
Volume 31 Number 3 October 2007

1977

EDITORIAL BOARDS, PUBLISHING COUNCIL

Informatica is a journal primarily covering the European com-
puter science and informatics community; scientific and educa-
tional as well as technical, commercial and industrial. Its basic
aim is to enhance communications between different European
structures on the basis of equal rights and international referee-
ing. It publishes scientific papers accepted by at least two ref-
erees outside the author’s country. In addition, it contains in-
formation about conferences, opinions, critical examinations of
existing publications and news. Finally, major practical achieve-
ments and innovations in the computer and information industry
are presented through commercial publications as well as through
independent evaluations.

Editing and refereeing are distributed. Each editor from the
Editorial Board can conduct the refereeing process by appointing
two new referees or referees from the Board of Referees or Edi-
torial Board. Referees should not be from the author’s country. If
new referees are appointed, their names will appear in the list of
referees. Each paper bears the name of the editor who appointed
the referees. Each editor can propose new members for the Edi-
torial Board or referees. Editors and referees inactive for a longer
period can be automatically replaced. Changes in the Editorial
Board are confirmed by the Executive Editors.

The coordination necessary is made through the Executive Edi-
tors who examine the reviews, sort the accepted articles and main-
tain appropriate international distribution. The Executive Board
is appointed by the Society Informatika. Informatica is partially
supported by the Slovenian Ministry of Higher Education, Sci-
ence and Technology.

Each author is guaranteed to receive the reviews of his article.
When accepted, publication in Informatica is guaranteed in less
than one year after the Executive Editors receive the corrected
version of the article.

Executive Editor – Editor in Chief
Anton P. Železnikar
Volaričeva 8, Ljubljana, Slovenia
s51em@lea.hamradio.si
http://lea.hamradio.si/˜s51em/

Executive Associate Editor - Managing Editor
Matjaž Gams, Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Phone: +386 1 4773 900, Fax: +386 1 251 93 85
matjaz.gams@ijs.si
http://dis.ijs.si/mezi/matjaz.html

Executive Associate Editor - Deputy Managing Editor
Mitja Luštrek, Jožef Stefan Institute
mitja.lustrek@ijs.si

Executive Associate Editor - Technical Editor
Drago Torkar, Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Phone: +386 1 4773 900, Fax: +386 1 251 93 85
drago.torkar@ijs.si

Board of Advisors:
Ivan Bratko, Marko Jagodič,
Tomaž Pisanski, Stanko Strmčnik

Editorial Board
Anders Ardo (Sweden)
Juan Carlos Augusto (Argentina)
Costin Badica (Romania)
Vladimir Batagelj (Slovenia)
Francesco Bergadano (Italy)
Ranjit Biswas (India)
Marco Botta (Italy)
Pavel Brazdil (Portugal)
Andrej Brodnik (Slovenia)
Ivan Bruha (Canada)
Wray Buntine (Finland)
Hubert L. Dreyfus (USA)
Jozo Dujmović (USA)
Johann Eder (Austria)
Vladimir A. Fomichov (Russia)
Maria Ganzha (Poland)
Janez Grad (Slovenia)
Marjan Gušev (Macedonia)
Dimitris Kanellopoulos (Greece)
Hiroaki Kitano (Japan)
Igor Kononenko (Slovenia)
Miroslav Kubat (USA)
Ante Lauc (Croatia)
Jadran Lenarčič (Slovenia)
Huan Liu (USA)
Suzana Loskovska (Macedonia)
Ramon L. de Mantras (Spain)
Angelo Montanari (Italy)
Pavol Návrat (Slovakia)
Jerzy R. Nawrocki (Poland)
Nadja Nedjah (Brasil)
Franc Novak (Slovenia)
Alberto Paoluzzi (Italy)
Marcin Paprzycki (USA/Poland)
Gert S. Pedersen (Denmark)
Ivana Podnar Žarko (Croatia)
Karl H. Pribram (USA)
Luc De Raedt (Belgium)
Dejan Raković (Serbia)
Jean Ramaekers (Belgium)
Wilhelm Rossak (Germany)
Ivan Rozman (Slovenia)
Sugata Sanyal (India)
Walter Schempp (Germany)
Johannes Schwinn (Germany)
Zhongzhi Shi (China)
Oliviero Stock (Italy)
Robert Trappl (Austria)
Terry Winograd (USA)
Stefan Wrobel (Germany)
Konrad Wrona (France)
Xindong Wu (USA)

Publishing Council:
Ciril Baškovič, Cene Bavec, Jožko Čuk,
Matjan Krisper, Vladislav Rajkovič, Tatjana Welzer

 Informatica 31 (2007) 249-268 249

Supervised Machine Learning: A Review of Classification
Techniques
S. B. Kotsiantis
Department of Computer Science and Technology
University of Peloponnese, Greece
End of Karaiskaki, 22100 , Tripolis GR.
Tel: +30 2710 372164
Fax: +30 2710 372160
E-mail: sotos@math.upatras.gr

Overview paper

Keywords: classifiers, data mining techniques, intelligent data analysis, learning algorithms

Received: July 16, 2007

Supervised machine learning is the search for algorithms that reason from externally supplied instances
to produce general hypotheses, which then make predictions about future instances. In other words, the
goal of supervised learning is to build a concise model of the distribution of class labels in terms of
predictor features. The resulting classifier is then used to assign class labels to the testing instances
where the values of the predictor features are known, but the value of the class label is unknown. This
paper describes various supervised machine learning classification techniques. Of course, a single
article cannot be a complete review of all supervised machine learning classification algorithms (also
known induction classification algorithms), yet we hope that the references cited will cover the major
theoretical issues, guiding the researcher in interesting research directions and suggesting possible bias
combinations that have yet to be explored.
Povzetek: Podan je pregled metod strojnega učenja.

1 Introduction
There are several applications for Machine Learning
(ML), the most significant of which is data mining.
People are often prone to making mistakes during
analyses or, possibly, when trying to establish
relationships between multiple features. This makes it
difficult for them to find solutions to certain problems.
Machine learning can often be successfully applied to
these problems, improving the efficiency of systems and
the designs of machines.
Every instance in any dataset used by machine learning
algorithms is represented using the same set of features.
The features may be continuous, categorical or binary. If
instances are given with known labels (the corresponding
correct outputs) then the learning is called supervised
(see Table 1), in contrast to unsupervised learning, where
instances are unlabeled. By applying these unsupervised
(clustering) algorithms, researchers hope to discover
unknown, but useful, classes of items (Jain et al., 1999).
Another kind of machine learning is reinforcement
learning (Barto & Sutton, 1997). The training
information provided to the learning system by the
environment (external trainer) is in the form of a scalar
reinforcement signal that constitutes a measure of how
well the system operates. The learner is not told which
actions to take, but rather must discover which actions
yield the best reward, by trying each action in turn.

Numerous ML applications involve tasks that can be
set up as supervised. In the present paper, we have
concentrated on the techniques necessary to do this. In
particular, this work is concerned with classification
problems in which the output of instances admits only
discrete, unordered values.

Table 1. Instances with known labels (the corresponding
correct outputs)

We have limited our references to recent refereed
journals, published books and conferences. In addition,
we have added some references regarding the original
work that started the particular line of research under
discussion. A brief review of what ML includes can be
found in (Dutton & Conroy, 1996). De Mantaras and
Armengol (1998) also presented a historical survey of
logic and instance based learning classifiers. The reader
should be cautioned that a single article cannot be a

250 Informatica 31 (2007) 249–268 S.B. Kotsiantis

comprehensive review of all classification learning
algorithms. Instead, our goal has been to provide a
representative sample of existing lines of research in
each learning technique. In each of our listed areas, there
are many other papers that more comprehensively detail
relevant work.
Our next section covers wide-ranging issues of
supervised machine learning such as data pre-processing
and feature selection. Logical/Symbolic techniques are
described in section 3, whereas perceptron-based
techniques are analyzed in section 4. Statistical
techniques for ML are covered in section 5. Section 6
deals with instance based learners, while Section 7 deals
with the newest supervised ML technique—Support
Vector Machines (SVMs). In section 8, some general
directions are given about classifier selection. Finally, the
last section concludes this work.

2 General issues of supervised
learning algorithms

Inductive machine learning is the process of learning
a set of rules from instances (examples in a training set),
or more generally speaking, creating a classifier that can
be used to generalize from new instances. The process of
applying supervised ML to a real-world problem is
described in Figure 1.

Problem

Data pre-processing

Definition of
training set

Algorithm
selection

Training

Evaluation
with test set

OK? Classifier
Yes

Identification
of required

data

Parameter tuning

No

Figure 1. The process of supervised ML

The first step is collecting the dataset. If a requisite

expert is available, then s/he could suggest which fields
(attributes, features) are the most informative. If not, then
the simplest method is that of “brute-force,” which
means measuring everything available in the hope that
the right (informative, relevant) features can be isolated.
However, a dataset collected by the “brute-force” method
is not directly suitable for induction. It contains in most
cases noise and missing feature values, and therefore
requires significant pre-processing (Zhang et al., 2002).

The second step is the data preparation and data pre-
processiong. Depending on the circumstances,
researchers have a number of methods to choose from to
handle missing data (Batista & Monard, 2003). Hodge &
Austin (2004) have recently introduced a survey of
contemporary techniques for outlier (noise) detection.
These researchers have identified the techniques’
advantages and disadvantages. Instance selection is not
only used to handle noise but to cope with the
infeasibility of learning from very large datasets.
Instance selection in these datasets is an optimization
problem that attempts to maintain the mining quality
while minimizing the sample size (Liu and Motoda,
2001). It reduces data and enables a data mining
algorithm to function and work effectively with very
large datasets. There is a variety of procedures for
sampling instances from a large dataset (Reinartz, 2002).

Feature subset selection is the process of identifying
and removing as many irrelevant and redundant features
as possible (Yu & Liu, 2004). This reduces the
dimensionality of the data and enables data mining
algorithms to operate faster and more effectively. The
fact that many features depend on one another often
unduly influences the accuracy of supervised ML
classification models. This problem can be addressed by
constructing new features from the basic feature set
(Markovitch & Rosenstein, 2002). This technique is
called feature construction/transformation. These newly
generated features may lead to the creation of more
concise and accurate classifiers. In addition, the
discovery of meaningful features contributes to better
comprehensibility of the produced classifier, and a better
understanding of the learned concept.

2.1 Algorithm selection
The choice of which specific learning algorithm we

should use is a critical step. Once preliminary testing is
judged to be satisfactory, the classifier (mapping from
unlabeled instances to classes) is available for routine
use. The classifier’s evaluation is most often based on
prediction accuracy (the percentage of correct prediction
divided by the total number of predictions). There are at
least three techniques which are used to calculate a
classifier’s accuracy. One technique is to split the
training set by using two-thirds for training and the other
third for estimating performance. In another technique,
known as cross-validation, the training set is divided into
mutually exclusive and equal-sized subsets and for each
subset the classifier is trained on the union of all the
other subsets. The average of the error rate of each subset
is therefore an estimate of the error rate of the classifier.
Leave-one-out validation is a special case of cross
validation. All test subsets consist of a single instance.
This type of validation is, of course, more expensive
computationally, but useful when the most accurate
estimate of a classifier’s error rate is required.

If the error rate evaluation is unsatisfactory, we must
return to a previous stage of the supervised ML process
(as detailed in Figure 1). A variety of factors must be
examined: perhaps relevant features for the problem are

SUPERVISED MACHINE LEARNING: A REVIEW OF... Informatica 31 (2007) 249–268 251

not being used, a larger training set is needed, the
dimensionality of the problem is too high, the selected
algorithm is inappropriate or parameter tuning is needed.
Another problem could be that the dataset is imbalanced
(Japkowicz & Stephen, 2002).

A common method for comparing supervised ML
algorithms is to perform statistical comparisons of the
accuracies of trained classifiers on specific datasets. If
we have sufficient supply of data, we can sample a
number of training sets of size N, run the two learning
algorithms on each of them, and estimate the difference
in accuracy for each pair of classifiers on a large test set.
The average of these differences is an estimate of the
expected difference in generalization error across all
possible training sets of size N, and their variance is an
estimate of the variance of the classifier in the total set.
Our next step is to perform paired t-test to check the null
hypothesis that the mean difference between the
classifiers is zero. This test can produce two types of
errors. Type I error is the probability that the test rejects
the null hypothesis incorrectly (i.e. it finds a “significant”
difference although there is none). Type II error is the
probability that the null hypothesis is not rejected, when
there actually is a difference. The test’s Type I error will
be close to the chosen significance level.

In practice, however, we often have only one dataset
of size N and all estimates must be obtained from this
sole dataset. Different training sets are obtained by sub-
sampling, and the instances not sampled for training are
used for testing. Unfortunately this violates the
independence assumption necessary for proper
significance testing. The consequence of this is that Type
I errors exceed the significance level. This is problematic
because it is important for the researcher to be able to
control Type I errors and know the probability of
incorrectly rejecting the null hypothesis. Several heuristic
versions of the t-test have been developed to alleviate
this problem (Dietterich, 1998), (Nadeau and Bengio,
2003).

Ideally, we would like the test’s outcome to be
independent of the particular partitioning resulting from
the randomization process, because this would make it
much easier to replicate experimental results published in
the literature. However, in practice there is always
certain sensitivity to the partitioning used. To measure
replicability we need to repeat the same test several times
on the same data with different random partitionings —
usually ten repetitions— and count how often the
outcome is the same (Bouckaert, 2003).

Supervised classification is one of the tasks most
frequently carried out by so-called Intelligent Systems.
Thus, a large number of techniques have been developed
based on Artificial Intelligence (Logical/Symbolic
techniques), Perceptron-based techniques and Statistics
(Bayesian Networks, Instance-based techniques). In next
sections, we will focus on the most important supervised
machine learning techniques, starting with
logical/symbolic algorithms.

3 Logic based algorithms

In this section we will concentrate on two groups of

logical (symbolic) learning methods: decision trees and
rule-based classifiers.

3.1 Decision trees
Murthy (1998) provided an overview of work in

decision trees and a sample of their usefulness to
newcomers as well as practitioners in the field of
machine learning. Thus, in this work, apart from a brief
description of decision trees, we will refer to some more
recent works than those in Murthy’s article as well as
few very important articles that were published earlier.
Decision trees are trees that classify instances by sorting
them based on feature values. Each node in a decision
tree represents a feature in an instance to be classified,
and each branch represents a value that the node can
assume. Instances are classified starting at the root node
and sorted based on their feature values. Figure 2 is an
example of a decision tree for the training set of Table 2.

at1

at2 No No

Yes at3 at4

No Yes No

a3

Yes

b3

a2 b2 c2

a4 b4

a1 b1 c1

Figure 2. A decision tree

at1 at2 at3 at4 Class
a1 a2 a3 a4 Yes
a1 a2 a3 b4 Yes
a1 b2 a3 a4 Yes
a1 b2 b3 b4 No
a1 c2 a3 a4 Yes
a1 c2 a3 b4 No
b1 b2 b3 b4 No
c1 b2 b3 b4 No

Table 2. Training Set

Using the decision tree depicted in Figure 2 as an
example, the instance 〈at1 = a1, at2 = b2, at3 = a3, at4 =
b4〉 would sort to the nodes: at1, at2, and finally at3,
which would classify the instance as being positive

252 Informatica 31 (2007) 249–268 S.B. Kotsiantis

(represented by the values “Yes”). The problem of
constructing optimal binary decision trees is an NP-
complete problem and thus theoreticians have searched
for efficient heuristics for constructing near-optimal
decision trees.

The feature that best divides the training data would
be the root node of the tree. There are numerous methods
for finding the feature that best divides the training data
such as information gain (Hunt et al., 1966) and gini
index (Breiman et al., 1984). While myopic measures
estimate each attribute independently, ReliefF algorithm
(Kononenko, 1994) estimates them in the context of
other attributes. However, a majority of studies have
concluded that there is no single best method (Murthy,
1998). Comparison of individual methods may still be
important when deciding which metric should be used in
a particular dataset. The same procedure is then repeated
on each partition of the divided data, creating sub-trees
until the training data is divided into subsets of the same
class.

Figure 3 presents a general pseudo-code for building
decision trees.

Check for base cases
 For each attribute a

Find the feature that best
divides the training data such
as information gain from
splitting on a

Let a best be the attribute with the
highest normalized information gain

Create a decision node node that
splits on a_best

Recurse on the sub-lists obtained by
splitting on a best and add those
nodes as children of node

Figure 3. Pseudo-code for building a decision tree

A decision tree, or any learned hypothesis h, is said to
overfit training data if another hypothesis h′ exists that
has a larger error than h when tested on the training data,
but a smaller error than h when tested on the entire
dataset. There are two common approaches that decision
tree induction algorithms can use to avoid overfitting
training data: i) Stop the training algorithm before it
reaches a point at which it perfectly fits the training data,
ii) Prune the induced decision tree. If the two trees
employ the same kind of tests and have the same
prediction accuracy, the one with fewer leaves is usually
preferred. Breslow & Aha (1997) survey methods of tree
simplification to improve their comprehensibility.

