
Volume 32 Number 3 October 2008

1977

EDITORIAL BOARDS, PUBLISHING COUNCIL

Informatica is a journal primarily covering the European com-
puter science and informatics community; scientific and educa-
tional as well as technical, commercial and industrial. Its basic
aim is to enhance communications between different European
structures on the basis of equal rights and international referee-
ing. It publishes scientific papers accepted by at least two ref-
erees outside the author’s country. In addition, it contains in-
formation about conferences, opinions, critical examinations of
existing publications and news. Finally, major practical achieve-
ments and innovations in the computer and information industry
are presented through commercial publications as well as through
independent evaluations.

Editing and refereeing are distributed. Each editor from the
Editorial Board can conduct the refereeing process by appointing
two new referees or referees from the Board of Referees or Edi-
torial Board. Referees should not be from the author’s country. If
new referees are appointed, their names will appear in the list of
referees. Each paper bears the name of the editor who appointed
the referees. Each editor can propose new members for the Edi-
torial Board or referees. Editors and referees inactive for a longer
period can be automatically replaced. Changes in the Editorial
Board are confirmed by the Executive Editors.

The coordination necessary is made through the Executive Edi-
tors who examine the reviews, sort the accepted articles and main-
tain appropriate international distribution. The Executive Board
is appointed by the Society Informatika. Informatica is partially
supported by the Slovenian Ministry of Higher Education, Sci-
ence and Technology.

Each author is guaranteed to receive the reviews of his article.
When accepted, publication in Informatica is guaranteed in less
than one year after the Executive Editors receive the corrected
version of the article.

Executive Editor – Editor in Chief
Anton P. Železnikar
Volaričeva 8, Ljubljana, Slovenia
s51em@lea.hamradio.si
http://lea.hamradio.si/˜s51em/

Executive Associate Editor - Managing Editor
Matjaž Gams, Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Phone: +386 1 4773 900, Fax: +386 1 251 93 85
matjaz.gams@ijs.si
http://dis.ijs.si/mezi/matjaz.html

Executive Associate Editor - Deputy Managing Editor
Mitja Luštrek, Jožef Stefan Institute
mitja.lustrek@ijs.si

Executive Associate Editor - Technical Editor
Drago Torkar, Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Phone: +386 1 4773 900, Fax: +386 1 251 93 85
drago.torkar@ijs.si

Editorial Board
Juan Carlos Augusto (Argentina)
Costin Badica (Romania)
Vladimir Batagelj (Slovenia)
Francesco Bergadano (Italy)
Marco Botta (Italy)
Pavel Brazdil (Portugal)
Andrej Brodnik (Slovenia)
Ivan Bruha (Canada)
Wray Buntine (Finland)
Hubert L. Dreyfus (USA)
Jozo Dujmović (USA)
Johann Eder (Austria)
Vladimir A. Fomichov (Russia)
Maria Ganzha (Poland)
Janez Grad (Slovenia)
Marjan Gušev (Macedonia)
Dimitris Kanellopoulos (Greece)
Hiroaki Kitano (Japan)
Igor Kononenko (Slovenia)
Miroslav Kubat (USA)
Ante Lauc (Croatia)
Jadran Lenarčič (Slovenia)
Huan Liu (USA)
Suzana Loskovska (Macedonia)
Ramon L. de Mantras (Spain)
Angelo Montanari (Italy)
Pavol Návrat (Slovakia)
Jerzy R. Nawrocki (Poland)
Nadja Nedjah (Brasil)
Franc Novak (Slovenia)
Marcin Paprzycki (USA/Poland)
Gert S. Pedersen (Denmark)
Ivana Podnar Žarko (Croatia)
Karl H. Pribram (USA)
Luc De Raedt (Belgium)
Dejan Raković (Serbia)
Jean Ramaekers (Belgium)
Wilhelm Rossak (Germany)
Ivan Rozman (Slovenia)
Sugata Sanyal (India)
Walter Schempp (Germany)
Johannes Schwinn (Germany)
Zhongzhi Shi (China)
Oliviero Stock (Italy)
Robert Trappl (Austria)
Terry Winograd (USA)
Stefan Wrobel (Germany)
Konrad Wrona (France)
Xindong Wu (USA)

Informatica 32 (2008) 229–244 229

A Role-Based Coordination Model and its Realization

Nianen Chen, Yue Yu, Shangping Ren and Mattox Beckman
Department of Computer Science,
Illinois Institute of Technology, USA
E-mail:{nchen3,yyu8,ren,beckman}@iit.edu

Keywords: coordination models, actors, roles, coordinators, open distributed and embedded systems

Received: February 1, 2008

This paper presents a framework to support Open Distributed and Embedded (ODE) application develop-
ment based on the Actor-Role-Coordinator (ARC) model. The ARC model is a role-based coordination
model developed to address three main concerns inherent in an ODE system: dynamicity, scalability, and
stringent QoS requirements. It treats an ODE system as a composition of concurrent computation and
coerced coordination. In particular, the ARC model uses concurrent objects that communicate with each
other through asynchronous messages, i.e., actors, to model the concurrent computation of an ODE sys-
tem, while the system’s QoS requirements are mapped to coordination constraints. Coordination entities,
i.e., roles and coordinators, impose coordination constraints on concurrent actors transparently through
message interceptions and manipulations. In the ARC model, roles provide actor behavior abstractions
for coordinators and coordinators are responsible for coordinating roles. In addition, a role also has local
coordination responsibilities among actors belonging to that role. This coordination is called intra-role co-
ordination which complements the inter-role coordination performed by the coordinators. In other words,
under the ARC model, an ODE application is modeled by three orthogonal layers: computation, intra-
role coordination and inter-role coordination. This separation not only improves software modularity and
reusability, but also allows different levels of compositions. Our experiments show that the model scales
well as the number of entities involved in the system increases, and that the performance overhead intro-
duced by the external coordination layers is limited.

Povzetek: Opisano je ogrodje za model aktor-vloga-koordinator (ARC).

1 Introduction

Unlike most traditional software systems, open, dis-
tributed, and embedded (ODE) systems must be concerned
with the environment in which they are executed. Such sys-
tems usually have rigid requirements on both the accuracy
of the delivered functionality and the punctuality of its de-
livery. These requirements are manifested through Quality
of Service (QoS) constraints, such as real-time, fault tol-
erance, energy consumption, and others. Another aspect
of the environment is its extent. There can be many com-
putational entities involved, and these entities are free to
join or leave (intentionally or because of failures) at any
time, introducing dynamicity into the system. The dynam-
icity and stringent QoS constraints add complexity to ODE
systems, and distinguish them from traditional concurrent
distributed systems.

Concurrent distributed computation models have been
well studied over the past decades. CSP [21], π-
calculus [33], and the actor model [1, 2] are good exam-
ples. These models are still widely used today as they pro-
vide a uniform way to model diversified applications. For
instance, the Actor model treats "actors" as universal prim-
itives: in response to a message an actor receives, the actor

may make local decisions and decide how to respond to
the next message received, create more actors, and/or send
more messages. It is often used as a framework for mod-
eling, understanding, and reasoning about a wide range of
modern concurrent systems. For instance, Web Services
with SOAP endpoints can be modeled as actors [20, 19];
an agent-based system can be modeled as an actor sys-
tem, where (mobile) agents are modeled as (mobile) ac-
tors [28, 24]; and Sensor and Actor Network (SAN) is re-
cently proposed to use the Actor model as the theoretical
basis for sensor networks [26, 12, 7].

However, these models are well-defined mathematical
abstractions for concurrent computation in an ideal dis-
tributed environment, in which simplifying assumptions
are made to reduce the complexity of the models. For
instance, communication among distributed entities is as-
sumed to be both reliable and instantaneous. The focus of
these models is on the functional behaviors of the compu-
tation. This may suffice for traditional and general purpose
concurrent distributed applications, but for ODE systems,
such assumptions about the run-time environment often do
not hold. For example, in most embedded applications, a
message that does not arrive on time is considered a fault,
but traditional distributed computation models do not make

230 Informatica 32 (2008) 229–244 N. Chen et al.

any guarantees about such QoS promises. What we need is
a model to study QoS aware interaction, or coordination,
among distributed computational entities in ODE systems.
This model should accurately exhibit an ODE application’s
functional behaviors, and also precisely reflect the applica-
tion’s context, taking into account the dynamicity and strin-
gent QoS requirements.

In order to conquer the complexity and dynamicity in-
herent to ODE systems, we may decompose these systems
into different concerns. Separation of concerns as a soft-
ware engineering principle is not new [18, 3]. However,
how a concern is delineated plays a critical role in the qual-
ity of the delivered software models. A concern should be
logically self-contained and, ideally, orthogonal and trans-
parent to the other concerns in order to minimize the inter-
ference among them.

For instance, an open embedded real-time application,
such as an environmental monitoring system, will send data
from wide-area sensors to data processing entities on the
Internet. The results are fed back into the physical world
for actuation. In order to interact with the physical world
in real time, open embedded applications must be able to
fulfill a fundamental requirement, that fresh data be avail-
able at the right computation site at the right time. How-
ever, as Kang et. al [23] pointed out, current computing and
communication-oriented paradigms face a huge obstacle in
achieving this vision of open embedded real-time systems.
Therefore, instead of interacting directly with a number of
distributed data sources or actuators, it is important to have
high level abstractions that federate distributed entities, co-
ordinating them to abide by QoS requirements.

Consider the following simplified scenario as an exam-
ple of the problem our research addresses. Suppose we
have deployed infrared and radio wave sensors in an open
space to detecting foreign objects. As shown in Figure 1,
depending on the exact location of the foreign object, dif-
ferent groups of sensors will be active and generate data.
In order for a control center to take appropriate action, data
from the two types of sensors must be semantically consis-
tent (i.e., indicating the same type of object) and they must
arrive at the center within a specified time range.

Figure 1: Open Space Surveillance

Clearly, it is a must that the infrared and radio wave sen-
sors be coordinated in a timed fashion, but the nature of
the problem prohibits us from statically pairing them up.
The key technical challenge is that coordination is neces-
sary, and that coordination itself is subject to QoS con-
straints. Furthermore, the coordinatees constitute a large
and dynamically changing set. Integrating the coordina-

tion requirements into the basic computation description
is not a viable solution; it only complicates an already
hard problem. Unfortunately, existing research has not ap-
proached ODE applications from the coordination angle,
neither have earlier coordination models addressed coor-
dination under QoS constraints in depth. Therefore, new
research is needed to support the development of ODE ap-
plications.

In this paper, we present a framework for developing
ODE applications based on a role-based distributed coordi-
nation model, the Actor, Role and Coordinator (ARC) [44]
model. The focus of this ARC model is to separate the QoS
or non-functional requirements from the embedded appli-
cations’ functional logic, and at the same time to address
the dynamicity and scalability issues inherent to ODE sys-
tems. In particular, the actor layer models the concurrent
computational part of an ODE system, while an indepen-
dent coordination model is developed to address the fed-
eration of distributed entities to satisfy the system’s QoS
requirements. The coordination model contains both the
coordinator layer and the role layer; the role layer provides
a level of abstraction to mask the dynamicity of the actor
layer from the coordinators, and each role coordinates the
local group of actors that share that role. This further re-
duces the complexity of coordinators and improves coor-
dination scalability. We present in detail a CORBA based
implementation of ARC that provides architectural support
for transparent application of QoS constraints on concur-
rent computations. The design criteria of the framework
are performance, scalability, and flexibility.

The rest of the paper is organized as follows: Section 2
discusses related work. Section 3 presents the ARC model
and the composition of three autonomous entities, i.e., ac-
tors, roles, and coordinators. Section 4 presents an ARC
framework and preliminary evaluation results. Finally, we
conclude in Section 5.

2 Related work

Recent research has yielded significant results on coordina-
tion models and languages. In their landmark survey [41],
Papadopoulos et. al. conclude that coordination models
can be classified into two categories, namely data-driven
and control-driven. The tuple space model (Linda) [10]
represents the data-driven category, and has been extended
with such systems as Lime[42], Klaim[36], and related
extensions [37]. Systems such as the Ideal Worker Ideal
Manager (IWIM) model [4] presents a control-driven or
“exogenous” category. Recently, tuple center and Re-
SpecT [40, 38] provide a hybrid view.

Control-driven models, such as Abstract Behavior
Types (ABT) [5], Law Governed Interaction (LGI) [34],
ROAD [11], Reo [6], Orc [35], and CoLaS [13] isolate
coordination by considering functional entities as black
boxes. For example, the ABT model extends the IWIM
model by treating both computation and coordination com-

A ROLE-BASED COORDINATION MODEL AND. . . Informatica 32 (2008) 229–244 231

ponents as composable Abstract Behavior Types. Like
IWIM, ABT is a two-level control-driven coordination
model where computation and coordination concerns are
achieved in separate and independent levels. The Reo
model uses a circuit-like network of composable channels
to provide communication between components. Compo-
nents send messages across these channels, and the geome-
try of the channels determine the destination or destinations
of the messages. The Orc model uses “site calls” to model
computation [43]. Unlike Reo channels, Orc’s site calls are
not expected to be persistent.

The concept of role is seen in object-oriented systems
when a set of common behaviors is abstracted and can be
assigned to an object [15, 25]. Roles are an important tech-
nique in a variety of computing systems. For example, in
the computer security area, the Role Based Access Con-
trol (RBAC) [14] model uses roles to separate users from
security policies in order to achieve scalability and flex-
ibility. In object-oriented programming [27] and in de-
sign patterns [17], roles are used to represent solutions
and experiences. There are control-driven models, such
as ROAD, CoLaS, TuCSoN with Agent Coordination Con-
texts (ACC) [39] and Finesse [8], to name a few, that try
to mitigate the scalability issues of open distributed sys-
tems by adopting role concepts. Most current role-based
coordination models are based on organizational concepts,
where roles abstract coordination behaviors among par-
ticipants who play the roles. Cabri presents a survey of
role-based coordination models in [9]. Additionally, quite
a few coordination models take decentralization into ac-
count. TuCSoN [40] distributes communication abstrac-
tions (tuple centers) to Internet nodes. Every tuple center
produces and maintains its own local coordination rules.
CoLaS divides the whole distributed system into multi-
ple coordination groups. Each coordination group takes
care of an independent set of coordination policies. ROAD
provides a recursive structure that composes fine-grained,
small coordination groups into coarse-grained, large ones.
LGI follows a controller metaphor and provides a con-
troller for every object in the system, and hence implements
a full-fledged decentralization.

The ARC [44] model differs from these models by sep-
arating inter-role coordination and intra-role coordination
and distributing the coordination activities to coordinators
and roles respectively. Roles are active entities with coor-
dination ability instead of merely abstract interfaces. The
distribution of coordination responsibility is based on the
functionalities of the roles and is therefore more logical
and customizable. The emphasis on active roles and the
corresponding separation of inter-role and intra-role coor-
dination distinguishes the ARC model from previous role-
based coordination models.

A similar actor oriented model is advocated by Lee et
al. [30, 31]. In this model, actor executions and commu-
nications are under the guidance of a “model of compu-
tation,” which gives operational rules to determine when
and how actors can perform their computations, update

their states, or send messages to other actors. The model
of computation separates the communication mechanisms
and work flows of actors from their computational designs,
such that reusability is possible and compositions of com-
ponents are more robust.

Though the above actor-based models, like ARC, sep-
arate coordination from the functional core of a system
based on concurrent actors, the focus of ARC is to address
the dynamicity and scalability issues in coordinating large
set of autonomous and asynchronous entities. The em-
phasis on role-based coordination distinguishes the ARC
model from previous multi-level actor-based coordination
architectures.

A set of coordination models has been proposed to ad-
dress the coordination issues based on the Actor model [1,
2], such as Frølund’s Synchronizer [16], Venkatasubrama-
niam’s TLAM (Two-Level-Actor-Model) [50], and Varela’s
director [49]. One common theme of these models is the
use of reflection with actors. This can be seen is sys-
tems such as ActorNet [29], and Reflective Russian Dolls
(RRD) [32]. ActorNet provides a platform designed for
small, heterogeneous systems. It provides a uniform en-
vironment for the actors, and makes use of call/cc to
allow actors to migrate themselves to other nodes in the
system. RRD is similar to ARC in that there are levels of
coordination. Both achieve coordination by using reflec-
tion to modify the delivery of messages.

ARC, however, is a three-layer system, with functional
behavior confined to the lowest level, and coordination to
the upper two levels. The formal semantics of the ARC
model is given in [44]. The RRD is a multi-level sys-
tem; each level encapsulating the levels below it. The for-
mal comparison between the ARC model two other co-
ordination models, i.e. the and Reflective Russian Dolls
(RRD) [47] and Reo [6], is given in [46]. Yu and et al.
used Maude to further verify safety properties that can be
imposed through the ARC model [51].

3 The Actor, Role, and Coordinator
(ARC) model

In this section, we discuss in detail the Actor-Role-
Coordinator model.

3.1 The actor model

We use active objects, i.e., actors [1, 2], to model asyn-
chronous and distributed computations. The choice of the
actor model as a foundation for the underlying computa-
tions of an ODE system is in many ways a natural one.
The actor model is inherently concurrent, and systems of
actors are open and distributed. However, the basic actor
model does not enable the coordination of groups of ac-
tors to be specified in a modular fashion. This greatly lim-
its their usefulness in the ODE domain. The ARC model

232 Informatica 32 (2008) 229–244 N. Chen et al.

eliminates this impediment by introducing exogenous co-
ordination objects, i.e., roles and coordinators.

Actors are autonomous, active entities that communicate
with each other through asynchronous messages. Each ac-
tor has a unique mail address and a mailbox to receive mes-
sages. Unprocessed messages are buffered at the receiving
actor’s mailbox. Within each actor, there is a single thread
of control that processes messages sequentially. Each ac-
tor has its own states and state dependent behaviors. The
states are encapsulated and can only be changed by the ac-
tors themselves while processing messages. Different actor
states may decide different behaviors that in turn affect how
messages are processed. While processing a message, an
actor may perform three primitive operations: send asyn-
chronous messages to other actors, create new actors, or
change its own states (become) and then become ready to
retrieve the next available message in the mailbox. Figure 2
pictures the internal structure of the actors.

Here is a simple example to demonstrate the actor model.
Assume an operation can be performed by a computational
entity (namely, an actor) called an “executor” once and
only once. Any actor that is not an executor is called a “for-
warder.” We distinguish an executor from a forwarder by
looking at its internal state executed. If executed is false,
then this actor is an executor, otherwise it is a forwarder.
The behavior of an executor is as follows: when it receives
a message requesting the service, it performs the service,
and sets its state executed to be true, which triggers the ac-
tor to become a forwarder. Finally, the former executor cre-
ates another actor with the same behavior (i.e., perform the
same operation) and with its state executed set to be false.
In other words, this actor becomes a forwarder and cre-
ates a new executor. After becoming a forwarder, this actor
changes its behavior. When the same message arrives at the
forwarder, instead of executing the operation, it forwards
the message to the executor that it created. This behavior
is recursive; the “executor” to which it forwards the mes-
sage may also have become a forwarder, and will in turn
continue forwarding the message to successive forwarders
until the current executor is located. This example explains
the basic concepts of an actor and its three primitives: send,
create, and become. All actor based computations can be
implemented by these three primitives.

3.2 The abstraction levels of ARC

In the ARC model, a role is a static abstraction for be-
haviors shared by a set of underlying computational ac-
tors. This abstraction decouples behaviors from their im-
plementors and eliminates static binding among computa-
tional actors. It also shares coordination responsibilities.
More specifically, there are two types of active coordina-
tion objects in the model: roles and coordinators. The co-
ordination is partitioned into intra-role and inter-role co-
ordinations and distributed among roles and coordinators,
respectively. The coordinators (i.e., inter-role coordination
objects) coordinate behaviors while the roles (i.e.,intra-role

...

...
...

Thread

State

Thread
Behaviors

A

B

Messages

State

Thread

B

A

Behaviors

Messages

Behaviors

State

A

B

Figure 2: The Actors

coordination objects) coordinate members that share the
same behavior.

Coordinators constrain the coordination behavior of
roles. This eventually affects a message’s dispatch time
and location (target) in a computation. However, com-
putational actors and coordinators are transparent to each
other. Hence, the dynamicity inherent in the computation
is hidden from the coordinators. Compared to the number
of actors involved in an ODE application, the number of
behaviors (and therefore the number of roles) contributed
by these actors is usually order(s) of magnitude smaller.
Therefore, the model is not only stable, but also scalable.

Under the ARC model, the open space surveillance sys-
tem introduced in Section 1 (Figure 1) can be mapped to a
set of sensor actors, two roles for the infrared sensors and
radio wave sensors, respectively, and a coordinator (Fig-
ure 4). The inter-role constraint is on the time relation of
the data coming from the infrared sensor role and the radio
wave sensor role. Each role can have different intra-role
coordination policies. For instance, the infrared role may
ensure synchrony by waiting for data from all its members,
while the radio wave role only waits for data from a major-
ity of its members.

Figure 3: The ARC Model

A ROLE-BASED COORDINATION MODEL AND. . . Informatica 32 (2008) 229–244 233

Figure 4: The ARC View of an Open Space Surveillance
System

The separation of computation, intra-role, and inter-role
coordination advocated by the ARC model is clean and
orthogonal. This separation mitigates the complexity of
each individual type — coordinators only concern them-
selves with coordinating a small scale of roles while roles
care only about actors of the same behavior. This provides
grounds for independent modeling and compositional rea-
soning.

Separation and transparency are the results of the follow-
ing properties of the ARC model:

1. The actor layer does not depend on the coordination
layer. The actors fulfill their functional behaviors
independently by exchanging messages without any
knowledge that the coordination entities even exist.

2. The coordination layer intercepts messages among ac-
tors and applies coordination constraints on the mes-
sages. Coordination does not require direct message
interactions between actors and coordination entities.

Computation actors carry out their logical computations
by reacting to messages received. As a result, if the roles
or coordinators do not send any computational messages
to the computation actors, the underlying computation will
retain its computational properties.

The role layer bridges the actor and the coordinator lay-
ers and may therefore be viewed from two perspectives.
From the perspective of a coordinator, a role enables the
coordination of a set of actors that share the same static de-
scription of behaviors without requiring the coordinator to
be aware of the individual actors in the set. From the per-
spective of an actor, the role is a coordinator that actively
imposes coordination constraints on messages sent and re-
ceived by the actor.

Though actors, roles, and coordinators have different re-
sponsibilities, we uniformly model their behaviors using
actors. To comply with the separation of concern princi-
ple, we categorize these actors into two types: computation
actors that capture system computation concerns, and coor-
dination actors that abstract system coordination concerns.
More specifically, roles and coordinators are coordination
actors, whereas actors in the actor layer are computation
actors. Thus, coordination actors are actors which satisfy
the basic actor semantics by providing the actor operational

primitives. However, they are special actors that are able to
handle specific types of messages, namely, events.

In our model, actors communicate with each other via
messages, which are defined as a three-tuple < rcver −
actor, op, par >. Here rcver − actor is the name of the
recipient actor, op is the behavior name that the recipient
actor is required to apply, and par contains the parameters
that the recipient needs to perform its behavior.

Events are special messages that are atomically dis-
patched on coordination actors. Unlike computation mes-
sages, the recipient of an event is not an individual coor-
dination actor, instead, events are broadcast to all coor-
dination actors in the system. Thus, an event is defined
as < All, op, par > where All indicates that the event is
broadcast. Though events are broadcast to all roles, we
may instead use an intermediate “default” role as a medi-
ator to receive and forward events between actors. This
optimization can convert the broadcast into a two-element
group-cast, reducing the communication overhead and syn-
chronization complexity.

Another important characteristic of events is that an
event is instantaneous and atomic. In other words, the gen-
eration of an event and the consumption of an event are
atomic, and no actor computation messages can be pro-
cessed during this period of time. This requirement guar-
antees that coordination constraints are applied on related
messages before these messages are dispatched on compu-
tation actors.

To maintain coordination transparency and avoid inter-
fering with the computation actors’ functionalities, coordi-
nation actors are not allowed to generate or send messages
to computation actors. The computation level and coordi-
nation level are connected through events. While messages
are used between computation actors to carry out compu-
tations, events represent state changes in the system and
trigger coordination related behaviors on coordination ac-
tors.

There are three events defined in an actor layer: send (a
message is sent by an actor), new (creation of a new actor),
and ready (change actor behavior if necessary and ready
for next available message). All these events from com-
putation actors are observable by roles. Upon observing
the events, the roles cooperate with coordinators through
inter-role and intra-role constraints to coordinate when and
where messages should be dispatched among computation
actors.

3.3 Roles and their responsibilities

Since an ODE system may have a large number of compu-
tational entities that are free to join or leave autonomously,
the underlying actors modeling them could also be both
large in number and very dynamic. Basing the stability
and scalability of coordination policies on the actors them-
selves will be difficult. In an ODE system, however, the
set of well-defined behaviors is limited and less dynamic.
Therefore we introduce roles as a means of representing

234 Informatica 32 (2008) 229–244 N. Chen et al.

abstractions for these system behaviors; this enables us to
conceal the dynamicity and scale of the ODE environment.

In addition to representing abstractions for the proper-
ties of the system behaviors, roles also are responsible for
actively coordinating their players to achieve coordination
requirements. Roles serve as an abstraction by specify-
ing membership criteria, i.e., a static specification of func-
tional behaviors that computation actors belonging to the
role must have. The role is responsible for managing the
integrity of its membership. Roles also actively coordi-
nate their member actors in order to satisfy coordination
requirements. The intra-role coordination coerced by roles
realizes and complements the inter-role coordination en-
acted by coordinators.

Membership management behavior Before a role can
perform its membership management activities, the behav-
ior abstraction, i.e. the role membership criteria, must be
specified. We use logic expressions of actor states and op-
erations to describe the criteria. More specifically, the role
membership criteria are represented by a tuple < O, A >,
where O is a set of message types (operations) that an ac-
tor must be able to process, and A is a set of attributes that
actors need to display for joining the role. Any actor that
is controllable by coordination rules must declare its own
functional behavior, using the same tuple format.

Upon observing a new event or a ready event from a
computation actor, the role acquires the newly updated be-
havior from the computation actor and compares it against
its membership criteria. It then determines whether the ac-
tor should be added to the membership list (the actor be-
havior matches the role criteria), ignored (the actor was not
a member and its behavior does not match the role criteria),
or removed from the role (the actor was a member but its
new behavior does not match the role criteria). More pre-
cisely, a role’s management behavior is a mapping from a
set of actor events to membership updates. Note that ac-
cording to the semantics of the actor model, actors are free
to reject exposing their internal states to the roles. This
allows an actor to reject coordination. Such actors will be-
long to a “default” role that performs no coordination.

Each role has a distinct purpose. This requirement disal-
lows overlapping criteria among roles, eliminating the pos-
sibility that conflicting constraints will be imposed on an
actor by multiple roles simultaneously. This requirement
has its basis in the underlying actor model: each actor has
only a single thread of control and therefore may play only
one role at any given time. More precisely, let C(γ) de-
note the role membership criteria declared by role γ, and
let B(α) denote the functional behaviors provided by an
actor α. As we have discussed, the actor functional behav-
iors and the membership criteria are both represented as a
comparable tuple < O, A >. To be added to a role, the ac-
tor functional behaviors have to match the role’s member-
ship criteria. A and Γ denote the set of actors and roles in
the system, respectively, and F : A → Γ is a function that
assigns an actor to a role. At any given time, well-defined

roles and actors in a system must satisfy the following re-
quirements:

1. Roles are exclusive: role declared behaviors do not
overlap, i.e.,

∀γ, γ′ ∈ Γ : C(γ) ∩ C(γ′) = φ

2. Roles are exhaustive: every actor belongs to one of the
roles, i.e.,

(
n⋃

i

B(αi) =
m⋃

j

C(γj)), and

(∀α ∈ A,∃γ ∈ Γ : B(α) = C(γ))

3. Roles are repetitive: repeated actor behaviors replicate
the assignment of the actor to the same role, i.e.,

∀αi, αj ∈ A : B(αi) = B(αj) ⇒ F (αi) = F (αj)

4. Each actor only plays one role at a given time, i.e.,

∀i, j, j 6= i : B(α) = C(γi) ⇒ B(α) 6= C(γj)

Coordination Behavior As roles are abstractions of
functional behaviors, it is possible that more than one ac-
tor may belong to a specific role at any given time. Actors
playing the same role may need to coordinate with each
other to satisfy certain QoS constraints. Such constraints
are called intra-role coordination constraints.

A role’s coordination behavior thus has two aspects:
(1) it retrieves inter-role constraints specified by the co-
ordinators; (2) it is responsible for enforcing both the
inter-role and intra-role coordination constraints on ac-
tors. Since roles are coordination actors and are not al-
lowed to send/receive messages to/from computation ac-
tors, message interception and manipulation is the only fea-
sible means to apply the constraints. Furthermore, all these
behaviors are triggered by observed events on computation
actors. Therefore, the coordination behavior of a role can
be given the following interpretation: upon observing an
event from a computation actor, and based on its current
states, the role may manipulate messages, generate events
(which are observable by coordinators), or change its own
states.

The coordination rules are enforced on actors without
their awareness. The involvement of roles in the coordina-
tion process causes coordination in the ARC model to be
decentralized. Active roles cause our coordination model
itself to become a distributed subsystem, inheriting the full
benefits that a distributed system may offer.

We can use a “Video on Demand” (VoD) application
as an example to depict a role’s behaviors. We assume
there are multiple VoD client actors and VoD server ac-
tors in a distributed environment. Each VoD client actor
can perform a request_video operation, while the server ac-
tor can perform send_video operation. However, clients

A ROLE-BASED COORDINATION MODEL AND. . . Informatica 32 (2008) 229–244 235

may have different requirements, which need to be met
by receiving different services from servers. We there-
fore separate the client actors into different roles depend-
ing on their level of service attributes, i.e. a VOD client ac-
tor has a Regular_VOD_Client Role if its level_of_service
attribute is set to regular; while a VoD client has a
VIP_VoD_Client role if its level_of_service attribute is set
to very_important. Therefore, when an actor is created or
moves into the system, the roles will check its operations
and attributes. For example, if a VIP_VoD_Client role finds
that the new actor has a behavior tuple <<request_video>,
<level_of_service:regular>>, which matches its role cri-
teria, it will then help the actor join its group by performing
its member management behavior.

To explain the role’s coordination behavior, we assume
that there are multiple VoD server actors in the environ-
ment, each of which has different resources (CPU speed,
workload, memory, reserved network throughput, and so
on). Based on the requests from different types of VoD
clients, the VoD_Server role decides which server actor
shall be assigned to process the current request. For exam-
ple, if the request is from an actor with a VIP_VoD_Client
role, this request will be forwarded to a VoD_Server actor
with the highest available resources. This coordination rule
is applied on the actors directly within a role, but not among
roles, therefore it belongs to intra-role coordination.

3.4 Inter-role coordination — coordinators

In contrast to intra-role coordination, coordination among
high-level coarse-grained roles are called inter-role coor-
dination. We define another type of coordination actor,
the coordinator, to specify inter-role coordination policies.
These policies are written in terms of roles. A policy is
a set of constraints over a set of properties. Values asso-
ciated with a property are drawn from an enumerable do-
main. A constraint specifies a boolean relation involving a
set of properties.

Similar to roles, coordinators are also active objects
and impose coordination constraints based on their states.
However, in our model the actor layer and the coordinator
layer are mutually transparent. Coordinators do not directly
apply coordination constraints on computation actors, nei-
ther do actors know of the existence of coordinators. Co-
ordinators specify and impose policies based on abstract
actor functionalities, but not on individual actors.

The role layer bridges the coordinator and actor layers.
Roles propagate the events observed from the actors to the
coordinators. Upon receiving such events, the coordinator
locates constraints in its constraint store based on current
states, and propagates the constraints to roles where these
constraints are imposed on computation actors.

Consider an example in which multiple producers and
multiple consumers share the same buffer. We use a pro-
ducer role and a consumer role to capture the producers and
consumers, respectively. The two roles must coordinate to
respect the causal order (an item must be produced before it

can be consumed) and buffer size. Instead of specifying the
coordination among each pair of producer and consumer,
we impose the coordination upon the roles which will in
turn propagate the constraints to the role players.

3.5 Composition of concurrent computation
and coerced coordination

Based on the ARC model, an ODE system can be speci-
fied in three steps. First, establishing the underlying func-
tional computations (modeled by computation actors). Sec-
ond, implementing the computational actors to carry out
the computation. Finally, embedding the functional ob-
jects in an environment constrained by coordination actors.
Here we focus on QoS constraints that can be achieved
by manipulating the messages in the time and actor space
dimensions. Example manipulations on the time-axis in-
clude moving messages to the beginning of the actor’s
mail queue, blocking them, or postponing them to later
time. Manipulations on the actor space domain include tak-
ing messages sent to one particular actor and duplicating,
rerouting, or broadcasting them to other actors to satisfy
fault tolerance, security and other QoS requirements.

Coordination actors observe events occurring at the com-
putation actor layer, and perform coordination behaviors
accordingly. However, coordination actors are partitioned
into roles and coordinators, and these two types of coordi-
nation actors also need to collaborate with each other. Their
collaborations are achieved through event exchanges. The
events that are observable in the ARC model are presented
in Table 1.

Note that the events specified in Table 1 do not exactly
follow those defined in the traditional actor model [1, 2]. In
Agha’s actor model, there are only three primitive events,
send, new, and ready, where ready actually represents two
behaviors of an actor: become a new actor and ready for
next available message. After processing a message, even
if an actor does not change its behavior, it still has to per-
form become to become itself. However, in the ARC model
the change of behavior triggers the roles’ membership man-
agement behaviors. If we perform become each time a mes-
sage is finished processing, we will continuously trigger the
member management actions in roles, which in most cases
will be unnecessary. For this reason, in the ARC model
we separate the ready event into two events, namely the
become event and ready for next available message event,
where become explicitly specifies that an actor changes its
behavior and triggers membership management actions.

After a message has been sent out to a recipient compu-
tation actor, and before it can be processed, a send(msg)
event is broadcast and needs to be handled by the coor-
dination actors. The argument msg is the message that
has been sent. After processing the current message, the
actor will enter a state in which it is ready to process the
next available message in the mail queue. This will cause a
ready(msg) event to be broadcast to trigger coordination
behaviors. Events are instantaneous; coordination actors

236 Informatica 32 (2008) 229–244 N. Chen et al.

Location Event Triggered By
Actor send(msg) A computation actor performs a send(msg) operation.

new(beh) A computation actor performs a create(beh) operation.
become(beh) A computation actor performs a become(beh) operation,

where beh represents a behavior that is different from the
actor’s current behavior.

ready(msg) A new message in the actor’s mailbox is dispatched at the
actor.

Role propSend(msg) A send(msg) event from a computation actor is observed.
propReady(msg) A ready(msg) event from a computation actor is ob-

served.
Coordinator tell(inter − roleconstraints) A propSend() or propReady() event is observed.

Table 1: Events Observable in the ARC Model

observe and handle events atomically. Message deliveries,
on the other hand, always take time. The dispatch of a
message will always happen at a later time than when the
message was sent. Therefore, it is guaranteed that coordi-
nation actors can perform their coordination behaviors on
messages in the recipient actors’ mailboxes before those
messages are processed.

The new(beh) or become(beh) events are triggered
when a new actor is created or when an actor changes its
behavior. The argument beh is the behavior of the new ac-
tor to be created, or the new behavior an actor obtains. All
roles in the system are able to observe such an event and
compare the behavior with their membership criteria. The
role whose membership criteria matches the computation
actor’s behavior adds the computation actor into its group.
For completeness of the roles in our system, we also intro-
duce a default role. If the actor’s behavior does not match
any membership criteria of all the existing roles, the actor
is added to the default role.

Upon observing the send or ready event from a compu-
tation actor belonging to a role group, the role propagates
these events to coordinators to inquire about corresponding
inter-role constraints. Unlike the original messages sent
from actors, the message parameters in these events may
contain extra information, such as the names of the sender
and receiver actors, and their currently attached roles. This
information helps the coordinator to determine what con-
straints need to be propagated to which role.

After observing the propSend or propReady event
propagated from the roles, a coordinator checks its con-
straint store and locates the corresponding constraints,
which may depend on both the message parameters and the
coordinator’s own states. The coordinator then enacts these
constraints by sending a tell event to the roles.

The formal operational semantics of the ARC model is
given in [44].

4 Framework
In this section, we briefly describe several critical design is-
sues of the framework, and then present the design in detail,
along with a prototype implementation of the ARC model.
Finally, we show the results of experiments demonstrating
the scalability and performance overhead of the framework.

4.1 Design issues

The main design and implementation concern of the ARC
framework is to provide the abstractions that implement the
Actor, Role and Coordinator semantics, and at the same
time provide good performance, scalability and flexibility
for different applications. Based on this goal, there are sev-
eral design issues we need to consider:

Implement coordination actors and events.
According to the definition of the ARC model, roles

and coordinators are “coordination actors” communicating
through event broadcasts. Therefore, we need to explicitly
distinguish events and messages in the implementation.

As defined in [1, 2], computation actors are autonomous
and active entities that communicate with each other
through asynchronous messages, as are coordination ac-
tors. However, unlike computation messages that commu-
nicate among actors in a point-to-point fashion, events are
broadcast to all coordination actors. Furthermore, events
have a higher priority than computation messages. This en-
sures that messages that need to be coordinated will be ma-
nipulated by coordination actors before they are dispatched
on computation actors. In both our model and implementa-
tion framework, the generation and consumption of events
are treated as atomic behaviors and are enforced by using
synchronization protocols.

Maintain scalability and performance as the number of
entities increases.

One of the characteristics of ODE systems is that they
usually have large numbers of computational entities. The
introduction of active roles into the ARC model helps mit-

A ROLE-BASED COORDINATION MODEL AND. . . Informatica 32 (2008) 229–244 237

igate the scalability issues in coordination management by
allowing coordinators to only coordinate roles, while roles
only coordinator actors that share the same behaviors.

Because coordination in the ARC model is enforced
transparently on the underlying actors, two problems may
occur when the number of actors increases. First, every co-
ordinated message triggers at least one event that must be
handled by remote coordination actors. This may bring ad-
ditional communication overhead. Second, roles and coor-
dinators become potential bottlenecks, which may degrade
performance and make systems hard to scale.

To alleviate these problems, we have developed a decen-
tralized architecture to further distribute coordination be-
haviors and states to local physical nodes, thus avoiding
bottlenecks and communication overhead. Because both
roles and coordinators are active and stateful entities, mul-
tiple update and query operations may concurrently be ap-
plied to the states of those distributed replicas. Therefore,
a synchronization protocol must be in place to ensure the
consistency of the states among different nodes. If such
synchronizations occur very frequently, the overhead of
achieving synchronizations may exceed the benefit of dis-
tributing roles and coordinators to local platforms. Hence,
tradeoffs need to be made to balance the communication
and synchronization costs. Whether distributing the coor-
dinator/role states will have performance gains is applica-
tion dependent.

Avoid re-inventing the wheel to solve common prob-
lems.

Instead of developing our framework from scratch, we
take advantage of existing technologies and tools to support
distributed communication, i.e., distributed naming, syn-
chronous and asynchronous communication, and locking
schemes.

In the next section, we give the details of our frame-
work’s design, taking into account the above issues and
providing our solutions to them.

4.2 An ARC framework

Figure 5 gives an overview use case diagram depicting the
functional requirement from three categories of users in
the system, i.e. the actors, roles, and coordinators. From
this figure, the part within the dashed line box represent
the functionality of traditional Actor system. By importing
the concepts of role and coordinator, the use cases in ARC
system become richer. The purpose of the framework is
therefore to fulfill the functional requirements indicated in
this use case diagram, while taking into account the design
issues presented in Section 4.1.

The ARC framework is built on top of TAO (v1.4.1) [45],
an implementation of the CORBA 3.x specification. To
minimize the overhead and footprint of the ARC frame-
work, we only use a small subset of services provided by
TAO. Actors in the ARC framework are built as CORBA
objects. They register themselves and locate other actors

through the CORBA naming service, and communicate
with each other through the TAO asynchronous message
service. Figure 6 outlines the architecture of the frame-
work. The Role Representative and Coordinator Represen-
tative objects localize the functionalities of coordination-
actors to further increase scalability of the system. These
concepts will be discussed in detail in a later in this section.

4.2.1 Actor platform and message manager

In the framework, an Actor Platform is installed on every
physical node. It provides a uniform way to create actors
and register actors as CORBA services. An Actor Plat-
form is implemented as a “system actor” that creates ac-
tors, roles, and coordinators, initializes their states and be-
haviors, sends messages, and generates events.

With each actor creation, the Actor Platform also creates
a Message Manager object for each actor (including both
computation and coordination actors) to handle actor com-
munication tasks. When an actor tries to send a message to
another actor, it delegates the message to its Message Man-
ager. For the sending actor, the Message Manager acts as a
CORBA client object to send the message asynchronously
to the destination actor’s message manager, which acts as
a CORBA server object. The receiving message manager
then forwards the message to the receiving actor for pro-
cessing. Thus, the CORBA middleware details are encap-
sulated in the implementation of the message manager and
are transparent to application developers who use actors.

4.2.2 Modes

In our framework, users have the option to have logically
remote coordinators and roles physically distributed to lo-
cal Actor Platforms to reduce the communication overhead.
Therefore, we provide three modes:

Fully Centralized Mode (FCM) In this mode, every co-
ordination message has to go through potentially re-
mote roles and remote coordinators. This mode is
suitable for applications that require very frequent
state updates in both coordinators and roles.

Partially Distributed Mode (PDM) The coordinator is
distributed to the nodes where the coordinated roles
are located, but roles are not distributed to the actor
platforms. Therefore coordination requests from lo-
cal nodes have to go through possibly remote roles,
but these roles use local coordinator representatives
instead of remote coordinators. Applications that do
not anticipate frequent state updates in coordinators
will benefit by using this mode.

Fully Distributed Mode (FDM) Both coordinator and
roles are distributed to every related node. This mode
brings best performance for applications with less fre-
quent synchronization needs.

238 Informatica 32 (2008) 229–244 N. Chen et al.

Figure 5: ARC Use Case Diagram

In the framework, we define two supporting entities: Co-
ordinator Representative and Role Representative. As their
names suggest, they represent coordinators and roles and
perform coordination behaviors in local Actor Platforms.
To facilitate deploying different modes, these representa-
tives are implemented as coordination-actors. According
to the definitions of coordination actors, they are able to
communicate with each other through event communica-
tions. Based on the currently applied mode, different Coor-
dinator Representative and Role Representative instances
are bound to these interfaces during runtime and have dif-
ferent responsibilities. The relationship among Message
Manager, Role, Coordinator, representative interfaces and
their instances is depicted in Figure 7.

4.2.3 State synchronization

In situations when synchronization is required among rep-
resentatives, we apply the primary-backup and two-phase
locking (2PL) protocol. The coordinators and roles are re-
sponsible for synchronizing the updates with their repre-
sentatives distributed among other actor platforms. In the
primary-backup protocol, these coordinators or roles act as
primary objects and the representatives are backups. The
Concurrency Service provided by TAO enables the primary
objects to obtain and release locks in the 2PL algorithm.

Figure 7: Multi-mode Class Diagram

4.2.4 Fully distributed mode implementation

In this paper we focus on the implementation of the Fully
Distributed Mode (FDM). The implementations of the Par-
tially Distributed Mode and Fully Centralized Mode are
very similar and can be easily inferred from the current in-
troduction.

With FDM, the local Actor Platform creates a Role Rep-
resentative coordination actor for every existing role to ful-

A ROLE-BASED COORDINATION MODEL AND. . . Informatica 32 (2008) 229–244 239

Figure 6: The Architecture of the ARC Framework

fill both its membership management behavior and coor-
dination behavior. In the ARC model, it is the roles, but
not the actors, that manage group membership. Whenever
a new actor is created or an actor changes its behavior, the
roles apply their bind and unbind operations to maintain
the consistency of the membership. Figure 8 demonstrates
the procedure of a Role Representative performing mem-
bership management and implementing the binding mech-
anism.

In the ARC model, coordination constraints are transpar-
ently applied to actors. This is achieved by (1) buffering the
messages in receiver actors’ mailboxes via Message Man-
agers, (2) obtaining coordination constraints by forwarding
events to the corresponding role representatives and coordi-
nator representative for constraint checks, and (3) applying
the coordination constraints by manipulating the messages
in the mailboxes. The communication between two actors
is shown in Figure 9.

If a constraint is found in its local store, the Role Repre-
sentative requires the corresponding Message Manager to
enact the constraint on the actor. As all these operations

are performed locally and no remote communication is re-
quired, the constraint propagations do not introduce much
performance overhead.

4.3 Evaluation
We have developed a prototype of the ARC framework.
The experimental settings are as following: We have two
Intel x86 machines. The first machine is a Pentium IV 1.7
GHz with 512MB RAM and the second is a Pentium IV
3.06GHz with 1GB RAM. Both of them are running Win-
dows XP and connect with each other through a 100M eth-
ernet switch. In our experiments, we developed a simple
Ping-Pong application, that asks two actors, the Ping actor
and the Pong actor, in different machines to continuously
send and reply to a specific number of messages to each
other.

Figure 10 shows the performance comparisons between
the Actor Architecture (AA) framework [22] and the ARC
framework. AA is an actor-based framework developed by
Agha’s group at UIUC. AA is implemented in Java and pro-
vides its own ad-hoc solutions to core distributed applica-

240 Informatica 32 (2008) 229–244 N. Chen et al.

Figure 8: Actor-Role Binding Mechanism

Figure 9: Communication between Coordinated Actors in
FDM

tion features, such as the Naming Service. The ARC frame-
work is implemented in C++ and utilizes CORBA services.

In this test we use AA and ARC to send messages (with
a size of 100 bytes) between two actors on different ma-
chines. From figure 13, we can see that ARC outperforms
AA in actor communications. The average throughput by
using ARC is 85% higher than using AA. This is mainly
because the Java Virtual Machine brings heavy overhead
to AA. In addition, the optimized naming and communi-
cation services provided by TAO also improve the ARC
framework’s communication performance.

Figure 11 demonstrates the situation when multiple ac-
tor pairs run and send messages concurrently. We ran up
to 100 actors on each machine. These pairs of actors sent
messages and replied to them concurrently. As the figure
shows, increasing the number of actors had little impact
on the performance of the ARC. However, the figure also
shows an ‘unintuitive’ result: the performance of the 40
actor case is better than the 20 and 10 actor cases. This
happened because the larger number of actors increases the
odds that messages will share transportation connections.

Figure 10: ARC vs. AA on actor communication

This reduced the overhead of opening and closing connec-
tions. Once the number of actors is greater than 40, the con-
nections are saturated and the performance becomes stable.

Figure 11: Performance of ARC when the number of actors
increases

In the previous experiments, we performed actor com-
munications without considering coordination constraints.
When coordination requirements are taken into account,
actors need to collaborate with each other to achieve sys-
tem requirements. For example, in the Ping-Pong applica-
tion, we could have an extra mutual exclusion requirement
that at any time only one pair of Ping and Pong actors can
send messages to each other. To satisfy this requirement,
the Ping and Pong actors that want to send messages have
to communicate with each other to make sure that there are
no other actors competing for the permission to send a mes-
sage. If there is more than one actor seeking permission, a
decision needs to be made about which one gets permis-
sion first. This will require communications to be sent, and
some kind of election protocol to be followed.

If there are n Ping actors competing for permission to
send a message, then there will be at least 2n(n − 1) [48]
communication messages to achieve synchronization be-
fore a message can be sent out. This is a typical synchro-
nization problem for networking and distributed environ-

A ROLE-BASED COORDINATION MODEL AND. . . Informatica 32 (2008) 229–244 241

ments. An obvious solution is to use an explicit coordi-
nator to synchronize the “sending message” requirements
among actors. To achieve the same synchronization with
an explicit coordinator requires most 3n [48] extra com-
munication messages. Thus, in an ODE system or simi-
lar environment where the number of actors is large and
coordination among them is frequent, an explicit coordina-
tor can drastically reduce communication overhead and im-
prove scalability. Figure 12 depicts the difference between
the solution using a coordinator, which is represented by a
star topology, and the one without an explicit coordinator,
which is represented by a mesh topology.

Figure 12: With or Without Coordinator - a Topology View

From the above analysis, it is clear that adding an ex-
tra coordinator layer actually increases performance when
the number of actors is large and coordination among them
is unavoidable. The next question to ask is if adding an
extra layer (the role layer) will seriously degrade the per-
formance of the system with a single coordinator layer. We
test this by introducing role coordination entities to achieve
intra-role coordination constraints. The current test case
is under FDM and follows the procedure demonstrated in
Figure 9.

In this experiment, we arranged for 10, 000 messages to
be sent between two actors on different machines. We also
provided both inter-role and intra-role constraints. After
introducing two roles, the PingRole and the PongRole, we
divided the constraints into three categories: 20% became
inter-role constraints stored in a coordinator, 40% became
intra-role constraints stored in PingRole, and the remaining
40% were intra-role constraints stored in PongRole. Con-
straint checks were simulated using simple string compar-
isons. Figure 13 gives the measurements.

