema properties holding among Web

query interfaces is presented. This approach first translates
involved sources in a suitable format; after this, it derives
matchings by analyzing the co-occurrence patterns of at-
tributes belonging to involved sources. Differently from
most of the schema matching approaches proposed in the
literature, the approach of (16) simultaneously examines all
involved schemas.

In (11) the system CGLUE is proposed. It exploits ma-
chine learning techniques for deriving both 1:1 and 1:n se-
mantic matchings between two given ontologies O1 and
O2. CGLUE receives an initial set of matchings (train-
ing matches) from the user; then it exploits suitable ar-
tificial intelligence techniques (e.g. Bayesian learner) to
derive new interschema properties. These techniques are
implemented on specific software modules called learners.
Each learner independently operates on input schemas and
generates its set of matchings; the results obtained by each
learner are, then, combined to produce the final set of inter-
schema properties.

In (14) the authors propose a schema matching approach
particularly suited for Web sources. It first derives 1:1
matchings by solving a matching problem on a suitable
weighted bipartite graph; in this task, several parameters
(e.g., constraints associated with data types and ranges, lin-
guistic similarities, etc.) are taken into account. After this,
it derives 1:n matchings by applying a polynomial-time
heuristic algorithm on previously derived 1:1 matchings.

In (21) the MAFRA (ontology MApping FRAmework)
prototype, capable of extracting mappings among dis-
tributed ontologies in the Semantic Web, is presented.
MAFRA derives both 1:1 and 1:n matchings as follows.
First it represents available ontologies as RDF schemas;
then, it adopts a composite approach, taking into account
both structural and linguistic matchings, for deriving in-
terschema properties. In order to carry out its activities,
MAFRA requires quite a limited human intervention.

In (30) an approach to deriving m:n matchings is pro-
posed. It first represents each input schema by means of
a graph; after this, it asks the user to provide some basic
similarities and dissimilarities. Finally, it derives similari-
ties by taking into account information provided by users,
as well as structural and linguistic information; this last is
constructed with the support of a suitable thesaurus.

In (24; 25) the system DIKE is presented; it is devoted
to extract interschema properties from E/R schemas. DIKE
has been conceived to operate with quite a small number
of information sources; as a consequence, it privileges ac-
curacy to computation time. The extraction task is graph-
based and takes into account the “context” of the concepts
into examination; it exploits a large variety of thresholds
and weights in order to better adapt its behaviour to the
sources which it must operate on; these thresholds and
weights must be tuned during a training phase.

AN APPROACH TO EXTRACTING SUB-SCHEMA. . . Informatica 32 (2008) 397–420 417

4.3 Contribution of our approach
We are now able to illustrate the main novelties introduced
by our approach w.r.t. the previous ones illustrated above.
These novelties can be summarized as follows:

– For each pair of sub-schemas into examination, our
approach analyzes both interschema properties and
the structural relationships holding among the com-
plex elements stored therein; structural relationships
are modelled and handled by means of the reachable
function.

In the literature some schema-based approaches con-
sider both the similarity of the elements belonging to
promising sub-schemas and their structural relation-
ships; however, the notion of similarity considered
in these approaches is less rich and expressive than
that emerging from the usage of interschema prop-
erties. For instance, Cupid (20) considers only lex-
ical matchings stored in a thesaurus and the “adja-
cency” of schema elements (e.g., if an element X is
a sub-element of an element Y); Similarity Flood-
ing (22) defines an ad-hoc graph matching algorithm
which uses a string-matching technique to determine
the similarity of two groups of schema elements;
MAFRA (21) and the approach of (14) represent input
Schemas as graphs and use linguistic and structural
constraints to derive 1:1 and 1:m matchings; finally,
the approach of (30) considers structural properties of
input schemas (represented as graphs) and uses infor-
mation extracted from a thesaurus to find sub-schema
similarities.

By contrast, instance-based approaches, like iMAP
(7), SemInt (18), the approach of (31), the approach
of (16) and CGLUE (11), perform a detailed analy-
sis of the extensional component of each data source.
This analysis is quite complex and refined because it
considers not only the similarities existing among sin-
gle elements but also complex co-occurrence patterns
involving concepts belonging to different schemas.
This analysis yields accurate and important results be-
cause it is often able to derive interesting semantic
correspondences which would be usually neglected
by a traditional schema-based approach. However,
these approaches require a significant data prepara-
tion phase (as in (16; 31)) and a, often long, train-
ing phase (as in iMAP (7), SemInt (18), and CGLUE
(11)).

Our approach tries to overcome the shortcomings
characterizing schema-based and instance-based ap-
proaches, while preserving their merits. Specifically,
unlike most of schema-based approaches, it consid-
ers interschema properties, instead of lexical simi-
larities or string matchings, as the basic properties
for the computation of sub-schema similarities. The
exploitation of interschema properties allow our ap-
proach to achieve a great accuracy since these prop-

erties are able to capture the semantic correspon-
dences that would be usually neglected by lexical-
based matchings (because two terms might be con-
ceptually equivalent even though they have different
names), or to discard semantic matchings that are er-
roneously recognized by lexical approaches (because
two terms might represent different real-world con-
cepts even though they are associated with the same,
or at least quite similar, names). In addition, analo-
gously to schema-based approaches, our own is scal-
able (see Section 3.9); this important feature derives
from the fact that it mainly manages schema-based in-
formation.

Unlike instance-based approaches, our approach does
not inspect the extensional component of involved
data sources and does not need a training phase. Ow-
ing to these reasons, it requires a less computational
effort and a much more reduced human intervention.
In spite of this fact, experimental tests performed in
Section 3 show that the accuracy achieved by it is
fully satisfactory and comparable with that obtained
by instance-based approaches.

– Our approach conceptually separates the derivation
of 1:1 matchings and the extraction of 1:m and m:n
matchings. In fact, it proposes a technique for the
derivation of sub-schema similarities (i.e., 1:n and
m:n matchings) which is separate and independent of
(although conceptually uniform with) the approach for
the extraction of 1:1 matchings described in (6). Our
sub-schema similarity derivation approach simply re-
quires an Interschema Property Dictionary as input
and does not oblige the user to apply the approach of
(6) for constructing it.

As a consequence, our approach can take advantage of
the fact that some 1:1 matching derivation techniques
are competitive in some scenarios, whereas other, con-
ceptually different, techniques operate well in other
different scenarios. A human expert could select the
schema matching technique producing the best results
in his scenario and could apply it to derive 1:1 match-
ings; then, he could use these matchings to derive new
sub-schema similarities.

In the literature, some approaches (e.g., (7; 11; 16;
18; 22; 23; 30; 32)) explicitly designed to derive
m:n and 1:n matchings regard 1:1 matchings as spe-
cial cases of m:n matchings. Other approaches (e.g.,
(9; 14; 20; 21; 24; 25)) propose a two-phase tech-
nique: first they derive 1:1 matchings and, then, ex-
ploit these matchings, along with other support infor-
mation derived during the first phase, for extracting
m:n matchings. As previously pointed out, our ap-
proach follows a third philosophy that does not con-
sider 1:1 matchings as special cases of 1:n and m:n
matchings and, at the same time, in order to derive
m:n matchings, it does not need any further informa-
tion derived during the computation of 1:1 matchings.

418 Informatica 32 (2008) 397–420 P. De Meo et al.

– Our approach considers two kinds of sub-schema sim-
ilaritie, namely, strong similarities, computed starting
from synonymies, and weak similarities, computed
by taking also hyponymies and overlappings into ac-
count. Strong similarities detected by our system are
usually few and characterized by a high level of trust-
worthiness; on the contrary, weak similarities are able
to provide a wide picture of the semantic relationships
between two schemas, even if this picture might con-
tain some sub-schema similarities that could be not
completely reliable in some application contexts.

A clear distinction between strong and weak similari-
ties is not present in any of the approaches described
in Section 4.2.

As a consequence of this distinction, our system is
characterized by a great flexibility; in fact, according
to the operating scenario, a human expert could prefer
to manage a small set of highly reliable sub-schema
similarities or, alternatively, he could want to consider
a wide set of sub-schema similarities, some of which
could be not precise.

5 Conclusions

In this paper we have presented a semi-automatic ap-
proach to deriving sub-schema similarities between XML
Schemas; we have shown that our approach is specialized
for XML sources, is almost automatic and “light”. It con-
sists of two steps: the first one selects a set of promising
pairs of sub-schemas, whereas the second one computes
sub-schema similarities.

We have pointed out that our approach is part of a more
general framework that allows a uniform derivation of sim-
ilarities and dissimilarities among concepts and groups of
concepts represented in semantically heterogeneous XML
Schemas. We have also presented the experimental results
we have obtained by applying our approach on some, quite
variegate, XML Schemas. Finally, we have examined vari-
ous other related approaches previously proposed in the lit-
erature and we have compared them with ours by pointing
out their similarities and differences.

At present we are working on the development of an
XML Schema integration approach taking sub-schema
similarities into account. In the future, we plan to study the
possibility to make our sub-schema similarity derivation
technique more refined by taking into account the “context”
which the sub-schemas into consideration are involved in,
in such a way as to define their semantics in a more precise
fashion.

In addition, we plan to develop techniques exploiting
sub-schema similarities in other application contexts such
as those we have mentioned in the Introduction.

Finally, we argue that several other semantic relation-
ships, already studied for single concepts could be ex-
tended to sub-schemas. In the future, we plan to verify if

this intuition is really feasible and, in the affirmative case,
to define suitable approaches.

References
[1] C. Batini and M. Lenzerini. A methodology for

data schema integration in the entity relationship
model. IEEE Transactions on Software Engineering,
10(6):650–664, 1984.

[2] J. Berlin and A. Motro. Autoplex: Automated discov-
ery of content for virtual databases. In Proc. of the In-
ternational Conference on Cooperative Information
Systems (CoopIS 2001), pages 108–122, Trento, Italy,
2001. Lecture Notes in Computer Science, Springer.

[3] J. Berlin and A. Motro. Database schema match-
ing using machine learning with feature selection.
In Proc. of the International Conference on Ad-
vanced Information Systems Engineering (CAiSE
2002), pages 452–466, Toronto, Canada, 2002. Lec-
ture Notes in Computer Science, Springer.

[4] S. Castano, V. De Antonellis, and S. De Capitani
di Vimercati. Global viewing of heterogeneous data
sources. IEEE Transactions on Data and Knowledge
Engineering, 13(2):277–297, 2001.

[5] C.E.H. Chua, R.H.L. Chiang, and E.P. Lim. Instance-
based attribute identification in database integration.
The International Journal on Very Large Databases,
12(3):228–243, 2003.

[6] P. De Meo, G. Quattrone, G. Terracina, and D. Ursino.
An approach for extracting interschema properties
from XML schemas at various severity levels. Infor-
matica, 31:217–232, 2007.

[7] R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and
P. Domingos. iMAP: Discovering complex seman-
tic matches between database schemas. In Proc. of
the ACM International Conference on Management of
Data (SIGMOD 2004), pages 383–394, Paris, France,
2004. ACM Press.

[8] H. Do, S. Melnik, and E. Rahm. Comparison of
schema matching evaluations. In Proc. of the In-
ternational Workshop on Web, Web-Services, and
Database Systems, pages 221–237, Erfurt, Germany,
2002. Lecture Notes in Computer Science, Springer.

[9] H. Do and E. Rahm. COMA- a system for flexi-
ble combination of schema matching approaches. In
Proc. of the International Conference on Very Large
Databases (VLDB 2002), pages 610–621, Hong
Kong, China, 2002. VLDB Endowment.

[10] A. Doan, P. Domingos, and A. Halevy. Reconcil-
ing schemas of disparate data sources: a machine-
learning approach. In Proc. of the ACM Interna-
tional Conference on Management of Data (SIGMOD

AN APPROACH TO EXTRACTING SUB-SCHEMA. . . Informatica 32 (2008) 397–420 419

2001), pages 509–520, Santa Barbara, California,
USA, 2001. ACM Press.

[11] A. Doan, J. Madhavan, R. Dhamankar, P. Domingos,
and A. Halevy. Learning to match ontologies on the
Semantic Web. The International Journal on Very
Large Databases, 12(4):303–319, 2003.

[12] A. Doan, J. Madhavan, P. Domingos, and A. Halevy.
Learning to map between ontologies on the Semantic
Web. In Proc. of the ACM International Conference
on World Wide Web (WWW 2002), pages 662–673,
Honolulu, Hawaii, USA, 2002. ACM Press.

[13] A. Gal, A. Anaby-Tavor, A. Trombetta, and D. Mon-
tesi. A framework for modeling and evaluating au-
tomatic semantic reconciliation. The International
Journal on Very Large Databases, 14(1):50–67, 2005.

[14] A. Gal, G. Modica, and H.M. Jamil. Improving Web
Search with Automatic Ontology Matching. Tech-
nical Report TR-IDB-2002-09, Department of Com-
puter Science, Mississippi State University, 2002.

[15] Z. Galil. Efficient algorithms for finding maximum
matching in graphs. ACM Computing Surveys, 18:23–
38, 1986.

[16] B. He, K. Chen-Chuan Chang, and J. Han. Discover-
ing complex matchings across web query interfaces: a
correlation mining approach. In Proc. of the ACM In-
ternational Conference on Knowledge Discovery and
Data Mining (SIGKDD 2004), pages 148–157, Seat-
tle, Washington, United States, 2004. ACM Press.

[17] M.L. Lee, L.H. Yang, W. Hsu, and X. Yang. XClust:
clustering XML schemas for effective integration. In
Proc. of the ACM International Conference on Infor-
mation and Knowledge Management (CIKM 2002),
pages 292–299, McLean, Virginia, USA, 2002. ACM
Press.

[18] W. Li and C. Clifton. SEMINT: A tool for identifying
attribute correspondences in heterogeneous databases
using neural networks. Data and Knowledge Engi-
neering, 33(1):49–84, 2000.

[19] J. Madhavan, P.A. Bernstein, A. Doan, and A.Y.
Halevy. Corpus-based schema matching. In Proc.
of the IEEE International Conference on Data En-
ginnering (ICDE 2005), pages 57–68, Tokyo, Japan,
2005. IEEE Computer Society Press.

[20] J. Madhavan, P.A. Bernstein, and E. Rahm. Generic
schema matching with Cupid. In Proc. of the In-
ternational Conference on Very Large Data Bases
(VLDB 2001), pages 49–58, Roma, Italy, 2001. Mor-
gan Kaufmann.

[21] A. Maedche, B. Motik, N. Silva, and R. Volz.
MAFRA - a MApping FRAmework for distributed

ontologies. In Proc. of the International Conference
on Knowledge Engineering and Knowledge Manage-
ment (EKAW 2002), pages 235–250, Siguenza, Spain,
2002. Lecture Notes in Computer Science, Springer.

[22] S. Melnik, H. Garcia-Molina, and E. Rahm. Similar-
ity Flooding: A versatile graph matching algorithm
and its application to schema matching. In Proc.
of the IEEE International Conference on Data Engi-
neering (ICDE 2002), pages 117–128, San Jose, Cal-
ifornia, USA, 2002. IEEE Computer Society Press.

[23] P. Mitra, G. Wiederhold, and J. Jannink. Semi-
automatic integration of knowledge sources. In Proc.
of Fusion’99, Sunnyvale, California, USA, 1999.

[24] L. Palopoli, D. Saccà, G. Terracina, and D. Ursino.
Uniform techniques for deriving similarities of ob-
jects and subschemes in heterogeneous databases.
IEEE Transactions on Knowledge and Data Engi-
neering, 15(2):271–294, 2003.

[25] L. Palopoli, G. Terracina, and D. Ursino. Experiences
using DIKE, a system for supporting cooperative in-
formation system and data warehouse design. Infor-
mation Systems, 28(7):835–865, 2003.

[26] K. Passi, L. Lane, S.K. Madria, B.C. Sakamuri, M.K.
Mohania, and S.S. Bhowmick. A model for XML
Schema integration. In Proc. of the International
Conference on E-Commerce and Web Technologies
(EC-Web 2002), pages 193–202, Aix-en-Provence,
France, 2002. Lecture Notes in Computer Science,
Springer.

[27] E. Rahm and P.A. Bernstein. A survey of ap-
proaches to automatic schema matching. VLDB Jour-
nal, 10(4):334–350, 2001.

[28] E. van der Vlist. Using W3C XML Schema.
http://www.xml.com/pub/a/2000/11/29/
schemas/part1.html, 2001.

[29] C.J. Van Rijsbergen. Information Retrieval. Butter-
worth, 1979.

[30] G. Wang, J.A. Goguen, Y.K. Nam, and K. Lin. Crit-
ical points for interactive schema matching. In Proc.
of the Asia-Pacific Web Conference on Advanced Web
Technologies and Applications (APWeb 2004), pages
654–664, Hangzhou, China, 2004. Lecture Notes in
Computer Science, Springer.

[31] W. Wu, C.T. Yu, A. Doan, and W. Meng. An interac-
tive clustering-based approach to integrating source
query interfaces on the Deep Web. In Proc. of the
ACM International Conference on Management of
Data (SIGMOD 2004), pages 95–106, Paris, France,
2004. ACM Press.

420 Informatica 32 (2008) 397–420 P. De Meo et al.

[32] L. Xu and D.W. Embley. Discovering direct and indi-
rect matches for schema elements. In Proc. of IEEE
International Conference on Database Systems for
Advanced Applications (DASFAA ’03), pages 39–46,
Kyoto, Japan, 2003. IEEE Computer Society.

Informatica 32 (2008) 421–427 421

DNA Algorithms for Petri Net Modeling

Alfons Schuster
School of Computing and Mathematics, Faculty of Engineering, University of Ulster, Shore Road, Newtownabbey, Co.
Antrim BT37 0QB, Northern Ireland
E-mail: a.schuster@ulster.ac.uk
http://www.infc.ulst.ac.uk/cgi-bin/infdb/buscard?email=a.schuster

Keywords: DNA computing, algorithms, Petri nets

Received: March 3, 2008

The paper applies, in a theoretical investigation, the DNA computing paradigm to the modeling of Petri
nets. A run-through example demonstrates the feasibility of the approach as well as its potential practical
value.

Povzetek: Podani so DNA algoritmi za Petri mreže.

1 Introduction

A defining moment for DNA computing was Adleman’s
(1) fundamental contribution in which he demonstrated the
potential of this novel computing paradigm by solving an
instance of the Hamiltonian Path Problem in theoretical
as well as practical terms. Since then, DNA computing
has been proposed and tested in numerous areas includ-
ing, finite automata (14), machine learning (12), relational
database modeling (13), and, of course, solving computa-
tionally expensive problems (e.g., (6), (2), and (3)).

This paper investigates Petri nets as a novel DNA com-
puting application area. The paper provides brief intro-
ductions to Petri nets and DNA computing and demon-
strates via an example algorithm how the DNA computing
paradigm can be successfully applied for Petri net model-
ing. It is necessary to mention that the the paper does not
include simulations of the work on a silicon computer or
practical, experimental work involving real-life DNA ma-
terial. Rather, the paper is of theoretical value only and
largely neglects aspects of practical realizations of the pro-
posed work (e.g., error rates). In a sense, the algorithm
presented in this work is a high-level description for a pro-
gram. The program/algorithm describes a sequence of bio-
chemical events and these events are meant to execute/run
in a biochemical environment—a DNA computer. Once
this sequence of events is executed correctly, which is not
a trivial bioengineering task, the result is available as/in the
form of DNA strings. In order to extract the outcome of
the algorithm, it is necessary to readout these strings and
decode their information, but this is similar to reading out
a sequence in a human genome (e.g., identifying a protein-
encoding gene). Perhaps, one could think of the follow-
ing analogy. It is possible to add and subtract two num-
bers with an electronic calculator, but the same thing can
be done with an abacus (the abacus made of wood). Both
procedures produce the same result but use entirely differ-
ent machines and very different algorithms. Similarly, a

DNA computer operates in a biochemical environment, ex-
ecutes real biochemical events, and uses real (usually syn-
thetically modified) DNA.

In the remainder, Section 2 provides a brief introduction
to Petri nets, their design, and working. Section 3 starts
with a summary on DNA computing and then describes a
DNA algorithm for a Petri net example the paper uses as
a run-through vehicle to explain the presented work. Sec-
tion 4 provides a discussion and Section 5 ends the paper
with a summary.

2 Petri nets

Petri nets are the brainchild of Carl Adam Petri (9). Since
their conception, Petri nets are a very lively field where
findings in theoretical and applied work are continually
added to the field. A summary may describe Petri nets as
a formal, graphical, executable technique for the specifi-
cation and analysis of concurrent, discrete-event dynamic
systems (e.g., see http://www.petrinets.info/). Over time,
the field attracted a lot of interest not only in the comput-
ing community but in a diverse spectrum of application
areas including software & hardware (the complete soft-
ware lifecycle from analysis, specification, design, model-
ing, simulation, and testing; e.g., (11) and (5)), complex
systems (16), particle interaction in atomic physics (10),
as well as model validation of biological pathways (4), for
example. This section introduces Petri nets via a simple
example network. The paper uses this example network as
a run-through vehicle in forthcoming sections. For a start,
Figure 1 illustrates the main Petri net components (place,
active place, transition, directed arc, and token).

In order to build a network, the components in Figure 1
are combined in a systematic way by a set of relatively
straightforward rules. Note that some of these definitions
are adopted from (8), which is one of several excellent
books available on Petri nets. The main design rules are:

422 Informatica 32 (2008) 421–427 A. Schuster

Place Token

Transition

Directed arc

Active place

Figure 1: Main Petri net components.

t
1

p
1

p
2

p
3

p
4

t
2

t
3

Figure 2: A Petri net with four places and three transitions.

– An arc always connects a place to a transition (in ei-
ther direction).

– An arc never connects a place directly to another place
nor a transition directly to another transition.

– Each place and each transition should have at least one
incoming and at least one outgoing arc.

– There is no upper limit to the number of arcs that can
connect to a place or a transition.

The Petri net in Figure 2, for example, is constructed by
these rules. The network has four places (p1, p2, p3, and p4)
and three transitions (t1, t2, and t3). Directed arcs connect
places and transitions, and place p3 is an active place with
one token in it. The main rules for Petri net tokens, and
Petri net operations in general, are equally simple:

– Tokens are used to indicate which places are “active”
(see Figure 1 and Figure 2). An active place may con-
tain more than one token.

– If all its incoming places are active, a transition will
“fire”.

– When a transition fires then (a) all its incoming places
lose a token, and (b) all its outgoing places gain a to-
ken.

P = {p1, p2, p3, p4}
T = {t1, t2, t3}

I(t1) = {p1}
I(t2) = {p2, p3}
I(t3) = {p4}

O(t1) = {p2}
O(t2) = {p4}
O(t3) = {p1, p3}

Figure 3: Petri net structure C = {P, T, I,O} for the Petri
net in Figure 2.

Although Petri nets and their operations are relatively
easy to understand via graphical illustrations, it is neces-
sary mentioning that the field rests on a rigorous mathemat-
ical underpinning (e.g., see (8)). In formal terms, a Petri net
is composed of four parts:

– A set P of places.

– A set T of transitions.

– An “input” function I . The input function I is a map-
ping from a transition tj to a collection of places (in-
put places) I(tj).

– An “output” function O. The output function O is a
mapping from a transition tj to a collection of places
(output places) O(tj).

– The “structure” C of a Petri net is defined by its
places, transitions, input function, and output func-
tion; C = (P, T, I,O).

Figure 3 uses the latter definitions for the description of
the Petri net in Figure 2.

It is possible to describe a Petri net and its working en-
tirely in a rigorous mathematical way. The paper uses a
simpler approach. It keeps the mathematical notation to a
minimum, and instead uses graphical illustrations for the
sake of ease of understanding. The paper uses Figure 4 to
demonstrate the operating behavior of the Petri net in Fig-
ure 2.

Figure 4 (a) illustrates an “unmarked” Petri net. An un-
marked Petri net has no tokens assigned to any of its places.
In Figure 4 (b) the Petri net is “marked” with two tokens,
one token is in place p1, and the other token in place p3.
The previous text mentioned that the dynamic behavior of
a Petri net is determined by the number and distribution of
tokens in the Petri net. According to these rules, transition
t1 fires, because all its incoming places (p1) have a token.
Consequently, place p1 loses its token and place p2 gains a
token (see Figure 4 (c)). Now, transition t2 fires, because
all its incoming places (p2, and p3) have a token. As a re-
sult, place p2 and place p3 lose their token, and place p4

receives a token (see Figure 4 (d)). Next, transition t3 fires,

DNA ALGORITHMS FOR PETRI NET MODELING Informatica 32 (2008) 421–427 423

T1

P1

P2 P3

P4

T2

T3

T1

P1

P2 P3

P4

T2

T3

T1

P1

P2 P3

P4

T2

T3

(d) (e)

T1

P1

P2 P3

P4

T2

T3

T1

P1

P2 P3

P4

T2

T3

(a) (b) (c)

Figure 4: Execution sequence for the Petri net in Figure 2.

causing p4 losing its token, and placing tokens into place
p1 and place p3 (see Figure 4 (e)). A closer look reveals
that Figure 4 (e) is equivalent to Figure 4 (b), and it should
be clear that the example illustrates a loop.

3 DNA computing

DNA computing is a relatively young computing paradigm.
Among other things, the potential of DNA computing lies
in its inherent capacity for vast parallelism, the scope for
high-density storage, and its intrinsic ability for potentially
solving many combinatorial problems. In simple terms,
DNA computing is based on the design, manipulation, and
processing of nucleotides. These nucleotides are chemical
compounds including a chemical base, a sugar, and a phos-
phate group. Four main nucleotides are distinguished, ade-
nine (A), guanine (G), cytosine (C) and thymine (T). Nu-
cleotides can combine or bond as “single stranded” DNA,
or “double stranded” DNA. Single stranded DNA is gen-
erated through the subsequent bonding of any of the four
types of nucleotides, and is often illustrated as a string

of letters (e.g., TATCGGATCGGTATATCCGA). Double
stranded DNA is generated from single stranded DNA and
its complementary strand. This type of bonding follows
“Watson-Crick Complementary”, which says that base A
only bonds with base T, base G only with base C, and vice
versa. For example, the strand ATAGCCTAGCCATATAG-
GCA is the Watson-Crick Complement of the DNA strand
TATCGGATCGGTATATCCGA just mentioned. The liter-
ature often illustrates a resulting double strand as two paral-
lel strands (e.g., TATCGGATCGGTATATCCGA

ATAGCCTAGCCATATAGGCA , where the
fraction line symbolizes bonding).