The most straightforward way of tackling overfitting
is to pre-prune the decision tree by not allowing it to
grow to its full size. Establishing a non-trivial
termination criterion such as a threshold test for the
feature quality metric can do that. Decision tree
classifiers usually employ post-pruning techniques that
evaluate the performance of decision trees, as they are
pruned by using a validation set. Any node can be
removed and assigned the most common class of the
training instances that are sorted to it. A comparative
study of well-known pruning methods is presented in
(Elomaa, 1999). Elomaa (1999) concluded that there is

no single best pruning method. More details, about not
only postprocessing but also about preprocessing of
decision tree algorithms can be fould in (Bruha, 2000).

Even though the divide-and-conquer algorithm is
quick, efficiency can become important in tasks with
hundreds of thousands of instances. The most time-
consuming aspect is sorting the instances on a numeric
feature to find the best threshold t. This can be expedited
if possible thresholds for a numeric feature are
determined just once, effectively converting the feature
to discrete intervals, or if the threshold is determined
from a subset of the instances. Elomaa & Rousu (1999)
stated that the use of binary discretization with C4.5
needs about the half training time of using C4.5 multi-
splitting. In addition, according to their experiments,
multi-splitting of numerical features does not carry any
advantage in prediction accuracy over binary splitting.

Decision trees are usually univariate since they use
splits based on a single feature at each internal node.
Most decision tree algorithms cannot perform well with
problems that require diagonal partitioning. The division
of the instance space is orthogonal to the axis of one
variable and parallel to all other axes. Therefore, the
resulting regions after partitioning are all hyper-
rectangles. However, there are a few methods that
construct multivariate trees. One example is Zheng’s
(1998), who improved the classification accuracy of the
decision trees by constructing new binary features with
logical operators such as conjunction, negation, and
disjunction. In addition, Zheng (2000) created at-least M-
of-N features. For a given instance, the value of an at-
least M-of-N representation is true if at least M of its
conditions is true of the instance, otherwise it is false.
Gama and Brazdil (1999) combined a decision tree with
a linear discriminant for constructing multivariate
decision trees. In this model, new features are computed
as linear combinations of the previous ones.

Decision trees can be significantly more complex
representation for some concepts due to the replication
problem. A solution is using an algorithm to implement
complex features at nodes in order to avoid replication.
Markovitch and Rosenstein (2002) presented the FICUS
construction algorithm, which receives the standard input
of supervised learning as well as a feature representation
specification, and uses them to produce a set of generated
features. While FICUS is similar in some aspects to other
feature construction algorithms, its main strength is its
generality and flexibility. FICUS was designed to
perform feature generation given any feature
representation specification complying with its general
purpose grammar.

The most well-know algorithm in the literature for
building decision trees is the C4.5 (Quinlan, 1993). C4.5
is an extension of Quinlan's earlier ID3 algorithm
(Quinlan, 1979). One of the latest studies that compare
decision trees and other learning algorithms has been
done by (Tjen-Sien Lim et al. 2000). The study shows
that C4.5 has a very good combination of error rate and
speed. In 2001, Ruggieri presented an analytic evaluation
of the runtime behavior of the C4.5 algorithm, which
highlighted some efficiency improvements. Based on this

SUPERVISED MACHINE LEARNING: A REVIEW OF... Informatica 31 (2007) 249–268 253

analytic evaluation, he implemented a more efficient
version of the algorithm, called EC4.5. He argued that
his implementation computed the same decision trees as
C4.5 with a performance gain of up to five times.

C4.5 assumes that the training data fits in memory,
thus, Gehrke et al. (2000) proposed Rainforest, a
framework for developing fast and scalable algorithms to
construct decision trees that gracefully adapt to the
amount of main memory available. It is clear that in most
decision tree algorithms; a substantial effort is “wasted”
in the building phase on growing portions of the tree that
are subsequently pruned in the pruning phase. Rastogi &
Shim (2000) proposed PUBLIC, an improved decision
tree classifier that integrates the second “pruning” phase
with the initial “building” phase. In PUBLIC, a node is
not expanded during the building phase, if it is
determined that the node will be pruned during the
subsequent pruning phase.

Olcay and Onur (2007) show how to parallelize C4.5
algorithm in three ways: (i) feature based, (ii) node based
(iii) data based manner. Baik and Bala (2004) presented
preliminary work on an agent-based approach for the
distributed learning of decision trees.

To sum up, one of the most useful characteristics of
decision trees is their comprehensibility. People can
easily understand why a decision tree classifies an
instance as belonging to a specific class. Since a decision
tree constitutes a hierarchy of tests, an unknown feature
value during classification is usually dealt with by
passing the example down all branches of the node where
the unknown feature value was detected, and each branch
outputs a class distribution. The output is a combination
of the different class distributions that sum to 1. The
assumption made in the decision trees is that instances
belonging to different classes have different values in at
least one of their features. Decision trees tend to perform
better when dealing with discrete/categorical features.

3.2 Learning set of rules

Decision trees can be translated into a set of rules by

creating a separate rule for each path from the root to a
leaf in the tree (Quinlan, 1993). However, rules can also
be directly induced from training data using a variety of
rule-based algorithms. Furnkranz (1999) provided an
excellent overview of existing work in rule-based
methods.

Classification rules represent each class by
disjunctive normal form (DNF). A k-DNF expression is
of the form: (X1∧X2∧…∧Xn) ∨ (Xn+1∧Xn+2∧…X2n) ∨ …∨
(X(k-1)n+1∧X(k-1)n+2∧…∧Xkn), where k is the number of
disjunctions, n is the number of conjunctions in each
disjunction, and Xn is defined over the alphabet X1, X2,…,
Xj ∪ ~X1, ~X2, …,~Xj. The goal is to construct the
smallest rule-set that is consistent with the training data.
A large number of learned rules is usually a sign that the
learning algorithm is attempting to “remember” the
training set, instead of discovering the assumptions that
govern it. A separate-and-conquer algorithm (covering
algorithms) search for a rule that explains a part of its

training instances, separates these instances and
recursively conquers the remaining instances by learning
more rules, until no instances remain. In Figure 4, a
general pseudo-code for rule learners is presented.

The difference between heuristics for rule learning
and heuristics for decision trees is that the latter evaluate
the average quality of a number of disjointed sets (one
for each value of the feature that is tested), while rule
learners only evaluate the quality of the set of instances
that is covered by the candidate rule. More advanced rule
learners differ from this simple pseudo-code mostly by
adding additional mechanisms to prevent over-fitting of
the training data, for instance by stopping the
specialization process with the use of a quality measure
or by generalizing overly specialized rules in a separate
pruning phase (Furnkranz, 1997).

On presentation of training examples

training examples:
1. Initialise rule set to a default

(usually empty, or a rule assigning all
objects to the most common class).

2. Initialise examples to either all
available examples or all examples not
correctly handled by rule set.

3. Repeat
(a) Find best, the best rule with

respect to examples.
(b) If such a rule can be found

i. Add best to rule set.
ii. Set examples to all
examples not handled
correctly by rule set.

until no rule best can be found
(for instance, because no
examples remain).

Figure 4. Pseudocode for rule learners

It is therefore important for a rule induction system
to generate decision rules that have high predictability or
reliability. These properties are commonly measured by a
function called rule quality. A rule quality measure is
needed in both the rule induction and classification
processes such as J-measure (Smyth and Goodman,
1990). In rule induction, a rule quality measure can be
used as a criterion in the rule specification and/or
generalization process. In classification, a rule quality
value can be associated with each rule to resolve
conflicts when multiple rules are satisfied by the example
to be classified. An and Cercone (2000) surveyed a
number of statistical and empirical rule quality measures.
Furnkranz and Flach (2005) provided an analysis of the
behavior of separate-and-conquer or covering rule
learning algorithms by visualizing their evaluation
metrics. When using unordered rule sets, conflicts can
arise between the rules, i.e., two or more rules cover the
same example but predict different classes. Lindgren
(2004) has recently given a survey of methods used to
solve this type of conflict.

RIPPER is a well-known rule-based algorithm
(Cohen, 1995). It forms rules through a process of
repeated growing and pruning. During the growing phase
the rules are made more restrictive in order to fit the
training data as closely as possible. During the pruning
phase, the rules are made less restrictive in order to avoid

254 Informatica 31 (2007) 249–268 S.B. Kotsiantis

overfitting, which can cause poor performance on unseen
instances. RIPPER handles multiple classes by ordering
them from least to most prevalent and then treating each
in order as a distinct two-class problem. Other
fundamental learning classifiers based on decision rules
include the AQ family (Michalski and Chilausky, 1980)
and CN2 (Clark and Niblett, 1989). Bonarini (2000) gave
an overview of fuzzy rule-based classifiers. Fuzzy logic
tries to improve classification and decision support
systems by allowing the use of overlapping class
definitions.

Furnkranz (2001) investigated the use of round robin
binarization (or pairwise classification) as a technique for
handling multi-class problems with separate and conquer
rule learning algorithms. The round robin binarization
transforms a c-class problem into c(c-1)/2 two-class
problems <i,j>, one for each set of classes {i,j}, i= 1 ... c-
1, j = i+1 ...c. The binary classifier for problem <i,j> is
trained with examples of classes i and j, whereas
examples of classes k ≠ i,j are ignored for this problem.
A crucial point, of course, is determining how to decode
the predictions of the pairwise classifiers for a final
prediction. Furnkranz (2001) implemented a simple
voting technique: when classifying a new example, each
of the learned base classifiers determines to which of its
two classes the example is more likely to belong to. The
winner is assigned a point, and in the end, the algorithm
predicts the class that has accumulated the most points.
His experimental results show that, in comparison to
conventional, ordered or unordered binarization, the
round robin approach may yield significant gains in
accuracy without risking a poor performance.

There are numerous other rule-based learning
algorithms. Furnkranz (1999) referred to most of them.
The PART algorithm infers rules by repeatedly
generating partial decision trees, thus combining the two
major paradigms for rule generation − creating rules
from decision trees and the separate-and-conquer rule-
learning technique. Once a partial tree has been build, a
single rule is extracted from it and for this reason the
PART algorithm avoids postprocessing (Frank and
Witten, 1998).

For the task of learning binary problems, rules are
more comprehensible than decision trees because typical
rule-based approaches learn a set of rules for only the
positive class. On the other hand, if definitions for
multiple classes are to be learned, the rule-based learner
must be run separately for each class separately. For each
individual class a separate rule set is obtained and these
sets may be inconsistent (a particular instance might be
assigned multiple classes) or incomplete (no class might
be assigned to a particular instance). These problems can
be solved with decision lists (the rules in a rule set are
supposed to be ordered, a rule is only applicable when
none of the preceding rules are applicable) but with the
decision tree approach, they simply do not occur.
Moreover, the divide and conquer approach (used by
decision trees) is usually more efficient than the separate
and conquer approach (used by rule-based algorithms).
Separate-and-conquer algorithms look at one class at a
time, and try to produce rules that uniquely identify the

class. They do this independent of all the other classes in
the training set. For this reason, for small datasets, it may
be better to use a divide-and-conquer algorithm that
considers the entire set at once.

To sum up, the most useful characteristic of rule-
based classifiers is their comprehensibility. In addition,
even though some rule-based classifiers can deal with
numerical features, some experts propose these features
should be discretized before induction, so as to reduce
training time and increase classification accuracy (An
and Cercone, 1999). Classification accuracy of rule
learning algorithms can be improved by combining
features (such as in decision trees) using the background
knowledge of the user (Flach and Lavrac, 2000) or
automatic feature construction algorithms (Markovitch
and Rosenstein, 2002).

4 Perceptron-based techniques
Other well-known algorithms are based on the notion

of perceptron (Rosenblatt, 1962).

4.1 Single layered perceptrons
A single layered perceptron can be briefly described

as follows:
If x1 through xn are input feature values and w1

through wn are connection weights/prediction vector
(typically real numbers in the interval [-1, 1]), then
perceptron computes the sum of weighted inputs:

i i
i

x w∑ and output goes through an adjustable threshold:

if the sum is above threshold, output is 1; else it is 0.
The most common way that the perceptron algorithm

is used for learning from a batch of training instances is
to run the algorithm repeatedly through the training set
until it finds a prediction vector which is correct on all of
the training set. This prediction rule is then used for
predicting the labels on the test set.

WINNOW (Littlestone & Warmuth, 1994) is based
on the perceptron idea and updates its weights as follows.
If prediction value y΄=0 and actual value y=1, then the
weights are too low; so, for each feature such that xi=1,
wi=wi·α, where α is a number greater than 1, called the
promotion parameter. If prediction value y΄= 1 and
actual value y=0, then the weights were too high; so, for
each feature xi = 1, it decreases the corresponding weight
by setting wi=wi·β, where 0<β<1, called the demotion
parameter. Generally, WINNOW is an example of an
exponential update algorithm. The weights of the
relevant features grow exponentially but the weights of
the irrelevant features shrink exponentially. For this
reason, it was experimentally proved (Blum, 1997) that
WINNOW can adapt rapidly to changes in the target
function (concept drift). A target function (such as user
preferences) is not static in time. In order to enable, for
example, a decision tree algorithm to respond to changes,
it is necessary to decide which old training instances
could be deleted. A number of algorithms similar to

SUPERVISED MACHINE LEARNING: A REVIEW OF... Informatica 31 (2007) 249–268 255

WINNOW have been developed, such as those by Auer
& Warmuth (1998).

Freund & Schapire (1999) created a newer
algorithm, called voted-perceptron, which stores more
information during training and then uses this elaborate
information to generate better predictions about the test
data. The information it maintains during training is the
list of all prediction vectors that were generated after
each and every mistake. For each such vector, it counts
the number of iterations it “survives” until the next
mistake is made; Freund & Schapire refer to this count as
the “weight” of the prediction vector. To calculate a
prediction the algorithm computes the binary prediction
of each one of the prediction vectors and combines all
these predictions by means of a weighted majority vote.
The weights used are the survival times described above.

To sum up, we have discussed perceptron-like linear
algorithms with emphasis on their superior time
complexity when dealing with irrelevant features. This
can be a considerable advantage when there are many
features, but only a few relevant ones. Generally, all
perceptron-like linear algorithms are anytime online
algorithms that can produce a useful answer regardless of
how long they run (Kivinen, 2002). The longer they run,
the better the result they produce. Finally, perceptron-like
methods are binary, and therefore in the case of multi-
class problem one must reduce the problem to a set of
multiple binary classification problems.

4.2 Multilayered perceptrons
Perceptrons can only classify linearly separable sets

of instances. If a straight line or plane can be drawn to
seperate the input instances into their correct categories,
input instances are linearly separable and the perceptron
will find the solution. If the instances are not linearly
separable learning will never reach a point where all
instances are classified properly. Multilayered
Perceptrons (Artificial Neural Networks) have been
created to try to solve this problem (Rumelhart et al.,
1986). Zhang (2000) provided an overview of existing
work in Artificial Neural Networks (ANNs). Thus, in this
study, apart from a brief description of the ANNs we will
mainly refer to some more recent articles. A multi-layer
neural network consists of large number of units
(neurons) joined together in a pattern of connections
(Figure 5). Units in a net are usually segregated into three
classes: input units, which receive information to be
processed; output units, where the results of the
processing are found; and units in between known as
hidden units. Feed-forward ANNs (Figure 5) allow
signals to travel one way only, from input to output.

Figure 5. Feed-forward ANN

First, the network is trained on a set of paired data to
determine input-output mapping. The weights of the
connections between neurons are then fixed and the
network is used to determine the classifications of a new
set of data.

During classification the signal at the input units
propagates all the way through the net to determine the
activation values at all the output units. Each input unit
has an activation value that represents some feature
external to the net. Then, every input unit sends its
activation value to each of the hidden units to which it is
connected. Each of these hidden units calculates its own
activation value and this signal are then passed on to
output units. The activation value for each receiving unit
is calculated according to a simple activation function.
The function sums together the contributions of all
sending units, where the contribution of a unit is defined
as the weight of the connection between the sending and
receiving units multiplied by the sending unit's activation
value. This sum is usually then further modified, for
example, by adjusting the activation sum to a value
between 0 and 1 and/or by setting the activation value to
zero unless a threshold level for that sum is reached.

Generally, properly determining the size of the
hidden layer is a problem, because an underestimate of
the number of neurons can lead to poor approximation
and generalization capabilities, while excessive nodes
can result in overfitting and eventually make the search
for the global optimum more difficult. An excellent
argument regarding this topic can be found in (Camargo
& Yoneyama, 2001). Kon & Plaskota (2000) also studied
the minimum amount of neurons and the number of
instances necessary to program a given task into feed-
forward neural networks.

ANN depends upon three fundamental aspects, input
and activation functions of the unit, network architecture
and the weight of each input connection. Given that the
first two aspects are fixed, the behavior of the ANN is
defined by the current values of the weights. The weights
of the net to be trained are initially set to random values,
and then instances of the training set are repeatedly
exposed to the net. The values for the input of an
instance are placed on the input units and the output of
the net is compared with the desired output for this
instance. Then, all the weights in the net are adjusted
slightly in the direction that would bring the output
values of the net closer to the values for the desired
output. There are several algorithms with which a
network can be trained (Neocleous & Schizas, 2002).
However, the most well-known and widely used learning
algorithm to estimate the values of the weights is the
Back Propagation (BP) algorithm. Generally, BP
algorithm includes the following six steps:
1. Present a training sample to the neural network.
2. Compare the network's output to the desired output

from that sample. Calculate the error in each output
neuron.