As shown in Figure 13, when there are 100 constraints
in a single coordinator, the overhead of introducing two ex-
tra role entities is about 3.5%; when there are 500 con-
straints, the overhead is about 2.7%. The main overhead
comes from the two extra communications between the
sender and receiver actors and their attached roles. This
number is fixed no matter how many constraints need to
be checked. The total number of constraints is the same in
two situations. When there are no roles, a coordinator has
to check all these constraints; in contrast, when there are
two extra roles, the coordinator only handles 20% of the
constraints, and rest of the constraints are handled by the
two roles concurrently. As a result, the overhead actually

Figure 13: Overhead of introducing role layer

decreases when the number of constraints increases.
Though these tests have not conducted on FCM and

PDM, we can expect by looking at their descriptions that
because roles and actors live in different nodes, the com-
munication overhead will be larger than in the current FDM
test. However, in such modes, synchronization overhead
will become the focus of the application and trade-offs are
made to satisfy that.

Finally, we look at the modularity brought by separating
the coordination layers from the underlying computational
logic in the ARC framework. We demonstrate this by intro-
ducing an extra requirement for the Ping-Pong application:
after a Pong actor receives a message in its mailbox from
the Ping actor, it has to wait for a specific period of time
t1 before it sends back a response. The following gives
the pseudo-code that enforces this timing constraint in the
Pong actor:

HandleMsg(String message, Int waitTime){
Message msg = parse(message);
String responseMsg = getResponse();
if (msg.SenderTypeName == "Ping") {

wait(waitTime);}
send(Ping, responseMsg);

}

If we have multiple Pong actors in the system, then we
will have to add this code to every Pong actor to maintain
the timing constraint. Furthermore, if in the future we want
to modify the time period, for example from t1 to t2, we
have to update the codes for all the Pong actors, change the
constraints and re-compile them. But if we have an explicit
coordination actor, we can use it to specify these timing
constraints.

Computational logic is separated from coordination con-
straints, and can be developed independently. Below shows
the code with the ARC model. The HandleMsg is the
code in a Pong actor to implement the "response" logic,
and the HandleEvt is the code in a coordinator to specify

242 Informatica 32 (2008) 229–244 N. Chen et al.

the timing constraint. The timing constraint is further en-
forced by a role that reroutes a message in the Pong actor’s
mailbox to a sink for a period of time waitTime before
dispatching it for processing. This coordination operation
is transparent to the actor computation, and we can modify
such constraints without affecting the underlying computa-
tional logic.

HandleMsg(String message){
Message msg = parse(message);
String responseMsg = getResponse();
send(Ping, responseMsg);

}

HandleEvt(String event, Int waitTime){
Event evt = parse(event);
if (evt.eventTypeName == "PropSendMsg")
if (evt.senderRoleTypeName ==

"PingRole")
tell(PongRole,

"reroute, sink, waitTime");
}

5 Conclusion

In this paper, we presented a framework based on the ARC
model to support the development of ODE applications.
The ARC model is a role-based and decentralized coordi-
nation model. Under this model, a system’s QoS require-
ments are treated as coordination concerns and are sepa-
rated from concurrent computation logic. The coordination
constraints are imposed on computations through message
manipulations that are transparent to the computation itself.
In addition, to address the dynamicity and the openness in-
herent in an ODE system, we introduced active roles that
not only provide abstractions for actor functional behav-
iors, but also take part in the coordination activities. Hence,
the coordination subsystem itself becomes distributed and
thus inherits all the benefits a distributed system may offer.

The framework provides an interface to allow users to
create actors, roles and coordinators. Based on detailed ap-
plication requirements, the framework distributes the co-
ordinators and roles and collocates them with local ac-
tors so that both performance and scalability can be im-
proved. In addition, the framework also provides efficient
mechanisms to support automatic and runtime role group
management, and message management. Our prototyping
and empirical experiments have shown that we are able to
achieve role-based coordination with limited performance
overhead. The experiments also indicate that the frame-
work scales well when the number of entities involved in
the system increases.

Our future work is to apply the ARC model and its real-
ization to help mitigate the difficulties in developing practi-
cal QoS aware applications in ODE systems. Such systems
may have multiple dimensions of QoS requirements such

as real-time, fault tolerance, energy consumption, and se-
curity constraints, etc. To be more specific, we want to
extend our framework to combine resource management,
real-time features and fault tolerance mechanisms, so that
multiple non-orthogonal QoS requirements can be studied
and supported based on a uniform coordination model. To
achieve this, we plan to use classic ODE applications, such
as a simulation of a simplified Air Traffic Control (ATC)
system, as cases studies to demonstrate and evaluate the
advantages of the model and the framework.

Acknowledgement
This work is supported by NSF under grant CNS 0746643.

References
[1] G. Agha. Actors: A model of concurrent computation

in distributed systems. MIT Press, 1986.

[2] G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott.
A foundation for actor computation. Journal of Func-
tional Programming, 7(1):1–72, 1997.

[3] M. Aksit, B. Tekinerdogan, and L. Bergmans. The six
concerns for separation of concerns. In Workshop on
Advanced Separation of concerns, 2001.

[4] F. Arbab. IWIM: A communication model for coop-
erative systems. In The 2nd International Conference
on the Design of Cooperative Systems, pages 567–
585, 1996.

[5] F. Arbab. A foundation model for components and
their composition. Technical report, CWI, Amster-
dam, Netherlands, 2004.

[6] F. Arbab. Reo: a channel-based coordination model
for component composition. Mathematical Structures
in Computer Science, 14(3):329–366, 2004.

[7] Barbaran, Diaz, Esteve, Garrido, Llopis, and Rubio.
A real-time component-oriented middleware for wire-
less sensor and actor networks. cisis, 00:3–10, 2007.

[8] A. Berry and S. Kaplan. Open, distributed coordina-
tion with finesse. In The 1998 ACM Symposium on
Applied Computing, pages 178–184, 1998.

[9] G. Cabri, L. Ferrari, and L. Leonardi. Brain: a frame-
work for flexible role-based interactions in multiagent
systems. 2888:145–161, 2003.

[10] N. Carriero and D. Gelernter. Linda in context. Com-
munications of the ACM, 32(4):444ĺC458, 1989.

[11] A. Colman and J. Han. Coordination systems in role-
based software. 3454:63–78, 2005.

A ROLE-BASED COORDINATION MODEL AND. . . Informatica 32 (2008) 229–244 243

[12] Riccardo Crepaldi, Albert Harris III, Rob Kooper,
Robin Kravets, Gaia Maselli, Chiara Petrioli, and
Michele Zorzi. Managing heterogeneous sensors
and actuators in ubiquitous computing environments.
In First ACM Workshop on Sensor Actor Networks,
2007.

[13] J. C. Cruz. Opencolas: A coordination framework for
colas dialects. 2315:231–247, 2002.

[14] D.F. Ferraiolo and D.R. Kuhn. Role based access con-
trol. In The 15th National Computer Security Confer-
ence, 1992.

[15] M. Fowler. Dealing with roles. In European Confer-
ence on Pattern Language of Programs, 1997.

[16] S. Frølund. Coordinating Distributed Objects: An
Actor-Based Approach to Synchronization. MIT
Press, 1996.

[17] E. Gamma, R. Helm, R. Johnson, and J.Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley Professional Computing
Series, 1995.

[18] W. Harsch and C. V. Lopes. Separation of concerns.
Technical report, Northeastern University technical
report NU-CCS-95-03, Boston, 1995.

[19] Carl Hewitt. large-scale organizational computing re-
quires unstratified paraconsistency and reflection. In
International Conference on Autonomous Agents and
Multiagent Systems, 2007.

[20] Carl Hewitt. What is commitment? physical, organi-
zational, and social. LNAI, 4386, 2007.

[21] C.A.R. Hoare. Communicating Sequential Processes.
Computer Science. Prentice Hall International, 1985.

[22] M. W. JANG. The actor architecture manual, 2004.

[23] Woochul Kang and Sang H. Son. The design of an
open data service architecture for cyber-physical sys-
tems. AC SIGBED Review, 5(1), 2008.

[24] Rajesh K Karmani and Gul Agha. Debugging wire-
less sensor networks using mobile actors. In RTAS
Poster Session, 2008.

[25] E. A. Kendall. Role modeling for agent system anal-
ysis, design and implementation. IEEE Concurrency,
8(2):34–41, 2000.

[26] Ozcan Koc, Chaiporn Jaikaeo, and Chien-Chung
Shen. Navigating actors in mobile sensor actor net-
works. In First ACM Workshop on Sensor Actor Net-
works, 2007.

[27] B. Kristensen and K. Osterbye. Roles: conceptual ab-
straction theory and practical language issues. Theory
and Practice of Object System, 3(2):143–160, 1996.

[28] YoungMin Kwon, Sameer Sundresh, Kirill Mechi-
tov, and Gul Agha. Actornet: An actor platform for
wireless sensor networks. In Fifth International Joint
Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pages 1297-1300, 2006.

[29] Youngmin Kwon, Sameer Sundresh, Kirill Mechitov,
and Gul Agha. Actornet: An actor platform for wire-
less sensor networks. In In Proc. of the 5th Intl. Joint
Conf. on Autonomous Agents and Multiagent Systems
(AAMAS). AAMAS, 2006.

[30] E. A. LEE. What’s ahead for embedded software.
IEEE Computer, 33(9):18–26, 2000.

[31] J. LIU, J. EKER, J. W. JANNECK, X. LIU, and E. A.
LEE. Actor-oriented control system design: A re-
sponsible framework perspective. IEEE Transactions
on Control System Technology, 12(2):250–262, 2004.

[32] José Meseguer and Carolyn Talcot. Semantic mod-
els for distributed object reflection. In Euro-
pean Conference on Object-Oriented Programming,
ECOOP’2002, LNCS 2374, pages 1–36, 2002.

[33] R. Milner. Communicating and Mobile Systems: the
Pi-Calculus. Cambridge University Press, 1999.

[34] N. H. Minsky and V. Ungureanu. Law-governed inter-
action: a coordination and control mechanism for het-
erogeneous distributed systems. ACM Transactions
on Software Engineering Methodology, 9(3):273–
305, 2000.

[35] Jayadev Misra and William R. Cook. Computation
orchestration: A basis for wide-area computing. Jour-
nal of Software and Systems Modeling, May 2006.

[36] Rocco De Nicola, Gianluigi Ferrari, and Rosario
Pugliese. Klaim: a kernel language for agents inter-
action and mobility. IEEE Transactions on Software
Engineering, 24:315–330, 1998.

[37] R. Nicola de, J.P. Katoen, D. Latella, and M. Massink.
Towards a logic for performance and mobility. 2005.

[38] A. Omicini and E. Denti. Formal respect. Electronic
Notes in Theoretical Computer Science, 48:179–196,
2001.

[39] A. Omicini, A. Ricci, and M. Viroli. Agent coordina-
tion contexts for the formal specification and enact-
ment of coordination and security policies. Science of
Computer Programming, 63(1):88–107, 2006.

[40] A. Omicini and F. Zambonelli. Tuple centres for the
coordination of internet agents. In The ACM Sympo-
sium on Applied Computing, pages 183–190, 1999.

[41] G. A. Papadopoulos and F. Arbab. Coordination mod-
els and languages. Advances in Computers, 46:330–
401, 1998.

244 Informatica 32 (2008) 229–244 N. Chen et al.

[42] Gian Pietro Picco, Amy L. Murphy, and Gruia catalin
Roman. Lime: Linda meets mobility. In 21st In-
ternation Conference on Software Engineering, pages
368–377. ACM Press, 1999.

[43] José Proença and Dave Clarke. Coordination models
orc and reo compared. Electronic Notes in Theoreti-
cal Computer Science, 194(4):57–76, 2008.

[44] S. Ren, N. Chen, Y. Yu, P.-E. Poirot, L. Shen, and
K. Marth. Actors, roles and coordinators a coordi-
nation model for open distributed embedded systems.
4038:247–265, 2006.

[45] D. C. Schmidt. The design of the tao real-time object
request broker. In Computer Communications, 1998.

[46] Carolyn Talcott, Marjan Sirjani, and Shangping Ren.
Ccoordinating asynchronous and open distributed
systems under semiring-based timing constraints.
Electronic Notes in Theoretical Computer Science,
2008.

[47] Carolyn L. Talcott. Coordination models based
on a formal model of distributed object reflection.
Electronic Notes in Theoretical Computer Science,
150:143–157, 2006.

[48] A. S. Tanenbaum and M. V. Steen. Distributed Sys-
tems - Principles and Paradigms. Prentice Hall. Up-
per Saddle River, New Jersey, 2002.

[49] C. A. Varela and G. A. Agha. Towards a discipline
of real-time programming. Communications of the
ACM, 20(8):577–583, 1977.

[50] N. Venkatasubramanian, G. A. Agha, and C. Talcott.
A metaobject framework for qos-based distributed re-
source management. In The Third International Sym-
posium on Computing in Object-Oriented Parallel
Environments, 1999.

[51] Yue Yu, Shangping Ren, and Carolyn Talcott.
Comparing three coordination models: Reo, arc.
Electronic Notes in Theoretical Computer Science,
(16956), 2008.

Informatica 32 (2008) 245–251 245

Analysis of an Immune Algorithm for Protein Structure Prediction

Andrew J. Bennett, Roy L. Johnston, and Eleanor Turpin
University of Birmingham, Birmingham, United Kingdom
E-mail: ajb@tc.bham.ac.uk

Jun Q. He
Aberystwyth University, Aberystwyth, United Kingdom

Keywords: HP lattice bead model, immune algorithm, population diversity tracking, protein modelling

Received: June 23, 2008

The aim of a protein folding simulation is to determine the native state of a protein from its amino acid
sequence. In this paper we describe the development and application of an Immune Algorithm (IA) to
find the lowest energy conformations for the 2D (square) HP lattice bead protein model. Here we intro-
duce a modified chain growth constructor to produce the initial population, where intermediate infeasible
structures are recorded, thereby reducing the risk of attempting to perform wasteful point mutations during
the mutation phase. We also investigate various approaches for population diversity tracking, ultimately
allowing a greater understanding of the progress of the optimization.

Povzetek: V članku je opisan razvoj in izvedba imunskega algoritma (IA) za iskanje najnižje energijske
strukture za 2D (kvadratne) HP mrežno nanizanega modela proteina.

1 Introduction

Predicting the 3-dimensional secondary and tertiary struc-
ture of a protein molecule from its (primary structure)
amino acid sequence alone is an important problem in
chemical biology [1]. Under certain physiological condi-
tions, the amino acid chain will reliably fold into a specific
native state (biologically active conformation). The pro-
tein folding problem is the search for this native state for a
given sequence of amino acid residues. The reliability of
protein folding is said to be dominated by the presence of a
“folding funnel” on the folding energy landscape since sys-
tematic or random searching is clearly infeasible for large
numbers of amino acids [2]. Therefore, discovering the na-
ture of the folding energy landscape is necessary to develop
a better understanding of the folding dynamics [3].

Many protein models have been developed, ranging from
simple, minimalist models such as the HP lattice bead
model [4], to more complicated and computationally ex-
pensive models such as off-lattice interpretations. The
most common lattice structures are 2D square and 3D cu-
bic. More computationally intense models include the dy-
namical lattice and all-atom models, both introducing more
complicated fitness functions.

In this work, the standard HP lattice bead model has been
incorporated into an immune algorithm. Despite the min-
imalistic approach employed by this model, it has been
shown to belong to the “NP-Hard” set of problems [5].
Monte Carlo [6], chain growth algorithms [4], simulated
annealing [7], genetic algorithms [5, 8, 9], ant colony op-
timization [10] and more recently immune algorithms [11]

have been developed by many researchers as heuristic and
approximate solutions for this and other computationally
hard problems.

2 Methodology

2.1 The HP lattice bead model
In this work, the standard HP lattice bead model is embed-
ded in a 2-dimensional square lattice, restricting bond an-
gles to only a few discrete values [4]. Interactions are only
counted between topological neighbours, that is between
beads (representing amino acids) that lie adjacent to each
other on the lattice, but which are not sequence neighbours
[3]. The energies corresponding to the possible topological
interactions are as follows:

εHH = −1.0 εHP = 0.0 εPP = 0.0 (1)

By summing over these local interactions, the energy of
the model protein can be obtained:

E =
∑

i<j

εij∆ij (2)

where

∆ij =

1 if i and j are topological neighbours,
but are not sequence neighbours;

0 otherwise.

The HP lattice model recognises only the hydrophobic
interaction as the driving force in protein folding, with

246 Informatica 32 (2008) 245–251 A. J. Bennett et al.

Name Length E∗ Sequence
HP-18a 18 -9 PHP2HPH3PH2PH5

HP-18b 18 -8 HPHPH3P3H4P2H2

HP-18c 18 -4 H2P5H2P3HP3HP
HP-20a 20 -10 H3P2(HP)2HP2(HP)2HP2H
HP-20b 20 -9 HPHP2H2PHP2HPH2P2HPH
HP-24 24 -9 H2P2(HP2)6H2

HP-25 25 -8 P2HP2(H2P4)3H2

HP-36 36 -14 P3H2P2H2P5H7P2H2P4H2P2HP2

HP-48 48 -23 P2H(P2H2)2P5H10P6(H2P2)2HP2H5

HP-50 50 -21 H2(PH)3PH4P (HP3)3P (HP3)2HPH4(PH)4H

Table 1: Benchmark HP sequences used in the present study [12]. The lowest energies that have been found for these
sequences are indicated by E∗.

many native structures protecting the hydrophobic core
with polar residues, resulting in a compact arrangement
[11]. This idea reflects the repulsive nature of the interac-
tions between the hydrophobic residues and the surround-
ing water molecules [3].

2.2 The coordinate system
A previous study has illustrated how a local coordinate sys-
tem offers better performance than a global one for study-
ing protein folding [2]. In this work, a local coordinate sys-
tem is used to define the folding conformation of the model
proteins, that is the position of bead j is defined relative to
beads (j−1) and (j−2). As the energy is identical for ro-
tationally related structures, the bond between the first two
beads lies along the x-axis, with these beads having coor-
dinates (0,0) and (1,0) respectively. As a result, the search
spaced is halved. The bond joining the (j − 1)th and jth

beads can be left, right or straight ahead relative to the bond
joining the (j−2)th and (j−1)th bead, corresponding to an
integer representation of 0, 1 and 2 respectively. The pro-
tein conformation is therefore expressed as a conformation
vector, containing a list of 0’s, 1’s and 2’s.

For this study, a set of well investigated protein bench-
mark sequences have been considered: the tortilla HP
benchmark sequences [12]. They range in length from
eighteen to fifty beads and are listed in Table 1. The table
also includes the energy, E∗, of the putative global mini-
mum (or conformations, since all of these structures have
degenerate global minima) for each sequence.

3 The immune algorithm
An immune algorithm [13] is inspired by the clonal selec-
tion principle employed by the human immune system. In
this process, when an antigen enters the body, B and T lym-
phocytes are able to clone upon recognition and bind to it
[13]. Many clones are produced in response and undergo
many rounds of somatic hypermutation. The higher the fit-
ness of a B cell to the available antigens, the greater the
chance of cloning. Cells have a certain life expectancy, al-

lowing a higher specific responsiveness for future antigenic
attack [11].

The IA presented here includes the aging, cloning and
selection operators used in a previous study by Cutello et
al. [11], with modified constructor and mutation opera-
tors. The constructor employs a backtracking algorithm
that records some of the possible mutations by testing bead
placement during chain growth. These possibilities are ex-
ploited and updated during the mutation process, prevent-
ing an infeasible conformation from occurring based on
the preceding self-avoiding structure for a particular point
in the model protein chain. In retaining this information,
infeasible mutations are not explored, allowing a greater
number of constructive mutations to be investigated. Fig-
ure 1 illustrates the stages involved in placing two consec-
utive beads during the chain growth phase. Before com-
mitting a bead to the lattice, all possible directions are ex-
plored, 1(a), and from the valid options available, a random
choice is made, 1(b). Again all possible choices are inves-
tigated, marking any infeasible options (note that choosing
left will not result in a self avoiding conformation), 1(c),
and a valid choice is selected from the remaining options,
1(d). Any remaining valid choices are left unmarked for
use in the first mutation phase after the initial chain growth.
Once a valid mutation has been made, the entire structure
is reconstructed as before marking any infeasible directions
as a result of the new conformation vector.

In the basic IA set up, there are a maximum of
10,000,000 fitness evaluations, with the maximum num-
ber of generations set to 500,000. In order to estimate the
optimal combination of parameters, we adopted the pro-
cedure used by Cutello et al., whereby the maximum B-
Cell age and the number of clones were each varied from
1 to 10. Population sizes examined were 10, 25, 50, 100
and 200. This provided a combination of 500 different pa-
rameter sets for each sequence, which was applied to all
the benchmark sequences up to 25 beads in length. All
fitness evaluations for the best success rates were collated
and graded for overall performance. As a result of this pre-
liminary testing, the results presented below were obtained
using a maximum B-Cell age of 4, 3 clones and a popu-

ANALYSIS OF AN IMMUNE ALGORITHM FOR. . . Informatica 32 (2008) 245–251 247

(a) (b) (c) (d)

Figure 1: Stages of the chain growth algorithm investigating left (L), right (R) and straight (S) availability (a), random
selection from all available directions (b), at the next locus investigation of L, R and S availability (c) and random selection
from remaining available S and R directions (d).

lation size of 10. All results quoted are averaged over 30
independent runs.

4 Results

4.1 Algorithm comparison
With CPU time being hardware dependent, the number of
fitness evaluations (together with the percentage success
rate) have been used to assess the efficiency of the algo-
rithm, as shown in Table 2 for the benchmark sequences.

It is apparent from Table 2 that, although the use of mem-
ory B-Cells [11] hinders the discovery of global minima for
some of the smaller sequences, it enhances the search for
the larger, more difficult to find sequences. The memory
ability allows mid to high fitness conformations to remain
in the population for a longer number of generations. For
larger sequences, this allows a more detailed exploration in
certain areas of the potential energy surface, permitting the
memory B-Cells to converge towards the global solution
much sooner. In contrast, for smaller sequences the mid
to high fitness range is much smaller, thereby preventing a
rapid exploration of the potential energy surface by retain-
ing unfavourable segments of local structure for a larger
number of generations. Generally, the use of memory B-
Cells allows a more diverse inspection of the potential en-
ergy surface, due to a greater number of the degenerate
conformations being found. This is achieved as favourable
fragments of local structure are not rapidly disposed of dur-
ing the retirement process, hindering efficiency as a conse-
quence.

The algorithm presented here shows promising results,
being comparable to the work of Cutello et al. [11]. While
our success rates for the larger sequences (e.g. HP-48) are a
little lower, in some cases our number of fitness evaluations
show an improvement.

4.2 Analysis of global minima
The compact structural arrangement present in all global
minima (GMs) is apparent from the example GMs shown
in Fig. 2. With the driving force being the hydrophobic
topological contact, it can be seen that compact hydropho-
bic cores give rise to high fitness conformations. Inspection

of the HP-48 global minimum (i) allows us to understand
the poor success rate for this sequence. The 5×5 hydropho-
bic core presents a problem to the IA (or other optimization
algorithms [3]) in achieving convergence, as a single mis-
placed hydrophobic bead will result in only a metastable
conformation. The problem does not exist for the HP-50
sequence (j), due to the presence of two small hydropho-
bic cores coupled by a chain of hydrophobic beads, which
explains the higher success rate and fewer average struc-
ture evaluations necessary for HP-50, compared with HP-
48 and (when using memory B-cells) even the much shorter
HP-36 sequence [3]. The work of Cutello et al. supports
this idea [11], as similar magnitudes of the number of fit-
ness evaluations for these problematic sequences can be
seen, with a much lower success rate for HP-48 than for
any other instance.

4.3 Tracking population diversity
The much larger populations required to ensure popula-
tion diversity can be problematic for both GAs and IAs.
In this section, a single run, with population size 200 for
sequence HP-20a has been analyzed. The global minimum
was found in generation 28, at which point the algorithm
was terminated due to meeting the search criteria. In order
to help us understand the progress of the optimization and
ultimately to improve the methodology, monitoring popu-
lation diversity and the progress of the algorithm is benefi-
cial.

Figure 3(a) assigns a colour to each of the three possi-
ble direction decisions (corresponding to alleles in a ge-
netic sense) made when placing each successive bead. It
can be seen that initial structure generation, using the IA’s
constructor, is indeed statistically uniform, showing the fre-
quency of left (grey), right (light blue) and straight ahead
(dark blue) choices at each locus of the model protein chain
to be very similar. In contrast, Fig. 3(b) illustrates how
this statistical distribution is skewed in the final population
(generation 28), in that the IA has concentrated its search
to a much narrower region of the potential energy surface.
It should also be noted that position 6 in the chain has a
very low frequency of the straight ahead choice (dark blue),
because (for most population members) previous direction
decisions preclude (for structural and/or energetic reasons)
this choice from being made at this chain position.

248 Informatica 32 (2008) 245–251 A. J. Bennett et al.

Sequence No Memory B-Cells Memory B-Cells
%Success No. Evaluations %Success No. Evaluations

HP-18a 100 89,578 100 117,251
HP-18b 100 40,167 100 200,740
HP-18c 100 87,761 100 72,270
HP-20a 100 26,207 100 312,405
HP-20b 100 15,221 100 30,414
HP-24 100 26,580 100 49,616
HP-25 100 79,042 100 95,123
HP-36 63 4,867,993 90 3,082,014
HP-48 3 6,318,721 3 4,195,086
HP-50 50 4,904,031 96 853,706

Table 2: Comparison of the percentage success and average number of structure evaluations with and without using
memory B-Cells

HP-18a HP-18b HP-18c HP-20a HP-20b HP-24

HP-25 HP-36 HP-48 HP-50

Figure 2: Examples of GM structures for the benchmark sequences.

Figure 4 shows a graphical representation of the initial
and final populations of the calculation. By plotting the
conformation vector for each population member, the pop-
ulation can be quickly compared for diversity. Population
members are ordered by descending fitness and the colour
scheme is similar to the allele frequency distribution shown
in Fig. 3, but with white replacing grey for the left choice.
It is clear that initially the population has high diversity
(in agreement with the allele frequency plot shown above),
with the algorithm preserving favourable regions of local
structure (corresponding to schemata in a GA sense) as the
calculation converges. More detailed analysis of the final
population shows that there are often correlations (or anti-
correlations) between directions at specific loci, with cer-
tain combinations giving rise to favourable energies or in-
feasible structures, respectively.

For simple protein models such as the HP lattice bead

model, the Hamming distance (dH , which is the number of
bit differences between two conformation vectors) can be
used as a simple measure of similarity between structures
in the population. Figure 5(a) plots the frequency of the
Hamming distances between all pairs of structures in the
population as a function of generation. (As the population
size is 200, there are a total of 19,900 pair Hamming dis-
tances). It can be seen how the diversity of the population
changes as the calculation approaches the global minimum
(which is found in generation 28). Combining this with a
plot of the best, worst and average fitnesses in the popu-
lation, as a function of generation (Fig. 5(b)), it should be
noted that structural diversity shows a more uniform spread
(beginning around generation 20) as favourable segments
of local structure begin to dominate the population, with
the search focussing on a much more concentrated area
of the potential energy surface. It is also evident that the

ANALYSIS OF AN IMMUNE ALGORITHM FOR. . . Informatica 32 (2008) 245–251 249

(a) (b)

Figure 3: The frequency of alleles at each locus along the model protein chain for the initial population (a) and the final
population (b), left (light grey), right (dark grey) and straight ahead (black).

(a) (b)

Figure 4: Graphical representation of an initial population (a) and final population (b) of B-Cells, left (light grey), right
(dark grey) and straight ahead (black). Population members are sorted by descending fitness, with structures of the highest
energy at the bottom of the plot.

250 Informatica 32 (2008) 245–251 A. J. Bennett et al.

(a) (b)

Figure 5: (a) The density of pairwise Hamming distances, dH , between population members throughout the calculation.
(b) The change in energy throughout the calculation, showing the best (dashed), worst (solid) and average (doted) energies
in each generation.

population diversity drastically decreases during the final
stages of the calculation, not just in the final generation.
This confirms that the calculation has not discovered the
global minimum by chance, but a directed search strategy
has been employed.

5 Conclusions

Although implementation of a modified constructor for use
in the mutation phase of the IA has not always given greater
success rates (especially for more challenging sequences),
it has allowed for a more efficient search to be performed
in some cases, showing a descrease in the number of fit-
ness evaluation performed. The use of population diversity
tracking allows a greater understanding of the algorithm’s
ability to explore areas of the potential energy surface of
these simple model proteins. Areas of favourable local
structure along the chain can be assessed, illustrating the
important allele combinations that give rise to the determi-
nation of global minima. We are currently applying these
approaches to more realistic protein models.

Acknowledgements

AJB thanks Dr Benjamin Curley for programming assis-
tance and the University of Birmingham for PhD funding.
Calculations were performed on the University of Birming-
ham’s BlueBEAR 1500+ processor cluster, funded by the
EPSRC (under SRIF3) and the University of Birmingham.

References

[1] K.M. Merz (ed.). The Protein Folding problem and
Structure Prediction. Birkhauser, 1994.

[2] N. Krasnogor, W.E. Hart, J. Smith, and D. Pelta.
Protein Structure Prediction with Evolutionary Algo-
rithms. In Proc. 1999 International Genetic and Evo-
lutionary Computation Conference (GECCO99), Or-
lando, Florida, USA, 1999, pages 1569–1601.

[3] G.A. Cox and R.L. Johnston. Analyzing Energy
Landscapes for Folding Model Proteins. J. Chem.
Phys., 124(20):204714, 2006.

[4] T. Beutler and K. Dill. A Fast Conformational Search
Strategy for Finding Low Energy Structures of Model
Proteins. Protein Sci. 5(10):2037–2043, 1996.

[5] R. Unger and J. Moult. Genetic Algorithms for Pro-
tein Folding Simulations. J. Mol. Biol., 231:75–81,
1993.

[6] R. Ramakrishnan, B. Ramachandran, and J.F. Pekny.
A Dynamic Monte Carlo Algorithm for Exploration
of Dense Conformational Spaces in Heteropolymers.
J. Chem. Phys., 106(6):2418–2425, 1997.

[7] S. Kirkpatrick and C.D. Gellat. Optimization by
Simulated Annealing. Science, 220(4598):671–680,
1983.

[8] W. Liu and B. Schmidt. Mapping of Genetic Algo-
rithms for Protein Folding onto Computational Grids.
IEICE T. Inf. Syst., 89(2):589–596, 2006.

ANALYSIS OF AN IMMUNE ALGORITHM FOR. . . Informatica 32 (2008) 245–251 251

[9] J. Song, J. Cheng, T. Zeng, and J. Mau. A Novel
Genetic Algorithm for HP Model Protein Folding. In
Proc. Sixth International Conference on Parallel and
Distributed Computing Applications and Technolo-
gies (PDCAT’05), Dalian, China, 2005, pages 935–
937.

[10] A. Shmygelska and H.H. Hoos. An Improved Ant
Colony Optimization Algorithm for the 2D HP Pro-
tein Folding Problem. Lect. Notes Comput. Sci.,
2671:400–412, 2003.

[11] V. Cutello, G. Niscosia, M. Pavone, and J. Tim-
mis. An Immune Algorithm for Protein Structure Pre-
diction on Lattice Models. IEEE T. Evol. Comput.,
11(1):101–117, 2007.

[12] W.E. Hart, S. Istrail. HP Benchmarks. www.cs.
sandia.gov/tech_reports/compbio/
tortilla-hp-benchmarks.html.

[13] L.N. de Castro and J. Timmis. Artifical Immune Sys-
tems and Their Applications. Springer-Verlag, 1999.

252 Informatica 32 (2008) 245–251 A. J. Bennett et al.

Informatica 32 (2008) 253–260 253

APC Semantics for Petri Nets

Slavomír Šimoňák, Štefan Hudák and Štefan Korečko
Department of Computers and Informatics,
Technical University of Košice, Letná 9, 042 00 Košice, Slovak Republic
E-mail: slavomir.simonak@tuke.sk, stefan.hudak@tuke.sk, stefan.korecko@tuke.sk

Keywords: Petri nets semantics, process algebra, algebra of process components

Received: July 13, 2007

The paper deals with an algebraic semantics for Petri nets, based on a process algebra APC (Algebra of
Process Components) by the authors. APC is tailored especially for describing processes in Petri nets. This
is done by assigning special variables (called E-variables here) to every place of given Petri net, expressing
processes initiated in those places. Algebraic semantics is then given as a parallel composition of all
the variables, whose corresponding places hold token(s) within the initial marking. Resulting algebraic
specification preserves operational behavior of the original net-based specification.

Povzetek: Članek opisuje algebro semantike za Petri mreže.

1 Introduction

An assertion widely accepted in formal methods commu-
nity states, that there will never be invented a single for-
mal method, that will cover all aspects of the system in
acceptable way [12]. The latter is mainly because of the
complexity of the system and vast variety of its features
(aspects) to be covered for the system to be modeled and
designed. As a consequence of that situation, many formal
description techniques (FDTs) exist and are used nowa-
days. That reflects the fact that one feature f of the system
is more readily expressed in FDT (say) F1, than it is the
case for f in F2. To cope with that situation there have
been attempts to integrate two or more formal methods.
Main motivation for using FDT in design and analysis of
computer-based systems lies in everyday growing depen-
dence of human society on such the systems, particulary
those applied in safety-critical domains (such as military
weaponry, aircraft transport, medicine, etc.). The situation
just described put strong requirements on new methods of
the design, analysing and maintaining of such the systems.
Time-critical issue of to be able to cope with malicious
behaviour of the systems in limited time period, dictates
strongly to deal with the problem in an automated way. The
latter is impossible without using FDTs in proper combina-
tion and integration in the frame of computer-based design
and analysis environments. Yet a formal way how to in-
corporate conditions to guarantee the safety of system de-
signed is an example of another problem which underlines
the importance of expolitation of FDTs. Guided by the con-
siderations mentioned an approach has been applied at the
home institution of the authors to create an environment for
the design and analysis of discrete systems based on inte-
gration of three FDTs: Petri Nets (PN), process algebras
and B-Method. That is why we have chosen the acronym
mFDTE for it (multi FDT Environment). The choice of the

FDTs has been motivated by their abilities to cover in some
mutually complementary ways a chosen set of system’s
features. In this work we pay attention to two of the FDTs
chosen: PN and process algebras. While on one side PN
posses nice properties suited for system modelling (formal
and graphical language) and analysis (invariants, reacha-
bility), on the other side they suffer from a lack of formally
sound and effective methods of their de/composition. The
latter can be considered as an essential drawback as far as
the modular system design is concerned. Process algebras
(CCS, CSP, ACP)[1] on the other hand support composion-
ality, by their definition, so PN and process algebras can
be considered to meet the complementarity property in the
above sense.

The paper is organized in the following way: Section 1
is introductory one, whole related works are briefly sum-
marized in Section 2. In Section 3, basic notions and def-
initions for the class of Petri nets used are given. Alge-
bra of Process Components is defined in Section 4. Notion
of term is presented as a mean for describing processes,
axioms are given and operational semantics is assigned to
process expressions (terms). Section 5 concentrates on the
algebraic semantics construction for a Petri net given. A
special variable is assigned to every place of the Petri net.
Construction rules are defined for assigning a term to the
variable which represents all the computations which can
be initiated at the corresponding place. An example pro-
vided in Section 6 demonstrates the approach introduced
above. Section 7 concludes the paper and contains a sum-
mary of the results and concepts presented.

2 Related work

An active research has been performed in the area of com-
bining Petri nets and process algebras during last years

254 Informatica 32 (2008) 253–260 S. Šimoňák et al.

[4, 5, 2, 6, 10, 11]. It will be mentioned further [3], where
authors propose an approach to algebraic semantics for Hi-
erarchical P/T nets. PTNA (Place/Transition Net Algebra)
is defined there, based on process algebra ACP and an al-
gebraic semantics for P/T nets is given such that a P/T net
and its term representation have the same operational be-
havior. The actions of the algebra presented correspond to
the consumption and production of tokens by transitions.
Results achieved are further extended to hierarchical P/T
nets. In [11] relations among nets, terms and formulas are
treated. Particularly relations are defined via properly de-
fined semantics: net semantics of terms and process seman-
tics of nets. The most influential works in the line we fol-
low here are [5, 2]. In [5] relations between the process
algebra, called there PBC (Petri Box Calculus) and a class
of Place Transition Nets (safe P/T nets) are studied. Syntax
and semantics of PBC terms are carefully selected to al-
low to define a transformation yielding P/T nets preserving
structural operational semantics of the source terms. The
transformation allows composition of P/T nets. In work [2]
authors treat the issue of partial-order algebras and their
relations to P/T nets based on the theory of BPA and ACP.

Within our work we propose the general approach to
characterising PN in form of E-(B-) terms. General (not
only interleaving) semantics is given, and the results ob-
tained in this respect are published in [9]. mFDT Environ-
ment is under construction, based on FDT interfaces by the
authors, which aims to integrate the three formal methods
mentioned above.

3 Petri Nets
We assume the class of ordinary Petri nets [18] within this
paper, and brief description of the basic notions follows [7].

Definition 1. The Petri net is a 4-tuple N =
(P, T, pre, post), where P is a finite set of places, T is a fi-
nite set of transitions (P ∩T = ∅), pre: P ×T → {0, 1} is
the preset function and post: P ×T → {0, 1} is the postset
function.

By the marking of PN N = (P, T, pre, post) we mean a
totally defined function m: P → IN, where IN is the set of
natural numbers. We denote marked net with initial mark-
ing m0 as N0 = (N, m0) or N0 = (P, T, pre, post, m0).

Some useful notations can be defined:

•t = {p|pre(p, t) 6= 0}the set of preconditions of t

t• = {p|post(p, t) 6= 0}the set of postconditions of t

p• = {t|pre(p, t) 6= 0}, •p = {t|post(p, t) 6= 0}
We say that t is enabled in m (and denote it m

t→) if for
every p ∈ •t,m(p) ≥ pre(p, t). The effect of firing t in m

is the creation of a new marking m′ (m t→ m′) and m′ is
defined in the following way:

m′(p) = m(p)− pre(p, t) + post(p, t), p ∈ P, t ∈ T

Denotation (N, m) t→ (N, m′) is alternatively used
within the paper for expressing a step of computation
(m t→ m′) within the Petri net N . The set of reachable
markings for given Petri net N0 = (P, T, pre, post, m0)
we define by

R(N0) = {m|m0
σ→ m}

where σ = t1, t2...tr stands for an admissible firing se-
quence in N0. We also can define the language of Petri net
N0:

L(N0) = {σ ∈ T ∗|m0
σ→ m}

4 APC - Algebra of Process
Components

Process algebra APC [8, 16] is inspired by the process al-
gebra ACP [1]. ACP is modified in a way, that allows
for comfortable description of PN processes in the alge-
braic way. We use the same operators for the sequen-
tial (·) and the alternative (+) composition respectively and
corresponding axioms also hold in algebra APC (Table
1). ACP’s communication function (γ) and its extension -
communication merge operator (|), are not present in APC.
A composition function (π) and a special composition op-
erator (|||) are introduced into the algebra APC instead.
The impact of an introduction of the two operators will be
treated later.

APC is defined as a couple (P, Σ), where P (the domain)
is represented by the set of constants, set of variables and
set of all processes (terms) we are able to express. Σ (the
signature) contains function (operator) symbols. It is sup-
posed that, the set of variables contain arbitrary many of
them (x,y, ...). Terms containing variable(s) are called open
terms, otherwise terms are closed.

4.1 Syntactical issues

From the syntactical point of view APC contains a num-
ber of constants a, b, c, ... (we use the set A = {a, b, c, ...}
for referring to them) a special constant δ (deadlock) and
operators: +, ·, ‖ (parallel composition), bb (left merge)
and ||| (process component composition). It also contains
a (partial) commutative composition function π, denoting
the merging of process components. Now we will define
APC terms:

Definition 2. 1. variables are APC terms,

2. constants a ∈ A and a special constant δ are APC
terms,

3. if u, v are APC terms, then u + v, u · v,
u ‖ v, ubbv, u|||v are APC terms,

4. if u is APC term, then u[c], c ∈ IN is also APC term.

APC SEMANTICS FOR PETRI NETS Informatica 32 (2008) 253–260 255

All these terms are part of P - the domain of APC.
P can further be subdivided into two parts PA and PC

(P = PA ∪ PC). Terms belonging to the set PA defined
by items 1, 2 and 3 of Definition 2 (i.e. those without
the superscript notation) represent the set of true processes.
Terms from the set PC (superscripted) represent the set of
process components.

Only difference between the (true) process and process
component is, that while the process is able to execute ac-
tions, process component is introduced for synchronization
purpose only. The latter is only able to join with its coun-
terpart(s) (other process component(s) fitting for being syn-
chronized to) in order to form a true process. The compo-
sition function π is defined as follows:

π : PC × ...× PC → PA (1)

A connection between the composition function π and
the process component composition operator (|||) can
be expressed as: x1|||...|||xn = π(x1, ..., xn) when
π(x1, ..., xn) is defined. Axioms of algebra APC can be
found in Table 1. Within the table u, v, z, x1, ..., xn stand
for processes, a ∈ A and δ are constants.

u + v = v + u A1
u + u = u A2
(u + v) + z = u + (v + z) A3
(u + v) · z = uz + vz A4
(u · v) · z = u · (v · z) A5
u‖v = ubbv + vbbu + u|||v A6
(u + v)|||z = u|||z + v|||z A7
u|||(v + z) = u|||v + u|||z A8
aubbv = a(u‖v) A9
(u + v)bbz = ubbz + vbbz A10
x1|||...|||xn = π(x1, ..., xn) if A11
π(x1, ..., xn) is defined
x1|||...|||xn = δ otherwise
u + δ = u A12
δ · u = δ A13

Table 1: Axioms of APC

Theorem 1. In the case of the parallel composition of more
than two processes the following equality (expansion theo-
rem) can be proven:

x1‖...‖xn =
∑

1≤i≤n

xibb(
1≤j≤n,j 6=i

‖ xj)+ (2)

∑

2≤k≤n

1≤i1<...<ik≤n∑
(xi1 |||...|||xik

)bb(
1≤j≤n,j 6=i1,...,ik

‖ xj)

Proof 1. By induction on n, the number of processes. The
case for n = 2 is treated by the axiom A6, Table 1. The
induction step is as follows:

(x1‖...‖xn+1) = (x1‖...‖xn)‖xn+1

Denoting the RHS of original theorem as E, we can write:

(x1‖...‖xn)‖xn+1 = Ebbxn+1+xn+1bbE+E|||xn+1 (3)

Now we have three summands, each of them will be treated
separately. Let’s start dealing with the first of them.

Ebbxn+1 = (
∑

1≤i≤n

xibb(
1≤j≤n,j 6=i

‖ xj))bbxn+1+

(
∑

2≤k≤n

1≤i1<...<ik≤n∑
(xi1 |||...|||xik

)

bb(
1≤j≤n,j 6=i1,...,ik

‖ xj))bbxn+1 =

∑

1≤i≤n

xibb((
1≤j≤n,j 6=i

‖ xj)bbxn+1)+

∑

2≤k≤n

1≤i1<...<ik≤n∑
(xi1 |||...|||xik

)

bb((
1≤j≤n,j 6=i1,...,ik

‖ xj)bbxn+1) =

∑

1≤i≤n

xibb(
1≤j≤n+1,j 6=i

‖ xj)+

∑

2≤k≤n

1≤i1<...<ik≤n∑
(xi1 |||...|||xik

)

bb(
1≤j≤n+1,j 6=i1,...,ik

‖ xj)

The second summand of (3) can be expressed as follows:

xn+1bbE = xn+1bb(
1≤j≤n+1,j 6=n+1

‖ xj)

The third one represents the process components composi-
tion:

E|||xn+1 = (
∑

1≤i≤n

xibb(
1≤j≤n,j 6=i

‖ xj))|||xn+1+

(
∑

2≤k≤n

1≤i1<...<ik≤n∑
(xi1 |||...|||xik

)

bb(
1≤j≤n,j 6=i1,...,ik

‖ xj))|||xn+1 =

∑

1≤i≤n

(xi|||xn+1)bb(
1≤j≤n,j 6=i

‖ xj)+

(
∑

3≤k≤n+1

1≤i1<...<ik≤n+1∑
(xi1 |||...|||xik

)

bb(
1≤j≤n,j 6=i1,...,ik

‖ xj))

256 Informatica 32 (2008) 253–260 S. Šimoňák et al.

Summing up the three summands we have:

(x1‖...‖xn‖xn+1) =
∑

1≤i≤n+1

xibb(
1≤j≤n+1,j 6=i

‖ xj)+

∑

2≤k≤n+1

1≤i1<...<ik≤n+1∑
(xi1 |||...|||xik

)

bb(
1≤j≤n+1,j 6=i1,...,ik

‖ xj)

ut

4.2 Semantics issues
Constants a, b, c ∈ A are called atomic actions, and are
considered indivisible actions (events). The sequential
composition operator (·) function can be explained as fol-
lows: x·y is the process that first executes x and after finish-
ing it, starts y. The alternative composition (+): x+y is the
process that either executes x or y (choice). The meaning
of parallel composition (‖) follows: considering the merge
of two processes x‖y, we recognize three possibilities to
proceed. Either we start with a first step of x (given by
xbby), or a first step from y (ybbx) or we check a possibil-
ity to compose processes by means of process components
composition operator - x|||y. The result of this composi-
tion of course is different from δ only in a case, when the
composition function π is defined.

To assign an operational semantics to process expres-
sions, we determine, which actions a process can perform.
The fact, that process represented by the term t can execute
action a and turn to the term s is denoted by: t

a−→ s (or
alternatively a is enabled in t). The symbol

√
stands for

successful termination and thus t
a−→ √

denotes a fact that
t can terminate by executing a. An inductive definition of
action relations is given in the Table 2.

a
a−→ √

u + v
a−→ u′

v + u
a−→ u′

u
a−→ u′ ⇒ u · v a−→ u′ · v

u‖v a−→ u′‖v
v‖u a−→ v‖u′
ubbv a−→ u′‖v

u
a−→ u′,

π(u[1], ..., u[n]) = u ⇒ u[1]|||...|||u[n] a−→ u′

a ∈ A, u ∈ PA, u[1], ..., u[n] ∈ Pc, u′, v ∈ P

Table 2: Transition relations for APC terms

5 APC semantics for Petri Nets
In this section the transformation description is given in
detail [16]. We start with creating a special variable for

every place in the PN N to be transformed. We call
these variables E-variables here, and they will be bound
to terms, representing possible computations started from
given place in PN, later. So the value (term) assigned to a
particular variable depends on the structure of the net in the
vicinity of a place associated. So considering the place p,
variable E(p) will be bound to a term representing all the
computations within the net N , which are initiated in p.

Figure 1: Petri net fragments

Basic situations are captured in Fig. 1. In the case a)
a situation is depicted, where no arcs are connected to the
place investigated.

This results to the assignment of a term representing no
computations to the variable corresponding to such place,
i.e. δ (deadlock). Case b) stands for an alternative compo-
sition (choice). If a token is situated in place p, a choice is
to be made, and only one of transitions t1, ..., tn can fire.
Case c) represents general composition, where tokens must
be present in all pre-places of transition t. If some of these
places does not contain a token, firing of t is not possible.
After firing of t, however post-places of it are marked and
thus processes initiated in those places are enabled.

General composition (case c) can be understood as a
generalization of the three basic compositions - sequen-
tial, parallel and synchronization (Fig. 2) - three of four
basic composition mechanisms (with alternative composi-
tion) used within the APC. If n is the number of pre-places
and m, the number of post-places of a transition t:

– n = 1 ∧ m = 1 we obtain sequential composition
(case a) of Fig. 2),

– n = 1 ∧m > 1 we obtain parallel composition (case
b) of Fig. 2),

– n > 1 ∧m = 1 we obtain synchronization (case c) of
Fig. 2).

Now we can proceed by constructing terms representing
possible computations for given places of PN N . These
will be bound to a corresponding E-variables in a way given
by the definition:

Definition 3. According to the structure of Petri net in the
vicinity of a given place, terms are bound to corresponding
variables for elementary situations depicted in figures Fig.
1 and Fig. 2 as follows:

APC SEMANTICS FOR PETRI NETS Informatica 32 (2008) 253–260 257

Figure 2: Basic compositions as a special cases of the gen-
eral composition

– deadlock (Fig. 1a): E(p) = δ

– alternative composition (Fig. 1b): E(p) =
t1 · E(q1) + t2 · E(q2) + ... + tn · E(qn)

– sequential composition (Fig. 2a): E(p) =
t · E(q)

– parallel composition (Fig. 2b): E(p) =
t · (E(q1) ‖ ... ‖ E(qn))

– synchronization (Fig. 2c): E(p1) =
(t · E(q))[1], E(p2) = (t · E(q))[2], ..., E(pn) = (t ·
E(q))[n],
and the composition function is defined:
π((t · E(q))[1], ..., (t · E(q))[n]) = t · E(q) or
π(E(p1), ..., E(pn)) = t · E(q)

– general composition (Fig. 1c): E(p1) =
(t · (E(q1) ‖ ... ‖ E(qm)))[1],
E(p2) = (t · (E(q1) ‖ ... ‖ E(qm)))[2], ...,
E(pn) = (t · (E(q1) ‖ ... ‖ E(qm)))[n],
and the composition function is defined in the follow-
ing way:
π(E(p1), ..., E(pn)) = t · (E(q1) ‖ ... ‖ E(qm))

– transition without post-place(s) (Fig. 3a): E(p) = t

– transition without pre-place(s) (Fig. 3b): a new place
is added, such that firing properties of a transition
given are preserved (Fig. 3c): E(p) = t · E(q).