From a computing perspective, the field aims for the con-
struction of DNA computers and programs that run on such
a computer. Typically, the four nucleotides mentioned be-
fore provide the basis for an alphabet (e.g., Σ = {A, G,
C, T}). From this alphabet a particular language (L) may
be constructed. This language is used to define algorithms
and computer programs. In practical terms, a DNA com-
puter bears similarity to a biochemical machine in which
biochemical events perform algorithms and execute pro-
grams by manipulating DNA strands in a series of care-
fully orchestrated biochemical processes. They are usually

424 Informatica 32 (2008) 421–427 A. Schuster

mediated by molecular entities called enzymes and include
the lengthening, shortening, cutting, linking, and multiply-
ing of DNA, for example. It is necessary to point out that
these events and processes are quite challenging from a
biochemical engineering perspective, but it is beyond the
scope of this paper to indulge into the many challenges the
field holds in this regard. There is a large body of liter-
ature available on the subject, and the interested reader is
referred to one of the excellent books (7) available for the
field. It may be useful however to direct a reader to some
of the major contributions in the field (e.g., (15), (1), and
(6)). The more imminent goal is to demonstrate the po-
tential application of the DNA computing paradigm to the
field of Petri nets.

3.1 DNA-based model for Petri nets
The goal is the design and behavioral modeling of Petri
nets via DNA computing principles. The paper mentioned
that the behavior of a Petri net is linked to the firing of
transitions, which essentially boils down to the monitoring
of activated places (i.e., places with tokens in them). For
example, transition t2 in Figure 4 (a) fires only if place p2

and place p3 at least hold one token each. This could be
presented by a simple it-then rule: if p2 and p3 then t2.
The presented approach therefor has two main features:

1. It models activated places via DNA strands. For ex-
ample, it is possible to represent the active place p1 in
Figure 4 (b) via the DNA strand s1 = TATCGGATCG-
GTATATCCGA.

2. An algorithm describes the behavior or logic of a Petri
net. This algorithm is similar to a sequence of bio-
chemical reactions on DNA strands.

For the forthcoming sections it is necessary to introduce
some of the most common operations (biochemical reac-
tions) on DNA strands. Note that some of the following
definitions are adopted from (7).

– amplify: Given a tube N , amplify(N) produces two
copies of it.

– detect: Given a tube N , detect(N) returns true if N
contains at least one DNA strand, otherwise return is
false.

– merge: Given tubes N1 and N2, merge(N1, N2) pro-
duces a new tube N3 that forms the union N1 ∪N2 of
the two tubes.

– separate: Given a tube N and a DNA strand w
composed of nucleotides m ∈ {A, T, C, G}, sepa-
rate(+N,w) produces a new tube N1 that consists of
all strands in N which contain w as a consecutive sub-
strand. Similarly, separate(−N, w) produces a new
tube N1 that consists of all strands in N which do not
contain w as a consecutive sub-strand.

– lengthSeparate: Given a tube N and an integer n,
lengthSeparate(N,≤ n) produces a new tube N1 con-
sisting of all strands in N with length less then or
equal to n.

Without further ado, the paper uses Figure 5 to illustrate
a DNA algorithm for the Petri net scenario in Figure 4.

The algorithm starts in line one with tube N0. This tube
is completely empty (indicated by the symbol). It is help-
ful to imagine that this state is equivalent to the unmarked
Petri net in Figure 4 (a). The algorithm uses four boolean
variables (b1 to b4 in line two) to represent the presence of
any of the strands s1 to s4 in tube N0. Remember that the
presence of a strand is similar to an active place in the Petri
net. For example, the presence of strand s1 in tube N0 indi-
cates that there is a token in place p1. The boolean variables
indicate the presence of a strand by the value true, and its
absence by the value false. Initially tube N0 is empty, and
so b1 = b2 = b3 = b4 = false in line two. Please note
that the discussion in Section 4 comments on these vari-
ables in more detail.

Line three to ten mark the Petri net. There are several
possibilities for marking this particular net, and the current
example uses one of them. It is possible therefore, to com-
pare line three to ten to a function call, for instance func-
tion Mark_Petri_net(), in a computer programme where
parameters are passed to the function. Line four is a simple
comment. A double slash (//) always indicates a comment
in the algorithm. Anyhow, line five adds strand s1 into tube
N0, which is equivalent to adding a token into place p1,
and line six adds strand s3 into tube N0, which is equiva-
lent to adding a token into place p3. The Petri net is now
in the state illustrated by Figure 4 (b). The settings of vari-
able b1 = true, and b3 = true in line seven and line eight
reflect the presence of these strands in tube N0. Petri nets
are often models of real world systems. The appearance of
a token in a place usually triggers some event in this sys-
tem. This is the reason for line nine, which is a reference to
some external task that my be executed by the algorithm.

Line 11 introduces the variable n. The algorithm uses
this variable in the repeat-until loop where it defines an
application specific exit criterion (line 36). The repeat-
until loop extends from line 12 to line 36, and contains
three if-then statements. Essentially, each if-then statement
does two things, first, it checks the firing status of a par-
ticular transition, and second, it contains instructions for
what happens when a transition fires. For example, line 14
checks for strand s1 in tube N0. In case the result is neg-
ative, nothing happens, and the algorithm advances to the
next if-then statement. If the result is positive then place
p1 loses a token (line 15, b1 = false) and place p2 gains
a token (line 16, b2 = true). In a similar fashion, the sec-
ond if-then statement monitors transition t2, and the third
if-then statement transition t3. The comment in line 16 in-
dicates that setting any of the boolean variables to true is
equal to adding a corresponding strand to tube N1. Note
that the algorithm deals with this at a later stage (lines 30
to 33).

DNA ALGORITHMS FOR PETRI NET MODELING Informatica 32 (2008) 421–427 425

(1) input(N0) =
(2) b1 = b2 = b3 = b4 = false,
(3) Mark Petri net begin
(4) //For example
(5) add(s1, N0)
(6) add(s3, N0)
(7) b1 = true
(8) b3 = true
(9) Do some task.

(10) end
(11) n = 0
(12) repeat
(13) input(N1) =
(14) if detect(N0(s1)) then begin
(15) b1 = false
(16) b2 = true, //add(s2, N1) later
(17) Do some task.
(18) end
(19) if detect((N0(s2) and N0(s3)) then begin
(20) b2 = b3 = false
(21) b4 = true, //add(s4, N1) later
(22) Do some task.
(23) end
(24) if detect(N0(s4)) then begin
(25) b4 = false
(26) b1 = true, //add(s1, N1) later
(27) b3 = true, //add(s3, N1) later
(28) Do some task.
(29) end
(30) if b1 = true then add(s1, N1)
(31) if b2 = true then add(s2, N1)
(32) if b3 = true then add(s3, N1)
(33) if b4 = true then add(s4, N1)
(34) N0 = N1

(35) n = n + 1
(36) until (some condition regarding n is met)

Figure 5: DNA-based algorithm for the Petri net in Figure 4 (a).

The final lines requiring explanation are line 13 and lines
30 to 35. Line 13 introduces a new tube N1. This tube is
always empty (N1 =) when the repeat-until loop enters
a new iteration. Between line 30 to line 33, it depends on
the values for b1 to b4, which strands (s1, s2, s3, or s4) are
added to tube N1. It is important to understand that at line
35, the Petri net went through one complete state transition
(e.g., from Figure 4 (b) to Figure 4 (c)). Inside the repeat-
until loop, the current “state” is always represented by the
content of tube N0, and the so-called “next-state” by that
of tube N1 in line 34. Line 13 empties tube N1 in order to
prepare it for the new next state. Line 36 decides whether
the loop enters a new iteration. This depends on the new
value for n, which was incremented in line 35.

The paper now goes through a couple of iterations to
demonstrate the algorithm in more detail. A decision ta-
ble (Table 1) keeps track of the boolean variables (which

represent the behavior of the Petri net in terms of active
places and content of tube N0).

Column “Start” in Table 1 captures line one and two of
the algorithm and is equivalent to the unmarked Petri net
in Figure 4 (a). Column “Marking” represents line three
to line ten in the algorithm and is equivalent to the marked
Petri net in Figure 4 (b). Note two things here, first that
strands are added to tube N0 (line five and six), and sec-
ond that this is reflected by corresponding settings by the
boolean variables (line seven and eight). Note also that Ta-
ble 1 indicates changes in boolean variable values (as the
Petri net moves from one state to the next) by underlin-
ing these values. For instance, from the “Start” state to
the “Marking” state in Table 1 the values for b1 and b3
change and therefore are underlined. Anyhow, at line ten
the settings are b1 = true, b2 = false, b3 = true, and
b4 = false.

426 Informatica 32 (2008) 421–427 A. Schuster

Iteration, repeat loop
Start Marking 1 2 3 4 5 6

b1, detect(N0(s1)) 0 1 0 0 1 0 0 1
b2, detect(N0(s2)) 0 0 1 0 0 1 0 0
b3, detect(N0(s3)) 0 1 1 0 1 1 0 1
b4, detect(N0(s4)) 0 0 0 1 0 0 1 0

State similar to Figure 4 (a) (b) (c) (d) (b) (c) (d) (b)

Table 1: Decision table, illustrating the behavior of the Petri net in Figure 4.

Next, variable n is set to nil in line 11. According to the
values for b1 to b4, the repeat loop enters the first if-then
statement (line 14) only. Consequently, when the index n
is incremented in line 35 then b1 = false (line 15) and
b2 = true (line 16), whereas b3 and b4 remain unaltered
(b3 = true from line eight, and b4 = false from line two).
So, the settings after the first iteration are b1 = false, b2 =
true, b3 = true, and b4 = false. This state is equivalent
to Figure 4 (c).

In the second iteration these settings activate the second
if-then statement only (b2 = true, and b3 = true). Con-
sequently, b2 = b3 = false (line 20), b4 = true (line 21),
and variable b1 remains unaltered (false). Now, the settings
are b1 = false, b2 = false, b3 = false, and b4 = true.
This state is equivalent to Figure 4 (d).

In iteration three, these settings activate the third if-
then statement (line 24) only (b4 = true). Therefore,
b4 = false (line 25), b1 = true (line 26), b3 = true
(line 27), and b2 remains unaltered false. So, the settings
are b1 = true, b2 = false, b3 = true, and b4 = false.
This state is equivalent to Figure 4 (b) again, and the Petri
net process illustrated in Figure 4 starts again. Table 1 cap-
tures a few more iterations. Playing these iterations through
demonstrates that the algorithm indeed models the behav-
ior of the Petri net in Figure 4, however, this also indicates
that the paper achieved its main goal.

4 Discussion
The previous sections successfully led to our goal, the mod-
eling of Petri nets based on DNA computing principles. It
is necessary, however, mentioning that the algorithm pre-
sented here is an ad hoc solution to the problem. It is
possible, for instance, to use only one tube N0, and to
write the algorithm without any of the four boolean vari-
ables by replacing them with corresponding biochemical
operations. For example, imagine the state in Figure 4 (c)
equivalent to strand s2 and strand s3 in tube N0. Now,
imagine a progression to Figure 4 (d) where strands s2

and s3 need to be separated from tube N0 and strand s4

added to the same tube. This could be achieved by the fol-
lowing biochemical operations, separate(−N0, s2), sepa-
rate(−N0, s3), and add(s4, N0). We found, however, state-
ments such as b2 = false, b3 = false, etc. much sim-
pler to handle and follow, helping a reader to better un-
derstand the logic of the algorithm, and also providing an

easier mapping between the logic of the algorithm and the
behavior of the Petri net in Figure 4.

Another possible modification relates to the modeling of
active places. Currently, an active place is modeled by a
single DNA strand, and the firing conditions for a transi-
tion are determined by checking for the activity of its in-
put places (i.e., corresponding DNA strands). Line 19 in
the algorithm, for example, checks for the two individual
stands s2 and s3 in tube N0. Another way would be to
model a transition by connecting all its active places into a
single strand. The Watson-Crick complement can be used
for connecting two stands in a pre-defined fashion. One
possibility would be to connect s2 and s3 via the strand
(e2→3), where (e2→3) is the Watson-Crick complement of
the second half of s2 concatenated with the Watson-Crick
complement of the first half of s3. If the complements for
s2 and s3 are s′2 and s′3, respectively, then we may have
the example illustrated in Figure 6 (a), and in case strands
s2, s3, and e2→3 where mixed together in a tube (e.g., N0)
then the double strands illustrated in Figure 6 (b) might be
generated by bonding.

It is now possible to write an algorithm including some
of the biochemical procedures mentioned in Section 3.1, as
well as others, to check for the existence of strand s2s3 in
tube N0. If the strand exists then the code executed after
may be similar to that following line 19 in Figure 5. The
paper does not go into further details here about biochemi-
cal procedures or the algorithm reflecting these procedures,
but the reader is directed to Adleman’s (1) work, which en-
tails details that are very similar to the facts just mentioned.

In terms of other issues, there is also the fact that the pre-
sented work deals with a single example only. Although
the example may not really bring to the fore the great ad-
vantage DNA computing provides, namely parallelism, it
is not difficult to envisage two or more Petri nets running
in parallel and interacting amongst each other (e.g., inter-
actions may be messages exchanged in the form of tokens).
This should not devalue the paper, because the major con-
tribution of in this work is the synergy of two fields—Petri
nets and DNA computing. A final though considers the
purely theoretical treatment of the subject. Such a treat-
ment should not suggest any ignorance of the many chal-
lenges DNA computing still poses for engineers working in
a broad variety of disciplines involved with DNA comput-
ing.

DNA ALGORITHMS FOR PETRI NET MODELING Informatica 32 (2008) 421–427 427

TATCGGATCGGTATATCCGAGCTATTCGAGCTTAAAGCTA

 CATATAGGCTCGATAAGCTC

s
3

s
2

e
2->3

s
2
 =

s
3
 =

s
2
s
3
 =

s’
2
 =

s’
3
 =

e
2 3
 = s’

2
s’
3
 =

TATCGGATCGGTATATCCGA

GCTATTCGAGCTTAAAGCTA

TATCGGATCGGTATATCCGAGCTATTCGAGCTTAAAGCTA

CATATAGGCT

CGATAAGCTC
CATATAGGCTCGATAAGCTC

(a)

(b)

Figure 6: Alternative modeling of transitions and places.

5 Summary

The paper suggests Petri nets as a novel DNA computing
application area. The paper demonstrated the feasibility of
the approach in theory. The paper indicates that real-life
applications of the presented work may be problematic to
achieve because of various engineering challenges in the
field of DNA computing. This does not mean, however,
that the approach could not be verified in vitro in a DNA
computing project.

References
[1] Adleman, L. (1994). Molecular computation of solu-

tions to combinatorial problems. Science, 266:1021–
1024.

[2] Chang, W. and Guo, M. (2003). Solving the set-cover
problem and the problem of exact cover by 3-sets in the
Adleman-Lipton’s model. BioSystems, 72(3):263–275.
Elsevier Science.

[3] Chang, W. and Guo, M. (2004). Molecular solutions
for the subset-sum problem on DNA-based supercom-
puting. BioSystems, 73(2):117–130. Elsevier Science.

[4] Heiner, M., K. I. and Willa, J. (2004). Model validation
of biological pathways using Petri nets–demonstrated
for apoptosis. Biosystems, 75:15–28. Computational
Systems Biology.

[5] Kounev, S. and Buchmann, A. (2006). SimQPN–a tool
and methodology for analyzing queueing Petri net mod-
els by means of simulation. Performance Evaluation,
63(4–5):364–394.

[6] Lipton, J. (1995). DNA solution to hard computational
problems. Science, 268:542–545.

[7] Paun, G., R. G. and Salomaa, A. (1998). DNA
Computing–New Computing Paradigms. Springer-
Verlag, N.Y.

[8] Peterson, J. (1981). Petri Net Theory And The Mod-
elling Of Systems. Prentice Hall, Inc., Englewood Cliffs,
N.J.

[9] Petri, C. (1961). Kommunikation mit Automaten. PhD
thesis, University Bonn, Germany. PhD thesis.

[10] Petri, C. (1982). State-transition structures in physics
and in computation. International Journal of Theoreti-
cal Physics, 21(12):979–992.

[11] Reza, H. (2006). A methodology for architectural de-
sign of concurrent and distributed software systems. The
Journal of Supercomputing, 37(3):227–248.

[12] Schuster, A. (2003). DNA algorithms for rough set
analysis. In Liu, J., Cheung, Y.M, and Yin, H., editors,
Intelligent Data Engineering and Automated Learning,
volume 2690 of Lecture Notes in Computer Science,
pages 498–513. Springer-Verlag, Berlin.

[13] Schuster, A. (2005). DNA databases. BioSystems,
81(3):234–246. Elsevier Science.

[14] Soreni, M., Yogev, S., Kossoy, E., Shoham, Y., and
Keinan, E. (2005). Parallel biomolecular computation
on surfaces with advanced finite automata. J. Am. Chem.
Soc. (Article), 127(11):3935–3943.

[15] Watson, J. and Crick, F. (1953). Molecular structure
of nucleic acids. Nature, 171:734–737.

[16] Zhu, P. and Schnieder, E. (2000). Holistic mod-
eling of complex systems with Petri nets. In Pro-
ceedings IEEE International Conference on Systems,
Man, and Cybernetics (SMC’2000), 8-11 October 2000,
Nashville, TN, volume 4, pages 3075–3080.

428 Informatica 32 (2008) 421–427 A. Schuster

Informatica 32 (2008) 429–435 429

A Readability Checker with Supervised Learning Using Deep Indicators

Tim vor der Brück, Sven Hartrumpf, Hermann Helbig
Intelligent Information and Communication Systems (IICS)
FernUniversität in Hagen, 58084 Hagen, Germany
E-mail: firstname.lastname@fernuni-hagen.de

Keywords: readability, syntactic and semantic analysis, nearest neighbor

Received: May 11, 2008

Checking for readability or simplicity of texts is important for many institutional and individual users.
Formulas for approximately measuring text readability have a long tradition. Usually, they exploit surface-
oriented indicators like sentence length, word length, word frequency, etc. However, in many cases, this
information is not adequate to realistically approximate the cognitive difficulties a person can have to
understand a text. Therefore we use deep syntactic and semantic indicators in addition. The syntactic
information is represented by a dependency tree, the semantic information by a semantic network. Both
representations are automatically generated by a deep syntactico-semantic analysis. A global readability
score is determined by applying a nearest neighbor algorithm on 3,000 ratings of 300 test persons. The
evaluation showed that the deep syntactic and semantic indicators lead to promising results comparable to
the best surface-based indicators. The combination of deep and shallow indicators leads to an improvement
over shallow indicators alone. Finally, a graphical user interface was developed which highlights difficult
passages, depending on the individual indicator values, and displays a global readability score.

Povzetek: Strojno učenje z odvisnostnimi drevesi je uporabljeno za ugotavljanje berljivosti besedil.

1 Introduction

Readability checkers are used to highlight text passages
that are difficult to read. They can help authors to write
texts in an easy-to-read style. Furthermore they often dis-
play a global readability score which is derived by a read-
ability formula. Such a formula describes the readabil-
ity of a text numerically. There exists a large amount of
readability formulas (13). Most of them use only surface-
oriented indicators like word frequency, word length, or
sentence length. Such indicators have only indirect and
limited access to judging real understandability. Therefore,
we use deep syntactic and semantic indicators1 in addition
to surface-oriented indicators. The semantic indicators op-
erate mostly on a semantic network (SN); in contrast, the
syntactic indicators mainly work on a dependency tree con-
taining linguistic categories and surface text parts. The SNs
and the dependency trees are derived by a deep syntactico-
semantic analysis based on word-class functions.

Furthermore, we collected a whole range of readability
criteria from almost all linguistic levels: morphology, lexi-
con, syntax, semantics, and discourse2 (7). To make these
criteria operable, each criterion is underpinned by one or
more readability indicators that have been investigated in
the (psycho-)linguistic literature and can be automatically

1An indicator is called deep if it requires a deep syntactico-semantic
analysis.

2In this article, discourse criteria are subsumed under the heading se-
mantic because they form only a small group and rely directly on semantic
information.

determined by NLP tools (see (11) for details). Two typical
readability indicators for the syntactic readability criterion
of syntactic ambiguity are the center embedding depth of
subclauses and the number of argument ambiguities (con-
cerning their syntactic role3).

2 Related work
There are various methods to derive a numerical represen-
tation of text readability. One of the most popular readabil-
ity formulas is the so-called Flesch Reading Ease (4). The
formula employs the average sentence length and the av-
erage number of syllables for estimating readability. The
sentence length is intended to roughly approximate sen-
tence complexity, while the number of syllables approx-
imates word frequency since usually long words are less
used. Later on, this formula was adjusted to German (1).
Despite of its age, the Flesch formula is still widely used.

Also, the revised Dale-Chall readability index (2) mainly
depends on surface-oriented indicators. Actually, it is
based on sentence length and the occurrences of words in
a given list of words which are assumed to be difficult to
read.

Recently, several more sophisticated approaches which
use advanced NLP technology were developed. They de-
termine for instance the embedding depth of clauses, the
usage of active/passive voice or text cohesion (17; 9; 21).

3Such ambiguities can occur in German because of its relatively free
constituent order.

430 Informatica 32 (2008) 429–435 T. vor der Brück et al.

Figure 1: System architecture of the readability checker
DeLite.

The methods of (3; 22) go a step beyond pure analysis and
also create suggestions for possible improvements. Some
approaches, e.g., (20), integrate their readability checkers
into a graphical user interface, which is vital for practical
usage.

As far as we know, all approaches for determining text
readability are based on surface or syntactic structures but
not on a deep semantic representation which represents
the cognitive difficulties for text understanding more ade-
quately. Readability formulas usually combine several so-
called readability indicators like sentence or word length by
a linear combination. Examples for non-linear approaches
are the nearest neighbor approach of Heilman et al. (9)
and the employment of support vector machines by Lars-
son (15) to separate the vectors of indicator values for
given texts into the three different readability classes easy,
medium, and difficult. A drawback of the latter method is
that this classification is rather rough.

3 System architecture

A text is processed in several steps (see Figure 1) by our
readability checker DeLite (an association of Lite as in
light/easy reading and De as in Deutsch/German; there
is also a prototype EnLite for English). First, the Con-
troller passes the text to a deep syntactico-semantic analy-

sis (WOCADI4 parser, (6)), which is based on a word-class
functional analysis and is supported by a large semantically
oriented lexicon (8). The parser output for each sentence is
a morpho-lexical analysis, one or more (in case of ambi-
guities) syntactic dependency trees, one or more SNs, and
intrasentential and intersentential coreferences determined
by a hybrid rule-statistical coreference resolution module.
The resulting SNs follow the MultiNet formalism (multi-
layered extended semantic network, (10), example in Fig-
ure 2). On the basis of this analysis, the text is divided into
sentences, phrases, and words in the Preparation Layer.

The individual indicator values are determined by the
Calculation Layer. DeLite currently uses 48 morphologi-
cal, lexical, syntactic, and semantic indicators; below we
concentrate on some deep syntactic and semantic ones.
Each indicator is attached to a certain processing mod-
ule depending on the type of required information: words,
phrases, sentences, or the entire document. Each module
iterates over all objects of its associated type that exist in
the text and triggers the calculation of the associated indi-
cators. Examples for indicators operating on the word level
are the indicators number of word characters or number of
word readings. Semantic and syntactic indicators usually
operate on the sentence level. As the result of this calcu-
lation step an association from text segments to indicator
values is established.

In the Evaluation Layer, the values of each indicator are
averaged to the so-called aggregated indicator value. Note
that there exists for each indicator only one aggregated in-
dicator value per text. The readability score is then calcu-
lated (see Sect. 4) by the k-nearest neighbor algorithm of
the machine learning toolkit RapidMiner (18). In contrast
to surface-oriented indicators, a deep indicator can usually
only be determined for a given sentence (most deep indi-
cators operate on sentences) if certain prerequisites are met
(e.g., full parse or chunk parse is available). If this is not
the case, the associated sentence is omitted for determining
the aggregated indicator value. If an indicator could not be
calculated for any sentence of the text at all, its value is set
to some fixed constant.

Finally, all this information is marked up in XML and in
a user-friendly HTML format and is returned to the calling
process by the Exportation Layer.

4 Deriving a readability score using
the k-nearest neighbor algorithm

A nearest neighbor algorithm is a supervised learning
method. Thus, before this method can be applied to new
data, a training phase is required. In this phase, a vector of
aggregated indicator values is determined by RapidMiner
(see Sect. 4) for each text of our readability study compris-
ing 3,000 ratings from 300 users. The vector components
are normalized and multiplied by weights representing the

4WOCADI is the abbreviation of Word-Class based Disambiguating.

A READABILITY CHECKER WITH. . . Informatica 32 (2008) 429–435 431

importance of the individual indicators where the weights
are automatically learned by an evolutionary algorithm. All
vectors are stored together with the average user ratings
for the associated texts. To derive a readability score for a
previously unseen text, the vector of weighted and normal-
ized aggregated indicator values is determined for this text
first (see above). Afterwards, the k vectors of the training
data with the smallest distance to the former vector are ex-
tracted. The readability score is then given as a weighted
sum of the user ratings associated with those k vectors.

5 Syntactic indicators

5.1 Clause Center Embedding Depth
A sentence is difficult to read if the syntactic structure is
very complex (5). One reason for a high complexity can
be that the sentence contains deeply embedded subordinate
clauses. The difficulty can be increased if the subordinate
clause is embedded into the middle of a sentence since the
reader has to memorize the superior clause until its contin-
uation after the termination of the subordinate clause (12),
for example: Er verließ das Haus, in dem die Frau, die
er liebte, wohnte, sofort. (literal translation from German:
He left the house where the woman he loved lived imme-
diately.) In contrast to (21), two separate indicators are
employed for the embedding depth: one measuring embed-
ding depth in general and one focusing only on center em-
bedding depth which allows it to compare both effects. In
our experiments only center embedding depth was consid-
erably correlated to the readability ratings from the partici-
pants. Center embedding depth is calculated for each main
verb in the following way. First, we determine the path
from the root of the dependency tree to each main verb.
Then, we count the occurrences of the dependency rela-
tions for relative or other subordinated clauses on this path.
However, they are only taken into account if the embedded
clause is not located on the border of the superior clause.

5.2 Distance between Verb and Separable
Prefix

In German, so-called separable prefix verbs are split into
two words in clauses with main clause word order, for ex-
ample einladen (invite)⇒ Er lädt . . . ein. (He invites).
If the verb is far away from the verb prefix, it can be diffi-
cult for readers to associate both parts.

5.3 Number of Words per Nominal Phrase
According to (19), long NPs degrade readability. Hence,
some information from the long NP should better be placed
in a subordinate clause or a new sentence. Therefore we
count the average number of words contained in an NP
where a larger number results in a worse readability score.
Note that we only consider maximal NPs (i.e., NPs not con-
tained in a larger NP); otherwise a large indicator value for

the long NP could be compensated by small indicator val-
ues for the contained NPs which should be avoided.

6 Semantic indicators

6.1 SN Quality
An incomplete parse from WOCADI is mainly caused by
syntactic or semantic defects of the sentence since the
parser builds the syntactic structure as a dependency tree
and the semantic representation as an SN in parallel. There-
fore, the indicator SN quality is a mixed one: semantic
and syntactic. Consider for instance the two sentences Das
Werk kam vor allem bei jungen Theatergängern an. Schul-
busse reisten an, um es sich anzusehen.5 (The work was
very well accepted by young visitors of the theater. School
buses arrived to watch it.) The second sentence, which is
syntactically correct, is semantically incorrect and there-
fore difficult to read. The semantic lexicon employed by
the parser requires that the first argument (which plays the
semantic role of the agent) of ansehen.1.16 (to watch) is of
type human. Thus, this sentence is rejected by the parser
as incorrect. In other cases the sentence might be accepted
but considered as semantically improbable. This informa-
tion, which is provided by the parser, is used by DeLite and
turned out to be very valuable for estimating text readabil-
ity.