3. For each neuron, calculate what the output should
have been, and a scaling factor, how much lower or
higher the output must be adjusted to match the
desired output. This is the local error.

256 Informatica 31 (2007) 249–268 S.B. Kotsiantis

4. Adjust the weights of each neuron to lower the local
error.

5. Assign "blame" for the local error to neurons at the
previous level, giving greater responsibility to
neurons connected by stronger weights.

6. Repeat the steps above on the neurons at the
previous level, using each one's "blame" as its error.

With more details, the general rule for updating
weights is: ijji OW ηδ=∆ where:

• η is a positive number (called learning rate), which
determines the step size in the gradient descent
search. A large value enables back propagation to
move faster to the target weight configuration but it
also increases the chance of its never reaching this
target.

• Oi is the output computed by neuron i
•))(1(jjjjj OTOO −−=δ for the output neurons,

where Tj the wanted output for the neuron j and
• kj

k
kjjj WOO ∑−= δδ)1(for the internal

(hidden) neurons
The back propagation algorithm will have to perform

a number of weight modifications before it reaches a
good weight configuration. For n training instances and
W weights, each repetition/epoch in the learning process
takes O(nW) time; but in the worst case, the number of
epochs can be exponential to the number of inputs. For
this reason, neural nets use a number of different
stopping rules to control when training ends. The four
most common stopping rules are: i) Stop after a specified
number of epochs, ii) Stop when an error measure
reaches a threshold, iii) Stop when the error measure has
seen no improvement over a certain number of epochs,
iv) Stop when the error measure on some of the data that
has been sampled from the training data (hold-out set,
validation set) is more than a certain amount than the
error measure on the training set (overfitting).

Feed-forward neural networks are usually trained by
the original back propagation algorithm or by some
variant. Their greatest problem is that they are too slow
for most applications. One of the approaches to speed up
the training rate is to estimate optimal initial weights
(Yam & Chow, 2001). Another method for training
multilayered feedforward ANNs is Weight-elimination
algorithm that automatically derives the appropriate
topology and therefore avoids also the problems with
overfitting (Weigend et al., 1991). Genetic algorithms
have been used to train the weights of neural networks
(Siddique and Tokhi, 2001) and to find the architecture
of neural networks (Yen and Lu, 2000). There are also
Bayesian methods in existence which attempt to train
neural networks. Vivarelli & Williams (2001) compare
two Bayesian methods for training neural networks. A
number of other techniques have emerged recently which
attempt to improve ANNs training algorithms by
changing the architecture of the networks as training
proceeds. These techniques include pruning useless
nodes or weights (Castellano et al. 1997), and

constructive algorithms, where extra nodes are added as
required (Parekh et al. 2000).

4.3 Radial Basis Function (RBF) networks
ANN learning can be achieved, among others,

through i) synaptic weight modification, ii) network
structure modifications (creating or deleting neurons or
synaptic connections), iii) use of suitable attractors or
other suitable stable state points, iv) appropriate choice
of activation functions. Since back-propagation training
is a gradient descending process, it may get stuck in local
minima in this weight-space. It is because of this
possibility that neural network models are characterized
by high variance and unsteadiness.

Radial Basis Function (RBF) networks have been
also widely applied in many science and engineering
fields (Robert and Howlett, 2001). An RBF network is a
three-layer feedback network, in which each hidden unit
implements a radial activation function and each output
unit implements a weighted sum of hidden units outputs.
Its training procedure is usually divided into two stages.
First, the centers and widths of the hidden layer are
determined by clustering algorithms. Second, the weights
connecting the hidden layer with the output layer are
determined by Singular Value Decomposition (SVD) or
Least Mean Squared (LMS) algorithms. The problem of
selecting the appropriate number of basis functions
remains a critical issue for RBF networks. The number of
basis functions controls the complexity and the
generalization ability of RBF networks. RBF networks
with too few basis functions cannot fit the training data
adequately due to limited flexibility. On the other hand,
those with too many basis functions yield poor
generalization abilities since they are too flexible and
erroneously fit the noise in the training data.

Even though multilayer neural networks and decision
trees are two very different techniques for the purpose of
classification, some researchers (Eklund & Hoang,
2002), (Tjen-Sien Lim et al. 2000) have performed some
empirical comparative studies. Some of the general
conclusions drawn in that work are:
i) neural networks are usually more able to easily

provide incremental learning than decision trees
(Saad, 1998), even though there are some
algorithms for incremental learning of decision
trees such as (Utgoff et al, 1997) and
(McSherry, 1999). Incremental decision tree
induction techniques result in frequent tree
restructuring when the amount of training data
is small, with the tree structure maturing as the
data pool becomes larger.

ii) training time for a neural network is usually
much longer than training time for decision
trees.

iii) neural networks usually perform as well as
decision trees, but seldom better.

To sum up, ANNs have been applied to many real-

world problems but still, their most striking disadvantage
is their lack of ability to reason about their output in a

SUPERVISED MACHINE LEARNING: A REVIEW OF... Informatica 31 (2007) 249–268 257

way that can be effectively communicated. For this
reason many researchers have tried to address the issue
of improving the comprehensibility of neural networks,
where the most attractive solution is to extract symbolic
rules from trained neural networks. Setiono and Leow
(2000) divided the activation values of relevant hidden
units into two subintervals and then found the set of
relevant connections of those relevant units to construct
rules. More references can be found in (Zhou, 2004), an
excellent survey. However, it is also worth mentioning
that Roy (2000) identified the conflict between the idea
of rule extraction and traditional connectionism. In detail,
the idea of rule extraction from a neural network involves
certain procedures, specifically the reading of parameters
from a network, which is not allowed by the traditional
connectionist framework that these neural networks are
based on.

5 Statistical learning algorithms
Conversely to ANNs, statistical approaches are

characterized by having an explicit underlying
probability model, which provides a probability that an
instance belongs in each class, rather than simply a
classification. Linear discriminant analysis (LDA) and
the related Fisher's linear discriminant are simple
methods used in statistics and machine learning to find
the linear combination of features which best separate
two or more classes of object (Friedman, 1989). LDA
works when the measurements made on each observation
are continuous quantities. When dealing with categorical
variables, the equivalent technique is Discriminant
Correspondence Analysis (Mika et al., 1999).

Maximum entropy is another general technique for
estimating probability distributions from data. The over-
riding principle in maximum entropy is that when
nothing is known, the distribution should be as uniform
as possible, that is, have maximal entropy. Labeled
training data is used to derive a set of constraints for the
model that characterize the class-specific expectations for
the distribution. Csiszar (1996) provides a good tutorial
introduction to maximum entropy techniques.

Bayesian networks are the most well known
representative of statistical learning algorithms. A
comprehensive book on Bayesian networks is Jensen’s
(1996). Thus, in this study, apart from our brief
description of Bayesian networks, we mainly refer to
more recent works.

5.1.1 Naive Bayes classifiers
Naive Bayesian networks (NB) are very simple

Bayesian networks which are composed of directed
acyclic graphs with only one parent (representing the
unobserved node) and several children (corresponding to
observed nodes) with a strong assumption of
independence among child nodes in the context of their
parent (Good, 1950).Thus, the independence model
(Naive Bayes) is based on estimating (Nilsson, 1965):

R= ()
()

() ()
() ()

() ()
() ()

|| |

| | |
r

r

P i P X iP i X P i P X i

P j X P j P X j P j P X j
= = ∏

∏

Comparing these two probabilities, the larger
probability indicates that the class label value that is
more likely to be the actual label (if R>1: predict i else
predict j). Cestnik et al (1987) first used the Naive Bayes
in ML community. Since the Bayes classification
algorithm uses a product operation to compute the
probabilities P(X, i), it is especially prone to being
unduly impacted by probabilities of 0. This can be
avoided by using Laplace estimator or m-esimate, by
adding one to all numerators and adding the number of
added ones to the denominator (Cestnik, 1990).

The assumption of independence among child nodes
is clearly almost always wrong and for this reason naive
Bayes classifiers are usually less accurate that other more
sophisticated learning algorithms (such ANNs).
However, Domingos & Pazzani (1997) performed a
large-scale comparison of the naive Bayes classifier with
state-of-the-art algorithms for decision tree induction,
instance-based learning, and rule induction on standard
benchmark datasets, and found it to be sometimes
superior to the other learning schemes, even on datasets
with substantial feature dependencies.

The basic independent Bayes model has been
modified in various ways in attempts to improve its
performance. Attempts to overcome the independence
assumption are mainly based on adding extra edges to
include some of the dependencies between the features,
for example (Friedman et al. 1997). In this case, the
network has the limitation that each feature can be
related to only one other feature. Semi-naive Bayesian
classifier is another important attempt to avoid the
independence assumption. (Kononenko, 1991), in which
attributes are partitioned into groups and it is assumed
that xi is conditionally independent of xj if and only if
they are in different groups.

The major advantage of the naive Bayes classifier is
its short computational time for training. In addition,
since the model has the form of a product, it can be
converted into a sum through the use of logarithms - with
significant consequent computational advantages. If a
feature is numerical, the usual procedure is to discretize
it during data pre-processing (Yang & Webb, 2003),
although a researcher can use the normal distribution to
calculate probabilities (Bouckaert, 2004).

5.2 Bayesian Networks
A Bayesian Network (BN) is a graphical model for

probability relationships among a set of variables
(features) (see Figure 6). The Bayesian network structure
S is a directed acyclic graph (DAG) and the nodes in S
are in one-to-one correspondence with the features X.
The arcs represent casual influences among the features
while the lack of possible arcs in S encodes conditional
independencies. Moreover, a feature (node) is
conditionally independent from its non-descendants
given its parents (X1 is conditionally independent from X2

258 Informatica 31 (2007) 249–268 S.B. Kotsiantis

given X3 if P(X1|X2,X3)=P(X1|X3) for all possible values of
X1, X2, X3).

Figure 6. The structure of a Bayes Network

Typically, the task of learning a Bayesian network
can be divided into two subtasks: initially, the learning of
the DAG structure of the network, and then the
determination of its parameters. Probabilistic parameters
are encoded into a set of tables, one for each variable, in
the form of local conditional distributions of a variable
given its parents. Given the independences encoded into
the network, the joint distribution can be reconstructed
by simply multiplying these tables. Within the general
framework of inducing Bayesian networks, there are two
scenarios: known structure and unknown structure.

In the first scenario, the structure of the network is
given (e.g. by an expert) and assumed to be correct. Once
the network structure is fixed, learning the parameters in
the Conditional Probability Tables (CPT) is usually
solved by estimating a locally exponential number of
parameters from the data provided (Jensen, 1996). Each
node in the network has an associated CPT that describes
the conditional probability distribution of that node given
the different values of its parents.

In spite of the remarkable power of Bayesian
Networks, they have an inherent limitation. This is the
computational difficulty of exploring a previously
unknown network. Given a problem described by n
features, the number of possible structure hypotheses is
more than exponential in n. If the structure is unknown,
one approach is to introduce a scoring function (or a
score) that evaluates the “fitness” of networks with
respect to the training data, and then to search for the
best network according to this score. Several researchers
have shown experimentally that the selection of a single
good hypothesis using greedy search often yields
accurate predictions (Heckerman et al. 1999),
(Chickering, 2002). In Figure 7 there is a pseudo-code
for training BNs.

Within the score & search paradigm, another
approach uses local search methods in the space of
directed acyclic graphs, where the usual choices for
defining the elementary modifications (local changes)
that can be applied are arc addition, arc deletion, and arc
reversal. Acid and de Campos (2003) proposed a new
local search method, restricted acyclic partially directed
graphs, which uses a different search space and takes
account of the concept of equivalence between network
structures. In this way, the number of different
configurations of the search space is reduced, thus
improving efficiency.

Initialize an empty Bayesian network
G containing n nodes (i.e., a BN with n
nodes but no edges)
1. Evaluate the score of G: Score(G)
2. G’ = G
3. for i = 1 to n do
4. for j = 1 to n do
5. if i • j then
6. if there is no edge between the

nodes i and j in G• then
7. Modify G’ by adding an edge between

the nodes i and j in G• such that i
is a parent of j: (i • j)

8. if the resulting G’ is a DAG then
9. if (Score(G’) > Score(G)) then
10. G = G’
11. end if
12. end if
13. end if
14. end if
15. G’ = G
16. end for
17. end for

Figure 7. Pseudo-code for training BN

 A BN structure can be also found by learning the
conditional independence relationships among the
features of a dataset. Using a few statistical tests (such as
the Chi-squared and mutual information test), one can
find the conditional independence relationships among
the features and use these relationships as constraints to
construct a BN. These algorithms are called CI-based
algorithms or constraint-based algorithms. Cowell (2001)
has shown that for any structure search procedure based
on CI tests, an equivalent procedure based on
maximizing a score can be specified.

A comparison of scoring-based methods and CI-
based methods is presented in (Heckerman et al., 1999).
Both of these approaches have their advantages and
disadvantages. Generally speaking, the dependency
analysis approach is more efficient than the search &
scoring approach for sparse networks (networks that are
not densely connected). It can also deduce the correct
structure when the probability distribution of the data
satisfies certain assumptions. However, many of these
algorithms require an exponential number of CI tests and
many high order CI tests (CI tests with large condition-
sets). Yet although the search & scoring approach may
not find the best structure due to its heuristic nature, it
works with a wider range of probabilistic models than the
dependency analysis approach. Madden (2003) compared
the performance of a number of Bayesian Network
Classifiers. His experiments demonstrated that very
similar classification performance can be achieved by
classifiers constructed using the different approaches
described above.

The most generic learning scenario is when the
structure of the network is unknown and there is missing
data. Friedman & Koller (2003) proposed a new
approach for this task and showed how to efficiently
compute a sum over the exponential number of networks
that are consistent with a fixed order over networks.

Using a suitable version of any of the model types
mentioned in this review, one can induce a Bayesian
Network from a given training set. A classifier based on
the network and on the given set of features X1,X2, ... Xn,

SUPERVISED MACHINE LEARNING: A REVIEW OF... Informatica 31 (2007) 249–268 259

returns the label c, which maximizes the posterior
probability p(c | X1, X2, ... Xn).

Bayesian multi-nets allow different probabilistic
dependencies for different values of the class node
(Jordan, 1998). This suggests that simple BN classifiers
should work better when there is a single underlying
model of the dataset and multi-net classifier should work
better when the underlying relationships among the
features are very different for different classes (Cheng
and Greiner, 2001).

The most interesting feature of BNs, compared to
decision trees or neural networks, is most certainly the
possibility of taking into account prior information about
a given problem, in terms of structural relationships
among its features. This prior expertise, or domain
knowledge, about the structure of a Bayesian network
can take the following forms:
1. Declaring that a node is a root node, i.e., it has no

parents.
2. Declaring that a node is a leaf node, i.e., it has no

children.
3. Declaring that a node is a direct cause or direct

effect of another node.
4. Declaring that a node is not directly connected to

another node.
5. Declaring that two nodes are independent, given a

condition-set.
6. Providing partial nodes ordering, that is, declare that

a node appears earlier than another node in the
ordering.

7. Providing a complete node ordering.
A problem of BN classifiers is that they are not

suitable for datasets with many features (Cheng et al.,
2002). The reason for this is that trying to construct a
very large network is simply not feasible in terms of time
and space. A final problem is that before the induction,
the numerical features need to be discretized in most
cases.

6 Instance-based learning
Another category under the header of statistical

methods is Instance-based learning. Instance-based
learning algorithms are lazy-learning algorithms
(Mitchell, 1997), as they delay the induction or
generalization process until classification is performed.
Lazy-learning algorithms require less computation time
during the training phase than eager-learning algorithms
(such as decision trees, neural and Bayes nets) but more
computation time during the classification process. One
of the most straightforward instance-based learning
algorithms is the nearest neighbour algorithm. Aha
(1997) and De Mantaras and Armengol (1998) presented
a review of instance-based learning classifiers. Thus, in
this study, apart from a brief description of the nearest
neighbour algorithm, we will refer to some more recent
works.

k-Nearest Neighbour (kNN) is based on the principle
that the instances within a dataset will generally exist in
close proximity to other instances that have similar
properties (Cover and Hart, 1967). If the instances are

tagged with a classification label, then the value of the
label of an unclassified instance can be determined by
observing the class of its nearest neighbours. The kNN
locates the k nearest instances to the query instance and
determines its class by identifying the single most
frequent class label. In Figure 8, a pseudo-code example
for the instance base learning methods is illustrated.

procedure InstanceBaseLearner(Testing
Instances)

for each testing instance
{
find the k most nearest instances of
the training set according to a
distance metric
Resulting Class= most frequent class
label of the k nearest instances
}

Figure 8. Pseudo-code for instance-based learners

In general, instances can be considered as points
within an n-dimensional instance space where each of the
n-dimensions corresponds to one of the n-features that
are used to describe an instance. The absolute position of
the instances within this space is not as significant as the
relative distance between instances. This relative distance
is determined by using a distance metric. Ideally, the
distance metric must minimize the distance between two
similarly classified instances, while maximizing the
distance between instances of different classes. Many
different metrics have been presented. The most
significant ones are presented in Table 3.