In the case of the synchronization we can observe that,
all variables composed are assigned to terms representing
process components instead of true processes. These com-
ponents, if all are present within the term representing the
net computation, can merge together by means of composi-
tion function π, and form the true process (able to execute
action t and then to behave like E(q)).

Taking into account the case, when a transition without
pre-places occurs within the net structure (Fig. 3b), the
following solution is proposed: for every such transition
t, a new pre-place is added, such that the firing properties
of transition t are preserved (Fig. 3c). This is achieved
by setting the initial marking of given place to ω, where

Figure 3: Transitions without input/output

∀n ∈ IN : ω ± n = ω. In fact, this causes the transition t
can be fired infinitely many times. Combining these basic
principles, we are able to construct terms for more compli-
cated net structures.

Definition 4. Let the PN N is given by N =
(P, T, pre, post), m ∈ INk stands for its initial marking,
and k = |P |. Then the APC semantics for N with marking
m is given by the formula:

A(N, m) = E(p1)(i1)‖...‖E(pk)(ik) (4)

Within the Definition 4, E(pi) stands for an APC-
term defined according to PN structure in the vicinity of
the place pi (Definition 3). The value ij is given by
ij = m(pj), so it represents the marking with respect
to place pj , 1 ≤ j ≤ k. E(pj)(i) is defined as a term
E(pj)‖...‖E(pj), and represents a multiple (i-times) paral-
lel composition of a process E(pj). Note that E(pj)(0) =
δ. When ij = ω for place pj , it means that E(pj) can occur
infinitely many times in resulting composition.

Theorem 2. For given PN N = (P, T, pre, post), APC-
term p, representing an algebraic (APC) semantics for the
net N , transition t ∈ T and m, m′ markings of N , follow-
ing implication holds:

(N, m) t→(N, m′) ⇒ A(N,m) t→A(N, m′)

Proof 2. The proof is given by the induction on a structure
of the net. Let us suppose, that a step in computation of N

exists: (N, m) t→(N, m′), then

∀pi ∈ (•t) : m(pi) ≥ pre(pi, t)

∀pi ∈ P : m′(pi) = m(pi)− pre(pi, t) + post(pi, t)

Algebraic semantics for Petri net N with marking m is
given by:

A(N,m) = E(p1)(i1)‖...‖E(pk)(ik), k = |P | (5)

Transition t fired in N within a step can be of two kinds:

1. |•t| = 1

2. |•t| ≥ 2

258 Informatica 32 (2008) 253–260 S. Šimoňák et al.

According to the transition relations of APC (Table 2), a
step can be made by executing the action of the true pro-
cess or by merging the process components together with
execution of an action associated. Let us explore the two
cases:

1. If |•t| = 1 is the case, the situation is captured in the
Fig. 4, case a). Then within the Petri net N holds:
m(pa) ≥ pre(pa, t) (so the place pa contains a to-
ken(s)) and also m′(pi) = m(pi) + post(pi, t) −
pre(pi, t), pi ∈ P is a new marking after firing of
the transition t. If E(pa) = t · (E(pc)‖...‖E(pd))
is corresponding APC semantics for process initiated
in the place pa, then a step (action t) is enabled
E(pa) t→E(pc)‖...‖E(pd), since E(pa) is present in
specification A(N, m). Let values jl, l ∈ {1, ..., k}
are given by: jl = il − pre(pl, t) + post(pl, t). When
a step A(N, m) t→A(N,m′) occurs, corresponding
APC semantics of the net (N,m′) is given by:

A(N, m′) = E(p1)(j1)‖...‖E(pk)(jk), (6)

k = |P |

Figure 4: Two cases considered for a step in computation
of N

2. Here transition t firing in Petri net N occurs, for
which |•t| ≥ 2 holds. Situation is depicted in Fig. 4,
case b). Within the Petri net N there holds: m(pa) ≥
pre(pa, t), . . . ,m(pb) ≥ pre(pb, t) (so the places
pa, . . . , pb contain enough tokens) and thus transition
t can fire. From the definition of APC semantics for
Petri net N (5) and Definition 3, we have that a step
from (N,m) is represented by:

E(pa)(ia) ‖ ... ‖ E(pb)(ib) t→ (7)

E(pc)(jc) ‖ ... ‖ E(pd)(jd)

The step is enabled inA(N,m) since values ia, . . . , ib
are given by number of tokens in correspond-
ing places. According to the definition, variables
E(pa),...,E(pb) are bound to process components and
composition function is defined:

π(E(pa), ..., E(pb)) = t · (E(pc) ‖ ... ‖ E(pd)). The
step (7) thus is enabled, and (6) holds, where: j1 =
i1+post(p1, t)−pre(p1, t),...,jk = ik+post(pk, t)−
pre(pk, t).

We can conclude, that if a step in Petri net N with mark-
ing m is enabled, so it is enabled also in corresponding
algebraic representation A(N, m).

ut

We give a small example here, representing the configu-
ration of Petri net N sometimes called confusion (Fig. 5)
for the sake of clarity.

Figure 5: Confusion

First, APC-terms are assigned to variables created for
every place of Petri net N .

E(p1) = t1 · E(q1) + (t2 · E(q2))[1],
E(p2) = (t2 · E(q2))[2]

Next, the composition function π is defined:

π((t2 · E(q2))[1], (t2 · E(q2))[2]) = t2 · E(q2) (8)

Within the initial marking m0 of Petri net N , the only
place holding a token is p1, so only the variable corre-
sponding to this place will be included within the equation
describing the algebraic semantics of N .

A(N, m0) = E(p1) = t1 · E(q1) + (t2 · E(q2))[1] =
t1 · E(q1) + δ = t1 · E(q1)

In the configuration depicted, the only transition enabled
is t1 and it can fire. This is not the case of the transition
t2, because the place p2, the pre-place of t2 is not marked.
The same could be observed within the APC representation
- only one process component ((t2 · E(q2))[1]) is present
within the equation (so the mapping π cannot be used to
produce a true process) and it thus cannot perform any ac-
tion and is replaced by the δ.

6 An example
An example has been chosen to demonstrate a way how the
transformation rules proposed can be used. The Petri net N

APC SEMANTICS FOR PETRI NETS Informatica 32 (2008) 253–260 259

(depicted in Fig. 6) represents a synchronization problem
for sharing one resource by two processes. System mod-
eled consists of two processes (let the first process repre-
sented by the places p1, p2 and transitions t1, t3, be named
A, and the second one (p3, p4, t2, t4) be named B). The
resource shared is represented by the place p0. The token
at this place indicates the resource is free to be shared ei-
ther by process A or process B. The place p2 stands for the
condition ’process A is using the resource’, firing transition
t1 starts the resource usage and firing t3 ends it. Similarly,
for process B, firing t2 starts and firing t4 ends the usage
respectively. A token occurrence in the place p3 indicates
the resource is used by the process B.

Figure 6: Petri net for resource sharing

We start with assigning APC-terms to variables created
for every place of PN N , according to the structure of the
net in the vicinity of the corresponding place.

E(p1) = (t1 · E(p2))[1], E(p2) = t3(E(p0) ‖ E(p1)),
E(p3) = t4(E(p0) ‖ E(p4)), E(p4) = (t2 · E(p3))[1],

E(p0) = (t1 · E(p2))[2] + (t2 · E(p3))[2]

Composition function π is defined in two cases:

π((t1 · E(p2))[1], (t1 · E(p2))[2]) = t1 · E(p2) (9)

π((t2 · E(p3))[1], (t2 · E(p3))[2]) = t2 · E(p3) (10)

Since the initial marking of Petri net N is given as m0 =
(1, 1, 0, 0, 1), only three places (p0, p1 and p4) hold tokens,
and only variables corresponding to these places will take
place in equation describing the algebraic semantics of PN
N .

A(N, m0) = E(p0) ‖ E(p1) ‖ E(p4) (11)

Since the term on the RHS of equation (11) represents
parallel composition of three processes, we expand it ac-
cording to (2):

= E(p0)bb(E(p1) ‖ E(p4)) + E(p1)bb(E(p0) ‖
E(p4)) + E(p4)bb(E(p0) ‖ E(p1))+

(E(p0)|||E(p1))bbE(p4) + (E(p0)|||E(p4))bbE(p1) +
(E(p1)|||E(p4))bbE(p0)+ (E(p0)|||E(p1)|||E(p4))

After substituting terms assigned (bound) to variables
E(p0), E(p1) and E(p4), we can write:

= [(t1 · E(p2))[2] + (t2 · E(p3))[2]]bb((t1 · E(p2))[1] ‖
(t2 · E(p3))[1])+

(t1 · E(p2))[1]bb[((t1 · E(p2))[2] + (t2 · E(p3))[2]] ‖
(t2 · E(p3))[1])+

(t2 · E(p3))[1]bb[((t1 · E(p2))[2] + (t2 · E(p3))[2]] ‖
(t1 · E(p2))[1])+ ([(t1 · E(p2))[2] + (t2 · E(p3))[2]]|||(t1 ·

E(p2))[1])bb(t2 · E(p3))[1]+ ([(t1 · E(p2))[2] + (t2 ·
E(p3))[2]]|||(t2 · E(p3))[1])bb(t1 · E(p2))[1]+

((t1 · E(p2))[1]|||(t2 · E(p3))[1])bb[(t1 · E(p2))[2] + (t2 ·
E(p3))[2]]+ ([(t1 · E(p2))[2] + (t2 · E(p3))[2]]|||(t1 ·

E(p2))[1]|||(t2 · E(p3))[1])

Using the composition (π) definition (9, 10) and axioms
associated (A11, A13), we have:

(t1 ·E(p2))bb(t2 ·E(p3))[1] + (t2 ·E(p3))bb(t1 ·E(p2))[1]

Using the left merge operator axiom (A9) and substitut-
ing for E(p2) and E(p3) we obtain:

= t1(E(p2) ‖ (t2 ·E(p3))[1])+ t2(E(p3) ‖ (t1 ·E(p2))[1])
= t1(t3(E(p0) ‖ E(p1)) ‖

(t2 · E(p3))[1]) + t2(t4(E(p0) ‖ E(p4)) ‖ (t1 · E(p2))[1])

Considering all the cases for two processes composed by
the parallel composition operator (‖) and using the axiom
A6:

= t1(t3(E(p0) ‖ E(p1))bb(t2 · E(p3))[1]+
(t2 · E(p3))[1]bbt3(E(p0) ‖ E(p1))+
t3(E(p0) ‖ E(p1))|||(t2 · E(p3))[1])+
t2(t4(E(p0) ‖ E(p4))bb(t1 · E(p2))[1]+
(t1 · E(p2))[1]bbt4(E(p0) ‖ E(p4))+
t4(E(p0) ‖ E(p4))|||(t1 · E(p2))[1])

= t1(t3(E(p0) ‖ E(p1))bb(t2 · E(p3))[1] + δ + δ)+
t2(t4(E(p0) ‖ E(p4))bb(t1 · E(p2))[1] + δ + δ)
= t1t3((E(p0) ‖ E(p1)) ‖ (t2 · E(p3))[1])+

t2t4((E(p0) ‖ E(p4)) ‖ (t1 · E(p2))[1])

Since E(p4) = (t2 · E(p3))[1] and E(p1) = (t1 ·
E(p2))[1], we can write:

= t1t3((E(p0) ‖ E(p1)) ‖ E(p4))+
t2t4((E(p0) ‖ E(p4)) ‖ E(p1))

= t1t3(E(p0) ‖ E(p1) ‖ E(p4))+
t2t4(E(p0) ‖ E(p1) ‖ E(p4))

Using axiom A4, the term becomes even simpler:

= (t1t3 + t2t4)(E(p0) ‖ E(p1) ‖ E(p4))

260 Informatica 32 (2008) 253–260 S. Šimoňák et al.

Here we can observe a parallel composition of the three
variables, from which we started our derivation (E(p0) ‖
E(p1) ‖ E(p4)). In terms of Petri nets, the initial marking
was reached again. Prefix (t1t3+t2t4) represents the traces
of processes. The sequential composition operator is often
omitted, so we can state that the APC semantics is finally
given by the following equation:

A(N, m0) = (t1t3 + t2t4)ω

7 Conclusion
In this paper a general method was presented for construct-
ing an algebraic semantics of Petri nets, based on Algebra
of Process Components (APC) by the authors. The notion
of process component is introduced in order to model syn-
chronization, which, in case of Petri nets, is modeled in a
natural way. A variable is created for every place of given
net and a term is bound to this variable, which express the
process initiated in the corresponding place. The descrip-
tion of process representing computations of Petri net is
given by the parallel composition of all the variables asso-
ciated with places holding token(s) within the initial mark-
ing. Traces of processes can be observed in addition to
changes on the PN marking along the computation. Re-
sulting algebraic specification can further be analyzed us-
ing process algebra tools like CWB-NC, etc. A proof of
identical operational behavior has also been provided.

The PETRI2APC tool, a practical implementation of
method presented, is intended to be a part of multi FDT
(mFDT) environment - an environment for designing and
analysing of discrete systems based on three formal meth-
ods with useful complementary properties. The methods
considered are Petri nets, Process algebra and B-Method.
The mFDT environment is under development at DCI FEEI
TU of Košice.

Acknowledgement
This work is supported in part by the VEGA 1/3140/06 and
in part by the VEGA 1/4073/07 grant projects of Slovak
Grant Agency.

References
[1] Baeten, J.C.M., Weijland, W.P.: Process Algebra,

Cambridge University Press, ISBN 0 521 40043 0,
pp.248, 1990.

[2] Baeten, J.C.M., Basten, T.: Partial-Order Process
Algebra, in Handbook of Process Algebra, Elsevier
Science, Amsterdam, The Netherlands, 2000, 78pp.

[3] Basten, T., Voorhoeve, M.: An Algebraic Seman-
tics for Hierarchical P/T Nets, Computing Science
Report, Eindhoven University of Technology, pp.32,
1995.

[4] Best, E.: Semantics of Sequential and Parallel Pro-
grams, Prentice Hall Europe, ISBN 0-13-460643-4,
pp.352, 1996.

[5] Best, E., Devillers,R., Koutny,M.: Petri Nets,
Process Algebras and Concurrent Program-
ming Languages , Lecture on Petri Nets
II:Applications, LNCS , Advances in Petri Nets
(W.Reisig,G.Rozenberg Eds.), Springer , Berlin
1998, ISBN 3-540-65306-6,pp.1-84.

[6] Desel, J., Juhás, G., Lorenz, R.: Process Seman-
tics of Petri Nets over Partial Algebra, Proceedings
of ICATPN 2000, 21-st International Conference on
Application and Theory of Petri Nets, vol.1825 of
LNCS, pp.146-165, Springer-Verlag, 2000.

[7] Hudák, Š.: Reachability Analysis of Systems Based
on Petri Nets, Elfa s.r.o. Košice, ISBN 80-88964-07-
5, pp.272, 1999.

[8] Hudák, Š., Šimoňák, S.: APC - Algebra of Process
Components, Proceedings of EMES’03, Oradea, Fe-
lix Spa, Romania, May 2003, pp. 57-63, ISSN 1223
- 2106.

[9] Hudák Š., Šimoňák S., Korečko Š., N.Kovacs
A.: Formal Specifications and de/compositional ap-
proach to design and analysis of discrete systems,
Computer Science and Technology Research Survey,
Košice, Elfa, pp. 8-46, 2007.

[10] Mayr, R.: Combining Petri nets and PA-processes,
in Theoretical Aspects of Computer Software
(TACS’97), volume 1281 of Lecture Notes in Com-
puter Science, pages 547–561, Sendai, Japan, 1997.
Springer Verlag.

[11] Olderog, E.R.: Nets, Terms and Formulas, ISBN 0
521 40044 9, Cambridge University Press, 1991.

[12] Paige, R.F.: Formal Method Integration via Het-
erogeneous Notations, PhD Dissertation, November
1997.

[13] PNML–Petri Net Markup Language,
URL: http://www.informatik.hu-berlin.de/ top/pnml/

[14] PNML Framework, URL: http://www-
src.lip6.fr/logiciels/mars/PNML/

[15] Šimoňák, S., Hudák, Š., Korečko, Š.: ACP2PETRI:
a tool for FDT integration support, Proceedings of
8th International Conference EMES’05, Oradea, Fe-
lix Spa, Romania, 2005, pp. 122-127, ISSN 1223-
2106.

[16] Šimoňák, S.: Formal methods integration based on
Petri nets and process algebra transformations, PhD
Dissertation, DCI FEEI TU Košice, 2003. (In Slo-
vak)

[17] Starke, P.H.: Processes in Petri Nets, LNCS 117,
Fundamentals of Computation Theory, ISBN 3-540-
10854-8, Springer-Verlag, 1981.

[18] Petri Nets World (A Classification of PN),
URL: http://www.informatik.uni-
hamburg.de/TGI/PetriNets/classification/

Informatica 32 (2008) 261–274 261

Dynamic Slicing of Aspect-Oriented Programs

Durga Prasad Mohapatra
Department of CSE
National Institute of Technology
Rourkela-769008, India
E-mail: durga@nitrkl.ac.in

Madhusmita Sahu
Department of MCA
C V Raman Computer Academy
Bhubaneswar-752054,India
E-mail: madhu_sahu@yahoo.com

Rajeev Kumar and Rajib Mall
Department of CSE
Indian Institute of Technology
Kharagpur-721302, India
E-mail: {rkumar, rajib}@cse.iitkgp.ernet.in

Keywords: program slice, aspect-oriented programming, AspectJ, dynamic aspect-oriented dependence graph (DADG),
dynamic dependence slicing tool (DDST), trace file based dynamic slicing (TBDS) algorithm

Received: July 2, 2007

Program slicing is a decomposition technique which has many applications in various software engineering
activities such as program debugging, testing, maintenance etc. Aspect-oriented programming (AOP) is
a new programming paradigm that enables modular implementation of cross-cutting concerns such as
exception handling, security, synchronization, logging etc. The unique features of AOP such as join-point,
advice, aspect, introduction etc. pose difficulties for slicing of AOPs. We propose a dynamic slicing
algorithm for aspect-oriented programs. Our algorithm uses a dependence-based representation called
Dynamic Aspect-Oriented Dependence Graph (DADG) as the intermediate program representation. The
DADG is an arc-classified digraph which represents various dynamic dependences between the statements
of the aspect-oriented program. We have used a trace file to store the execution history of the program. We
have developed a tool called Dynamic Depenedence Slicing Tool (DDST) to implement our algorithm. We
have tested our algorithm on many programs for 40-50 runs. The resulting dynamic slice is precise as we
create a node in the DADG for each occurrence of the statement in the execution trace.

Povzetek: Opisana je modularna gradnja objektno orientiranih programov.

1 Introduction

The concept of a program slice was first introduced by
Weiser [26]. Program slicing [38] is a decomposition tech-
nique which extracts program statements related to a par-
ticular computation from a program. A program slice is
constructed with respect to a slicing criterion. A slicing
criterion is a tuple < s, v > where s is a statement in a
program and v is a variable used or defined at s. A pro-
gram slice can be static or dynamic. A static slice consists
of all statements of a program that might affect the value of
a variable at a program point of interest for every possible
inputs to the program. In contrast, a dynamic slice consists
of only those statements that actually affect the value of a
variable at a program point of interest for a particular set

of inputs to the program.
Aspect-oriented programming (AOP) is a new program-

ming paradigm that enables modular implementation of
cross-cutting concerns [17] such as exception handling, se-
curity, synchronization, logging. This concept was pro-
posed by Gregor Kiczales et al. [16]. Expressing such
cross-cutting concerns using standard language constructs
produces poorly structured code since these concerns are
tangled with the basic functionality of the code. This
increases the system complexity and makes maintenance
considerably more difficult.

AOP [2, 3] attempts to solve this problem by allowing
the programmer to develop cross-cutting concerns as full
stand-alone modules called aspects. The main idea behind
AOP is to construct a program by describing each concern

262 Informatica 32 (2008) 261–274 D.P. Mohapatra et al.

separately.
Aspect-oriented programming languages present unique

opportunities and problems for program analysis schemes.
For example, to perform program slicing on aspect-
oriented software, specific aspect-oriented features such as
join-point, advice, aspect, introduction must be handled ap-
propriately. Although these features provide great strengths
to model the cross-cutting concerns in an aspect-oriented
program, they introduce difficulties to analyze the program.

A major aim of any slicing technique is to realize as
small a slice with respect to a slicing criterion as possible
since smaller slices are found to be more useful for differ-
ent applications. Much of the literature on program slic-
ing is concerned with improving the algorithms for slicing
in terms of reducing the size of the slice and improving
the efficiency of the slicing algorithm. Now-a-days, many
programs are aspect-oriented. These aspect-oriented pro-
grams are quite large and complex. It is much difficult
to debug and test these products. Program slicing tech-
niques have been found to be useful in applications such
as program understanding, debugging, testing, software
maintenance and reverse engineering etc. [12, 27, 29, 31].
Particularly dynamic program slicing is used in interac-
tive applications such as debugging and testing of pro-
grams. Therefore the dynamic slicing techniques need to
be efficient. This requires to develop efficient slicing al-
gorithms as well as suitable intermediate representations
for aspect-oriented programs. Researchers have developed
many representations for procedural and object-oriented
programs [11, 21, 24, 27, 28, 29, 33, 39], but very few
work has been carried out for representation of aspect-
oriented programs [22, 25]. Due to the specific features
of aspect-oriented programming language, existing slicing
algorithms for procedural or object-oriented programming
languages cannot be applied directly to aspect-oriented
programs. Therefore, there is a pressing necessity to de-
vise suitable intermediate representations and efficient al-
gorithms for dynamic slicing of aspect-oriented programs.

With this motivation for developing techniques for dy-
namic slicing of aspect-oriented programs, we identify the
following objective. The main objective of our research
work is to develop an efficient dynamic slicing algorithm.
To address this broad objective, we identify the following
goals:

– to develop a suitable intermediate representation for
aspect-oriented programs on which the slicing algo-
rithm can be applied.

– to develop a dynamic slicing algorithm for aspect-
oriented programs, using the proposed intermediate
representation.

In this paper, we propose a new intermediate represen-
tation for aspect-oriented programs. We call this represen-
tation as Dynamic Aspect-Oriented Dependence Graph
(DADG). Then, we propose a dynamic slicing algorithm
for aspect-oriented programs. We have used a trace file

to store the execution history of the source code. So, we
have named our algorithm Trace file Based Dynamic Slic-
ing (TBDS) algorithm. Our algorithm computes precise
dynamic slices as we create a node in the DADG for each
occurrence of the statement in the execution trace.

The rest of the paper is organized as follows. In Sec-
tion 2, we discuss some related works. In Section 3, we
present a brief introduction to Aspect-Oriented Program-
ming (AOP). In Section 4, we describe some notions of
dynamic slices of aspect-oriented programs. Section 5
discusses the dynamic aspect-oriented dependence graph
(DADG) for aspect-oriented programs and also describes
the construction of DADG. In Section 6, we discuss the
computation of dynamic slices of aspect-oriented programs
using DADG. In Section 7, we present the implementation
details of our work. Section 8 concludes the paper.

2 Related work

Horwitz et al. [33] developed a system dependence graph
(SDG) as an intermediate program representation for pro-
cedural programs with multiple procedures. They proposed
a two-phase graph reachability algorithm on the SDG to
compute inter-procedural slice. The slice consists of the
union of vertices marked in both the phases.

Later, Larsen and Harrold [24] extended the SDG
of Horwitz et al. [33] to represent object-oriented pro-
grams. Their [24] extended SDG incorporates many
object-oriented features such as classes, objects, inheri-
tance, polymorphism etc. After constructing the SDG,
Larsen and Harrold [24] used the two-phase algorithm to
compute the static slice of an object-oriented program.
Later, Liang and Harrold [11] developed a more effi-
cient intermediate representation of object-oriented pro-
grams which is an extension to the SDG of Larsen and
Harrold [24]. Their [11] SDG represents objects that are
used as parameters or data members in other objects, the ef-
fects of polymorphism on parameters and parameter bind-
ings. The data members for different objects can be distin-
guished using this approach. Later many researchers have
extended the work on static slicing of object-oriented pro-
grams [11, 39]. But they [11, 39] have not considered the
aspect-oriented features.

Also dynamic slicing of OOPs have been addressed by
several researchers [21, 27, 28, 29]. Korel and Laski [7] in-
troduced the concept of dynamic program slicing. Agrawal
and Horgan [19] presented the first algorithm for finding
dynamic slices of procedural programs using dependence
graphs.

Zhao [21] extended the dynamic dependence graph
(DDG) of Agarwal and Horgan [18] for the representa-
tion of various dynamic dependences between statement
instances for a particular execution of an object-oriented
program. Zhao [21] named this graph dynamic object-
oriented dependence graph (DODG). He used a two-phase
algorithm on the DODG for the computation of dynamic

DYNAMIC SLICING OF ASPECT-ORIENTED PROGRAMS Informatica 32 (2008) 261–274 263

slices of object-oriented programs.
Song et al. [36] proposed a method to compute forward

dynamic slices of object-oriented programs using dynamic
object relationship diagram (DORD). They computed the
dynamic slices for each statement immediately after the
statement is executed. The dynamic slices of all executed
statements have been obtained after the execution of the
last statement.

Xu et al. [9] extended their earlier work [39] to dynam-
ically slice object-oriented programs. Their method uses
object program dependence graph (OPDG) and other static
information to reduce the information to be traced during
execution and computes dynamic slices combining static
dependence information and dynamic execution of the pro-
gram.

Wang et al. [37] proposed a new algorithm for dynamic
slicing of Java programs which operates on compressed
bytecode traces. According to their approach, first, the
bytecode stream corresponding to an execution trace of a
Java program is compactly represented. Then, a backward
traversal of the compressed program trace is performed to
compute data/control dependences on-the-fly. The slice is
updated as these dependences are encountered during trace
traversal.

Mohapatra et al. [29, 30] have developed edge-marking
and node-marking dynamic slicing techniques for object-
oriented programs. Their algorithms are based on mark-
ing and unmarking the edges (nodes) of the graph appro-
priately, as and when dependences arise and cease. Many
researchers [8, 21, 28, 31] have extended the work on dy-
namic slicing of object-oriented programs. But, none of
the researchers [8, 21, 28, 29, 30, 31] have considered the
aspect-oriented features.

Zhao [22] was the first to develop the aspect-oriented
system dependence graph (ASDG) to represent aspect-
oriented programs. The ASDG is constructed by com-
bining the SDG for non-aspect code, the aspect depen-
dence graph (ADG) for aspect code and some additional
dependence arcs used to connect the SDG and ADG. Then,
Zhao [22] used the two-phase slicing algorithm proposed
by Larsen and Harrold [24] to compute static slice of
aspect-oriented programs.

Braak [34] extended the ASDG proposed by Zhao [22,
23] to include inter-type declarations in the graph. Each
inter-type declaration was represented in the form of a field
or a method as a successor of the particular class. Then,
Braak [34] used the two-phase slicing algorithm of Hor-
witz et al. [33] to find the static slice of an aspect-oriented
program. Braak [34] has not addressed the dynamic slicing
aspects.

We have proposed an approach for computation of dy-
namic slice using a dependence graph based intermediate
representation called dynamic aspect-oriented dependence
graph (DADG). We have used a trace file to store the exe-
cution history of the aspect-oriented program. Our DADG
correctly represents the aspect-oriented features such as
pointcuts, advices etc. Also, weaving process is correctly

represented in the DADG. The TBDS algorithm computes
precise dynamic slices as we create separate vertices in the
DADG for each occurrence of the statement in the execu-
tion trace.

3 Aspect-oriented programming

In this section, we first discuss the basic concepts of aspect-
oriented programming. Then, we briefly describe As-
pectJ: an aspect-oriented programming language. Next, we
present some features of AspectJ.

3.1 Basic concepts

Gregor Kiczales et al. [16] introduced the concept of
Aspect-Oriented Programming (AOP) at Xerox Palo Alto
Research Center (PARC) in 1996. An aspect is an area of
concern that cuts across the structure of a program. Con-
cern is defined as some functionality or requirement nec-
essary in a system, which has been implemented in a code
structure [4, 6, 17, 35]. Examples of aspects are data stor-
age, user interface, platform-specific code, security, distri-
bution, logging, class structure, threading etc.

The strength of aspect-oriented programming is the en-
abling of a better separation of concerns, by allowing the
programmer to create cross-cutting concerns as program
modules. Cross-cutting concerns are those parts, or as-
pects, of the program that are scattered across multiple pro-
gram modules, and tangled with other modules in standard
design.

}
}

tx.rollback();
catch(Exception e){

systemLog.logOperation(OP_TRANSFER,fromAccount,toAccount,amount);
tx.commit();
toAccount.deposit(amount);
fromAccount.withdraw(amount);

try{
Transaction tx=database.newTransaction();

throw new InsufficientFundsException();
if (fromAccount.getBalance()<amount){

throw new NegativeTransferException();
if (amount<0){

throw new SecurityException();
if (!getCurrentUser().canPerform(OP_TRANSFER)){

void transfer(Account fromAccount, Account toAccount, int amount){

}

}

}

}

Figure 1: An example program

Let us consider the example program given in Figure 1.
The objective of this program is to transfer an amount from

264 Informatica 32 (2008) 261–274 D.P. Mohapatra et al.

one account to another in a banking application. In this ex-
ample, various cross-cutting concerns such as transactions,
security, logging etc. are tangled with the basic function-
ality (sometimes called as the business logic concern). If
there is a need to change the security considerations for
the application, then it would require a major effort since
security-related operations appear scattered across numer-
ous methods. This means that the cross-cutting concerns
do not get properly encapsulated in their own modules and
this increases the system complexity.

The goal of aspect-oriented programming (AOP) is to
make it possible to deal with cross-cutting aspects of a
system’s behavior as separately as possible. Although
the hierarchical modularity of object-oriented languages is
extremely useful, they are inherently unable to modular-
ize cross-cutting concerns in complex systems. Aspect-
oriented programming provides language mechanisms to
explicitly capture the cross-cutting structure.

To better support the expression of cross-cutting design
decisions, AOP uses a component language to describe the
basic functionality of the system and aspect languages to
describe the different cross-cutting properties. The com-
ponents and the aspects are then combined into a system
using an aspect weaver [10]. The aspect weaver makes it
possible for an advice to be activated at appropriate join
points during run-time. Thus, a source code is modified by
inserting aspect-specific statements at join points.

3.2 AspectJ: an aspect-oriented
programming language

Several different Aspect-oriented programming systems
have been built, including AML (Aspect Markup Lan-
guage), an environment for sparse matrix computation [20],
RG (Reverse Graphics), an environment for creating image
processing systems [5] etc. The most popular AOP lan-
guage is AspectJ. An AspectJ program is divided into two
parts: base code or non-aspect code and aspect code. The
base code includes classes, interfaces and other standard
Java constructs. The aspect code implements the cross-
cutting concerns in the program. Other aspect-oriented
frameworks include COOL (COOrdination Language) for
expressing synchronization concerns [13], RIDL (Remote
Invocation Data transfer Language) for expressing distribu-
tion concerns [13], JBOSS, Spring AOP, AspectWerkz [10,
15] etc.

AspectJ was created by Chris Maeda [16] at Xerox Palo
Alto Research Center (PARC). This is an aspect-oriented
extension to Java programming language. In other words,
we can say that AspectJ is compatible with current Java
platform [14]. There are four types of compatibility:

– Upward compatibility- all legal Java programs must
be legal AspectJ programs.

– Platform compatibility- all legal AspectJ programs
must run on standard Java virtual machines.

– Tool compatibility- it must be possible to extend ex-
isting tools to support AspectJ in a natural way; this
includes IDEs, documentation tools, and design tools.

– Programmer compatibility- Programming with As-
pectJ must feel like a natural extension of program-
ming with Java.

3.3 Features of AspectJ
AspectJ adds some new features to Java. These features
include join points, pointcut, advice, aspect, introduction
or inter-type declaration. We explain these features below.

– Join Points- These are well-defined points in the ex-
ecution of a program, such as, method call (a point
where method is called), method execution (a point
where method is invoked) and method reception join
points (a point where a method received a call, but this
method is not executed yet).

– Pointcut- This is a means of referring to collections
of join points and certain values at those join points.
AspectJ defines several primitive pointcut designators
that can identify all types of join points. For example,
in Figure 2, the pointcut factorialOperation at state-
ment 13 picks out join points i.e. the pointcut facto-
rialOperation picks out each call to the method facto-
rial() of an instance of the class TestFactorial, where
an int is being passed as an argument and it makes the
value of that argument to be available to the enclosing
advice or pointcut.

– Advice- It is a method-like construct which is used
to define cross-cutting behavior at join points. This
is used to define some code that is executed when a
pointcut is reached. Advice brings together a pointcut
(to pick out join points) and a body of code (to run
at each of those join points). There are three types of
advice in AspectJ: after, before, around.

(i) After- After advice on a particular join point runs
after the program proceeds with that join point.
For example, after advice on a method call join
point runs after the method body has run, just be-
fore control is returned to the caller. For exam-
ple, in Figure 2, the after advice at statement 16
runs just after each join point picked out by the
pointcut factorialOperation and before the con-
trol is returned to the calling method.

(ii) Before- Before advice runs as a join point is
reached, before the program proceeds with the
join point. For example, before advice on a
method call join point runs before the actual
method starts running, just after the arguments
to the method call are evaluated. For example,
in Figure 2, the before advice at statement 14
runs just before the join points picked out by the
pointcut factorialOperation.

DYNAMIC SLICING OF ASPECT-ORIENTED PROGRAMS Informatica 32 (2008) 261–274 265

(iii) Around- Around advice on a join point runs as
the join point is reached, and has explicit control
over whether the program proceeds with the join
point.

Additionally, there are two special cases of after ad-
vice: after returning and after throwing, correspond-
ing to the two ways a sub-computation can return
through a join point.

(i) After returning- After returning advice runs just
after each join point picked out by the pointcut,
but only if it returns normally. The return value
can be accessed. After the advice runs, the re-
turn value is returned. For example, in Figure 2,
the after returning advice at statement 16 runs
just after each join point picked out by the point-
cut factorialOperation, but only if it returns nor-
mally. The return value can be accessed and it is
named result in Figure 2 at statement 16. After
the advice runs, the return value is returned.

(ii) After throwing- After throwing advice runs just
after each join point picked out by the pointcut,
but only when it throws an exception. The ad-
vice re-raises the exception after it is done.

– Aspect- These are units of modular cross-cutting im-
plementations composed of pointcuts, advices, and or-
dinary JAVA member declarations. An aspect is a
cross-cutting type, defined by the aspect declaration.
Aspects are defined by aspect declarations, which
have a similar form of class declarations. For exam-
ple, in Figure 2, there is one aspect named Optimize-
FactorialAspect at statement 12.

– Introduction or Inter-Type Declaration- It allows an
aspect to add methods, fields or interfaces to existing
classes. It can be public or private. An introduction
declared as private can be referred or accessed only by
the code in the aspect that declared it. An introduction
declared as public can be accessed by any code.

– Pointcut Designator- It is a formula that specifies
the set of join points to which a piece of advice
is applicable. A pointcut designator identifies all
types of join points. A pointcut designator simply
matches certain join points at runtime. For example,
in Figure 2, the pointcut designator

call (long TestFactorial.factorial(int))

at statement 13 matches all method calls to fac-
torial from an instance of the class TestFactorial.

Pointcuts can be combined using logical operators
and (&&), or (‖) and not (!). For example, in
Figure 2, the compound pointcut designator

call (long TestFactorial.factorial(int)) && args(n)

at statement 13 refers to all method calls to fac-
torial() of an instance of TestFactorial, where
the argument of type int is passed to the method
factorial().

User-defined pointcut designators are defined with
pointcut declaration. For example, in Figure 2, the
declaration

public pointcut factorialOperation(int n):
call (long TestFactorial.factorial(int)) && args(n)

at statement 13 defines a new pointcut designa-
tor, factorialOperation, that specifies a call to the
method factorial() of an instance of TestFactorial and
the argument passed to the method to be of type int.

For example, Figure 2 shows an AspectJ program for
finding the factorial of a number. The program is divided
into two parts: the base code or non-aspect code contains
the class TestFactorial and the aspect code OptimizeFacto-
rialAspect contains the advices and pointcuts. Any AspectJ
implementation ensures that both the codes i.e., aspect code
and base code run together in a properly coordinated fash-
ion. Such type of process is called aspect weaving. The key
component for this process is aspect-weaver which makes
the applicable advices to run at the appropriate join points.

4 Dynamic slicing of aspect-oriented
programs

In this section, we present the basic concepts and the
definitions which will be used in our algorithm.

Definition 1 (Digraph): A digraph is an ordered
pair (V, A), where V is a finite set of elements called
vertices and A is a finite set of elements called edges and
A ⊆ V × V .

Definition 2 (Arc-classified digraph): An arc-classified
digraph is an n-tuple (V, A1, A2, . . . , An−1) such
that every (V, Ai), (i = 1, 2, . . . , n − 1) is a digraph and
Ai∩Aj = ∅ for i = 1, 2, . . . , n−1 and j = 1, 2, . . . , n−1
and i 6= j.
Definition 3 (Path): A path from vertex u to vertex v in a
digraph (V, A) is a sequence of vertices u, i1, i2, . . . , ik, v
in V such that (u, i1), (i1, i2), . . . , (ik, v) are edges in A.
Definition 4 (Flow graph): The flow graph of an aspect-
oriented program is a quadruple (V, A, Start, Stop)
where (V, A) is a digraph, Start ∈ V is a distinguished
node of in-degree 0 called the start node, Stop ∈ V is a
distinguished node of out-degree 0 called the stop node,
there is a path from Start to every other node in the graph,
and there is a path from every other node in the graph to
Stop.
Definition 5 (Control flow graph(CFG)): Let the set

266 Informatica 32 (2008) 261–274 D.P. Mohapatra et al.

Non−aspect Code (Base Code) Aspect Code

 }

 }

17: System.out.println("Getting the factorial for "+n);

16: after(int n) returning (long result): factorialOperation(n){

}

15: System.out.println("Seeking factorial for "+n);

14: before(int n): factorialOperation(n){

 call(long TestFactorial.factorial(int)) && args(n);

13: public pointcut factorialOperation(int n):

12: public aspect OptimizeFactorialAspect{

import java.util.*;

 }

 }

11: return p;

10: p=1;

}
 else

 }

9: n−−;

8: p=p*n;

7: while(n>0){

6: p=1;

5: if(n>0){

 long p;

4: public static long factorial(int n){

 }

3: System.out.println("Result: "+factorial(n)+"\n");

2: n=Integer.parseInt(args[0]);

1: public static void main(String[] args){

 private static int n;

public class TestFactorial{

import java.util.*;

Figure 2: An example AspectJ program

2 {

3 int x, y, prod;

9 ++ x; }

12 cout<< prod;

13 }

4 cin>> x;

7 while(x < 5) {

6 prod = 1;

5 cin>> y;

8 prod=prod*y;

11 prod = y;

1 main()

10 cout<< prod;

Figure 3: An example program

V represent the set of statements of a program P . The
control flow graph of the program P is the flow graph G
= (V1, A, Start, Stop) where V1 = V ∪ {Start, Stop}.
An edge (m,n) ∈ A indicates the possible flow of control
from the node m to the node n. Note that the existence of
an edge (x, y) in the control flow graph means that control
must transfer from x to y during program execution.
Figure 4 represents the CFG of the example program given
in Figure 3.

Definition 6 (Dominance): If x and y are two nodes
in a flow graph G then x dominates y iff every path from
Start to y passes through x. y post-dominates x iff every
path from x to Stop passes through y.

Let x and y be nodes in a flow graph G. Node x is said
to be immediate post-dominator of node y iff x is a post-
dominator of y, x 6= y and each post-dominator z 6= x of y

12 11

10
9 8

76541

Stop

Start

Figure 4: The CFG of the example program given in Fig-
ure 3

post-dominates x. The post-dominator tree of a flow graph
G is the tree that consists of the nodes of G, has the root
Stop, and has an edge (x, y) iff x is the immediate post-
dominator of y.

Consider the flow graph of the example program of Fig-
ure 3, which is given in Figure 4. In the flow graph, each
of the nodes 4, 5 and 6 dominates 7. Node 8 does not dom-
inate node 10. Node 10 post dominates each of the nodes
4, 5, 6, 7, 8 and 9. Node 9 post dominates node 8. Node 9
post dominates none of the nodes 4, 5, 6, 7, 10, 11 and 12.
Node 6 is the immediate post dominator of node 5. Node
10 is the immediate post dominator of node 7.
Definition 7 (Execution trace): An execution trace is a
path that has actually been executed for some input data.

For example, for the input data argv[0] = 4, the order
of execution of the statements of the program given in Fig-
ure 2 is 1, 2, 3, 13, 14, 15, 4, 5, 6, 7, 8, 9, 7, 8, 9, 7, 8, 9, 7,
8, 9, 7, 16, 17, 11. This execution trace is given in Figure 5.
Definition 8 (Def(var)): Let var be a variable in a class in

DYNAMIC SLICING OF ASPECT-ORIENTED PROGRAMS Informatica 32 (2008) 261–274 267

the program P . A vertex u of the DADG of P is said to be
a Def(var) vertex if u represents a definition (assignment)
statement that defines the variable var.

In the DADG given in Figure 6, vertices 6 and 8 are the
Def(p) vertices.
Definition 9 (DefSet(var)): The set DefSet(var) denotes
the set of all Def(var) vertices.

In the DADG given in Figure 6, DefSet(p)={6, 8}.
Definition 10 (Use(var)): Let var be a variable in a class
in the program P . A vertex u of the DADG of P is said
to be a Use(var) vertex if u represents a statement that uses
the variable var.

In the DADG given in Figure 6, vertices 8 and 11 are the
Use(p) vertices.
Definition 11 (UseSet(var)): The set UseSet(var) denotes
the set of all Use(var) vertices.

In the DADG given in Figure 6, UseSet(p)={8, 11}.

5 The dynamic aspect-oriented
dependence graph (DADG)

In this section, we describe the definition and construc-
tion of the dynamic aspect-oriented dependence graph
(DADG).

The DADG is an arc-classified digraph (V,A), where
V is the set of vertices that correspond to the statements
and predicates of the aspect-oriented programs, and A is
the set of arcs between vertices in V representing dynamic
dependence relationships that exist between statements. In
the DADG of an aspect-oriented program, following types
of dependence arcs may exist.

– control dependence arc

– data dependence arc

– weaving arc

Control dependences represent the control flow relation-
ships of a program i.e., the predicates on which a statement
or an expression depends during execution.
Data dependences represent the relevant data flow rela-
tionships of a program i.e., the flow of data between state-
ments and expressions.
For example, in the DADG given in Figure 6, there is a
data dependency between vertex 6 and 8, because vertex 6
is Def(p) vertex and vertex 8 is Use(p) vertex.
Weaving arcs reflect the joining of aspect code and non-
aspect code at appropriate join points.
For example, in Figure 6 there is an weaving arc from ver-
tex 13 to vertex 3 to connect vertex 13 to vertex 3 at the
corresponding join point because, there is a function call
at statement 3 and the corresponding pointcut at statement
13 captures that function call. Statement 14 represents a
before advice. This means that the advice is executed be-
fore control flows to the corresponding function i.e., to the
function factorial(). So, we add a weaving arc from ver-
tex 4 to vertex 15. Similarly, statement 16 represents an

after advice. This means that the advice is executed after
the function factorial() has been executed and before con-
trol flows to the calling function i.e., the function main().
That’s why we add a weaving arc from vertex 16 to vertex
7. After the execution of after advice at statement 17, con-
trol transfers to statement 11 where it returns a value i.e.,
the value of p to the calling function main(). So, a weaving
arc is added from vertex 11 to vertex 17.

Our construction of dynamic aspect-oriented depen-
dence graph of an aspect-oriented program is based on dy-
namic analysis of control flow and data flow of the pro-
gram. The DADG of the program in Figure 2 correspond-
ing to the execution trace in Figure 5 is given in Figure 6.
In this figure, circles represent program statements, dotted
lines represent data dependence arcs, solid lines represent
control dependence arcs and dark dashed lines represent
weaving arcs.

6 Computation of dynamic slices of
aspect-oriented programs

Dynamic slicing of aspect-oriented programs is similar to
that of object-oriented programs. However, due to the pres-
ence of pointcuts and advices, the tracing of dependences
becomes much more complex.

Here, we formally define some notions of dynamic slic-
ing of aspect-oriented programs. Let P be an aspect-
oriented program and G = (V,A) be the DADG of P . We
compute the dynamic slice of an aspect-oriented program
with respect to a slicing criterion.

– A slicing criterion for an aspect-oriented program is
of the form < p, q, e, n >, where p is a statement, q is
a variable used at p and e is an execution trace of the
program with input n.

– A dynamic slice of an aspect-oriented program for a
given slicing criterion < p, q, e, n > consists of all
the statements that have actually affected the value of
the variable q at statement p.

Let DSG be the dynamic slice of G on a given slicing
criterion < p, q, e, n >. Then, DSG is a subset of ver-
tices of G i.e., DSG(p, q, e, n) ⊆ V , such that for any
p′ ∈ V , p′ ∈ DSG(p, q, e, n) if and only if there exists
a path from p′ to p in G. Since we have used a trace file to
store the execution history of the aspect-oriented program,
we have named our algorithm Trace file Based Dynamic
Slicing (TBDS) algorithm for AOPs.

In this section, we present the TBDS algorithm in
pseudo-code form to compute the dynamic slice of an
aspect-oriented program.

Algorithm: TBDS algorithm

1. Creation of execution trace file: To create an execu-
tion trace file, do the following:

268 Informatica 32 (2008) 261–274 D.P. Mohapatra et al.

 public class TestFactorial
 private static int n;

13(1): public pointcut factorialOperation(int n): call(long TestFactorial.factorial(int)) && args(n);
14(1): before(int n): factorialOperation(n)
15(1): System.out.println("Seeking factorial for "+n);
4(1): public static long factorial(int n)

11(1): return p;
17(1): System.out.println("Getting the factorial for "+n);
16(1): after(int n) returning(long result): factorialOperation(n)
7(5): while(n>0)

8(4): p=p*n;
9(4): n−−;

7(4): while(n>0)
9(3): n−−;
8(3): p=p*n;
7(3): while(n>0)
9(2): n−−;
8(2): p=p*n;
7(2): while(n>0)
9(1): n−−;
8(1): p=p*n;
7(1): while(n>0)
6(1): p=1;
5(1): if(n>0)

3(1): System.out.println("Result: "+factorial(n)+"\n");
2(1): n=Integer.parseInt(args[0]);
1(1): public static void main(String[] args)

Figure 5: Execution trace of the program given in Figure 2 for argv[0] = 4

7

987

987

987

1716

1514

13

11

98
765

4

321

Control Dependence Arc

Data Dependence Arc

Weaving Arc

Starting Point

Figure 6: Dynamic aspect-oriented dependence graph for the execution trace given in Figure 5

DYNAMIC SLICING OF ASPECT-ORIENTED PROGRAMS Informatica 32 (2008) 261–274 269

(a) For a given input, execute the program and
store each statement s in the order of exe-
cution in a file after it has been executed.

(b) If the program contains loops, then store
each statement s inside the loop in the trace
file after each time it has been executed.

2. Construction of DADG: To Construct the DADG of
the aspect-oriented program P with respect to
the trace file, do the following:

(a) For each statement s in the trace file, create
a vertex in the DADG.

(b) For each occurrence of a statement s in the
trace file, create a separate vertex.

(c) Add all control dependence edges, data
dependence edges and weaving edges to
these vertices.

3. Computation of dynamic slice: To compute the dy-
namic slice over the DADG, do the following:

(a) Perform the breadth-first or depth-first graph
traversal over the DADG taking any vertex
corresponding to the statement of interest
as the starting point of traversal.

4. Mapping of the slice: To obtain the dynamic slice of
the aspect-oriented program P , do the following:

(a) Define a mapping function f :
DSG(p, q, e, n) → P .

(b) Map the resulting slice obtained in Step 3(a)
over the DADG to the source code P using
f since the slice may contain multiple occur-
rences of the same vertex.