Three parse result types are differentiated: complete
parse (around 60% of the sentences; note that this means
complete syntactic structure and semantic representation at
the same time), chunk parse (25%), failure (15%).7 These
three cases are mapped to different numerical values of the
indicator SN quality. Additionally, if a full parse or a chunk
parse is available, the parser provides a numerical value
specifying the likelihood that the sentence is semantically
correct which is determined by several heuristics. This in-
formation is incorporated into the quality score of this in-
dicator too.8

6.2 Number of Propositions per Sentence
DeLite also looks at the number of propositions in a sen-
tence. More specifically, all SN nodes are counted which
have the ontological sort si(tuation) (10, p. 412) or one of
its subsorts. In a lot of cases, readability can be judged
more accurately by the number of propositions than by sen-
tence length or similar surface-oriented indicators. Con-
sider for instance a sentence containing a long list of NPs:
Mr. Miller, Dr. Peters, Mr. Schmitt, Prof. Kurt, . . . were

5from the newspaper Schleswig-Holstein am Sonntag, 2007
6Note that the readings of a lexeme are distinguished by numerical

suffixes.
7The absence of a complete parse is problematic only for a part of

the indicators, mainly deep syntactic and semantic ones. And even for
some of these indicators, one can define fallback strategies to approximate
indicator values by using partial results (chunks).

8Naturally, this indicator depends strongly on the applied parser. A
different parser might lead to quite different results.

432 Informatica 32 (2008) 429–435 T. vor der Brück et al.

c2o
SUB this/der.4

CAUS

((RRRRRRRRRRR

c280io∨oa
SUB speed/geschwindigkeit

c292st
SUBR val.0ARG1

oo

c9?decl.-sent.dn
SUBS achieve/bewirken

TEMP past.0

ARG1

OO

ARG2 //

MODL
²²

c284da
SUBS reduce/reduzieren

TEMP present.0

AFF

OO

AGT //

CSTR
²²

INIT
66mmmmmmmmmmm

RSLT

((QQQQQQQQQQQ

c246d
SUB driver/fahrer

can.0/können.0md
c250as

SUBS fear/angst

CSTR
²²

c291st
SUBR val.0

ARG1

aaBBBBBBBBBBBBBBBBBBBBBBBBB

c255d∨io
PRED neighbor/nachbar

Figure 2: Simplified SN for the corpus sentence Das könnte bewirken, dass der Fahrer aus Angst vor den Nachbarn die
Geschwindigkeit reduziert. (This could achieve that the driver reduces the speed for fear of the neighbors.)

present. Although this sentence is quite long it is not diffi-
cult to understand (14). In contrast, short sentences can be
dense and contain many propositions, e.g., concisely ex-
pressed by adjective or participle clauses.

6.3 Number of Connections between SN
Nodes/Discourse Entities

The average number of nodes which are connected to an
SN node is determined. A large value often indicates a
lot of semantic dependencies. For this indicator, the arcs
leading to and leaving from an SN node are counted. Note
that the evaluation showed that better results (stronger cor-
relation and higher weight) are achieved if only SN nodes
are regarded which are assigned the ontological sort object
(10, p. 409–411). These SN nodes roughly represent the
discourse entities of a sentence.

6.4 Length of Causal and Concessive Chains

Argumentation is needed to make many texts readable. But
if an author puts too many ideas in too few words, the pas-
sage becomes hard to read. For example, the following
sentence from a newspaper corpus has been automatically
identified as pathologic because it contains three causal re-
lations (CAUS and CSTR in Figure 2) chained together: Das
könnte bewirken, dass der Fahrer aus Angst vor den Nach-
barn die Geschwindigkeit reduziert. (This could achieve
that the driver reduces the speed for fear of the neighbors.).
Again, length measurements on the surface will not help
to detect the readability problem, which exists for at least
some user groups. Splitting such a sentence into several
ones is a way out of too dense argumentation.

7 Evaluation

To judge the viability of our approach, we conducted an
online readability study with 500 texts, more than 300 par-
ticipants, and around 3,000 human ratings for individual
texts. The participants rated the text readability on a 7 point
Likert scale (16).

Almost 70 % of the participants were between 20 and
40 years old; the number of participants over 60 was very
small (3 %). The participants were mainly well-educated.
58 % of them owned a university or college degree. There
is none who had no school graduation at all.

Our text corpus originated from the municipal domain
and differs significantly from newspaper corpora, which
are widely used in computational linguistics. It contains
a lot of ordinances with legal terms and abbreviations, e.g.,
ğ 65 Abs. 1 Satz 1 Nr. 2 i.V.m. ğ 64 Abs. 1 Satz 2 LWG NRW
(section 65.1.1 (2) in connection with section 64.1.2 LWG
NRW). This corpus has been chosen because local admin-
istrations in Germany have committed themselves to make
their web sites accessible; one central aspect of accessibil-
ity is simple language.

Figure 4 shows the mean absolute error (MAE) and the
root mean square error (RMSE) of DeLite’s global read-
ability score in contrast to the average user rating deter-
mined by a 10 fold cross-validation over all 500 test doc-
uments. The ordinate contains MAE and RMSE, the ab-
scissa, on a logarithmic scale, the number of neighbors
used. The lowest errors (MAE: 0.122, RMSE: 0.148) and
highest correlation (0.528) were obtained with 30 nearest
neighbors. The nearest neighbor algorithm determined the
weights of each indicator using an evolutionary algorithm.
The resulting indicator weights, in the case all indicators
are used simultaneously, are given in Table 1.

The correlations of the indicators in comparison with
the user ratings are displayed in Table 2. Correlation and
weights of deep syntactic and semantic indicators turned

A READABILITY CHECKER WITH. . . Informatica 32 (2008) 429–435 433

Indicator Weight Type

Number of words per sentence 0.679 Sur
Passive without semantic agent 0.601 Syn/Sem
Number of word readings 0.520 Sem
Distance between verb and comple-
ment

0.518 Syn

SN quality 0.470 Syn/Sem
Number of connections between dis-
course entities

0.467 Sem

Inverse concept frequency 0.453 Sem
Clause center embedding depth 0.422 Syn
Number of sentence constituents 0.406 Syn
Maximum path length in the SN 0.395 Sem
Number of causal relations in a chain 0.390 Sem
Number of compound simplicia 0.378 Sur
.
Word form frequency 0.363 Sur
.
Number of connections between SN
nodes

0.326 Sem

Table 1: Indicators with largest weights in our readability
function (Syn=syntactic, Sem=semantic, and Sur=surface
indicator type).

Indicator Corr. Type

Number of words per sentence 0.430 Sur
SN quality 0.399 Syn/Sem
Inverse concept frequency 0.330 Sem
Word form frequency 0.262 Sur
Number of reference candidates for a
pronoun

0.209 Sem

Number of propositions per sentence 0.180 Sem
Clause center embedding depth 0.157 Syn
Passive without semantic agent 0.155 Syn/Sem
Number of SN nodes 0.148 Sem
Pronoun without antecedent 0.140 Sem
Number of causal relations in a chain 0.139 Sem
Distance between pronoun and an-
tecedent

0.138 Sem

Maximum path length in the SN 0.132 Sem
Number of connections between dis-
course entities

0.132 Sem

Table 2: Indicators most strongly correlated with user rat-
ings (Syn=syntactic, Sem=semantic, and Sur=surface indi-
cator type).

Figure 3: DeLite screenshot showing a sentence which con-
tains a large distance between verb (lädt) and separable
verb prefix (ein). English translation for the example sen-
tence: Dr. Peters invites Mr. Müller and his wife for dinner
on Thursday, Jan. 31, 2006 to his villa in Düsseldorf.

out to be quite comparable to surface-oriented indicators.
Finally as a baseline, DeLite was compared to the read-

ability index resulting from employing the nearest neighbor
approach only on the indicators of the Flesch readability in-
dex, i.e. average sentence length and number of syllables
per word. The correlation of DeLite with the user ratings
is 0.528, which clearly outperforms the Flesch indicators
(0.432).

8 User interface

Besides a low-level server interface, DeLite provides a
graphical user interface for comfortable usage. In Fig-
ure 3, a screenshot of this interface is shown.9 The types
of readability problems found in the text are displayed on
the right side. If the user clicks on such a type, the asso-
ciated difficult-to-read text segments are highlighted. Ad-
ditional support for the user is provided if he/she wants to
have more information about the readability problem. By
moving the mouse pointer over the highlighted text seg-
ment, a fly-over help text with a more detailed description
is displayed. Moreover, if the user clicks on the highlighted
segment, additional text segments are marked in bold face.
These additional segments are needed to fully describe and
explain specific readability problems. Figure 3 shows the
readability analysis of a verb which is too far away from
its separable prefix (see Sect. 5.2). The prefix ein- is high-
lighted as problematic and additionally the main verb lädt
is marked in bold face for better understanding.

9Note that the classification of indicators is slightly different in the
screenshot than in this article. This is caused by the fact that we want
to evaluate surface-oriented indicators in comparison to linguistically in-
formed indicators.

434 Informatica 32 (2008) 429–435 T. vor der Brück et al.

0.2

0.10.1
50010030101

Number of neighbors

E
rr

or

MAE

3

3
33333333 3 33333333

3 333

3
RMSE+

+
++++++++ + ++++++++ + +++

+

Figure 4: Mean absolute error (MAE) and root mean square
error (RMSE) between the DeLite readability score and the
average user rating of a text depending on the number of
neighbors.

9 Conclusion

An overview of some typical examples of deep syntactic
and semantic readability indicators has been given. In our
evaluation, it turned out that these indicators have weights
and correlations comparable to the best surface-based indi-
cators in accurately judging readability.

In the future, the parser employed in DeLite will be con-
tinually improved. Currently, DeLite is only a diagnosis
tool; we will investigate how DeLite can propose refor-
mulations for improving readability. Finally, the automatic
distinction between real ambiguities that exist for humans
and spurious ambiguities that exist only for machines (e.g.,
NLP methods like PP attachment and interpretation) must
be sharpened.

Deep syntactic and semantic indicators turned out to be
quite valuable for assessing readability and are expected to
be a vital part of future readability checkers.

Acknowledgments

We wish to thank our colleagues Christian Eichhorn, Ingo
Glöckner, Johannes Leveling, and Rainer Osswald for their
support for this work. The research reported here was in
part funded by the EU project Benchmarking Tools and
Methods for the Web (BenToWeb, FP6-004275).

References
[1] Amstad, T. (1978). Wie verständlich sind unsere

Zeitungen? Ph.D. thesis, Universität Zürich, Zurich,
Switzerland.

[2] Chall, J. and Dale, E. (1995). Readability Revisited:
The New Dale-Chall Readability Formula. Brookline,
Massachusetts: Brookline Books.

[3] Chandrasekar, R. and Srinivas, B. (1996). Automatic
induction of rules for text simplification. Technical
Report IRCS Report 96-30, University of Pennsylva-
nia, Philadelphia, Pennsylvania.

[4] Flesch, R. (1948). A new readability yardstick. Jour-
nal of Applied Psychology, 32:221–233.

[5] Groeben, N. (1982). Leserpsychologie: Textverständ-
nis – Textverständlichkeit. Münster, Germany: As-
chendorff.

[6] Hartrumpf, S. (2003). Hybrid Disambiguation in Nat-
ural Language Analysis. Osnabrück, Germany: Der
Andere Verlag.

[7] Hartrumpf, S.; Helbig, H.; Leveling, J.; and Osswald,
R. (2006). An architecture for controlling simple lan-
guage in web pages. eMinds: International Journal
on Human-Computer Interaction, 1(2):93–112.

[8] Hartrumpf, S.; Helbig, H.; and Osswald, R. (2003).
The semantically based computer lexicon HaGenLex
– Structure and technological environment. Traite-
ment automatique des langues, 44(2):81–105.

[9] Heilman, M. J.; Collins-Thompson, K.; Callan, J.;
and Eskenazi, M. (2007). Combining lexical and
grammatical features to improve readability measures
for first and second language texts. In Proceed-
ings of the Human Language Technology Conference.
Rochester, New York.

[10] Helbig, H. (2006). Knowledge Representation and the
Semantics of Natural Language. Berlin, Germany:
Springer.

[11] Jenge, C.; Hartrumpf, S.; Helbig, H.; Nordbrock,
G.; and Gappa, H. (2005). Description of syntactic-
semantic phenomena which can be automatically con-
trolled by NLP techniques if set as criteria by certain
guidelines. EU-Deliverable 6.1, FernUniversität in
Hagen.

[12] Kimball, J. (1973). Seven principles of surface struc-
ture parsing in natural language. Cognition, 2:15–47.

[13] Klare, G. (1963). The Measurement of Readability.
Ames, Iowa: Iowa State University Press.

[14] Langer, I.; von Thun, F. S.; and Tausch, R. (1981).
Sich verständlich ausdrücken. München, Germany:
Reinhardt.

[15] Larsson, P. (2006). Classification into Readability
Levels. Master’s thesis, Department of Linguistics
and Philology, University Uppsala, Uppsala, Sweden.

[16] Likert, R. (1932). A technique for the measurement
of attitudes. Archives of Psychology, 140:1–55.

A READABILITY CHECKER WITH. . . Informatica 32 (2008) 429–435 435

[17] McCarthy, P.; Lightman, E.; Dufty, D.; and McNa-
mara, D. (2006). Using Coh-Metrix to assess distri-
butions of cohesion and difficulty: An investigation
of the structure of high-school textbooks. In Proc. of
the Annual Meeting of the Cognitive Science Society.
Vancouver, Canada.

[18] Mierswa, I.; Wurst, M.; Klinkenberg, R.; Scholz,
M.; and Euler, T. (2006). Yale: Rapid prototyping
for complex data mining tasks. In Proc. of KDD.
Philadelphia, Pennsylvania.

[19] Miller, G. (1962). Some psychological studies of
grammar. American Psychologist, 17:748–762.

[20] Rascu, E. (2006). A controlled language approach
to text optimization in technical documentation. In
Proc. of KONVENS 2006, pp. 107–114. Konstanz,
Germany.

[21] Segler, T. M. (2007). Investigating the Selection
of Example Sentences for Unknown Target Words in
ICALL Reading Texts for L2 German. Ph.D. thesis,
School of Informatics, University of Edinburgh, Ed-
inburgh, UK.

[22] Siddharthan, A. (2003). Syntactic simplification and
text cohesion. Ph.D. thesis, Computer Laboratory,
University of Cambridge, Cambridge, UK.

436 Informatica 32 (2008) 429–435 T. vor der Brück et al.

 Informatica 32 (2008) 437–444 437

Improving Morphosyntactic Tagging of Slovene Language through

Meta-tagging

Jan Rupnik, Miha Grčar and Tomaž Erjavec
Jožef Stefan Institute, Jamova cesta 39, Ljubljana
E-mail : {jan.rupnik, miha.grcar, tomaz.erjavec}@ijs.si
http://kt.ijs.si

Keywords: PoS tagging, meta-tagger, Slavic languages, FidaPLUS, JOS corpus, machine learning, Orange, decision
trees, CN2 rules, Naive Bayes

Received: June 17, 2008

Part-of-speech (PoS) or, better, morphosyntactic tagging is the process of assigning morphosyntactic

categories to words in a text, an important pre-processing step for most human language technology

applications. PoS-tagging of Slovene texts is a challenging task since the size of the tagset is over one

thousand tags (as opposed to English, where the size is typically around sixty) and the state-of-the-art

tagging accuracy is still below levels desired. The paper describes an experiment aimed at improving

tagging accuracy for Slovene, by combining the outputs of two taggers – a proprietary rule-based

tagger developed by the Amebis HLT company, and TnT, a tri-gram HMM tagger, trained on a hand-

annotated corpus of Slovene. The two taggers have comparable accuracy, but there are many cases

where, if the predictions of the two taggers differ, one of the two does assign the correct tag. We

investigate training a classifier on top of the outputs of both taggers that predicts which of the two

taggers is correct. We experiment with selecting different classification algorithms and constructing

different feature sets for training and show that some cases yield a meta-tagger with a significant

increase in accuracy compared to that of either tagger in isolation.

Povzetek: V članku je opisan poskus izboljšanja točnosti označevanja slovenskih besedil z združevanjem

dveh neodvisnih orodij za označevanje.

1 Introduction

Morphosyntactic tagging, also known as part-of-
speech tagging or word-class syntactic tagging is a
process in which each word appearing in a text is
assigned an unambiguous tag, describing the
morphosyntactic properties of the word token. Such
tagging is the basic pre-processing step for a number of
applications or more advanced analysis steps, such as
syntactic parsing. Morphosyntactic tagging is, in general,
composed of two parts: the program first assigns, on the
basis of a morphological lexicon all the possible tags that
a word form can be associated with (morphological look-
up), and then chooses the most likely tag on the basis of
the context in which the word form appears in the text
(disambiguation). For words not appearing in the lexicon,
various taggers either ignore them or employ heuristics
to guess at their tag.

Unlike English, morphologically richer Slavic
languages such as Czech (Hajič and Hladka, 1998) or
Slovene typically distinguish more than a thousand
morphosyntactic tags. In the multilingual MULTEXT-
East specification (Erjavec, 2004) almost 2,000 tags
(morphosyntactic descriptions, MSDs) are defined for
Slovene. MSDs are represented as compact strings, with
positionally coded attribute values, so they effectively
serve as shorthand notations for feature-structures. For
example, the MSD Agufpa expands to Category =
Adjective, Type = general, Degree =

undefined, Gender = feminine, Number =

plural, Case = accusative.
Having such a large number of tags makes assigning

the correct one to each word token a much more
challenging task than it is e.g. for English. The problem
for Slovene has been exacerbated by the lack of large and
available validated tagged corpora, which could serve as
training sets for statistical taggers.

Recently, new annotated language resources have
become available for Slovene. FidaPLUS1 (Arhar &
Gorjanc, 2007) is a 600 million word monolingual
reference corpus automatically annotated with
MULTEXT-East MSDs by the Slovene HLT company
Amebis2. But while FidaPLUS is freely available for
research via a Web concordancer, it is not generally
available as a dataset. In order to remedy the lack of
publicly available annotated corpora for HLT research on
Slovene, the JOS project (Erjavec and Krek, 2008) is
making available two corpora under the Creative
Commons license. Both contain texts sampled from
FidaPLUS, with the smaller jos100k containing 100,000
words with fully validated morphosyntactic annotations,
and the larger, jos1M having 1 million words, and
partially hand validated annotations – project resources
preclude fully validating the latter.

Previous experiments (Erjavec et al., 2000) showed
that from various publicly accessible taggers the best

1 http://www.fidaplus.net/
2 http://www.amebis.si/

438 Informatica 32 (2008) 437–444 J. Rupnik et al.

results were achieved by TnT (Brants, 2000). TnT is a
Hidden Markov Model tri-gram tagger, which also
implements an unknown-word guessing module. It is fast
in training and tagging, and is able to accommodate the
large tagset used by Slovene.

Having the validated jos100k at our disposal, we
experimented with training TnT and seeing how its errors
compare to the ones assigned by the Amebis tagger. It
turned out that the two taggers are comparable in
accuracy, but make different mistakes. This gave us a
method of selecting the words that should be manually
corrected in jos1M – only those tokens where the
annotations between the taggers differ were selected for
manual inspection. This approach concentrated on
validating the words where state-of-the-art taggers are
still able to make correct decisions, at the price of
ignoring cases where both taggers predict the same but
incorrect tag, i.e. the truly difficult cases.

Having several automatically tags for each word also
offers the possibility of combining their outputs in order
to increase accuracy, say, over the whole FidaPLUS
corpus. Experiments in combining PoS taggers have been
attempted before, using various learning strategies, and
for various languages, e.g. voting, stacking, etc. for
Swedish (Sjöbergh, 2003) or multi-agent systems for
Arabic (Othmane Zribi et al., 2006). An experiment,
more similar to ours, is reported in Spoustová et al.
(2007) for Czech, also using a rich positional tagset,
where several stochastic taggers are combined with a rule
based one; the rule based tagger is used predominantly as
a pre-disambiguation step, to filter out unacceptable tags
from the ambiguity classes of the tokens.

This paper presents a similar experiment, which,
however, uses only two independent taggers therefore
precluding combination methods such as voting or
pipelining. But as in the Czech case, we also need to deal
with a very large and positionally encoded tagset.

The rest of this paper is structured as follows:
Section 2 presents the dataset used in the experiments,
Section 3 explains the methods used to combine the
output of the taggers, Sections 4 and 5 give the results of
experiments on the jos100k and jos1M corpora with
different methods and features, and Section 6 gives the
conclusions and directions for further work.

2 Dataset

The dataset used in the first set of experiments is based
on the jos100k corpus; the corpus contains samples from
almost 250 texts from FidaPLUS, cca. 1,600 paragraphs
or 6,000 sentences. The corpus has just over 100,000
word tokens, and, including punctuation, 120,000 tokens.
jos100k contains only manually validated MSDs, of
which 1,064 different ones appear in the corpus.

For the dataset we added MSDs assigned by Amebis
and TnT to the manually assigned ones. Two sentences
from the dataset are given in Figure 1. Annotations
marking texts and paragraphs have been discarded and
end of sentence is marked by an empty line. Punctuation
is tagged with itself.

Prišlo Vmep-sn Vmep-sn Vmep-sn

je Va-r3s-n Va-r3s-n Va-r3s-n

do Sg Sg Sg

prerivanja Ncnsg Ncnsg Ncnsg

in Cc Cc Cc

umrla Vmep-sf Vmep-sf Vmep-sf

je Va-r3s-n Va-r3s-n Va-r3s-n

. . . .

Tega Pd-nsg Pd-msa Pd-msg

se Px------c Px------c Px------c

sploh Q Q Q

nisem Va-r1s-y Va-r1s-y Va-r1s-y

zavedel Vmep-sm Vmep-sm Vmep-sm

. . . .

Figure 1: Example stretch of the corpus dataset (“Prišlo

je do prerivanja in umrla je. Tega se sploh nisem

zavedel.”). First column is the word-form, second the
gold standard manually assigned tag, third the one
assigned by TnT, and the fourth by Amebis. Note the
first word of the second sentence, where both taggers
make a mistake.

The source FidaPLUS corpus also contains, for each
word token, all possible MSDs that could be assigned to
it, i.e. its ambiguity class. Based on this information, we
computed the average per-word MSD ambiguity which
turns out to be 3.13 for the jos100k corpus. So, on the
average, a tagger needs to choose the correct MSD tag
between three possibilities. Note that disambiguation is
only possible for known words.

2.1 Amebis MSDs

The Amebis MSDs were taken from the source
FidaPLUS corpus; as mentioned, the Amebis tagger is
largely a rule-based one, although with heuristics and
quantitative biases. The tagger uses a large lexicon,
leaving only 2% of the word tokens in jos100k unknown.
Amebis doesn’t tag these words, and they have all been
given a distinguished PoS/MSD “unknown”.
Furthermore, FidaPLUS is annotated according to the
MULTEXT-East specification, while the JOS corpus
uses a modification, based on, but different from the
MULTEXT-East/FidaPLUS one. Differences concern
reordering of attribute positions, changes in allowed
values, etc., as well as lexical assignment. For the most
part an information-preserving conversion is possible,
but for MSDs (attributes) of some lexical items only
heuristics can be used for the conversion. Taking into
account that all Amebis “unknowns” are by definition
wrong, as all words are manually annotated with specific
MSDs, and that a certain number of errors is introduced
by the tagset mapping, Amebis obtains 87.9% accuracy
on all tokens (incl. punctuation) in the dataset.

IMPROVING MORPHOSYNTACTIC TAGGING... Informatica 32 (2008) 437–444 439

2.2 TnT MSDs

The TnT tagger was trained on the dataset itself, using
10-fold cross-tagging. The dataset was split into 10 parts,
with 9 folds used for training, and the remaining fold
tagged with the resulting model, and this process
repeated for all 10 folds. As the lexical stock of jos100k
is small, the tagging model used a backup lexicon which
was extracted from the FidaPLUS corpus and its
annotations. In other words, tri-gram statistics and
lexicon containing uni-gram statistics of word-forms
(their ambiguity classes) of frequent words were learned
from jos100k, while less frequent words obtained their
ambiguity classes from MSDs assigned by the Amebis
tagger. Given such a tagging set-up, the obtained
accuracy over the all dataset tokens (incl. punctuation)
for TnT is 88.7%, slightly better than Amebis; but TnT
has the advantage of learning how to correctly tag at least
some unknown words (such as those marked as
“foreign”, i.e. tokens in spans of non-Slovene text), as
well as having less problems with tagset conversion.
Nevertheless, on the dataset it performs better than
Amebis, so the TnT accuracy can be taken to constitute
the baseline for the experiment.

2.3 Error comparison

Table 1 compares the errors made by the taggers against
the gold standard. The first line gives the complete size
of the corpus in words. The second gives the number of
correct MSD assignment to word tokens for TnT (86.6%
per-word accuracy), and the third for Amebis (85.7%).
The fourth line covers cases where both taggers predict
the correct MSD, for 78% of the words.

Lines 5 and 6 cover cases where one tagger correctly
predicts the tag, while the other makes a mistake. These
two lines cover a significant portion (2/3) of all the
errors, so if such mistakes can be eliminated by deciding
which tagger made the correct choice, the gains in
accuracy are considerable.

The last two lines indicate upper bounds on the gains
achieved by concentrating on choosing the correct tag.
Line 7 gives cases where both taggers agree, but on an
incorrect tag (3.2%), and line 8 the number of cases
where both are wrong, but in different ways (2.4%); the
upper bound on combination accuracy is thus 94.3%.

Let us look at two typical examples of cases 7 and 8.
An example of both taggers being wrong, but agreeing
on the assigned tag is exemplified in the fragment “ni

mogoče povedati” (it is not possible to tell) where
“mogoče” should be an adverb but both taggers assign it
an adjectival tag. An example of both taggers being
wrong in different ways is the fragment “ni

priporočene/Adj zgornje/Adj mejne/Adj vrednosti/Adj”

(there is no recommended upper bound value). The
correct tag for the noun is Ncfsg, i.e. feminine singular
genitive, the genitive being determined by the (long
distance) dependency on “ni”. The Amebis tagger
correctly predicts this tag, while TnT makes a mistake,
and assigns to the noun the plural accusative. As
adjectives must agree with the noun in gender, number
and case, the three adjectives preceding the noun must

also be tagged as feminine singular genitive. Here both
taggers are wrong: while TnT correctly posits the
agreement between the noun and adjectives, all the
adjective tags are wrong, due to the noun being
incorrectly tagged. Amebis, on the other hand, does not
pick up the agreement, and tags all three adjectives as
masculine ones.