Minkowsky: D(x,y)=
1/

1

rm
r

i i
i

x y
=

−⎛ ⎞
⎜ ⎟
⎝ ⎠
∑

Manhattan: D(x,y)=
1

m

i i
i

x y
=

−∑

Chebychev: D(x,y)=
1

max
m

i i
i

x y
=

−

Euclidean: D(x,y)=
1/ 2

2

1

m

i i
i

x y
=

−⎛ ⎞
⎜ ⎟
⎝ ⎠
∑

Camberra: D(x,y)=
1

m
i i

i i i

x y
x y=

−
+∑

Kendall’s Rank Correlation:

D(x,y)=
1

1

2
1 () ()

(1)

m i

i j i j
i j j

sign x x sign y y
m m

−

= =

− − −
−
∑∑

Table 3. Approaches to define the distance between
instances (x and y)

For more accurate results, several algorithms use
weighting schemes that alter the distance measurements
and voting influence of each instance. A survey of
weighting schemes is given by (Wettschereck et al.,
1997).

The power of kNN has been demonstrated in a
number of real domains, but there are some reservations
about the usefulness of kNN, such as: i) they have large

260 Informatica 31 (2007) 249–268 S.B. Kotsiantis

storage requirements, ii) they are sensitive to the choice
of the similarity function that is used to compare
instances, iii) they lack a principled way to choose k,
except through cross-validation or similar,
computationally-expensive technique (Guo et al. 2003).

The choice of k affects the performance of the kNN
algorithm. Consider the following reasons why a k-
nearest neighbour classifier might incorrectly classify a
query instance:
• When noise is present in the locality of the query

instance, the noisy instance(s) win the majority vote,
resulting in the incorrect class being predicted. A
larger k could solve this problem.

• When the region defining the class, or fragment of
the class, is so small that instances belonging to the
class that surrounds the fragment win the majority
vote. A smaller k could solve this problem.
Wettschereck et al. (1997) investigated the behavior

of the kNN in the presence of noisy instances. The
experiments showed that the performance of kNN was
not sensitive to the exact choice of k when k was large.
They found that for small values of k, the kNN algorithm
was more robust than the single nearest neighbour
algorithm (1NN) for the majority of large datasets tested.
However, the performance of the kNN was inferior to
that achieved by the 1NN on small datasets (<100
instances).

Okamoto and Yugami (2003) represented the
expected classification accuracy of k-NN as a function of
domain characteristics including the number of training
instances, the number of relevant and irrelevant
attributes, the probability of each attribute, the noise rate
for each type of noise, and k. They also explored the
behavioral implications of the analyses by presenting the
effects of domain characteristics on the expected
accuracy of k-NN and on the optimal value of k for
artificial domains.

The time to classify the query instance is closely
related to the number of stored instances and the number
of features that are used to describe each instance. Thus,
in order to reduce the number of stored instances,
instance-filtering algorithms have been proposed (Kubat
and Cooperson, 2001). Brighton & Mellish (2002) found
that their ICF algorithm and RT3 algorithm (Wilson &
Martinez, 2000) achieved the highest degree of instance
set reduction as well as the retention of classification
accuracy: they are close to achieving unintrusive storage
reduction. The degree to which these algorithms perform
is quite impressive: an average of 80% of cases are
removed and classification accuracy does not drop
significantly. One other choice in designing a training set
reduction algorithm is to modify the instances using a
new representation such as prototypes (Sanchez et al.,
2002).

Breiman (1996) reported that the stability of nearest
neighbor classifiers distinguishes them from decision
trees and some kinds of neural networks. A learning
method is termed "unstable" if small changes in the
training-test set split can result in large changes in the
resulting classifier.

As we have already mentioned, the major
disadvantage of instance-based classifiers is their large
computational time for classification. A key issue in
many applications is to determine which of the available
input features should be used in modeling via feature
selection (Yu & Liu, 2004), because it could improve the
classification accuracy and scale down the required
classification time. Furthermore, choosing a more
suitable distance metric for the specific dataset can
improve the accuracy of instance-based classifiers.

7 Support Vector Machines
Support Vector Machines (SVMs) are the newest

supervised machine learning technique (Vapnik, 1995).
An excellent survey of SVMs can be found in (Burges,
1998), and a more recent book is by (Cristianini &
Shawe-Taylor, 2000). Thus, in this study apart from a
brief description of SVMs we will refer to some more
recent works and the landmark that were published
before these works. SVMs revolve around the notion of a
“margin”—either side of a hyperplane that separates two
data classes. Maximizing the margin and thereby creating
the largest possible distance between the separating
hyperplane and the instances on either side of it has been
proven to reduce an upper bound on the expected
generalisation error.

If the training data is linearly separable, then a pair
),(bw exists such that

Nb

Pb

ii
T

ii
T

∈−≤+

∈≥+

xxw

xxw

 allfor ,1

 allfor ,1

with the decision rule given by
)sgn()(, bf T

b += xwxw where w is termed the

weight vector and b the bias (or b− is termed the
threshold).

 It is easy to show that, when it is possible to linearly
separate two classes, an optimum separating hyperplane
can be found by minimizing the squared norm of the
separating hyperplane. The minimization can be set up as
a convex quadratic programming (QP) problem:

.,,1,1)(subject to
2
1)(Minimize 2

,

liby i
T

i

b

K=≥+

=Φ

xw

ww
w (1)

In the case of linearly separable data, once the
optimum separating hyperplane is found, data points that
lie on its margin are known as support vector points and
the solution is represented as a linear combination of
only these points (see Figure 9). Other data points are
ignored.

SUPERVISED MACHINE LEARNING: A REVIEW OF... Informatica 31 (2007) 249–268 261

hyperplane

optimal

Maximum
margin

optimal

Maximum
margin

optimal

Maximum
margin

hyperplane
hyperplane

Figure 9. Maximum Margin

Therefore, the model complexity of an SVM is
unaffected by the number of features encountered in the
training data (the number of support vectors selected by
the SVM learning algorithm is usually small). For this
reason, SVMs are well suited to deal with learning tasks
where the number of features is large with respect to the
number of training instances.

A general pseudo-code for SVMs is illustrated in
Figure 10.

1) Introduce positive Lagrange
multipliers, one for each of the
inequality constraints (1). This
gives Lagrangian:

() ∑∑
==

+−⋅−≡
N

i
i

N

i
iiiP bwxywL

11

2

2
1 αα

2) Minimize PL with respect to w,
b. This is a convex quadratic
programming problem.

3) In the solution, those points

for which 0>iα are called “support

vectors”

Figure 10. Pseudo-code for SVMs

Even though the maximum margin allows the SVM
to select among multiple candidate hyperplanes, for
many datasets, the SVM may not be able to find any
separating hyperplane at all because the data contains
misclassified instances. The problem can be addressed by
using a soft margin that accepts some misclassifications
of the training instances (Veropoulos et al. 1999). This
can be done by introducing positive slack variables

Nii ,...,1, =ξ in the constraints, which then become:

,0
11
11

≥
−=+−≤−⋅
+=−+≥−⋅

ξ
ξ
ξ

ii

ii

yforbxw
yforbxw

Thus, for an error to occur the corresponding iξ must

exceed unity, so ∑i iξ is an upper bound on the number

of training errors. In this case the Lagrangian is:

(){ } ∑∑∑ −+−−⋅−+≡
i

ii
i

iiii
i

iP bwxyCwL ξµξαξ 1
2
1 2

where the iµ are the Lagrange multipliers introduced to

enforce positivity of the iξ .
Nevertheless, most real-world problems involve non-

separable data for which no hyperplane exists that
successfully separates the positive from negative
instances in the training set. One solution to the
inseparability problem is to map the data onto a higher-
dimensional space and define a separating hyperplane
there. This higher-dimensional space is called the
transformed feature space, as opposed to the input space
occupied by the training instances.

With an appropriately chosen transformed feature
space of sufficient dimensionality, any consistent training
set can be made separable. A linear separation in
transformed feature space corresponds to a non-linear
separation in the original input space. Mapping the data
to some other (possibly infinite dimensional) Hilbert
space H as .: HRd →Φ Then the training algorithm
would only depend on the data through dot products in
H, i.e. on functions of the form)()(ji xx Φ⋅Φ . If there
were a “kernel function” K such
that)()(),(jiji xxxxK Φ⋅Φ= , we would only need
to use K in the training algorithm, and would never need
to explicitly determine Φ . Thus, kernels are a special
class of function that allow inner products to be
calculated directly in feature space, without performing
the mapping described above (Scholkopf et al. 1999).
Once a hyperplane has been created, the kernel function
is used to map new points into the feature space for
classification.

The selection of an appropriate kernel function is
important, since the kernel function defines the
transformed feature space in which the training set
instances will be classified. Genton (2001) described
several classes of kernels, however, he did not address
the question of which class is best suited to a given
problem. It is common practice to estimate a range of
potential settings and use cross-validation over the
training set to find the best one. For this reason a
limitation of SVMs is the low speed of the training.
Selecting kernel settings can be regarded in a similar way
to choosing the number of hidden nodes in a neural
network. As long as the kernel function is legitimate, a
SVM will operate correctly even if the designer does not
know exactly what features of the training data are being
used in the kernel-induced transformed feature space.

Some popular kernels are the following:
(1) ()PyxyxK 1),(+⋅= ,

(2)
22 2

),(
σyx

eyxK
−−

= ,

(3) ()PyxyxK δκ −⋅= tanh),(
Training the SVM is done by solving Nth

dimensional QP problem, where N is the number of
samples in the training dataset. Solving this problem in

262 Informatica 31 (2007) 249–268 S.B. Kotsiantis

standard QP methods involves large matrix operations, as
well as time-consuming numerical computations, and is
mostly very slow and impractical for large problems.
Sequential Minimal Optimization (SMO) is a simple
algorithm that can, relatively quickly, solve the SVM QP
problem without any extra matrix storage and without
using numerical QP optimization steps at all (Platt,
1999). SMO decomposes the overall QP problem into QP
sub-problems. Keerthi and Gilbert (2002) suggested two
modified versions of SMO that are significantly faster
than the original SMO in most situations.

Finally, the training optimization problem of the
SVM necessarily reaches a global minimum, and avoids
ending in a local minimum, which may happen in other
search algorithms such as neural networks. However, the
SVM methods are binary, thus in the case of multi-class
problem one must reduce the problem to a set of multiple
binary classification problems. Discrete data presents
another problem, although with suitable rescaling good
results can be obtained.

8 Discussion
Supervised machine learning techniques are

applicable in numerous domains. A number of ML
application oriented papers can be found in (Saitta and
Neri, 1998) and (Witten and Frank, 2005). Below, we
present our conclusions about the use of each technique.
Discussions of all the pros and cons of each individual
algorithms and empirical comparisons of various bias
options are beyond the scope of this paper; as the choice
of algorithm always depends on the task at hand.
However, we hope that the following remarks can help
practitioners not to select a wholly inappropriate
algorithm for their problem.

Generally, SVMs and neural networks tend to
perform much better when dealing with multi-
dimensions and continuous features. On the other hand,
logic-based systems tend to perform better when dealing
with discrete/categorical features. For neural network
models and SVMs, a large sample size is required in
order to achieve its maximum prediction accuracy
whereas NB may need a relatively small dataset.

SVMs are binary algorithm, thus we made use of
error-correcting output coding (ECOC), or, in short, the
output coding approach, to reduce a multi-class problem
to a set of multiple binary classification problems
(Crammer & Singer, 2002). Output coding for multi-
class problems is composed of two stages. In the training
stage, we construct multiple independent binary
classifiers, each of which is based on a different partition
of the set of the labels into two disjointed sets. In the
second stage, the classification part, the predictions of
the binary classifiers are combined to extend a prediction
on the original label of a test instance.

There is general agreement that k-NN is very
sensitive to irrelevant features: this characteristic can be
explained by the way the algorithm works. Moreover, the
presence of irrelevant features can make neural network
training very inefficient, even impractical.

Bias measures the contribution to error of the central
tendency of the classifier when trained on different data
(Bauer & Kohavi, 1999). Variance is a measure of the
contribution to error of deviations from the central
tendency. Learning algorithms with a high-bias profile
usually generate simple, highly constrained models
which are quite insensitive to data fluctuations, so that
variance is low. Naive Bayes is considered to have high
bias, because it assumes that the dataset under
consideration can be summarized by a single probability
distribution and that this model is sufficient to
discriminate between classes. On the contrary,
algorithms with a high-variance profile can generate
arbitrarily complex models which fit data variations more
readily. Examples of high-variance algorithms are
decision trees, neural networks and SVMs. The obvious
pitfall of high-variance model classes is overfitting.

Most decision tree algorithms cannot perform well
with problems that require diagonal partitioning. The
division of the instance space is orthogonal to the axis of
one variable and parallel to all other axes. Therefore, the
resulting regions after partitioning are all
hyperrectangles. The ANNs and the SVMs perform well
when multicollinearity is present and a nonlinear
relationship exists between the input and output features.

Lazy learning methods require zero training time
because the training instance is simply stored. Naive
Bayes methods also train very quickly since they require
only a single pass on the data either to count frequencies
(for discrete variables) or to compute the normal
probability density function (for continuous variables
under normality assumptions). Univariate decision trees
are also reputed to be quite fast—at any rate, several
orders of magnitude faster than neural networks and
SVMs.

Naive Bayes requires little storage space during both
the training and classification stages: the strict minimum
is the memory needed to store the prior and conditional
probabilities. The basic kNN algorithm uses a great deal
of storage space for the training phase, and its execution
space is at least as big as its training space. On the
contrary, for all non-lazy learners, execution space is
usually much smaller than training space, since the
resulting classifier is usually a highly condensed
summary of the data. Moreover, Naive Bayes and the
kNN can be easily used as incremental learners whereas
rule algorithms cannot. Naive Bayes is naturally robust to
missing values since these are simply ignored in
computing probabilities and hence have no impact on the
final decision. On the contrary, kNN and neural networks
require complete records to do their work.

Moreover, kNN is generally considered intolerant of
noise; its similarity measures can be easily distorted by
errors in attribute values, thus leading it to misclassify a
new instance on the basis of the wrong nearest neighbors.
Contrary to kNN, rule learners and most decision trees
are considered resistant to noise because their pruning
strategies avoid overfitting the data in general and noisy
data in particular.

What is more, the number of model or runtime
parameters to be tuned by the user is an indicator of an

SUPERVISED MACHINE LEARNING: A REVIEW OF... Informatica 31 (2007) 249–268 263

algorithm’s ease of use. As expected, neural networks
and SVMs have more parameters than the remaining
techniques. The basic kNN has usually only a single
parameter (k) which is relatively easy to tune.

Logic-based algorithms are all considered very easy
to interpret, whereas neural networks and SVMs have
notoriously poor interpretability. k-NN is also considered
to have very poor interpretability because an unstructured
collection of training instances is far from readable,
especially if there are many of them. While
interpretability concerns the typical classifier generated
by a learning algorithm, transparency refers to whether
the principle of the method is easily understood. A
particularly eloquent case is that of k-NN; while the
resulting classifier is not quite interpretable, the method
itself is quite transparent because it appeals to the
intuition of human users, who spontaneously reason in a
similar manner. Similarly, Naive Bayes' is very

transparent, as it is easily grasped by users like
physicians who find that probabilistic explanations
replicate their way of diagnosing (Kononenko, 1993).
Similarly, Naive Bayes' explanations in terms of the sum
of information gains is very transparent, as it is easily
grasped by users like physicians who find that
explanations replicate their way of diagnosing
(Kononenko, 1993).

Finally, decision trees and NB generally have
different operational profiles, when one is very accurate
the other is not and vice versa. On the contrary, decision
trees and rule classifiers have a similar operational
profile. SVM and ANN have also a similar operational
profile. No single learning algorithm can uniformly
outperform other algorithms over all datasets. Features of
learning techniques are compared in Table 4 (from
evidence of existing empirical and theoretical studies).

 Decision

Trees
Neural
Networks

Naïve
Bayes

kNN SVM Rule-
learners

Accuracy in general ** *** * ** **** **
Speed of learning with
respect to number of
attributes and the number of
instances

*** * **** **** * **

Speed of classification **** **** **** * **** ****
Tolerance to missing values *** * **** * ** **
Tolerance to irrelevant
attributes

*** * ** ** **** **

Tolerance to redundant
attributes

** ** * ** *** **

Tolerance to highly
interdependent attributes (e.g.
parity problems)

** *** * * *** **

Dealing with
discrete/binary/continuous
attributes

**** ***(not
discrete)

***(not
continuous)

***(not
directly
discrete)

**(not
discrete)

***(not
directly
continuous)

Tolerance to noise ** ** *** * ** *
Dealing with danger of
overfitting

** * *** *** ** **

Attempts for incremental
learning

** *** **** **** ** *

Explanation
ability/transparency of
knowledge/classifications

**** * **** ** * ****

Model parameter handling *** * **** *** * ***
Table 4. Comparing learning algorithms (**** stars represent the best and * star the worst performance)

When faced with the decision “Which algorithm will

be most accurate on our classification problem?”, the
simplest approach is to estimate the accuracy of the
candidate algorithms on the problem and select the one
that appears to be most accurate. The concept of
combining classifiers is proposed as a new direction for
the improvement of the performance of individual
classifiers. The goal of classification result integration
algorithms is to generate more certain, precise and
accurate system results. Numerous methods have been
suggested for the creation of ensemble of classifiers

(Dietterich, 2000). Although or perhaps because many
methods of ensemble creation have been proposed, there
is as yet no clear picture of which method is best (Villada
and Drissi, 2002). Thus, an active area of research in
supervised learning is the study of methods for the
construction of good ensembles of classifiers.
Mechanisms that are used to build ensemble of classifiers
include: i) using different subsets of training data with a
single learning method, ii) using different training
parameters with a single training method (e.g., using

264 Informatica 31 (2007) 249–268 S.B. Kotsiantis

different initial weights for each neural network in an
ensemble) and iii) using different learning methods.