Working of the algorithm: We illustrate the working of
the TBDS algorithm with the help of an example. Consider
the example AspectJ program given in Figure 2. Now, for
the input data argv[0] = 4, the program will execute the
statements 1, 2, 3, 13, 14, 15, 4, 5, 6, 7, 8, 9, 7, 8, 9, 7, 8, 9,
7, 8, 9, 7, 16, 17, 11 in order. These statements are stored
in a trace file. Figure 5 shows the corresponding execution
trace file. Then, the Dynamic Aspect-Oriented Dependence
Graph (DADG) is constructed with respect to this trace file
in accordance with the step 2 of the TBDS algorithm. Fig-
ure 6 shows the DADG of the example program given in
Figure 2 with respect to the trace file given in Figure 5.
Since, for the input data argv[0] = 4, the statements 8 and
9 are executed four times and statement 7 is executed five
times, separate vertices are created for each occurrence of
these statements.

Now, let us suppose that we have to compute the dy-
namic slice for the slicing criterion < 11, p >. Starting
from the vertex 11, we can perform either the breadth-
first search algorithm or depth-first search algorithm on the
DADG. The breadth-first search algorithm yields the ver-
tices 11, 17, 8, 16, 7, 8, 9, 7, 13, 5, 9, 7, 8, 9, 9, 3, 2, 4, 7, 8,

9, 1, 15, 7, 6, 14 and the depth-first search algorithm yields
the vertices 11, 8, 9, 9, 9, 4, 15, 14, 2, 1, 7, 5, 7, 7, 8, 8, 8,
6, 7, 17, 16, 13, 3, 7, 9. The traversed vertices are shown as
shaded vertices in Figure 6. Using the mapping function f ,
we can find the statements corresponding to these vertices.
This gives us the required dynamic slice which is shown in
rectangular boxes in Figure 7.

6.1 Complexity analysis
In the following, we discuss the space and time complexity
of our DADG algorithm.

Space complexity: Let P be an aspect-oriented pro-
gram and S be the length of execution of P . Each executed
statement will be represented by a single vertex in the
DADG. Thus, it can be stated that there are S number of
vertices in the DADG corresponding to all executed state-
ments of program P . Also, S numbers of statements are
stored in the execution trace file. So, the space complexity
of the trace file based algorithm is O(S).

Time complexity: Let P be an aspect-oriented pro-
gram and S be the length of execution of P . The total time
complexity is due to four components:

1. time required to store each executed statement in a
trace file which is O(S).

2. time required to construct the DADG with respect to
the execution trace file which is O(S).

3. time required to traverse the DADG and to reach at the
specified vertex which is O(S2).

4. time required to map the traversed vertices to source
program P which is O(S).

So, the time complexity of the trace file based algorithm is
O(S2).

7 Implementation
In this section, we briefly describe the implementation of
our algorithm. We have named our dynamic slicing tool dy-
namic dependence slicing tool (DDST) for aspect-oriented
programs. First, we present an overview of our slicing tool
and then, we discuss briefly the implementation of the slic-
ing tool. Next we present some experimental results and
then we compare our work with existing work.

7.1 Overview of DDST
The working of the slicing tool is schematically shown
in Figure 8. The arrows in the figure show the data-flow
among the different blocks of the tool. The blocks shown
in rectangular boxes represent executable components and
the blocks shown in ellipses represent passive components
of the slicing tool.

270 Informatica 32 (2008) 261–274 D.P. Mohapatra et al.

Non−aspect Code (Base Code) Aspect Code

 }

 }

17: System.out.println("Getting the factorial for "+n);

16: after(int n) returning (long result): factorialOperation(n){

}

15: System.out.println("Seeking factorial for "+n);

14: before(int n): factorialOperation(n){

 call(long TestFactorial.factorial(int)) && args(n);

13: public pointcut factorialOperation(int n):

12: public aspect OptimizeFactorialAspect{

import java.util.*;

 }

 }

11: return p;

10: p=1;

}
 else

 }

9: n−−;

8: p=p*n;

7: while(n>0){

6: p=1;

5: if(n>0){

 long p;

4: public static long factorial(int n){

 }

3: System.out.println("Result: "+factorial(n)+"\n");

2: n=Integer.parseInt(args[0]);

1: public static void main(String[] args){

 private static int n;

public class TestFactorial{

import java.util.*;

Figure 7: The dynamic slice of the program given in Figure 2 for the slicing criterion (11,p)

Lexical Analyzer

SlicerDynamic Slice

Parser and

Program Analysis

Semantic Analyzer

The Attributes

Program Code
Trace File

Execution
Execution Trace

Information (ASI)

DADG and DADG Constructor

Figure 8: Schematic diagram of the slicing tool

DYNAMIC SLICING OF ASPECT-ORIENTED PROGRAMS Informatica 32 (2008) 261–274 271

A program written in AspectJ is given as input to DDST.
The overall control for the slicer is done through a coor-
dinator with the help of a graphical user interface (GUI).
The coordinator takes user input from the GUI, interacts
with other relevant components to extract the desired re-
sults and returns the output back to the GUI.

The execution trace component creates an execution
trace file for a particular execution of the program. This
component takes the user input from the coordinator, stores
each executed statement for that input in a file and outputs
that file back to the coordinator. This file is called execution
trace file.

The lexical analyzer component reads the execution
trace file and breaks it into tokens for the grammar ex-
pressed in the parser. When the lexical analyzer compo-
nent encounters a useful token in the program, it returns
the token to the parser describing the type of encountered
token.

The parser and semantic analyzer component functions
as a state machine. The parser takes the token given by
the lexical analyzer and examines it using the grammatical
rules laid for the input programs. The semantic analyzer
component captures the following important information of
the program.

– For each vertex u of the program

– the lexical successor and predecessor vertices of u,

– the sets of variables defined and used at vertex u,

– the type of the vertex: assignment or test or method
call or return etc.

The lexical component, parser and semantic analyzer
component provide the necessary program analysis infor-
mation to the DADG constructor component. The DADG
constructor component first constructs the CFG and the
post-dominator tree of the program using the basic infor-
mation provided by the lexical and semantic analyzer com-
ponents. The inter-statement control dependences are cap-
tured using the CFG and the post-dominator tree. Then,
it constructs the DADG of the program with respect to the
trace file along with all the required information to compute
slices and stores it in appropriate data structures.

The slicer component traverses the DADG. It takes the
user input from the coordinator and outputs the computed
information back to the coordinator. The graphical user
interface (GUI) functions as a front end to the slicing tool.

7.2 Implementation of the slicing tool
We have implemented our algorithm in Java. We have used
the compiler writing tool ANTLR (Another Tool for Lan-
guage Recognition) [1, 32] for Lexical Analyzer, Parser
and Semantic Analyzer components of our slicer. ANTLR
is a tool that lets one define language grammars in EBNF
(Extended Backus-Naur Form) like notations. ANTLR is
more than just a grammar definition language. However,
the tools provided allow one to implement the ANTLR

Table 1: Encoding used for different types of edges of
DADG

Code Edge Type
0 No Edge
1 Control Dependence Edge

(True Case)
2 Control Dependence Edge

(False Case)
3 Data Dependence Edge

(Loop Independent Case)
4 Data Dependence Edge

(Loop Carried Case)
5 Weaving Edge

defined grammar by automatically generating lexers and
parsers in Java or other supported languages. ANTLR is
a language tool that provides a framework for construct-
ing recognizers, compilers, and translators from grammat-
ical descriptions containing programming languages such
as C++, Java, AspectJ etc. ANTLR is a LL(k) based recog-
nition tool.

The sample AspectJ program is executed for a given in-
put. The executed statements are stored in a trace file.
This trace file is given as input to the ANTLR program.
The lexer part of the ANTLR extracts program tokens and
stores the data in a data structure called statement_info.
The DADG of the AspectJ program is automatically con-
structed by taking input from the parser and semantic an-
alyzer component. For constructing the DADG, we have
used many flags such as if_flag to check whether the state-
ment is an if statement or not, while_flag to check whether
the statement is a while statement or not etc.

We have used an adjacency matrix dadg[][] to store the
DADG of the given AspectJ program P . This matrix is of
the following type:

typedef struct edge {
int exist, type;
} edge;

– The attribute exist has value 0 or 1.
dadg[i][j].exist is 1 if there is an edge
between node number i and j, otherwise 0.

– The data member type specifies the type of the edge.
The codes used for this are given in Table 1.

We store the following additional information along with
the DADG:

– The set Def(var) for each variable var in the aspect-
oriented program P .

– The set Use(var) for each variable var in the aspect-
oriented program P .

The sets Def(var) and Use(var) are stored using arrays.

272 Informatica 32 (2008) 261–274 D.P. Mohapatra et al.

7.3 Experimental results
With different slicing criteria, the algorithm has been tested
on many programs for 40-50 runs. The sample programs
contain loops and conditional statements. Table 2 sum-
marizes the average run-time requirements of the trace file
based algorithm for several programs. Since we have com-
puted the dynamic slices at different statements of a pro-
gram, we have calculated the average run-time require-
ments of our trace file based algorithm. The program sizes
are small since right now the tool accepts only a subset of
AspectJ constructs. However, the results indicate the over-
all trend of the performance of the trace file based algo-
rithm.

Table 2: Average runtime

Sl No. Prg. Size Trace file Based
(# stmts) Algorithm (in Sec.)

1 17 0.48
2 43 0.71
3 69 0.92
4 97 1.14
5 123 1.36
6 245 2.46
7 387 3.96
8 562 5.52

The results in Table 2 indicate that the run-time require-
ment for the trace file based algorithm increases gradu-
ally. This is due to the fact that separate vertices are cre-
ated in the DADG during run-time for different executions
of the same statement. This is followed by a depth-first
or breadth-first graph traversal on DADG to compute the
dynamic slice. Thus, average run-time requirement be-
comes high since considerable time is required to perform
the traversal on DADG. Furthermore, the algorithm uses a
trace file to store the execution history. The time required to
read the data from a trace file is significant and is added to
the average run-time while computing dynamic slice. All
these result in the increase of average run-time requirement
gradually.

7.4 Comparison with existing work
Very few work has been done on slicing of aspect-oriented
programs [22, 23]. Zhao [22] has proposed an intermediate
representation called Aspect-Oriented System Dependence
Graph (ASDG). The ASDG for the example program of
Figure 2 as proposed by Zhao [22] is shown in Figure 9.
In this ASDG, the pointcuts are not represented. But, our
DADG correctly represents the pointcuts.

Zhao and Rinard [23] developed an algorithm to con-
struct the SDG for aspect-oriented programs. Figure 10
shows the SDG of the program given in Figure 2 as pro-
posed by Zhao and Rinard [23]. But, the drawback of this

Control Dependence Edge

17

16

15

14

f1_inf1_in

f1_in

a1_in

11

98

1076

5

4

32

1

a1_in: n_in=n f1_in: n=n_in

Data Dependence Edge

Summary Edge

Call Edge / Parameter−in Edge / Parameter−out Edge

Weaving Edge

Figure 9: ASDG of the program given in Figure 2 as pro-
posed by Zhao [22]

SDG is that the weaving process is not represented cor-
rectly. For example, there should be a weaving edge be-
tween vertices 15 and 4, beacause, after the execution of
before advice at statement 14, the actual execution of the
method factorial() at statement 4 will be started. The use
of this SDG to compute dynamic slice results in missing
of some statements. So, we cannot use this approach to
compute dynamic slice of an aspect-oriented program cor-
rectly. Also, they [23] have not considered the dynamic
slicing aspects. But in our approach, we have considered
the weaving process by adding weaving edges at the ap-
propriate join points in the DADG. Again our algorithm
computes precise dynamic slices.

8 Conclusion

We proposed an algorithm for dynamic slicing of aspect-
oriented programs. First, we have constructed a
dependence-based intermediate representation for aspect-
oriented programs. We named this representation Dynamic
Aspect-Oriented Dependence Graph (DADG). Then, we
have developed an algorithm to compute dynamic slices
of AOPs using the DADG. We have used a trace file to
store the execution history. So, we have named our algo-
rithm Trace file Based Dynamic Slicing (TBDS) algorithm
for AOPs. The resulting dynamic slice in our approach is
precise since we create a node in the DADG for each oc-
currence of a statement in the execution trace. We have de-
veloped a tool called Dynamic Depenedence Slicing Tool
(DDST) to implement our algorithm.

Our algorithm can be extended to compute dynamic

DYNAMIC SLICING OF ASPECT-ORIENTED PROGRAMS Informatica 32 (2008) 261–274 273

Control Dependence Edge

17

16

15

14

13

f1_inf1_in

a1_in

f1_in

a1_in

11

98

1076

5

4

32

1

a1_in: n_in=n f1_in: n=n_in

Data Dependence Edge

Summary Edge

Call Edge / Parameter−in Edge / Parameter−out Edge

Weaving Edge

Figure 10: SDG of the program given in Figure 2 as pro-
posed by Zhao and Rinard [23]

slices of concurrent AOPs and distributed AOPs running
on different machines connected through a network. The
algorithm can also be extended to compute conditioned
slices with respect to a given condition. Although we have
presented the approach for AspectJ, this approach can be
easily extended to other aspect-oriented languages such as
AspectWerkz, AML, RIDL etc. Our tool can be used to
develop efficient debuggers and test drivers for large scale
aspect-oriented programs.

References
[1] Antlr. www.antlr.org.

[2] Aspect-Oriented Programming. www.wikipedia.org.

[3] AspectJ. www.eclipse.org/aspectj.

[4] Introduction to AOP. www.media.wiley.com.

[5] Mendhekar A., Kiczales G., and Lamping J. RG: A
Case-Study for Aspect-Oriented Programming. Tech-
nical report, Xerox Palo Alto Research Center, Febru-
ary 1997.

[6] Dufour B., Goard C., Hendren L., Verbrugge C.,
Moor O. D., and Sittampalam G. Measuring the Dy-
namic Behaviour of AspectJ Programs. Technical re-
port, McGill University, School of Computer Science,
Sable Research Group and Oxford University, Com-
puting Laboratory, Programming Tools Group, March
2004.

[7] Korel B. and Laski J. Dynamic Program Slicing. In-
formation Processing Letters, 29(3):155–163, 1988.

[8] Mund G. B., Mall R., and Sarkar S. Computation
of Interprocedural Dynamic Program Slices. Journal
of Information and Software Technology, 45(8):499–
512, June 2003.

[9] Xu B. and Chen Z. Dynamic Slicing Object-Oriented
Programs for Debugging. In Proceedings of 2nd
IEEE International Workshop on Source Code Anal-
ysis amd Manipulation (SCAM’02), pages 115–122,
2002.

[10] Murphy G. C., Walker R. J., and Baniassad E. L. A.
Evaluating Emerging Software Development Tech-
nologies: Lessons Learned from Assessing Aspect-
Oriented Programming. IEEE Transactions on Soft-
ware Engineering, 25(4):438–455, July-Aug 1999.

[11] Liang D. and Harrold M. J. Slicing Objects Using
System Dependence Graph. In Proceedings of the
International Conference on Software Maintenance,
IEEE, pages 358–367, November 1998.

[12] Tip F. A Survey of Program Slicing Techniques. Jour-
nal of Programming Languages, 3(3):121–189, 1995.

[13] Cugola G., Ghezzi C., and Monga M. Coding Dif-
ferent Design Paradigms for Distributed Applications
with Aspect-Oriented Programming. In Proceedings
of Workshop on System Distribution: Algorithm, Ar-
chitecture and Language, WSDAAL. Italy, 1999.

[14] Kiczales G., Hilsdale E., Hugunin J., Kersten M.,
Palm J., and Griswold W. G. An Overview of As-
pectJ. In Proceedings of the European Conference on
Object-Oriented Programming. Budapest,Hungary,
18-22 June 2001.

[15] Kiczales G., Hilsdale E., Hugunin J., Kersten M.,
Palm J., and Grisworld W. G. Report on An Overview
of Aspectj. Notes by Tai Hu, CMSC631 Fall 2002.

[16] Kiczales G., Irwin J., Lamping J., Loingtier J. M.,
Lopes C. V., Maeda C., and Mendhekar A. Aspect-
Oriented Programming. In Proceedings of the Eu-
ropean Conference on Object-Oriented Programming
(ECOOP), Finland, June 1997. Springer-Verlag.

[17] Kiczales G. and Mezini M. Aspect-Oriented Pro-
gramming and Modular Reasoning. In Proceedings
of the 27th International Conference on Software En-
gineering, ICSE’05, May 2005.

[18] Agarwal H. and Horgan J. R. Dynamic Program Slic-
ing. In ACM SIGPLAN Notices, Proceedings of the
ACM SIGPLAN 1990 conference on Programming
language design and implementation PLDIŠ90, vol-
ume 25 of 6, pages 246–256, June 1990.

274 Informatica 32 (2008) 261–274 D.P. Mohapatra et al.

[19] Agrawal H. and Horgan J. R. Dynamic Program Slic-
ing. In Proceedings of the ACM SIGPLAN’90 Con-
ference on Programming Languages Design and Im-
plementation, SIGPLAN Notices, Analysis and Verifi-
cation, volume 25, pages 246–256, 1990.

[20] Irwin J., Loingtier J. M., Gilbert J. R., Kicza-
les G., Lamping J., Mendhekar A., and Shpeisman
T. Aspect-Oriented Programming of Sparse Matrix
Code. In Proceedings of International Scientific Com-
puting in Object-Oriented Parallel Environments (IS-
COPE), Marina del Rey, CA. Springer-Verlag, De-
cember 1997.

[21] Zhao J. Dynamic Slicing of Object-Oriented Pro-
grams. Technical report, Information Processing So-
ciety of Japan, May 1998.

[22] Zhao J. Slicing Aspect-Oriented Software. In Pro-
ceedings of 10th International Workshop on Program
Comprehension, pages 251–260, June 2002.

[23] Zhao J. and Rinard M. System Dependence Graph
Construction for Aspect-Oriented Programs. Tech-
nical report, Laboratory for Computer Science, Mas-
sachusetts Institute of Technology, USA, March
2003.

[24] Larsen L. and Harrold M. J. Slicing Object-Oriented
Software. In Proceedings of 18th International Con-
ference on Software Engineering, pages 495–505,
March 1996.

[25] Sahu M. and Mohapatra D. P. A Node Marking Tech-
nique for Dynamic Slicing of Aspect-Oriented Pro-
grams. In Proceedings of the 10th International Con-
ference on Information Technology (ICIT’07), pages
155–160, 2007.

[26] Weiser M. Programmers Use Slices When Debug-
ging. Communications of the ACM, 25(7):446–452,
July 1982.

[27] Mohapatra D. P. Dynamic Slicing of Object-Oriented
Programs. PhD thesis, Indian Institute of Technology,
Kharagpur, May 2005.

[28] Mohapatra D. P., Mall R., and Kumar R. Dynamic
Slicing of Concurrent Object-Oriented Programs. In
Proceedings of International Conference on Informa-
tion Technology: Progresses and Challenges (ITPC),
pages 283–290. Kathamandu, May 2003.

[29] Mohapatra D. P., Mall R., and Kumar R. An Edge
Marking Technique for Dynamic Slicing of Object-
Oriented Programs. In Proceedings of the 28th An-
nual International Computer Software and Applica-
tions Conference (COMPSAC’04), 2004.

[30] Mohapatra D. P., Mall R., and Kumar R. A Node-
Marking Technique for Dynamic Slicing of Object-
Oriented Programs. In Proceedings of Conference on
Software Design and Architecture (SODA’04), 2004.

[31] Mohapatra D. P., Mall R., and Kumar R. An
Overview of Slicing Techniques for Object-Oriented
Programs. Informatica, 30:253–277, 2006.

[32] Levine J. R. Mason T. and Brown D. Lex and Yacc.
O’REILLY, 3rd edition, 2002.

[33] Horwitz S., Reps T., and Binkley D. Inter-Procedural
Slicing Using Dependence Graphs. ACM Trans-
actions on Programming Languages and Systems,
12(1):26–60, January 1990.

[34] Braak T. T. Extending Program Slicing in Aspect-
Oriented Programming with Inter-Type Declarations.
5th TSConIT Program, June 2006.

[35] Ishio T., Kusumoto S., and Inoue K. Program Slicing
Tool for Effective Software Evolution Using Aspect-
Oriented Technique. In Proceedings of Sixth Interna-
tional Workshop on Principles of Software Evolution,
pages 3–12. IEEE Press, September 2003.

[36] Song Y. T. and Huynh D. T. Forward Dynamic
Object-Oriented Program Slicing. In Proceedings of
IEEE Symposium on Application Specific Systems and
Software Engineering and Technology (ASSET’99),
pages 230–237, Richardson, TX, USA, 03/24/1999-
03/27/1999 1999.

[37] Wang T. and Roychoudhury A. Using Compressed
Bytecode Traces for Slicing Java Programs. In Pro-
ceedings of 26th International Conference on Soft-
ware Engineering (ICSE’04), pages 512–521, 23-28
May 2004.

[38] Binkley D. W. and Gallagher K. B. Program Slicing.
Advances in Computers, 43, 1996. Academic Press,
San Diego, CA.

[39] Chen Z. and Xu B. Slicing Object-Oriented Java Pro-
grams. ACM SIGPLAN Notices, 36(4), April 2001.

 Informatica 32 (2008) 275–281 275

Recognition of On-line Handwritten Arabic Digits Using Structural

Features and Transition Network

Al-Taani Ahmad

Department of Computer Sciences, Yarmouk University, Jordan

E-mail: ahmadta@yu.edu.jo

Hammad Maen

Department of Computer Sciences, the Hashemite University, Jordan

E-mail: maen@hu.edu.jo

Keywords: on-line digit recognition, pattern recognition, feature extraction, structural primitives, document

processing, transition networks

Received: September 12, 2006

In this paper, an efficient structural approach for recognizing on-line handwritten digits is proposed.

After reading the digit from the user, the coordinates (x, y) of the pixels representing the drawn digit are

used for calculating and normalizing slope values of these coordinates. Successive slope values are then

used to record the change of direction which used to estimate the slope. Based on the changing of signs

of the slope values, the primitives are identified and extracted. These primitives represent a specific

string which is a production of a certain grammar. Each digit can be described by a specific string. In

order to identify the digit we have to determine to which grammar the string belongs. A Finite

Transition Network which contains the grammars of the digits is used to match the primitives’ string

with the corresponding digit to identify the digit. Finally, if there is any ambiguity, it will be resolved.

The proposed method is tested on a sample of 3000 digits written by 100 different persons; each person

wrote the 10 digits three times each. The method achieved accuracy of about 95% on the sample test.

Experiments showed that this technique is flexible and can achieve high recognition accuracy for the

shapes of the digits represented in this work.

Povzetek: V prispevku je opisana metoda prepoznavanja arabskih črk.

1 Introduction
In areas of automatic document analysis and recognition,

the correct interpretation of digits is very important.

Automatic recognition of on-line handwriting has a

variety of applications at the interface between man and

machine.

The performance of any system for handwriting

recognition can be evaluated by several factors, such as

size of the alphabet, independence of the writing style,

and speed of recognition.

Automatic recognition of handwritten digits is

difficult due to several reasons, including different

writing styles of different persons, different writing

devices, and the context of the digit. This leads to digits

of different sizes and skews, and strokes that vary in

width and shape.

Researchers in this field have proposed different

approaches, such as statistical, structural, and neural

network approaches [1, 2]. The main primitives that form

digits are line segments and curves. Different

arrangements of these primitives form different digits. To

recognize a digit, we should first determine the structural

relationships between the features make up the digit.

The syntactic and structural approaches require

efficient extraction of primitives [3-5].

In this study, we propose an efficient approach for

extracting features for handwritten digits recognition.

First, we will review some related work. After

introducing the Normalization and slope estimation

method used in this paper, we will discuss the feature

extraction algorithm used to extract the primary and

secondary features. Then, we will give an overview of

the proposed recognition approach. We will also

illustrate how to resolve ambiguities in some digits.

Finally, we will present and discuss the experimental

results and draw some conclusions.

2 Previous works
The problem of handwriting recognition has been studied

for decades and many methods have been developed.

Verma [6] proposed a contour code feature in

conjunction with a rule based segmentation for cursive

handwriting recognition. A heuristic segmentation

algorithm is used to segment each word. Then the

segmentation points are passed through the rule-based

module to discard the incorrect segmentation points and

include any missing segmentation points.

You et al. [7] presented an approach for

segmentation of handwritten touching numeral strings.

They designed a neural network to deal with various

types of touching observed frequently in numeral strings.

276 Informatica 32 (2008) 275–281 A.-T. Ahmad et al.

A numeral string image is split into a number of line

segments while stroke extraction is being performed and

the segments are represented with straight lines.

Segmentation points are located using the neural network

by interpreting the features collected from the primitives.

Olszewski [8] proposed a recognition approach that

uses syntactic grammars to discriminate among digits for

extracting shape-based or structural features and

performing classification without relying on domain

knowledge. This system employs a statistical

classification technique to perform discrimination based

on structural features is a natural solution. A set of shape-

based features is suggested as the foundation for the

development of a suite of structure detectors to perform

generalized feature extraction for pattern recognition in

time-series data.

Chan et al. [9] proposed a syntactic approach to

structural analysis of on-line handwritten mathematical

expressions. The authors used definite clause grammar

(DCG) to define a set of replacement rules for parsing

mathematical expressions. They also proposed some

methods to increase the efficiency of the parsing process.

The authors tested the proposed system on some

commonly seen mathematical expressions and they

claimed that their method has achieved satisfactory

results, making mathematical expression recognition

more flexible for real-world applications.

Chan et al. [10] discussed a structural approach for

recognizing on-line handwriting. The recognition process

starts when getting a sequence of points from the user

and then by using these points to extract the structural

primitives. These primitives include different types of

line segments and curves. The authors demonstrated their

approach on 62 character classes (digits, uppercase and

lowercase letters). Each class has 150 different entries.

They stated that experimental results showed that the

recognition rates were 98.60% for digits, 98.49% for

uppercase letters, 97.44% for lowercase letters, and

97.40% for the combined set.

Amin [11] reviewed the state of Arabic character

recognition research throughout the last two decades.

The author summarized all the work accomplished in the

past two decades in off-line systems in an attempt to pin-

out the different areas that need to be tackled.

Behnke et al. [12, 13] proposed a case study on the

combination of classifiers for the recognition of

handwritten digits. Four different classifiers are used and

evaluated; Wavelet-Preprocessing Classifier, Structural

Classifier, Neural Networks Classifier, and Combined

Classifier.

3 Overview of the proposed system

3.1 Normalization and slope estimation

The user draws the digit on a special window using a

digitizer (or mouse). Then the coordinates (x, y) of the

pixels representing the drawn digit are saved on a file.

These coordinate values are used for calculating and

normalizing slope values. Successive slope values are

then used to record the change of direction which used to

estimate the slope [14].

The signs of the slope values (+ and -), the zero

values, and the infinity values are saved and used in the

feature extraction step. Figure 1 shows an example, the

representation of the digit 2. Then, all primitives

representing each digit are extracted. These primitives

are identified by locating break points in the digit. Two

types of break points are identified: Primary Break Points

(PBP): slope values of infinity (∞) and Secondary Break

Points (SBP): slope values of zero. The feature extraction

process depends on the change of the slope signs around

these break points. Infinity breakpoint is considered to be

primary breakpoint since all primary features (Figure 3)

needed for recognition have a slope value of infinity, and

all the secondary features (Figure 5) have a slope of zero.

After the slope signs and values are computed, these

values are normalized. The purpose of this step is to

eliminate any distortion that might occur during the

drawing process and to ease the primitive identification

1 2 3

V1
V2

V2

4
-

-

0

-

∞

+

∞

-

0 0

+

Figure 1: Representation of the digit 2

RECOGNITION OF ON-LINE HANDWRITTEN... Informatica 32 (2008) 275–281 277

process and guarantee accurate identification. Two steps

of normalization are done:

1. Removing redundant break points: Eliminating

adjacent reference points of the same type, except

the first one. This step is required to record the

change of the signs; only one break point is

needed.

2. A threshold value is used to determine the distance

(number of slope value signs) between any two

successive break points of the same type.

Figure 2 shows an example of these two steps for the

digit 1. In step 1, the adjacent break points are removed,

then in step 2 the threshold value was used to remove

more redundant break points since the distance is less

than the threshold value, e.g. the slope values between -

0.1 and +0.1 is saved as zero. The result is only one

break point with two different slope sings before and

after it. This result will be used in the primitive

identification process.

a b c d e f

Figure 3: Primary Primitives

Final representation

In addition to the signs of the slope values and break

points, the X and the Y positions for the middle pixel in

which its neighbors (from both sides) used to calculate

the slope. So the slope value is saved with its X and Y

positions. Also, the sign of ∆Y i.e. (Y2 – Y1) is used to

determine the direction of writing or drawing (upward or

downward). If ∆Y > 0 and the reference point (0, 0) is

located on the top left corner, then the directing of

writing is downward, otherwise the directing of writing is

upward. The final representation of the digit is

represented as a list of vectors V1, V2, ... , Vn; each

vector V contains the following data: (slope value (sign

or break point), Y position, X position, ∆Y sign) [15].

3.2 Extracting primary primitives

The final representation of the digit is used to extract

primary primitives [16]. Figure 3 shows these primitives

(a, b, c, d, e, or f). These primitives are called primary

primitives because the primary break points (PBP) are

used to identify them.

To extract the primitives we use the following algorithm:

For each PBP do:

IF the slope sign before it is (+) and after it is (-)

then the primitive is 'a'.

Else if the slope sign before it is (-) and after it is (+)

then the primitive is 'b'

Else if the successive slope signs before it is (+) and

end with SPB then the primitive is d'.

Else if the successive slope signs after it is (-) and

end with SPB then the primitive is 'e'.

Else if the successive slope signs after it is (+) and

end with SPB then the primitive is 'c'.

Figure 4 explains this step for the digit 2. Assume that

∞

∞

∞

-

-

∞

∞

∞

∞

Step 1

∞

∞

Step 2

Figure 2: Removing Redundant Break Points

index(PBP1) -1

+

-

0

-

∞

+

-

0

+

∞

+

PBP1

PBP2

index(PBP1) +1

a

Figure 4: Signs and Break Points for the digit 2

 c ' d ' e '

SBP

- +

SBP

SBP

-

- -

-

-
+

+

Figure 6: Identification process

278 Informatica 32 (2008) 275–281 A.-T. Ahmad et al.

the user draw the digit downward. In this case, ∆Y is

greater than zero for all points, so the algorithm proceeds

as follows:

1. Take the first PBP1.

2. Now, primitive "a" is recognized.

3. Find the next PBP.

4. Take the next PBP (PBP2).

5. Now, primitive "b" is recognized.

6. No More PBP, end.

Now the vector contains the primitives "ab". If the user

draws the digit from bottom to top, the vector will

contain the primitives "ba". We need also to extract

starting and ending points for the actual curves drawn

that represented by primitives "a" and "b". This step is

necessary to resolve ambiguity which will be explained

in section 3.6. Each digit has different patterns which

captured by the set of primitives that are described in

Figure 3.

After feature extraction process, we need to identify

these features. The primitives which are extracted in the

previous phases represent a certain string which is a

production of a certain grammar.

3.3 Extracting secondary primitives

After the process of extracting primary primitives

finishes, another extracting process begins to identify

another category of primitives called Secondary

Primitives. Secondary Break Points (SBP), the zero

values, and the slope signs around them are used to

identify these primitives which shown in Figure 5. For

example, the Secondary Primitive "c' " is the same as the

primary primitive "c" but here there is no PBP and the

primitive makes acute angle with SBP.

c' d' e'

Figure 5: Secondary Primitives

To extract these primitives we use the following

algorithm (Figure 6):

FOR each SBP that is not part of any primary

primitive:

IF the slope signs after it are (-) and make lower

acute angle then the primitive is "c’".

Else, if the slope signs after it are (+) and make lower

acute angle then the primitive is "e"’.

Else, if the slope signs before it are (+) and make

upper acute angle then the primitive is "d’".

3.4 Sorting primitives

At this stage, the primitives' vector contains primary and

secondary primitives. The order of these primitives

depends on the drawing style. For example, if the

drawing style was downward (when drawing digit 2)

then the primitives' vector will contain "ab", on the other

hand if the drawing style was upward, it would contain

"ba". This is confusing and increases the number of

patterns for the digit. The order is very important in

translating the primitives into digits. So we need a

standard order to be used in sorting all primitives.

The order of the identified primitives must be

independent from the drawing style and from the order of

drawing the primitives. The standard order used here is

the Y position for the break points; they are sorted in

increasing order. After collecting all primitives, they are

reordered according to the Y position for the break points

that used to identify them. When two break points have

the same Y position the order is based on the order of

drawing. Indeed this is not a problem, because each

character has many patterns, as we will see, to deal with

such problems.

3.5 Identifying the digit

Each digit has different patterns which captured by the

set of primitives, these patterns are shown in Figure 7.

These primitives represent a specific string which is a

production of a certain grammar. Each digit can be

described by a specific string. In order to identify the

digit we have to determine to which grammar the string

belongs. A transition network has been used to match the

primitives’ string with corresponding digit. This network

is shown in Figure 8.

3.6 Distinguish ambiguous digits

As we can see in Figure 8, there are multiple digits which

have the same string of primitives, for example the string

"ab" is common for digits 0 and 2. In this phase this

ambiguity is removed, and more constrains on some

digits are applied to guarantee the correct result. The key

elements, that help us in resolving this ambiguity, are the

starting and ending points, x-y coordinates, of the actual

curves representing primitives "a" and "b". This process

is done in phase (section) 3.2. Figures 9 and 10 show

these points.

3.6.1 Ambiguity in "ab"

From Figure 8 we can see that the digits 0 and 2 both

have one string "ba" which is one of their shapes. Now,

the question is how this ambiguity can be distinguished?

Assume that, as in Figure 9:

• (a1) is the x-y coordinates for the starting point of

curve a.

• (a2) is the x-y coordinates for the ending point of

curve a

• (b1) is the x-y coordinates for the starting point of

curve b

• (b2) is the x-y coordinates for the ending point of

curve b.

By using these definitions, we can easily distinguish

between 2 and 0. Figure 10 shows the distinguishing

criteria between digits 2 and 0.

RECOGNITION OF ON-LINE HANDWRITTEN... Informatica 32 (2008) 275–281 279

3.6.2 Ambiguity in "ba"

As we can see in Figure 8 the production string “ba"

gives us the digits 0, 5, 6, and 9. The same definitions

described in the above, in “ab”, are used here. The

process is more complicated since we have 4 digits. The

distinguishing criteria are described in Figure 11. The

digit 2 can be easily distinguished by checking the point

b1 if it above a1 or not. Now, to distinguish the three

remaining digits we use the distance between the ending

points of the drawing curves.

4 Experimental results and

discussions
We used a digitizer with special software with a 1.6

MHZ PC. One hundred different persons tested the

program. Each one of them drew all the numbers 3 times.

So, for each number the program attempts to recognize it

300 times. As a result, there is only one possible outcome

in the recognition process: correct or incorrect. We

summarized the testing result for all digits in Figure 12.

We can see that the system ability to recognize the

drawing shape, shown in Figure 7, correctly is about

95%. There are 5% incorrect results, these results include

both results; cannot identifying the drawing or

identifying it incorrectly.

From the testing process we noticed the following

important remarks:

1. The drawing speed may affect on the recognition

process. If the user draws very quickly, the system

might not capture all the input pixels representing

the digit, i.e. the drawing must be connected, so the

user has to draw the digit as one connected line.

Only the digits 4 and 7 can be disconnected because

Figure 7: Possible handwritten patterns

 b1

a

b

b2 a2

a1

Figure 8: Transition Network Figure 9: Ending Points

280 Informatica 32 (2008) 275–281 A.-T. Ahmad et al.

we included the suitable patterns to deal with the

disconnected line in 4 and 7.

2. The accuracy rate for digits 6 and 9 is quite low.

This is because they have the same patterns, i.e. they

have the same production string "ba" (see Figure

11).

3. The proposed system works only on Arabic

digits. We did not consider non-digits like letters and

special characters. This task is left for future work

It can be noticed that the accuracy of the proposed

approach is lower than the accuracy of Chan et al. [10]

work in which they have achieved a recognition rate of

98.60%. The accuracy of the system depends on many

factors like whether there is noise in the test data, if the

digit is poorly written, deliberately written in some

strange and unusual way, or with zig-zag line segments.

We should take also into account that the writing process

itself is subjective and depends on the person writing

style. If the test data are carefully selected then the

system could give higher accuracy rate.

Despite these factors our approach has the following

advantages:

b1 is above a2 and above the PBP of a

b a

b1(x,y)

b2(x,y)

a1(x,y)

a2(x,y)

b

a

b2(x,y)

b1 is below a2 and below the PBP of a

a2(x,y)

b1(x,y)

a1(x,y)

Figure 10: Resolving ambiguity in "ab"

b

a b
a

b

a a

b1 is above both a1 and a2

b

b
a b

a

b

a
b

a

Distance (threshold value) between

b2 and a2

a1 is above b2

Distance (threshold value) between

b1 and a1

Figure 11: Resolving ambiguity in "ba"

Digit Correct Percent

1 288/300 0.96

2 290/300 0.97

3 289/300 0.96

4 288/300 0.96

5 285/300 0.95

6 274/300 0.91

7 287/300 0.96

0.88

0.90

0.92

0.94

0.96

0.98

1 2 3 4 5 6 7 8 9 10

Accuracy

0

Figure 12: Test Results

RECOGNITION OF ON-LINE HANDWRITTEN... Informatica 32 (2008) 275–281 281

1. In the proposed approach, we used shape-based

features like curve, line, dot ... etc. together with a

flexible Transition Network Grammar in the

recognition process. Our experiment demonstrated

that the use of shape-based features achieve fairly

good recognition results since these features are used

by people visually to recognize digits. Also, we used

Transition Network since it works in the same

manner as the human information processing system

does which reflects one of our main objectives in

this work, to design an intelligent agent which

behaves rationally like humans.

2. The proposed approach can be modified to work on

letters and other characters.

3. The proposed approach is unsupervised, i.e. training

is not necessary.

5 Conclusions and future work
A new online structural pattern recognition approach

is discussed. This approach recognizes the handwritten

digits; the primitives are determined by identifying the

changes in the slope’s signs around the zero and the

infinity values (break points). This technique is

independent of the type of drawing (upward or

downward). A special grammar has been used to match

the string of primitives to the corresponding digit. The

method is tested on an on-line dataset representing the

digits 0-9 collected from 100 users. On the average, the

recognition rate was about 95%. Future work considers

testing the method on a larger data set to improve the

effectiveness of the method, since we get most of the

writing variations of the digits by different users.

The proposed method will be modified to deal with

Arabic handwritten characters. In addition, the next

important work is to add additional constraints on the

primitives, for example the average length of one

primitive according to another and do the primitives

connected correctly or not. These constrains can

guarantee an accurate results and do not directly match

the resulting string of primitives to its corresponding

digit unless the primitives form the digit correctly, one

important note here is that, more constraints may reduce

the probability of recognition

References
[1] C. C. Tappert, C. Y. Suen, and T. Wakahara. The

state of the art in on-line handwriting recognition.

IEEE Trans. On Pattern Analysis and Machine

Intelligence, 12 (8), pp. 787-808, 1990.

[2] R. G. Casey and E. Lecolinet. Strategies in

character segmentation: A survey. Proceedings of

International Conference on Document Analysis

and Recognition, pp. 1028-1033, 1995.

[3] K. S. Fu. Syntactic Pattern Recognition and

Applications. Prentice-Hall, Englewood Cliffs, NJ,

1982.

[4] T. Pavlidis. Structural Pattern Recognition.

Springer, New York, 1977.

[5] S. Lucas, E. Vidal, A. Amiri, S. Hanlon, and J.C.

Amengual. A comparison of syntactic and

statistical techniqes for off-line OCR. in: R. C.

Carrasco, J. Oncina (Eds.), Grammatical

Inferrence and Applications (ICGI-94), Springer,

Berlin, pp. 168-179, 1994.

[6] Brijesh Verma. A Contour Code Feature Based

Segmentation For Handwriting Recognition.

Proceedings of the Seventh International

Conference on Document Analysis and Recognition

(ICDAR 2003), Vol. 1, PP. 1203 – 1207. 2003.

[7] Daekeun You and Gyeonghwan Kim. An approach

for locating segmentation points of handwritten

digit strings using a neural network. Proceedings of

the Seventh International Conference on Document

Analysis and Recognition (ICDAR 2003), Vol. 1,

PP. 142 – 146.

[8] Robert T. Olszewski. Generalized Feature

Extraction for Structural Pattern Recognition in

TimeSeries Data. PhD thesis, University-

Pittsburgh, 2001.

[9] Kam-Fai Chan and Dit-Yan Yeung. An effecient

syntactic approach to structural analysis of on-line

handwritten mathematical expressions. Pattern

Recognition, Vol. 33, pp. 375 - 384, 2000.

[10] Kam-Fai Chan and Dit-Yan Yeung. Recognizing

on-line handwritten alphanumeric characters

through flexible structural matching. Pattern

Recognition, Vol 32, pp. 1099 - 1114, 1999.

[11] Adnan Amin. Off-Line Arabic Character

Recognition: The State Of The Art. Pattern

Recognition, 31 (5), pp. 517 - 530, 1998.

[12] Sven Behnke, Marcus Pfisher, and Raul Rojas, "A

Study on the Combination of Classifiers for

Handwritten Didit Recognition", Proceedings of

Neural Networks in Applications, Third

International Workshop (NN'98), Magdeburg,

Germany, pp. 39-46, 1998.

[13] Sven Behnke, Raul Rojas, and Marcus Pfister.

Recognition of Handwritten Digits using Structural

Information. Proceedings of the International

Conference of Neural Network, Houston TX, Vol.

3, pp. 139 1- 1396, 1997.

[14] S. Madhvanath, G. Kim, and V. Govindaraju.

Chaincode Contour Processing for Handwritten

Word Recognition. IEEE Trans. On Pattern

Analysis and Machine Intelligence, 21 (9), pp. 928

- 932, 1999.

[15] Robert Schalkoff. Pattern Recognition: Statistical,

Structural, and Neural Approaches. John Wiley

and Sons Inc. 1992.

[16] Rafael C. Gonzalez and Michael G. Thomason.

Syntactic Pattern Recognition: An Introduction.

Addison Wesley Publishing Company, 1978.

[17] H. Freeman. Computer processing of line drawing

images. ACM Computing Surveys (CSUR), 6 (1),

pp. 57 – 97, 1974.

282 Informatica 32 (2008) 275–281 A.-T. Ahmad et al.

 Informatica 32 (2008) 283-288 283

Robust Speech Recognition Using Perceptual Wavelet Denoising and

Mel-frequency Product Spectrum Cepstral Coefficient Features

Mohamed Cherif Amara Korba

University of Larbi Tebessi, Tebessa, Electronic Department

Constantine road, BP 15454, Tebessa, Algeria
E-mail: Amara_korba_cherif@yahoo.fr

Djemil Messadeg

University of Badji-Mokhtar, Annaba, Electronic Department

BP 12, 23000, Annaba, Algeria

E-mail: messadeg@yahoo.fr

Rafik Djemili

University 20 Aout 1955, Skikda, Electronic Department

El-Hadaiek road, BP 26 Skikda, Algeria

E-mail: djemili_rafik@yahoo.fr

Hocine Bourouba

University of Mentouri, Constantine, Electronic Department

Ain El Bey road, BP 325, 25017 Constantine, Algeria

E-mail: bourouba2004@yahoo.fr

Keywords: noise robust speech parametrization, perceptual wavelet-packet transform, penalized threshold, mel-

frequency product spectrum cepstral coefficients

Received: May 25, 2008

To improve the performance of Automatic Speech Recognition (ASR) Systems, a new method is proposed

to extract features capable of operating at a very low signal-to-noise ratio (SNR). The basic idea

introduced in this article is to enhance speech quality as the first stage for Mel-cepstra based

recognition systems, since it is well-known that cepstral coefficients provided better performance in

clean environment. In this speech enhancement stage, the noise robustness is improved by the

perceptual wavelet packet (PWP) based denoising algorithm with both type of thresholding procedure,

soft and modified soft thresholding procedure. A penalized threshold was selected. The next stage of the

proposed method is extract feature, it is performed by the use of Mel-frequency product spectrum

cepstral coefficients (MFPSCCs) introduced by D. Zhu and K.K and Paliwal in [2]. The Hidden Markov

Model Toolkit (HTK) was used throughout our experiments, which were conducted for various noise

types provided by noisex-92 database at different SNRs. Comparison of the proposed approach with the

MFCC-based conventional (baseline) feature extraction method shows that the proposed method

improves recognition accuracy rate by 44.71 %, with an average value of 14.80 % computed on 7 SNR

level for white Gaussian noise conditions.

Povzetek: Opisana je nova metoda robustnega strojnega prepoznavanja govora.

1 Introduction
ASR systems are used in many man–machine

communication dialog applications, such as cellular

telephones, speech driven applications in modern offices

or security systems. They give acceptable recognition

accuracy for clean speech, their performance degrades

when they are subjected to noise present in practical

environments [3].

Recently many approaches have been developed to

address the problem of robust speech parametrization in

ASR, The Mel-frequency cepstral coefficients (MFCCs)

are the most widely used features, they were adopted in

many popular speech recognition systems by many

researchers, such as [8],[9]. However, it is well-known

that MFCC is not robust enough in noisy environments,

which suggests that the MFCC still has insufficient

sound representation capability, especially at low SNR.

MFCCs are derived from the power spectrum of the

speech signal, while the phase spectrum is ignored. This

is done mainly due to our traditional belief that the

human auditory system is phase-deaf, i.e., it ignores

284 Informatica 32 (2008) 283–288 M.C.A. Korba et al.

phase spectrum and uses only magnitude spectrum for

speech perception [1]. Recently, it has been shown that

the phase spectrum is useful in human speech perception

[2]. The features derived from either the power spectrum

or the phase spectrum have the limitation in

representation of the signal.

In this paper, we proposed noise robust feature

extraction algorithm based on enhancement speech signal

before extraction feature to improve performance of Mel-

cepstra based recognition systems.

The feature extraction system performs two major

functions. The first is speech enhancement; the other is

feature extraction. (see Figure 1).

The speech enhancement stage employs the perceptual

wavelet packet transform (PWPT) instead of

conventional wavelet-packet transform, to decompose

the input speech signal into critical sub-band signals.

Such a PWPT is designed to match the psychoacoustic

model and to improve the performance of speech

denoising [11]. Denoising is performed by thresholding

algorithm introduced by Donoho [7] as a powerful tool in

denoising signals degraded by additive white noise.

Denoising procedure is divided into two steps:

firstly, threshold is estimated by penalized threshold

algorithm [5], and secondly, two types of thresholding

algorithms are applied, soft thresholding algorithm [6]

and modified soft thresholding (Mst) algorithm proposed

in [4] to determine who of these algorithm is more

efficient to improve recognition accuracy. Finally, these

thresholded wavelet coefficients are constructed to obtain

the enhanced speech samples by the inverse perceptual

wavelet packet transform (IPWPT).

Stage of feature extraction is performed by the use of

Mel-frequency product spectrum cepstral coefficients

(MFPSCCs) introduced by D. Zhu and K.K. Paliwal in

[2]. This is defined as the product of the power

spectrumand the group delay function (GDF). It

combines the magnitude spectrum and the phase

spectrum.

The GDF can be defined as follows [2]

ω

ω
ωτ ρ

d

Xd))((log(
Im)(−= (1)

2

)(

)()()()(
Im

ω

ωωωω

X

YXYX IIRR +
−= (2)

Where X(ω) is the Fourier transforms of frame speech

x(n), Y(ω) is the Fourier transforms of nx(n), and the

subscripts R and I denote the real and imaginary parts.

They have shown in their experiments [2] that the

MFPSCC feature gives better performance than power

spectrum and phase spectrum features. But in the low

SNR the recognition accuracy rate remains weak.

The rest of this paper is organized as follows.

Section 2 introduces a block diagram of proposed noise

robust feature (PNRF) extraction algorithm and provides

detailed description of each constituting part. Section 3

shows a graphical comparison between different features.

Section 4 evaluates the performance of the proposed

system under a different level of noise conditions. The

conclusion is presented in Section 5.

2 Description of proposed feature

extraction algorithm
Figure1 presents a block diagram of proposed noise

robust feature extraction algorithm. Noisy input speech is

sampled at Hz 11025=sF and segment into frames of

length L = 275 samples (25 ms) with frame shift interval

of S = 110 samples (10 ms). There is no need to apply

classical windowing operation in the perceptual wavelet

packet decomposition (PWPD) scheme.

Figure 1: Block diagram of proposed noise robust feature

extraction algorithm.

2.1 Perceptual wavelet-packet transform

The decomposition tree structure of PWPT is designed to

approximate the critical bands (CB) as close as possible

in order to efficiently match the psychoacoustic model

[12] [13]. Hence, the size of PWPT decomposition tree is

directly related to the number of critical Bands. The

sampling rate is 11025 Hz, yielding a speech bandwidth

of 5.512 KHz. Within this bandwith, there are

approximately 17 critical bands , which are derived from

the Daubechies wavelet 8 (db8) and the decomposition is

implemented by an efficient 5 level tree structure, the

corresponding PWPT decomposition tree can be

constructed as depicted in Figure 2. The perceptual

wavelet transform (PWT) is used to decompose nx(n)

into several frequency subbands that approximate the

critical bands. The set of wavelet expansion coefficients

is generated from

{ } ()()nnxPWPTkw ij =)(, (3)

E
x

tr
a

ct
io

n
 s

ta
g

e
E

n
h

a
n

ce
m

en
t

st
a
g

e

Framing (L,S)

{ })(nnxPWPT

Wavelet denoising with

thresholding algorithm

{ }ijWIPWPT ,

Compute the (MFPSCCs)

coefficients

Compute Delta and

acceleration coefficients

Final output feature vector

Noisy speech input

Automatic speech recognition

ROBUST SPEECH RECOGNITION USING PERCEPTUAL… Informatica 32 (2008) 283–288 285

Where ,L,, n K21= (L is the length of frame as

mentioned above L =275 samples).