 Words Gold Amebis TnT Gloss

1 100,003 MSD1
Words in
dataset

2 86,623 MSD1 MSD1
TnT tagger
correct

3 85,718 MSD1 MSD1
Amebis tagger
correct

4 78,018 MSD1 MSD1 MSD1
Both taggers
correct

5 7,700 MSD1 MSD1 MSD2
Amebis correct,
TnT error

6 8,605 MSD1 MSD2 MSD1
Amebis error,
TnT correct

7 3,232 MSD1 MSD2 MSD2
Both wrong,
and identical

8 2,448 MSD1 MSD2 MSD3
Both wrong,
and different

Table 1: Comparison of tagging accuracy of Amebis and
TnT over the 100k dataset.

3 Combining the taggers

As mentioned, our meta-tagger is built on top of two
taggers, the Amebis rule-based tagger and TnT. The sole
task of the meta-tagger is to decide which tag to consider
correct. The meta-tagger is implemented as a classifier
which, if the two underlying taggers disagree, classifies
the case into one of the two classes indicating which of
the two taggers is more likely to be correct. To train the
classifier, we needed two things: a way to describe a case
with a set of features, and a classification algorithm. The
following section describes the feature construction
process and the subsequent section the classification
algorithms we tried out for this task.

3.1 Feature construction

To be able to train the classifier we needed to describe
each case with a set of features. We decided to keep our
meta-tagger relatively simple and to construct features
solely out of tags predicted by the underlying taggers.
Alternatively, we could compute content features as well
(such as n-grams, prefixes, and suffixes) as it is the case
with the SVM-based taggers such as SVMTool (Giménez
& Márquez, 2004).

For training and testing we used the dataset
discussed in Section 2, with each word assigned three
tags: the correct tag (assigned manually), the tag assigned
by TnT, and the tag assigned by the Amebis tagger. Each
of these three tags can be decomposed into 15 attributes
such as the part-of-speech category, type, gender,
number, and so on. For a given tag, not all attribute

440 Informatica 32 (2008) 437–444 J. Rupnik et al.

values are set, therefore the data is sparse in this sense
(e.g. the value of gender and number for prepositions is
“undefined”).

The attributes of the tags assigned by the two taggers
(but not those of the manually assigned tags) were
directly used as features for training. In addition, we
constructed features that indicate whether the two taggers
agree on a particular attribute value or not (the so called
agreement features). The example was labeled according
to the tagger which correctly tagged the word (the label
was thus either TnT or Amebis). Note that we built a
training feature vector only when the two taggers
disagreed and one of them was correct (if none of the
taggers was correct, we were unable to label the feature
vector). The entire feature construction process is
illustrated in Figure 2.

For the first set of experiments we used the tag
attributes and agreement features of the current word to
construct a feature vector (termed non-contextualized
features in Figure 2). In the second set of experiments, on
the other hand, we also added tag features (from both,
TnT and Amebis) from the previous and the next word
(termed contextualized features in Figure 2). It is also
important to mention that we ran a set of experiments
where we excluded punctuation from the text and a set of
experiments where each different type of punctuation
was treated as a separate part-of-speech category (e.g.
POST=,) with all the other attributes set to “not
applicable”. Each of these settings gave slightly different
results. The results are discussed in Section 4 in more
detail.

3.2 Learning algorithms

We experimented with three different classification
algorithms: the Naive Bayes classifier, CN2 rule-
induction algorithm, and C4.5 decision tree building
algorithm. In this section, we briefly describe each of
them.

The Naive Bayes (NB) classifier is a probabilistic
classifier based on Bayes’ theorem.3 It naively assumes a
strong independence of features. Furthermore, it is a
black box classifier in the sense that its decisions are not
easily explainable.

CN2 is an if-then rule-induction algorithm (Clark &
Niblett, 1989). It is a covering algorithm meaning that
each new rule covers a set of examples which are thus
removed from the dataset. Unlike the Naive Bayes
classifier, the trained model (i.e. a set of induced rules)
provides an explanation for a decision (i.e. an if-then rule
that was taken into account when classifying the
example). Looking at the induced rules, it is also possible
to read, understand, and also verify the knowledge that
was discovered in the training set.

3 c.f. http://en.wikipedia.org/wiki/Naive_Bayes_classifier

~100,000 words:
…, prepričati, italijanske, pravosodne, oblasti, ...

Word: pravosodne
Correct tag: Agufpa
Amebis tag: Agufpa
TnT tag: Agufpn

The corresponding feature vector (non-contextualized):
Amebis tag attributes:
 POSA=Adjective, TypeA=general, GenderA=feminine, NumberA=plural,

 CaseA=accusative, AnimacyA=n/a, AspectA=n/a, FormA=n/a, PersonA=n/a,

 NegativeA=n/a, Degree=undefined, DefinitenessA=n/a, ParticipleA=n/a,

 Owner_NumberA=n/a, Owner_GenderA=n/a

TnT tag attributes:
 POST=Adjective, TypeT=general, GenderT=feminine, NumberT=plural,

 CaseT=nominative, AnimacyT=n/a, AspectT=n/a, FormT=n/a, PersonT=n/a,

 NegativeT=n/a, DegreeT=undefined, DefinitenessT=n/a, ParticipleT=n/a,

 Owner_NumberT=n/a, Owner_GenderT=n/a

Agreement features:
 POSA=T=yes, TypeA=T=yes, …, NumberA=T=yes, CaseA=T=no,

 AnimacyA=T=yes, …, Owner_GenderA=T=yes

 (Optionally)

Extended feature vector (contextualized):

Tag-related
features of the
previous word
(italijanske)

Tag and
agreement
features of the
current word
(pravosodne)

Tag-related
features of the
next word
(oblasti)

…

Figure 2: The feature construction process.

C4.5 is an algorithm for building decision trees; it is
based on information entropy4 (Quinlan, 1993). C4.5
uses the fact that each attribute of the data can be used to
make a decision that splits the data into smaller subsets.
It examines the normalized information gain (difference
in entropy) that results from choosing an attribute for
splitting the data. The attribute with the highest
normalized information gain is the one used to make the
decision. This process is repeated several times on
smaller and smaller subsets of data. Similarly to CN2
(the rule-induction algorithm), C4.5 builds glass box
models. Unlike its predecessor, the ID3 algorithm, C4.5
knows how to handle data with missing values (i.e.
sparse data) and prunes the tree by cutting off branches
that do not contribute to the classification accuracy.

4 c.f. http://en.wikipedia.org/wiki/C4.5_algorithm

In this case,
Amebis is
correct, TnT is
not. The
corresponding
feature vector
will thus be
labeled
“Amebis”.

IMPROVING MORPHOSYNTACTIC TAGGING... Informatica 32 (2008) 437–444 441

4 Experiments

In this section, we present tagging accuracies of the
meta-tagger for different combinations of feature sets and
underlying classification models. The size of the set of
examples for training and testing is 16,305 and consists
of 8,605 cases where TnT tagger predicted the correct tag
and Amebis tagger did not and 7,700 cases where
Amebis was correct and TnT was not. All experiments
were conducted with the Orange data mining tool
(Demšar et al., 2004). 5-fold cross validation method was
used to evaluate the tagging accuracy of the meta-tagger
in all experimental scenarios. We first discuss two
baseline models for the meta-tagger, after that we define
several different feature sets, then continue with the
description of non-contextualized models and end the
section with models that incorporate context features.

4.1 Baselines

The first baseline is the majority classifier which always
predicts that TnT tagger is correct. This classifier
achieves the accuracy of 52.8%.

The second baseline model is a Naive Bayes model
trained on only one feature: Amebis MSD. This is a very
simple model, since to classify a new example (with only
one feature f , that is the Amebis MSD), all one needs to
do is count the number of cases with MSD equal to f

where Amebis was correct and the number of cases with
MSD equal to f where Amebis was incorrect (P(x = f, y =

amebis-correct) and P(x = f, y = amebis-incorrect)) and
predict the class (amebis-correct or amebis-incorrect)
with the higher count. This model achieves the accuracy
of 70.95% (approx. 18% higher than the first baseline).

Let us consider two examples. Assume that there
were 200 cases where Amebis predicted the tag Pd-nsg,
and it was correct in 150 of these cases (this means the
TnT was correct in the remaining 50 cases). This means
that P(Amebis-predicts: Pd-nsg, Amebis-correct) = 0.75.
In this case the meta-tagger would always predict the tag
Pd-nsg if Amebis predicted it as well.

Now, if we assumed that Amebis was correct in 80
of 200 cases, P(Amebis-predicts: Pd-nsg, Amebis-
correct) = 0.4), then the meta-tagger would always
predict the tag predicted by TnT, given that Amebis
predicted Pd-nsg (the evidence in the training data tells
us not to trust the Amebis tagger, since the probability of
it being correct is less than 0.5).

4.2 Feature sets

We will now describe the features for the non-
contextualized models. The first set of features for the
non-contextualized models are the so called FULL
features; they only include full Amebis MSD and full
TnT MSD (two features). The second set of features
called DEC is a decomposition of the FULL features as
described in Section 3.1 (45 features: 15 Amebis
features, 15 TnT features, 15 Agreement features). The
third set of features, BASIC, is a subset of DEC features,
where we only take the features corresponding to
Category, Type, Gender, Number and Case into account

(10 features: 5 for Amebis and 5 for TnT). The final set
of features, ALL, is a union of FULL and DEC (47
features).

Feature sets for contextualized models (with and
without punctuation) are extensions of non-
contextualized feature sets, where the features of
examples surrounding our training example are added
(see Section 3.1). The context features (i.e. the features
of the previous and next word) are the same ones as that
of the current word except for the Agreement features
which are only computed for the current word (in the
DEC feature set we thus keep only 15 Agreement
features: the ones of the current word).

Features ALL, when contextualized, include six
features for MDS tags (Amebis-Prev, Amebis, Amebis-
Next, TnT-Prev, TnT, TnT-Next), 45 for Amebis tag
features (3 × 15 features), 45 for TnT tag features and 15
Agreement features, which sums up to 111 features.

4.3 Non-contextualized models

Experiments with features that do not take context into
account (Table 2) show that C4.5 is the most robust
classifier with respect to different feature sets and that it
can achieve the highest accuracy. We can also observe
that tag features are not very suitable for the Naive Bayes
classifier because the conditional independence
assumptions are too strongly violated.

Feature set /
Classifier FULL DEC BASIC ALL

NB 73.90 67.55 67.50 69.65

C4.5 73.51 74.70 74.23 73.59

CN2 60.61 72.57 71.68 70.90

Table 2: Non-contextualized models (accuracy in %).
Feature sets FULL, DEC, BASIC and ALL are explained
in Section 4.2.

Even though the CN2 algorithm results in slightly lower
accuracy it can prove useful since the rules that it
produces are easy to interpret and thus discover the
strengths and weaknesses of the TnT and Amebis
classifiers (see Figure 3).

442 Informatica 32 (2008) 437–444 J. Rupnik et al.

Figure 3: List of rules discovered by CN2 in Orange.
Rules are ordered by their quality which is a function of
rule coverage and rule accuracy. The second rule, for
example, tells us that if Amebis predicted locative case
and TnT predicted some other case and TnT predicted
common type, then the meta-tagger should predict the
same tag as Amebis. The first rule, IF
Amebis_POS=[‘Residual’] AND TnT_Form=[‘0.000’]
THEN Correct = TnT, covers the examples mentioned in
Section 2.1, where Amebis predicts POS tag “unknown”
(by definition incorrect). The rule says that in such case,
TnT is always correct, which is what is expected.

4.4 Context and punctuation

When comparing the results of experiments with context,
we notice that taking punctuation into account (see
Section 3.1) is beneficial in almost all cases (see Tables 3
and 4). This can be explained by the fact that ignoring
punctuation can yield unintuitive context tags, for
instance the sequence of tags T1, T2, T3, where T1 is the
last word of a sentence, T2 the first word and T3 the
second word of the next sentence.

We notice that C4.5 can best benefit from extra
contextual features, whereas the performance of the other
algorithms does not change notably.

Feature set /
Classifier FULL DEC BASIC ALL

NB 73.10 68.29 67.96 70.55

C4.5 73.10 78.51 79.23 76.72

CN2 62.16 73.26 72.75 72.29

Table 3: Context without punctuation (accuracy in %).

Feature set /
Classifier FULL DEC BASIC ALL

NB 73.44 68.32 68.14 70.53

C4.5 74.18 78.91 79.73 77.68

CN2 62.23 74.27 72.82 73.01

Table 4: Context with punctuation (accuracy in %).

5 Large-scale experiment

In addition to the experiments on the jos100k corpus, we
also performed a large-scale experiment on a larger
subset of FidaPLUS, the jos1M corpus, consisting of
1,000,017 word tokens (without punctuation). The corpus
was first tagged by both taggers (i.e. Amebis and TnT).
Amebis is a rule-based tagger and does not require
training, TnT, on the other hand, was trained on the
complete jos100k corpus. Then, if (and only if) the two
taggers disagreed on a particular word token, the token
was manually validated. Consequently, we are unable to
determine cases when both taggers are correct or agree
on an incorrect tag. Dataset statistics (analogous to the
ones in Table 1) are given in Table 5.

 Words Gold Amebis TnT Gloss

1 1,000,017 Words in
dataset

2 809,897 MSD1 MSD1
Both taggers
agree

3 75,378 MSD1 MSD1 MSD2 Amebis correct,
TnT error

4 88,657 MSD1 MSD2 MSD1
Amebis error,
TnT correct

5 26,085 MSD1 MSD2 MSD3 Both wrong,
and different

Table 5: The jos1M corpus statistics.

5.1 Experimental setting

We confronted Naive Bayes with C4.5 (building CN2
rules was computationally too expensive). We
experimented with all defined feature sets: FULL, DEC,
BASIC, and ALL, with and without context. Punctuation
was included in the contextualized cases. For some
reason, the C4.5 algorithm was unable to handle feature
sets FULL and ALL when contextualized. We speculate
that the implementation in Orange does not manage
memory efficiently when it comes to attributes with
1000+ different values. The results of the experiments
are presented in the following section.

5.2 Results

In this section, we present tables analogous to the ones in
Section 4. We show how the algorithms perform under
different feature sets. As already said, we do not show
results for the CN2 algorithm and for C4.5 under certain
conditions (denoted with “N/A”). The results fully
support our observations on the smaller jos100k corpus
and are presented in Tables 6 and 7. Note also that the
second baseline yields 72.39% accuracy on the jos1M
corpus.

IMPROVING MORPHOSYNTACTIC TAGGING... Informatica 32 (2008) 437–444 443

Feature set /
Classifier FULL DEC BASIC ALL

NB 73.93 66.85 66.67 69.81

C4.5 76.45 76.56 76.29 76.49

Table 6: The jos1M corpus – non-contextualized models
(accuracy in %).

Feature set /
Classifier FULL DEC BASIC ALL

NB 73.74 67.59 67.86 70.28

C4.5 N/A 84.18 84.01 N/A

Table 7: The jos1M corpus – context and punctuation
(accuracy in %).

6 Conclusions

The paper presents a meta-tagger built on top of two
taggers, namely the TnT HMM-based tagger and the
Amebis rule-based tagger. The purpose of the meta-
tagger is to decide which tag to take into account if the
two taggers disagree in a particular case.

The experimental results show that the two taggers
are quite orthogonal since very little information is
needed to get a significant increase in performance from
the first baseline.

Furthermore, using context can improve the
performance of some models and taking punctuation into
account when constructing context features is better than
ignoring it. C4.5 with context and punctuation features
achieves the highest accuracy, 79.73% on jos100k and
84.18% on jos1M, which results in a meta-tagger with
significantly higher accuracy than Amebis tagger or TnT
tagger. The overall accuracies are given in Figure 4. Note
that the first baseline is equal to the TnT overall
accuracy.

There are roughly 5% cases in which both taggers
assign an incorrect tag. By using the technique discussed
in this paper (i.e. rule inference), it would be possible to
learn under which conditions the two taggers are both
mistaken and thus alert the user about such tags.

Furthermore, it would be possible to apply our
technique on a per-attribute basis. We would be able to
predict incomplete tags, i.e. tags with some attributes
missing, where the missing attributes would be those
most likely predicted falsely by both taggers. This would
be very useful as guidance for human taggers preparing
the JOS corpus. The missing attributes would have to be
entered manually; the rest would only need to be
validated.

Tagging on a per-attribute basis and looking at cases
in which both taggers predict an incorrect tag will be the
focus of our future research. In addition, we will consider
including more taggers into the system. The main idea is
to develop taggers, specialized to handle cases in which
the two currently used taggers are not successful.

85.72

86.62

89.58

91.02

85.61

86.94

89.95

91.88

82

83

84

85

86

87

88

89

90

91

92

93

Amebis TnT Base2 (Naive Bayes

on only one feature;

see Section 4.1)

Best (Context w ith

punctuation, feature

set BASIC on

jos100k, DEC on

jos1M)

Experimental setting

O
v

e
ra

ll
 a

c
c
u

ra
c

y
 (

%
)

jos100k

jos1M

Figure 4: The overall accuracies (%). We can see that our
meta-tagger exhibits around 4%–5% overall
improvement over the two underlying taggers (i.e. TnT
and Amebis). For computing the accuracies on the jos1M
corpus, we needed to estimate the number of cases where
the two taggers agreed on a correct tag. Looking at the
statistics of the jos100k corpus (Table 1), we can see that
the taggers are correct in 96.4% of the cases where they
agree on the tag. Therefore, we computed the required
number as 96.4% of 809,897 which is 780,740.71.

Acknowledgements

The work described in this paper was supported in part
by grant ARRS J2-9180 “Jezikoslovno označevanje
slovenskega jezika: metode in viri” and EU 6FP-033917
SMART “Statistical Multilingual Analysis for Retrieval
and Translation”.

References

[1] Arhar, Š. and Gorjanc, V. (2007). Korpus
FidaPLUS: nova generacija slovenskega
referenčnega korpusa. Jezik in slovstvo, 52(2): 95–
110.

[2] Brants T. (2000). TnT – A Statistical Part-of-
Speech Tagger. In Proceedings of the Sixth Applied
Natural Language Processing Conference ANLP-
2000, 224–231.

[3] Clark, P. and Niblett, T. (1989). The CN2 Induction
Algorithm. Machine Learning, 3(4): 261–283.

[4] Demšar J., Zupan B. and Leban G. (2004). Orange:
From Experimental Machine Learning to
Interactive Data Mining. White Paper
(www.ailab.si/orange), Faculty of Computer and
Information Science, University of Ljubljana.

[5] Erjavec, T., Džeroski, S. and Zavrel, J. (2000).
Morphosyntactic Tagging of Slovene: Evaluating
PoS Taggers and Tagsets. In Proceedings of the
Second International Conference on Language
Resources and Evaluation (LREC’2000). ELRA,
Paris.

[6] Erjavec, T. (2004). MULTEXT-East Version 3:
Multilingual Morphosyntactic Specifications,
Lexicons and Corpora. In Proceedings of the Fourth

444 Informatica 32 (2008) 437–444 J. Rupnik et al.

International Conference on Language Resources
and Evaluation, LREC 2004, 1535–1538.

[7] Erjavec, T. and Krek, S. (2008). The JOS
morphosyntactically tagged corpus of Slovene. In
Proceedings of the Sixth International Conference
on Language Resources and Evaluation, LREC
2008.

[8] Giménez, J. and Márquez, L. (2004). SVMTool: A
General POS Tagger Generator Based on Support
Vector Machines. In Proceedings of the 4th
International Conference on Language Resources
and Evaluation (LREC'04).

[9] Hajič, J. and Hladka, B. (1998). Tagging Inflective
Languages: Prediction of Morphological Categories
for a Rich, Structured Tagset. COLING-ACL'98.
ACL.

[10] Quinlan, J.R. (1993). C4.5: Programs for Machine
Learning. Morgan Kaufmann Publishers, Inc.

[11] Sjöbergh, J. (2003). Combining POS-taggers for
improved accuracy on Swedish text. In NoDaLiDa
2003, 14th Nordic Conference on Computational
Linguistics. Reykjavik.

[12] Spoustová, D., Hajič, J., Votrubec, J., Krbec, P. and
Květoň, P. (2007). The Best of Two Worlds:
Cooperation of Statistical and Rule-Based Taggers
for Czech. Proceedings of the Workshop on Balto-
Slavonic Natural Language Processing. June 2007.
Prague, Czech Republic. Association for
Computational Linguistics.

[13] Zribi, C.B.O., Torjmen, A. and Ahmed, M.B.
(2006). An Efficient Multi-agent System
Combining POS-Taggers for Arabic Texts. In
Computational Linguistics and Intelligent Text
Processing. LNCS Volume 3878/2006, Springer.

 Informatica 32 (2008) 445-451 445

Improving Part-of-Speech Tagging Accuracy for Croatian by

Morphological Analysis

Željko Agić and Zdravko Dovedan
Department of Information Sciences, Faculty of Humanities and Social Sciences, University of Zagreb
Ivana Lučića 3, HR-10000 Zagreb, Croatia
E-mail: {zeljko.agic, zdravko.dovedan}@ffzg.hr

Marko Tadić
Department of Linguistics, Faculty of Humanities and Social Sciences, University of Zagreb
Ivana Lučića 3, HR-10000 Zagreb, Croatia
E-mail: marko.tadic@ffzg.hr

Keywords: part-of-speech tagging, morphological analysis, inflectional lexicon, Croatian language

Received: May 22, 2008

This paper investigates several methods of combining a second order hidden Markov model part-of-

speech (morphosyntactic) tagger and a high-coverage inflectional lexicon for Croatian. Our primary

motivation was to improve tagging accuracy of Croatian texts by using our newly-developed tagger

CroTag, currently in beta-version. We also wanted to compare its tagging results – both standalone and

utilizing the morphological lexicon – to the ones previously described in (Agić and Tadić 2006),

provided by the TnT statistical tagger which we used as a reference point having in mind that both

implement the same tagging procedure. At the beginning we explain the basic idea behind the

experiment, its motivation and importance from the perspective of processing the Croatian language.

We also describe tools – namely tagger and lexicon – and language resources used in the experiment,

including their implementation method and input/output format details that were of importance. With the

basics presented, we describe in theory four possible methods of combining these resources and tools

with respect to their operating paradigm, input and production capabilities and then put these ideas to

test using the F-measure evaluation framework. Results are then discussed in detail and conclusions and

future work plans are presented.

Povzetek: Opisana je nova metoda označevanja hrvaških besedil.

1 Introduction

After obtaining satisfactory results of the preliminary
experiment with applying a second order hidden Markov
model part-of-speech/morphosyntactic tagging paradigm
by using TnT tagger on Croatian texts, we decided to
attempt reaching a higher level of accuracy based on
these results. Detailed description of the previous
experiment is given in (Agić and Tadić 2006) and TnT
tagger is described in (Brants 2000). Please note that
abbreviation HMM is used instead hidden Markov model
and PoS (MSD) tagging instead part-of-speech
(morphosyntactic) tagging further in the text.

In the section about our future work plans in (Agić
and Tadić 2006), we provided two main directions for
further enhancements:
a. Producing new, larger and more comprehensive

language resources, i.e. larger, more precisely
annotated and systematically compiled corpora of
Croatian texts, maybe with special emphasis on
genre diversity and

b. Developing our own stochastic tagger based on
HMMs (being that TnT is available to public only as
a black-box module) and then altering it by adding

morphological cues about Croatian language or other
rule-based modules.
We considered both courses of action as being

equally important. HMM PoS/MSD trigram taggers
make very few mistakes when trained on large and
diverse corpora encompassing most of morphosyntactic
descriptions for a language and, on the other hand, they
rarely seem to surpass 98% accuracy on PoS/MSD,
excluding the tiered tagging approach by (Tufis 1999.)
and (Tufis and Dragomirescu 2004), not without help of
rule-based modules, cues from morphological lexica or
other enhancements which in fact turn stochastic tagging
systems into hybrid ones. We have therefore chosen to
undertake both courses of action in order to create a
robust version of Croatian PoS/MSD tagger that would
be able to provide us with high-quality MSD-annotated
Croatian language resources automatically.

However, knowing that manual production of MSD-
tagged corpora takes substantial amounts of time and
human resources, we put an emphasis on developing and
fine-tuning the trigram tagger in this experiment. Here
we describe what is probably the most straightforward of
currently available fine-tuning options for Croatian –

446 Informatica 32 (2008) 445–451 Ž. Agić et al.

combining CroTag tagger and Croatian morphological
lexicon. The lexicon itself is described in (Tadić and
Fulgosi 2003) and implemented in form of Croatian
lemmatization server, described in (Tadić 2006) and
available online at http://hml.ffzg.hr. Our notion of
tagger-lexicon combination in this paper refers to several
possibilities of utilizing high coverage of the lexicon on
Croatian texts in order to assist CroTag where it makes
most errors, namely while tagging tokens that were not
encountered by its training procedure.

Section 2 of the paper describes all the tools,
language resources, annotation standards, input and
output formats used in the experiment, while section 3
deals in theory with four conceptually different but
functionally similar methods of pairing CroTag tagger
and Croatian morphological lexicon. Section 4 defines
the evaluation framework that would finally provide us
with results. Discussion and conclusions along with
future plans are given in sections 5 and 6.

2 Resources and tools

In this section, we give detailed insight on tools and
resources used in the experiment, along with other facts
of interest – basic characteristics of available annotated
corpora and input-output file format standard used.

2.1 Inflectional lexicon

At the first stage of the experiment, we had available the
Croatian morphological lexicon in two forms – one was
the generator of Croatian inflectional word forms,
described in (Tadić 1994) and another was the Croatian
lemmatization server, detailed in (Tadić 2006). As it can
be verified at http://hml.ffzg.hr, the server takes as input
a UTF-8 encoded verticalized file. File verticalization is
required because the server reads each file line as a single
token which is used as a query in lemma and MSD
lookup. Output is provided in form of a text file and an
equivalent HTML browser output. Figure 2.1 represents
a simplified illustration of this output: first token is the
word form given at input and it is followed by pairs of
lemmas and corresponding morphosyntactic descriptors
compliant to MULTEXT-East v3 specification, given by
e.g. (Erjavec 2004).

da [da2 Qr] [dati Vmia2s] [dati Vmia3s]

[dati Vmip3s] [da1 Css]

Figure 2.1 Output of inflectional lexicon (illustration)

Therefore, a text document was extracted from the
server containing all (lemma, token, MSD) triples and
any computer program or a programming library
implementing fast search capability over this document
could be utilized in our experiment as a black-box
module. For this purpose, we used the Text Mining Tools
library (TMT), described in (Šilić et al. 2007), that had
implemented a very fast and efficient dictionary module
based on finite state automata, storing triples of word
forms, lemmas and tags into an incrementally

constructed deterministic automaton data structure. This
TMT dictionary module has thus provided us with the
needed object-oriented interface (conveniently developed
in C++, same as CroTag) that we could use to get e.g. all
lemmas and MSDs for a token, all MSDs for a (token,
lemma) pair etc. By utilizing this library, a working
inflectional lexicon interface was at our disposal to be
used both as an input-output black-box and rule-based
module for integration with CroTag at runtime.