9 Conclusions
This paper describes the best-known supervised

techniques in relative detail. We should remark that our
list of references is not a comprehensive list of papers
discussing supervised methods: our aim was to produce a
critical review of the key ideas, rather than a simple list
of all publications which had discussed or made use of
those ideas. Despite this, we hope that the references
cited cover the major theoretical issues, and provide
access to the main branches of the literature dealing with
such methods, guiding the researcher in interesting
research directions.

The key question when dealing with ML
classification is not whether a learning algorithm is
superior to others, but under which conditions a
particular method can significantly outperform others on
a given application problem. Meta-learning is moving in
this direction, trying to find functions that map datasets
to algorithm performance (Kalousis and Gama, 2004). To
this end, meta-learning uses a set of attributes, called
meta-attributes, to represent the characteristics of
learning tasks, and searches for the correlations between
these attributes and the performance of learning
algorithms. Some characteristics of learning tasks are:
the number of instances, the proportion of categorical
attributes, the proportion of missing values, the entropy
of classes, etc. Brazdil et al. (2003) provided an
extensive list of information and statistical measures for
a dataset.

After a better understanding of the strengths and
limitations of each method, the possibility of integrating
two or more algorithms together to solve a problem
should be investigated. The objective is to utilize the
strengthes of one method to complement the weaknesses
of another. If we are only interested in the best possible
classification accuracy, it might be difficult or impossible
to find a single classifier that performs as well as a good
ensemble of classifiers. Despite the obvious advantages,
ensemble methods have at least three weaknesses. The
first weakness is increased storage as a direct
consequence of the requirement that all component
classifiers, instead of a single classifier, need to be stored
after training. The total storage depends on the size of
each component classifier itself and the size of the
ensemble (number of classifiers in the ensemble). The
second weakness is increased computation because in
order to classify an input query, all component classifiers
(instead of a single classifier) must be processed. The last
weakness is decreased comprehensibility. With
involvement of multiple classifiers in decision-making, it
is more difficult for non-expert users to perceive the
underlying reasoning process leading to a decision. A
first attempt for extracting meaningful rules from
ensembles was presented in (Wall et al, 2003).

For all these reasons, the application of ensemble
methods is suggested only if we are only interested in the
best possible classification accuracy. Another time-

consuming attempt that tried to increase the classification
accuracy without decreasing comprehensibility is the
wrapper feature selection procedure (Guyon & Elissee,
2003). Theoretically, having more features should result
in more discriminating power. However, practical
experience with machine learning algorithms has shown
that this is not always the case. Wrapper methods wrap
the feature selection around the induction algorithm to be
used, using cross-validation to predict the benefits of
adding or removing a feature from the feature subset
used.

Finally, many researchers in machine learning are
accustomed to dealing with flat files and algorithms that
run in minutes or seconds on a desktop platform. For
these researchers, 100,000 instances with two dozen
features is the beginning of the range of “very large”
datasets. However, the database community deals with
gigabyte databases. Of course, it is unlikely that all the
data in a data warehouse would be mined simultaneously.
Most of the current learning algorithms are
computationally expensive and require all data to be
resident in main memory, which is clearly untenable for
many realistic problems and databases. An orthogonal
approach is to partition the data, avoiding the need to run
algorithms on very large datasets. Distributed machine
learning involves breaking the dataset up into subsets,
learning from these subsets concurrently and combining
the results (Basak and Kothari, 2004). Distributed agent
systems can be used for this parallel execution of
machine learning processes (Klusch et al., 2003). Non-
parallel machine learning algorithms can still be applied
on local data (relative to the agent) because information
about other data sources is not necessary for local
operations. It is the responsibility of agents to integrate
the information from numerous local sources in
collaboration with other agents.

References
[1] Acid, S. and de Campos. L.M. (2003). Searching

for Bayesian Network Structures in the Space of
Restricted Acyclic Partially Directed Graphs.
Journal of Artificial Intelligence Research 18: 445-
490.

[2] Aha, D. (1997). Lazy Learning. Dordrecht: Kluwer
Academic Publishers.

[3] An, A., Cercone, N. (1999), Discretization of
continuous attributes for learning classification
rules. Third Pacific-Asia Conference on
Methodologies for Knowledge Discovery & Data
Mining, 509-514.

[4] An, A., Cercone, N. (2000), Rule Quality Measures
Improve the Accuracy of Rule Induction: An
Experimental Approach, Lecture Notes in
Computer Science, Volume 1932, Pages 119-129.

[5] Auer P. & Warmuth M. (1998). Tracking the Best
Disjunction. Machine Learning 32: 127–150.

[6] Baik, S. Bala, J. (2004), A Decision Tree Algorithm
for Distributed Data Mining: Towards Network
Intrusion Detection, Lecture Notes in Computer
Science, Volume 3046, Pages 206 – 212.

SUPERVISED MACHINE LEARNING: A REVIEW OF... Informatica 31 (2007) 249–268 265

[7] Barto, A. G. & Sutton, R. (1997). Introduction to
Reinforcement Learning. MIT Press.

[8] Batista, G., & Monard, M.C., (2003), An Analysis
of Four Missing Data Treatment Methods for
Supervised Learning, Applied Artificial
Intelligence, vol. 17, pp.519-533.

[9] Basak., J., Kothari, R. (2004), A Classification
Paradigm for Distributed Vertically Partitioned
Data. Neural Computation, 16(7):1525-1544.

[10] Blum, A. (1997), Empirical Support for Winnow
and Weighted-Majority Algorithms: Results on a
Calendar Scheduling Domain, Machine Learning,
Volume 26, Issue 1, Pages 5-23.

[11] Bonarini, A. (2000), An Introduction to Learning
Fuzzy Classifier Systems, Lecture Notes in
Computer Science, Volume 1813, Pages 83-92.

[12] Bouckaert, R. (2003). Choosing between two
learning algorithms based on calibrated tests. Proc
20th Int Conf on Machine Learning, pp. 51-58.
Morgan Kaufmann.

[13] Bouckaert, R. (2004), Naive Bayes Classifiers That
Perform Well with Continuous Variables, Lecture
Notes in Computer Science, Volume 3339, Pages
1089 – 1094.

[14] Brazdil P., Soares C. and Da Costa J. (2003),
Ranking Learning Algorithms: Using IBL and
Meta-Learning on Accuracy and Time Results,
Machine Learning, 50: 251-277.

[15] Breiman L., Friedman J.H., Olshen R.A., Stone C.J.
(1984) Classification and Regression Trees,
Wadsforth International Group.

[16] Breiman, L., Bagging Predictors. Machine
Learning, 24 (1996) 123-140.

[17] Breslow, L. A. & Aha, D. W. (1997). Simplifying
decision trees: A survey. Knowledge Engineering
Review 12: 1–40.

[18] Brighton, H. & Mellish, C. (2002), Advances in
Instance Selection for Instance-Based Learning
Algorithms. Data Mining and Knowledge
Discovery 6: 153–172.

[19] Bruha. I. (2000), From machine learning to
knowledge discovery: Survey of preprocessing and
postprocessing. , Intelligent Data Analysis, Vol. 4,
pp. 363-374.

[20] Burges, C. (1998). A tutorial on support vector
machines for pattern recognition. Data Mining and
Knowledge Discovery. 2(2):1-47.

[21] Camargo, L. S. & Yoneyama, T. (2001).
Specification of Training Sets and the Number of
Hidden Neurons for Multilayer Perceptrons. Neural
Computation 13: 2673–2680.

[22] Castellano, G., Fanelli, A., & Pelillo, M. (1997). An
iterative pruning algorithm for feedforward neural
networks. IEEE Transactions on Neural Networks
8: 519–531.

[23] Cestnik, B., Kononenko, I., Bratko, I., (1987).
Assistant 86: A knowledge elicitation tool for
sophisticated users. In: Proceedings of the Second
European Working Session on Learning. pp. 31-45.

[24] Cestnik, B. (1990), Estimating probabilities: A
crucial task in machine learning. In Proceedings of

the European Conference on Artificial Intelligence,
pages 147-149.

[25] Cheng, J. & Greiner, R. (2001). Learning Bayesian
Belief Network Classifiers: Algorithms and System,
In Stroulia, E. & Matwin, S. (ed.), AI 2001, 141-
151, LNAI 2056,

[26] Cheng, J., Greiner, R., Kelly, J., Bell, D., & Liu, W.
(2002). Learning Bayesian networks from data: An
information-theory based approach. Artificial
Intelligence 137: 43–90.

[27] Chickering, D.M. (2002). Optimal Structure
Identification with Greedy Search. Journal of
Machine Learning Research, Vol. 3, pp 507-554.

[28] Clark, P., Niblett, T. (1989), The CN2 Induction
Algorithm. Machine Learning, 3(4):261-283.

[29] Cohen, W. (1995), Fast Effective Rule Induction. In
Proceedings of ICML-95, 115-123.

[30] Cover, T., Hart, P. (1967), Nearest neighbor pattern
classification. IEEE Transactions on Information
Theory, 13(1): 21–7.

[31] Cowell, R.G. (2001). Conditions Under Which
Conditional Independence and Scoring Methods
Lead to Identical Selection of Bayesian Network
Models. Proc. 17th International Conference on
Uncertainty in Artificial Intelligence.

[32] Crammer, K. & Singer, Y. (2002). On the
Learnability and Design of Output Codes for
Multiclass Problems. Machine Learning 47: 201–
233.

[33] Cristianini, N. & Shawe-Taylor, J. (2000). An
Introduction to Support Vector Machines and Other
Kernel-Based Learning Methods. Cambridge
University Press, Cambridge.

[34] Csiszar, I. (1996), Maxent, mathematics, and
information theory. In K. Hanson and R. Silver,
editors, Maximum Entropy and Bayesian Methods.
Kluwer Academic Publishers.

[35] De Mantaras & Armengol E. (1998). Machine
learning from examples: Inductive and Lazy
methods. Data & Knowledge Engineering 25: 99-
123.

[36] Dietterich, T. G. (1998), Approximate Statistical
Tests for Comparing Supervised Classification
Learning Algorithms. Neural Computation, 10(7)
1895–1924.

[37] Dietterich, T. G. (2000). An Experimental
Comparison of Three Methods for Constructing
Ensembles of Decision Trees: Bagging, Boosting,
and Randomization, Machine Learning 40: 139–
157.

[38] Domingos, P. & Pazzani, M. (1997). On the
optimality of the simple Bayesian classifier under
zero-one loss. Machine Learning 29: 103-130.

[39] Dutton, D. & Conroy, G. (1996), A review of
machine learning, Knowledge Engineering Review
12: 341-367.

[40] Eklund, P., Hoang, A. (2002), A Performance
Survey of Public Domain Machine Learning
Algorithms Technical Report, School of
Information Technology, Griffith University.

266 Informatica 31 (2007) 249–268 S.B. Kotsiantis

[41] Elomaa, T. & Rousu, J. (1999). General and
Efficient Multisplitting of Numerical Attributes.
Machine Learning 36, 201–244.

[42] Elomaa T. (1999). The biases of decision tree
pruning strategies. Lecture Notes in Computer
Science 1642. Springer, pp. 63-74.

[43] Flach, P.A. & Lavrac, N. (2000). The role of feature
construction in inductive rule learning. De Raedt, L.
& Kramer, S., (ed.), In Proceedings of the
ICML2000 workshop on Attribute-Value Learning
and Relational Learning: Bridging the Gap,
Stanford University.

[44] Frank, E. & Witten, I. (1998). Generating Accurate
Rule Sets Without Global Optimization. In Shavlik,
J., (eds), Machine Learning: Proceedings of the
Fifteenth International Conference, Morgan
Kaufmann Publishers, San Francisco, CA.

[45] Freund, Y. & Schapire, R. (1999), Large Margin
Classification Using the Perceptron Algorithm,
Machine Learning 37: 277–296.

[46] Friedman, J.H. (1989), Regularized Discriminant
Analysis. Journal of the American Statistical
Association.

[47] Friedman, N., Geiger, D. & Goldszmidt M. (1997).
Bayesian network classifiers. Machine Learning 29:
131-163.

[48] Friedman, N. & Koller, D. (2003). Being Bayesian
About Network Structure: A Bayesian Approach to
Structure Discovery in Bayesian Networks.
Machine Learning 50(1): 95-125.

[49] Furnkranz, J. (1997). Pruning algorithms for rule
learning. Machine Learning 27: 139-171.

[50] Furnkranz, J. (1999). Separate-and-Conquer Rule
Learning. Artificial Intelligence Review 13: 3-54.

[51] Furnkranz, J. (2001). Round Robin Rule Learning.
In Proceedings of the 18th International
Conference on Machine Learning (ICML-01), 146-
153.

[52] Furnkranz, J., Flach, P. (2005), ROC ‘n’ Rule
Learning—Towards a Better Understanding of
Covering Algorithms, Machine Learning, Volume
58 (1), pp. 39 – 77.

[53] Gama, J. & Brazdil, P. (1999). Linear Tree.
Intelligent Data Analysis 3: 1-22

[54] Gehrke, J., Ramakrishnan, R. & Ganti, V. (2000),
RainForest—A Framework for Fast Decision Tree
Construction of Large Datasets, Data Mining and
Knowledge Discovery, Volume 4, Issue 2 - 3, Jul
2000, Pages 127 - 162

[55] Genton, M. (2001). Classes of Kernels for Machine
Learning: A Statistics Perspective. Journal of
Machine Learning Research 2: 299-312.

[56] Good I.J. (1950), Probability and the Weighing of
Evidence, London, Charles Grin.

[57] Guo, G., Wang, H., Bell, D., Bi, Y., Greer, K.
(2003), KNN Model-Based Approach in
Classification, Lecture Notes in Computer Science,
Volume 2888, Pages 986 – 996.

[58] Guyon, I, Elissee, A. (2003), An introduction to
variable and feature selection. Journal of Machine
Learning Research, 3:1157 1182.

[59] Hunt E., Martin J & Stone P. (1966), Experiments
in Induction, New York, Academic Press.

[60] Heckerman, D., Meek, C. & Cooper, G. (1999). A
Bayesian Approach to Causal Discovery. In
Glymour, C. and G. Cooper, (ed.), Computation,
Causation, and Discovery, 141-165. MIT Press.

[61] Hodge, V., Austin, J. (2004), A Survey of Outlier
Detection Methodologies, Artificial Intelligence
Review, Volume 22, Issue 2, pp. 85-126.

[62] Japkowicz N. and Stephen, S. (2002), The Class
Imbalance Problem: A Systematic Study Intelligent
Data Analysis, Volume 6, Number 5.

[63] Jain, A.K., Murty, M. N., and Flynn, P. (1999),
Data clustering: A review, ACM Computing
Surveys, 31(3): 264–323.

[64] Jensen, F. (1996). An Introduction to Bayesian
Networks. Springer.

[65] Jordan, M.I. (1998), Learning in Graphical Models.
MIT Press, Cambridge, MA.

[66] Kalousis A., Gama, G. (2004), On Data and
Algorithms: Understanding Inductive Performance,
Machine Learning 54: 275–312.

[67] Keerthi, S. & Gilbert, E. (2002). Convergence of a
Generalized SMO Algorithm for SVM Classifier
Design. Machine Learning 46: 351–360.

[68] Kivinen, J. (2002), Online Learning of Linear
Classifiers, Advanced Lectures on Machine
Learning: Machine Learning Summer School 2002,
Australia, February 11-22, ISSN: 0302-9743, pp.
235 – 257.

[69] Klusch, M., Lodi, S., Moro, G. (2003), Agent-
Based Distributed Data Mining: The KDEC
Scheme. In Intelligent Information Agents: The
AgentLink Perspective, LNAI 2586, pages 104-
122. Springer.

[70] Kon, M. & Plaskota, L. (2000), Information
complexity of neural networks, Neural Networks
13: 365–375.

[71] Kononenko, I. (1991), "Semi-Naive Bayesian
Classifier", In Proceedings of the sixth European
Working Session on Learning, 206-219.

[72] Kononenko, I. (1993), Inductive and Bayesian
learning in medical diagnosis. Applied Artificial
Intelligence 7(4): 317-337.

[73] Kononenko, I. (1994), ‘Estimating attributes:
analysis and extensions of Relief’. In: L. De Raedt
and F. Bergadano (eds.): Machine Learning:
ECML-94. pp. 171–182, Springer Verlag.