521,0 ,,, j K= (j: number of levels (five levels)).

)12(21 −= j,,, i K (i: denotes index of subbands in each

level j).

Terminal nodes of PWPD tree represent a non uniform

filterbank, which is sometimes called as ‘perceptual

filterbank’ in the literature. Node (5,0) through (3,7) at

the last level of decomposition tree are the terminal node.

The output of this stage is a set of wavelet coefficients.

2.2 Wavelet denoising procedure
Denoising by wavelet is performed by thresholding

algorithm, in which coefficients smaller than a specific

value, or threshold, will be shrunk or scaled [6] ,[14].

There are many algorithms for obtaining threshold value.

In this study, threshold is obtained by PWP coefficients

using a penalization method provided by Birge-Massart

[5].

2.2.1 Penalized threshold for PWP denoising

Let column vector ijw , be a wavelet packet coefficient

(WPC) sequence, where j represents wavelet packet

decomposition (WPD) level and i stands for sub band.

The standard deviation σ is estimated in the same way as

in [6]

 ()1,1

1
wMedian

madγ
σ = (4)

1,1w : is a WPC sequence of node (1,1)

The constant 6745,0=madγ in equation (4) makes the

estimate of median absolute deviation unbiased for the

normal distribution.

nc : number of all the WPC of the ascending node index

cfs : content all the WPC of the ascending node index

) , (7,31,50,5 WWW K

)(tcdthres = where ncdt K1= (5)

thres contain absolute value of WPC stored in decreasing

order, cd content the WPC of the ascending node index

) , (7,32,51,5 WWW K and ncd is the number of the WPC in

the cd

)(2threscumsumA = (6)

cumsum : compute the cumulative sum along different

dimensions of an array

()()()Atnctindexvalthr −+= log2min_ 2 ασ (7)

α : is a tuning parameter of penalty term (25.6=α)

()cfsMaxthr max= (8)

()MaxthrvalthrValthr ,min= (9)

Where Valthr denotes threshold value.

2.2.2 Thresholding algorithms

In this subsection, we review the most used thresholding

algorithms, both hard and soft thresholding techniques

proposed in [6] can be implemented to denoising speech

signal. The hard thresholding function is defined for

threshold λ as

 ≤

=
λ

λ
δλ

fxx

x
x

H 0
)((10)

in this thresholding algorithm, the wavelet coefficients x

less than the threshold λ will be replaced with zero.

and the soft thresholding function is defined as

−

≤
=

λλ

λ
δλ

fxxxsign

x
x

S

))((

0
)((11)

which can be viewed as setting the components of the

noise subspace to zero, and performing a magnitude

subtraction in the speech plus noise subspace. (figure 3)

2.2.3 Modified soft thresholding procedure

Each one of these algorithms defined above has its own

disadvantages. The hard thresholding procedure creates

discontinuities in the output signal is disadvantage, and

in soft thresholding algorithm, the existence of the bias is

the disadvantage. But soft thresholding procedure is near

optimal for the signals corrupted by additive white

Gaussian noise, however, some considerations applying

the thresholding method (hard or soft thresholding

method) to speech signal since the speech signal in the

unvoiced region contains relatively lots of high

frequency components that can be eliminated during the

thresholding process. For improving these disadvantages,

a modified soft thresholding (Mst) algorithm was been

introduced and it is defined as follow [4] (see Figure 3):

Figure 2: The tree structure of PWPT

286 Informatica 32 (2008) 283–288 M.C.A. Korba et al.

≥−+
==

λθλ

λθ
δλ

xxx

xx
xy

Mst

))1()(sgn(
)(

p
 (12)

Where ijwx ,∈ and ijwy ,∈ if ijw , is the output column

vector of denoised wavelet coefficient sequence. WPD

subband i and level j as defined in equation (3). The

inclination coefficient θ introduced in equation (12) is

defined as follows:

)max(,ijw

λ
βθ = (13)

β is the inclination adjustment constant. The main idea

of modified soft thresholding is the introduction of the

inclination coefficientθ , which prevents crudely setting

to zero the wavelet coefficients whose absolute values lie

below the threshold λ . The modified soft thresholding

procedure is equivalent to the soft thresholding

for 0=β . In our case the inclination adjustment constant

β has been set to 0.5.

Figure 3: Characteristic of soft and modified soft

thresholding technique, threshold λ is set to 0.5 in the

figure above. In the case of modified soft threshold the

parameter β is 0.5

2.3 Mel-frequency product-spectrum

cepstral coefficients
On using the IPWPT, we obtained the enhanced speech

signal)(~ nxn and we compute the robust feature

MFPSCC as described in [2]

The MFPSCCs are computed in the following four steps:

1) Compute the FFT spectrum of)(~ nx and)(~ nxn .

Denote them by)(kX and)(kY .

2) Compute the product spectrum

 ()ρ),()()()(max)(kYkXkYkXkQ IIRR += (14)

Where

 ())()()()(max1010 kYkXkYkX IIRR +⋅=

σ

ρ (15)

σ is the threshold in dB (in our case dB60−=σ).

3) Apply a Mel-frequency filter-bank to)(kQ to get the

filter-bank energies (FBEs).

4) Compute DCT of log FBEs to get the MFPSCCs.

In all our experiments, the performances of ASR

system are enhanced by adding time derivatives and log

energy to the basic static parameters for different

features. The delta coefficients are computed using the

following regression formula

∑

∑
Θ

=

Θ

=
−+ −

=

1

2

1
11

2

)(

θ

θ
θθ

θ

θ cc

d t (16)

Where td is the delta coefficient computed in terms of

the corresponding static coefficients Θ−tc to Θ+tc . The

same formula is applied to the delta to obtain

acceleration coefficients.

3 Graphical comparison between the

different features
Figure 4 shows a sample comparison between PNFR,

Mfpscc and corresponding MFCC features for Arabic

digit one obtained before DCT operation for different

SNR levels. As standard in MFCC, a window size of 25

ms with an overlap of 10 ms was chosen, and cepstral

features were obtained from DCT of log-energy over 22

Mel-scale filter banks. The degradation of spectral

features for MFCC in the presence of white noise is

evident, whereas PNFR obtained with soft thresholding

(PNRF_soft) and Mfpscc features prevail at elevated

noise levels. For SNR < 10dB we can see clearly that

PNFR_soft is better noise robustness than mfpscc

features.

Figure 4: MFCC features (a)-(c), MFPSCC features (d)-

(f) and PNRF_soft (g)-(i) for Arabic digit one, under

different SNR conditions (clean, 10 dB and 0 dB).

4 Speech recognition experiments
In the experiments reported in this paper, isolated digit

recognition experiments were performed using the

Arabic digit corpus database from the national laboratory

ROBUST SPEECH RECOGNITION USING PERCEPTUAL… Informatica 32 (2008) 283–288 287

of automatic and signals of University of Badji-Mokhtar

Annaba Algeria, which were designed to evaluate the

performance of automatic speech algorithms.

This database contains 90 speakers: 46 male and 44

female, each speaker repeats each Arabic digit 10 times.

The leading and trailing silence is removed from each

utterance. All samples are stored in Microsoft wave

format files with 11025Hz sampling rate, 16 bit PCM,

and mono-channels.

In our experiments, training is performed on

clean speech utterances and testing data, which is

different from the training data, is corrupted by different

real-world noises added at the SNRs from -5 dB to 20dB

at the step of 5dB, are used to evaluate the performance

of a speech recognizer system. Four types of additive

noises were used: white noise, pink noise, factory noise

(plate-cutting and electrical welding equipment) and F16

cockpit noise selected from Noisex-92 database [15].

There are two test sets, In the test set A, There

are 10 utterance of each digit (0-9) from each speaker (90

speakers): 6 of the utterance are for training and 4

remaining are for testing, what gives 5400 utterances for

clean training and 3600 utterances were used for testing

the system.

In the test set B, The training set contained 10

utterances of the Arabic digits each from 60 speakers (31

male and 29 female) comprising a total of 6000

utterances, and the test set contained isolated digits from

30 other speakers (15 male and 15 female) for a total of

3000 utterances.

A recognition system was developed using the

Hidden Markov Toolkit (HTK) [10], implementing a 15

state left-to-right transition model for each digit where

the probability distribution on each state was modeled as

a three-mixture Gaussian.

We measured the robustness by comparing the word

accuracies obtained with the proposed method and

baseline feature parameters. As a baseline, the

recognition system was developed using MFCC features

comprising of 12 cepstral coefficients (0
th

 coefficient is

not used), log energy, delta and accelerator coefficients,

totally 39 coefficients.

In the calculation of all the features, the speech

signal was analyzed every 10ms with a frame width of

25ms multiplied with hamming window, accept proposed

feature there is no need to apply Hamming window. The

Mel filter bank was designed with 22 frequency bands in

the range from 0 Hz to 5.51 kHz.

Tables 1 and table 2 show the accuracies obtained for

various noise types with the different features. The last

column is the average accuracy under different SNRs

between clean and -5dB. From the results we may draw

the following conclusions:

1. For clean speech, the performance of both features

MFCCs and MFPSCCs are comparable, with high

recognition rates. They provide better performance

than the PNRF for the two test sets.

2. At SNR between 20 and 10dB, MFPSCC feature

demonstrates much better noise robustness than other

features for all noise types.

3. At SNR between 5 and -5dB the PNRF_soft features

and PNRF with modified soft thresholding algorithm

(PNRF_mst) obtain better performance than other

features.

4. For white noise the PNRF_soft features obtain better

performance than PNRF_mst, which indicate that the

soft thresholding procedure reduces efficiently the

level of additive white noise.

5. For pink, factory and f16 noises PNRF_mst features

demonstrate significantly better performance than

PNRF_soft features, which indicate that modified soft

thresholding is better able to reduce the level of

additive colored noise in the input speech signal.

Table 1: Digit recognition accuracy (%) for different features of test set A (new speech samples from speakers whose

speech was used for training system).

Noise type Features set
SNR (dB)

Ave
Clean 20 15 10 5 0 -5

White

MFCC

MFPSCC

PNRF_Mst

PNRF_Soft

98.55

98.61
97.78

97.08

97.55

98.33
97.72

96.50

96.03

98.08
97.50

95.94

90.78

96.44

96.75
95.03

76.69

92.47

92.89
92.69

48.04

75.85

80.11

85.72

22.70

34.04

48.99

65.05

75.76

84.83

87.39

89.71

Pink

MFCC

MFPSCC

PNRF_Mst

PNRF_Soft

98.55

98.61
97.78

97.08

96.55

98.60
97.42

96.69

91.94

97.75
97.22

96.05

80.30

96.33
96.17

94.72

61.79

91.05

92.14
91.33

35.76

71.13

79.41

81.24

16.00

42.01

49.37

50.46

68.69

85.06

87.07
86.79

Factory

MFCC

MFPSCC

PNRF_Mst

PNRF_Soft

98.55

98.61
97.78

97.08

95.11

98.59
97.22

96.64

88.77

97.36
96.92

95.75

75.44

95.94
95.42

93.61

57.57

90.28
90.08

89.08

35.59

71.69

77.10
74.91

20.06

40.54

44.90

45.23

67.29

84.71

85.63
84.61

F16

MFCC

MFPSCC

PNRF_Mst

PNRF_Soft

98.55

98.61
97.78

97.08

94.28

98.60
97.19

96.47

85.94

97.17
96.80

95.61

72.55

94.69
94.64

93.22

54.29

85.79

87.97
87.44

34.04

63.02

68.38
67.88

17.09

30.90

37.09
32.81

65.24

81.25

82.83
81.50

288 Informatica 32 (2008) 283–288 M.C.A. Korba et al.

Noise type Features set
SNR (dB)

Ave
Clean 20 15 10 5 0 -5

White

MFCC

MFPSCC

PNRF_Mst

PNRF_Soft

97.80
97.60

97.00

96.27

96.77

97.47

96.87

95.67

95.03

97.13

96.67

95.07

88.93

96.03

95.47

93.73

74.49

92.13

92.36
91.00

43.91

77.33

80.83

84.09

18.34

39.41

49.65

63.05

73.61

85.30

86.97

88.41

Pink

MFCC

MFPSCC

PNRF_Mst

PNRF_Soft

97.80
97.60

97.00

96.27

95.63

97.59
96.70

95.77

89.36

97.07
96.03

95.23

79.03

95.50
94.83

93.73

60.59

90.30

90.43

89.63

39.28

68.99

77.49

78.09

22.44

39.48

46.28

48.92

69.16

83.79

85.53

85.37

Factory

MFCC

MFPSCC

PNRF_Mst

PNRF_Soft

97.80
97.60

97.00

96.27

93.93

97.59
96.37

95.33

87.16

96.70
95.47

94.43

73.12

95.07
93.70

92.23

54.52

88.13
87.86

86.76

35.88

69.66

73.86
73.02

22.71

37.35

42.08

42.61

66.44

83.15

83.76
82.95

F16

MFCC

MFPSCC

PNRF_Mst

PNRF_Soft

97.80

97.60

97.00

96.27

92.63

97.59
96.40

95.53

83.59

95.93
95.63

94.70

69.26

93.30
92.86

91.86

50.72

82.22

86.26
85.06

34.41

58.82

66.32
66.12

19.87

29.68

34.38
31.78

64.04

79.30

81.26
80.18

Table 2: Digit recognition accuracy (%) for different features of test set B (speech samples from speakers whose

speech was not used for training system).

5 Conclusion
In this paper we presented a novel speech feature

extraction procedure, for deployment with recognition

systems operating under various noise types and different

levels of SNR. Results showed that The PNRF

(PNRF_soft and PNRF_mst) features improved

efficiently average recognition accuracy, especially at

low SNRs level (-5 to 5dB). PNRF features give better

performance than MFCC and MFPSCC features.

Acknowledgement

This work was supported by LASA laboratory of

university Annaba algeria. The authors would like to

thank Professor Mouldi Bedda for Helpful discussion.

References
[1] K.K. Paliwal and L. Alsteris, Usefulness of Phase

Spectrum in Human Speech Perception, Proc.

Eurospeech, pp. 2117-2120, 2003.

[2] D. Zhu and K. Paliwal, Product of power spectrum

and group delay function for speech recognition,

Proc ICASSP 2004, pp. I-125 I-128, 2004.

[3] Y. Gong, Speech recognition in noisy environments:

A survey, Speech Communication, vol. 16, No. 3,

pp. 261-291, 1995.

[4] B. Kotnik, Z. kacic and B. Horvat, The usage of

wavelet packet transformation in automatic noisy

speech recognition systems, IEEE, Eurocon 2003,

Slovinia, vol. 2, No. 2, pp. 131-134, 2003.

[5] L. Birgé, P. Massart, From model selection to

adaptive estimation, in D. Pollard (ed), Festchrift for

L. Le Cam, Springer, vol. 7, No. 2, pp. 55-88, 1997.

[6] D. L. Donoho, De-noising by Soft-thresholding,

IEEE Trans. Inform Theory, Vol. 41, No. 3, pp. 613-

627, May 1995.

[7] D. L. Donoho, Nonlinear Wavelet Methods for

Recovering Signals, Images, and Densities from

Indirect and Noisy Data, Proceedings of Symposia in

Applies Mathematics. Vol. 47, pp. 173-205, 1993.

[8] M. N. Stuttle, M.J.F. Gales , A Mixture of Gaussians

Front End for Speech Recognition, Eurospeech

2001, pp. 675-678, Scandinavia, 2001.

[9] J. Potamifis, N. Fakotakis, G. Kokkinakis,

Improving the robustness of noisy MFCC features

using minimal recurrent neural networks, Neural

Networks, IJCNN 2000, Proceedings of the IEEE-

INNS-ENNS International Joint Conference on,

vo1.5, pp. 271-276, 2000.

[10] S. Young, The HTK Book, Cambridge University

Engineering Department, Cambridge, UK, 2001.

[11] B. Carneno and A. Drygajlo, Perceptual speech

coding and enhancement using frame-synchronized

fast wavelet-packet transform algorithms. IEEE

Trans. Signal Process. 47 (6), pp.1622-1635, 1999.

[12] I. Pinter, Perceptual wavelet-representation of

speech signals and its application to speech

enhancement. Comput. Speech Lang. vol. 10, pp. 1-

22, 1996.

[13] E. Zwicker, E. Tergardt, Analytical expressions for

critical-band rate and critibandwith as a function of

frequency. JASA68, pp. 1523-1525, 1980.

[14] M. Jansen, Noise reduction by wavelet thresholding.

New York: Springer-Verlag, New York. 2001.

[15] A. Varga, , H. Steeneken, , M. Tomlinson, D. Jones,

The NOISEX-92 study on the effect of additive noise

on automatic speech recognition, Technical report,

DRA Speech Research Unit, Malvern, England,

1992. Available from:

http://spib.rice.edu/spib/select_noise

 Informatica 32 (2008) 289–291 289

The Modelling of Manpower by Markov Chains – A Case Study of

the Slovenian Armed Forces

Damjan Škulj, Vasja Vehovar and Darko Štamfelj
University of Ljubljana, Faculty of Social Sciences
E-mail: damjan.skulj@fdv.uni-lj.si, vasja.vehovar@fdv.uni-lj.si darko.stamfelj@fdv.uni-lj.si

Keywords: manpower planning, Markov chains, controlled Markov chains

Received: August 9, 2007

The paper presents a case study of manpower planning for the Slovenian armed forces. First, we

identified 120 types of military segments (including civil servants). Next, administrative data were used

to estimate the transitions between these segments for the 2001-2005 period. Markov chain models were

then applied and 5-, 10- and 20-year projections were calculated. Various discrepancies were

discovered between the projected structures of the military segments and the official targets. Finally, we

addressed two optimisation questions: ‘Which transitions would lead to the desired structure in five

years’ time?’ and ‘Which transitions would sustain the desired structure in the long run?’. A heuristic

modelling approach was applied here, i.e. we used a simulation model with a specific loss function. To

perform feasible simulations of the probabilities in a 120 x 120 matrix, only those transitions were

simulated where experts had previously estimated that real measures existed to provide potential change

(recruitment policy, regulation of promotion, retirement strategy etc).

Povzetek: V članku je predstavljen primer načrtovanja kadrov v Slovenski vojski.

1 Introduction
Efficient manpower planning is a crucial task of

managing large organisations such as transportation or
industrial corporations, the state administration or
military systems. All of these systems comprise many
segments of employees with specific roles and job
descriptions. Skills needed to perform assigned tasks are
usually acquired through special training or long work
experience. Both a shortfall and a surplus of skilled staff
can be costly and very inefficient. To prevent such
difficulties, the future needs of personnel have to be
predicted well in advance, while corresponding strategies
to achieve the desired structure must be adopted.

Knowledge about these processes is important for
predicting the future development of the manpower
structure in complex organisations. In large systems,
such predictions are usually based on previous
experience. However, knowledge gained from such
experience is often difficult to apply without appropriate
mathematical or statistical models and corresponding
computational tools.

Pending on the goals, various mathematical models
can be applied in manpower planning. Obviously, the
problems cannot be fully addressed by only using tools
of the spread-sheet type. The choice depends on many
factors, such as the size of the system being analysed,
available knowledge of the processes that govern the
system structure’s dynamics, the methods available to
control the processes and the ability to predict the
consequences of actions concerning regulations.
Moreover, the choice of the appropriate model often
depends on its complexity. While complex models can

supply very accurate results, they often require data that
are not easy to collect, or parameters that may only be
vaguely known, especially if a very large number of
them have to be specified. Consequently, the reliability
of the resulting outputs is then put in question. For very
large systems, simpler and more robust models are
therefore often a better choice. A good overview of the
existing models used in workforce planning can be found
in Wang (2005). For other references, also see Grinold
and Marshall (1977), Price et al. (1980), Purkiss (1981),
and Georgiu and Tsantas (2002).

The most basic information that can be used to
model manpower dynamics is the rate of transitions
between different segments of the system, i.e. the
transition probabilities. Transitions are usually
consequences of either promotions, transfers between
assignments or wastage and input into the system. Often
transitions are controlled by certain rules that govern the
system and cannot be arbitrarily changed. If this is the
case, planning has to be especially careful since slight
changes in policies can have considerable consequences
on the future development of the manpower structure.

In several cases, the models used to predict the
future structure of a dynamic system are based on
Markov chains and their derivatives, such as semi-
Markov chains. Both are based on the assumption that
the rules governing the system’s manpower dynamics do
not change very often and that future dynamics will
follow patterns observed in the past. While classical
Markov chains view segments as homogeneous, semi-
Markov chains additionally involve the time a person has
spent in a segment, of course at the cost of the model’s
simplicity and therefore the possibility to reliably
estimate its parameters. A thorough description of many

290 Informatica 32 (2008) 289–297 D. Škulj et al.

variations of Markov and some other manpower planning
models can be found in Bartholomew et al. (1991),
Vassiliou (1998) or Vajda (1978). Besides Markov
models, other approaches to the problem are also
possible, such as models based on simulations or system
dynamics models (Wang, 2005). Applications of
manpower models used in the specific case of military
manpower planning can be found in Jaquette et al.
(1977), Murty et al. (1995), Smith and Bartholomew
(1988).

In our particular case of modelling the structure of
the Slovenian armed forces, the number of segments
alone was relatively large. Together with other potential
problems related to the data collection, these were the
main reason against using the more complex semi-
Markov chains. Moreover, transitions between segments
are surprisingly complex where, besides recruitment,
promotions and wastage from the system, many more
transitions to other segments also occur such as
transitions from military to administrative positions and
vice-versa.

Models based on Markov processes can be divided
into the following groups, depending on the level of the
structural control i.e. the ability to attain and maintain the
desired structure:
1 Descriptive-predictive models. This group is mainly

concerned with the development and analysis of a
time homogeneous Markov model whose parameters
are often based on historical observations. It can be
used to predict the behaviour of a system in time.
The models in this group have no intention to search
for any kind of optimal control, but only give
descriptions and forecasts. Several models of this
group can be found in Bartholomew et al. (1991) or
Price et al. (1980). In this paper, we use such a
model in our first part to make predictions on the
future development of the system.

2 Control theory models-normative models (Markov

decision processes). This group tries to find optimal
set of policies in order to minimise certain loss
functions such as the cost of recruiting new workers
or maintaining the existing structure. The basis of
these models is the work of Howard (1960) and they
can be found in Grinold and Stanford (1974),
Zanakis and Maret (1981), Lee et al. (2001) or a
very general treatment can be found in Li et al.
(2007). Our approach to searching for the transitions
leading to a desirable structure could be regarded as
belonging to this class, although its key concern is to
find any satisfactory policy rather than to select a
particular policy satisfying some additional
optimality conditions.
While in the first part we use the classical

descriptive-predictive model, the structural control part
of the problem partly belongs to the class of control
theory problems, although it has a very specific form and
thus does not fit well in the context of controlled Markov
chains or related models. The main specific point is that
the choice of feasible policies is severely restricted by the
Ministry of Defence and the problem, at least at this
stage, is thus not in finding a policy that would satisfy

some additional optimality criterion, but rather in finding
any policy that leads to the desired structure of the
system. A similar problem was theoretically studied by
Antončič (1990), but subject to less severe restrictions.
We thus claim that our particular problem in fact belongs
somewhere between the first and second groups of the
above models, and that it requires some kind of a specific
treatment.

The problem we are dealing with thus mainly
consists of two parts. In the first part we identify relevant
segments and the transitions between them. The goal is
to make predictions of the future sizes of the segments if
the current transitions ruled the system's dynamics. This
would likely be the case if no further regulations were
implemented. In the second part we study the
attainability and maintainability problem. We first
identify transitions that could be regulated by the
Ministry of Defence by setting appropriate measures and
policies. Then we tried to modify them within the limits
given by the Ministry in order to achieve the required
structure. The problem is complex mainly because
transitions that are not controllable represent a substantial
part of the system's dynamics and are therefore the main
cause of the large discrepancies between the projected
and the required structures. Being ruled by mechanisms
unknown to us, in the best case we can assume that they
will remain roughly the same in the following years. To
achieve the required structure, we must then
appropriately set the controllable transitions.

The estimated probabilities of the uncontrollable
transitions are used as expectations of future transition
probabilities and thus we effectively assume a
deterministic model with two classes of transitions –
fixed and controllable. The only objective at this stage is
to find a sufficient set of transitions that would lead to
the required structure. Among the models found in the
existing literature none of them seemed quite appropriate
for resolving this particular problem, although a
modification of some existing analytical model to fit our
framework is a promising direction for our further work.
However, at this stage the approach using computer-
based simulations proved to be sufficiently effective in
producing satisfactory results. The idea is therefore to
simulate a large number of randomly generated scenarios
and pick those yielding a satisfactory structure after a
given period. However, the implementation depends to a
large degree on the particular specifics.

The practical implementation of the approach to
solving our problem also contains a web-based user
application that was developed to allow non-
mathematicians to change the parameters and analyse the
consequences. The application’s user interface is
designed to be both user-friendly and flexible so that it
allows practically unlimited possibilities in testing
different scenarios. The results of testing are displayed
simultaneously in real time. The application is available
on-line and no programmes other than web browsers are
needed to run it.

The prediction part of the model is thus made in a
fully interactive manner; however, the structural control
part is still too complex to be implemented by ordinary

THE MODELLING OF MANPOWER BY... Informatica 32 (2008) 289–297 291

users, especially because of the computational
complexity which requires several manual adjustments
during optimisation. In addition, the process of preparing
the data to estimate the parameters is technically very
demanding because it requires the combining of several
software tools and is therefore not available in an
automated form.

The paper has the following structure: Section 2
contains a description of the method used with some
mathematical background, Section 3 describes
implementation of the method for calculating projections
of the manpower structure of the Slovenian armed forces
and the administration of the Ministry of Defence, while
Section 4 presents the results. Conclusions are presented
at the end.

2 Description of the method

2.1 Basic model

The model used for manpower planning in the
Slovenian armed forces and the administration of the
Ministry of Defence is based on Markov chains. The
description of the mathematical background of this and
related models can be found in Bartholomew et al.
(1991), Vassiliou (1998), and Grinold and Marshall
(1977). The usual assumption of those models is that the
system modelled consists of clearly defined segments
and that the transitions between them are time-
homogeneous and independent of history. To satisfy
these requirements, the system must be sufficiently large
to diminish the effect of random variations in time
allowing transitions to be analysed on the aggregate
level.

Markov chains are used to model random processes
evolving over time. A crucial assumption used is the
Markov property which is best described by saying that
the process is “memoryless”, which means that its future
states only depend on the present state rather than its
history. Another assumption which is usually posed is
that transition probabilities are time-homogeneous,
which means that they are independent of time. Of
course, these requirements are often not entirely fulfilled;
however, omitting them would result in more general
non-homogeneous models (see Vassliou (1981, 1998),
Gerontidis(1994)) that require additional data to estimate
the parameters.

A sequence of random variables X1, X2, ..., Xn , ... is a
Markov chain if every variable can assume any value
from a set S = {s1, s2, ..., sm}, whose elements are called
states. A particular realisation of the process is then a
sequence of values from S. Mathematically we can
describe the Markov property by requiring that P(Xn+1 =
sj | Xn = si,…, X1 = sk) = P(Xn+1 = sj | Xn = si) = p(n)

ij
.
, where

n denotes the time points. This means that the probability
that the process will be in state sj at time n+1, given that
it is in state si at time n, is p(n)

ij. If in addition p(n)
ij= pij, for

every n, the chain is homogeneous because the transition
probabilities do not depend on time. The matrix P=(pij),

whose entries are transition probabilities, is called a
transition matrix.

In the particular case of manpower modelling, states
are the segments of the system, and transition
probabilities are understood as relative frequencies. Thus
transition probability pij is interpreted as the ratio of
persons in segment si at the time n that will make a
transition into state sj by the time n+1. Let γn be a
statistical distribution over the set S, thus, γn

i is the
number of persons in state si. On the assumption of
transition matrix P, the distribution at the next time point
is obtained by multiplying vector γn

 by P, γ
n+1

= γ
n
P.

Thus, given the initial distribution and transition matrix
we can predict the distribution at the next time point.
Consequently, by repeating the same argument
predictions for all future time points are enabled. The
time interval used in our model is one year and so if a
person makes more than one transition within a year this
is recorded as a single transition.

The actual model used is based on the model
described in Bartholomew (1991), where in addition a
vector of recruits r is added. The model also allows
wastage w, which accounts for those people who leave
the system. According to this model, the transition matrix
P need not be stochastic but only substochastic, i.e. the
sum of rows may be less than 1, where the difference is
wastage w, thus,

.1
1
∑−

m

=i

iji p=w

We assume a model with a constant recruitment
vector since the only recruitment to the system is births
in the general population. The actual recruitment to
military segments is then modelled as transitions between
general and military segments. Thus the model used
takes the following general form:

.rγγ +P= 1nn −

Hence, the military segments used in the model are
regarded as a subset of segments of the general
population. The reason for this is that new employees are
recruited from general segments whose size then
determines the number of possible new recruits every
year. So, for instance, diminishing generations of school
children due to the lower birth rates seen in recent years
affect the number of potential candidates to enter military
service. For this, we assume that the proportion of them
interested in such a career is roughly constant.

The whole population of the inhabitants of Slovenia
was divided into segments relevant to the model. General
population is, for instance, divided into the following six
segments: non-active population, which mainly consists
of pre-school and primary school children; secondary
school pupils, students, working people, unemployed,
and retired persons. Military segments are treated
separately from the general population because their
relatively small size does not affect the dynamics of the
general population.

The total number of military segments is 120, which
makes the total number of segments equal to 126. Of
course, this is not the only possibility to model our

292 Informatica 32 (2008) 289–297 D. Škulj et al.

segments. If the general segments were omitted, for
instance, the same effect would be achieved by
adequately modifying the recruitment vector. The
changes in the size of the military segments are
consequences of the following factors:
1 transitions between segments;
2 wastage from the system (retirement…);
3 input from the general population (recruitment);

and
4 input to the general population, which is modelled

as births.
Because of the relatively small size of the military

segments, wastage from the army may be neglected and
treated as wastage from the system even though actually
there may also be transitions to other segments of the
general population. The model assumes a constant level
of annual input to the system, which we assume is the
current birth rate in Slovenia. Slight deviations from this
assumption in the following years would not affect the
model substantially. The size of the whole population
follows general trends in society.

Recruitment into military segments is modelled by
transitions from the general to the military segments. The
model assumes that those transitions are regulated by a
set of rules that do not change often. We adopt the
assumption that the transitions will remain similar to
those observed in the past if regulations do not change.
If, for instance, 10% of officers in a segment were
promoted to a higher rank, we assume that this will
continue in the following years. This assumption is, of
course, sometimes questionable because it is rarely true
that all members of a segment have the same probability
of being promoted. However, the available data did not
allow the modelling of any heterogeneity within the
segments.

The model involves a mixture between the
deterministic and stochastic approaches. We initially start
with stochastic transitions estimated on the base of
historical transitions. These are then mixed with those
transitions that are possible to regulate and are thus
deterministic. Another model with a mixture of
stochastic and deterministic transitions can be found in
Guerry (1993), where only wastage transition
probabilities are modelled as stochastic while promotion
and demotion probabilities are considered constant.

2.2 Attainability and maintainability

The next step after making predictions based on the
model is to exercise structural control i.e. to find
transitions leading to the desired structure after a certain
time period, or at least close to it. Thus we are solving
the attainability problem. Methods of solving
attainability problems have been discussed in the
literature (see e.g. Davies (1973) or Nilakantan and
Raghavendra (2005)), but none of the approaches seems
to completely resolve our specific problem, where the
task is to be accomplished by resetting a certain subset of
transitions within given constraints. This is because not
all transitions can be controlled, while those that can be
controlled are not allowed to be set entirely arbitrarily.

Therefore, it is crucial to determine which transitions can
be changed and to what degree. Once this is determined,
the transitions yielding the best possible result are to be
found. We find a sufficient solution using computer
simulations. The idea behind the simulations is to
generate many possible scenarios by varying the allowed
transitions within the allowed intervals and selecting the
most suitable ones.

A sufficient solution, that is the set of transitions
leading close enough to the aimed structure, is thus
sought within the limits that can be implemented. We
thus first had to find out which transitions are possible to
regulate and to what extent. We acquired this information
in co-operation with the Ministry of Defence, which
provided us with a set of all transitions that can be
controlled and typically the upper bound for each
transition in terms of the maximum ratio of employees
from each segment that can make a transition to another
segment. Typically, the transitions that can be controlled
are promotions. The transitions capable of sufficiently
improving the resulting structure were then sought within
these bounds.

About 500 such transitions were identified and lower
and upper bounds for the transition probabilities were
given. To find optimal transitions within these bounds,
several approaches seem possible. One option is to
decrease transitions to segments with an excess of units
and increase those to segments with deficiencies.
However, changing a single transition also affects other
segments and the effects are difficult to predict
beforehand. Thus it is difficult to determine which
transition probability has to be changed to obtain the
desired result. Also, such an iterative algorithm would to
a large extent depend on various assumptions and
features of a particular example. It would be reasonable
to expect good results with such an approach in a simpler
model where the usual transitions are promotions and
recruitment only; however, this was not the case with our
model. Because of the large number of other possible
transitions this was unsuitable for our model. The other
natural approach is to try to find an acceptable solution
by systematically examining all possible combinations of
transitions within a given range. However, a simple
calculation showed that such an approach would be
impossible to implement in such a large model.

A remaining possibility is Monte Carlo simulations
where, instead of changing transitions systematically,
this is done by randomly changing them within a
particular amount. More precisely, the change of a
particular transition was obtained as

() ,rd+rd+p=p
old

ij

new

ij 22111

where the symbols denote
d1 and d2 are the factors denoting the maximum

amount of the change and
r1 and r2 are random numbers uniformly distributed

over the interval [�0.5, 0.5].
Further, we required that all the changes sum to 0 so

that wastage remains as estimated, since it is an
uncontrollable parameter. Thus, in every step some

THE MODELLING OF MANPOWER BY... Informatica 32 (2008) 289–297 293

transitions are picked and varied randomly, where d1 and
d2 are parameters of the algorithm, as well as the number
of chosen transitions. The process is iterative. If the
matrix obtained in this way leads to a better result, this
new matrix is used again in the next iteration. Some
tuning is, of course, necessary such as determining the
number of transitions to be changed at each time and the
optimal values of the parameters, which depend on the
particular instance. So far we have not done any
systematic analysis of the effects of the parameters on the
efficiency of the algorithm.

It soon turned out that it is impossible to obtain an
exact solution leading to the satisfactory structure. This is
due to many factors such as the set of transitions we are
allowed to change and the amount of changes we are
allowed to make for a particular transition and especially
the short time available to reach the desired structure.
Therefore, we have to satisfy ourselves with a solution
sufficiently near to the required one. The concept of the
best possible solution is thus not unique but depends on
more or less subjective criteria. To illustrate this, suppose
we have two segments with 50 and 500 units targeted,
respectively. Is it better to end up with 60 units in the
first and 490 in the second one, or is it better to have 50
units in the first one and 550 in the second? Clearly, this
depends on what we are trying to achieve. If the main
goal is that absolute deviations from the required sizes of
the segments are as small as possible, the first scenario is
better; however, those in the segment of size 50 are likely
to have more specialised working tasks and therefore it is
probably more important to have a better result in this
segment. In the sense of relative deviations from the
target, the second possibility is clearly better. Thus,
another possibility would be to minimise relative
deviations from the optimal structure. But this would
clearly be again suboptimal. It is difficult to say in
general where in the middle is “the right” criterion.

We have some general requirements of optimality,
such as:

• Big deviations in one segment are less
satisfactory than a large number of smaller ones,
even though they sum equally.

• In larger segments bigger absolute deviations
are allowed than in smaller ones.

A criterion satisfying the above requirements is
expressed through a mathematical function. A function
satisfying those criteria is, for instance, the following
one:

()
,

C+x

xx

i0

i0i
∑

−
2

In the above function the symbols denote the
following:

• xi: the size of the ith segment as a result of a
given scenario;

• xi0: target size of the ith segment; and
• C: a constant – varying this constant changes

the relative importance of either segments with
a smaller number of units or those with a larger

number of units. A value that turns out as
balanced in our particular case is C=50.

The above loss function may be understood as a
distance function measuring the distance between the
solution achieved in a given scenario and the optimal
solution. The algorithm for attaining the desired
manpower structure thus tries to minimise this distance.

Once the required structure is attained, the task is to
find a strategy to maintain the obtained structure. Our
goal is to solve it in a similar manner as the problem of
attainability; that is, by setting the set of controllable
transition to values that would, at least approximately,
maintain the obtained required structure. Here too,
simulations do the task sufficiently. The only
modification from solving the previous task is that we set
the initial and the target structure to be the same and
then, using simulations, try to find transitions that
preserve the structure. Effectively, we are thus seeking a
transition matrix within an allowed set of matrices whose
stationary distribution is the required distribution. We
therefore call the resulting transitions stationary
transitions.

3 Preparation of the data

3.1 Input data and population segments

The first phase of the analysis included the
identification of segments from the available data. The
military segments were identified on the basis of the
administrative titles of employees, by regarding
employees holding the same administrative title as
members of the same military segment. The Ministry
provided us with anonymised data (such as identification
number, period of employment, administrative title,
education etc.) for all employees in the Slovenian armed
forces and the administration of the Ministry of Defence
in the period between 1 January 1997 and 31 August
2006.

The most demanding task was estimating the
transitions between the segments. They were calculated
on the basis of past transitions identified from the data on
employees in the Slovenian armed forces. This was
possible thanks to the accurate manpower data of the
Ministry of Defence.

In the data, every employee’s transition from one
segment to another and every extension of the
employment contract in the same segment was registered
as a new entry with the same identification number, and a
new initial and final date of their employment contract.
From that, transitions between various segments were
calculated for every year in the period. Also, the number
of people in each segment as at 30 June 2007 was
obtained as a basis for calculating projections (as the
initial manpower structure).

3.2 Standardisation of the data

The model requires identifying the employees’
administrative titles (i.e. affiliation to military segments)
for each year in the given period for which data are

294 Informatica 32 (2008) 289–297 D. Škulj et al.

available. An employee’s administrative title usually
does not change more than once a year. Therefore, the
administrative titles were identified on 31 December for
every year in the period between 1 January 1997 and 31

August 2006. The data enable the identification of
administrative titles on this date for the period between
1997 and 2005.

However, the data did not enable us to identify from
which of the six segments of the general population
employees of the Ministry of Defence came from. It was
also impossible to identify into which of the segments of
the general population they went after they left the
Ministry. For this reason, another segment called
“outside” was introduced, which stands for the entire
general population. Thus, transitions from the “outside”
to military segments therefore denote new employments,
while transitions to the segment “outside” from other
segments denote deaths, retirements or terminations of an
employment contract. Consequently, transitions between
military segments and specific segments of the general
population were estimated so that their cumulative effect
at the aggregate level was equal to transitions between
military segments and the segment “outside”.

In the next phase, transitions between segments of
every individual employee in the Slovenian armed forces
and the administration of the Ministry of Defence were
identified on the basis of comparisons between his or her
segment in two consecutive years on 31 December.

Yet it is possible that a person made a transition
more than once a year. In that case, all those transitions
were only registered as a transition between the starting
and ending segment since the person’s segments were
only checked on 31 December.

3.3 Estimating the transition matrix

For each year, the number of people in every
segment and the number of transitions from one segment
to another were counted. The number of transitions from
a particular segment to another one was divided by the
number of people in the starting segment. This gave us
the transition probabilities between the segments for each
year in the period. The average transition probability
between two segments in the period was calculated as a
weighted mean:

,

w

xw

=x
n

=i

i

i

n

=i

i

∑

∑

1

1

where xi denotes the transition probability in a
certain year, and wi the number of people at the start of
the same year.

However, the transitions have changed substantially
in recent years due to changes in legislation and the
process of professionalising the Slovenian armed forces.
Consequently, some of the transitions that were possible
in the past are no longer possible today, and the transition
probabilities have also changed. For those reasons only
the data for the four most recent years, that is for the

period from 31 December 2001 to 31 December 2005,
were used to calculate the average transitions. Also in
order to avoid such problems, the Ministry of Defence
reviewed the transition matrix and marked those
transitions that are no longer possible. The latter were
then assigned the value 0 in the transition matrix, while
the transitions on the diagonal (standing for the share of
people who stay in the same segment each year) were
correspondingly corrected so as to keep the same total
proportion of people remaining in the system. The final
result was transition matrix P with entries pij which
summarise the proportion of employees of segment i that
yearly make the transition to segment j.

The next step is to identify those transitions that can
be regulated by the Ministry of Defence’s personnel
departments. By simulating changes in those transitions
it is possible to identify a transition matrix that leads to
the desired manpower structure in a certain period. The
transitions that can be regulated are, for example,
promotions and new employments. What we want to
know, for instance, is the optimal share of people that
can be promoted from one segment to another, and the
optimal number of people that can be employed within
the segment each year.

4 Results

4.1 Basic model

The results of our simulations show how the
manpower structure will change over the course of time
after 2006 if the future transitions are equal to the
average transitions in the period from 31 December 2001
to 31 December 2005. A comparison of the projected
manpower structure in 2010 and the desired structure
also shows which military segments will face manpower
shortages or surpluses.

The projected number of people in seven selected
military segments (out of 120) in the period from 2007-
20011 and in 2027 according to a continuation of the
transitions observed in the period from 31 December
2001 to 31 December 2005, the desired manpower
structure in 2010 and differences between the desired and
projected structure in 20101 are presented in Table 1.

As can be seen from Table 1, in this scenario the
manpower projection for 2010 differs considerably from
the desired manpower structure: some military segments
(like S1, S3, S4 and S5) will face a manpower shortage,
while others (like S2, S6 and S7) will face manpower
surpluses. The deviations are large in both absolute and
relative numbers (i.e. an absolute deviation in relation to
the desired number of employees in the selected military
segment).

1 The table only contains numbers for the selected
seven military segments since the data for all of the
segments cannot be published due to data protection
reasons. The names of the segments were also
encoded for that reason.

THE MODELLING OF MANPOWER BY... Informatica 32 (2008) 289–297 295

4.2 Attainability

Structural control was exercised on the basis of a
transition matrix containing average transitions between
31 December 2001 and 31 December 2005, and the
manpower structure of the Slovenian armed forces and

the administration of the Ministry of Defence on 30 June
2007. The target year for achieving the desired structure
of 2010 specified by the Ministry of Defence was reset to
2011. By doing so, an additional year was added.
Otherwise, the period for attaining the desired structure
would have been too short. The improvements due to the
structural control are measured in terms of the change in
the loss function described in Section 2.2. It turned out
that about 1,000 transitions could occur and 500 of those
are controllable.

If the transitions in the period from 2007 to 2011
were on average the same as those in the period from 31
December 2001 to 31 December of 2005, the value of the
loss function would be equal to 3,1332. The method of

2 Smaller values are better.

attaining the desired manpower structure was
implemented in the following way. For each iteration
five transitions were randomly chosen among the
controllable transition to be modified using equation (1),
where optimal values of r1 and r2 turn out to be 0.05 and
0.01, respectively. If the resulting matrix leads to a more
desirable structure, the following iteration uses the new

matrix as the initial one. After 200,000 iterations the
value of the loss function stabilises at 283, which clearly
indicates a significant improvement. Increasing the
number of iterations does not yield a much greater
improvement.

The projected number of people in selected military
segments in the period from 2007 to 2011 and in 2027 by
the continuation of transitions for attaining the desired
structure, the desired structure in 2010, and differences
between the desired structure in 2010 and the projected
structure in 2011 are presented in Table 2.

Small differences between the desired structure and
that achieved with the optimised transitions are also
clearly seen in Table 2. The deviations are small in both
absolute and relative numbers: none of the selected
military segments will have a manpower shortage of

Table 2: Attainability of manpower structure for seven selected segments (optimised transitions)

Year Sg1 Sg2 Sg3 Sg4 Sg5 Sg6 Sg7

2007 51 944 700 125 33 488 635

2008 56 909 707 123 44 511 595

2009 59 876 713 127 54 528 588

2010 60 845 720 133 66 543 601

2011 61 816 728 140 77 558 624

2027 42 519 1015 228 294 890 900

Desired 2010 67 853 760 145 81 573 642

Difference (proj.
2011 - desired
2010) -6 -37 -32 -5 -4 -15 -18

Difference in % -9% -4% -4% -3% -5% -3% -3%

Table 1: Manpower structure for seven selected segments by the continuation of average transitions 2001-05

Year Sg1 Sg2 Sg3 Sg4 Sg5 Sg6 Sg7

2007 51 944 700 125 33 488 635

2008 48 966 594 108 39 520 657

2009 46 973 505 97 46 551 692

2010 45 968 430 89 54 584 735

2011 43 953 368 84 61 619 781

2027 25 495 135 133 257 1267 1214

Desired 2010 67 853 760 145 81 573 642

Difference (proj.
2010 - desired 2010) -22 115 -330 -56 -27 11 93

Difference in % -33% 13% -43% -39% -33% 2% 14

296 Informatica 32 (2008) 289–297 D. Škulj et al.

more than 37 people (S2) or 9% (S1), respectively. In
Table 1, on the other hand, the projected number of
employees in the segment (S3) with the largest deviation
from the desired manpower structure faces a manpower
shortage of 330 people or 43% of the desired number of
employees.

4.3 Maintainability

The solution to the attainability problem described
above provides a set of transitions that lead to a structure
sufficiently close to the desired structure in a few years.
It must be stressed that the current structure is quite far
from optimal, which mainly reflects the fact that it
transformed substantially in recent years due to the
change from a conscript to a professional service.
Therefore, to achieve the desired structure in only a few
years the needs for recruitment and promotions tend to be
higher than needed to merely sustain the structure once
the desired structure is reached.

The next important step in exercising structural
control is to find the transitions needed to maintain the
desired structure after it has been reached. The method of
finding such transitions is substantially the same as in the
previous case. We take as an initial distribution the
desired distribution and identify transitions, using
simulations, so that they would preserve the structure.
Even though the problem seems easier than the previous

one, it turns out that it is impossible to sustain the
structure in all of its parts. This indicates that some
transitions prevent the system’s stability. Identifying
those transitions and examining ways to improve the
stability is one of the tasks that still has to be
accomplished.

The projected number of people in the selected
military segments in the period from 2011 to 2015 and in
2031 according to the continuation of stationary
transitions, the desired manpower structure in 2010 and
differences between the desired structure in 2010 and the
projected structure in 2031 are presented in Table 3.

Unlike in Tables 1 and 2, the projected manpower
structure presented in Table 3 was calculated using the
projected manpower structure for 2011 in Table 2 as the

initial structure instead of the manpower structure on 30
June 2007. As can be seen, the projected manpower
structure of the selected segments only slightly deviates
from the desired one, even in 2031: the greatest
manpower shortage does not exceed 26 people or 5%,
respectively (S6).

5 Conclusion
In this paper we presented a case study of applying a

Markov chain model in the Slovenian armed forces.
First, extensive administrative effort was needed to
obtain data on the individual status of all employees for
the 2001-2005 period. We needed an exact assignment
(of each person and for each year) to one of 120 key
military segments (soldier, lieutenant etc.). This then
formed the basis for calculating transition probabilities in
a 120 x 120 matrix. The Markov chain model was then
applied to these data. Considerable gaps were found in
the projected sizes of the segments compared to the
official targets. Of course, experts and decision-makers
were roughly aware of these discrepancies but the results
of the modelling provided much more explicit and
elaborated evidence of the problems related to future
trends.

However, the Markov chain model itself could not
provide an answer as to how to achieve the desired
manpower structure. This problem was successfully

addressed here by simulations. The simulation algorithm
selected a solution closest to the target structure from a
large number of computer-generated scenarios. A
specific loss function was developed for this problem.

The approach described in this paper can be
upgraded in several ways. For planning a smaller number
of selected segments a semi-Markov model could be
developed in which the “age” of the units in the segments
(i.e. the time a person is employed in the segment) is
considered in calculations of more accurate transition
probabilities. Another direction is the implementation of
a time non-homogeneous model instead of a time
homogeneous model; this means that the transition
probabilities could vary over time.

Table 3: Maintainability of manpower structure in seven selected segments in a long run

Year Sg1 Sg2 Sg3 Sg4 Sg5 Sg6 Sg7

2011 61 816 728 140 77 558 624

2012 61 816 728 140 77 556 621

2013 61 816 728 140 77 555 617

2014 62 816 728 139 77 553 615

2015 62 816 728 139 77 551 612

2031 62 813 716 135 77 532 599

Desired 2010 67 853 760 145 81 573 642

Difference (proj.
2031 - proj. 2011) 1 -3 -12 -5 0 -26 -25

Difference in % 2% 0% -2% -4% 0% -5% -4%

THE MODELLING OF MANPOWER BY... Informatica 32 (2008) 289–297 297

The accompanying web application that automated
the above described calculation of manpower projections
also demonstrated to be a very useful tool. The
application used the existing manpower structure and
some type of (assumed) transition matrix to calculate
statistics and trends for past years and projections for the
future.