2.2 Stochastic tagger

Stochastic PoS/MSD trigram tagger for Croatian (or just
CroTag from this point on) was developed and made
available in form of an early beta-version for purposes of
validation in this experiment, enabling us to envision
future improvement directions and implementation
efforts. Although many stochastic taggers have been
made available to the community for scientific purposes
during the years – for example, the TnT tagger (Brants
2000) and its open source reimplementation made in
OCaml programming language, named HunPos (Halacsy
et al. 2007) – and could be utilized in research scheme of
our experiment, we still chose to develop our own
trigram HMM tagger. This enabled us to alter its
operation methods whenever required and also allowed
us to integrate it with larger natural language processing
systems that are currently under development for
Croatian, such as the named entity recognition and
document classification libraries. CroTag is developed
using standard C++ with some helpful advice from the
HunPos development team and additional interpretation
of the OCaml source of HunPos tagger itself.

At this moment, the tagger implements only a second
order hidden Markov model tagging paradigm (trigram
tagging), utilizing a modified version of the Viterbi
algorithm (Thede and Harper 1999), linear interpolation,
successive abstraction and deleted interpolation as
smoothing and default unknown word handling
paradigms. These are de facto standard methods, also
found in both TnT and HunPos. CroTag presumes token
emission upon reached state and is trained as a visible
Markov model, i.e. on pre-tagged corpora, from which it
acquires transition and emission probability matrices, as
described in e.g. (Manning and Schütze 1999).

Input and output formats of CroTag are once again
virtually identical to ones of TnT and HunPos The
training procedure takes a verticalized, sentence
delimited corpus and creates the language model – i.e.
tag transition and token emission probability matrices –
while the tagging procedure takes as input a verticalized,
sentence delimited, non-tagged text and utilizes the
language model matrices to provide an output formatted
identical to that required for training input: verticalized
text containing a token and MSD per line.

Since CroTag is still under heavy development
taking several different implementation directions,
tagging procedures do not offer any possibility of setting
the parameters to the user at the moment, although
implementation of these options is placed on our to-do
list. Once we develop a final version of CroTag, it will be

IMPROVING PART-OF-SPEECH TAGGING... Informatica 32 (2008) 445–451 447

made available to the community as a web service and
possibly as an open source project as well. Additional
work planned for CroTag beta is discussed in section 6
together with other possible research directions.

2.3 Annotated corpus

The Croatia Weekly 100 kw newspaper corpus (CW100
corpus further in the text) consists of articles extracted
from seven issues of the Croatia Weekly newspaper,
which has been published from 1998 to 2000 by the
Croatian Institute for Information and Culture. This 100
kw corpus is a part of Croatian side of the Croatian-
English parallel corpus, as described by (Tadić 2000).

PoS Corpus % Different MSD

Noun 30.45 119
Verb 14.53 62

Adjective 12.06 284
Adposition 09.55 9

Conjunction 06.98 3
Pronoun 06.16 312

Other 20.27 107

Table 2.1 PoS distribution on the CW100 corpus

The CW100 corpus was manually tagged using the

MULTEXT-East version 3 morphosyntactic descriptors
specification, detailed in (Erjavec 2004) and encoded
using XCES encoding standard (Ide et al. 2000). The
corpus consists of 118529 tokens, 103161 of them being
actual wordforms in 4626 different sentences, tagged by
896 different MSD tags. Nouns make for a majority of
corpus wordforms (30.45%), followed by verbs (14.53%)
and adjectives (12.06%), which is in fact a predictable
distribution for a newspaper corpus.

Some details are provided in Table 2.1. Please note
that PoS category Other includes acronyms, punctuation,
numerals, etc. A more detailed insight on the CW100
corpus stats and pre-processing methods can be found in
(Agić and Tadić 2006).

3 Combining lexicon and tagger

Four different methods were considered while planning
this experiment. They all shared the same preconditions
for input and output file processing, as described in the
previous section. We now describe in theory these
methods of pairing our trigram tagger and morphological
lexicon.

3.1 Tagger resolving lexicon output

The first idea is based on very high text coverage
displayed by the inflectional lexicon (more than 96.5%
for contemporary newspaper texts documented). The
text, consisting of one token per line to be tagged, could
serve as input to the lexicon, providing all known MSDs
given a wordform in each output line. The tagger would
then be used only in context of tag sequence probabilities
obtained by the training procedure and stored in the
transition probability data structure. Namely, a program
module could be derived from basic tagger function set,

using tagger’s tag transition probabilities matrix to find
the optimal tag sequence in the search space, narrowed
by using output of the inflectional lexicon instead of a
generally poor lexical database stored in the emission
probability matrix acquired at training.

3.2 Lexicon handling unknown words

A second-order HMM tagger such as CroTag is largely
(almost exclusively) dependent of matrices of transition
and emission probabilities, both of which are usually
obtained from previously annotated corpora by a training
procedure. As mentioned before, both CroTag and TnT
(and HunPos, for that matter) use visible Markov model
training procedures. It is well-known that it this case a
large gap occurs when comparing PoS/MSD tagging
accuracies on tokens known and unknown to the tagger
in terms of the training procedure. If the training
procedure encounters wordforms and discovers their
respective tag distributions at training, error rates for
tagging these words decrease substantially compared to
tagging words that were not encountered at training.
Improving trigram tagger accuracy therefore often means
implementing an advanced method of guessing
distributions of tags for unknown wordforms based on
transition probabilities and other statistical methods, e.g.
deleted interpolation, suffix tries and successive
abstraction. Namely, TnT tagger implements all the
methods listed above. However, most of these heuristic
procedures frequently assign MSD tag distributions
containing morphosyntactic descriptions having no
linguistic sense for given unknown wordforms. We based
our second method of pairing CroTag and inflectional
lexicon on that fact alone; it would be worth
investigating whether lexicon – as a large, high-coverage
database of wordforms and associated lemmas and MSDs
– could serve as unknown word handling module for the
tagger at runtime. As it is expected that in most cases
lexicon would recognize more word forms than tagger,
implementation of this setting seemed to us as a logical
and feasible course of action.

Suffix trie Lexicon Distribution

p(tagi1|suffi)

...

p(tagii|suffi)

p(tagij|suffi)

p(tagik|suffi)

...

p(tagin|suffi)

(wi l1 tag1)
...

(wi l1 tagii)

(wi l1 tagij)

(wi l2 tagik)

...

(wi lm tag1)

p’(tagii|wi)

p’(tagij|wi)

p’(tagik|wi)

∑p’ = ∑p

Table 3.1 Lexicon improving the suffix trie

In more detail, the idea builds on (Halacsy et al.
2006) and (Halacsy et al. 2007) and is basically a simple
extension of the unknown word handling paradigm using
suffix tries and successive abstraction (Samuelsson
1993). Trigram tagger such as TnT uses algorithms to
disambiguate between tags in tag lists provided by
emission probability matrix for a known wordform.
Upon encountering an unseen wordform, such a list
cannot be found in the matrix and must be constructed

448 Informatica 32 (2008) 445–451 Ž. Agić et al.

from another distribution, e.g. based on wordform
suffixes acquired from specific types of encountered
wordforms and implemented in the suffix trie data
structure. Successive abstraction module contributes by
iteratively choosing a more general distribution, i.e.
distribution for shorter suffixes, shortening until a
distribution of tags for a matching is finally assigned to
the unknown token. This results in large and
consequently low-quality distributions of MSD tag
probabilities for unknown word forms, resulting in lower
tagging accuracy. Taking high coverage of the
inflectional lexicon into consideration, our idea was to
choose from the suffix trie distribution only those MSDs
on which both lexicon and suffix trie intersect, falling
back to suffix tries and successive abstraction alone
when both lexicon and tagger fail to recognize the
wordform. By this proposition, we utilize wordform and
tag probabilities as given by the suffix trie and yet
choose only meaningful wordform and tag pairs, i.e.
pairs confirmed by reading the lexicon. Probabilities of
tags that remain in distributions after the selection are
recalculated, increasing and thus becoming more reliable
for calculating the optimal tag sequence. Table 3.1
illustrates this principle: if suffix trie tag and lexicon tag
for an unknown token match, this tag is chosen for the
new emission distribution of the previously unknown
wordform and emission probability is recalculated.

3.3 Lexicon as pre-processing module

In this method, we train CroTag and obtain matrices
containing transition and emission probabilities. The
latter one, emission probability matrix, links each of the
tokens found in the training corpus to its associated tags
and counts, i.e. probabilities as is shown in Figure 3.1.
The figure provides an insight on similarities and
differences of storing language specific knowledge of
tagger and inflectional lexicon.

%% ...

ime 26 Ncnsa 24 Ncnsn 2

imena 8 Ncnpa 1 Ncnpg 1 Ncnpn 3 Ncnsg 3

imenima 2 Ncnpd 1 Ncnpi 1

imenom 3 Ncnsi 3

imenovan 2 Vmps-smp 2

imenovana 1 Vmps-sfp 1

imenovanja 3 Ncnpg 2 Ncnsg 1

imenovanje 1 Ncnsv 1

imenovanjem 1 Ncnsi 1

imenovanju 4 Ncnsl 4

%% ...

%% ...

ime ime Ncnsa ime Ncnsn ime Ncnsv

imenima ime Ncnpd ime Ncnpi ime Ncnpl

imenom ime Ncnsi

%% ...

Figure 3.1 Emission probability matrix file and lexicon
output file comparison

It was obvious that inflectional lexicon and tagger
lexicon acquired by training have common properties,
making it possible to create a lexicon-derived module for
error detection and correction on the acquired lexicon
used internally by the tagger. From another perspective,
inflectional lexicon and tagger lexicon could also be
merged into a single resource by some well-defined
merging procedure.

3.4 Lexicon as post-processing module

Similar to using language knowledge of the inflectional
lexicon before tagging, it could also be used afterwards.
Output of the tagger could then be examined in the
following manner:
1. Input is provided both to tagger and inflectional

lexicon, each of them giving an output.
2. The two outputs are then compared, leading to

several possibilities and corresponding actions:
a. Both tagger and lexicon give an answer.

Lexicon gives an unambiguous answer identical
to the one provided by the tagger. No action is
required.

b. Both tagger and lexicon give an answer.
Lexicon gives an unambiguous answer and it is
different from the one provided by the tagger.
Action is required and we choose to believe the
lexicon as a manually assembled and thus
preferred source of language specifics.

c. Both tagger and lexicon give an answer.
Lexicon gives an ambiguous answer, i.e. a
sequence of tags. One of the tags in the
sequence is identical to taggers answer. We keep
the tagger’s answer, being now confirmed by the
lexicon.

d. Both tagger and lexicon give an answer.
Lexicon gives an ambiguous answer and none of
the tags in the sequence matches the one
provided by the tagger. A module should be
written that takes into account the sequence
provided by the lexicon and does re-tagging in a
limited window of tokens in order to provide the
correct answer. Basically, we define a window
sized 3 tokens/tags and centred on the
ambiguous token, lookup the most frequent of
various trigram combinations available for the
window (these are given by the lexicon!) in
transition probability matrix of the tagger and
assign this trigram to the window,
disambiguating the output. By this we bypass
tagger knowledge and once again choose to
prefer lexicon output, unfortunately disregarding
the fact that Viterbi algorithm outperforms this
simple heuristic disambiguation.

e. Tagger provides an answer, but token is
unknown to the lexicon. We keep the tagger’s
answer, this being the only possible course of
action.

f. Tagger does not provide an answer and lexicon
does. If its answer is unambiguous, we assign it

IMPROVING PART-OF-SPEECH TAGGING... Informatica 32 (2008) 445–451 449

to the token. If it is ambiguous, we apply the
procedure described in option 2d.

3. Final output produced by the merge is then
investigated by the evaluation framework.
It should by all means be noted that each of the

presented paradigms had to undergo a theoretical debate
and possibly – if considered to be a reasonable course of
action – a full sequence of tests described in section 4 in
order to be accepted or rejected for introducing overall
improvement of tagging accuracy or creating additional
noise, respectively. Details are given in the following
sections.

4 Evaluation method

As a testing paradigm, we chose the F-measure
framework for evaluation on specific PoS and general
accuracy for overall tagging performance. Firstly, we
provide a comparison of CroTag beta and TnT: overall
PoS vs. MSD accuracy and also F-measures on nouns,
pronouns and adjectives, proven to be the most difficult
categories in (Agić and Tadić 2006). We then discuss the
proposed tagger-lexicon combinations and provide the
measures – overall accuracy and F1-scores for those
methods judged as suitable and meaningful at the time of
conducting the investigation.

Each test consists of two parts: the worst-case
scenario and the default scenario. Worst-case is a
standard tagging accuracy measure scenario created by
taking 90% of the CW100 corpus sentences for training
and leaving the other 10% for testing. Therefore, in a
way, this scenario guarantees the highest number of
unknown words to be found at runtime given the corpus.
The default scenario chooses 90% of sentences from the
CW100 pool for training and then 10% for testing from
the same pool, making it possible for sentences to
overlap in these sets. The default scenario is by definition
not a standard measure scenario and was introduced in
order to respect the nature of random occurrences in
languages, leaving a possibility (highly improbable) of
tagger encountering identical sentences at training and at
runtime. Also, we argue that investigating properties of
errors occurring on highest accuracy scores, derived by
the default testing scenario, provides additional insight
on properties of trigram tagging in general.

Note that we do not include testing scenarios
debating on training set size as a variable: in this test, we
consider improving overall tagging accuracy and not
investigating HMM tagging paradigm specifics as in
(Agić and Tadić 2006), being that conclusions on this
specific topic were already provided there.

5 Results

The first set of results we present is from the set of tests
evaluating overall tagging accuracy of CroTag on full
MULTEXT East v3 MSD and on PoS information only
(by PoS we imply the first letter of the MSD tag – not
comparable to English PoS of e.g. English Penn
Treebank). Acquired results are displayed in Table 5.1.

It could be stated from this table that results on TnT
and CroTag are virtually identical and the differences

exist merely because testing environment – mainly the
number of unknown words – was variable. It is however
quite apparent that CroTag outperformed TnT on part-of-
speech, especially regarding unknown tokens, but this
should be taken with caution as well, being that CroTag
dealt with fewer unknowns in that specific test.

Second testing case considers combining CroTag and
the inflectional lexicon. Before presenting the results and
in order to interpret them correctly, it should be stated
that only two of the four initially proposed merging
methods were chosen to proceed to the practical testing
session: method (3.2) using the inflectional lexicon as an
unknown world handler (3.4) using the inflectional
lexicon as a postprocessing module to resolve potential
errors produced by the tagger. We rejected applying (3.1)
tagger as a disambiguation module for inflectional
lexicon output because it would be costly to develop yet
another tagger-derived procedure to handle transition
probabilities only. This procedure would, in fact, do
nothing different than a common HMM-based tagger
does with its own acquired lexicon: disambiguates its
ambiguous entries upon encountering them in the text
and applying the transition probability matrix and
handling procedures on unknown words.

 TnT CroTag

 MSD PoS MSD PoS

Worst
case

Overall 86.05 96.53 86.05 96.84
Known 89.05 98.29 89.26 98.42

Unknown 66.04 86.02 65.95 87.29
Corp. unk. 13.07 14.40 13.77 14.11

Default
case

Overall 97.54 98.51 97.51 99.31
Known 98.04 98.74 98.05 99.43

Unknown 62.21 83.11 63.75 88.39
Corp. unk. 01.42 01.51 01.59 01.13

Table 5.1 Overall tagging accuracy on MSD and PoS

The idea of inflectional lexicon as preprocessing
module (3.3) was also rejected, mainly because we were
unable to define precisely how to merge its database to
the one acquired by tagger at training procedure. Being
that tagger training procedure assigns each entry with a
number of its occurrences overall and number of
occurrences under various MSDs, in order to apply the
inflectional lexicon as proposed by (3.3), we would have
to assign these numbers so the tagger could understand
the new entries. If we assign all to 1, it does not
contribute and is redundant and if we assign any other
number, we are in fact altering the tagging procedure
outcome in such a manner that is not in any way bound
by the language model, i.e. the training corpus.
Therefore, we proceed with considering proposed cases
(3.2) and (3.4) only.

We have also omitted PoS results from this testing
case because TnT and CroTag are both able to achieve an
accuracy over 95% without additional modules so we
were focused in investigating MSD accuracy, keeping in
mind that most errors do not occur on PoS but on sub-
PoS levels resolvable by the lexicon. Details are provided
by Table 5.2.

The first apparent conclusion is that method (3.4) that
cleans up the errors on tagger output has failed and that it
has failed on unknown words – where we may have
expected it (or hoped for it) to perform better. The reason

450 Informatica 32 (2008) 445–451 Ž. Agić et al.

is, on the other hand and second thought, quite obvious:
the tagger applies a tag to an unknown word using
transition probabilities and smoothing procedures that are
proven to operate quite satisfactory in TnT, HunPos and
CroTag. When the postprocessing lexicon-based module
encounters a word tagged as unknown, this word is rarely
unambiguous in the inflectional lexicon. Therefore, a
resolution module using transition probabilities has to be
applied quite frequently and this module clearly and
expectedly does not outperform default unknown word
handling procedures.

TnT

CroTag

+3.2

CroTag

+3.4

Worst
case

Overall 86.05 85.58 83.94
Known 89.05 88.84 88.18

Unknown 66.04 65.13 57.38
Corp. unk. 13.07 13.77 13.77

Default
case

Overall 97.54 97.97 97.88
Known 98.04 98.53 98.51

Unknown 62.21 63.49 59.40
Corp. unk. 01.42 01.59 01.59

Table 5.2 Tagging accuracy with (3.2) unknown word
handler and (3.4) postprocessing

Based on other stats in Table 5.2, we could end the
section by stating that CroTag, when combined with the
inflectional lexicon in such a manner that the lexicon
provides morphological cues to the tagger upon
encountering unknown words, outperforms TnT by a
narrow margin on the default MSD test case. However, a
more sincere and exact statement – taking in regard all
section 5 tables – would be that both TnT and CroTag
share the same functional dependency regarding the
number of unknown words they encounter in the tagging
procedure. That is, CroTag outperforms TnT when less
unknown tokens occur for him at runtime and vice versa,
the inflectional lexicon contributing for around 1.3%
improvement on unknown words. We can thus argue that
our beta-version of CroTag tagger performs as well as
TnT tagger and that we succeeded in implementing a
state-of-the-art solution for tagging large-scale corpora of
Croatian, given the test environment we had at hands, its
drawbacks noted and hereby included.

In Table 5.3 we present results of evaluation broken
down by three most difficult PoS categories: adjectives,
nouns and pronouns. Data and analysis is given for PoS
information only, as mentioned before.

 Adjective Noun Pronoun

TnT
Worst case 64.56 81.63 75.42

Default case 94.79 96.75 96.94

CroTag
Worst case 65.31 80.85 74.62

Default case 95.86 97.40 95.88
CroTag

+3.2
Worst case 66.72 82.61 77.32

Default case 95.06 96.79 95.82

Table 5.3 Tagging accuracy with adjectives, nouns and
pronouns

It can be clearly noticed that suggested combination

mode (3.2) outperforms both TnT and CroTag in the
worst case scenario on all parts of speech since it has the

support of HML when handling unknown words, that
obviously do occur somewhat more frequently in this
scenario. In the default case scenario, results are
expectedly more even and inconclusive – default CroTag
actually outperforms lexicon combination (3.2) because
unknown tokens were found in small numbers in the test
sets, much too small for the inflectional lexicon to
contribute significantly to overall tagging accuracy.

6 Conclusion

In this contribution we have presented CroTag – an early
beta-version of statistical PoS/MSD tagger for Croatian
and proposed combining it with a large scale inflectional
lexicon of Croatian, creating a hybrid system for high-
precision tagging of Croatian corpora. We have
presented several possible types of combinations, tested
and evaluated two of them using the F-measure
evaluation framework. CroTag provided results virtually
identical to TnT, differing only in fractions of percentage
in both directions in different evaluating conditions. This
way we have shown that CroTag functions at the level of
state-of-the-art regarding HMM-based trigram tagging
and PoS/MSD-tagging in general.

Our future directions for improvement of this system
could and probably can and probably will fall into
several different research pathways.

The first of them should be analyzing tagging
accuracy on morphological (sub-part-of-speech) features
in more detail and fine-tuning the tagger accordingly.

Various parameterization options could also be
provided at tagger runtime. Such options could include
parameters for unigram, bigram and trigram preference
or implementing token emissions depending on
previously encountered sequences (multiword unit
dependencies). As was previously mentioned, once we
remove the beta-version appendix from CroTag by
implementing these features and optimizing and tidying
its source code, it will firstly be made available as a web
service and then most probably as a freely-downloadable
open source project on the web.

Fine-tuned rule-based modules for Croatian language
specifics could also be considered and applied before or
after the statistical procedure. Another option would be
integration of inflectional lexicon into tagger as they
have been programmed as separate modules, inducing
some overhead to execution speed.

The next direction would be to build a full
lemmatizer which, unlike inflectional lexicon presented
in this paper, gives fully disambiguated lemmas as output
relying on the results of the tagger. Selection of proper
lemmas from sets of possible ones would be done on the
basis of tagger output, once again fine-tuning levels of
confidence between tagger and lemmatizer similar to
section 3 of the paper.

It should also be noted that (Agić and Tadić 2008)
takes into account an entirely different approach, putting
an emphasis on corpora development. Namely, all the
methods presented in previous sections are made
exclusively for handling unknown word occurrences and
all of them required lots of time and human effort to be

IMPROVING PART-OF-SPEECH TAGGING... Informatica 32 (2008) 445–451 451

implemented. On the other hand, manual corpora
development – although obviously also requiring time
and effort – is by definition a less demanding and at the
same time reasonable course of action: larger, better and
more diverse corpora are always a necessity for any
language, necessity that implicitly resolves many
unknown wordform issues as well. Courses of action
could therefore be argued; we decided to take most of
them throughout our future work in order to additionally
improve tagging accuracy on Croatian texts.

Acknowledgement

This work has been supported by the Ministry of
Science, Education and Sports, Republic of Croatia,
under the grants No. 130-1300646-1776, 130-1300646-
0645 and 036-1300646-1986.

References

[1] Agić, Ž., Tadić, M. (2006). Evaluating
Morphosyntactic Tagging of Croatian Texts. In
Proceedings of the Fifth International Conference
on Language Resources and Evaluation. ELRA,
Genoa – Paris 2006.

[2] Agić, Ž., Tadić, M. (2008). Investigating Language
Independence in HMM PoS/MSD-Tagging. In
Proceedings of the 30th International Conference on
Information Technology Interfaces. Cavtat, Croatia,
2008, pp. 657-662.

[3] Brants, T. (2000). TnT – A Statistical Part-of-
Speech Tagger. In Proceedings of the Sixth
Conference on Applied Natural Language
Processing. Seattle, Washington 2000.

[4] Erjavec, T. (2004). Multext-East Version 3:
Multilingual Morphosyntactic Specifications,
Lexicons and Corpora. In Proceedings of the Fourth
International Conference on Language Resources
and Evaluation. ELRA, Lisbon-Paris 2004, pp.
1535-1538.

[5] Halácsy, P., Kornai, A., Oravecz, C. (2007).
HunPos - an open source trigram tagger. In
Proceedings of the 45th Annual Meeting of the
Association for Computational Linguistics
Companion Volume Proceedings of the Demo and
Poster Sessions. Association for Computational
Linguistics, Prague, Czech Republic, pp. 209-212.

[6] Halácsy, P., Kornai, A., Oravecz, C., Trón, V.,
Varga, D. (2006). Using a morphological analyzer
in high precision POS tagging of Hungarian. In
Proceedings of 5th Conference on Language

Resources and Evaluation (LREC). ELRA, pp.
2245-2248.

[7] Ide, N., Bonhomme, P., Romary, L., (2000). An
XML-based Encoding Standard for Linguistic
Corpora. In Proceedings of the Second International
Conference on Language Resources and Evaluation,
pp. 825-830. (see also at http://www.xces.org).

[8] Manning, C., Schütze, H. (1999). Foundations of
Statistical Natural Language Processing, The MIT
Press, 1999.

[9] Samuelsson, C. (1993). Morphological tagging
based entirely on Bayesian inference. 9th Nordic
Conference on Computational Linguistics
NODALIDA-93. Stockholm University,
Stockholm, Sweden.

[10] Šilić, A., Šarić, F., Dalbelo Bašić, B., Šnajder, J.
(2007). TMT: Object-Oriented Text Classification
Library. Proceedings of the 29th International
Conference on Information Technology Interfaces.
SRCE, Zagreb, 2007. pp. 559-566.

[11] Tadić, M. (1994). Računalna obrada morfologije
hrvatskoga književnog jezika. Doctoral thesis.
Faculty of Humanities and Social Sciences,
University of Zagreb, 1994.

[12] Tadić, M. (2000). Building the Croatian-English
Parallel Corpus. In Proceedings of the Second
International Conference on Language Resources
and Evaluation. ELRA, Paris-Athens 2000, pp. 523-
530.

[13] Tadić, M., Fulgosi, S. (2003). Building the Croatian
Morphological Lexicon. In Proceedings of the
EACL2003 Workshop on Morphological
Processing of Slavic Languages. Budapest 2003,
ACL, pp. 41-46.

[14] Tadić, M. (2006). Croatian Lemmatization Server.
Formal Approaches to south Slavic and Balkan
Languages. Bulgarian Academy of Sciences, Sofia,
2006. pp. 140-146.

[15] Thede, S., Harper, M. (1999). A second-order
Hidden Markov Model for part-of-speech tagging.
In Proceedings of the 37th annual meeting of the
Association for Computational Linguistics, pp. 175-
182.

[16] Tufiş, D. (1999). Tiered Tagging and Combined
Classifiers. In F. Jelinek, E. Nöth (Eds.) Text,
Speech and Dialogue, Lecture Notes in Artificial
Intelligence 1692, Springer, 1999, pp. 28-33.

[17] Tufiş, D., Dragomirescu, L. (2004). Tiered Tagging
Revisited. In Proceedings of the 4th LREC
Conference. Lisbon, Portugal, pp. 39-42.

452 Informatica 32 (2008) 445–451 Ž. Agić et al.

 Informatica 32 (2008) 453–464 453

A Heuristic Search Algorithm for Flow-Shop Scheduling

Joshua Poh-Onn Fan
Graduate School of Business
University of Wollongong, NSW, Australia
E-mail: joshua@uow.edu.au

Graham K. Winley
Faculty of Science and Technology
Assumption University, Bangkok, Thailand
E-mail: gkwinley@scitech.au.edu

Keywords: Admissible heuristic function, dominance, flow-shop scheduling, optimal heuristic search algorithm

Received: October 25, 2007

This article describes the development of a new intelligent heuristic search algorithm (IHSA
*
) which

guarantees an optimal solution for flow-shop problems with an arbitrary number of jobs and machines

provided the job sequence is constrained to be the same on each machine. The development is described

in terms of 3 modifications made to the initial version of IHSA
*
. The first modification concerns the

choice of an admissible heuristic function. The second concerns the calculation of heuristic estimates as

the search for an optimal solution progresses, and the third determines multiple optimal solutions when

they exist. The first 2 modifications improve performance characteristics of the algorithm and

experimental evidence of these improvements is presented as well as instructive examples which

illustrate the use of initial and final versions of IHSA
*
.