[74] Kubat, Miroslav Cooperson Martin (2001), A
reduction technique for nearest-neighbor
classification: Small groups of examples. Intell.
Data Anal. 5(6): 463-476.

[75] Lindgren, T. (2004), Methods for Rule Conflict
Resolution, Lecture Notes in Computer Science,
Volume 3201, Pages 262 – 273.

[76] Littlestone, N. & Warmuth, M. (1994). The
weighted majority algorithm. Information and
Computation 108(2): 212–261.

[77] Liu, H. and H. Motoda (2001), Instance Selection
and Constructive Data Mining, Kluwer, Boston.

SUPERVISED MACHINE LEARNING: A REVIEW OF... Informatica 31 (2007) 249–268 267

[78] Madden, M. (2003), The Performance of Bayesian
Network Classifiers Constructed using Different
Techniques, Proceedings of European Conference
on Machine Learning, Workshop on Probabilistic
Graphical Models for Classification, pp. 59-70.

[79] Markovitch S. & Rosenstein D. (2002), Feature
Generation Using General Construction Functions,
Machine Learning 49: 59-98.

[80] McSherry, D. (1999). Strategic induction of
decision trees. Knowledge-Based Systems, 12(5-
6):269-275.

[81] Michalski, R. S., Chilausky, R. L. (1980), Learning
by being told and learning from examples: an
experimental comparison of the two methods of
knowledge acquisition in the context of developing
and expert system for soybean disease diagnosis.
Policy Analysis and Information Systems, 4(2)..

[82] Mika, S., Rätsch, G., Weston, J., Schölkopf, B. and
Müller, K.-R. (1999), Fisher discriminant analysis
with kernels. In Y.-H. Hu, J. Larsen, E. Wilson, and
S. Douglas, editors, Neural Networks for Signal
Processing IX, pages 41-48. IEEE.

[83] Mitchell, T. (1997). Machine Learning. McGraw
Hill.

[84] Murthy, (1998), Automatic Construction of
Decision Trees from Data: A Multi-Disciplinary
Survey, Data Mining and Knowledge Discovery 2:
345–389.

[85] Nadeau, C. and Bengio, Y. (2003), Inference for the
generalization error. In Machine Learning 52:239–
281.

[86] Neocleous, C. & Schizas, C., (2002), Artificial
Neural Network Learning: A Comparative Review,
LNAI 2308, pp. 300–313, Springer-Verlag Berlin
Heidelberg.

[87] Nilsson, N.J. (1965). Learning machines. New
York: McGraw-Hill.

[88] Olcay Taner Yıldız, Onur Dikmen (2007), Parallel
univariate decision trees, Pattern Recognition
Letters, Volume 28 , Issue 7 (May 2007), Pages:
825-832.

[89] Okamoto, S., Yugami, N. (2003), Effects of domain
characteristics on instance-based learning
algorithms. Theoretical Computer Science 298,
207-233.

[90] Parekh, R., and Yang, J., and Honavar, V. (2000),
Constructive Neural Network Learning Algorithms
for Pattern Classification. IEEE Transactions on
Neural Networks. 11(2), pp. 436-451.

[91] Platt, J. (1999). Using sparseness and analytic QP to
speed training of support vector machines. In
Kearns, M., Solla, S. & Cohn, D. (ed.), Advances in
neural information processing systems. MIT Press.

[92] Quinlan, J.R. (1979), "Discovering rules by
induction from large collections of examples", D.
Michie ed., Expert Systems in the Microelectronic
age, pp. 168-201.

[93] Quinlan, J.R. (1993). C4.5: Programs for machine
learning. Morgan Kaufmann, San Francisco

[94] Rastogi, R. & Shim, K. (2000). PUBLIC: A
Decision Tree Classifier that Integrates Building

and Pruning. Data Mining and Knowledge
Discovery 4: 315–344.

[95] Reinartz T. (2002), A Unifying View on Instance
Selection, Data Mining and Knowledge Discovery,
6, 191–210, Kluwer Academic Publishers.

[96] Robert, J., Howlett L.C.J. (2001), Radial Basis
Function Networks 2: New Advances in Design.

[97] Rosenblatt, F., (1962), Principles of
Neurodynamics. Spartan, New York

[98] Roy, A. (2000), On connectionism, rule extraction,
and brain-like learning. IEEE Transactions on
Fuzzy Systems, 8(2): 222-227.

[99] Ruggieri, S. (2001). Efficient C4.5. IEEE
Transactions on Knowledge and Data Engineering
14 (2): 438-444.

[100] Rumelhart, D. E., Hinton, G. E., Williams, R. J.
(1986), Learning internal representations by error
propagation. In: Rumelhart D E, McClelland J L et
al. (eds.) Parallel Distributed Processing:
Explorations in the Microstructure of Cognition.
MIT Press, Cambridge, MA, Vol. 1, pp. 318-362.

[101] Saad, D. (1998). Online learning in neural
networks. London: Cambridge University Press.

[102] Sanchez, J., Barandela, R., Ferri, F. (2002), On
Filtering the Training Prototypes in Nearest
Neighbour Classification, Lecture Notes in
Computer Science, Volume 2504, Pages 239 - 248

[103] Scholkopf, C., Burges, J. C. & Smola, A. J.
(1999). Advances in Kernel Methods. MIT Press.

[104] Setiono R. and Loew, W. K. (2000), FERNN:
An algorithm for fast extraction of rules from
neural networks, Applied Intelligence 12, 15-25.

[105] Siddique, M. N. H. and Tokhi, M. O. (2001),
Training Neural Networks: Backpropagation vs.
Genetic Algorithms, IEEE International Joint
Conference on Neural Networks, Vol. 4, pp. 2673–
2678.

[106] Smyth, P, Goodman, R., M. (1990), Rule
induction using information theory, In G. Piatetsky
Shapiro and W. Frawley (eds), Knowledge
Discovery in Databases, MIT Press.

[107] Tjen-Sien, L., Wei-Yin, L., Yu-Shan, S. (2000).
A Comparison of Prediction Accuracy, Complexity,
and Training Time of Thirty-Three Old and New
Classification Algorithms. Machine Learning 40:
203–228.

[108] Utgoff, P., Berkman, N., Clouse, J. (1997),
Decision Tree Induction Based on Efficient Tree
Restructuring, Machine Learning, Volume 29, Issue
1, Pages: 5 – 44.

[109] Vapnik, V. (1995), The Nature of Statistical
Learning Theory}. Springer Verlag.

[110] Veropoulos, K., Campbell, C. & Cristianini, N.
(1999). Controlling the Sensitivity of Support
Vector Machines. In Proceedings of the
International Joint Conference on Artificial
Intelligence (IJCAI99).

[111] Villada, R. & Drissi, Y. (2002). A Perspective
View and Survey of Meta-Learning. Artificial
Intelligence Review 18: 77–95.

268 Informatica 31 (2007) 249–268 S.B. Kotsiantis

[112] Vivarelli, F. & Williams, C. (2001). Comparing
Bayesian neural network algorithms for classifying
segmented outdoor images. Neural Networks 14:
427-437.

[113] Wall, R., Cunningham, P., Walsh, P., Byrne, S.
(2003), Explaining the output of ensembles in
medical decision support on a case by case basis,
Artificial Intelligence in Medicine, Vol. 28(2) 191-
206.

[114] Weigend, A. S., Rumelhart, D. E., & Huberman,
B. A. (1991). Generalization by weight-elimination
with application to forecasting. In: R. P. Lippmann,
J. Moody, & D. S. Touretzky (eds.), Advances in
Neural Information Processing Systems 3, San
Mateo, CA: Morgan Kaufmann.

[115] Wettschereck, D., Aha, D. W. & Mohri, T.
(1997). A Review and Empirical Evaluation of
Feature Weighting Methods for a Class of Lazy
Learning Algorithms. Artificial Intelligence Review
10:1–37.

[116] Wilson, D. R. & Martinez, T. (2000). Reduction
Techniques for Instance-Based Learning
Algorithms. Machine Learning 38: 257–286.

[117] Witten, I. & Frank, E. (2005), "Data Mining:
Practical machine learning tools and techniques",
2nd Edition, Morgan Kaufmann, San Francisco,
2005.

[118] Yam, J. & Chow, W. (2001). Feedforward
Networks Training Speed Enhancement by Optimal

Initialization of the Synaptic Coefficients. IEEE
Transactions on Neural Networks 12: 430-434.

[119] Yang, Y., Webb, G. (2003), On Why
Discretization Works for Naive-Bayes Classifiers,
Lecture Notes in Computer Science, Volume 2903,
Pages 440 – 452.

[120] Yen, G. G. and Lu, H. (2000), Hierarchical
genetic algorithm based neural network design, In:
IEEE Symposium on Combinations of Evolutionary
Computation and Neural Networks, pp. 168–175.

[121] Yu, L., Liu, H. (2004), Efficient Feature
Selection via Analysis of Relevance and
Redundancy, JMLR, 5(Oct):1205-1224.

[122] Zhang, G. (2000), Neural networks for
classification: a survey. IEEE Transactions on
Systems, Man, and Cybernetics, Part C 30(4): 451-
462.

[123] Zhang, S., Zhang, C., Yang, Q. (2002). Data
Preparation for Data Mining. Applied Artificial
Intelligence, Volume 17, pp. 375 - 381.

[124] Zheng, Z. (1998). Constructing conjunctions
using systematic search on decision trees.
Knowledge Based Systems Journal 10: 421–430.

[125] Zheng, Z. (2000). Constructing X-of-N
Attributes for Decision Tree Learning. Machine
Learning 40: 35–75.

[126] Zhou, Z. (2004), Rule Extraction: Using Neural
Networks or For Neural Networks?, Journal of
Computer Science and Technology, Volume 19,
Issue 2, Pages: 249 – 253.

 Informatica 31 (2007) 269-277 269

An Overview of Content-Based Spam Filtering Techniques
Ahmed Khorsi
Department of Computer Science,
Djillali Liabes University, Bel Abbes, 22000, Algeria
E-mail: ahmed-khorsi@univ-sba.dz

Overview paper

Keywords: antispam filters, text categorization, email classification

Received: May 26, 2007

So fast, so cheap, so efficient, Internet is nowadays incontestably communication mean of choice for
personal, business and academic purposes. Unfortunately, Internet has not only this beautiful face.
Malicious activities enjoy as well this so fast, cheap and efficient mean. The last decade, Internet worms
took the lights. In the recent years, spams are invading one of the most used services of Internet: email.
This paper summarizes most of techniques used to filter spams by analyzing the email content.
Povzetek: Članek pregledno opisuje metode za filtriranje elektronske pošte.

1 Introduction
With our agreement or without, Internet is

increasingly becoming a favorite support of malicious
activities. After worms which are always on the
foreground of information technology problems, spams
appeared and are really taking day after day more
intensity.

Read an E-mail is nowadays a daily habit of many
people. Indeed, emails are efficient, rapid and cheap
mean of communication. This makes it favorite both in
professional and personal correspondences. Additionally,
Reading occasionally an E-mail from unknown source
and content of which is not of the user interest is not
really a misfortune. However, when more than 60% or
even 90% of E-mails are of such kind, and often illicit;
this is what one might call a nightmare. This kind of
messages is said spams.

SpamCon Inc, estimated the cost induced by
productivity and resources loss, filtering software, and
support caused by only one unsolicited E-mail to from 1$
up to 2$[3]; multiplied by the number of spams sent and
received everyday, the one dollar becomes then millions.
International Data Corp. estimates the number of spams
sent everyday through the net to 7.3 billions, where only
AOL users recorded 5.5 millions by March, 5, 2003 [55].
These statistics were sufficient to persuade big users of
the E-mail service to forecast a supplementary budget to
fight spams. UUNet, one of the most important ISPs has
a group of six persons with a budget of 1 million dollars,
just to fight spams [56]. Netcom estimated that 10% of
the end-user invoice is dedicated to filter spams [54]. A
study of International Data Corporation (IDC) ranked
spams in the second position of the ISPs’ problems. One
question arises then; Why does someone enjoy sending so
many E-mails, and how does he get so many addresses?
Although motivations are sometimes different, spams are
generally of publicity-like contents. To broadcast a
commercial through a TV channel costs hundreds times

more than sending millions of spams. To get so many E-
mail addresses is not at all difficult since many are
available in the Internet itself. Some spammers, uses
addresses found in newsgroups publicly accessible. Some
others use webbots commonly called spambots, software
which browses automatically the web seeking E-mail
addresses. Generally, Spambots use keywords matching
techniques to extract the email addresses. One evident
way is to check for the character ’’. Some others use
software to generate random addresses then record all
addresses from which they do not receive a reply of a
delivery failure. More advanced techniques are
summarized in [57].

Actually, fighting spams takes various forms.
Juridical one came early in US by adopting an anti-spam
law [30]. International cooperation is growing as well
[47]. Simpler method might consist in some good practi-

 Computer viruses Spams
1. their authors are human

programmer who tempt
to workaround anti-
viruses.

Senders are humans
who tempt to avoid
characteristics which
denounce their spams.

2. tempt to infect as many
as possible systems.

spammer tempt to
send their messages to
as many as possible
Internet users.

3. may cause lot of damage
in the infected system.

Consumes a large part
of the Internet
bandwidth, and causes
a considerable
productivity loss.

4. it introduce itself
discreetly in systems.

they are generally
unsolicited

Table 1: Similarities between viruses and spasm.

270 Informatica 31 (2007) 269–277 A. Khorsi

ces. For instance, do not publish textual E-mail
addresses, and use images instead, do not reply to
suspicious E-mails. Some other techniques use features
of headers such as E-mail origin [58][18][61]. These
methods are widely supported by the most used Email
servers without need of filtering software. However, all
these methods are not the purpose of our discussion.

 An antispam filter is similar to an anti-virus which
scans files to check for virus signatures. Indeed, there are
many similarities between computer viruses and spams.
Table 1 enumerates some of them. In the following

sections we will briefly present some content-based
filtering techniques. The main idea behind such
techniques is to classify an email into unsolicited or
legitimate by checking some features in its content. It is
not our aim to make an extensive comparison of these
different methods when many papers propose
comparisons between two or more of these
techniques[34][20][2][60]

2 Bayesian classifier
Actually, many of the filtering techniques are based

on text categorization methods [28] [8]. Thus filtering
spams turns on a classification problem. Roughly, we can
distinguish between two methods of machine
classification. The first one is done on some rules defined
manually. The typical example is the rule based expert
systems. This kind of classification can be used when all
classes are static, and their components are easily
separated according to some features. The second one is
done using machine learning techniques [23]. It is more
convenient when the characteristics of discrimination are
not well defined. These techniques attempt to generate on
a set of samples, quasi or semi automatically a classifier
with an acceptable error rate.

2.1 Generalities
Getting an E-mail m, we have to define a decision

function f which assigns to m its class, S for Spams or L
for legitimate. Let GM be the set of messages. f is then :

f : GM → {S,L}
In such techniques, we first check some

characteristics on which we may classify the message
into the class S or L. We will refer to such characteristics
by a vector x.

Let P(x/c) be the probability that the class c
generates a message which its characteristic vector is x.
If we suppose that a legitimate message never contains
the text t =”Buy now” and that x = (m = utv) with u, v are
two strings, the probability P(x/L) = 0. Then, the
problem is to compute the probability that a message
which has a characteristic vector x belongs to the class c
say P(c/x). We obtain then by observing the rule of
Bayes:

Where P(x) indicates the a-priori probability of
occurrence of a message which characteristic vector is x,
and P(c) indicates the probability that a random Email
belongs to the class c. Knowing the probability P(c) and
the probability P(x/c) suffices to deduce P(c/x). We have
then the following rule of classification:

If P(S/x) > P(L/x) (the a-posteriori probability that
the E-mail which has the characteristic vector x belongs
to the class S is greater than that the same E-mail belongs
to the class L) then classify m as being unsolicited.

This rule is called the rule of the maximum
aposteriori probability(MAP). It can be written as follow:
If

classify the message as being unsolicited and legitimate
otherwise.
We often note the resemblance fraction:

)(xΛ

The MAP rule is written then:

Let us note L(c1, c2) the function which determines the
cost of a bad classification of an occurrence of the class
c1 as being of the class c2. It is logic to say whereas
L(L,L) = L(S, S) = 0. We can then define a function of
risk:

R(c/x) = L(S, c)P(S/x) + L(L, c)P(L/x)
Obviousness would be to classify the message by

minimizing the function of risk. From which the rule:

If R(S/x) < R(L/x) classify m unsolicited and

legitimate otherwise.

This last rule is called bayesian rule of classification

or Bayes classifier[44].
We write the classification rule in term of

resemblance fraction as follow:

Where

Intuitively, this parameter indicates the risk taken when
we classify a legitimate E-mail as being unsolicited.
Clearly, more is great; more the false positive error is
small.

AN OVERVIEW OF CONTENT-BASED... Informatica 31 (2007) 269–277 271

2.2 Application
In this subsection, we highlight the practical

application of the theoretical principle of the bayesian
classifier.