Acknowledgement

We would like to thank the Slovenian Army for
supporting this project and providing all the required
help. We would also like to thank the four anonymous
referees for their many useful suggestions and comments.

References
[1] Antončič, V.: Enodobni planski račun za velikost in

sestavo, Metodološki zvezki, Vol. 7, 1990, p. 118.
[2] Bartholomew, D.J., Forbes, A.F., McClean, S.I.,

Statistical techniques for manpower planning, John
Wiley & Sons, 1991.

[3] Davies, G. S.: Structural Control in a Graded
Manpower System, Management Science, 1973,
Vol. 20(1), Theory Series, p. 76.

[4] Georgiou, A.C., Tsantas, N.: Modelling recruitment
training in mathematical human resource planning,
Applied Stochastic Models in Business and

Industry, John Wiley & Sons, Ltd. 2002, Vol. 18
(1), p. 53.

[5] Grinold, R.C., Stanford, R.E.: Optimal Control of
Graded Manpower System, Management Science,
1974, Vol. 20 (8), Application Series, p. 1201.

[6] Grinold, R.C., Marshall, K.T.: Manpower Planning

Models, North-Holland Pub Co, 1977.
[7] Gerontidis, I.I.: Stochastic Equilibria in

Nonhomogeneous Markov Population Replacement
Processes, Mathematics of Operations Research,
1994, Vol. 19(1), p. 192.

[8] Guerry, M.A.: The probability of attaining a
structure in a partially stochastic model, Advances

in Applied Probability, 1993. Vol. 25(4), p. 818.
[9] Howard, R.A.: Dynamic Programming and Markov

Processes, The Technology Press of MIT and John
Wiley & Sons, Inc., New York, London, 1960.

[10] Jaquette, D.L., Nelson G.R., Smith R.J., An
Analytic Review of Personnel Models in the
Department of Defense. 1977, RAND.

[11] Lee, H.W.J., Cai, X.Q., Teo, K.L.: An Optimal
Control Approach to Manpower Planning Problem,
Mathematical Problems in engineering, 2001, 7, p.
155.

[12] Li, Y., Chen, J., Cai X.: An integrated staff-sizing
approach considering feasibility of scheduling
decision, Annals of Operations Research, 2007,
Vol. 155 (1), p. 361.

[13] Murty, K.G., Djang P., Butler W., Laferriere R.,
The Army Training Mix Model. Journal of the

Operational Research Society, 1995. Vol. 46(3): p.
294.

[14] Nilakantan, K., Raghavendra, B. G.: Control
aspects in proportionality Markov manpower
systems, Applied Mathematical Modelling, 2005,
Vol. 29(1): p. 85.

[15] Nilakantan, K., Raghavendra, B. G.: Length of
service and age characteristics in proportionality
Markov manpower systems, IMA Journal

Management Mathematics, 2008, Vol. 19, p. 245.
[16] Price, W.L., Martel A., Lewis K.A.: A Review of

Mathematical Models in Human Resource
Planning. OMEGA, 1980. 8(6): p. 639.

[17] Purkiss, C.: Corporate Manpower Planning: a
review of models. European Journal of Operational

Research, 1981. 8(4): p. 315.
[18] Smith, A.R., Bartholomew, D.J.: Manpower

Planning in the United Kingdom: An Historical
Review, Journal of the Operational Research

Society, 1988, Vol. 39(3), p. 235.
[19] Vajda S.: Mathematics of Manpower Planning,

John Wiley & Sons, Chichester, 1978.
[20] Vassiliou, P.-C. G.: On the Limiting Behaviour of

a Non-homogeneous Markov Chain Model in
Manpower Systems. Biometrika, 1981, Vol. 68, p.
557.

[21] Vassiliou, P.-C.G.: The Evolution of the Theory of
Non-Homogeneous Markov Systems. Applied

Stochastic Models and Data Analysis, 1998. 13: p.
159.

[22] Wang, J.: A Review of Operations Research
Applications in Workforce Planning and Potential
Modelling of Military Training, DSTO Systems
Sciences Laboratory, Edinburgh Australia, 2005.

[23] Zanakis, S.H., Maret M.W., A Markovian Goal
Programming Approach to Aggregate Manpower
Planning. Journal of the Operational Research

Society, 1981. 32(1): p. 55.

298 Informatica 32 (2008) 289–297 D. Škulj et al.

 Informatica 32 (2008) 299-306 299

Content-Based Watermarking for Image Authentication Using

Independent Component Analysis

Dr. Latha Parameswaran

Professor, Department of Computer Science & Engineering,

AMRITA University, Coimbatore – 641 105, India

E-mail: lathapcp@yahoo.co.in

Dr. K. Anbumani

Former Director, Karunya School of Computer Science and Technology,

Karunya University, Coimbatore –641114, India

E-mail: anbumani_k@yahoo.co.uk

Keywords: digital watermarking, independent component analysis, discrete cosine transform

Received: September 19, 2007

This paper proposes a novel approach to content-based watermarking for image authentication that is

based on Independent Component Analysis (ICA). In the scheme proposed here, ICA is applied to blocks

of the host image and the resulting mixing matrix represents the features of the image blocks. Frobenius

norm of the mixing matrix is adopted as the content-based feature. This is embedded as the watermark

in a mid-frequency DCT coefficient of the block. This authentication technique is robust against

incidental image processing operations, but detects malicious tampering and correctly locates the

tampered regions.

 Povzetek: Predlagana je nova metoda avtentikacije slik.

1 Introduction
A digital watermark is a piece of information that is

hidden in a multimedia content, in such a way that it is

imperceptible to a human observer, but easily detected by

a computer. The principal advantage is that the

watermark is inseparable from the content [1]. Digital

watermarking is the process of hiding the watermark

imperceptibly in the content. This technique was initially

used in paper and currency as a measure of authenticity.

The primary tool available for data protection is

encryption. Encryption protects content during the

transmission of the data from the sender to receiver.

However, after receipt and subsequent decryption, the

data is no longer protected. Watermarking complements

encryption [1].

Digital Watermarking involves two major phases:

 (i) Watermark embedding, and

 (ii) Watermark extraction.

Digital watermarks can be a pseudo random

sequence or a logo of a company or an image.

Watermark embedding is done in the watermark carriers

such as Discrete Cosine Transform (DCT) or Discrete

Wavelet Transform (DWT), etc of the original data

resulting in watermarked data. The watermarked data

may be compressed to reduce its size, corrupted by noise

during its transmission through a noisy channel. It may

be subjected to other normal image processing operations

such as filtering, histogram modification etc. Also

malicious intruders may tamper the data.

DCT is a widely used technique for watermarking

[1]. Recently ICA is being adopted for watermarking [2]

– [8]. In [2] ICA is applied to the blocks of the host

image and the watermark image. The least-energy

independent components of the host are replaced by the

high-energy independent components of the watermark

image. For watermark extraction the demixing matrices

of both the watermark and the host images are required.

Dan Yu et al. [3] treat the host image, the key image,

and the watermark image as the independent sources.

Embedding is done by weighted addition of the key and

the watermark to the host. For watermark extraction, two

more mixtures are obtained by adding the key and the

watermark using different weights. ICA is then applied to

these mixtures to separate the host, the key, and the

watermark. The host and the key are required for

watermark extraction. In [4] the same procedure as in [3]

has been used. The only difference is in the algorithm

used for ICA.

Ju Liu et al. [5] use ICA for detection of the

watermark which is a random sequence embedded in

low-frequency DCT coefficients. Original DCT

coefficients are required for watermark detection and for

creating a second mixture needed for ICA.

Bounkong et al. [6] apply ICA to each block of the

host image and obtain its independent components. The

watermark is embedded in selected components using

quantization and a modified image block is obtained

300 Informatica 32 (2008) 299–306 L. Parameswaran et al.

from these modified independent components. This is

added to the host image block, obtaining the

watermarked image. In the extraction phase, ICA is

applied to each block obtaining the independent

components. The watermark is then extracted from these

through dequantization.

The technique of creating three mixtures is also

employed in [7] and [8]. While [7] uses upsizing and

downsizing, [8] uses the so-called redundant DWT

(RDWT).

Many authors have worked on content-based

watermarking for image authentication. Li et al. [14]

discuss a content-based watermarking scheme that uses

local features of the image such as edges and zero-

crossings. Their scheme uses a look-up table to embed

the watermark and the same table is required at the

receiver end to extract the watermark.

Content-based watermark is generated based on

salient features of the image either in spatial domain like

edges, texture, fractal dimensions [15] etc. or in a

transform domain such as singular values [16],

eigenvalues [17], etc. Choices of image features vary

with techniques and directly influence the robustness of

the scheme. Some techniques generate a random binary

sequence to embed the watermark based on the features

of the images [18] and [19]. A content-based digital

signature scheme for image authentication has been

presented in [20].

In [21] - [24] a localization based method has been

presented to verify the integrity of the received image. In

these techniques the host image is divided into a number

of disjoint blocks and watermark is embedded in each of

these blocks. To verify the authenticity of the received

image, blockwise authentication has been done.

In [18], [25], [26] image authentication has been

done using content-based watermarks. But these schemes

do not embed the watermark in the image content;

instead embed them in the image header. These

techniques distort the host image prior to watermark

embedding.

In [27] a watermarking technique based on the

quadtree is proposed. This scheme embeds a Gaussian

sequence watermark into low-frequency band of the

wavelet transform. In their technique, watermark is

embedded into visually insensitive pixels in quadtrees.

Most of the above authors embed a specified

watermark. Most have copyright protection as their goal

and require a lot of information about the host image for

watermark extraction. Additional image mixtures are

artificially created and then ICA is used as a blind source

separation technique to separate the host image, the

watermark, and the key.

In the scheme proposed here, a different approach to

the use of ICA is adopted. ICA is used to determine the

mixing matrix which – specifically its Frobenius norm –

represents the content of the host image. No information

about the host is required for watermark extraction. Thus

the proposed scheme is a novel, blind, content-based

watermarking for content authentication that uses ICA

and DCT.

2 Proposed content-based

watermarking using ICA

2.1 Principles of ICA

Principles of ICA are discussed in [9]–[13]. Let x be a

random vector of observations. ICA models the observed

data as: x = As, where the vector s represents the

independent sources that generate the observed data x.

The matrix A is the mixing matrix. Each xj is a linear

combination of the independent source signals. Hence xi

is called the mixed signal. ICA estimates A and s from

given x.

In the context of images, each row is considered as

one observation x. Thus the entire image is denoted as X,

representing all the rows of the image. ICA models an

image X as: X = AS.

In the general case, X is m x n and S is r x n, where

m ≥ r. In other words, the number of observed mixed

signals must be greater than or equal to the number of

independent components. Some significant points of ICA

are:

• Each component sj is independent of every other

component.

• All independent components are non-Gaussian

(with possible exception of one).

• The observation x is assumed centered.

• There is no order specified among the

independent components.

• The independent components can be obtained

from the observations as, s=Wx, where W is

called the demixing matrix, estimated in ICA.

• Each column of the mixing matrix A represents

a feature of the data x.

The last mentioned property is made use of in this

proposed technique using ICA. Each column of the

mixing matrix A represents a feature of the image. So, all

the columns together represent all the features of the

image. In order to get one single quantity to represent the

image, the Frobenius norm of A has been chosen as the

content-based feature that represents the image. The

Frobenius norm of a matrix is the square root of the sum

of the norms of all the columns of A.

The proposed content-based watermarking for blind

authentication uses a hybrid of ICA and DCT. The host

image is divided into small blocks. ICA is applied to

each block and the mixing matrix of the block is

determined. Frobenius norm of the mixing matrix is

computed. This is considered as the content-based

feature of the block. Such features are obtained for all the

blocks of the host image. These constitute the content-

based watermark used for authentication of the image.

In this technique, the watermark is embedded by

replacing the chosen mid-frequency coefficient DCT(p,

q) with a scaled value of the watermark but retaining the

sign of the DCT coefficient, i.e.,

CONTENT-BASED WATERMARKING FOR IMAGE... Informatica 32 (2008) 299–306 301

where w is the content-based watermark. Here the

watermark is the Frobenius norm of a block, which is

always non-negative. The value for α is chosen based on

the statistical details of the DCT coefficients and the

watermark.

Watermark extraction is the reverse of the

embedding process. The received watermarked image is

divided into blocks and ICA is applied to each of them.

The Frobenius norm of the mixing matrix is computed.

DCT of each block is also performed. The watermark

that was embedded is extracted from the chosen mid-

frequency coefficient:

The percentage difference (∆) between the extracted and

the embedded watermarks is computed. If it is high, it

indicates that the image has been tampered. Details of

steps for the three phases of watermarking are given

below

i. Watermark generation,

ii. Watermark embedding, and

iii. Watermark extraction and authentication.

Watermark generation

1. Segment the host image I of size n x n into

blocks of size m x m resulting in K blocks.

2. Perform ICA of each block treating each row of

the block as a vector.

3. Extract the mixing matrix A.

4. Compute the Frobenius norm of the mixing

matrix; this is the content-based watermark w of

the block.

5. Repeat steps 2 – 4 for computing the watermark

for all the blocks. This set forms the watermark,

{ }kwwwW ,...,, 21=

Watermark embedding

1. Perform DCT of each block.

2. Select the mid-frequency coefficient at the

chosen location (p, q) in each block.

3. Replace the chosen coefficient with the

watermark:

4. Perform inverse DCT.

5. Repeat steps 1– 4 for all the blocks.

The resultant is the watermarked image I*.

 Watermark extraction and authentication

1. Perform steps 1–5 of the watermark generation

procedure on the received image I’ and obtain

the computed watermark, .

2. Perform DCT of each block.

3. Extract the embedded watermark from the

chosen DCT coefficient:

4. This set forms the extracted watermark,

5. Calculate the blockwise percentage difference

(∆) between the watermark values w* and w’:

In this scheme the percentage difference of the

values corresponding to each block is used to detect any

change in the block and thereby the authenticity of the

image. If the difference is small – smaller than an

experimentally chosen threshold value – the block and

therefore the entire image is deemed authentic. If the

difference of any block is greater than the threshold, that

block is identified as the tampered block and hence the

image is unauthentic. .

3 Experimental results
The proposed blind content-based watermarking scheme

for image authentication has been tested using Matlab

and Adobe Photoshop. The scheme has been evaluated

on a set of three different categories of 512 x 512 gray

scale images: (i) standard images, (ii) natural images, and

(iii) images created using imaging tools.

Choice of parameters
In order to determine the block size for image

segmentation various block sizes were tried. In [6]

Bounkong has mentioned that choosing a block size is

based on the processing time and relevant features.

Blocks of small size leads to poor performance in

watermarking process and larger blocks demand high

computational time. Hence a trade off between these two

is required to choose the block size. After

experimentation, a block size of 16 x 16 was chosen as it

resulted in better PSNR value, computational time and

better feature representation.

In order to embed the watermark in a suitable

location the proposed technique uses one of the mid-

frequency coefficients. Embedding the watermark in

low-frequency components, results in visual degradation

of the host image. Similarly embedding the watermark

data in high-frequency components is not advisable as

they may be lost during compression. Hence embedding

the watermark in mid-frequency components ensures

robustness.

The mid-frequency coefficient (p, q) in which to

embed the watermark is chosen as the mid-diagonal

coefficient i.e. the location

302 Informatica 32 (2008) 299–306 L. Parameswaran et al.

 For choosing a suitable value for the embedding

strengthα , statistics of the DCT coefficient values at

that mid-diagonal location of all the blocks are obtained,

specifically the standard deviation xα . Similarly the

standard deviation wα is obtained for the watermark.

The value of embedding factor α is determined such

that the watermark values are suitably scaled to have the

same range of variation as that of the DCT coefficients:

 . In this experimentation after computation the

value is α = 0.14.

Threshold for the percentage difference ∆ between

the watermarks has been experimentally determined as

15%. Lower thresholds resulted in false negatives; while

higher thresholds made the technique to be fragile.

The ICA algorithm adopted in this proposed

technique is the fastICA algorithm. This algorithm has

been discussed in [9] and [13].

Quality of the watermarked image
 The proposed content-based watermarking scheme has

been implemented on a set of images of three categories.

The metrics PSNR, Pearson Correlation Coefficient

(PCC), Normalized Cross Correlation (NCC), and Image

Fidelity (IF) are calculated between the host image and

the watermarked image.

The test images after watermarking is shown in Fig.

1. It can be observed that there is no perceptually

noticeable difference in the images due to watermarking.

Numerical values of the performance metrics for the

test images given in Table 1 also corroborate this. PSNR

values range from 96.09 to 102.45, with an average of

97.87 for all the test images, which is quite high. The

other metrics, Pearson Correlation Coefficient (PCC) and

Image Fidelity (IF) are also quite high. This shows that

watermark embedding does not degrade the visual

quality of the image.

CONTENT-BASED WATERMARKING FOR IMAGE... Informatica 32 (2008) 299–306 303

Figure 1: Images after watermarking using the ICA

technique.

Extraction efficacy
The efficiency of the scheme in correctly extracting the

watermark is given by the percentage difference between

the computed and extracted Frobenius norm of the

mixing matrix of the received image blocks. Table 2

gives the highest percentage difference ∆ for some of the

test images. The values are small, ranging from 1.87 to

9.60%, over all the test images. This indicates that the

scheme extracts the embedded watermark accurately.

Table 1: Quality metrics after watermarking using ICA

PSNR IF NCC PCC

Bridge 98.8892 1.0000 1.0000 0.9999

Boy 98.6417 0.9999 1.0000 0.9999

Building 96.7310 0.9999 1.0000 0.9999

Cameraman 97.4249 1.0000 1.0000 0.9999

Clown 98.2414 0.9999 1.0000 0.9999

Couple 96.7900 0.9999 1.0000 0.9999

Jet Plane 98.6468 1.0000 1.0000 0.9999

Lena 98.0096 0.9999 1.0000 0.9999

Living Room 98.7276 1.0000 1.0000 0.9999

Mandrill 98.4030 1.0000 1.0000 0.9998

Peppers 96.0968 0.9999 1.0000 0.9998

Sail Boat 96.4620 1.0000 1.0000 0.9999

Bulb 102.4517 1.0000 1.0000 1.0000

Snow Tree 97.8179 1.0000 1.0000 0.9999

Specs 97.8651 1.0000 1.0000 0.9998

Trees 97.3633 0.9999 0.9999 0.9997

KeyClock 96.2998 1.0000 1.0000 0.9998

SunBark 96.8414 1.0000 1.0000 0.9999

Decor 97.2312 0.9999 0.9999 0.9989

Lamp 96.1245 0.9989 0.9999 0.9978

Average 97.7529 0.9999 1.0000 0.9997

Minimum 96.0968 0.9989 0.9999 0.9978

Maximum 102.4517 1.0000 1.0000 1.0000

Robustness against incidental image processing
Robustness of the proposed scheme against normal signal

processing operations such as compression, noise and

filtering has been experimentally evaluated on all the test

images.

In this proposed watermarking technique the

watermarked image is subjected to three types of

distortions: compression, noise, and filter. Watermarked

image has been compressed using JPEG compression

with different quality factors. Additive white Gaussian

noise (AWGN) and uniform noise has been added to the

watermarked image. Also filtering such as low pass,

sharpening, histogram equalization, and contrast

stretching has been applied on the watermarked image.

Results of the test image Lena is shown in Table 3.

For all these attacks, the values of highest percentage

difference ∆, ranges from 1.25 to 6.45 with an average of

3.23 as given in Table 3. All the percentage differences

all less than the determined threshold 15%, indicating

that there is no tampering.

304 Informatica 32 (2008) 299–306 L. Parameswaran et al.

Table 2: Results after watermark extraction without

attacks using ICA

Image Highest percentage

difference

Bridge 9.1100

Boy 8.3440

Building 8.5009

Cameraman 4.5248

Clown 8.6273

Couple 8.2430

Jet Plane 7.5966

Lena 8.9354

Living Room 9.2842

Mandrill 6.6092

Peppers 7.9915

Sail Boat 8.7662

Bulb 1.9682

Snow Tree 8.7526

Specs 8.2906

Trees 1.8791

KeyClock 9.6035

SunBark 8.2667

Decor 7.2345

Lamp 7.1124

Average
7.4

820

Minimum
1.8

791

Maximum
9.6

035

Similar good performance of robustness of the

proposed scheme has been obtained for other test images

also. For example, Fig. 2 shows the robustness of the

various test images against:

 • JPEG compression medium quality (Quality factor

= 5)

 • AWGN with noise 5%

 • Low pass filter with standard deviation 10.

Table 3: Results after incidental distortions on Lena

using ICA

Attacks Parameters Highest percentage

difference

JPEG

Compression

Maximum Quality Factor

=10

3.5728

High Quality Factor

=8

2.1245

Medium Quality Factor

=5

2.0000

Low Quality Factor

=3

1.9925

Noise

AWGN Percent = 5 6.4512

Uniform Percent = 5 3.1928

Filter

Low pass Standard

Deviation = 10

4.2686

Sharpening - 3.2578

Histogram

Equalization

- 4.2564

Gamma

Correction

Gamma value

= 3

3.2578

Contrast

Stretching

Brightness =

15 Contrast =

15

1.2456

Average
3.238

2

Maximum
6.451

2

Minimum
1.245

6

Figure 2: Robustness of ICA-based technique after

incidental image processing

CONTENT-BASED WATERMARKING FOR IMAGE... Informatica 32 (2008) 299–306 305

Detection of tampering

To demonstrate the ability of the proposed scheme in

locating the blocks that have been intentionally tampered,

the watermarked Lena image has been intentionally

tampered by introducing small patches. In one case, a text

has been placed at the top left corner of Lena, Fig. 3 (a),

and the method correctly located the tampered blocks as

shown in Fig. 3 (b). Patches were introduced at other points

on Lena. In all the cases this technique correctly identified

malicious tampering.

Figure 3: Lena with location of tampered blocks.

Table 4: Results after intentional tamper of Lena using

ICA

Locations of

tamper

Blocks

identified

as tampered

Percentage

difference of

tampered blocks

Top (1,1) and (1,

2)

55 and36

Hat (3, 18), (3,

19),

and (3, 20)

27, 30, and 29

Shoulder (30,51), (30,

52),

(31,53),

(31,51),

 and (31,52)

41, 61, 36, 35, and 31

Opposite to hat (4,63), (4,64)

(5,63), and

(5,64)

31, 69, 32, and 65

4. Conclusion

This paper has discussed a new blind content-based

watermarking scheme for image authentication using

ICA and DCT. The watermark to be embedded is

obtained from the host image itself in terms of the

Frobenius norm of the mixing matrix obtained during

ICA. These are embedded in the mid-frequency DCT

coefficients. The proposed method correctly

authenticates the image even under normal image

processing operations and it correctly detects tampering

and identifies the tampered regions of the image. The

major quality of the watermarked image, this proposed

technique is much superior to the techniques in the

literature. The average PSNR value in the existing

techniques is around 52.45; whereas the average PSNR

value in this proposed ICA based technique is around 97.

In terms of computation time, the ICA based technique

takes a longer time. This is mainly due to the algorithms

used to compute independent components. Exhaustive

experimentation demonstrates the efficacy of the

proposed scheme.

References
[1] Ingermar J. Cox, Matthew L. Miller, and Jeffrey A.

Bloom, Digital Watermarking, Morgan Kaufmann

Publishers, 2002.

[2] Francisco J. Gonzalez-Serrano, Harold. Y. Molina-

Bulla, and Juan J. Murillo- Fuentes,” Independent

component analysis applied to digital image

watermarking,” International Conference on

Acoustic, Speech and Signal Processing (ICASSP),

vol. 3, pp. 1997-2000, May 2001.

[3] Dan Yu, Farook Sattar, and Kai-Kuang Ma,

“Watermark detection and extraction using

independent component analysis method,”

EURASIP Journal on Applied Signal Processing,

vol. 1, pp. 92–104, 2002.

306 Informatica 32 (2008) 299–306 L. Parameswaran et al.

[4] Minfen Shen, Xinjung Zhang, and Lisha Sun, P. J.

Beadle, F. H. Y. Chan, “A method for digital image

watermarking using ICA,” 4th International

Symposium on Independent Component Analysis

and Blind Signal Separation (ICA 2003), Nara,

Japan, April 2003, pp. 209-214.

[5] Ju Liu , Xingang Zhang, Jiande Sun, and Miguel

Angel Lagunas, “A digital watermarking scheme

based on ICA detection,” 4th International

Symposium on Independent Component Analysis

and Blind Signal Separation, (ICA 2003), Nara,

Japan, April 2003, pp. 215-220.

[6] Stephane Bounkong, Boremi Toch, David Saad,

and David Lowe, “ICA for watermarking digital

images,” Journal of Machine Learning Research 4,

pp. 1471-1498, 2003.

[7] Viet Thang Nguyen and Jagdish Chandra Patra,

“Digital image watermarking using independent

component analysis,” PCM 2004, Lecture Notes in

Computer Science 3333, pp. 364-371, Springer-

Verlag, 2004.

[8] Thai Duy Hien, Zensho Nakao, and Yen-Wei

Chen, “Robust multi-logo watermarking by RDWT

and ICA”, Signal Processing, Elsevier, vol. 86, pp.

2981-2993, 2006.

[9] Aapo Hyvarinen, “Survey on Independent

Component Analysis”, Neural Computing Surveys,

vol. 2, pp. 94-128, 1999.

[10] Hyvarinen, Karhunen, and Oja, “Introduction,”

Chapter 1 in Independent Component Analysis,

John Wiley, pp. 1-12, 2001.

[11] Errki Oja, “Independent Component Analysis:

Introduction,” European Meeting on ICA, Vietri

sul Mare, Feb. 21, 2002.

[12] Lucas Parra, “Tutorial on blind source separation

and independent component analysis,” Adaptive

Image and Signal Processing Group, Sarnoff

Corporation, Feb. 9, 2002.

[13] Bogdan Matei, “A review of independent

component analysis technique,” Tutorial, Electrical

and Computer Engineering Department, Rutgers

University, Piscataway, NJ, USA.

[14] Chang-Tsun Li, Der-Chyuan Lou, and Tsung-Hsu

Chen, “Image authentication and integrity

verification via content-based watermarks and a

public key cryptosystem,” Proceedings of

International Conference on Image Processing,

vol. 3, 2000 pp. 694 - 697

[15] Rongrong Ni, Quiqi Ruan, and H.D. Cheng, “Secure

semi-blind watermarking based on iteration

mapping and image features,” Pattern Recognition,

vol. 38, pp. 357-368, 2005.

[16] Herve Abdi, “Singular value decomposition and

generalized singular value decomposition,” in Neil

Salkind (Ed.), Encyclopedia of Measurement and

Statistics, 2007.

[17] Arto Kaarna, Pekka Toivnen, and Kimmo

Mikkonen, “Watermarking spectral images through

PCA transform,” Proceedings of PICS, The Digital

Prography Conference, May 2003, pp. 220-225.

[18] Chai Wah Wu, “On the design of content-based

multimedia authentication systems,” IEEE

Transactions on Multimedia, vol. 4, no.3, pp. 385-

393, September 2002.

[19] Eugene T. Lina, Christine I. Podilchuk, and

Edward J. Delp, “Detection of image alterations

using semi-fragile watermarks,” Proceedings of

SPIE International Conference on Security and

watermarking of Multimedia contents, January

2000.

[20] Marc Schneider and Shih-Fu Chang, “A robust

content based digital signature for image

authentication,” Proceedings of International

Conference on Image Processing, vol. 3,

September 1996, pp. 227-230.

[21] Roberto Caldelli, Franco Bartiloni, and Vito

Cappellini, “Standard metadata embedding in a

digital image,” Proceedings of 14
th

 International

Workshop on Database and Expert Systems

Applications, 2003.

[22] M.G. Albanesi, M. Ferretti, and F. Guerrini, “A

taxonomy for image authentication techniques and

its application to the current state of the art,”

Proceedings of the 11th IEEE International

Conference on Image Analysis and Processing

(ICIAP ’01), 2001.

[23] Phen-Lan Lin, Po-Whei Huang, and An-Wei Peng,

“A fragile watermarking scheme for image

authentication with localization and recovery,”

Proceedings of the IEEE Sixth International

Symposium on Multimedia Software Engineering

(ISMSE’04), 2004.

[24] Huijuan Yang and Alex C. Kot, “Binary image

authentication with tampering localization by

embedding cryptographic signature and block

identifier,” IEEE Signal Processing Letters, vol.

13, no. 12, pp. 741-744, December 2006.

[25] Nasir Memon, Poorvi Vora, Boon-Lock Yeo, and

Minerva Yeung, “Distortion bounded

authentication techniques,” Proceedings of

International Conference on Watermarking and

Multimedia Contents, February 2000.

[26] Chai Wah Wu, “Limitations and requirements of

content-based multimedia authentication systems,”

Proceedings of International Conference of SPIE,

vol. 4314, 2001, pp. 241-252.

[27] Kil-Sang Yoo, Mi-Ae Kim, and Won-Hyung Lee,

“A robust image watermarking technique for JPEG

images using quadtrees,” Lecture Notes in

Computer Science, vol. 3332, pp. 34-41, 2004.

Informatica 32 (2008) 307–317 307

A Distributed Multilevel Ant Colonies Approach

Katerina Taškova, Peter Korošec and Jurij Šilc
Computer Systems Department, Jožef Stefan Institute, Ljubljana, Slovenia
E-mail: katerina.taskova@ijs.si

Keywords: ant-colony optimization, distributed computing, mesh partitioning, multilevel approach

Received: May 20, 2008

The paper presents a distributed implementations of an ant colony optimization metaheuristic for the solu-
tion of a mesh partitioning problem. The usefulness and efficiency of the algorithm, in its sequential form,
to solve that particular optimization problem has already been shown in previous work. In this paper a
straightforward implementations on a distributed architecture is presented and the main algorithmic issues
that had to be addressed are discussed. Algorithms are evaluated on a set of well known graph-partitioning
problems from the Graph Collection Web page.

Povzetek: V sestavku je predstavljena porazdeljena izvedba metahevristične optimizacije s kolonijami
mravelj, ki je uporabljena pri reševanju problema razdelitve mreže.

1 Introduction
Real engineering problems have complex dynamic behav-
ior and one of the widely accepted formalisms for their
modeling are partial differential equations (PDEs). The
fraction of PDEs that have solutions in a closed analyti-
cal form is quite small and in general their solution relies
on numerical approximations. Finite-element method is a
well known numerical method that efficiently solves com-
plex PDEs problems. In order to find an approximation of
an unknown solution function f(x), this method discretizes
the underlying domain into a set of geometrical elements
consisting of nodes. This process is known as meshing.
The value of the function f(x) is then computed for each
of these nodes, and the solutions for the other data points
are interpolated from these values [4].

Generated mesh structures can have large number of
elements, therefore a common approach would involve a
mesh-partitioning task in order to solve the finite-element
method using multiple parallel processors. Consequently,
the mesh-partitioning task aims to achieve minimal inter-
processor communication and at the same time to maintain
a processor workload balance.

Mesh-partitioning problem is a combinatorial optimiza-
tion problem. Namely, it is a special case of the well-
known graph-partitioning problem, which is known to be
a NP -hard and is defined as follows: If G(V, E) de-
notes an undirected graph consisting of a non-empty set
V of vertices and a set E ⊆ V × V of edges, then k-
partition D of G comprises k mutually disjointed subsets
D1, D2, . . . , Dk (domains) of V whose union is V . The
set of edges that connect the different domains of a par-
tition D is called an edge-cut. A partition D is balanced
if the sizes of the domains are roughly the same, i.e., if
b(D) = max1≤i≤k |Di| −min1≤i≤k |Di| ≈ 0. The graph-
partitioning problem is to find a balanced partition with a

minimum edge-cut, denoted by ζ(D).

Employing metaheuristic approach in optimization has
introduced efficient and practical solution of many complex
real-world problems. A variety of heuristic based methods
are used for solving the mesh-partitioning problem as well
[1, 10, 12]. In spite of being very powerful approach, meta-
heuristic can still easily reach the computational time lim-
its for large and difficult problems. Moreover, heuristics do
not guarantee an optimal solution, and in general their per-
formance could depend on the particular problem setting.
An important issue that arises here is not only how to de-
sign/calibrate the algorithm for a maximum performance,
but also how to make it robust in terms of dealing with dif-
ferent types of problems and settings. Parallel processing
is an straightforward approach that addresses both issues,
computational time and robustness.

One relatively new and promising metaheuristic that is
competitive with standard mesh-partitioning tools, such as
Chaco [9], JOSTLE (that has recently been commercialised
and is available under the name of NetWorks), and k-
METIS [11], is known as Multilevel Ant-Colony Algorithm
(MACA) [14]. This method is a nature inspired heuristic
that uses population of agents (artificial ants) mediated by
pheromone trails to find a desired goal, i.e., an ant-colony
optimization algorithm [6] for solving mesh-partitioning
problem. In experimental analysis so far, MACA has per-
formed very well on different size test graph problems [14].
Since it is a population-based algorithm, MACA is inher-
ently suitable for parallel processing on many levels. Mo-
tivated by the good performance of MACA in the previous
work and the possibility to improve it’s performance (com-
putational cost and/or solution quality), in this paper we
discus the result of parallelizing MACA on largest scale,
executing entire algorithm runs concurrently on a multi-
ple instruction stream, multiple data stream (MIMD) ma-

308 Informatica 32 (2008) 307–317 K. Taškova et al.

chine architecture. Explicitly, we present and experimen-
tally evaluate two distributed versions of MACA, the Semi-
Independent Distributed MACA and the Interactive Dis-
tributed MACA approach on a set of well known graph-
partitioning problems from the Graph Partitioning Archive
[8]. Both distributed approaches show comparable or bet-
ter (stable) quality performance. Semi-independent dis-
tributed approach can obtain same or better quality for less
computational time, which is gain on both scales: quality
and cost.

The rest of the paper is organized as follows: Section
2 describes the MACA algorithm for solving the mesh-
partitioning problem. Section 3 outlines possible parallel
strategies and in detail describes the two distributed im-
plementations of MACA. The experimental results are pre-
sented and discussed in Section 4. Conclusions and possi-
ble directions for further work are given in Section 5.

2 The multilevel ant-colony
algorithm

The MACA is an ant-colony algorithm [6] for k-way
mesh (graph) partitioning enhanced with a multilevel tech-
nique [17] for global improvement of the partitioning
method. The MACA is a recursive-like procedure that
combines four basic methods: graph partitioning (the basic
ant-colony optimization metaheuristic), graph contraction
(coarsening), partitioned graph expansion (refinement) and
bucket sorting.

2.1 The basic ant-colony algorithm
The main idea of the ant-colony algorithm for k-way par-
titioning [13] is very simple: We have k colonies of ants
that are competing for food, which in this case represents
the vertices of the graph. Final outcome of ants activities is
stored food in their nests, i.e., they partition the mesh into
k submeshes.

The outline of the core optimization procedure in the
MACA pseudocode is given in Algorithm 1. The algo-
rithm begins with a initialization procedure that performs
a random mapping of the input graph onto a grid, which
represents the place where ants can move, locates the nests
position on the grid and places the ants initially in their
nest locus. While gathering food, the artificial ants per-
form probabilistic movements on the grid in three possible
directions (forward, left and right), based on the pheromone
intensity. When an ant finds food, it picks it up if the quan-
tity of the temporarily gathered food in its nest is below a
specified limit (the capacity of storage is limited in order to
maintain the appropriate balance between domains); other-
wise, the ant moves in a randomly selected direction. The
weight of the food is calculated from the number of the cut
edges created by assigning the selected vertex to the parti-
tion associated with the nest of the current ant. If the food
is too heavy for one ant to pick it up then an ant sends a

help signal (within a radius of a few cells) to its neighbor
coworkers to help it carrying the food to the nest locus. On
the way back to the nest locus an ant deposits pheromone
on the trail that it is making, so the other ants can follow
its trail and gather more food from that, or a nearby, cell.
When an ant reaches the nest locus, it drops the food in the
first possible place around the nest (in a clockwise direc-
tion)and starts a new round of foraging.

Along with foraging food, ants can gather food from
other nests as well. In this case when the food is too heavy
to be picked up, the ant moves on instead of sending a help
signal. In this way the temporary solution is significantly
improved. Furthermore, the algorithm tries to maintain a
high exploration level by restoring cells pheromone inten-
sity to the initial value whenever the pheromone intensity
of a certain cell drops below a fixed value.

2.2 The multilevel framework

The multilevel framework [2] as presented in Algorithm 2
and Fig. 3 combines a level based coarsening strategy to-
gether with a level based refinement method (in reverse
order) to promote faster convergence of the optimization
metaheuristic and solution to a larger problems.

Coarsening is a graph contraction procedure that is iter-
ated L times (on L levels). Adequately, a coarser graph
G`+1(V`+1, E`+1) is obtained from a graph G`(V`, E`)
by finding the largest independent subset of graph edges
and then collapsing them. Each selected edge is collapsed
and the vertices u1, u2 ∈ V` that are at either end of it
are merged into the new vertex v ∈ V`+1 with weight
|v| = |u1| + |u2|. The edges that have not been col-
lapsed are inherited by the new graph G`+1 and the edges
that have become duplicated are merged and their weight
summed. Because of the inheritance the total weight of
the graph remains the same and the total edge weight is re-
duced by an amount equal to the weight of the collapsed
edges, which have no impact on the graph balance or the
edge-cut.

Refinement is a graph expansion procedure that applies
on a partitioned graph G` (partitioned with the ant-colony
algorithm), which interpolates it onto its parent graph
G`−1. Because of the simplicity of the coarsening proce-
dure, the interpolation itself is a trivial task. Namely, if a
vertex v ∈ V` belongs to the domain Di, then after the re-
finement the matched pair u1, u2 ∈ V`−1 that represents
the vertex v, will also be in the domain Di. In this way we
expand the graph to its original size, and on every level ` of
our expansion we run our basic ant-colony algorithm.

Large graph problems and the multilevel process by it-
self induce rapid increase of the number of vertices in a
single cell as the number of levels goes up. To overcome
this problem MACA employs a method, based on the basic
bucket sort idea [7], that accelerates and improves the al-
gorithm’s convergence by choosing the most “promising"
vertex from a given cell. Inside the cell, all vertices with a
particular gain g are put together in a “bucket" ranked g and

A DISTRIBUTED MULTILEVEL ANT COLONIES APPROACH Informatica 32 (2008) 307–317 309

Procedure Ant_Colony_Algorithm
For all ants of colony Do

For all colonies Do
If carrying food Then

If in nest locus Then Drop_Food()
Else Move_to_Nest()
End If

Else If food here Then Pick_Up_Food()
Else If food ahead Then Move_Forward()

Else If in nest locus Then Move_To_Away_Pheromone()
Else If help signal Then Move_To_Help()

Else Follow_Strongest_Forward_Pheromone()
End If

End If
End If

End If
End If

End For
End For

End Ant_Colony_Algorithm.

Figure 1: Basic ant-colony algorithm

Procedure Multilevel_Framework
structure[0] = Initialization()
For ` = 0 To L− 1 Do

structure[` + 1] = Coarsening(structure[`])
End For
For ` = L Downto 0 Do

Solver(structure[`])
If ` > 0 Then

structure[`− 1] = Refinement(structure[`])
End If

End For
End Multilevel_Framework.

Figure 2: Multilevel framework

310 Informatica 32 (2008) 307–317 K. Taškova et al.

all nonempty buckets, implemented as double-linked list of
vertices, are organized in a 2-3 tree. Additionally, MACA
keeps separate 2–3 tree for each colony on every grid cell
that has vertices in order to gain even faster searches.

3 Distributed multilevel ant-colony
approaches

In general, ant-colony optimization algorithms can be par-
allelized on four different levels [5, 15, 16], as follows: (i)
parallelism on colony level, (ii) parallelism on ant level,
(iii) data level parallelization, and (iv) functional paral-
lelization, where each one is differing in granularity and
communication overhead between processors. We will in
brief, in the first subsection, describe all four paralleliza-
tion approaches, making a ground base for introduction of
the proposed Semi-Independent Distributed MACA and In-
teractive Distributed MACA approaches in the second, and
the third subsection, respectively.

3.1 Parallelization strategies
(i) Parallelism on colony level is the most simple coarse-
grained parallelization of the ant-colony optimization al-
gorithms, where the problem is instantiated and solved si-
multaneously on all available processors. Furthermore, if
no communication is required between processors (paral-
lel independent algorithms searches, introduced by Stützle
[16]), then this approach is refereed to as parallel inde-
pendent ant colonies and it is suitable for algorithms that
perform stochastic searches. Otherwise, if colonies, while
searching for food, exchange information at a specified iter-
ation (requires synchronized communication which implies
master/slave implementation), then we refer to this ap-
proach as parallel interactive ant colonies. The communi-
cation cost of the second approach can become very expen-
sive due to the required broadcasting of entire pheromone
structures.

(ii) Parallelism on ant level is the first proposed paral-
lel implementation [3] of an ant-colony optimization algo-
rithm, where each ant (or a group of ants) is assigned a
separate processor to build a solution. This means mainte-
nance of a separate pheromone structures on every proces-
sor and therefore this approach requires a master processor
that will synchronize the work of the rest (slave proces-
sors), including ant-processor scheduling, initializations,
global pheromone updates and producing of the final so-
lution.

(iii) Data level parallelization is a suitable approach for
solving the multi-objective optimization problems, since it
divides the main problem into a number of subproblems
(objectives to optimize) and each one is solved by a colony
on a separate processor.

(iv) Functional parallelization is a parallelization that in-
troduces a concurrent execution of a specified operations
(local search, solution construction, solution evaluation)

performed by a single colony on a master-slave architec-
ture. When local heuristic searches are computationally
expensive, a so-called parallel local searches are the pre-
ferred case. In particular, the assignment of a slave proces-
sor is to refine the solutions received from the master with
local search heuristics, while the master is responsible for a
solution construction, pheromone updates and collection of
the refined solutions. The parallel solution construction is
a second approach that organizes the available slave proces-
sors in two operational groups. Processors in the first one
are responsible for a solution construction, while the sec-
ond group processors are additionally grouped and sched-
uled to refine the corresponding solutions constructed by
the first group processors. The last functional paralleliza-
tion approach is called parallel evaluation of solution ele-
ments. This approach gives best performance in case of a
computationally expensive solution evaluations. Compared
to all aforementioned parallel strategies parallel evaluation
of solution elements is the only approach that does not ex-
ploits parallelism within the metaheuristic algorithm.

An efficient parallelization of a given algorithm depends
mainly on the available computing platform, the underlying
problem and the algorithm itself. If there is a large com-
munication overhead between the processors, then parallel
performance can be degraded. When the algorithms uses
global structures, such as the pheromone matrix or the grid
matrix of 2–3 trees in MACA case, a shared memory sys-
tem would gain on communication (less) over a distributed
memory system. On the other hand, the most common and
cheaper approach in the same time is a parallelization using
distributed memory systems, i.e., MIMD architecture such
as cluster of workstations. Our proposed MACA paral-
lelization assumes distributed memory system as well and
it is implemented on a cluster of workstations.

3.2 The semi-independent distributed
MACA

The Semi-Independent Distributed MACA (SIDMACA) is
basically a distributed MACA approach that allows ex-
change of the best temporal solution at the end of every
level of the multilevel optimization process. This exchange
requires that the parallel executions of MACA instances
on the available processors have to be synchronized once
per level. Namely, the master processor is responsible for
synchronizing the work of all slave processor that execute
a copy of MACA, by managing the exchange information
and communication process (sending commands and con-
firmation, such as Start, Stop, Initialize, Goto New Level,
Best Partition, etc.), while the slave processors have to ex-
ecute the instances of the MACA code, signal when finish
the current level optimization and send the best partition to
the master. When all finish the current level, the master de-
termines the best solution and broadcasts it to the slaves.
In order to proceed with next level optimization, slave pro-
cessors have to first update local memory structures (grid
matrix) and afterwards perform partition expansion (refine-

A DISTRIBUTED MULTILEVEL ANT COLONIES APPROACH Informatica 32 (2008) 307–317 311

K-partition (Graph [L]) = Graph* [L]

K-partition (Refine (Graph* [L]))

K-partition (Refine (Graph* [L-1]))

K-partition (Refine (Graph* [1]))

Coarse (Graph [0])

Coarse (Graph [1])

Coarse (Graph [L-1])

Level 0

Level 1

Level L-1

Level L

Figure 3: The three phases of multilevel k-way graph partitioning.

ment).

3.3 The interactive distributed MACA
The Interactive Distributed MACA (ItDMACA) is based
on the parallel interactive colony approach which, by def-
inition, implies master/slave implementation and synchro-
nized communication. The information exchange between
the colonies across the concurrent processors is initiated
every time a piece of food has been taken or dropped on
a new position. The information about the specific food,
its new position and its owner is part of the message sent
to and received from the master processor when picked up
or dropped food. The master keeps and updates its own lo-
cal grid matrix of temporal food positions (plays the role of
shared memory) in order to maintain normal and consistent
slaves activities.

The master processors is responsible for the synchro-
nized work and communication of the slave processors,
which includes listening, processing and broadcasting of
the incoming clients messages during level optimization.
When all slave processors finish level or run, it collects
the best-level solution, determines and broadcast the global
best-level solution to the slaves and guides them when to
start the refinement procedure and all necessary updates in
order to perform the next level optimization activities or a
new run.

A slave processor executes a single instance of the
MACA code. While optimization executing informs the
master and waits for master’s confirmation on every poten-

tial drop/pick, signals when finishes the current level opti-
mization and send the best partition to the master. In the
meantime, while waiting to go on the next level, it listens
for an eventual changes send by the unfinished clients and
performs the eventual updates on the grid. When the mas-
ter signals that the current level is finished, by sending the
new best temporal solution, the slave processor has to per-
form partition expansion (refinement) in order to start the
next level optimization.

4 Experimental evaluation

The proposed distributed versions of MACA were applied
on a set of well-known graph problems and the results from
their experimental evaluation are presented and discussed
in this section. The section is structured in two subsection.
The first subsection describes the implementation of the
distributed code, the experimental setting and the bench-
mark suite, whereas the second subsection presents and dis-
cusses the evaluation results.

4.1 Setup

Based on the MACA sequential code, both proposed dis-
tributed version, SIDMACA and ItDMACA, were imple-
mented in Borland R© DelphiTM, using TCP/IP protocol for
the server/client communication, based on the open source
library Indy Sockets 10 (which supports clients and servers

312 Informatica 32 (2008) 307–317 K. Taškova et al.

of TCP, UDP and RAW sockets as well as over 100 higher
level protocols).

All experiments were performed on a 8-node cluster con-
nected via a Giga-bit switch, where each node consists of
two AMD OpteronTM1.8-GHz processors, 2GB of RAM,
and Microsoft R©Windows R©XP operating system.

The benchmark graphs used in the experimental analysis
were taken from the Graph Collection Web page [8], and
are described in Table 1.

Graph G(V, E) |V | |E|
grid1 252 476
grid2 3296 6432
crack 10240 30380
U1000.05 1000 2394
U1000.10 1000 4696
U1000.20 1000 9339

Table 1: Benchmark graphs

Number of processors
Parameters 1 2 4 6 8
ants/colony 120 60 30 20 15
iteration/level 600 600 600 600 600
runs 20 20 20 20 20

Table 2: Distribution of ants per colonies and number of
iterations per level w.r.t the number of processors

The total number of ants per colony was 120. As pre-
sented in Table 2, the number of ants per sub-colony is dif-
ferent and depends on the number p of processors, i.e., 1

p
of the total number of ants, while the number of total itera-
tions per level per colony is constant.

All experiments were run 20 times on each graph with
each algorithm and as final results were presented the mean
value (also best and worst values for edge-cut) of the con-
sidered evaluation criteria over all performed runs.

4.2 Results
The results presented in the following tables show the per-
formance of the introduced DMACA approaches on the 2-
partitioning and 4-partitioning graph problem. The qual-
ity of the partitioned graph is described with the edge-cut,
ζ(D), and the balance, b(D). Balance is defined as the dif-
ference (in the number of vertices) between the largest and
the smallest domain.

Beside the quality, the second evaluation criteria is the
effectiveness of the parallel algorithm which is, in our case,
given by the speed-up measure, S, defined as:

S(p) =
tS

tT(p)

and by the relative speed-up measure, Sr, which is defined
as:

Sr(p) =
tT(1)
tT(p)

,

where tS is the time to solve a problem with the sequential
code, tT(1) is time to solve a problem with the parallel
code with the one processor, and tT(p) is time to solve the
same problem with the parallel code on p processors. Note
that S(p) and Sr(p) were calculated based on the average
time values of the 20 runs.