Povzetek: Opisan je nov hevristični iskalni algoritem IHSA*.

1 Introduction

The optimal solution to the flow-shop scheduling
problem involving n jobs and m machines determines the
sequence of jobs on each machine in order to complete
all the jobs on all the machines in the minimum total time
(i.e. with minimum makespan) where each job is
processed on machines 1, 2, 3, …, m, in that order. The
number of possible schedules is (n!)m and the general
problem is NP-hard. For this general problem it is known
that there is an optimal solution where the sequence of
jobs is the same on the first two machines and the
sequence of jobs is the same on the last two machines
[4]. Consequently, for the general problem with 2 or 3
machines there is an optimal solution where the jobs are
processed in the same sequence on each machine and the
optimal sequence is among only n! job sequences.
However, in the optimal solution for the general problem
with more than 3 machines the jobs are not necessarily
processed in the same sequence on each machine. This
article is concerned with the development of an
algorithm (IHSA*) which is guaranteed to find an optimal
solution for flow-shop scheduling problems involving an
arbitrary number of jobs and machines where the
problem is constrained so that the same job sequence is
used on each machine.

 Early research on flow-shop problems is based
mainly on Johnson’s theorem, which gives a procedure
for finding an optimal solution with 2 machines, or 3
machines with certain characteristics [20], [21]. Other

approaches for the general problem include integer linear
programming and combinatorial programming, which
use intensive computation to obtain optimal solutions and
are generally not feasible from a computational
standpoint because the number of variables increases
exponentially as the number of machines increases [35].
Branch-and-bound methods use upper or lower bounds to
guide the direction of the search. Depending on the
effectiveness of the heuristic and the search strategy this
method may return only near optimal solutions but with
long computation time [19], [29], [30], [36]. Heuristic
methods have received significant attention [9], [18],
[26], [27], [37], [40], [41], [42]. However, even the most
powerful heuristic method to-date, the NEH heuristic
developed by Nawaz et al. [31] fails to reach solutions
within a reasonable bound of the optimal solution in
some difficult problem cases [47]. A review of
approaches by Zobolas et al. [47] indicates that there has
been strong interest in artificial intelligence optimization
methods referred to as metaheuristics including:
Simulated Annealing [32], [34]; Tabu Search [11];
Genetic Algorithms, which may give an optimal solution
but due to the evolutionary nature of this approach the
computation time is unpredictable [2], [3], [5], [38];
Fuzzy Logic [13], [14], [15], [16], [17]; Ant Colony and
Particle Swarm Optimization [28], [43]; Iterated Local
Search [39]; and Differential Evolution [33]. The strong
interest in metaheuristics generated the development of

454 Informatica 32 (2008) 453–464 J. Fan et al.

hybrid approaches which combine different components
of more than one metaheuristic [1].

 An initial version of a new intelligent heuristic
search algorithm (IHSA*) for flow-shop problems with
an arbitrary number of jobs and machines and subject to
the constraint that the same job sequence is used on each
machine has been proposed in [6], [7], [8]. It is based on
the Search and Learning A* algorithm presented in [44],
[45], [46] which is a modified version of the Learning
Real Time A* algorithm in [24], [25] which is, in turn, a
modified version of the original A* algorithm [10], [12].

 At the start of the search using IHSA* different
methods are considered for computing estimates for the
total time needed to complete all of the jobs on all of the
machines assuming in turn that each of the jobs is placed
first in the job sequence. It is shown that if there are m
machines then there are m different methods that should
be considered. Among the estimates associated with each
method the smallest estimate is referred to as the value of
the heuristic function that is associated with that method
and it identifies the job that would be placed first in the
job sequence at the start of the search if that method is
used. If the value of the heuristic function does not
exceed the minimum makespan for the problem then the
heuristic function is said to be admissible and in such
cases IHSA* is guaranteed to find an optimal solution
provided the job sequence is the same on each machine.
The proof of this result for IHSA* is given in [8] and is
similar to that given in [22] and [23] in relation to the A*
algorithm from which IHSA* is derived. The term
“heuristic” is used in the title of IHSA* because the
optimality of the algorithm and its performance depends
on the selection of an appropriate admissible heuristic
function at the start of the search and this function
continues to guide the search to an optimal solution.

 The purpose of this article is to describe the
development of IHSA* which has occurred since the
initial version was first presented in [6]. For simplicity of
presentation the development is described in terms of
problems involving an arbitrary number of jobs with 3
machines. However, the notations, definitions, proofs,
and concepts presented may be extended to problems
involving more than 3 machines if the job sequence is the
same on each machine and these extensions are noted at
the appropriate places throughout the presentation.
Three significant modifications have been made to the
initial version of IHSA*. The first concerns the choice of
an admissible heuristic function at the start of the search.
The second concerns the calculation of heuristic
estimates as the search progresses, and the third
determines multiple optimal solutions when they exist.

 Following an introduction to the initial version of
IHSA* each of the 3 modifications is presented.
Experimental evidence of improvements in performance
characteristics of the algorithm which result from the
first 2 modifications is provided in the Appendix and
discussed in section 5. Instructive examples are given to
illustrate the initial and final versions of IHSA* and these
have been limited to 3 machines in order to allow
interested readers to familiarize themselves with the
algorithm by reworking the examples by hand. The

proofs of results related to the modifications are
presented in the Appendix.

2 The initial version of IHSA
*

Before presenting the initial version of the algorithm
notations and definitions are introduced and the state
transition process associated with IHSA* is described
together with the features of search path diagrams which
are used to illustrate the development of an optimal job
sequence.

2.1 Notations and definitions

The following notations and definitions are introduced
for a flow-shop problem involving n jobs J1, J2, …, Jn and
3 machines M1, M2, M3.

Oij is the operation performed on job Ji by machine
Mj and there are 3n operations. For job Ji the processing
times ai, bi, and ci denote the times required to perform
the operations Oi1, Oi2, and Oi3, respectively and these
processing times are assumed to be non negative
integers. If Oij has commenced but has not been
completed then pij represents the additional time required
to complete Oij and at the time when Oij starts pij is one
of the values among ai, bi, or ci. The sequence φst = {Js,
…, Jt} represents a sequence of the n jobs with Js
scheduled first and Jt scheduled last. T(φst) is the
makespan for the job sequence φst and S(φst) is the time at
which all of the jobs in φst are completed on machine M2.

 Using these notations and definitions Figure 1
illustrates the manner in which the operations associated
with the job sequence φst are performed on the 3
machines.

)(stS φ

)(stT φ

i

n

i

a∑
=

≥

1

i

n

i

b∑
=

≥

1

i

n

i

c∑
=

≥

1

 Figure 1: Processing the Job Sequence φst

 A method for calculating an estimate of the total
time to complete all of the n jobs on all of the 3 machines
when job Ji is the first job in the sequence is given by

ai + bi + i

n

i

c∑
=1

. Then the heuristic function associated

with this method is H3 where,
H3 = min [a1 + b1, a2 + b2, …, as + bs, …, an + bn]

 + i

n

i

c∑
=1

. (1)

If min [a1 + b1, a2 + b2, …, as + bs, …, an + bn] =

as + bs then H3 = as + bs + i

n

i

c∑
=1

 and job Js would be

A HEURISTIC SEARCH ALGORITHM FOR... Informatica 32 (2008) 453–464 455

scheduled first in the job sequence. It is seen from Figure
1 and proved in the Appendix that H3 is an admissible
heuristic function and H3 is the heuristic function that
was used in the initial version of the IHSA*.

2.2 The state transition process

The procedure for developing the optimal job sequence
using IHSA* proceeds by selecting an operation which
may be performed next on an available machine. At the
time that selection is made each of the 3n operations is in
only one of 3 states: the not scheduled state; the in-

progress state; or the finished state and the operation
which is selected is among those in the not scheduled
state. Operations not in the finished state are referred to
as incomplete. A state transition occurs when one or
more of the operations move from the in-progress state
to the finished state and at any time the state level is the
number of operations in the finished state.

IHSA* describes the procedure which takes the state
transition process from one state level to the next and the
development of the optimal job sequence is illustrated
graphically using search path diagrams.

2.3 Search path diagrams

A search path diagram consists of nodes drawn at each
state level with one of the nodes connected to nodes at
the next state level. Each node contains 3 cells which are
used to display information about operations on the
machines M1, M2, and M3, respectively. When a state
transition occurs one of the nodes at the current state
level is expanded and it is connected to the nodes at the
next state level where each node represents one of the
different ways of starting operations that are in the not

scheduled state. At each of these nodes a cell is labeled
with Ji to indicate that the operation Oij is either in
progress or is one of the operations that may start on Mj,
and pij which is the time needed to complete Ji on Mj. A
blank cell indicates that no operation can be performed
on that machine at this time.

Near each node the heuristic estimate (h) associated
with the node is recorded. The heuristic estimate is
calculated using the heuristic function chosen in Step 1
of the algorithm in conjunction with the procedure used
in Step 2. It is an estimate of the time required to
complete the operation at the node identified by the
procedure in Step 2 as well as all of the other operations
that are not in the finished state. At each state level the
node selected for expansion is the one which has
associated with it the minimum heuristic estimate among
all of the estimates for the nodes at that state level. Near
this selected node the value of f = h + k is recorded
where the edge cost (k) is the time that has elapsed since
the preceding state transition occurred.

 A comparison is made between f and h’ where h’
is the minimum heuristic estimate at the preceding state
level. Based on that comparison the search path either
backtracks to the node expanded at the preceding state
level or moves forward to the next state level. If
backtracking occurs then the value of h’ is changed to the
current value of f and the search moves back to that

node. If the path moves forward then the value of the
edge cost (k) is recorded below the expanded node. For
convenience of presentation a new search path diagram is
drawn when backtracking in the previous diagram is
completed.

 At state level 0 there are n root nodes
corresponding to the number of jobs. The final search
path diagram represents the optimal solution and traces a
path from one of the root nodes, where the minimum
makespan is the value of h or f, to a terminal node where
h = f = 0. The optimal job sequence can be read by
recording the completed operations along the path from
the root node to the terminal node.

2.4 IHSA
*
 (initial version)

Step 1: At state level 0 expand the node identified by

calculating the value of H3 from (1), and move to the

nodes at state level 1. If more than one node is identified

then break ties randomly.

 For example, if H3 = as + bs + i

n

i

c∑
=1

 then the

node with Js and as recorded in the first cell is the node to
be expanded.
Step 2: At the current state level if the heuristic estimate

of one of the nodes has been updated by backtracking use

the updated value as the heuristic estimate for that node

and proceed to Step 3. Otherwise, calculate a heuristic

estimate for each node at the current state level using

Procedure 1 and proceed to Step 3.

Procedure 1 is described below.
Step 3: At the current state level select the node with the

smallest heuristic estimate. If it is necessary then break

ties randomly.

 The smallest heuristic estimate is admissible and
underestimates the minimum time required to complete
all of the incomplete jobs on all of the machines.
Step 4: Calculate f = h + k where h is the smallest

heuristic estimate found in Step 3 and k (edge cost) is the

time that has elapsed since the preceding state transition

occurred.

Step 5: If f > h
’
, where h

’
 is the minimum heuristic

estimate calculated at the preceding state level, then

backtrack to that preceding state level and increase the

value of h
’
 at that preceding node to the current value of

f and repeat Step 4 at that node.

Step 6: If f ≤ h
’
 then proceed to the next state level and

repeat from Step 2.

Step 7: If f = 0 and h = 0 then Stop.

Procedure 1 is used in Step 2 to calculate a heuristic
estimate for each node at the current state level:
(a) If cell 1 is labelled with Ji then the heuristic estimate
h for the node is based on the operation in cell 1 and is
given by,
h = ai + bi + C1; for Oi1 in the not scheduled state, (2)
 pi1 + bi + ci + C1; for Oi1 in the in-progress state,

where C1 is the sum of the values of ck for all values
of k such that Ok1 is in the not scheduled state.

456 Informatica 32 (2008) 453–464 J. Fan et al.

(b) If cell 1 is blank, and cell 2 is labelled with Ji then the
heuristic estimate h for the node is based on the operation
in cell 2 and is given by,
h = bi + C2; for Oi2 in the not scheduled state, (3)
 pi2 + ci + C2; for Oi2 in the in-progress state,

where C2 is the sum of the values of ck for all values
of k such that Ok2 is in the not scheduled state.
(c) If cell 1 and cell 2 are blank, and cell 3 is labelled
with Ji then the heuristic estimate h for the node is based
on the operation in cell 3 and is given by,
h = C3; for Oi3 in the not scheduled state, (4)
 pi3 + C3; for Oi3 in the in-progress state,

where C3 is the sum of the values of ck for all values
of k such that Ok3 is in the not scheduled state.

 In Procedure 1 the calculation of a heuristic
estimate for a node is based on an operation in only one
of the cells at the node and operations in the other 2 cells
are not taken into account. For example, if cell 1 is not
blank then the estimate is based only on the operation in
cell 1. If cell 1 is blank then the estimate is based only on
the operation in cell 2. An operation in cell 3 is only
considered if the other 2 cells are blank.

 The following example illustrates the use of the
initial version of IHSA* to solve the flow-shop problem
given in Table 1. For instructional purposes the problem
is deliberately simple with only 3 machines and 3 jobs
because it is intended to provide readers with an
opportunity to become familiar with the algorithm using
an example that can be reworked easily by hand.

Table 1: Example of a Flow-shop Problem

Jobs/Machines M1 M2 M3
J1
J2
J3

 2 1 10
 4 6 5
 3 2 8

For illustrative purposes only the first search path
diagram is presented in Figure 2.

At the start of the search H3 = 26. In total 5 search
path diagrams are required to find the optimal sequence
J1J2J3 with a minimum makespan of 26. Twenty nodes
are expanded, 16 backtracking steps are required, and 43
steps of the algorithm are executed.

3 Modifications to the initial version

of IHSA
*

The first modification determines the best heuristic
function to use for a given problem and affects Step 1 of
the algorithm. The second modification affects Procedure
1 used in Step 2 and the third modification affects Step 7
and enables multiple optimal solutions to be found when
they exist.

3.1 A modification to step 1

In the Appendix a set of 6 heuristic functions are
derived for the case of 3 machines and proofs of the
admissibility of these functions are presented. It is shown
that among this set of 6 heuristic functions the one which

Figure 2: The First Search Path Diagram Using the Initial
Version of IHSA*

is admissible and has a value which is closest to the
minimum makespan will be the one among H1, H2, and
H3 which has the largest value where,

H1 = min[b1 + c1, b2 + c2, …, bn + cn] + i

n

i

a∑
=1

,

H2 = min[a1 + u1, a2 + u2, …, an + un] + i

n

i

b∑
=1

, (5)

H3 = min[a1 + b1, a2 + b2, …, an + bn] + i

n

i

c∑
=1

,

where: u1 = min[c2, c3, …, cn]; uk = min[c1, c2, …,
ck-1, ck+1, …, cn], for 2 ≤ k ≤ n – 1; and un = min[c1, c2, c3,
…, cn-1].

Choosing the admissible heuristic function among
H1, H2, and H3 with the largest value in the first step of
the algorithm ensures that the search begins with an
estimate of the minimum makespan that is not greater
than it but is the closest to it. This choice is expected to
reduce the need for backtracking at a subsequent stage of

A HEURISTIC SEARCH ALGORITHM FOR... Informatica 32 (2008) 453–464 457

the search since backtracking takes the search back to a
previous node and increases the heuristic estimate at that
node to a value which is admissible but closer to the
minimum time required to complete all of the incomplete
jobs on all of the machines.

 Consequently, Step 1 in the initial version of
IHSA* is modified and becomes:
Step1: At state level 0, from (5), choose the admissible

heuristic function among H1, H2, and H3 which has the

largest value and if necessary break ties randomly. In the

case where machine Mj dominates the other machines

select Hj. Expand the node identified by the chosen

admissible heuristic function and move to the nodes at

state level 1. If more than one node is identified then

break ties randomly.

 The example in section 4 below illustrates the use
of the modification to Step 1 in a simple problem which
enables the reader to rework the example by hand. In the
Appendix it is shown that in the particular case where
machine Mj dominates the other machines then the best
admissible heuristic function among H1, H2, and H3 is Hj
and it has a value which is greater than the value of either
of the other two functions by at least (n – 1)(n – 2) where
n is the number of jobs. Thus in the case of a dominant
machine in the first step of the algorithm there is no need
to calculate each of the values of H1, H2, and H3 in order
to choose the one with the largest value. Instead, it is
known that it will be Hj if machine Mj is the dominant
machine.

In the case where there are m machines and m > 3 it
is shown in the Appendix that the best admissible
heuristic function to use in the first step of the algorithm
is the one among F1, F2, …, Fm which has the largest
value and if m = 3 then F1 = H1, F2 = H2, and F3 = H3.
Experimental evidence of improvements in performance
characteristics of the algorithm which result from using
the modification to Step 1 is presented in the Appendix
Table A1 and is discussed below in section 5.

3.2 A modification to step 2

The second modification to the initial version of
IHSA* concerns the calculation of heuristic estimates at
nodes on the search path when the search has
commenced. It is based on the principle that when
heuristic estimates for the nodes at the same state level
are being calculated in Step 2 it is desirable to obtain the
largest possible estimate at each of these nodes before
selecting the node with the smallest estimate as the node
to be expanded. The larger the value of this smallest
estimate then the less likely it is that the search will need
to backtrack and this is expected to improve the
performance characteristics of the algorithm. As noted
above, the use of Procedure 1 in Step 2 in the initial
version of IHSA* gives a heuristic estimate for a node
based on an operation in only one of the cells while
operations in the other 2 cells are not taken into account.

The second modification affects Procedure 1 and
involves calculating heuristic estimates h1, h2, and h3 at a
node for cells 1, 2, and 3, respectively. Then max[h1, h2,
h3] is used as the heuristic estimate (h) for the node. This

is done for each node at the current state level and then,
as before, in Step 3 the minimum estimate among these
estimates identifies the node to be expanded.
Consequently, Procedure 1 is replaced by the following
Procedure 2:

In Step 2 of the algorithm for a node at the current
state level,
(a) For cell 1: If the cell is blank then h1 = 0.
 Otherwise, h1 is given by (2).
(b) For cell 2: If the cell is blank then h2 = 0. (6)
 Otherwise, h2 is given by (3).
(c) For cell 3: If the cell is blank then h3 = 0.
 Otherwise, h3 is given by (4).

 Procedure 2 refers to calculations specified in
Procedure 1 which incorporate currently the heuristic
function H3. However, (2), (3), and (4) are easily
changed to incorporate H1 or H2 for problems where one
of these functions has been selected using the
modification to Step 1 of the algorithm. For example, if
H2 is used then (3) and (4) are not changed but (2)
becomes,

 h =
ai + wi + B1; for Oi1 in the not scheduled state,
pi1 + wi + bi + B1; for Oi1 in the in-progress state,

 where, B1 is the sum of the values of bk for all values of
k ≠ i such that Ok1 is in the not scheduled state and wi is
the smallest value of ck for all values of k ≠ i such that
Ok1 is in the not scheduled state.

 Procedure 2 produces the same heuristic estimate
as Procedure 1 if and only if one of the following 3
conditions is satisfied: h1 = max[h1, h2, h3]; h2 = max[h1,
h2, h3] and cell 1 is blank; or h3 = max[h1, h2, h3] and
cells 1 and 2 are blank. Under any other conditions
Procedure 2 will produce a heuristic estimate at a node
which is larger than the estimate given by Procedure 1.
Consequently, using Procedure 2 will never produce an
estimate that is less than the estimate produced by
Procedure 1 and in practice the estimate using Procedure
2 is usually larger and leads to a reduction in
backtracking.

Using Procedure 2 in the initial version of IHSA*
modifies Step 2 and it becomes:
Step 2: At the current state level if the heuristic estimate

of one of the nodes has been updated by backtracking use

the updated value as the heuristic estimate for that node

and proceed to Step 3. Otherwise, at each node use

Procedure 2 to calculate h1, h2, h3 and use max[h1, h2,

h3] as the heuristic estimate for the node.

If there are m machines and m > 3 then there are m
cells at each node and an estimate is calculated for each
cell by extending (6) and (2), (3), (4) to accommodate the
heuristic function Fj (see Appendix) used in Step 1 of the
algorithm.

 The example in section 4 below illustrates the use
of the modification to Step 2 in a simple problem which
enables the reader to rework the example by hand.
Experimental evidence of additional improvements in
performance characteristics of the algorithm from using
the modifications to Steps 1 and 2 together is presented
in the Appendix Table A1 and is discussed below in
section 5.

458 Informatica 32 (2008) 453–464 J. Fan et al.

3.3 A modification to step 7

For some problems there are multiple optimal
solutions and it is often important in practical situations
to be able to find all of the optimal solutions since it may
be required to find an optimal solution that also satisfies
other criteria. For example, an optimal solution may be
sought which also has the least waiting time for jobs that
are queuing to be processed.

 When IHSA* is implemented there are 2
situations which indicate the possible existence of
multiple optimal solutions. The first situation occurs
when there is more than 1 node at a state level with the
smallest heuristic estimate. In this case the ties are
broken randomly and one of the nodes is selected for
expansion and the search continues and produces an
optimal solution. At the completion of the search
returning to that state level and selecting for expansion
one of the other nodes which were not selected when the
ties were broken may lead to a different optimal solution.
The second situation occurs when at the completion of
the search for an optimal solution one or more of the
nodes at state level 0 has a heuristic estimate that is less
than or equal to the minimum makespan. In this case
returning to those nodes and beginning the search again
may produce different optimal solutions.

The modification to the initial version of IHSA* that
enables multiple optimal solutions to be determined
affects Step 7. This modification is different from the
previous 2 modifications in that it does not improve the
performance characteristics of the algorithm but instead
it is intended to find multiple optimal solutions if they
exist.

 Consequently, Step 7 becomes:
Step 7: If f = 0 and h = 0 then an optimal solution has

been found. If along the path representing the optimal

solution there is a node which was selected for expansion

by breaking ties randomly among nodes at the same state

level with the same minimum heuristic estimate then

return to that state level and repeat from Step 2 ignoring

any node that was selected previously for expansion as a

result of breaking ties. If any of the values of h at root

nodes (state level 0) is less than or equal to the minimum

makespan then return to state level 0 and repeat from

Step 2 ignoring root nodes that lead to a previous

optimal solution. Otherwise, Stop.

4 The final version of IHSA
*

The final version of IHSA* incorporates each of the
3 modifications:
Step1: At state level 0, from (5), choose the admissible

heuristic function among H1, H2, and H3 which has the

largest value and if necessary break ties randomly. In the

case where machine Mj dominates the other machines

select Hj. Expand the node identified by the chosen

admissible heuristic function and move to the nodes at

state level 1. If more than one node is identified then

break ties randomly.

Step 2: At the current state level if the heuristic estimate

of one of the nodes has been updated by backtracking use

the updated value as the heuristic estimate for that node

and proceed to Step 3. Otherwise, at each node use

Procedure 2 to calculate h1, h2, h3 and use max[h1, h2,

h3] as the heuristic estimate for the node.

Step 3: At the current state level select the node with the

smallest heuristic estimate. If it is necessary then break

ties randomly.

Step 4: Calculate f = h + k where h is the smallest

heuristic estimate found in Step 3 and k (edge cost) is the

time that has elapsed since the preceding state transition

occurred.

Step 5: If f > h
’
, where h

’
 is the minimum heuristic

estimate calculated at the preceding state level, then

backtrack to that preceding state level and increase the

value of h
’
 at that preceding node to the current value of

f and repeat Step 4 at that node.

Step 6: If f ≤ h
’
 then proceed to the next state level and

repeat from Step 2.

Step 7: If f = 0 and h = 0 then an optimal solution has

been found. If along the path representing the optimal

solution there is a node which was selected for expansion

by breaking ties randomly among nodes at the same state

level with the same minimum heuristic estimate then

return to that state level and repeat from Step 2 ignoring

any node that was selected previously for expansion as a

result of breaking ties. If any of the values of h at root

nodes (state level 0) is less than or equal to the minimum

makespan then return to state level 0 and repeat from

Step 2 ignoring root nodes that lead to a previous

optimal solution. Otherwise, Stop.

If there are m machines and m > 3 then Steps 1 and
Step 2 need to be modified in accordance with the
discussion of this case presented in sections 3.1 and 3.2
above.

The simple instructive example which was used to
illustrate the initial version of IHSA* (see Table 1) is
used again to illustrate the final version of IHSA*. For
this problem, from (5), H3 = 26 > H1 = 19 > H2 = 16 and
using the modification to Step 1 of the algorithm H3 is
used in Step 1 of the algorithm. Since no backtracking is
necessary an optimal solution for the problem requires
only 1 search path diagram which is shown in Figure 3
where the optimal solution has a minimum makespan of
26 and a job sequence J1, J2, J3. At each node the search
path diagram shows the estimates h1, h2, h3 and the
heuristic estimate for the node h = max[h1, h2, h3] which
result from the use of the modification to Step 2 of the
algorithm.

It is noted that the minimum heuristic estimate at
state level 1 is 24 at both of the nodes at that state level.
In Step 3 of the algorithm the tie was broken randomly
and the node at which job J2 is scheduled on machine M1
was selected for expansion. In Step 7, although for
simplicity a second search path diagram has not been
drawn, the search returns to state level 1 and instead the

A HEURISTIC SEARCH ALGORITHM FOR... Informatica 32 (2008) 453–464 459

 Figure 3: Search Path Diagram Using the Final Version
of IHSA*

node at which job J3 is scheduled on machine M1 is
expanded. This gives a second optimal solution where
the job sequence is J1, J3, J2.

5 Experimental evidence of

improvements in performance

Experimental evidence of improvements in performance
characteristics of IHSA* using the modifications to Steps
1 and 2 is presented in Appendix Table A1. The
characteristics considered are: the number of nodes
expanded; the number of backtracking steps required;
and the number of steps of the algorithm executed.

In total 14 problems are considered involving: 3, 5
and 10 machines; and 3, 4, 10, 15, and 40 jobs. Each
problem involving 3 machines was solved using the
heuristic functions H1, H2, and H3 in (5) which are the
same as F1, F2, and F3, respectively, when m = 3.
Problems involving 5 and 10 machines were solved using
their corresponding heuristic functions F1, F2, F3, F4, F5
and F1, F2, F3, …, F10, respectively. The solutions
enabled improvements in the performance characteristics
resulting from the use of only the modification to Step 1
to be assessed. In addition, for each problem the solution
was obtained using the modification to Step 1 together
with the modification to Step 2. The performance

characteristics associated with each of these solutions
enabled an assessment of any further improvements in
performance characteristics resulting from the inclusion
of the modification to Step 2.