As already mentioned, to be able to determine the
classification parameter, one must determine the
probabilities P(x/c) and P(c) for any message m.
Obviously, that cannot be made in exact manner.
However, we can approximate these probabilities on the
basis of a training sample. For example, the probability
P(S) would be roughly given by calculating the ratio of
the spams on the number of all messages in the training
sample.

For simplicity, we consider that the characteristic
vector is a binary one, where the presence of a catchword
w in the message m is represented by one 1. That is to
say then:

Algorithm 1 summarizes the training where Algorithm 2
the classification steps.

In general, we represent the presence of a word wi in the
message m by the value 1 in the characteristic vector x =
(x1, x2, . . . , xn). However, the algorithm 1 will have to
compute 2n values of x which is unpractical. To avoid
this, the assumption is introduced that the presence of
two words is independent one of the other, which allows
us to write:

In [32] T.A Meyer and B Whateley report that using
foure corpora gathered from SpamBayes users and
SpamAssassin public corpus they obtained the following
results. The bayesian classifier constitutes one of the
most used techniques in antispam filters such as ’
spamassassin’ [53] and SpamBayes [32] or [49].
Although the assumption of mutual independence
between word’s occurrences is false, the recorded results
remain very good for the traditional text messages. It
often serves as a baseline to compare performances of
other methods [60].

3 k nearest neighbors
The principle of this technique is rather simple. Let

us suppose that similarities among messages are
measurable using a measure of distance among the
characteristic vectors. To decide whether a message is
legitimate or not, we look at the class of the messages
that are closest to it. Generally, this technique does not
use a separate phase of training and the comparison
between the vectors is a real time process. This has a
time complexity of O(nl) where n is the size of the
characteristic vector and l the sample size. This can be
circumvented by using a traditional indexing methods
[13][19][35]. To adjust the risk of false classification, t/k
rule is introduced. What can be read:

If at least t messages in k neighbors of the
message m are unsolicited, then m is
unsolicited email, otherwise, it is legitimate.

We should note that the use of an indexing method in
order to reduce the time of comparisons induces an
update of the sample with a complexity O(m), where m is
the sample size. An alternative of this technique is
known as memorybased approach [2][46].

TiMBL [11] is a software package developed by ILK
Research Group that implements a collection of machine
learning algorithms. Results of the implementation of
this technique in spam filtering reported in [2] seems to
be comparable to those of bayesian classifiers.

4 Technique of Support Vector
Machine (SVM)

Support vector machine [9][10][7] is one of the most
recent techniques used in text classification. In machine
learning the training sample is a set of vectors of n
attributes. We can then assume that we are in a hyper-
space of n dimensions, and that the training sample is a
set of points in the hyper-space. Let us consider the
simple case of just two classes (as it is the case of spam
problem). The classification using Support vector
machine look for the hyper plane able to separate the
points of the first class from those of the second one such
that the distance between the hyper plane and points of
each class is maximum see Figure 1.

272 Informatica 31 (2007) 269–277 A. Khorsi

Figure 1: hyper-plane that separate two classes.

Figure 2: hyper-plane that separate two classes and is far
from each class.

One question may be how we can find the hyper

plane when the classes are not linearly separable (eg.
XOR function). In this case the hyper space is extended
to more dimensions. This insures the existence of hyper
plane that separates the two classes. One interesting
feature is that to find the appropriate plane, SVM method
explore just the nearest points. One of the most efficient
SVM algorithms was proposed in [39]. An
implementation of the SVMmethod in spam filtering is
proposed in [12] where Dricker et all also provide also a
comparison with other methods.

5 Technique of maximum entropy
Maximum entropy is a classical model often used in

natural language processing [41]. The principle is to find
the appropriate probability distribution p(a, b) that
maximizes the entropy:

where A denotes the set of possible classes, and B

the set of possible values of vectors of features. This
maximization should keep p consistent with evidence
(i.e., should meet all known values in the training set). p
becomes is then:

where k is the size of the vector of features and

is a normalization factor that ensures

αj can be computed using the Generalized Iterative
Scaling [15]. f is defined as follows:

where cp maps a pair (a, b) to {true, false} Results
reported in [59] show an error rate better than that of
bayesian classifier when the training sample grows.

6 Technique of neural networks

Neural network is a well known model

[51][31][42][14][17][17][50] which has been designed
by McCuloch on the basis of work carried out on the
human neurons. The neural networks are quite famous to
be well adapted for problems of classification. Without
being spread out over the model, we will retain in what
follows the characteristics which contribute to the design
of an antispam filter.

Figure 3: The perceptron.

6.1 Perceptron
The idea is to define a linear function f(x) = wx + b

where:

where w is a vector of weights and b a bias vector.

We can simplify the function to obtain a decision
function from it d(x) = sign(wx + b)[43]. Figure 3 shows
a graphical representation of the perceptron. The training
of the perceptron is performed using an iterative method,
where the weight and bias vectors are initialized then
adjusted each iteration in such manner to ensure the
classification of a new occurrence of the training sample.
For instance let x be a vector that the perceptron fails to
classify, and wi, bi the vector of weight and bias which
corresponds to the ith iteration. We have sign(wix+bn) ≠ c

AN OVERVIEW OF CONTENT-BASED... Informatica 31 (2007) 269–277 273

where c is the sign corresponding to the real class of the
message that has the characteristic vector x. The new
vectors wi+1 and bi+1 are calculated as follow:

wi+1 = wi + cx bi+1 = bi + c

The training continues until the perceptron manages

to classify correctly all the messages of the training
sample. In this case, we say that the perceptron
converges. It is well-known that the perceptron does not
converge in the case of non-linear classification problem
[21][16].

In the case of spams filtering and if one makes a
point of applying the technique of the perceptron, it is
enough to choose a characteristic vector larger than that
of the training sample to ensure the convergence.
However such practice will heavily weigh down the
computation.

The algorithm 3 summarizes the training of the
perceptron.

6.2 The multi-layer networks
As its name indicates, the multi-layer neural net is a

network of connected perceptrons which form a network
with successive layers. The outputs of each perceptron
are inputs of perceptrons of the following layer. The
inputs of the neurons of the first layer are the
components of the characteristic vector, while the
outputs of the last layer are the results of the
classification. The layers between the first and the last
are called hidden layers. The function of each neuron is
somewhat different from the simple perceptron, although
the training is also made in an iterative way as the simple
perceptron. The output function is:

where φ is a nonlinear function such as

Or tanh(x). Figure 4 shows a graphical

representation of a multi-layer neural network. The
training of the neural network means the readjustment of
the weights and bias in such manner to minimize the sum
of the errors of the output, that is to say:

The tuning of these parameters is described in
details in [21][16]. In [38] Levent ¨Osg¨ur and all
reported a 90% accuracy in a filter based on coupling
neural network technique and bayesian classifier. [33] is
a Semantec white paper on how and why neural network
should be implemented in an antispam system.

Figure 4: Multi-layer neural network.

7 Technique of search engines
When it acts on text e-mails, classification

techniques of text seem to be efficient. However,
spammers do not cease to invent tricks to circumvent
filters. One of these tricks is to include in the body of the
message only the hyperlink to a Web page which
contains the advertising text. The problem become then a
web content classification. A proposed technique to
overcome this kind of spams is to use the public search
engines which offer a mean to classify the websites [22].
The principle of this technique is to analyze
automatically the contents of the pages referred by the
links sent in the messages likely to be spams. The
analysis starts by using the public search engines such as
Yahoo and Google. A comparison then with the user
interest can judge the convenience of the message with
the requests of the user. If the search engines do not label
the referred pages, a later step consists to analyze
contents of the pages by traditional Bayes’s classifier.
Initial classification by the search engines is also used to
enrich the sample of the bayesian classifier. This makes
the model more dynamic. The main drawback of this
approach is that to judge whether a mail is legitimate or
not its important use of the band-width.

In [22], the author reports a false positive rate of
0.0032% on a sample of 1191 legitimate emails and 493
spams.

274 Informatica 31 (2007) 269–277 A. Khorsi

Table 2: Operation represented in the tree.

8 Technique of genetic programming
In the design of a bayesian filter, the characteristic

vector may include the frequencies of some words [45]
generally selected by human experts. In fact, this
construction is sometimes decisive in the performances
of the filter. In [20], Hooman proposes a method to build
automatically the bayesian filter. This method is based on
the genetic programming. Thus, the frequency of a word
’ buy ’ for example ’ 60’ % in an E-mail can argument
the classification of the message as unsolicited. As
genetic programming suggested by Koza
[25][26][24][27][1], the filter is represented by a
syntactic tree where nodes are :

• numbers that represent the frequencies
• operations on numbers
• words
• operations on words

see Table 2.

A syntactic tree of a filter should be built according to a
precise syntax. Syntactic rules then can be used to check
the correctness of the tree by checking whether we are
able to reduce the tree to some number. Figure 5 gives an
example of a tree of a filter. Artificial genetic approaches
use functions that evaluate the fitness of a population to
some criteria. This is also the case of the approach being
explained.

Figure 5: An example of a tree of a bayesian classifier.

The fitness function is then defined as follows:

Where
ai � {0, 100} Is the correct classification of the message
mi
0 ≤ vi ≤ 100 the classification of mi returned by the
filter.
mS The number of spams.
mL The number of legitimate E-mails.
S(mi) returns 1 if mi is a unsolicited and 0 otherwise L(mi)
returns 1 if mi is legitimate and 0 otherwise
Figure 6 gives an example of cross-over. According to
the author of this approach, the experimental results
reported in [20] shows an effectiveness close to those of
a bayesian classifier manually built

9 Technique of Artificial Immune
System

The almost obvious similarities between spams and
computer viruses let think that the traditional and new
techniques of anti-viruses can be applied to fight spams.
One of these techniques is computer immune systems
[36][52][48]. In [37] Terri Oda and Tony White suggest
to design an anti-spams filter based on the generation of
artificial lymphocytes using gene database. Genes are
regular expressions which represent mini-languages
likely to contain keywords that are usually checked in
spams. The use of the regular expressions aims according
to the author at increasing the accuracy as well as the
general information hold in the detecting lymphocytes.
The generation of lymphocytes is based on a training
sample. The lifespan of these lymphocytes can be tuned

AN OVERVIEW OF CONTENT-BASED... Informatica 31 (2007) 269–277 275

in order to ensure the system dynamicity. This technique
represents only an attempt to assist the classical
techniques already proved. Membranar proteins of
biological cells allow a deterministic way to check
whether a cell is self or not. It remains too difficult to
find efficient discrimination between viruses and
legitimate objects of computer systems as well as
between spams and legitimate Emails

10 Conclusion
It is now well known that no technique can be

claimed alone to be the ideal solution with 0% false
positive and 0% false negative. Currently used antispam
systems couples several machine learning techniques for
content classification. Spamassassin uses the genetic
programming to generate its bayesian classifier for each
release. Text classification techniques, such as bayesian
classifiers and neural networks offer a good theoretical
and practical background to fight the problem of spams.
However, two disadvantages are opposed to such
relatively simple approaches. First, the definition of
unsolicited E-mails varies from one to another. A

generalized classification can penalize some users
interested by some products advertised electronically.
The second disadvantage is that a mail can be other thing
than simple text. Take the example of the multimedia
messages (images, voice-email, and movies). If methods
of text classification are allowed to wander the text of
each message, wandering tens of thousands of images or
movies to classify them is surely not a practical solution.
A solution of the first problem is to base classification on
user profiles rather than impose characteristic vectors
issued from perceptions other than those of the users.
More general solution would be an hierarchical filter. In
each node of the hierarchical tree the filter should block
all E-mails which seem to be unsolicited from the users
of all its sub-trees. Regarding the second disadvantage,
the methods of classifications of multimedia documents
exist [40][6][29] but their time and space complexities
remain far from the requirements of a real time
computation. Recently, new approches which count links
of spam have been also investigating [4][5] Fighting
spams is series of chess parts between industrial

Figure 6: Example of a cross between two trees

and researchers in one side and spammers in the other
side. Until the day the latter will decide to do not play
any more, researchers will abstain from shouting victory,
just like industrials and researchers of the anti-viruses.
Spams may be a misfortune for simple users, but it seems
to be a new big market for information technology
industrials.

Acknowledgement
My thanks go to Dr. Bendahmane, Dr. Djelloul Ziadi,
and all persons who contributed to this work.

References
[1] M. Ahluwalia and L. Bull. A genetic programming-

based classifier system. In Wolfgang Banzhaf,
Jason Daida, Agoston E. Eiben, Max H. Garzon,
Vasant Honavar, Mark Jakiela, and Robert E.
Smith, editors, Proceedings of the Genetic and
Evolutionary Computation Conference, volume 1,
pages 11–18, Orlando, Florida, USA, 13-17 July
1999. Morgan Kaufmann.

276 Informatica 31 (2007) 269–277 A. Khorsi

[2] I. Androutsopoulos, G. Paliouras, V. Karkaletsis, G.
Sakkis, C.D. Spyropoulos, and P. Stamatopoulos.
Learning to filter spam e-mail: A comparison of a
naive bayesian and a memorybased approach. In H.
Zaragoza, P. Gallinari, , and M. Rajman, editors,
Proceedings of the Workshop on Machine Learning
and Textual Information Access, 4th European
Conference on Principles and Practice of
Knowledge Discovery in Databases (PKDD 2000),
pages 1–13, 2000.

[3] S. Atskins. Size and cost of the problem. In
Priceedings of the Fifty-sixth Internet Engineering
Task Force(IETF) Meeting, (San Francisco, CA),
March 16-21 2003. SpamCon Foundation.

[4] L. Becchetti, C. Castillo, D. Donato, S. Leonardi,
and R. Baeza-Yates. Using rank propagation and
probabilistic counting for link-based spam
detection. Technical report, DELIS – Dynamically
Evolving, Large-Scale Information Systems, 2006.

[5] L. Becchetti, C. Castillo, D. Donato, S. Leonardi,
and R. Baeza-Yates. Using rank propagation and
probabilistic counting for link-based spam
detection. In Workshop: The Future of Web Search,
Barcelona, May 2006.Universitat Pompeu Fabra.

[6] J. S. De Bonet. Novel statistical multiresolution
techniques for image synthesis, discrimination, and
recognition. Master’s thesis, Massachusetts Institute
of Technology, Cambridge, MA, May 1997.

[7] C. J. C. Burges. A tutorial on support vector
machines for pattern recognition. Data Mining and
Knowledge Discovery, 2(2):121–167, 1998.

[8] W. W. Cohen. Learning to classify English text
with ILP methods. In Luc De Raedt, editor,
Advances in inductive logic programming, pages
124–143. IOS Press, Amsterdam, NL, 1995.

[9] C. Cortes and V. Vapnik. Support-vector networks.
Machine Learning, 20(3):273–297, 1995.

[10] N. Cristiatnini and J. Shawe-Taylor. An
introduction to Support Vector Machines and Other
Kernel-Based Learning Methods. Cambridge
University Press, 2003. http://www.
support-vector.net.

[11] W. Daelemans, J. Zavrel, K. van der Sloot, and A.
van den Bosch. Timbl: Tilburg memory based
learner, version 1.0, reference guide. ILK Technical
Report 98-03, Tilburg, 1998.

[12] H. Drucker, V. Vapnik, and D. Wu. Support vector
machines for spam categorization. IEEE
Transactions on Neural Networks, 10(5):1048–
1054, 1999. Available:
http://www.monmouth.edu/�druker/
SVM spam article compete.PDF.

[13] P. Ferragina and R. Grossi. Improved dynamic text
indexing. J. Algorithms, 31(2):291–319, 1999.

[14] M. Glick and D. Rumelhart. Neuroscience and
Connectionist Theory. The Developpement in
Connictionist Theory. Erlbaum Assiciates,
Hilldsdale,

[15] NJ, 1989.J. Goodman. Sequential conditional
generalized iterative scaling. In ACL ’02:
Proceedings of the40th Annual Meeting on

Association for Computational Linguistics, pages
9–16, Morristown, NJ, USA, 2001. Association for
Computational Linguistics.

[16] S. Haykin. Neural Networks: A Fomprehensive
Foundation. Printice Hall, 1998.

[17] J. Holland. Adaptation in Natural and Artificial
Systems. Ann Arbor: The University of Michigan
Press, 1975.

[18] G. Hulten, J. Goodman, and R. Rounthwaite.
Filtering spam e-mail on a global scale. Technical
report, Microsoft Corp, 2004.

[19] J. K¨arkk¨ainen and E. Ukkonen. Lempel-ziv
parsing and sublinear-size index structures for
string matching. In Proc WSP’96, pages 141– 155.
Carleton University Press, 1996.

[20] H. Katirai. Filtering junk e-mail: A performance
comparison between genetic programming and
naive bayes.

[21] V. Kecman. Learning and Soft Computing. The
MIT Press, 2001.

[22] O. Kolesnikov, W. Lee, and R. Lipton. Filtering
spam using search engines. Technical Report GIT-
CC-04-15, Georgia Tech, College of Computing,
Georgia Institute of Technology, Atlanta, GA
30332, 2004-2005.

[23] A. Konar. Artificial Intelligence and Soft
Computing : Behavioral and Congnitive Modeling
of the Human Brain, chapter 8. CRC Press,
washington, 2000.

[24] J. Koza. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. MIT Press, MA, 1992.