By theory, correct speed-up metric should be calculated
according to the performance (elapsed computational time)
of the best serial code for the underlying algorithm, as de-
fined above and denoted with S(p), whereas in practice this
is usually translated into calculation of the relative speed-
up metric Sr(p), since the best serial code is not available
and writing two codes is not acceptable. In our case the
serial code is available, and the values of both speed-up
metrics are included in the tables with results.

Additionally, for the reason of comparison, in the ta-
bles are given the measured CPU time for the computa-
tion of the obtained solutions, tT, as a triple of the time
spent on pure computations, the time for communication
with the master processor, tC, and the time for internal up-
dates caused by the synchronization, tU. Note that tC and
tU are part of the tT spent for communication and updates,
respectively.

Results in in Table 3 and Table 4 summarize the per-
formance of SIDMACA for solving 2-partitioning and
4-partitioning graph problem, respectively, on the given
graph set.

General observation is that parallel performance of the
system w.r.t speed-up over the serial MACA is poor com-
pared to the theoretical expected speed-up of p when used
p processors, having maximal speed-up of 2.29 (graph
crack , p = 8) in case of 2-partitioning problem and max-
imal speed-up of 2.72 (graph U1000.05 , p = 8) in case of
4-partitioning problem overall considered graphs and par-
allel scenarios (p = 2, 4, 6, 8). For more then 2 proces-
sors employed S > 1 (except for the graph U1000.10 ,
p = 4, k = 4), while for 2-processor parallelization of
the problems is evident speed-down up to 27% in case of
4-partitioning of graph grid2 . On the other side, results on
SIDMACA show overall comparable/improved quality of
the obtained solutions. The best solutions found in case of
2-partitioning are equal or better then the best serial code
produced solutions (except for graph U1000.10 , p = 4
and crack , p = 6). Moreover, the worst solutions found
by SIDMACA are better than the ones from the MACA
on the U1000 graph set and crack graph. When solved
the 4-partitioning problem, best found solution better than
the best ones from the serial code are observed for graphs:
grid2 , U1000.05 and U1000.10 . The remark on the bet-
ter quality of the worst case found solutions is confirmed
in case of graphs U1000.10 , U1000.10 and partially for
graphs grid2 , U1000.05 and crack .

Correspondingly, Table 5 and Table 6 illustrate the ItD-
MACA performance on the same graph set for the 2- and
4-partitioning graph problems when 2, 4 and 8 processor
employed in parallel. Note that for p = 8 results are avail-
able only for the graphs grid1 , U1000.10 and U1000.20 .

A DISTRIBUTED MULTILEVEL ANT COLONIES APPROACH Informatica 32 (2008) 307–317 313

Quality Time [s] Speed-up
ζ(D) b(D) tT tC S(p) Sr(p)

Graph p best mean worst mean mean mean mean mean

1* 18 18 18 0 9.80 0 1.00
grid1 1 18 18 18 0 10.03 0.10 1.00

2 18 18 18 0 10.41 0.69 0.94 0.96
4 18 18 19 0 10.00 2.67 0.98 1.00
6 18 18 21 0 7.17 1.75 1.37 1.40
8 18 19 21 0 5.60 1.44 1.75 1.79
1* 35 44 68 0 20.37 0 1.00

grid2 1 34 41 68 0 23.81 0.21 1.00
2 35 40 69 0 23.28 1.58 0.88 1.02
4 35 40 69 0 15.86 2.99 1.28 1.50
6 35 41 70 0 11.73 2.51 1.74 2.03
8 35 49 70 0 9.31 2.22 2.19 2.56
1* 1 1 2 0 87.53 0 1.00

U1000.05 1 1 1 3 0 88.80 0.39 1.00
2 1 1 2 0 83.10 1.81 1.05 1.07
4 1 1 1 0 60.86 4.54 1.44 1.46
6 1 1 1 0 42.15 6.09 2.08 2.11
8 1 1 1 0 32.19 6.16 2.72 2.76
1* 50 62 78 1 14.49 0 1.00

U1000.10 1 39 62 73 1 15.03 0.17 1.00
2 40 59 76 1 14.97 1.16 0.97 1.00
4 40 59 71 1 11.88 2.57 1.22 1.27
6 50 61 72 1 8.72 1.95 1.66 1.72
8 57 61 72 1 7.12 1.76 2.04 2.11
1* 221 277 370 8 12.14 0 1.00

U1000.20 1 221 256 337 6 13.03 0.15 1.00
2 219 259 373 7 12.48 0.99 0.97 1.04
4 219 266 369 7 10.67 2.51 1.14 1.22
6 219 288 368 10 7.75 1.75 1.58 1.68
8 219 278 370 9 6.05 1.34 2.01 2.15
1* 185 211 234 1 64.91 0 1.00

crack 1 184 204 277 1 85.02 0.29 1.00
2 184 195 231 0 80.48 6.28 0.81 1.06
4 185 203 246 0 52.25 10.40 1.24 1.63
6 186 202 230 0 39.70 9.25 1.64 2.14
8 185 203 225 0 32.04 8.45 2.03 2.65

* sequential code

Table 3: Experimental results: 2-partitioning problem with SIDMACA

314 Informatica 32 (2008) 307–317 K. Taškova et al.

Quality Time [s] Speed-up
ζ(D) b(D) tT tC S(p) Sr(p)

Graph p best mean worst mean mean mean mean mean

1* 38 39 41 1 18.01 0 1.00
grid1 1 38 39 42 1 19.67 0.08 1.00

2 38 39 41 0 19.38 0.67 0.93 1.01
4 38 39 41 0 18.12 2.72 0.99 1.09
6 38 39 41 0 13.50 1.69 1.33 1.46
8 38 39 41 0 10.42 1.14 1.73 1.89
1* 96 104 118 4 47.38 0 1.00

grid2 1 95 102 111 3 63.08 0.23 1.00
2 94 106 116 3 65.21 4.78 0.73 0.97
4 92 105 123 2 47.96 10.14 0.99 1.32
6 93 106 116 2 35.35 8.18 1.34 1.78
8 93 103 115 2 28.16 6.89 1.68 2.24
1* 9 14 20 3 50.78 0 1.00

U1000.05 1 7 14 22 2 57.88 0.20 1.00
2 9 14 23 2 60.96 8.28 0.83 0.95
4 7 14 21 1 45.15 12.00 1.12 1.28
6 8 13 18 0 36.26 9.99 1.40 1.60
8 7 11 17 0 36.03 11.15 1.41 1.61
1* 95 114 166 3 35.17 0 1.00

U1000.10 1 102 113 133 3 43.09 0.12 1.00
2 98 110 133 2 40.76 2.89 0.86 1.06
4 92 112 163 2 39.03 10.12 0.90 1.10
6 101 113 162 2 27.14 6.64 1.30 1.59
8 91 115 161 3 19.96 4.64 1.76 2.16
1* 485 580 856 6 32.27 0 1.00

U1000.20 1 479 592 838 6 36.77 0.13 1.00
2 485 586 817 6 36.19 1.85 0.89 1.02
4 490 593 687 5 32.29 7.85 1.00 1.14
6 490 632 730 6 22.65 4.70 1.42 1.62
8 491 649 727 8 17.02 3.34 1.90 2.16
1* 373 415 522 15 191.07 0 1.00

crack 1 374 425 496 14 259.03 0.27 1.00
2 377 426 495 11 217.40 14.39 0.88 1.19
4 373 423 506 8 139.52 25.92 1.34 1.86
6 384 431 493 6 109.29 23.66 1.75 2.37
8 378 429 526 6 83.35 18.40 2.29 3.11

* sequential code

Table 4: Experimental results: 4-partitioning problem with SIDMACA

A DISTRIBUTED MULTILEVEL ANT COLONIES APPROACH Informatica 32 (2008) 307–317 315

Quality Time [s] Speed-up
ζ(D) b(D) tT tC tU S(p) Sr(p)

Graph p best mean worst mean mean mean mean mean mean

1* 18 18 18 0 9.80 0 0 1.00
grid1 1 18 18 18 0 44.79 34.45 0.11 1.00

2 18 18 18 0 37.61 17.87 1.54 0.26 1.19
4 18 18 18 0 18.86 8.26 3.01 0.52 2.38
8 18 18 18 0 11.83 5.01 3.00 0.83 3.79
1* 35 44 68 0 20.37 0 0 1.00

grid2 1 35 45 69 0 143.34 118.24 0.29 1.00
2 34 42 68 0 92.74 56.55 9.08 0.22 1.55
4 35 39 53 0 52.29 26.57 13.44 0.39 2.74
1* 1 1 2 0 87.53 0 0 1.00

U1000.05 1 1 1 2 0 463.82 373.45 0.32 1.00
2 1 1 2 0 295.38 190.25 41.64 0.30 1.57
4 1 1 2 0 182.04 90.89 61.65 0.48 2.55
1* 50 62 78 1 14.49 0 0 1.00

U1000.10 1 39 60 76 1 44.47 27.11 0.20 1.00
2 39 63 77 1 30.27 11.54 4.58 0.48 1.47
4 40 59 71 1 21.16 6.63 4.77 0.68 2.10
8 40 59 70 1 14.73 4.45 4.32 0.98 3.02
1* 221 277 370 8 12.14 0 0 1.00

U1000.20 1 219 268 373 7 24.41 11.23 0.15 1.00
2 219 272 371 8 21.83 5.43 2.58 0.56 1.12
4 219 255 368 7 16.48 2.77 3.92 0.74 1.48
8 235 262 308 5 10.65 1.73 3.14 1.14 2.29
1* 185 211 234 1 64.91 0 0 1.00

crack 1 184 191 262 0 312.25 205.08 0.42 1.00
2 184 189 211 0 223.60 95.82 57.03 0.29 1.40
4 184 187 207 0 150.94 48.21 63.33 0.43 2.07

* sequential code

Table 5: Experimental results: 2-partitioning problem with ItDMACA

The results show no speed-up in case of 2-processor
and 4-processor parallelization. Speed-up S ≥ 1 is evi-
dent when 8 processor applied on the graphs for solving
the 4-partitioning problem and for 2-partitioning of graphs
U1000.10 , U1000.20 . Speed-down and low speed-ups are
due to the big amount of time spent on communication
and memory updates (synchronizations) during level op-
timization activities. The performance of ItDMACA w.r.t
the quality of obtained solutions confirms the observation
from the SIDMACA results. More specifically for the 2-
partitioning problem, equal partition solutions in all runs
are obtained for graphs grid1 and U1000.05 , while signifi-
cant improvement is evident for the U1000.10 , and slightly
better solution for the rest of the graphs.

In general, comparable or improved solution quality is
observed in the case of solving the 4-partitioning problem
with ItDMACA as well. For p = 8, we gain speed-up
and (i) better solution for graph U1000.20 , (ii) equal best
found solution for graph grid1 , (iii) comparable solutions
for graph U1000.10 .

As expected, the results on relative speed-up Sr(p) are
better than the speed-up S(p) results. How big this differ-

ence is, is dependent on the size of the problem and algo-
rithm implementation. Consequently, for SIDMACA the
difference is not significant (except for graph grid2 and
crack) compared to the ones in the ItDMACA, which in
case of the grid2 graph yields 7 times higher Sr(p) than
S(p). This difference reveals that ItDMACA suffers from
communication/update overhead, which for specific prob-
lems could be disadvantageous.

Additional experiments are needed in order to confirm
the conclusions drawn from the initial experimental evalu-
ations results, based on small number of processing nodes
and a small set of graphs. There is a large space with pos-
sible directions for further work, such as:

– application on additional new graph problems, spe-
cially large and complex ones,

– try to solve the partitioning problem with more than
8 processors in parallel and find how the number of
processors influences the solution quality and speed-
up,

– shared memory implementation, since distributed im-
plementations suffer from increased communication

316 Informatica 32 (2008) 307–317 K. Taškova et al.

Quality Time [s] Speed-up
ζ(D) b(D) tT tC tU S(p) Sr(p)

Graph p best mean worst mean mean mean mean mean mean

1* 38 39 41 1 18.01 0 0 1.00
grid1 1 38 40 42 0 58.03 38.39 0.28 1.00

2 38 40 43 0 47.97 16.25 1.38 0.38 1.21
4 38 39 41 1 26.45 11.07 3.35 0.68 2.19
8 38 40 43 1 14.00 5.43 2.22 1.29 4.15
1* 96 104 118 4 47.38 0 0 1.00

grid2 1 94 106 116 4 332.74 259.84 0.89 1.00
2 95 103 114 4 210.78 110.65 45.41 0.22 1.58
4 95 105 118 4 132.13 66.09 30.91 0.36 2.52
1* 9 14 20 3 50.78 0 0 1.00

U1000.05 1 9 14 21 3 342.12 278.76 0.62 1.00
2 7 16 33 3 225.56 134.97 37.33 0.23 1.52
4 7 15 22 2 160.29 91.36 38.15 0.32 2.13
1* 95 114 166 3 35.17 0 0 1.00

U1000.10 1 93 116 159 3 79.74 34.02 0.53 1.00
2 96 112 129 3 63.46 17.23 7.32 0.55 1.26
4 98 117 197 5 46.29 8.99 9.70 0.76 1.73
8 98 118 157 3 26.08 5.13 7.34 1.35 3.06
1* 485 580 856 6 32.27 0 0 1.00

U1000.20 1 480 594 888 8 63.64 25.31 0.49 1.00
2 487 583 759 6 51.82 11.07 4.39 0.62 1.22
4 486 594 762 5 36.72 6.65 7.51 0.88 1.73
8 474 584 805 5 24.25 3.52 6.50 1.33 2.62
1* 373 415 522 15 191.07 0 0 1.00

crack 1 372 415 507 15 720.23 401.47 1.11 1.00
2 377 433 496 11 565.13 194.86 150.72 0.34 1.27
4 382 415 492 9 411.00 104.70 197.98 0.46 1.75

* sequential code

Table 6: Experimental results: 4-partitioning problem with ItDMACA

and local memory updates,

– how statistically significant is the difference in the per-
formances of the proposed parallel implementations
among them or/and vs. the sequential MACA algo-
rithm.

5 Conclusions

An efficient parallelization of a given algorithm depends
mainly on the available computing platform, the underlying
problem and the algorithm itself. If there is a large com-
munication overhead between the processors, then parallel
performance can be degraded. When the algorithms uses
global structures, such as the pheromone matrix or the grid
matrix of 2–3 trees in MACA case, a shared memory sys-
tem would gain on communication (less) over a distributed
memory system. On the other hand, the most common and
cheaper approach in the same time is a parallelization using
distributed memory systems, i.e., MIMD architecture such
as cluster of workstations.

In this paper, two distributed MACA versions were pre-

sented, Semi-Independent and Interactive, implemented on
a cluster of workstations. The initial experimental eval-
uations confirms that parallelization efficiency is problem
dependent. Overall, both approaches show comparable or
better (stable) quality performance. While ItDMACA is
more sensitive on the parallel performance efficiency, due
to the synchronization overhead, SIDMACA can obtain
same or better quality for less computational time, which
is gain on both scales: quality and cost.

In order to see how significant is this improvement and
how robust is this approach additional experimental anal-
ysis regarding different problem type (large and complex)
and experiment setup should be performed.

References

[1] A. Bahreininejad, B.H.V. Topping, and A.I. Khan.
Finite Element Mesh Partitioning Using Neural Net-
works. Adv. Eng. Softw., 27(1-2):103–115, 1996.

[2] S.T. Barnard and H.D. Simon. A Fast Multilevel
Implementation of Recursive Spectral Bisection for

A DISTRIBUTED MULTILEVEL ANT COLONIES APPROACH Informatica 32 (2008) 307–317 317

Partitioning Unstructured Problems. Concurr. Comp.-
Pract. E., 6(2):101–117, 1994.

[3] M. Blondi and M. Bondanza. Parallelizzazione di
un Algoritmo per la Risoluzione del Problema del
Commesso Viaggiatore. Master’s thesis, Politecnico
di Milano, 1993.

[4] R.D. Cook, D.S. Malkus, M.E. Plesha, and R.J. Witt.
Concepts and Applications of Finite Element Analy-
sis. John Wiley & Sons, 2001.

[5] M. Dorigo, G. Di Caro. The Ant Colony Opti-
mization Meta-Heuristic. In D. Corne, M. Dorigo,
and F. Glover, editors, New Ideas in Optimization,
McGraw-Hill, 1999.

[6] M. Dorigo. Optimization, Learning and Natural Algo-
rithms. PhD Thesis, Dipartimento di Elettronica, Po-
litecnico di Milano, 1992.

[7] C.M. Fiduccia and R.M. Mattheyses. A Linear Time
Heuristic for Improving Network Partitions. In Proc.
19th IEEE Design Automation Conf., Las Vegas, NV,
1982, pages 175–181.

[8] Graph Collection. wwwcs.uni-paderborn.de/
cs/ag-monien/RESEARCH/PART/graphs.
html.

[9] B. Hendrickson and R. Leland. A Multilevel Algo-
rithm for Partitioning Graphs. In Proc. ACM/IEEE
Conf. Supercomputing, San Diego, CA, 1995.

[10] P. Kadłuczka and K. Wala. Tabu Search and Genetic
Algorithms for the Generalized Graph Partitioning
Problem. Control Cybern., 24(4)459–476, 1995.

[11] G. Karypis and V. Kumar. Multilevel k-way Partition-
ing Scheme for Irregular Graphs. J. Parallel Distr.
Com., 48(1):96–129, 1998.

[12] B.W. Kernighan and S. Lin. An Efficient Heuristic
Procedure for Partitioning Graph. Bell Sys. Tech. J.,
49(2)291–307, 1970.

[13] A.E. Langham and P.W. Grant. Using Competing Ant
Colonies to Solve k-way Partitioning Problems with
Foraging and raiding strategies. Lect. Notes Comp.
Sc., 1674:621–625, 1999.

[14] P. Korošec, J. Šilc, and B. Robič. Solving the Mesh-
partitioning Problem with an Ant-colony Algorithm.
Parallel Comput., 30(5-6):785–801, 2004

[15] M. Randall and A. Lewis. A Parallel Implementation
of Ant Colony Optimization. J. Parallel Distr. Com.,
62(9):1421–1432, 2002.

[16] T. Stützle. Parallelization Strategies for Ant Colony
Optimization. Lect. Notes Comp. Sc., 1498:722–741,
1998.

[17] C. Walshaw and M. Cross. Mesh Partitioning: A Mul-
tilevel Balancing and Refinement Algorithm. SIAM J.
Sci. Comput., 22(1):63–80, 2001.

318 Informatica 32 (2008) 307–317 K. Taškova et al.

Informatica 32 (2008) 319–326 319

Solving Engineering Optimization Problems with the Simple Constrained
Particle Swarm Optimizer

Leticia C. Cagnina and Susana C. Esquivel
LIDIC, Universidad Nacional de San Luis, San Luis, Argentina
E-mail: lcagnina@unsl.edu.ar

Carlos A. Coello Coello
CINVESTAV-IPN, Mexico D. F., Mexico

Keywords: constrained optimization, engineering problems, particle swarm optimization

Received: July 7, 2008

This paper introduces a particle swarm optimization algorithm to solve constrained engineering optimiza-
tion problems. The proposed approach uses a relatively simple method to handle constraints and a different
mechanism to update the velocity and position of each particle. The algorithm is validated using four stan-
dard engineering design problems reported in the specialized literature and it is compared with respect to
algorithms representative of the state-of-the-art in the area. Our results indicate that the proposed scheme
is a promising alternative to solve this sort of problems because it obtains good results with a low number
of objective functions evaluations.

Povzetek: Članek uvaja za reševanje inženirskih optimizacijskih problemov z omejitvami algoritem za
optimizacijo z roji.

1 Introduction

Engineering design optimization problems are normally
adopted in the specialized literature to show the ef-
fectiveness of new constrained optimization algorithms.
These nonlinear engineering problems have been inves-
tigated by many researchers that used different methods
to solve them: Branch and Bound using SQP [24], Re-
cursive Quadratic Programming [9], Sequential Lineariza-
tion Algorithm [20], Integer-discrete-continuous Nonlin-
ear Programming [11], Nonlinear Mixed-discrete Pro-
gramming [19], Simulated Annealing [27], Genetic Algo-
rithms [26], Evolutionary Programming [8] and, Evolution
Strategies [25] among many others. These types of prob-
lems normally have mixed (e.g., continuous and discrete)
design variables, nonlinear objective functions and nonlin-
ear constraints, some of which may be active at the global
optimum. Constraints are very important in engineering
design problems, since they are normally imposed on the
statement of the problems and sometimes are very hard to
satisfy, which makes the search difficult and inefficient.

Particle Swarm Optimization (PSO) is a relatively re-
cent bio-inspired metaheuristic, which has been found to be
highly competitive in a wide variety of optimization prob-
lems. However, its use in engineering optimization prob-
lems and in constrained optimization problems, in general,
has not been as common as in other areas (e.g., for adjust-
ing weights in a neural network). The approach described
in this paper contains a constraint-handling technique as
well as a mechanism to update the velocity and position of

the particles, which is different from the one adopted by the
original PSO.

This paper is organized as follows. Section 2 briefly dis-
cusses the previous related work. Section 3 describes in
detail our proposed approach. Section 4 presents the ex-
perimental setup adopted and provides an analysis of the
results obtained from our empirical study. Our conclusions
and some possible paths for future research are provided in
Section 5.

2 Literature review

Guo et al. presented a hybrid swarm intelligent algorithm
with an improvement in global search reliability. They
tested the algorithm with two of the problems adopted here
(E02 and E04). Despite they claim that their algorithm is
superior for finding the best solutions (in terms of qual-
ity and robustness), the solution that they found for E02 is
greater than its best known value and for E04 the results ob-
tained are not comparable to ours, because they used more
constraints in the definition of that problem [13].

Shamim et al. proposed a method based on a socio-
behavioral simulation model. The idea behind this ap-
proach is that the leaders of all societies interact among
themselves for the improvement of the society. They tested
their algorithm using three of the problems adopted here
(E01, E02 and E03). The best values reported for these
three problems are close from the optimal known values.
The number of fitness function evaluations was 19,259 for

320 Informatica 32 (2008) 319–326 L.C. Cagnina et al.

E01, 19,154 for E02 and 12,630 for E03 [1].
Mahdavi et al. developed an improved harmony search

algorithm with a novel method for generating new solutions
that enhances the accuracy and the convergence rate of the
harmony search. They used three of the problems adopted
here (E01, E03 and E04) to validate their approach, per-
forming 300,000, 200,000 and 50,000 evaluations, respec-
tively. For E01 and E02, the best values reported are not the
best known values because the ranges of some variables in
E01 are different from those of the original description of
the problem (x4 is out of range), which makes such so-
lution infeasible under the description adopted here. The
value reported by them for E04 is very close to the best
value known [21].

Bernardino et al. hybridized a genetic algorithm embed-
ding an artificial immune system into its search engine, in
order to help moving the population into the feasible re-
gion. The algorithm was used to solve four of the test
problems adopted here (E01, E02, E03 and E04), using
320,000, 80,000, 36,000 and 36,000 evaluations of the ob-
jective functions, respectively. The best values found for
E01, E02 and E04 are close to the best known. For E03 the
value reported is better than the best known, because one
of the decision variables is out of range (x5). The values in
general, are good, although the number of evaluations re-
quired to obtain them is higher than those required by other
algorithms [4].

Hernandez Aguirre et al. proposed a PSO algorithm with
two new perturbation operators aimed to prevent prema-
ture convergence, as well as a new neighborhood struc-
ture. They used an external file to store some particles
and, in that way, extend their life after the adjustment of
the tolerance of the constraints. The authors reference
three algorithms which obtained good results for the prob-
lems adopted in their study: two PSO-based algorithms
and a Differential Evolution (DE) algorithm. One of the
PSO-based approaches compared [16] used three of the
problems adopted here (E01, E02 and E04), performing
200,000 objective function evaluations. The other PSO-
based approach compared [14] was tested with the same set
of problems and the best known values were reached for
E02 and E04 after 30,000 objective function evaluations.
The DE algorithm [22] reported good results with 30,000
evaluations for the four problems. This same number of
evaluations was performed by the algorithm proposed by
Hernandez et al. and their results are the best reported until
now for the aforementioned problems [15].

For that reason, we used these last two algorithms to
compare the performance of our proposed approach. The
DE algorithm [22] will be referenced as “Mezura” and, the
PSO by [15] as “COPSO”.

3 Our proposed approach: SiC-PSO

The particles in our proposed approach (called Simple
Constrained Particle Swarm Optimizer, or SiC-PSO), are

n-dimensional values (continuous, discrete or a combina-
tion of both) vectors, where n refers to the number of de-
cision variables of the problem to be solved. Our approach
adopts one of the most simple constraint-handling meth-
ods currently available. Particles are compared by pairs:
1) if the two particles are feasible, we choose the one with
a better fitness function value; 2) if the two particles are
infeasible, we choose the particle with the lower infeasi-
bility degree; 3) if one particle is feasible and the other
is infeasible, we choose the feasible one. This strategy is
used when the pbest, gbest and lbest particles are chosen.
When an individual is found infeasible, the amount of vi-
olation (this value is normalized with respect to the largest
violation stored so far) is added. So, each particle saves its
infeasibility degree reached until that moment.

As in the basic PSO [10], our proposed algorithm records
the best position found so far for each particle (pbest value)
and, the best position reached by any particle into the
swarm (gbest value). In other words, we adopt the gbest
model. But in previous works, we found that the gbest
model tends to converge to a local optimum very often [7].
Motivated by this, we proposed a formula to update the ve-
locity, using a combination of both the gbest and the lbest
models [5]. Such a formula (Eq. 1) is adopted here as well.
The lbest model is implemented using a ring topology [17]
to calculate the neighborhoods of each particle. For a size
of neighborhood of three particles and a swarm of six parti-
cles (1,2,3,4,5,6), the neighborhoods considered are the fol-
lowing: (1,2,3), (2,3,4), (3,4,5), (4,5,6), (5,6,1) and (6,1,2).
The formula for updating particles is the same that in the
basic PSO and it is shown in Eq. 2.

vid = w(vid + c1r1(pbid − pid)
+ c2r2(plid − pid) (1)
+ c3r3(pgd − pid))

pid = pid + vid (2)

where vid is the velocity of the particle i at the dimension
d, w is the inertia factor [10] whose goal is to balance the
global exploration and the local exploitation, c1 is the per-
sonal learning factor, and c2, c3 are the social learning fac-
tors, r1, r2 and r3 are three random numbers within the
range [0..1], pbid is the best position reached by the par-
ticle i, plid is the best position reached by any particle in
the neighborhood of particle i and, pgd is the best position
reached by any particle in the swarm. Finally, pid is the
value of the particle i at the dimension d.

We empirically found that for some difficult functions,
a previous version of our algorithm could not find good
values. The reason was its diversification of solutions
which kept the approach from converging. In SiC-PSO we
changed the common updating formula (Eq. 2) of the parti-
cles for the update equation presented by Kennedy [18].
In Kennedy’s algorithm, the new position of each parti-
cle is randomly chosen from a Gaussian distribution with
the mean selected as the average between the best position
recorded for the particle and the best in its neighborhood.

SOLVING ENGINEERING OPTIMIZATION PROBLEMS Informatica 32 (2008) 319–326 321

The standard deviation is the difference between these two
values. We adapted that formula adding the global best
(gbest) to the best position of the particle and the best in its
neighborhood. We also changed the way in which the stan-
dard deviation is determined. We use the pbest and, the
gbest instead of the lbest as was proposed by Kennedy. We
determined those changes after several empirical tests with
different Gaussian random generator parameters. Thus, the
position is updated using the following equation:

pi = N

(
pi + pli + pg

3
, |pi − pg|

)
(3)

where pi, pli and pg are defined as before and, N is the
value returned by the Gaussian random generator. SiC-
PSO used Eq. 3 and Eq. 2 for the updating of positions
of the particles. We considered a high probability for se-
lecting Eq. 3 (0.925) over Eq. 2. We chose that probability
after conducting numerous experiments.

4 Parameter settings and analysis of
results

A set of 4 engineering design optimization problems was
chosen to evaluate the performance of our proposed algo-
rithm. A detailed description of the test problems may be
consulted in the appendix at the end of this paper. We
performed 30 independent runs per problem, with a total
of 24,000 objective function evaluations per run. We also
tested the algorithm with 27,000 and 30,000 evaluations of
the objective function, but no performance improvements
were noticed in such cases. Our algorithm used the follow-
ing parameters: swarm size = 8 particles, neighborhood
size = 3, inertia factor w = 0.8, personal learning factor
and social learning factors for c1, c2 and c3 were set to 1.8.
These parameter settings were empirically derived after nu-
merous previous experiments.

Our results were compared with respect to the best re-
sults reported in the specialized literature. Those values
were obtained by Hernandez Aguirre et al. [15] and Mezura
et al. [22]. We reference those results into the tables shown
next as “COPSO” and “Mezura”, respectively. It is impor-
tant remark that COPSO and Mezura algorithms reached
the best values after 30,000 fitness function evaluations,
which is a larger value than that required by our algorithm.
The best values are shown in Table 1 and, the mean and
standard deviations over the 30 runs are shown in Table 2.

The three algorithms reached the best known values for
E01. For E02, SiC-PSO and COPSO reached the best
known, but Mezura reported a value with a precision of
only 4 digits after the decimal point, and the exact value
reached by them is not reported. For E03, SiC-PSO reached
the best value, COPSO reached a value slightly worse
than ours, and Mezura reached an infeasible value. SiC-
PSO and COPSO reached the best value for E04, although
Mezura reported a value that is worse than the best known.
In general, COPSO obtained the best mean values, except

for E03 for which best mean was found by our algorithm.
The lower standard deviation values for E01 and E04 was
obtained by COPSO; for E02 and E03, our SiC-PSO found
the minimum values.

Tables 3, 4, 5 and 6 show the solution vectors of the best
solution reached by SiC-PSO as well as the values of the
constraints, for each of the problems tested.

Best Solution
x1 0.205729
x2 3.470488
x3 9.036624
x4 0.205729
g1(~x) -1.819E-12
g2(~x) -0.003721
g3(~x) 0.000000
g4(~x) -3.432983
g5(~x) -0.080729
g6(~x) -0.235540
g7(~x) 0.000000
f(~x) 1.724852

Table 3: SiC-PSO Solution vector for E01 (welded beam).

Best Solution
x1 0.812500
x2 0.437500
x3 42.098445
x4 176.636595
g1(~x) -4.500E-15
g2(~x) -0.035880
g3(~x) -1.164E-10
g4(~x) -63.363404
f(~x) 6,059.714335

Table 4: SiC-PSO Solution vector for E02 (pressure ves-
sel).

5 Conclusions and Future Work
We have presented a simple PSO algorithm (SiC-PSO)
for constrained optimization problems. The proposed ap-
proach uses a simple constraint-handling mechanism, a
ring topology for implementing the lbest model and a novel
formula to update the position of particles. SiC-PSO had
a very good performance when is applied to several engi-
neering design optimization problems. We compared our
results with respect to those obtained by two algorithms
that had been previously found to perform well in the same
problems. These two algorithms are more sophisticated
than our SiC-PSO. Our algorithm obtained the optimal val-
ues for each of the test problems studied, while performing
a lower number of objective function evaluations. Also, the
performance of our approach with respect to the mean and
standard deviation is comparable with that shown by the

322 Informatica 32 (2008) 319–326 L.C. Cagnina et al.

Prob. Optimal SiC−PSO COPSO Mezura
E01 1.724852 1.724852 1.724852 1.724852
E02 6,059.714335 6,059.714335 6,059.714335 6,059.7143
E03 NA 2,996.348165 2,996.372448 2,996.348094∗

E04 0.012665 0.012665 0.012665 0.012689
∗Infeasible solution. NA Not avaliable.

Table 1: Best results obtained by SiC-PSO, COPSO and Mezura.

Mean St. Dev.
Prob. SiC−PSO COPSO Mezura SiC−PSO COPSO Mezura
E01 2.0574 1.7248 1.7776 0.2154 1.2E-05 8.8E-02
E02 6,092.0498 6,071.0133 6,379.9380 12.1725 15.1011 210.0000
E03 2,996.3482 2,996.4085 2,996.3480∗ 0.0000 0.0286 0.0000∗

E04 0.0131 0.0126 0.0131 4.1E-04 1.2E-06 3.9E-04
∗Infeasible solution.

Table 2: Means and Standard Deviations for the results obtained.

Best Solution
x1 3.500000
x2 0.700000
x3 17
x4 7.300000
x5 7.800000
x6 3.350214
x7 5.286683
g1(~x) -0.073915
g2(~x) -0.197998
g3(~x) -0.499172
g4(~x) -0.901471
g5(~x) 0.000000
g6(~x) -5.000E-16
g7(~x) -0.702500
g8(~x) -1.000E-16
g9(~x) -0.583333
g10(~x) -0.051325
g11(~x) -0.010852
f(~x) 2,996.348165

Table 5: SiC-PSO Solution vector for E03 (speed reducer).

other algorithms. Thus, we consider our approach to be a
viable choice for solving constrained engineering optimiza-
tion problems, due to its simplicity, speed and reliability.
As part of our future work, we are interested in exploring
other PSO models and in performing a more detailed statis-
tical analysis of the performance of our proposed approach.

Appendix: Engineering problems

Formulating of the engineering design problems used to
test the algorithm proposed.

Best Solution
x1 0.051583
x2 0.354190
x3 11.438675
g1(~x) -2.000E-16
g2(~x) -1.000E-16
g3(~x) -4.048765
g4(~x) -0.729483
f(~x) 0.012665

Table 6: SiC-PSO Solution vector for E04 (ten-
sion/compression spring).

E01: Welded beam design optimization
problem
The problem is to design a welded beam for minimum
cost, subject to some constraints [23]. Figure 1 shows the
welded beam structure which consists of a beam A and
the weld required to hold it to member B. The objective is
to find the minimum fabrication cost, considerating four
design variables: x1, x2, x3, x4 and constraints of shear
stress τ , bending stress in the beam σ, buckling load on the
bar Pc, and end deflection on the beam δ. The optimization
model is summarized in the next equation:

Minimize:

f(~x) = 1.10471x1
2x2 + 0.04811x3x4(14.0 + x2)

subject to:
g1(~x) = τ(~x)− 13, 600 ≤ 0

g2(~x) = σ(~x)− 30, 000 ≤ 0

g3(~x) = x1 − x4 ≤ 0

g4(~x) = 0.10471(x1
2) + 0.04811x3x4(14 + x2)− 5.0 ≤ 0

g5(~x) = 0.125− x1 ≤ 0

g6(~x) = δ(~x)− 0.25 ≤ 0

SOLVING ENGINEERING OPTIMIZATION PROBLEMS Informatica 32 (2008) 319–326 323

g7(~x) = 6, 000− Pc(~x) ≤ 0

with:

τ(~x) =

√
(τ ′)2 + (2τ ′τ ′′)

x2

2R
+ (τ ′′)2

τ ′ =
6, 000√
2x1x2

τ ′′ =
MR

J

M = 6, 000
(
14 +

x2

2

)

R =

√
x2

2

4
+

(x1 + x3

2

)2

J = 2

{
x1x2

√
2

[
x2

2

12
+

(x1 + x3

2

)2
]}

σ(~x) =
504, 000

x4x3
2

δ(~x) =
65, 856, 000

(30× 106)x4x3
3

Pc(~x) =
4.013(30× 106)

√
x32x46

36

196

1−

x3

√
30×106

4(12×106)

28

with 0.1 ≤ x1, x4 ≤ 2.0, and 0.1 ≤ x2, x3 ≤ 10.0.
Best solution:

x∗ = (0.205730, 3.470489, 9.036624, 0.205729)

where f(x∗) = 1.724852.

Figure 1: Weldem Beam.

E02: Pressure Vessel design optimization
problem
A compressed air storage tank with a working pressure of
3,000 psi and a minimum volume of 750 ft3. A cylindrical
vessel is capped at both ends by hemispherical heads (see
Fig. 2). Using rolled steel plate, the shell is made in two
halves that are joined by teo longitudinal welds to form a
cylinder. The objective is minimize the total cost, including
the cost of the materials forming the welding [24]. The de-
sign variables are: thickness x1, thickness of the head x2,
the inner radius x3, and the length of the cylindrical section

of the vessel x4. The variables x1 and x2 are discrete val-
ues which are integer multiples of 0.0625 inch. Then, the
formal statement is:
Minimize:

f(~x) = 0.6224x1x3x4 + 1.7781x2x3
2 + 3.1661x1

2x4

+ 19.84x1
2x3

subject to:

g1(~x) = −x1 + 0.0193x3 ≤ 0

g2(~x) = −x2 + 0.00954x3 ≤ 0

g3(~x) = −πx3
2x4

2 − 4

3
πx3

3 + 1, 296, 000 ≤ 0

g4(~x) = x4 − 240 ≤ 0

with 1 × 0.0625 ≤ x1, x2 ≤ 99 × 0.0625, 10.0 ≤ x3, and
x4 ≤ 200.0.

Best solution:

x∗ = (0.8125, 0.4375, 42.098446, 176.636596)

where f(x∗) = 6, 059.714335.

Figure 2: Pressure Vessel.

E03: Speed Reducer design optimization
problem
The design of the speed reducer [12] shown in Fig. 3, is
considered with the face width x1, module of teeth x2,
number of teeth on pinion x3, length of the first shaft
between bearings x4, length of the second shaft between
bearings x5, diameter of the first shaft x6, and diameter
of the first shaft x7 (all variables continuous except x3

that is integer). The weight of the speed reducer is to
be minimized subject to constraints on bending stress of
the gear teeth, surface stress, transverse deflections of the
shafts and stresses in the shaft. The problem is:

Minimize:

f(~x) = 0.7854x1x2
2(3.3333x2

3 + 14.9334x3 − 43.0934)

− 1.508x1(x
2
6 + x2

7) + 7.4777(x3
6 + x3

7)

+ 0.7854(x4x
2
6 + x5x

2
7)

subject to:
g1(~x) =

27

x1x2
2x3

− 1 ≤ 0

324 Informatica 32 (2008) 319–326 L.C. Cagnina et al.

g2(~x) =
397.5

x1x2
2x

2
3

− 1 ≤ 0

g3(~x) =
1.93x3

4

x2x3x4
6

− 1 ≤ 0

g4(~x) =
1.93x3

5

x2x3x4
7

− 1 ≤ 0

g5(~x) =
1.0

110x3
6

√(
745.0x4

x2x3

)2

+ 16.9× 106 − 1 ≤ 0

g6(~x) =
1.0

85x3
7

√(
745.0x5

x2x3

)2

+ 157.5× 106 − 1 ≤ 0

g7(~x) =
x2x3

40
− 1 ≤ 0

g8(~x) =
5x2

x1
− 1 ≤ 0

g9(~x) =
x1

12x2
− 1 ≤ 0

g10(~x) =
1.5x6 + 1.9

x4
− 1 ≤ 0

g11(~x) =
1.1x7 + 1.9

x5
− 1 ≤ 0

with 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤
28, 7.3 ≤ x4 ≤ 8.3, 7.8 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, and
5.0 ≤ x7 ≤ 5.5.

Best solution:

x∗ = (3.500000, 0.7, 17, 7.300000, 7.800000,

3.350214, 5.286683)

where f(x∗) = 2, 996.348165.

Figure 3: Speed Reducer.

5.1 E04: Tension/compression spring design
optimization problem

This problem [2] [3] minimizes the weight of a ten-
sion/compression spring (Fig. 4), subject to constraints of
minimum deflection, shear stress, surge frequency, and
limits on outside diameter and on design variables. There
are three design variables: the wire diameter x1, the mean
coil diameter x2, and the number of active coils x3. The

mathematical formulation of this problem is:

Minimize:
f(~x) = (x3 + 2)x2x

2
1

subject to:

g1(~x) = 1− x3
2x3

7, 178x4
1

≤ 0

g2(~x) =
4x2

2 − x1x2

12, 566(x2x3
1)− x4

1

+
1

5, 108x2
1

− 1 ≤ 0

g3(~x) = 1− 140.45x1

x2
2x3

≤ 0

g4(~x) =
x2 + x1

1.5
− 1 ≤ 0

with 0.05 ≤ x1 ≤ 2.0, 0.25 ≤ x2 ≤ 1.3, and
2.0 ≤ x3 ≤ 15.0.

Best solution:

x∗ = (0.051690, 0.356750, 11.287126)

where f(x∗) = 0.012665.

Figure 4: Tension/Compression Spring.

Acknowledgment
The first and second author acknowledge support from the
ANPCyT (National Agency to Promote Science and Tech-
nology, PICT 2005 and Universidad Nacional de San Luis.
The third author acknowledges support from CONACyT
project no. 45683-Y.

References
[1] S. Akhtar, K. Tai and T. Ray. A Socio-behavioural

Simulation Model for Engineering Design Optimiza-
tion. Eng. Optimiz., 34(4):341–354, 2002.

[2] J. Arora. Introduction to Optimum Design. McGraw-
Hill, 1989.

SOLVING ENGINEERING OPTIMIZATION PROBLEMS Informatica 32 (2008) 319–326 325

[3] A. Belegundu. A Study of Mathematical Program-
ming Methods for Structural Optimization. PhD the-
sis, Department of Civil Environmental Engineering,
University of Iowa, Iowa, 1982.

[4] H. Bernardino, H. Barbosa and A. Lemonge. A Hy-
brid Genetic Algorithm for Constrained Optimization
Problems in Mechanical Engineering. In Proc. IEEE
Congress on Evolutionary Computation (CEC 2007),
Singapore, 2007, pages 646–653.

[5] L. Cagnina, S. Esquivel and C. Coello Coello. A
Particle Swarm Optimizer for Constrained Numerical
Optimization. In Proc. 9th International Conference
on Parallel Problem Solving from Nature (PPSN IX),
Reykjavik, Iceland, 2006, pages 910–919.

[6] L. Cagnina, S. Esquivel and C. Coello Coello. A Bi-
population PSO with a Shake-Mechanism for Solving
Constrained Numerical Optimization. In Proc. IEEE
Congress on Evolutionary Computation (CEC2007),
Singapore, 2007, pages 670–676.

[7] L. Cagnina, S. Esquivel and R. Gallard. Particle
Swarm Optimization for Sequencing Problems: a
Case Study. In Proc. IEEE Congress on Evolutionary
Computation (CEC 2004), Portland, Oregon, USA,
2004, pages 536–541.

[8] Y. Cao and Q. Wu. Mechanical Design Optimiza-
tion by Mixed-variable Evolutionary Programming.
In 1997 IEEE International Conference on Evolution-
ary Computation, Indianapolis, Indiana, USA, 1997,
pages 443–446.

[9] J. Cha and R. Mayne. Optimization with Discrete
Variables via Recursive Quadratic Programming: part
II. J. Mech. Transm.-T. ASME, 111(1):130–136, 1989.

[10] R. Eberhart and Y. Shi. A Modified Particle Swarm
Optimizer. In Proc. IEEE International Conference
on Evolutionary Computation, Anchorage, Alaska,
USA, 1998, pages 69–73.

[11] J. Fu, R. Fenton and W. Cleghorn. A Mixed Integer-
discrete-continuous Programming Method and its
Applications to Engineering Design Optimization.
Eng. Optimiz., 17(4):263–280, 1991.

[12] J. Golinski. An Adaptive Optimization System Ap-
plied to Machine Synthesis. Mech. Mach. Theory,
8(4):419Ű436, 1973.

[13] C. Guo, J. Hu, B. Ye and Y. Cao. Swarm Intelligence
for Mixed-variable Design Optimization. J. Zheijiang
University Science, 5(7):851–860, 1994.

[14] S. He, E. Prempain and Q. Wu. An Improved Particle
Swarm Optimizer for Mechanical Design Optimiza-
tion Problems. Eng. Optimiz., 36(5):585–605, 2004.

[15] A. Hernandez Aguirre, A. Muñoz Zavala, E. Villa Di-
harce and S. Botello Rionda. COPSO: Constrained
Optimization via PSO Algorithm. Technical report
No. I-07-04/22-02-2007, Center for Research in
Mathematics (CIMAT), 2007.

[16] X. Hu, R. Eberhart and Y. Shi. Engineering Opti-
mization with Particle Swarm. In Proc. IEEE Swarm
Intelligence Symposium, Indianapolis, Indiana, USA,
2003, pages 53–57.

[17] J. Kennedy. Small World and Mega-Minds: Effects of
Neighborhood Topologies on Particle Swarm Perfor-
mance. In IEEE Congress on Evolutionary Computa-
tion (CEC 1999), Washington, DC, USA, 1999, pages
1931–1938.

[18] J. Kennedy and R. Eberhart. Bores Bones Particle
Swarm. In Proc. IEEE Swarm Intelligence Sympo-
sium, Indianapolis, Indiana, USA, 2003, pages 80–
89.

[19] H. Li and T. Chou. A Global Approach of Nonlinear
Mixed Discrete Programming in Design Optimiza-
tion. Eng. Optimiz., 22(2):109–122, 1993.

[20] H. Loh and P. Papalambros. A Sequential Lineariza-
tion Approach for Solving Mixed-discrete Nonlin-
ear Design Optimization Problems. J. Mech. Des.-T.
ASME, 113(3):325–334, 1991.

[21] M. Mahdavi, M. Fesanghary and E. Damangir.
An Improved Harmony Search Algorithm for Solv-
ing Optimization Problems. Appl. Math. Comput.,
188(2):1567–1579, 2007.

[22] E. Mezura and C. Coello. Useful Infeasible Solutions
in Engineering Optimization with Evolutionary Al-
gorithms. Lect. Notes Comput. Sc., 3789:652–662,
2005.

[23] K. Ragsdell and D. Phillips. Optimal Design of a
Class of Welded Structures using Geometric Pro-
gramming. J. Eng. Ind., 98(3):1021–1025, 1976.

[24] E. Sandgren. Nonlinear Integer and Discrete Pro-
gramming in Mechanical Design Optimization. J.
Mech. Des.-T. ASME, 112(2):223–229, 1990.

[25] G. Thierauf and J. Cai. Evolution Strategies - Paral-
lelization and Applications in Engineering Optimiza-
tion. In Parallel and Distributed Precessing for Com-
putational Mechanics. B.H.V. Topping (ed.), Saxe-
Coburg Publications, 2000, pages 329–349.

[26] S. Wu and T. Chou. Genetic Algorithms for Non-
linear Mixed Discrete-integer Optimization Problems
via Meta-genetic Parameter Optimization. Eng. Opti-
miz., 24(2):137–159, 1995.

326 Informatica 32 (2008) 319–326 L.C. Cagnina et al.

[27] C. Zhang and H. Wang. Mixed-discrete Nonlinear
Optimization with Simulated Annealing. Eng. Opti-
miz., 21(4):277–291, 1993.

 Informatica 32 (2008) 327-335 327

Balancing Load in a Computational Grid Applying Adaptive,

Intelligent Colonies of Ants

Mohsen Amini Salehi
Department of Software Engineering, Faculty of Engineering,
Islamic Azad University, Mashhad Branch, Iran
E-mail: Amini@mshdiau.ac.ir

Hossein Deldari
Department of Software Engineering, Faculty of Engineering
Ferdowsi University of Mashhad, Iran
E-mail: hd@um.ac.ir

Bahare Mokarram Dorri
Management and Planning Organisation of Khorasan, Mashhad, Iran
E-mail: mokarram@mpo-kh.ir

Keywords: grid computing, load balancing, ant colony, agent-based resource management system (ARMS)

Received: July 1, 2007

Load balancing is substantial when developing parallel and distributed computing applications. The

emergence of computational grids extends the necessity of this problem. Ant colony is a meta-heuristic

method that can be instrumental for grid load balancing. This paper presents an echo system of adaptive

fuzzy ants. The ants in this environment can create new ones and may also commit suicide depending on

existing conditions. A new concept called Ant level load balancing is presented here for improving the

performance of the mechanism. A performance evaluation model is also derived. Then theoretical analyses,

which are supported with experiment results, prove that this new mechanism surpasses its predecessor.

Povzetek: Za porazdeljevanje obremenitev je predlagana nova metoda s kolonijami mravelj.

1 Introduction
A computational grid is a hardware and software
infrastructure which provides consistent, pervasive and
inexpensive access to high end computational capacity. An
ideal grid environment should provide access to all the
available resources seamlessly and fairly.
The resource manager is an important infrastructural
component of a grid computing environment. Its overall
aim is to efficiently schedule applications needing
utilization of available resources in the grid environment.
A grid resource manager provides a mechanism for grid
applications to discover and utilize resources in the grid
environment. Resource discovery and advertisement offer
complementary functions. The discovery is initiated by a
grid application to find suitable resources within the grid.
Advertisement is initiated by a resource in search of a
suitable application that can utilize it. A matchmaker is a
grid middleware component which tries to match
applications and resources. A matchmaker may be
implemented in centralized or distributed ways. As the grid
is inherently dynamic, and has no boundary [1], so the
distributed approaches usually show better results [2] and
are also more scalable. A good matchmaker (broker)
should uniformly distribute the requests, along the grid
resources, with the aid of load balancing methods.