From Table A1 it is seen that for each problem
regardless of the number of jobs and machines the
modification to Step 1, which involves using the heuristic
function with the largest value in Step 1, leads to
improvements in all of the performance characteristics.
Furthermore, in each problem using the modification to
Step 1 together with the modification to Step 2, which
affects the calculation of heuristic estimates as the search
progresses, leads to further improvements in the
performance characteristics.

6 Conclusion

Three modifications to the initial version of a new
intelligent heuristic search algorithm (IHSA*) have been
described. The algorithm guarantees an optimal solution
for flow-shop problems involving an arbitrary number of
jobs and machines provided the job sequence is the same
on all of the machines.

 The first modification affects Step 1 of the
algorithm and concerns the choice of an admissible
heuristic function which is as close as possible to the
minimum makespan for the problem. For problems with
an arbitrary number of jobs and 3 machines (M1, M2, M3)
a set of 6 possible functions is derived (H1, H2, …, H6)
and their admissibility is proved. It is shown that the
function which has a value that is closest to the minimum
makespan and is the best function to use in Step 1 of the
algorithm is the function among H1, H2, and H3 which
has the largest value. In the particular case where one of
the machines (Mj) dominates the other 2 machines the
best function is Hj and there is no need to calculate the
values of the other 2 functions. Furthermore, its value is
greater than the value of either of the other 2 functions by
at least O(n2) where n is the number of jobs. More
generally, for problems with more than 3 machines (M1,
M2, …, Mm) the best admissible heuristic function to use
is the one among F1, F2, …, Fm with largest value and if
machine Mj dominates the other machines then Fj is the
best heuristic function. The proofs of these more general
results may be obtained following the methods used in
the proofs presented in the Appendix of the
corresponding results for H1, H2, and H3.

 The second modification changes the procedure
used in Step 2 of the initial version of the algorithm to
determine heuristic estimates at nodes on the search path.
The initial version determines a heuristic estimate at a
node by considering an operation in only one of the cells
at the node while operations in the other cells are not
taken into account. The modified procedure determines a
heuristic estimate at a node by selecting the largest of the
separate estimates calculated for each cell at the node.
The modified procedure never produces an estimate for a
node that is smaller than the estimate produced by the
procedure used in the initial version of the algorithm and
in many cases it will be larger.

460 Informatica 32 (2008) 453–464 J. Fan et al.

 The first and second modifications ensure that at
the start of the search and as the search progresses
heuristic estimates are admissible and are as close as
possible to the minimum time needed to complete all of
the incomplete operations on all of the machines. This
reduces the chance that the search will backtrack and
improves the performance characteristics of the
algorithm. Experimental evidence from problems
involving various numbers of machines and jobs
indicates that although the first modification produces
improvements in performance characteristics of the
algorithm these improvements are enhanced when the
second modification is included.

 The third modification relates to Step 7 of the
algorithm and concerns problems where there are
multiple optimal solutions. It enables all of the optimal
solutions to be found and this is convenient for situations
where additional criteria may need to be satisfied by an
optimal solution.

 This article has focussed on describing the
development of the final version of IHSA*. However,
there are several areas for future investigation including a
comparison of the performance of the algorithm with
other methods such as branch- and-bound methods and
methods for pruning the search tree in order to improve
memory management during implementation.

References

[1] Blum, C., Roli, A. “Metaheuristics in combinatorial
optimization: overview and conceptual
comparison,” ACM Comput. Surv., 35, 2003, 268-
308.

[2] Chen, C.L., Neppalli, R.V., Aljaber, N. “Genetic
algorithms applied to the continuous flow shop
problem,” Computers and Industrial Engineering
30: (4), 1996, 919-929.

[3] Cleveland, G.A., Smith, S.F. “Using genetic
algorithms to schedule flow shop,” Proceedings of
3rd Conference on Genetic Algorithms, Schaffer,
D.(ed.), San Mateo: Morgan Kaufmann Publishing,
1989, 160-169.

[4] Conway, R.W., Maxwell, W.L., Miller, L.W.
Theory of scheduling, Addison-Wesley, Reading
Massachusetts, 1967.

[5] Eitler, O., Toklu, B., Atak, M., Wilson,J. “A genetic
algorithm for flowshop scheduling problems,” J.
Oper. Res. Soc., 55, 2004, 830-835.

[6] Fan, J.P.-O. “The development of a heuristic search
strategy for solving the flow-shop scheduling
problem,” Proceedings of the IASTED International
Conference on Applied Informatics, Innsbruck,
Austria, 1999, 516-518.

[7] Fan, J.P.-O. “An intelligent search strategy for
solving the flow-shop scheduling problem,”
Proceedings of the IASTED International
Conference on Software Engineering, Scottsdale,
Arizona, USA, 1999, 99-103.

[8] Fan, J.P.-O. An intelligent heuristic search method
for flow-shop problems, doctoral dissertation,
University of Wollongong, Australia, 2002.

[9] Framinan, J.M, Ruiz-Usano, R., Leisten, R.
“Sequencing CONWIP flow-shops: analysis and
heuristic,” Int. J. Prod. Res., 39, 2001, 2735-2749.

[10] Gheoweth, S.V., Davis, H.W. “High performance
A* search using rapidly growing heuristics,”
Proceedings of the International Joint Conference
on Artificial Intelligence, Sydney, Australia, 1991,
198-203.

[11] Grabowski, J., Wodecki, M. “A very fast tabu search
algorithm for the permutation flowshop problem
with makespan criterion,” Comput. Oper. Res., 31,
2004, 1891-1909.

[12] Hart, P.E., Nilsson, N.J., Raphael, B. “A formal
basis for the heuristic determination of minimum
cost paths,” IEEE Transactions on Systems Science
and Cybernetics, Vol. SSC-4: (2), 1968, 100-107.

[13] Hong, T.P., Chuang, T.N. “Fuzzy scheduling on
two-machine flow shop,” Journal of Intelligent &
Fuzzy Systems, 6: (4), 1998, 471-481.

[14] Hong, T.P., Chuang, T.N. “Fuzzy CDS scheduling
for flow shops with more than two machines,”
Journal of Intelligent & Fuzzy Systems, 6: (4),
1998, 471-481.

[15] Hong, T.P., Chuang, T.N. “Fuzzy Palmer scheduling
for flow shops with more than two machines,”
Journal of Information Science and Engineering,
Vol.15, 1999, 397-406.

[16] Hong, T.P., Wang, T.T. “A heuristic Palmer-based
fuzzy flexible flow-shop scheduling algorithm,”
Proceedings of the IEEE International Conference
on Fuzzy Systems, Vol. 3, 1999, 1493-1497.

[17] Hong, T.P., Huang, C.M., Yu, K.M. “LPT
scheduling for fuzzy tasks,” Fuzzy Sets and
Systems, Vol. 97, 1998, 277-286.

[18] Hong, T.P., Wang, C.L., Wang, S.L. “A heuristic
Gupta-based flexible flow-shop scheduling
algorithm,” Proceedings of the IEEE International
Conference on Systems, Man and Cybernetics, Vol.
1, 2000, 319-322.

[19] Ignall, E., Schrage, L.E. “Application of the branch
and bound technique to some flow shops scheduling
problems,” Operations Research, Vol. 13: (3), 1965,
400-412.

[20] Johnson, S.M. “Optimal two- and three-stage
production schedules with setup times included,”
Naval Research Logistics Quarterly, 1: (1), 1954,
61-68.

[21] Kamburowski, J. “The nature of simplicity of
Johnson’s algorithm,” Omega-International Journal
of Management Science, 25: (5), 1997, 581-584.

[22] Korf, R.E. “Depth-first iterative-deepening: an
optimal admissible tree search,” Artificial
Intelligence, Vol. 27, 1985, 97-109.

[23] Korf, R.E. “Iterative-deepening A*: an optimal
admissible tree search,” Proceeding of the 9th
International Joint Conference on Artificial
Intelligence, Los Angeles, California, 1985, 1034-
1036.

[24] Korf, R.E. “Real-time heuristic search,” Artificial
Intelligence, Vol. 42, 1990, 189-211.

A HEURISTIC SEARCH ALGORITHM FOR... Informatica 32 (2008) 453–464 461

[25] Korf, R.E. “Linear-space best-first search,” Artificial
Intelligence, 62: (1), 1993, 41-78.

[26] Lai, T.C. “A note on heuristics of flow-shop
scheduling,” Operations Research, 44: (6), 1996,
648-652.

[27] Lee, G.C., Kim, Y.D., Choi, S. W. “Bottleneck-
focused scheduling for a hybrid flow-shop,” Int. J.
Prod. Res., 42, 2004, 165-181.

[28] Liu, B., Wang, L., Jin, Y-H. “An effective PSO-
based memetic algorithm for flow shop scheduling,
“IEEE T. Syst. Man. CY. B.,” 37, 2007, 18-27.

[29] Lomnicki, Z. “A branch and bound algorithm for the
exact solution of three machine scheduling
problem,” Operational Research Quarterly, 16: (1),
1965, 89-100.

[30] McMahon, C.B., Burton, P.G. “Flow-shop
scheduling with the branch and bound method,”
Operations Research, 15: (3), 1967, 473-481.

[31] Nawaz, M., Enscore Jr. E., Ham, I. “A heuristic
algorithm for the m-machine, n-job flow-shop
sequencing problem,” Omega-Int. J. Manage. S., 11,
1983, 91-95.

[32] Ogbu, F.A., Smith, D.K. “The application of the
simulated annealing algorithm to the solution of the
n/m/Cmax flowshop problem,” Comput. Oper. Res.,
17, 1990, 243-253.

[33] Onwubolu, G.C., Davendra, D. “Scheduling flow-
shops using differential evolution algorithm,” Eur. J.
Oper. Res., 171, 2006, 674-692.

[34] Osman, I., Potts, C. “Simulated annealing for
permutation flow shop scheduling,” OMEGA, 17,
1989, 551-557.

[35] Pan, C.H. “A study of integer programming
formulations for scheduling problems,”
International Journal of System Science, 28: (1),
1997, 33-41.

[36] Pan, C.H., Chen, J.S. “Scheduling alternative
operations in two-machine flow-shops,” Journal of
the Operational Research Society, 48: (5), 1997,
533-540.

[37] Ravendran, C. “Heuristic for scheduling in flowshop
with multiple objectives,” Eur. J. Oper. Res., 82,
1995, 540-555.

[38] Ruiz, R., Maroto, C., Alcaraz, J. “Two new robust
genetic algorithms for the flowshop scheduling
problem,” Omega-Int. J. Manage. S., 34, 2006, 461-
476.

[39] Stutzle, T. “Applying iterated local search to the
permutation flowshop problem,” AIDA-98-04, TU
Darmstadt, FG Intellektik, 1998.

[40] Taillard, E. “Some efficient heuristic methods for the
flow shop sequencing problem,” Eur. J. Oper. Res.,
47, 1990, 65-74.

[41] Taillard, E. “Benchmarks for basic scheduling
problems,” Eur. J. Oper. Res., 64, 1993, 278-285.

[42] Wang, C.G., Chu, C.B., Proth, J.M. “Efficient
heuristic and optimal approaches for N/2/F/SIGMA-
C-I scheduling problems,” International Journal of
Production Economics, 44: (3), 1996, 225-237.

[43] Ying, K.C., Liao, C.J. “An ant colony system for
permutation flow-shop sequencing,” Comput. Oper.
Res., 31, 2004, 791-801.

[44] Zamani, M.R., Shue, L.Y. “Developing an optimal
learning search method for networks,” Scientia
Iranica, 2: (3), 1995, 197-206.

[45] Zamani, R., Shue, L.Y. “Solving project scheduling
problems with a heuristic learning algorithm,”
Journal of the Operational Research Society, 49: (7),
1998, 709-716.

[46] Zamani, M.R. “A high performance exact method
for the resource-constrained project scheduling
problem,” Computers and Operations Research, 28,
2001, 1387-14.

[47] Zobolas, G.I., Tarantilis, C.D., Ioannou, G.
“Minimizing makespan in Permutation Flow Shop
scheduling problems using a hybrid metaheuristic
algorithm,” Computers and Operations Research,
2008, doi:10.1016/j.cor.2008.01.007.

Appendix

Derivation of heuristic functions

The purpose is to develop heuristic functions suitable
for use in IHSA*. In each case the objective is to develop
a function which underestimates the minimum makespan
(i.e. admissible). Six functions are developed and the
proof of their admissibility is presented in the next
section.

From Figure 1, S(φst) ≥ max [bt +, as + i

n

i

b∑
=1

] and

T(φst) ≥ max [S(φst) + ct , as + bs + i

n

i

c∑
=1

] which

means that:

T(φst) ≥ as + bs + i

n

i

c∑
=1

 or, (A1)

T(φst) ≥ S(φst) + ct ≥ bt + ct + i

n

i

a∑
=1

 or, (A2)

T(φst) ≥ as + ct + i

n

i

b∑
=1

. (A3)

 From (A1) two heuristic functions H3 and H6 are
proposed:

H3 = min[a1 + b1, a2 + b2, …, an + bn] + i

n

i

c∑
=1

 and

H6 = min[a1, a2, …, an] + min[b1, b2, …, bn] + i

n

i

c∑
=1

.

The rationale for the development of H3 is: select the job
that will be finished on M2 at the earliest possible time if
it is placed first in the job sequence. When this job is
finished on M2 min[a1 + b1, a2 + b2, …, an + bn] units of
time have elapsed and the additional time needed to
complete all of the jobs on all of the machines will be at

462 Informatica 32 (2008) 453–464 J. Fan et al.

least i

n

i

c∑
=1

units of time. Since min[a1 + b1, a2 + b2, …,

an + bn] ≥ min[a1, a2, …, an] + min[b1, b2, …, bn] it
follows that H3 ≥ H6, which is therefore also a plausible
heuristic function.

 H1 and H5 are derived from (A2):

H1 = min[b1 + c1, b2 + c2, …, bn + cn] + i

n

i

a∑
=1

 and

H5 = min[b1, b2, …, bn] + min[c1, c2, …, cn] + i

n

i

a∑
=1

.

The rationale for the development of H1 is: select the job
which requires the least total amount of time on
machines M2 and M3 (i.e. min[b1 + c1, b2 + c2, …, bn +
cn] units of time) and suppose that it is placed last in the
job sequence which means that the earliest time that it

can start on M2 is after i

n

i

a∑
=1

units of time. Since

min[b1 + c1, b2 + c2, …, bn + cn] ≥ min[b1, b2, …, bn] +
min[c1, c2, …, cn] it follows that H1 ≥ H5, which is
therefore also a plausible heuristic function.
 H2 and H4 are derived from (A3):

H2 = min[a1 + u1, a2 + u2, …, an + un] + i

n

i

b∑
=1

and

H4 = min[a1, a2, …, an] + min[c1, c2, …, cn] + i

n

i

b∑
=1

,

where: u1 = min[c2, c3, …, cn]; uk = min[c1, c2, …, ck-1,
ck+1, …, cn] for 2 ≤ k ≤ n – 1; and un = min[c1, c2, c3, …,
cn-1]. The rationale for the development of H2 is: consider
each job in turn and suppose that it is placed first in the
job sequence and then from among all of the other jobs
select the one which requires the least amount of time on
M3. Now for each pair of jobs selected in this manner
determine the pair that gives the least total time on M1
and M3. This total time plus the minimum total time
required to finish all of the jobs on M2 is the value of H2.
Also, min[a1 + u1, a2 + u2, …, an + un] ≥ min[a1, a2, …,
an] + min[u1, u2, …, un] = min[a1, a2, …, an] + min[c1, c2,
…, cn] and it follows that H2 ≥ H4, which is therefore also
a plausible heuristic function.
Admissibility

Results and selected proofs related to the admissibility of
the heuristic functions H1,
H2, H3, H4, H5, and H6 are presented:
R1. H3 ≥ H6 and both are admissible.
R2. H2 ≥ H4 and both are admissible.
R3. H1 ≥ H5 and both are admissible.
 Only a proof for R2 is given since the remaining
proofs may be constructed in the same manner.

 From (A3), T(φst) ≥ as + ct + i

n

i

b∑
=1

 for s, t = 1, 2, …,

n with s ≠ t and so in particular, T(φ1t) ≥ a1 + ct +

i

n

i

b∑
=1

, T(φ2t) ≥ a2 + ct + i

n

i

b∑
=1

, …, T(φnt) ≥ an + ct +

i

n

i

b∑
=1

.

 Hence, if T*(φst) denotes the earliest time at which any
job sequence which starts with job Js is completed on M3

then T*(φ1t) ≥ min[a1 + c2, a1 + c3, …, a1 + cn] + i

n

i

b∑
=1

,

T*(φ2t) ≥ min[a2 + c1, a2 + c3, …, a2 + cn] + i

n

i

b∑
=1

, …,

T*(φnt) ≥ min[an + c1, an + c2, …, an + cn-1, …, an + cn] +

i

n

i

b∑
=1

 and the minimum makespan T* = min[T*(φ1t),

T*(φ2t), …, T*(φnt)] ≥ min[a1 +u1, a2 + u2, …, an + un] +

i

n

i

b∑
=1

 = H2 ≥ min[a1, a2, …, an] + min[c1, c2, …, cn] +

i

n

i

b∑
=1

 = H4. Consequently, H2 ≥ H4 and both are

admissible.
From the results R1, R2, and R3 it is seen that the
heuristic functions H1, H2, H3, H4, H5, and H6 are all
admissible. However, in order to select the heuristic
function among these that is the closest in value to the
minimum makespan (i.e. the best to use in Step1 of
IHSA*) the choice should be made from among only H1,
H2, and H3 because the function among these 3 which has
the largest value is admissible and has a value which is
larger than any of the other 5 admissible functions.
Consequently, in Step1 of IHSA* the values of H1, H2,
and H3 are calculated and the function with the largest
value is selected for use.
Dominance

Machine M1 dominates the other 2 machines if min[a1,
a2, …, an] ≥ max[b1, b2, …, bn] and min[a1, a2, …, an] ≥
max[c1, c2, …, cn] and similar definitions apply if
machine M2 or machine M3 is dominant.
In the case of a dominant machine results R5, R6, and R7
identify immediately which heuristic function among H1,
H2, and H3 has the largest value and is the best to use in
IHSA*. Also, from R8 it is seen that the best heuristic
function has a value which is greater than the value of
either of the other functions by O(n2) where n is the
number of jobs.
R5. If machine M1 dominates then H1 is the heuristic
function with the largest value,
R6. If machine M2 dominates then H2 is the heuristic
function with the largest value,
R7. If machine M3 dominates then H3 is the heuristic
function with the largest value.
R8. If a machine is dominant then the best heuristic
function has a value which is greater than the value of
either of the other 2 functions by at least (n – 1)(n – 2)
where n is the number of jobs and n ≥ 3.

A HEURISTIC SEARCH ALGORITHM FOR... Informatica 32 (2008) 453–464 463

 The proofs for R5 and R8 are given noting that proofs
for the other results may be constructed in the same
manner. Throughout these proofs min(ai) = min[a1, a2,
…, an], min(bi) = min[b1, b2, …, bn], min(ci) = min[c1, c2,
…, cn], max(ai) = max[a1, a2, …, an], max(bi) = max[b1,
b2, …, bn], and max(ci) = max[c1, c2, …, cn].
 Suppose machine M1 dominates and for i = 1, 2, 3, …,
n: ai ∈ [r1, r1 + w –1]; bi ∈ [s1, s1 + l –1]; and ci ∈ [t1, t1 +
d –1] are distinct non negative integers from intervals of
widths w, l, and d, respectively, each greater than or
equal to n (the number of jobs).

It follows that the minimum values of i

n

i

a∑
=1

, i

n

i

b∑
=1

,

i

n

i

c∑
=1

are nr1 + 0.5n(n – 1), ns1 + 0.5n(n – 1), and nt1 +

0.5n(n – 1), respectively, and when these minimum
values are attained min(ai) = r1, min(bi) = s1, min(ci) = t1,
max(ai) = r1 + n – 1, max(bi) = s1 + n – 1, and max(ci) = t1
+ n –1 for i = 1, 2, 3, …, n.

 Also, the maximum values of i

n

i

a∑
=1

, i

n

i

b∑
=1

,

i

n

i

c∑
=1

are n(r1 + w) – 0.5n(n + 1), n(s1 + l) – 0.5n(n +

1), and n(t1 + d) – 0.5n(n + 1), respectively, and when
these maximum values are attained min(ai) = r1 + w – n,
min(bi) = s1 + l – n, min(ci) = t1 + d – n, max(ai) = r1 + w
– 1, max(bi) = s1 + l – 1, max(ci) = t1 + d – 1.

Now, H1 = min[b1 + c1, b2 + c2, …, bn + cn] + i

n

i

a∑
=1

 ≥ min(bi) + min(ci) + min(i

n

i

a∑
=1

) (A4)

and similarly,

H2 ≤ max(ai) + max(ci) + max(i

n

i

b∑
=1

) (A5)

and H3 ≤ max(ai) + max(bi) + max(i

n

i

c∑
=1

). (A6)

 If (A4), (A5), (A6) are all true then,
H1 ≥ s1 + l – n + t1 + d – n + nr1 + 0.5n(n – 1), (A7)
H2 ≤ r1 + n – 1 + t1 + d – 1 + n(s1 + l) – 0.5n(n + 1), (A8)
H3 ≤ r1 + n – 1 + s1 + l – 1 + n(t1 + d) – 0.5n(n + 1). (A9)
 From (A7) and (A8),
s1 + l – n + t1 + d – n + nr1 + 0.5n(n – 1) – r1 – n + 1 – t1 –
d +1 – n(s1 + 1) + 0.5n(n + 1) = s1 – ns1 + l – nl + nr1 – r1

+ n2 – 3n + 2 = (n – 1)[r1 – (s1 + l) + n – 2] ≥ (n – 1)(n –
2) ≥ 0 , for n ≥ 2, and so H1 is greater than H2 by a value
which is at least (n – 1)(n – 2), for n ≥ 3.
 In a similar manner it follows from (A7) and (A9) that
H1 is greater than H3 by a value which is at least (n – 1)(n
– 2), for n ≥ 3 and this completes the proof of R5 and R8.

The best admissible heuristic function for an

arbitrary number of machines

For the case where there are more than 3 machines there
is a need to change the notation used previously to
represent the time that each operation Oi,j requires on
each machine so that ti,j is the number of units of time
required by job Ji on machine Mj.
 If there are m machines then the best admissible
heuristic function will be the one with the largest value
among the set of m functions F1, F2, F3, …, Fm where,

Fj = min[
i

m

i

t ,1
2
∑

=

,
i

m

i

t ,2
2
∑

=

, …,
in

m

i

t ,
2
∑

=

] +
1,

1
i

n

i

t∑
=

, for j=1,

 min[
1,,1

1

1
ji

j

i

ut +∑
−

=

,
2,,2

1

1
ji

j

i

ut +∑
−

=

, …,
njin

j

i

ut ,,

1

1

+∑
−

=

]

 +
ji

n

i

t ,
1
∑

=

, for 2 ≤ j ≤ m,

where, for 2 ≤ j ≤ m – 1,

 min[
i

m

ji

t ,2
1

∑
+=

,
i

m

ji

t ,3
1

∑
+=

 , …,
in

m

ji

t ,
1

∑
+=

], for k = 1,

uj,k = min[
i

m

ji

t ,1
1

∑
+=

,
i

m

ji

t ,2
1

∑
+=

, …,
ik

m

ji

t ,1
1

−

+=

∑ ,
ik

m

ji

t ,1
1

+

+=

∑ , …,

 in

m

ji

t ,
1

∑
+=

], for 2 ≤ k ≤ n – 1,

 min[
i

m

ji

t ,1
1

∑
+=

,
i

m

ji

t ,2
1

∑
+=

, …,
in

m

ji

t ,1
1

−

+=

∑], for k = n,

and um,k = 0, for k = 1, 2, 3, …, n.
For a problem with m machines where m > 3 and the job
sequence is the same on each machine the function
among F1, F2, F3, …, Fm with the largest value is selected
in Step 1 of IHSA*.
 If m = 3 then using t1,i = ai, t2,i = bi, and t3,i = ci for i =
1, 2, 3, …, n and representing uj,1, uj,k, and uj,n simply by
u1, uk, and un, respectively, the 3 admissible heuristic
functions H1, H2, and H3 in (5) which have been used
throughout the description of the development of IHSA*
are given by F1, F2, and F3, respectively.

464 Informatica 32 (2008) 453–464 J. Fan et al.

Experimental evidence of improvements in

performance characteristics

Table A1: Performance of IHSA*: Modification to Step 1
compared to Modifications to Steps 1 and 2.

Note: For each problem: (a) the highlighted first row,
associated with the use of the modification to Step 1,
indicates the performance characteristics using the best
heuristic function; (b) the highlighted last row, associated
with the use of modifications to Steps 1 & 2, indicates
the performance characteristics when the best heuristic
function is used together with the modification to Step 2.

N
o

.
o

f
M

a
c
h

in
e
s

N
u

m
b

e
r
 o

f
J

o
b

s

P
r
o

b
le

m

M
o

d
if

ic
a

ti
o

n
 U

s
e
d

H
e
u

r
is

ti
c
 F

u
n

c
ti

o
n

V
a

lu
e
 o

f
H

e
u

r
is

ti
c

F
u

n
c
ti

o
n

Performance

Characteristics

M
in

im
u

m

M
a

k
e
s
p

a
n

N
o

d
e
s

E
x

p
a

n
d

e
d

B
a
c
k

tr
a
c
k

s

A
lg

o
r
it

h
m

S
te

p
s

3

3

1
1

H1

H3
H2

17

10
9

13

22
21

0

11
12

10

33
34 17

1&
2

H1 17 10 0 7

2
1

H2

H3
H1

24

15
13

13

36
36

6

39
37

22

88
84 24

1&
2

H2 24 8 2 17

3
1

H3

H2
H1

28

20
18

16

17
17

1

3
3

14

16
16 28

1&
2

H3 28 13 0 10

4

4
1

H1

H3
H2

23

19
14

35

50
57

20

30
37

52

72
82 25

1&
2

H1 23 35 15 42

5
1

H2

H3
H1

22

19
15

32

79
80

27

70
79

66

152
170 23

1&
2

H2 22 31 21 54

6
1

H3

H2
H1

24

21
20

66

69
71

53

63
64

109

138
140 27

1&
2

H3 24 63 43 96

15

7
1

H1

H3
H2

26

18
16

20

24
26

2

10
15

22

30
36 28

1&
2

H1 26 18 0 10

8
1

H2

H3
H1

28

20
16

20

38
40

9

40
45

38

90
98 31

1&
2

H2 28 16 4 25

9
1

H3

H2
H1

29

20
19

19

22
25

2

4
4

22

28
29 30

1&
2

H3 29 16 0 18

40 10 1
H1

H3
H2

43

38
35

50

53
70

12

30
38

70

105
113

45

N
o

.
o

f
M

a
c
h

in
e
s

N
u

m
b

e
r
 o

f
J

o
b

s

P
r
o

b
le

m

M
o

d
if

ic
a

ti
o

n
 U

s
e
d

H
e
u

r
is

ti
c
 F

u
n

c
ti

o
n

V
a

lu
e
 o

f
H

e
u

r
is

ti
c

F
u

n
c
ti

o
n

Performance

Characteristics

M
in

im
u

m

M
a

k
e
s
p

a
n

N
o

d
e
s

E
x

p
a

n
d

e
d

B
a
c
k

tr
a
c
k

s

A
lg

o
r
it

h
m

S
te

p
s

1&
2

H1 43 44 6 55

11
1

H2

H3
H1

42

40
37

49

50
66

30

32
45

60

85
115 43

1&
2

H2 42 32 18 52

12
1

H3

H2
H1

45

38
35

68

77
90

46

58
93

115

152
205 50

1&
2

H3 45 54 30 84

5 15
1
3

1

F1

F2
F3
F4
F5

37

30
27
25
23

42

60
72
82
97

12

15
18
25
32

65

93
104
126
150

39

1&
2

F1 37 30 5 50

10 10
1
4

1

F3

F2
F4
F1
F6
F5
F9
F7
F8

F10

50

48
46
45
42
40
38
32
32
30

35

37
41
43
45
52
60
69
72
81

20

23
28
30
33
34
40
45
48
51

63

83
89
91
95

107
123
135
137
151

52

1&
2

F3 50 30 2 40

Table A1: Performance of IHSA*

Informatica 32 (2008) 465

CONTENTS OF Informatica Volume 32 (2008) pp. 1–467

Papers
AGIČ, Ž. & , Z. DOVEDAN, M. TADIČ. 2008. Improving
Part-of-Speech Tagging Accuracy for Croatian by Morphological
Analysis. Informatica 32:445–451.

AHMAD, AL-T. & , H. MAEN. 2008. Recognition of On-line
Handwritten Arabic Digits Using Structural Features and Transi-
tion Network. Informatica 32:275–282.

AMME, W. & , T.S. HEINZE, J. VON RONNE. 2008. Intermedi-
ate Representations of Mobile Code. Informatica 32:1–25.

BENNETT, A.J. & , R.L. JOHNSTON, E. TURPIN, J.Q. HE.
2008. Analysis of an Immune Algorithm for Protein Structure
Prediction. Informatica 32:245–251.

BERCE, J. & , S. LANFRANCO, V. VEHOVAR. 2008. eGover-
nance: Information and Communication Technology, Knowledge
Management and Learning Organisation Culture. Informatica
32:189–206.

BIJAK, J. & , D. KUPISZEWSKA. 2008. Methodology for
the Estimation of Annual population stocks by citi-zenship
group, age and sex in the EU and EFTA countries. Informatica
32:133–145.

BOSNIĆ, Z. & . 2008. Estimation of Individual Prediction
Reliability Using Sensitivity Analysis of Regression Models.
Informatica 32:97–98.

CAGNINA, L.C. & , S.C. ESQUIVEL, C.A.C. COELLO. 2008.
Solving Engineering Optimization Problems with the Simple
Constrained Particle Swarm Optimizer. Informatica 32:319–326.

CHANG, R.K.Y. & , C.K. LOO, M.V.C. RAO. 2008. A Global
k-means Approach for Autonomous Cluster Initialization of
Probabilistic Neural Network. Informatica 32:219–225.

CHEN, N. & , Y. YU, S. REN, M. BECKMAN. 2008. A
Role-Based Coordination Model and its Realization. Informatica
32:229–244.

CHEUNG, K.-S. & . 2008. Augmented Marked Graphs.
Informatica 32:85–94.

ČERNIČ ISTENIČ, M. & , A. KVEDER. 2008. Urban-Rural
Life Setting as the Explanatory Factor of Differences in Fertility
Behaviour in Slovenia. Informatica 32:111–122.

DAHIMENE, A. & , M. NOUREDDINE, A. AZRAR. 2008. A
Simple Algorithm for the Restoration of Clipped Speech Signal.
Informatica 32:183–188.

DE MEO, P. & , G. QUATTRONE, G. TERRACINA, D. URSINO.
2008. An Approach to Extracting Sub-schema Similarities

From Semantically Heterogeneous XML Schemas. Informatica
32:397–419.

DOLENC, M. & , R. KLINC, Ž. TURK, P. KATRANUSCHKOV,
K. KUROWSKI. 2008. Semantic Grid Platform in Support of
Engineering Virtual Organisations. Informatica 32:39–49.

DVOŘÁKOVÁ, J. & . 2008. Automatic Streaming Processing of
XSLT Transformations Based on Tree Transducers. Informatica
32:373–382.

FAN, J.P.-O. & , GRAHAM K. WINLEY. 2008. A Heuristic
Search Algorithm for Flow-Shop Scheduling. Informatica
32:453–464.

GAMS, M. & , J. KRIVEC. 2008. Demographic Analysis of
Fertility Using Data Mining Tools. Informatica 32:147–156.

GROBELNIK, M. & , J. BRANK, B. FORTUNA, I. MOZETIČ.
2008. Contextualizing Ontologies with OntoLight : A Pragmatic
Approach. Informatica 32:79–84.

HU, S. & . 2008. Geometric-Invariant Image Watermarking by
Key-Dependent Triangulation. Informatica 32:169–181.

KORBA, M.C.A. & , D. MESSADEG, R. DJEMILI,
H. BOUROUBA. 2008. Robust Speech Recognition Using
Perceptual Wavelet Denoising and Mel-frequency Product Spec-
trum Cepstral Coefficient Features. Informatica 32:283–288.

KORENJAK-ČERNE, S. & , N. KEJŽAR, V. BATAGELJ. 2008.
Clustering of Population Pyramids. Informatica 32:157–167.

KUMAR, P. & , A. MITTAL, P. KUMAR. 2008. Study of
Robust and Intelligent Surveillance in Visible and Multi-modal
Framework. Informatica 32:63–77.

MALACIC, J. & . 2008. Late Fertility Trends in Europe.
Informatica 32:123–132.

MANDL, T. & . 2008. Recent Developments in the Evaluation of
Information Retrieval Systems: Moving Towards Diversity and
Practical Relevance. Informatica 32:27–38.

MOHAPATRA, D.P. & , M. SAHU, R. KUMAR, R. MALL. 2008.
Dynamic Slicing of Aspect-Oriented Programs. Informatica
32:261–274.

NICOLAE, O. & , A. GIURCA, G. WAGNER. 2008. On
Interchange between Drools and Jess. Informatica 32:383–396.

OLIEHOEK, F.A. & , JULIAN F.P. KOOIJ, N. VLASSIS. 2008.
The Cross-Entropy Method for Policy Search in Decentralized
POMDPs. Informatica 32:341–357.

466 Informatica 32 (2008)

PARAMESWARAN, L. & , K. ANBUMANI . 2008. Content-Based
Watermarking for Image Authentication Using Independent Com-
ponent Analysis. Informatica 32:299–306.

REN, Y. & , D. GU. 2008. Efficient Hierarchical Identity
Based Encryption Scheme in the Standard Model. Informatica
32:207–211.

RUPNIK, J. & , M. GRČAR, T. ERJAVEC. 2008. Improving
Morphosyntactic Tagging of Slovene Language through Meta-
tagging. Informatica 32:437–444.

SALEHI, M.A. & , H. DELDARI, B.M. DORRI. 2008. Balancing
Load in a Computational Grid Applying Adaptive, Intelligent
Colonies of Ants. Informatica 32:327–335.

SAMBT, J. & , M. ČOK. 2008. Demographic Pressure on the
Public Pension System. Informatica 32:103–109.

SCHUSTER, A. & . 2008. DNA Algorithms for Petri Net
Modeling. Informatica 32:421–427.

SHERMEH, A.E.Z. & , R. GHADERI. 2008. An Intelligent
System for Classification of the Communication formats Using
PSO. Informatica 32:213–218.

ŠIMOŇÁK, S. & , Š. HUDÁK, Š. KOREČKO. 2008. APC
Semantics for Petri Nets. Informatica 32:253–260.

ŠKULJ, D. & , V. VEHOVAR, D. ŠTAMFELJ. 2008. The
Modelling of Manpower by Markov Chains - A Case Study of
the Slovenian Armed Forces. Informatica 32:289–297.

TAŠKOVA, K. & , P. KOROŠEC, J. ŠILC. 2008. A Distributed
Multilevel Ant Colonies Approach. Informatica 32:307–317.

VOR DER BRÜCK, T. & , S. HARTRUMPF, H. HELBIG. 2008.
A Readability Checker with Supervised Learning Using Deep
Indicators. Informatica 32:429–435.

WOTAWA, F. & , M. NICA. 2008. On the Compilation of
Programs into their Equivalent Constraint Representation.
Informatica 32:359–371.

ŽENKO, B. & . 2008. Learning Predictive Clustering Rules.
Informatica 32:95–96.

ŽIBERT, J. & , B. VESNICER, F. MIHELIČ. 2008. A System
for Speaker Detection and Tracking in Audio Broadcast News.
Informatica 32:51–61.

Editorials
MALAČIČ, J. & , J. JÓŹWIAK, A. FÜRNKRANZ-PRSKAWETZ.
2008. Introduction. Informatica 32:101–102.

BADICA, C. & , M. GANZHA, M. PAPRZYCKI . 2008. Editor’s
Introduction to the Special Issue: Intelligent Systems. Informat-

ica 32:340–340.

Informatica 32 (2008) 467

JOŽEF STEFAN INSTITUTE

Jožef Stefan (1835-1893) was one of the most prominent physi-
cists of the 19th century. Born to Slovene parents, he obtained
his Ph.D. at Vienna University, where he was later Director of the
Physics Institute, Vice-President of the Vienna Academy of Sci-
ences and a member of several scientific institutions in Europe.
Stefan explored many areas in hydrodynamics, optics, acoustics,
electricity, magnetism and the kinetic theory of gases. Among
other things, he originated the law that the total radiation from a
black body is proportional to the 4th power of its absolute tem-
perature, known as the Stefan–Boltzmann law.

The Jožef Stefan Institute (JSI) is the leading independent sci-
entific research institution in Slovenia, covering a broad spec-
trum of fundamental and applied research in the fields of physics,
chemistry and biochemistry, electronics and information science,
nuclear science technology, energy research and environmental
science.

The Jožef Stefan Institute (JSI) is a research organisation for
pure and applied research in the natural sciences and technology.
Both are closely interconnected in research departments com-
posed of different task teams. Emphasis in basic research is given
to the development and education of young scientists, while ap-
plied research and development serve for the transfer of advanced
knowledge, contributing to the development of the national econ-
omy and society in general.

At present the Institute, with a total of about 800 staff, has 600
researchers, about 250 of whom are postgraduates, nearly 400 of
whom have doctorates (Ph.D.), and around 200 of whom have
permanent professorships or temporary teaching assignments at
the Universities.

In view of its activities and status, the JSI plays the role of a
national institute, complementing the role of the universities and
bridging the gap between basic science and applications.

Research at the JSI includes the following major fields:
physics; chemistry; electronics, informatics and computer sci-
ences; biochemistry; ecology; reactor technology; applied math-
ematics. Most of the activities are more or less closely connected
to information sciences, in particular computer sciences, artifi-
cial intelligence, language and speech technologies, computer-
aided design, computer architectures, biocybernetics and robotics,
computer automation and control, professional electronics, digital
communications and networks, and applied mathematics.

The Institute is located in Ljubljana, the capital of the indepen-
dent state of Slovenia (or S♥nia). The capital today is considered
a crossroad between East, West and Mediterranean Europe, offer-
ing excellent productive capabilities and solid business opportuni-
ties, with strong international connections. Ljubljana is connected
to important centers such as Prague, Budapest, Vienna, Zagreb,
Milan, Rome, Monaco, Nice, Bern and Munich, all within a ra-
dius of 600 km.

From the Jožef Stefan Institute, the Technology park “Ljubl-
jana” has been proposed as part of the national strategy for tech-
nological development to foster synergies between research and

industry, to promote joint ventures between university bodies, re-
search institutes and innovative industry, to act as an incubator
for high-tech initiatives and to accelerate the development cycle
of innovative products.

Part of the Institute was reorganized into several high-tech units
supported by and connected within the Technology park at the
Jožef Stefan Institute, established as the beginning of a regional
Technology park "Ljubljana". The project was developed at a par-
ticularly historical moment, characterized by the process of state
reorganisation, privatisation and private initiative. The national
Technology Park is a shareholding company hosting an indepen-
dent venture-capital institution.

The promoters and operational entities of the project are the
Republic of Slovenia, Ministry of Higher Education, Science and
Technology and the Jožef Stefan Institute. The framework of the
operation also includes the University of Ljubljana, the National
Institute of Chemistry, the Institute for Electronics and Vacuum
Technology and the Institute for Materials and Construction Re-
search among others. In addition, the project is supported by the
Ministry of the Economy, the National Chamber of Economy and
the City of Ljubljana.

Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Tel.:+386 1 4773 900, Fax.:+386 1 251 93 85
WWW: http://www.ijs.si
E-mail: matjaz.gams@ijs.si
Public relations: Polona Strnad

Informatica 32 (2008)

INFORMATICA
AN INTERNATIONAL JOURNAL OF COMPUTING AND INFORMATICS

INVITATION, COOPERATION

Submissions and Refereeing

Please submit an email with the manuscript to one of the editors
from the Editorial Board or to the Managing Editor. At least two
referees outside the author’s country will examine it, and they are
invited to make as many remarks as possible from typing errors to
global philosophical disagreements. The chosen editor will send
the author the obtained reviews. If the paper is accepted, the editor
will also send an email to the managing editor. The executive
board will inform the author that the paper has been accepted, and
the author will send the paper to the managing editor. The paper
will be published within one year of receipt of email with the
text in Informatica MS Word format or Informatica LATEX format
and figures in .eps format. Style and examples of papers can be
obtained from http://www.informatica.si. Opinions, news, calls
for conferences, calls for papers, etc. should be sent directly to
the managing editor.

QUESTIONNAIRE
Send Informatica free of charge

Yes, we subscribe

Please, complete the order form and send it to Dr. Drago Torkar,
Informatica, Institut Jožef Stefan, Jamova 39, 1000 Ljubljana,
Slovenia. E-mail: drago.torkar@ijs.si

ORDER FORM – INFORMATICA

Name: .

Title and Profession (optional): .

. .

Home Address and Telephone (optional): .

. .

Since 1977, Informatica has been a major Slovenian scientific
journal of computing and informatics, including telecommunica-
tions, automation and other related areas. In its 16th year (more
than ten years ago) it became truly international, although it still
remains connected to Central Europe. The basic aim of Infor-
matica is to impose intellectual values (science, engineering) in a
distributed organisation.

Informatica is a journal primarily covering the European com-
puter science and informatics community - scientific and educa-
tional as well as technical, commercial and industrial. Its basic
aim is to enhance communications between different European
structures on the basis of equal rights and international referee-
ing. It publishes scientific papers accepted by at least two ref-
erees outside the author’s country. In addition, it contains in-
formation about conferences, opinions, critical examinations of
existing publications and news. Finally, major practical achieve-
ments and innovations in the computer and information industry
are presented through commercial publications as well as through
independent evaluations.

Editing and refereeing are distributed. Each editor can conduct
the refereeing process by appointing two new referees or referees
from the Board of Referees or Editorial Board. Referees should
not be from the author’s country. If new referees are appointed,
their names will appear in the Refereeing Board.

Informatica is free of charge for major scientific, educational and
governmental institutions. Others should subscribe (see the last
page of Informatica).

Office Address and Telephone (optional): .

. .

E-mail Address (optional): .

Signature and Date: .

Informatica WWW:

http://www.informatica.si/

Referees:

Witold Abramowicz, David Abramson, Adel Adi, Kenneth Aizawa, Suad Alagić, Mohamad Alam, Dia Ali, Alan
Aliu, Richard Amoroso, John Anderson, Hans-Jurgen Appelrath, Iván Araujo, Vladimir Bajič, Michel Barbeau,
Grzegorz Bartoszewicz, Catriel Beeri, Daniel Beech, Fevzi Belli, Simon Beloglavec, Sondes Bennasri, Francesco
Bergadano, Istvan Berkeley, Azer Bestavros, Andraž Bežek, Balaji Bharadwaj, Ralph Bisland, Jacek Blazewicz,
Laszlo Boeszoermenyi, Damjan Bojadžijev, Jeff Bone, Ivan Bratko, Pavel Brazdil, Bostjan Brumen, Jerzy
Brzezinski, Marian Bubak, Davide Bugali, Troy Bull, Sabin Corneliu Buraga, Leslie Burkholder, Frada Burstein,
Wojciech Buszkowski, Rajkumar Bvyya, Giacomo Cabri, Netiva Caftori, Particia Carando, Robert Cattral, Jason
Ceddia, Ryszard Choras, Wojciech Cellary, Wojciech Chybowski, Andrzej Ciepielewski, Vic Ciesielski, Mel Ó
Cinnéide, David Cliff, Maria Cobb, Jean-Pierre Corriveau, Travis Craig, Noel Craske, Matthew Crocker, Tadeusz
Czachorski, Milan Češka, Honghua Dai, Bart de Decker, Deborah Dent, Andrej Dobnikar, Sait Dogru, Peter
Dolog, Georg Dorfner, Ludoslaw Drelichowski, Matija Drobnič, Maciej Drozdowski, Marek Druzdzel, Marjan
Družovec, Jozo Dujmović, Pavol Ďuriš, Amnon Eden, Johann Eder, Hesham El-Rewini, Darrell Ferguson, Warren
Fergusson, David Flater, Pierre Flener, Wojciech Fliegner, Vladimir A. Fomichov, Terrence Forgarty, Hans Fraaije,
Stan Franklin, Violetta Galant, Hugo de Garis, Eugeniusz Gatnar, Grant Gayed, James Geller, Michael
Georgiopolus, Michael Gertz, Jan Goliński, Janusz Gorski, Georg Gottlob, David Green, Herbert Groiss, Jozsef
Gyorkos, Marten Haglind, Abdelwahab Hamou-Lhadj, Inman Harvey, Jaak Henno, Marjan Hericko, Henry
Hexmoor, Elke Hochmueller, Jack Hodges, John-Paul Hosom, Doug Howe, Rod Howell, Tomáš Hruška, Don
Huch, Simone Fischer-Huebner, Zbigniew Huzar, Alexey Ippa, Hannu Jaakkola, Sushil Jajodia, Ryszard
Jakubowski, Piotr Jedrzejowicz, A. Milton Jenkins, Eric Johnson, Polina Jordanova, Djani Juričič, Marko
Juvancic, Sabhash Kak, Li-Shan Kang, Ivan Kapustøk, Orlando Karam, Roland Kaschek, Jacek Kierzenka, Jan
Kniat, Stavros Kokkotos, Fabio Kon, Kevin Korb, Gilad Koren, Andrej Krajnc, Henryk Krawczyk, Ben Kroese,
Zbyszko Krolikowski, Benjamin Kuipers, Matjaž Kukar, Aarre Laakso, Sofiane Labidi, Les Labuschagne, Ivan
Lah, Phil Laplante, Bud Lawson, Herbert Leitold, Ulrike Leopold-Wildburger, Timothy C. Lethbridge, Joseph
Y-T. Leung, Barry Levine, Xuefeng Li, Alexander Linkevich, Raymond Lister, Doug Locke, Peter Lockeman,
Vincenzo Loia, Matija Lokar, Jason Lowder, Kim Teng Lua, Ann Macintosh, Bernardo Magnini, Andrzej
Małachowski, Peter Marcer, Andrzej Marciniak, Witold Marciszewski, Vladimir Marik, Jacek Martinek, Tomasz
Maruszewski, Florian Matthes, Daniel Memmi, Timothy Menzies, Dieter Merkl, Zbigniew Michalewicz, Armin
R. Mikler, Gautam Mitra, Roland Mittermeir, Madhav Moganti, Reinhard Moller, Tadeusz Morzy, Daniel Mossé,
John Mueller, Jari Multisilta, Hari Narayanan, Jerzy Nawrocki, Rance Necaise, Elzbieta Niedzielska, Marian
Niedq’zwiedziński, Jaroslav Nieplocha, Oscar Nierstrasz, Roumen Nikolov, Mark Nissen, Jerzy Nogieć, Stefano
Nolfi, Franc Novak, Antoni Nowakowski, Adam Nowicki, Tadeusz Nowicki, Daniel Olejar, Hubert Österle,
Wojciech Olejniczak, Jerzy Olszewski, Cherry Owen, Mieczyslaw Owoc, Tadeusz Pankowski, Jens Penberg,
William C. Perkins, Warren Persons, Mitja Peruš, Fred Petry, Stephen Pike, Niki Pissinou, Aleksander Pivk, Ullin
Place, Peter Planinšec, Gabika Polčicová, Gustav Pomberger, James Pomykalski, Tomas E. Potok, Dimithu
Prasanna, Gary Preckshot, Dejan Rakovič, Cveta Razdevšek Pučko, Ke Qiu, Michael Quinn, Gerald Quirchmayer,
Vojislav D. Radonjic, Luc de Raedt, Ewaryst Rafajlowicz, Sita Ramakrishnan, Kai Rannenberg, Wolf Rauch, Peter
Rechenberg, Felix Redmill, James Edward Ries, David Robertson, Marko Robnik, Colette Rolland, Wilhelm
Rossak, Ingrid Russel, A.S.M. Sajeev, Kimmo Salmenjoki, Pierangela Samarati, Bo Sanden, P. G. Sarang, Vivek
Sarin, Iztok Savnik, Ichiro Satoh, Walter Schempp, Wolfgang Schreiner, Guenter Schmidt, Heinz Schmidt, Dennis
Sewer, Zhongzhi Shi, Mária Smolárová, Carine Souveyet, William Spears, Hartmut Stadtler, Stanislaw Stanek,
Olivero Stock, Janusz Stokłosa, Przemysław Stpiczyński, Andrej Stritar, Maciej Stroinski, Leon Strous, Ron Sun,
Tomasz Szmuc, Zdzislaw Szyjewski, Jure Šilc, Metod Škarja, Jiřı Šlechta, Chew Lim Tan, Zahir Tari, Jurij Tasič,
Gheorge Tecuci, Piotr Teczynski, Stephanie Teufel, Ken Tindell, A Min Tjoa, Drago Torkar, Vladimir Tosic,
Wieslaw Traczyk, Denis Trček, Roman Trobec, Marek Tudruj, Andrej Ule, Amjad Umar, Andrzej Urbanski,
Marko Uršič, Tadeusz Usowicz, Romana Vajde Horvat, Elisabeth Valentine, Kanonkluk Vanapipat, Alexander P.
Vazhenin, Jan Verschuren, Zygmunt Vetulani, Olivier de Vel, Didier Vojtisek, Valentino Vranić, Jozef Vyskoc,
Eugene Wallingford, Matthew Warren, John Weckert, Michael Weiss, Tatjana Welzer, Lee White, Gerhard
Widmer, Stefan Wrobel, Stanislaw Wrycza, Tatyana Yakhno, Janusz Zalewski, Damir Zazula, Yanchun Zhang,
Ales Zivkovic, Zonling Zhou, Robert Zorc, Anton P. Železnikar

Informatica
An International Journal of Computing and Informatics

Web edition of Informatica may be accessed at: http://www.informatica.si.

Subscription Information Informatica (ISSN 0350-5596) is published four times a year in Spring, Summer,
Autumn, and Winter (4 issues per year) by the Slovene Society Informatika, Vožarski pot 12, 1000 Ljubljana,
Slovenia.
The subscription rate for 2008 (Volume 32) is
– 60 EUR for institutions,
– 30 EUR for individuals, and
– 15 EUR for students
Claims for missing issues will be honored free of charge within six months after the publication date of the issue.

Typesetting: Borut Žnidar.
Printing: Dikplast Kregar Ivan s.p., Kotna ulica 5, 3000 Celje.

Orders may be placed by email (drago.torkar@ijs.si), telephone (+386 1 477 3900) or fax (+386 1 251 93 85). The
payment should be made to our bank account no.: 02083-0013014662 at NLB d.d., 1520 Ljubljana, Trg republike
2, Slovenija, IBAN no.: SI56020830013014662, SWIFT Code: LJBASI2X.

Informatica is published by Slovene Society Informatika (president Niko Schlamberger) in cooperation with the
following societies (and contact persons):
Robotics Society of Slovenia (Jadran Lenarčič)
Slovene Society for Pattern Recognition (Franjo Pernuš)
Slovenian Artificial Intelligence Society; Cognitive Science Society (Matjaž Gams)
Slovenian Society of Mathematicians, Physicists and Astronomers (Bojan Mohar)
Automatic Control Society of Slovenia (Borut Zupančič)
Slovenian Association of Technical and Natural Sciences / Engineering Academy of Slovenia (Igor Grabec)
ACM Slovenia (Dunja Mladenič)

Informatica is surveyed by: Citeseer, COBISS, Compendex, Computer & Information Systems Abstracts,
Computer Database, Computer Science Index, Current Mathematical Publications, DBLP Computer Science
Bibliography, Directory of Open Access Journals, InfoTrac OneFile, Inspec, Linguistic and Language Behaviour
Abstracts, Mathematical Reviews, MatSciNet, MatSci on SilverPlatter, Scopus, Zentralblatt Math

The issuing of the Informatica journal is financially supported by the Ministry of Higher Education, Science and
Technology, Trg OF 13, 1000 Ljubljana, Slovenia.

Volume 32 Number 4 November 2008 ISSN 0350-5596

80th Birthday of Prof. Anton P. Železnikar -
Congratulations to the Founder of Informatica

N. Schlamberger 339

Editor’s Introduction to the Special Issue: Intelligent
Systems

C. Badica, M. Ganzha,
M. Paprzycki

340

The Cross-Entropy Method for Policy Search in
Decentralized POMDPs

F.A. Oliehoek, Julian
F.P. Kooij, N. Vlassis

341

On the Compilation of Programs into their
Equivalent Constraint Representation

F. Wotawa, M. Nica 359

Automatic Streaming Processing of XSLT
Transformations Based on Tree Transducers

J. Dvořáková 373

On Interchange between Drools and Jess O. Nicolae, A. Giurca,
G. Wagner

383

End of Special Issue / Start of normal papers

An Approach to Extracting Sub-schema Similarities
From Semantically Heterogeneous XML Schemas

P. De Meo,
G. Quattrone,
G. Terracina, D. Ursino

397

DNA Algorithms for Petri Net Modeling A. Schuster 421
A Readability Checker with Supervised Learning
Using Deep Indicators

T. vor der Brück,
S. Hartrumpf,
H. Helbig

429

Improving Morphosyntactic Tagging of Slovene
Language through Meta-tagging

J. Rupnik, M. Grčar,
T. Erjavec

437

Improving Part-of-Speech Tagging Accuracy for
Croatian by Morphological Analysis

Ž. Agič, Z. Dovedan,
M. Tadič

445

A Heuristic Search Algorithm for Flow-Shop
Scheduling

J.P.-O. Fan, Graham K.
Winley

453

Informatica 32 (2008) Number 4, pp. 339–467

	zadaj.pdf
	99_Informatica-back.pdf