As mentioned in [1], the grid is a highly dynamic
environment for which there is no unique administration.
Therefore, the grid middleware should compensate for the
lack of unique administration.
ARMS is an agent-based resource manager infrastructure
for the grid [3, 4]. In ARMS, each agent can act
simultaneously as a resource questioner, resource provider,
and the matchmaker. Details of the design and
implementation of ARMS can be found in [2]. In this
work, we use ARMS as the experimental platform.
Cosy is a job scheduler which supports job scheduling as
well as advanced reservations [5]. It is integrated into
ARMS agents to perform global grid management [5];
Cosy needs a load balancer to better utilize available
resources. This load balancer is introduced in part 3.
The rest of the paper is organized as follows: Section 2
introduces the load balancing approaches for grid resource
management. In Section 3, ant colony optimization and
self-organizing mechanisms for load balancing are
discussed. Section 4 describes the proposed mechanism.
Performance metrics and simulation results are included in
Section 5. Finally, the conclusion of the article is presented
as well as future work related to this research.

328 Informatica 32 (2008) 327–335 M.A. Salehi et al.

2 Load balancing
Load balancing algorithms are essentially designed to
spread the resources’ load equally thus maximizing their
utilization while minimizing the total task execution time
[7]. This is crucial in a computational grid where the most
pressing issue is to fairly assign jobs to resources. Thus,
the difference between the heaviest and the lightest
resource load is minimized.
A flexible load sharing algorithm is required to be general,
adaptable, stable, scalable, fault tolerant, transparent to the
application and to also induce minimum overhead to the
system [8]. The properties listed above are interdependent.
For example, a lengthy delay in processing and
communication can affect the algorithm overhead
significantly, result in instability and indicate that the
algorithm is not scalable.
The load balancing process can be defined in three rules:
the location, distribution and selection rule [7]. The
location rule determines which resource domain will be
included in the balancing operation. The domain may be
local, i.e. inside the node, or global, i.e. between different
nodes. The distribution rule establishes the redistribution
of the workload among available resources in the domain,
while the selection rule decides whether the load balancing
operation can be performed preemptively or not [7].

2.1 Classification of load balancing

mechanisms
In general, load balancing mechanisms can be broadly
categorized as centralized or decentralized, dynamic or
static [10], and periodic or non-periodic [11].
In a centralized algorithm, there is a central scheduler
which gathers all load information from the nodes and
makes appropriate decisions. However, this approach is not
scalable for a vast environment like the grid. In
decentralized models, there is usually not a specific node
known as a server or collector. Instead, all nodes have
information about some or all other nodes. This leads to a
huge overhead in communication. Furthermore, this
information is not very reliable because of the drastic load
variation in the grid and the need to update frequently.
Static algorithms are not affected by the system state, as
their behaviour is predetermined. On the other hand,
dynamic algorithms make decisions according to the
system state. The state refers to certain types of
information, such as the number of jobs waiting in the
ready queue, the current job arrival rate, etc [12]. Dynamic
algorithms tend to have better performance than static ones
[13].
Some dynamic load balancing algorithms are adaptive; in
other words, dynamic policies are modifiable as the system
state changes. Via this approach, methods adjust their
activities based on system feedback [13].

3 Related works
Swarm intelligence [14] is inspired by the behaviour of
insects, such as wasps, ants or honey bees. The ants, for
example, have little intelligence for their hostile and

dynamic environment [15]. However, they perform
incredible activities such as organizing their dead in
cemeteries and foraging for food. Actually, there is an
indirect communication among ants which is achieved
through their chemical substance deposits [16].
This ability of ants is applied in solving some heuristic
problems, like optimal routing in a telecommunication
network [15], coordinating robots, sorting [17], and
especially load balancing [6, 9, 18, 19].
Messor [20] is the main contribution to the load balancing
context.

3.1 Messor
Messor is a grid computing system that is implemented on
top of the Anthill framework [18].
Ants in this system can be in Search–Max or Search–Min
states. In the Search–Max state, an ant wanders around
randomly until it finds an overloaded node. The ant then
switches to the Search–Min state to find an underloaded
node. After these states, the ant balances the two
overloaded and underloaded nodes that it found. Once an
ant encounters a node, it retains information about the
nodes visited. Other ants which visit this node can apply
this information to perform more efficiently. However,
with respect to the dynamism of the grid, this information
cannot be reliable for a long time and may even cause
erroneous decision-making by other ants.

3.2 Self-Organizing agents for grid load

balancing
In [6], J.Cao et al propose a self-organizing load balancing
mechanism using ants in ARMS. As this mechanism is
simple and inefficient, we call it the “seminal approach”.
The main purpose of this study is the optimization of this
seminal mechanism. Thus, we propose a modified
mechanism based on a swarm of intelligent ants that
uniformly balance the load throughout the grid.
In this mechanism an ant always wanders ‘2m+ 1’ steps to
finally balance two overloaded and underloaded nodes.
As stated in [6], the efficiency of the mechanism highly
depends on the number of cooperating ants (n) as well as
their step count (m). If a loop includes a few steps, then the
ant will initiate the load balancing process frequently,
while if the ant starts with a larger m, then the frequency of
performing load balancing decreases. This implies that the
ant’s step count should be determined according to the
system load. However, with this method, the number of
ants and the number of their steps are defined by the user
and do not change during the load balancing process. In
fact, defining the number of ants and their wandering steps
by the user is impractical in an environment such as the
grid, where users have no background knowledge and the
ultimate goal is to introduce a transparent, powerful
computing service to end users.
Considering the above faults, we propose a new
mechanism that can be adaptive to environmental
conditions and turn out better results. In the next section,
the proposed method is described.

BALANCING LOAD IN A COMPUTATIONAL GRID... Informatica 32 (2008) 327–335 329

4 Proposed method
In the new mechanism, we propose an echo system of
intelligent ants which react proportionally to their
conditions. Interactions between these intelligent,
autonomous ants result in load balancing throughout the
grid.
In this case, an echo system creates ants on demand to
achieve load balancing during their adaptive lives. They
may bear offspring when they sense that the system is
drastically unbalanced and commit suicide when they
detect equilibrium in the environment. These ants care for
every node visited during their steps and record node
specifications for future decision making. Moreover, every
ant in the new mechanism hops ‘m’ steps (the value of ‘m’
is determined adaptively) instead of ‘2m+1’. At the end of
the ‘m’ steps, ‘k’ overloaded are equalized with ‘k’
underloaded nodes, in contrast to one overloaded with one
underloaded according to the previous method. This results
in an earlier convergence with fewer ants and less
communication overhead.
In the next sections, the proposed method is described in
more detail.

4.1 Creating ants
If a node understands that it is overloaded, it can create a
new ant taking only a few steps to balance the load as
quickly as possible. Actually, as referred in [2],
neighbouring agents, in ARMS, exchange their load status
periodically. If a node’s load is more than the average of its
neighbours, for several periods of time, and it has not been
visited by any ant during this time, then the node creates a
new ant itself to balance its load throughout a wider area.
Load can be estimated several ways by an agent to
distinguish whether a node is overloaded or not. For the
sake of comparison with similar methods, the number of
waiting jobs in a node is considered the criterion for load
measurement.

4.2 Decision-making
Every ant is allocated to a memory space which records
specifications of the environment while it wanders. The
memory space is divided into an underloaded list (Min
List) and an overloaded list (Max List). In the former, the
ant saves specifications of the underloaded nodes visited.
In the latter, specifications of the overloaded nodes visited
are saved.
At every step, the ant randomly selects one of the node’s
neighbours.

4.2.1 Deciding algorithm
After entering a node, the ant first checks its memory to
determine whether this node was already visited by the ant
itself or not. If not, the ant can verify the condition of the
node, i.e. overloaded, underloaded or at an equilibrium,
using its acquired knowledge from the environment.
As the load quantity of a node is a linguistic variable and
the state of the node is determined relative to system

conditions, decision making is performed adaptively by
applying fuzzy logic [21, 22].
To make a decision, the ant deploys the node’s current
workload and the remaining steps as two inputs into the
fuzzy inference system. Then, the ant determines the state
of the node, i.e. Max, Avg or Min.
The total average of the load visited is kept as the ant’s
internal knowledge about the environment. The ant uses
this for building membership functions of the node’s
workload, as shown in Figure1.a. The membership
functions of Remain steps and Decide, as the output, are on
the basis of a threshold and are presented in Figures 1.b,
1.c:

Figure 1: Membership functions of fuzzy sets

a) The Node’s Load, b) Remain steps, c) Decide.

The inference system can be expressed as the following
relation:

><→

><><

MaxAvgMinDecide

VAFRmStepHMHMLLLoadRA

,,

,,*,,,:

 (1)

Where L, ML, MH, H in Figure1.a indicates Low, Medium
Low, Medium High, High respectively and F, A, V in
Figure 1.b indicates Few, Average and Very.
Thus, the ant can make a proper decision. If the result is
“Max” or “Min”, the node’s specifications must be added
to the ant’s max-list or the min-list. Subsequently, the
corresponding counter for Max, Min, or Avg increases by
one. These counters also depict the ant’s knowledge about
the environment. How this knowledge is employed is
explained in the next sections.

4.2.2 Ant level load balancing
In the subtle behaviour of ants and their interactions, we
can see that when two ants face each other, they stop for a
moment and touch tentacles, probably for recognizing their
team members. This is what inspired the first use of ant
level load balancing.
With respect to the system structure, it is probable that two
or more ants meet each other on the same node. As
mentioned earlier, each of these ants may gather

F A V

RmStep Decide

Min Avg Max

µ µ

(c)

L ML MH H

Max load
Load

Total avg

(a)

(b)

330 Informatica 32 (2008) 327–335 M.A. Salehi et al.

specifications of some overloaded and underloaded nodes.
The amount of information is not necessarily the same for
each ant, for example one ant has specifications of four
overloaded and two underloaded while the other has two
overloaded and six underloaded nodes in the same
position. In this situation, ants extend their knowledge by
exchanging them. We call this “ant level load balancing.”
In the aforementioned example, after ant level load
balancing of the two co-positions, the ants have
specifications of three overloaded and four underloaded
nodes in their memories. This leads to better performance
in the last step, when the ants want to balance the load of
‘k’ overloaded with ‘k’ underloaded nodes. This operation
can be applied to more than two ants.
Actually, when two or more co-positioned ants exchange
their knowledge, they extend their movement radius to a
bigger domain, thus improving awareness of the
environment. Another idea is taken from the ant’s
pheromone deposits while travelling, which is used by ants
to pursue other ants. This is applied in most ant colony
optimization problems [23, 24]. There is, however, a subtle
difference between these two applications. In the former
the information retained by the ant may become invalid
over time. This problem can be solved by evaporation [23,
24]. Evaporation, however, is not applicable in some cases,
e.g. in the grid, where load information varies frequently.
On the other hand, in the latter application, the knowledge
exchanged is completely reliable.

4.2.3 How new ants are created
In special conditions, particularly when the its life span is
long, the ant’s memory may fill up, even though the ant
may still be encountering nodes which are overloaded or
underloaded. In this situation, if a node is overloaded, the
ant bears a new ant with predefined steps. If encountering
an underloaded node, the ant immediately exchanges the
node’s specification with the biggest load on the list of
underloaded elements. This results in better balancing
performance and adaptability to the environment. Here,
adaptability translates into increasing the number of ants
automatically, whenever there is an abundance of
overloaded nodes.

4.3 Load balancing, starting new

itineration
When its journey ends, the ant has to start a balancing
operation between the overloaded (Max) and underloaded
(Min) elements gathered during its roaming. In this stage,
the number of elements in the Max-list and Min-list is
close together (because of ant level load balancing). To
achieve load balancing, the ant recommends underloaded
nodes to the overloaded nodes and vice versa. In this way,
the amount of load is dispersed equally among
underloaded and overloaded nodes.
After load balancing, the ant should reinitiate itself to
begin a new itineration. One of the fields that must be
reinitiated is the ant’s step counts. However, as stated in
previous sections, the ant’s step counts (m) must be

commensurate to system conditions [6]. Therefore, if most
of the visited nodes were underloaded or in equilibrium,
the ant should prolong its wandering steps i.e. decrease the
load balancing frequency and vice versa. Doing this
requires the ant’s knowledge about the environment. This
knowledge should be based on the number of overloaded,
underloaded and equilibrium nodes visited during the last
itineration.
Because of fuzzy logic power in the adaptation among
several parameters in a problem [22] and the consideration
of the step counts (m) as a linguistic variable, e.g. short,
medium, long, it is rational to use fuzzy logic for
determining the next itineration step counts.
Actually, this is an adaptive fuzzy controller which
determines the next itineration step counts (NextM, for
short) based on the number of overloaded, underloaded and
equilibrium nodes visited, along with the step counts
during the last itineration (LastM). In other words, the
number of overloaded, underloaded and equilibrium nodes
encountered during the LastM indicate the recent condition
of the environment, while the LastM, itself, reports the
lifetime history of the ant.
The membership functions of the fuzzy sets are shown in
Figure 2.

(c)

Figure 2: Membership functions of fuzzy sets
a) Last m, b) Next m, c) count of Max, Min and Average

nodes visited

Where TL, L, M, H, TH shows Too Low, Low, Medium,
High and Too High in Figure 2.a, 2.b and L, M, H
indicates Low, Medium and High in Figure 2.c.
This fuzzy system can be displayed as a relation and a
corresponding function as follows:

µ
 L M H

m
Last m

TL L M H TH Dead

Max m
(b)

TL L M H TH

µ

Last M

Max m

µ

Next M

(a)

BALANCING LOAD IN A COMPUTATIONAL GRID... Informatica 32 (2008) 327–335 331

>

<>→<

><><

DeadTHH

MLTLNextMhmlAvg

mhlMinCounthmlMaxCountRB

,,

,,,,,*

,*,,:

 (2)

∑∏

∑ ∏

= =

= ==
135

1

4

1

135

1

4

1

)(

)(*

)(

r i

iB

r i

iB

r

x

xy

xf

r
i

r
i

µ

µ

 (3)

Where ix
 shows the input data into the system,

r
y is the

centre of the specific membership function declared in

rule r .
)(iB

xr
i

µ
 indicates the membership value of the i

th input in membership functions of the r th rule. In this
inference system, we also have 4 inputs and 135 rules
defined, as stated in (3).
In this system, a large number of underloaded and,
especially, equilibrium elements indicate equilibrium
states. Consequently, the NextM should be prolonged, thus
lowering the load balancing frequency. One can say that, if
an ant’s step counts extend to extreme values, its effect
tends to be zero. Based on this premise, we can conclude
that an ant with overly long step counts does not have any
influence on the system balance. Rather, the ant imposes
its communication overhead on the system. In this
situation, the ant must commit suicide. This is the last ring
of the echo system. Therefore, if the NextM is fired in the
“Dead” membership function, the ant does not start any
new itineration.
Below is a diagram exhibiting the ant’s behaviour in
different environmental conditions. Figure 3.a shows the
relation between the LastM and the amount of overloaded
nodes visited, while Figure 3.b illustrates the relation
between the LastM and the number of equilibrium nodes
visited.

Figure 3: Schematic view of adaptive determining of next

itineration step counts. a) LastM –MaxCount–output,
b)LastM – avgCount–output

5 Performance valuations
In this section, several common statistics are investigated,
which show the performance of the mechanism.

5.1 Efficiency
To prove that the new mechanism increases efficiency, it
should be compared with the mechanism described in [4].
First, we introduce some of the most important criteria in
load balancing:
Let P be the number of agents and Wpk where (p: 1, 2... P)

is the workload of the agent p at step k . The average
workload is:

P

W

W

P

p

pk

k

∑
=

=
1

 (4)
The mean square deviation of Wpk, describing the load
balancing level of the system, is defined as:

P

WW

L

P

p

pkk

k

∑
=

−

=
1

2)(

 (5)

(b)

(a)

332 Informatica 32 (2008) 327–335 M.A. Salehi et al.

Finally, The system load balancing efficiency (e) is
defined as:

k

k

k
C

LL
e

−
= 0

 (6)
Where ek means efficiency at step k and Ck is the total
number of agent connections that have achieved a load
balancing level Lk. To compare the efficiency of these two

mechanisms, we should consider Tradnew kk ee /
.

As L0 indicates the load balancing level at the beginning
of the load balancing process and is also equal in both new
and seminal mechanisms, we shall discuss the value of Lk.
For the sake of simplicity, assume that every node gets to

kW after the balancing process and no longer requires
balancing, i.e.

0=− pkk WW
 (7)

On the other hand, after the k stage, if the memory space
considered for overloaded and underloaded elements is
equal to ‘a’ (a>2), then we have ka elements balanced:

P

WW

L

kap

p

pkk

knew

∑
−

=

−

=
1

2)(

 (8)
While in the seminal approach we have:

P

WW

L

kp

p

pkk

kTrad

∑
−

=

−

=

2

1

2)(

 (9)
If we suppose that a>2, we can conclude:

kaPkP −>− 2 (10)
After the k stages, the difference in the balanced nodes in
these two mechanisms is:

)2(2 −=+−− akkaPaP (11)
Then:

P

WW

P

WW

L

kp

kap

pkk

kap

p

pkk

kTrad

∑∑
−

=

−

=

−

+

−

=

2
2

1

2)()(

 (12)

P

WW

L

kap

p

pkk

knew

∑
−

=

−

=
1

2)(

 (13)

newTrad kk LL > →

1<
Trad

new

k

k

L

L

 (14)
With respect to (14), we have:

2
)(2

0

0
>⇒

−

−
=

Trad

new

Trad

new

Trad

new

k

k

k

k

k

k

e

e

LL

LL

e

e

 (15)
One of the most important parameters in the efficiency of
the new mechanism is the ant’s memory space (a). In an
extreme case, if a=2, then the mechanism resembles the
seminal one, with half steps (S), i.e.

Tradnew SS *21=
 (16)

Consider that memory space (a) is effective if and only if it
can be filled during the ant’s wandering steps. Therefore, if
a increases, then the amount of steps (S) must increase
accordingly to prevent performance degradation. This
means that:

If ∞→a then ∞→S (17)
Increasing S causes a decrease in load balancing frequency
and consequently an increase in convergence time.

Overly long trips also lead to many reserved nodes. At the
same time, there may be other roaming ants looking for
free, unbalanced nodes. On the other hand, expanding the
ant’s memory leads to occupying too much bandwidth as
well as increasing processing time. Actually, there is a
trade-off between the step counts (S) and the memory
allocated to each ant (a).

If a<<S, then the memory allocated expires rapidly and the
ant is compelled to generate new ants. This explodes the
ant population, subsequently augments their
communication and the remaining pheromone and finally
leads to an increase in time. However, as the probability of
balancing every node more than once rises, the load
balancing level falls.
On the other side, if a�S, then the probability of creating
new ants lessens. Subsequently, the ant’s population is
reduced. Cutting down on the ant population results in
faster speed, diminished communication and the
pheromone left by the ants. The final result, however, is
not satisfactory (final load balancing level is high). Due to
the reasons discussed and with respect to several
experiments shown in Figures 4, 5 and Table 1, we deduce
that, in order to satisfy the different parameters mentioned,
it is better to set the allocated memory at about half of the
step counts.

2/Sa ≅ (18)
Experiments achieved with a different memory size
allocated, where S=15 initially, are reported here.

0

2

4

6

8

10

0 10 20

a

L

0

3000

6000

9000

12000

0 10 20

a

T

0

300

600

900

1200

1500

0 5 10 15

a

Ant

Figure 4: Relation between memory allocated to each ant

(a) and a) load balancing level(L) b) time(T) base on
millisecond c) Ant no (Ant), where the Ant initial Step

Counts (S)=1

BALANCING LOAD IN A COMPUTATIONAL GRID... Informatica 32 (2008) 327–335 333

a Time(ms) Level Ant No

5 10274 1.9455 1197

8 4906 3.0363 797

14 971 8.6015 325

Table 1: Relation between ants’ memory size (a) and Ants
with initial Step Counts (S=15).

5.2 Load balancing speed
Adaptively determining the step counts, actually, causes a
differentiation in load balancing frequency over time. In
other words, as time increases, the whole system
approaches convergence and the load balancing frequency
lessens, hence postponing the final convergence time. On
the contrary, the new mechanism imposes less overhead as
the system nears the balance state. In reality, in an
environment such as the grid, attaining final convergence
is impractical because of its inherent dynamism and
vastness. However, if balancing occurs, it would not last
long.
Figure 5 shows a schematic comparison for load balancing
frequency between the new and the seminal mechanism.

0

2000

4000

6000

8000

0 5 10 15

T

F

Trad

New

Figure 5: Comparison between the Seminal (Trad) and the

new method’s load balancing frequency (F).

5.3 Experimental results
Experiments are achieved according to the specifications
of Simorgh mini-grid [25]. This mini-grid will include
different clusters throughout Ferdowsi University.
However, as this mini-grid is under construction now, we
have simulated its behaviour. In this simulation, Agent
system, Workload, and Resources are modelled as follows:
• Agents. Agents are mapped to a square grid. This
simplification has been done in similar works [6, 13]. All
of experiments described later include 400 agents.
• Workload. A workload value and corresponding
distribution are used to characterize the system workload.
The value is generated randomly in each agent.
• Resources. Resources are defined in the same way as
workload.
The first experiment involves total network connections. In
this experiment, as shown in Figure 6.a, ant
communication in the new mechanism is drastically less
than in the seminal approach. This is mainly because every
time an ant wanders ‘S’ steps in the new method, it
balances ‘k’ elements. In the traditional method, however,
the ant wanders ‘2S+1’ steps and then balances only two
elements. Therefore, as seen below, with an equal initial
step count (S=15), the ant in the new mechanism only goes

through 2,000 stages to achieve final convergence, while in
the traditional method, the ant passes 7,000 stages. Figure
6.b illustrates the comparison between a colony of ants
using S=15 and a memory size=7. This figure elucidates
that, in the new mechanism, the communication count goes
flat. This occurs when the step counts enlarge and load
balancing frequency decreases, i.e. in the last seconds.

0

50000

100000

150000

200000

250000

0 5 10 15 20

T(s)

C

New method

Trad

0

200000

400000

600000

0 5 10 15 20

T(s)

C

New Method

Trad

Figure 6: Comparing agent communications (C) between

the new and seminal (Trad) method. Final results using. a)
One ant S=15, a=7 b) a colony of ants, N=220, S=15, a=7

The second experiment focuses on the relation between
load balancing levels and the number of dead ants. As
illustrated in Figure 7, as the number of dead ants rises, the
load balancing level declines, i.e. it approaches final
convergence. This experiment is conducted with different
initial ants. Repeating the experiment with a different
number of initial ants proves that, deploying more ants
would result in better balancing level.

0

10

20

30

40

50

60

70

80

0 200 400 600 800 1000 1200 1400

Dead Ant No

L

init 250

init 200
init 190

init 145

Figure 7: Impact number of created ants (DeadAntNo) on
the load balancing level (L), the experiment achieved with

different numbers of initial ants (init).

(b)

(a)

334 Informatica 32 (2008) 327–335 M.A. Salehi et al.

The third experiment concentrates on the correlation
between an ant’s step counts and the load balancing level.
The average step counts of the swarm over time are used
for measurement. As Figure 8 shows, the step count
increases by approaching convergence. This results in
delay to achieve final convergence.

0

50

100

150

200

250

8 10 12 14 16 18

avg step

L

Figure 8: Relation between average Step count (avgStep)
and load balancing Level (L)

The fourth experiment indicates the effect of proposed load
balancing method on the final job distribution. As
understood from Figure 9, ant level load balancing
produces a better convergence.

0

30

60

90

0 20 40 60 80 100

T

L

with ant level balance

without ant level balance

Figure 9: Comparison between effects of using ant level

load balancing on final balancing level (L) during the time
(T).

It is clear that this load balancing method cannot be
achieved without any cost. As illustrated in Figure 9,
although the proposed method results are better than
previous ones, it consumes more time. We must
acknowledge that the new method enables the ant to obtain
global information even while moving locally.
Furthermore, the validity of the exchanged information is
guaranteed in contrast to using the pheromone, which is
not, even with evaporation.
The fifth experiment presents the efficiency of the new
method in comparison with the seminal approach. Figure
10 illustrates that the new method, with different initial
steps and different memory allocated, is more efficient
than the seminal one.
On the other hand, comparing the new method’s
efficiencies, with different initial step counts(S) and
different memory allocated shows the effect of the trade-
off in determining the memory allocated to each ant (a). In
this case, if the memory allocated is high, e.g. a=10, then

the probability of creating new ants decreases. So, the
probability of visiting a node by different ants is decreased
which causes a fall in efficiency. In the other way, as
mentioned earlier, low values for memory allocated (a),
e.g. a=5, increase the ant population and consequently their
interconnections (Ck). This again results in decreasing the
final efficiency in regard to (6).
Consider that stages do not have a completely standard
meaning in our method. Thus, we think of periods of time
as stages (k).

0

0.002

0.004

0.006

0.008

0.01

0.012

0 2 4 6 8 10T(s)

e

S=15, a=7

Traditional

S=20, a=10

S=10, a=5

.
Figure 10: Efficiency (e) comparison between the

traditional and the new method with different step counts
and memory allocated, during the time (T).

6 Conclusion
As described in the previous sections, equalizing the load
of all available resources is one of the most important
issues in the grid. In this way, with respect to grid
specifications, an echo system of autonomous, rational and
adaptive ants is proposed to meet the challenges of load
balancing. There are great differences between the
proposed mechanism and similar mechanisms which
deploy ant colony optimization. We believe that ant level
load balancing is the most important difference.
In future work, we plan to extend the applications of ant
level load balancing in addition to implementing this
mechanism in a more realistic environment. Promoting ant
intelligence and adaptation, establishing billing contracts
among resources as they exchange customer loads, as well
as overcoming security concerns are other future work.

References

[1] F. Berman, Anthony J.G. Hey, Geoffrey C. Fox
(2003) Grid Computing Making the Global

Infrastructure a Reality WILEY SERIES IN
COMMUNICATIONS NETWORKING &
DISTRIBUTED SYSTEMS.

[2] J. Cao, S. A. Jarvis, S. Saini, D. J. Kerbyson, and G.
R. Nudd (2002) ARMS: an Agent-based Resource

Management System for Grid Computing, Scientific

BALANCING LOAD IN A COMPUTATIONAL GRID... Informatica 32 (2008) 327–335 335

Programming, Special Issue on Grid Computing Vol.
10, No. 2 pp. 135-148.

[3] M. Baker, R. Buyya, and D. Laforenza (2002) Grids

and Grid Technologies for Wide-area Distributed

Computing, Software: Practice and Experience Vol.
32, No. 15 pp. 1437-1466.

[4] J. Cao, D. J. Kerbyson, G. R. Nudd (2001)
Performance evaluation of an agent-based resource

management infrastructure for grid computing in
Proc. 1st IEEE Int. Symp. on Cluster Computing and
the Grid, pp. 311-318.

[5] J. Cao and F. Zimmermann (2004) Queue Scheduling

and Advance Reservations with COSY in Proc. of
18th IEEE Int. Parallel and Distributed Processing
Symp pp. 120-128.

[6] J. Cao (2004) Self-Organizing Agents for Grid Load

Balancing Proc. of the 5th IEEE/ACM Int. Workshop
on Grid Computing, pp.168-176.

[7] A. Y. Zomaya, and Y. The (2001) Observations on

using genetic algorithms for dynamic load-balancing,
IEEE Trans. on Parallel and Distributed Systems,
Vol. 12, No. 9, pp. 899-911.

[8] O. Remien, J. Kramer (1992) Methodical analysis of

adaptive load sharing algorithms, IEEE Trans. on
Parallel and Distributed Systems, Vol. 3, No: 11, pp.
747-760.

[9] Bing Qi Chunhui Zhao (2007) Ant Algorithm Based
Load Balancing for Network Sessions, ICNC 2007,
3th Int. Conference on Natural Computation, pp. 771-
775.

[10] Y. Lan, T. Yu (1995) A Dynamic Central Scheduler

Load-Balancing Mechanism, Proc. 14th IEEE Conf.
on Computers and Communication, Tokyo, Japan, pp.
734-740.

[11] H.C. Lin, C.S. Raghavendra (1992) A Dynamic Load-

Balancing Policy with a Central Job Dispatcher

(LBC), IEEE Transaction on Software Engineering,
Vol. 18, No. 2, pp. 148-158.

[12] Z. Zeng, B. Veeravalli (2004) Rate-Based and

Queue-Based Dynamic Load Balancing Algorithms in

Distributed Systems, Proc. 10th IEEE Int. Conf. on
Parallel and Distributed Systems, pp. 349- 356.

[13] M. Amini, H. Deldari (2006) Grid Load Balancing

Using an Echo System of Ants, Proc. Of 24th
IASTED Int. Conf, Innsbruck, pp. 47–52.

[14] E. Bonabeau, M. Dorigo, G. Theraulaz (1999) Swarm

Intelligence: from natural to artificial systems,
Oxford University Press, pp: 75-98.

[15] M. T. Islam, P. Thulasiraman, R. K. Thulasiram
(2003) A Parallel Ant Colony Optimization Algorithm

for All-Pair Routing in MANETs, Proc. 3th Int.
Symp., Parallel and Distributed Processing, pp. 259-
270.

[16] Siriluck Lorpunmanee, Mohd Noor Sap, Abdul
Hanan Abdullah, and Chai Chompoo-inwai (2007) An

Ant Colony Optimization for Dynamic Job Scheduling

in Grid Environment, Int. Journal of Computer and
Information Science and Engineering Volume 1
Number 4, pp. 207-214.

[17] J. Deneubourg, S. Goss, N. Franks (1990) The

dynamics of collective sorting robot-like ants and ant-

like robots, Proc. of the 1st Int. Conf. on Simulation
of Adaptive Behavior, pp. 356-363.

[18] Ö. Babaoglu, H. Meling, A. Montresor (2002)
Anthill: A Framework for the Development of Agent-

Based Peer-to-Peer Systems, in Proc. of 22th IEEE
Int. Conf. on Distributed Computing Systems,
Vienna, Austria, pp. 15-22.

[19] J. Liu, X. Jin, and Y. Wang (2005) Agent-Based Load

Balancing on Homogeneous Minigrids: Macroscopic

Modeling and Characterization, IEEE TRANS. ON
PARALLEL AND DISTRIBUTED SYSTEMS, VOL
16, NO 7, pp.586-598.

[20] A. Montresor, H. Meling, and Ö. Babaoglu (2002),
Messor: Load-Balancing through a Swarm of

Autonomous Agents, in Proc. of 1st ACM Int. Joint
Conf. on Autonomous Agents and Multi-Agent
Systems, Bologna, Italy, pp.112-120.

[21] A. Shaout, P. McAuliffe (1998) Job scheduling using

fuzzy load balancing in distributed system,
ELECTRONICS LETTERS, Vol. 34, No. 20, pp. 56-
62.

[22] Hai Zhuge, Jie Liu (2004) A fuzzy collaborative

assessment approach for Knowledge Grid, Int.
Journal of Future Generation Computer Systems, Vol.
2, No 20, pp. 101-111.

[23] M. Dorigo, L. Maria (1997) Ant Colony System: A

Cooperative Learning Approach to the Traveling

Salesman Problem, Transactions ON
EVOLUTIONARY COMPUTATION, VOL. 1, NO.
1, pp. 53-66.

[24] M. Dorigo, G. Carol (1999) Ant Colony Optimization:

A New Meta-Heuristic, proc. Of 3th Fuzzy Sets and
Systems, pp. 21–29.

[25] http://profsite.um.ac.ir/~hpcc

336 Informatica 32 (2008) 327–335 M.A. Salehi et al.

Informatica 32 (2008) 337

JOŽEF STEFAN INSTITUTE

Jožef Stefan (1835-1893) was one of the most prominent
physicists of the 19th century. Born to Slovene parents,
he obtained his Ph.D. at Vienna University, where he was
later Director of the Physics Institute, Vice-President of the
Vienna Academy of Sciences and a member of several sci-
entific institutions in Europe. Stefan explored many areas
in hydrodynamics, optics, acoustics, electricity, magnetism
and the kinetic theory of gases. Among other things, he
originated the law that the total radiation from a black
body is proportional to the 4th power of its absolute tem-
perature, known as the Stefan–Boltzmann law.

The Jožef Stefan Institute (JSI) is the leading indepen-
dent scientific research institution in Slovenia, covering a
broad spectrum of fundamental and applied research in the
fields of physics, chemistry and biochemistry, electronics
and information science, nuclear science technology, en-
ergy research and environmental science.

The Jožef Stefan Institute (JSI) is a research organisation
for pure and applied research in the natural sciences and
technology. Both are closely interconnected in research de-
partments composed of different task teams. Emphasis in
basic research is given to the development and education of
young scientists, while applied research and development
serve for the transfer of advanced knowledge, contributing
to the development of the national economy and society in
general.

At present the Institute, with a total of about 800 staff,
has 600 researchers, about 250 of whom are postgraduates,
nearly 400 of whom have doctorates (Ph.D.), and around
200 of whom have permanent professorships or temporary
teaching assignments at the Universities.

In view of its activities and status, the JSI plays the role
of a national institute, complementing the role of the uni-
versities and bridging the gap between basic science and
applications.

Research at the JSI includes the following major fields:
physics; chemistry; electronics, informatics and computer
sciences; biochemistry; ecology; reactor technology; ap-
plied mathematics. Most of the activities are more or
less closely connected to information sciences, in particu-
lar computer sciences, artificial intelligence, language and
speech technologies, computer-aided design, computer ar-
chitectures, biocybernetics and robotics, computer automa-
tion and control, professional electronics, digital communi-
cations and networks, and applied mathematics.

The Institute is located in Ljubljana, the capital of the in-
dependent state of Slovenia (or S♥nia). The capital today
is considered a crossroad between East, West and Mediter-

ranean Europe, offering excellent productive capabilities
and solid business opportunities, with strong international
connections. Ljubljana is connected to important centers
such as Prague, Budapest, Vienna, Zagreb, Milan, Rome,
Monaco, Nice, Bern and Munich, all within a radius of 600
km.

From the Jožef Stefan Institute, the Technology park
“Ljubljana” has been proposed as part of the national strat-
egy for technological development to foster synergies be-
tween research and industry, to promote joint ventures be-
tween university bodies, research institutes and innovative
industry, to act as an incubator for high-tech initiatives and
to accelerate the development cycle of innovative products.

Part of the Institute was reorganized into several high-
tech units supported by and connected within the Technol-
ogy park at the Jožef Stefan Institute, established as the
beginning of a regional Technology park "Ljubljana". The
project was developed at a particularly historical moment,
characterized by the process of state reorganisation, privati-
sation and private initiative. The national Technology Park
is a shareholding company hosting an independent venture-
capital institution.

The promoters and operational entities of the project are
the Republic of Slovenia, Ministry of Higher Education,
Science and Technology and the Jožef Stefan Institute. The
framework of the operation also includes the University of
Ljubljana, the National Institute of Chemistry, the Institute
for Electronics and Vacuum Technology and the Institute
for Materials and Construction Research among others. In
addition, the project is supported by the Ministry of the
Economy, the National Chamber of Economy and the City
of Ljubljana.

Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Tel.:+386 1 4773 900, Fax.:+386 1 251 93 85
WWW: http://www.ijs.si
E-mail: matjaz.gams@ijs.si
Public relations: Polona Strnad

Informatica 32 (2008)

INFORMATICA
AN INTERNATIONAL JOURNAL OF COMPUTING AND INFORMATICS

INVITATION, COOPERATION

Submissions and Refereeing

Please submit an email with the manuscript to one of the editors
from the Editorial Board or to the Managing Editor. At least two
referees outside the author’s country will examine it, and they are
invited to make as many remarks as possible from typing errors to
global philosophical disagreements. The chosen editor will send
the author the obtained reviews. If the paper is accepted, the editor
will also send an email to the managing editor. The executive
board will inform the author that the paper has been accepted, and
the author will send the paper to the managing editor. The paper
will be published within one year of receipt of email with the
text in Informatica MS Word format or Informatica LATEX format
and figures in .eps format. Style and examples of papers can be
obtained from http://www.informatica.si. Opinions, news, calls
for conferences, calls for papers, etc. should be sent directly to
the managing editor.

QUESTIONNAIRE
Send Informatica free of charge

Yes, we subscribe

Please, complete the order form and send it to Dr. Drago Torkar,
Informatica, Institut Jožef Stefan, Jamova 39, 1000 Ljubljana,
Slovenia. E-mail: drago.torkar@ijs.si

ORDER FORM – INFORMATICA

Name: .

Title and Profession (optional): .

. .

Home Address and Telephone (optional): .

. .

Since 1977, Informatica has been a major Slovenian scientific
journal of computing and informatics, including telecommunica-
tions, automation and other related areas. In its 16th year (more
than ten years ago) it became truly international, although it still
remains connected to Central Europe. The basic aim of Infor-
matica is to impose intellectual values (science, engineering) in a
distributed organisation.

Informatica is a journal primarily covering the European com-
puter science and informatics community - scientific and educa-
tional as well as technical, commercial and industrial. Its basic
aim is to enhance communications between different European
structures on the basis of equal rights and international referee-
ing. It publishes scientific papers accepted by at least two ref-
erees outside the author’s country. In addition, it contains in-
formation about conferences, opinions, critical examinations of
existing publications and news. Finally, major practical achieve-
ments and innovations in the computer and information industry
are presented through commercial publications as well as through
independent evaluations.

Editing and refereeing are distributed. Each editor can conduct
the refereeing process by appointing two new referees or referees
from the Board of Referees or Editorial Board. Referees should
not be from the author’s country. If new referees are appointed,
their names will appear in the Refereeing Board.

Informatica is free of charge for major scientific, educational and
governmental institutions. Others should subscribe (see the last
page of Informatica).

Office Address and Telephone (optional): .

. .

E-mail Address (optional): .

Signature and Date: .

Informatica WWW:

http://www.informatica.si/

Referees:

Witold Abramowicz, David Abramson, Adel Adi, Kenneth Aizawa, Suad Alagić, Mohamad Alam, Dia Ali, Alan
Aliu, Richard Amoroso, John Anderson, Hans-Jurgen Appelrath, Iván Araujo, Vladimir Bajič, Michel Barbeau,
Grzegorz Bartoszewicz, Catriel Beeri, Daniel Beech, Fevzi Belli, Simon Beloglavec, Sondes Bennasri, Francesco
Bergadano, Istvan Berkeley, Azer Bestavros, Andraž Bežek, Balaji Bharadwaj, Ralph Bisland, Jacek Blazewicz,
Laszlo Boeszoermenyi, Damjan Bojadžijev, Jeff Bone, Ivan Bratko, Pavel Brazdil, Bostjan Brumen, Jerzy
Brzezinski, Marian Bubak, Davide Bugali, Troy Bull, Sabin Corneliu Buraga, Leslie Burkholder, Frada Burstein,
Wojciech Buszkowski, Rajkumar Bvyya, Giacomo Cabri, Netiva Caftori, Particia Carando, Robert Cattral, Jason
Ceddia, Ryszard Choras, Wojciech Cellary, Wojciech Chybowski, Andrzej Ciepielewski, Vic Ciesielski, Mel Ó
Cinnéide, David Cliff, Maria Cobb, Jean-Pierre Corriveau, Travis Craig, Noel Craske, Matthew Crocker, Tadeusz
Czachorski, Milan Češka, Honghua Dai, Bart de Decker, Deborah Dent, Andrej Dobnikar, Sait Dogru, Peter
Dolog, Georg Dorfner, Ludoslaw Drelichowski, Matija Drobnič, Maciej Drozdowski, Marek Druzdzel, Marjan
Družovec, Jozo Dujmović, Pavol Ďuriš, Amnon Eden, Johann Eder, Hesham El-Rewini, Darrell Ferguson, Warren
Fergusson, David Flater, Pierre Flener, Wojciech Fliegner, Vladimir A. Fomichov, Terrence Forgarty, Hans Fraaije,
Stan Franklin, Violetta Galant, Hugo de Garis, Eugeniusz Gatnar, Grant Gayed, James Geller, Michael
Georgiopolus, Michael Gertz, Jan Goliński, Janusz Gorski, Georg Gottlob, David Green, Herbert Groiss, Jozsef
Gyorkos, Marten Haglind, Abdelwahab Hamou-Lhadj, Inman Harvey, Jaak Henno, Marjan Hericko, Henry
Hexmoor, Elke Hochmueller, Jack Hodges, John-Paul Hosom, Doug Howe, Rod Howell, Tomáš Hruška, Don
Huch, Simone Fischer-Huebner, Zbigniew Huzar, Alexey Ippa, Hannu Jaakkola, Sushil Jajodia, Ryszard
Jakubowski, Piotr Jedrzejowicz, A. Milton Jenkins, Eric Johnson, Polina Jordanova, Djani Juričič, Marko
Juvancic, Sabhash Kak, Li-Shan Kang, Ivan Kapustøk, Orlando Karam, Roland Kaschek, Jacek Kierzenka, Jan
Kniat, Stavros Kokkotos, Fabio Kon, Kevin Korb, Gilad Koren, Andrej Krajnc, Henryk Krawczyk, Ben Kroese,
Zbyszko Krolikowski, Benjamin Kuipers, Matjaž Kukar, Aarre Laakso, Sofiane Labidi, Les Labuschagne, Ivan
Lah, Phil Laplante, Bud Lawson, Herbert Leitold, Ulrike Leopold-Wildburger, Timothy C. Lethbridge, Joseph
Y-T. Leung, Barry Levine, Xuefeng Li, Alexander Linkevich, Raymond Lister, Doug Locke, Peter Lockeman,
Vincenzo Loia, Matija Lokar, Jason Lowder, Kim Teng Lua, Ann Macintosh, Bernardo Magnini, Andrzej
Małachowski, Peter Marcer, Andrzej Marciniak, Witold Marciszewski, Vladimir Marik, Jacek Martinek, Tomasz
Maruszewski, Florian Matthes, Daniel Memmi, Timothy Menzies, Dieter Merkl, Zbigniew Michalewicz, Armin
R. Mikler, Gautam Mitra, Roland Mittermeir, Madhav Moganti, Reinhard Moller, Tadeusz Morzy, Daniel Mossé,
John Mueller, Jari Multisilta, Hari Narayanan, Jerzy Nawrocki, Rance Necaise, Elzbieta Niedzielska, Marian
Niedq’zwiedziński, Jaroslav Nieplocha, Oscar Nierstrasz, Roumen Nikolov, Mark Nissen, Jerzy Nogieć, Stefano
Nolfi, Franc Novak, Antoni Nowakowski, Adam Nowicki, Tadeusz Nowicki, Daniel Olejar, Hubert Österle,
Wojciech Olejniczak, Jerzy Olszewski, Cherry Owen, Mieczyslaw Owoc, Tadeusz Pankowski, Jens Penberg,
William C. Perkins, Warren Persons, Mitja Peruš, Fred Petry, Stephen Pike, Niki Pissinou, Aleksander Pivk, Ullin
Place, Peter Planinšec, Gabika Polčicová, Gustav Pomberger, James Pomykalski, Tomas E. Potok, Dimithu
Prasanna, Gary Preckshot, Dejan Rakovič, Cveta Razdevšek Pučko, Ke Qiu, Michael Quinn, Gerald Quirchmayer,
Vojislav D. Radonjic, Luc de Raedt, Ewaryst Rafajlowicz, Sita Ramakrishnan, Kai Rannenberg, Wolf Rauch, Peter
Rechenberg, Felix Redmill, James Edward Ries, David Robertson, Marko Robnik, Colette Rolland, Wilhelm
Rossak, Ingrid Russel, A.S.M. Sajeev, Kimmo Salmenjoki, Pierangela Samarati, Bo Sanden, P. G. Sarang, Vivek
Sarin, Iztok Savnik, Ichiro Satoh, Walter Schempp, Wolfgang Schreiner, Guenter Schmidt, Heinz Schmidt, Dennis
Sewer, Zhongzhi Shi, Mária Smolárová, Carine Souveyet, William Spears, Hartmut Stadtler, Stanislaw Stanek,
Olivero Stock, Janusz Stokłosa, Przemysław Stpiczyński, Andrej Stritar, Maciej Stroinski, Leon Strous, Ron Sun,
Tomasz Szmuc, Zdzislaw Szyjewski, Jure Šilc, Metod Škarja, Jiřı Šlechta, Chew Lim Tan, Zahir Tari, Jurij Tasič,
Gheorge Tecuci, Piotr Teczynski, Stephanie Teufel, Ken Tindell, A Min Tjoa, Drago Torkar, Vladimir Tosic,
Wieslaw Traczyk, Denis Trček, Roman Trobec, Marek Tudruj, Andrej Ule, Amjad Umar, Andrzej Urbanski,
Marko Uršič, Tadeusz Usowicz, Romana Vajde Horvat, Elisabeth Valentine, Kanonkluk Vanapipat, Alexander P.
Vazhenin, Jan Verschuren, Zygmunt Vetulani, Olivier de Vel, Didier Vojtisek, Valentino Vranić, Jozef Vyskoc,
Eugene Wallingford, Matthew Warren, John Weckert, Michael Weiss, Tatjana Welzer, Lee White, Gerhard
Widmer, Stefan Wrobel, Stanislaw Wrycza, Tatyana Yakhno, Janusz Zalewski, Damir Zazula, Yanchun Zhang,
Ales Zivkovic, Zonling Zhou, Robert Zorc, Anton P. Železnikar

Informatica
An International Journal of Computing and Informatics

Web edition of Informatica may be accessed at: http://www.informatica.si.

Subscription Information Informatica (ISSN 0350-5596) is published four times a year in Spring, Summer,
Autumn, and Winter (4 issues per year) by the Slovene Society Informatika, Vožarski pot 12, 1000 Ljubljana,
Slovenia.
The subscription rate for 2008 (Volume 32) is
– 60 EUR for institutions,
– 30 EUR for individuals, and
– 15 EUR for students
Claims for missing issues will be honored free of charge within six months after the publication date of the issue.

Typesetting: Borut Žnidar.
Printing: Dikplast Kregar Ivan s.p., Kotna ulica 5, 3000 Celje.

Orders may be placed by email (drago.torkar@ijs.si), telephone (+386 1 477 3900) or fax (+386 1 251 93 85). The
payment should be made to our bank account no.: 02083-0013014662 at NLB d.d., 1520 Ljubljana, Trg republike
2, Slovenija, IBAN no.: SI56020830013014662, SWIFT Code: LJBASI2X.

Informatica is published by Slovene Society Informatika (president Niko Schlamberger) in cooperation with the
following societies (and contact persons):
Robotics Society of Slovenia (Jadran Lenarčič)
Slovene Society for Pattern Recognition (Franjo Pernuš)
Slovenian Artificial Intelligence Society; Cognitive Science Society (Matjaž Gams)
Slovenian Society of Mathematicians, Physicists and Astronomers (Bojan Mohar)
Automatic Control Society of Slovenia (Borut Zupančič)
Slovenian Association of Technical and Natural Sciences / Engineering Academy of Slovenia (Igor Grabec)
ACM Slovenia (Dunja Mladenič)

Informatica is surveyed by: Citeseer, COBISS, Compendex, Computer & Information Systems Abstracts,
Computer Database, Computer Science Index, Current Mathematical Publications, DBLP Computer Science
Bibliography, Directory of Open Access Journals, InfoTrac OneFile, Inspec, Linguistic and Language Behaviour
Abstracts, Mathematical Reviews, MatSciNet, MatSci on SilverPlatter, Scopus, Zentralblatt Math

The issuing of the Informatica journal is financially supported by the Ministry of Higher Education, Science and
Technology, Trg OF 13, 1000 Ljubljana, Slovenia.

Volume 32 Number 3 October 2008 ISSN 0350-5596

A Role-Based Coordination Model and its
Realization

N. Chen, Y. Yu, S. Ren,
M. Beckman

229

Analysis of an Immune Algorithm for Protein
Structure Prediction

A.J. Bennett,
R.L. Johnston,
E. Turpin, J.Q. He

245

APC Semantics for Petri Nets S. Šimoňák, Š. Hudák,
Š. Korečko

253

Dynamic Slicing of Aspect-Oriented Programs D.P. Mohapatra,
M. Sahu, R. Kumar,
R. Mall

261

Recognition of On-line Handwritten Arabic Digits
Using Structural Features and Transition Network

Al-T. Ahmad, H. Maen 275

Robust Speech Recognition Using Perceptual
Wavelet Denoising and Mel-frequency Product
Spectrum Cepstral Coefficient Features

M.C.A. Korba,
D. Messadeg,
R. Djemili,
H. Bourouba

283

The Modelling of Manpower by Markov Chains -
A Case Study of the Slovenian Armed Forces

D. Škulj, V. Vehovar,
D. Štamfelj

289

Content-Based Watermarking for Image
Authentication Using Independent Component
Analysis

L. Parameswaran,
K. Anbumani

299

A Distributed Multilevel Ant Colonies Approach K. Taškova, P. Korošec,
J. Šilc

307

Solving Engineering Optimization Problems with the
Simple Constrained Particle Swarm Optimizer

L.C. Cagnina,
S.C. Esquivel,
C.A.C. Coello

319

Balancing Load in a Computational Grid Applying
Adaptive, Intelligent Colonies of Ants

M.A. Salehi,
H. Deldari, B.M. Dorri

327

Informatica 32 (2008) Number 3, pp. 229–337