[25] J. R. Koza. Hierarchical genetic algorithms
operating on populations of computer programs. In
N. S. Sridharan, editor, Proceedings of the Eleventh
International Joint Conference on Artificial
Intelligence IJCAI-89, volume 1, pages 768–774.
Morgan Kaufmann, 20-25 aug 1989.

[26] J. R. Koza. Genetic programming: A paradigm for
genetically breeding populations of computer
programs to solve problems. Technical Report
STAN-CS-90-1314, Dept. of Computer Science,
Stanford University, June 1990.

[27] J. R. Koza. Genetic Programming II: Automatic
Discovery of Reusable Programs. MIT Press,
Cambridge, MA, 1994.

[28] D. Lewis. (spam vs.) forty years of machine
learning for text classification. In Proceedings of
the Spam Conference, 2003.

[29] L. Lu, H. Jiang, and H. Zhang. A robust audio
classification and segmentation method. In
MULTIMEDIA ’01: Proceedings of the ninth ACM
international conference on Multimedia, pages
203–211, New York, NY, USA, 2001. ACM Press.

[30] D. Platt Majoras, O. Swindle, Commissioner, T. B.
Leary, P. O. Harbour, Commissioner, and J.
Leibowitz. A can-spam informant reward system :
A report to congress. Technical report, Federal
Trade Commission, US, 2004.

[31] W. S. McCulloch and W. H. Pitts. A logical
calculus of the ideas immanent in nervous activity.

AN OVERVIEW OF CONTENT-BASED... Informatica 31 (2007) 269–277 277

Bulletin of Mathematical Biophysics, 5:115– 133,
1943.

[32] T. A. Meyer and B. Whateley. Spambayes:
Effective open-source, bayesian based, email
classification system. In Proceedings of the First
Conference on Email and Anti-Spam (CEAS), 2004.
Available: http://www.ceas.cc/
papers-2004/136.pdf.

[33] C. Miller. Neural network-based anti-spam
heuristics, white paper.

[34] K. Mock. An experimental framework for email
categorization and management. In 24th Annual
ACM International Conference on Research and
Development in Information Retrieval, New
Orleans, LA, September 2001.

[35] G. Navarro and R. Baeza-Yates. A practical q-gram
index for text retrieval allowing errors. CLEI
Electonic Journal, 1(2), 1998.

[36] G. Nicosia, V. Cutello, P. J. Bentley, and J.
Timmis, editors. Artificial Immune Systems, Third
International Conference, ICARIS 2004, Catania,
Sicily, Italy, September 13-16, 2004, volume 3239
of Lecture Notes in Computer Science. Springer,
2004.

[37] T. Oda and T. White. Developing an immunity to
spam. In GECCO, pages 231–242, 2003.

[38] L. ¨Osg¨ur, T. G¨ung¨or, and F. G¨urgen. Adaptive
anti-spam filtering for agglutinative languages: a
special case for turkish. Pattern Recogn. Lett.,
25(16):1819–1831, 2004.

[39] J. C. Platt. Fast training of support vector machines
using sequential minimal optimization. pages 185–
208, 1999.

[40] 29th Applied Image Pattern Recognition Workshop
(AIPR 2000),16-18 October 2000, Washington, DC,
USA, Proceedings. IEEE Computer Society, 2000.

[41] A. Ratnaparkhi. A simple introduction to maximum
entropy models for natural language processing.
Technical report, University of Pennsylvania, 1997.

[42] F. Rosenblatt. Principles of Neurodynamics.
Spartan Books, Washington, 1958.

[43] F. Rosenblatt. The perceptron: A probabilistic
model for information storage and organization in
the brain. In J. W. Shavlik and T. G. Dietterich,
editors, Readings in Machine Learning, pages 138–
149. Kaufmann, SanMateo, CA, 1990.

[44] M. Sahami. Learning limited dependence Bayesian
classifiers. In Second International Conference on
Knowledge Discovery in Databases, 1996.

[45] M. Sahami. A bayesian approach to filtering junk e-
mail. In Proceedings of AAAI-98 workshop on
Learning for Text Categorization, Madison,
Wisconsin, USA, 1998.

[46] G. Sakkis, I. Androutsopoulos, G. Paliouras, V.
Karkaletsis, C. D. Spyropoulos, and P.
Stamatopoulos. A memory-based approach to
antispam filtering for mailing lists. Information
Retrieval, 6:49–73, 2003.

[47] C. Sarrocco. Spam in the information society:
Building frameworks for international cooperation.
Technical report, OECD Task force on spam, 2004.

[48] A. Secker, A Freitas, and J. Timmis. Aisec: An
artificial immune system for e-mail classification.
In R. Sarker, R. Reynolds, H. Abbass, T. Kay-
Chen, R. McKay, D Essam, and T. Gedeon, editors,
Proceedings of the Congress on Evolutionary
Computation, pages 131–139, Canberra. Australia,
December 2003. IEEE.

[49] S. Shakeri and P. Rosso. The bsp spam filter. In
Proc. Confer. Information Technologies Int.
Symposium, Tutan, Morocco, June 2005. IEEE.

[50] J. Shavlik, R. Mooney, and G. Towell. Symbolic
and neural learning algorithms: An experimental
comparison. Machine Learning, 6:111–143, 1991.

[51] H. T. Siegelmann and E. D. Sontag. On the
computational power of neural nets. Journal of
Computer and System Sciences, 50(1):132–150,
1995.

[52] A. Somayaji, S. Hofmeyr, and S. Forrest. Principles
of a computer immune system. In NSPW ’97:
Proceedings of the 1997 workshop on New security
paradigms, pages 75–82, New York, NY, USA,
1997. ACM Press.

[53] Spamassassin. Spamassassin website.
http://spamassassin.org.

[54] New York Times, March 19, 1998.
[55] J.Weaver. Aol escalates spam warfare, March 5,

2003.
[56] Internet Week, May 4, 1998.
[57] Gregory L. Wittel and S. Felix Wu. On attacking

statistical spam filters. In Proceedings of the First
Conference on Email and Anti-Spam (CEAS), 2004.

[58] H. K. Yoke. Curbing spam via technical measures:
an overview. Technical report, ITUWSIS Thematic
Meeting on Countering Spam, 2004.

[59] L. Zhang and T. Yao. Filtering junk mail with a
maximum entropy model. In Proceeding of 20th
International Conference on Computer Processing
of Oriental Languages (ICCPOL03), pages 446–
453, 2003.

[60] L. Zhang, J. Zhu, and T. Yao. An evaluation of
statistical spam filtering techniques.
ACMTransactions on Asian Language Information
Processing (TALIP), 3(4):243–269, 2004.

[61] F. Zhou, L. Zhuang, B. Y. Zhao, L. Huang, A. D.
Joseph, and J. Kubiatowicz. Approximate object
location and spam filtering on peer-to-peer systems.
In Proc. of ACM/IFIP/USENIX Intl. Middleware
Conf, 2003.

278 Informatica 31 (2007) 269–277 A. Khorsi

 Informatica 31 (2007) 279–284 279

Comparative Study and Techno-Economic Analysis of Broadband
Backbone Upgrading: a Case Study
Borka Jerman-Blažič
Laboratory for Open systems and Networks, Jožef Stefan Institute, Slovenia
E-mail: borka@e5.ijs.si
http://www.e5.ijs.si/staff

Keywords: broadband communications, techno-economic study, backbone network upgrading

Received: October 2, 2006

In this paper we compare and evaluate suitable methods for delivering broadband services at the metro
and backbone level. In particular, the paper presents a techno-economic analysis of two key broadband
technologies for metropolitan and backbone networks: The studies are based on a modelling
methodology for network value analysis that involves CAPEX and OPEX calculations, while the overall
technology deployment financial assessment is based on techno-economic evaluation measures such as
net present value (NPV) and internal rate of return (IRR). The studied case is the Telekom Slovenia
network which is the incumbent operator in Slovenia. The study is based on the operator data and plans.
It deals with the upgrading the current network backbone and takes in account future development and
trends of broadband services in the country.

Povzetek: Narejena je primerjalna študija in tehnično-ekonomska analiza primera nadgradnje
širokopasovnega hrbteničnega omrežja.

1 Introduction
Definitions of broadband have continued to evolve and
are changing with time and place. Initially a simple
notion was anything perceptibly better than a basic
ISDN line. This implies a rate around or exceeding 144
kbps, although customers did accept less if this was the
best available to them. A common current
understanding is “a service that is always on, and can
scale up to at least 2 Mbps”. Other definitions do not
specify transmission capacity because of the continued
evolution of bandwidth. A 2004 Commission
Communication (COM(2004) 369: “Connecting Europe at
High Speed: National Broadband Strategies”) referred to “a
wide range of technologies that have been developed to
support the delivery of innovative interactive services,
equipped with an always-on functionality, providing
broad bandwidth capacity that evolves over time and
allowing the simultaneous use of both voice and data
services”. One of the basic components of the
broadband development is the convergence of the
backbone, metro and the access networks. The
convergence is expected to contribute to the integration
of all electronic services. The convergence is based on
digitalisation which is a major parameter of this
process; however it is still only one amongst several
parameters that influence the convergence at the
infrastructure level. It is also important to emphasise
that the success or failure of convergence is not directly
connected to the capability of one infrastructure to
integrate all services. None of the infrastructures
available can integrate all the services in their current

state. While integration of the back-bone parts of the
networks have higher possibility to evolve due to
common ownership and technology convergence, the
integration of the last mile which cover the access
network has been shown to be dependent on many
different parameters. Common trends appear in the
development of the access technologies like
decentralised architectures and common optical
transport, new physical and MAC layers, common IP
architectures (including QoS, charging, device
provisioning and security) as well as in the approaches
taken in the fixed and mobile networks. The progressive
introduction of the new IP protocol, IPv6 in the access,
then in the backbone is also developed. “Backbone and
Metro” networks have similar trends with different
constraints and roadmaps; the clear recent tendency is
an evolution towards lower CAPEX & OPEX
architectures with “multiple services centric” compared
to the old “voice centric services”. A clear trend is a
progressive evolution of SDH technology which
remains clearly dominant in that field. Trends present at
the scene are dynamic networking, more efficient
robust modulation and transport format, reduction of
protocol stacks, multiprotocol support with GMPLS,
and the progressive apparition of Ethernet in the Metro.
In this paper we compare and evaluate suitable methods
for delivering broadband services at the metro and
backbone level. In particular, the paper presents a
techno-economic analysis of two key broadband
technologies for metropolitan or backbone networks:
Our studies are based on a modelling methodology for
network value analysis that involves CAPEX and
OPEX calculations, while the overall technology

280 Informatica 31 (2007) 279–284 B. Jerman-Blažič

deployment financial assessment is based on techno-
economic evaluation measures such as net present value
(NPV) and internal rate of return (IRR). The studied
case is the Telekom Slovenia network which is the
incumbent operator in Slovenia. The study address the
upgrading of the current Telekom Slovenia network
backbone and takes in account future development of
broadband services in the country.

2 Network and technology
development consideration

 “All-Optical” is the vision for future wired networks,
where fibre is used for all wires in the WAN, MAN and
Access. Nowadays, optical fibres are ubiquitous in the
backbone network, and an extension to access networks
is the logical next step. An optical fibre based access
network offers of all available technologies by far the
highest speed and can support an unlimited set of
services. The backbone, national or wide area network
may extend over distances of thousands of kilometres
and provides an interconnection fabric for regional and
metropolitan networks. In recent years considerable
capacity has been installed in this network layer, so
major investment is not expected in the near future.
Current investment is focused on developing revenue
streams or reducing operational expenditure. There is a
trend towards reducing the number of major network
nodes and building a very high capacity backbone,
essentially a fabric of very high capacity pipes, with
much of the processing and routing devolved to the
regional and metro layers. The deployment of
Wavelength Division Multiplexing (WDM) techniques
and equipment in the field has provided backbone
networks with high capacity and long reach capabilities.
In this part of the network, in order to maximise the use
of the available fibre bandwidth, the trend has been to
develop systems with more WDM channels together
with higher bit rates. Currently deployed systems could
transmit 160 channels each at 10Gbit/s. In reality, as
yet, few links use more than a handful (~20) of these
channels however. Although practical 40Gbit/s systems
have been developed, the economic downturn in
telecoms has delayed their take up. The optical links are
point to point and are terminated in electronic
SDH/SONET switches. The SDH/SONET layer
provides network management and switching of the
links. The functions it provides include:

• Connection set-up
• Connection and link performance monitoring
• Management data communications
• Protection and restoration

The network providers have a large investment in
SDH/SONET equipment. The downturn in the
telecommunications sector from 2000 onwards has
restricted investment and limited expectations to more
realistic horizons than those professed in the late 1990s.
The implication of this is that near term investments are
likely to be based mainly on SDH/SONET technology

variants. Another consequence is that any new
technology deployed in an existing network will
necessarily have to work alongside SDH/SONET. As
voice and data networks converge there is a force for
upgrading SDH/SONET. Next Generation
SDH/SONET is being employed to provide an
evolutionary upgrade to the legacy infrastructure by
introducing new SDH switches. The Slovenian national
operator Slovenia Telecom is facing the same dilemma
regarding the upgrading the current national backbone
network. In the sections that follow the selection of the
appropriate technology is presented based on the
information and data provided by the operator and by
assessment of the future demands in the country. The
technology is evaluated in view of the current state of
the network and the future demands of the Slovenian
customers. The study starts by identifying the network
loops and the required upgrade to cover the next 5
years. The technical assessment is followed by
economical evaluation of the OPEX and CAPEX index.
Net Present Value and Internal Rate of Return are used
as well as indicators that have contributed to the final
selection of the technical variants.

3 The case study network and the
future prospects

In Slovenia, households are using one of the following
types of broadband access:

•ADSL that is being followed now by ADSL +2,
offered by Telecom Slovenia
•Coaxial networks with cable modems, offered mainly
by the cable operators and
•HFC Network (Hybrid Fibre Coax) which is
combination of optical and coaxial networks, also
offered by the cable operators.

In the business sector, SME's are mostly using
ADSL and cable modems, while middle and large
enterprises are using leased lines with ATM switches or
Frame Relay (block mediation). Some of the business
customers are still using narrowband dial-up modems
due to the limitation of their business capacity. There
are also residential users that are using wireless access
and business customers using Ethernet access over
optical lines. In order to optimize the resources the
incumbent operator owning the largest part of access
networks is using the DSLAM (Digital Subscriber Line
Multiplexer) equipment located in urban areas where
the concentration of users is highest. The estimated
population coverage in towns/cities with this
technology by the end of 2005 was around 95%. The
growth of BB access is a result of the higher usage of
different e-services such as TV, e-banking, e-learning,
movie and music download and real time gaming. In
order to provide an extension and upgrading of the
current Telecom network the following parameters
must be considered:
• DSLAMs are connected to edge routers that are or
will be positioned on urban locations within cities with

COMPARATIVE STUDY AND TECHNO-ECONOMIC... Informatica 31 (2007) 279–284 281

larger population. In case of customers that are located
on distance smaller than 50 km, the DSLAMs
equipment is directly connected to the customer
equipment using fibber. In that context, we can allocate
the geographical points where the upgrading of the
connectivity to the backbone network will take place
These location are the following:
Koper, Postojna, Nova Gorica, Idrija, Kranj, Bled,
Novo Mesto, Krško, Celje, Velenje, Ravne, Maribor,
Ptuj and Murska Sobota,
•Traffic evaluation anticipates connection of DSLAM
units with GbE interfaces, so the edge routers will have
nxGbE or 10GbE interfaces, which requires in the
transmission systems of the backbone network channels
with 10G/bit bandwidth.
•The transmission systems will be built in ring
topology.

In addition to that the Telecom network will still
offer connectivity with use of Dial-up and Ethernet.
Dial-up access (analogue and ISDN) is carried out over
the existing SDH network, and no essential growth of
the existing traffic is foreseen. Regarding the use of
Ethernet connectivity over optical connections,
Telekom Slovenia is expecting similarly to the other
operators growth of the demand. Ethernet connectivity
over optical fibre is offered on the network side, using a
specific switch or router. It is also anticipated that there
will be an increased demand for the provision of virtual
private networks (VPNs), which may have an impact on
the decision to enlarge the network topology and
consequently on additional network-access locations
around the country. Telekom Slovenia’s backbone
network is also used to run the operator service and for
the leased-line market. This leased-line market is well
developed and leased lines are used by many
enterprises, such as banks, mobile operators, (e.g.,
Western Wireless International, Simobil/Vodafone, and
Mobitel), dedicated networks under state ownership and
management (e.g., ARNES, the academic network) and
HKOM, the network services provided to the Slovenian
government and administration. Leased lines are also
used by new entrants to the telecommunications market,
e.g., internet service providers like T2, Voljatel and
Medinet. These users are mostly using 2M and 34 M
PDH or STM-1 interfaces, providing 155Mbit/s
bandwidth capacity.

The network topology is presented on Fig.1. The
optical part of the network consists of single-mode
optical fibres. They are spread over the whole country,
providing a transmission capacity of more than 10
GB/s. The redundancy of the lines is due to operational
requirements, as Telekom Slovenie provides basic
telephone, data transmission and other (TDM) services
with a QoS (quality of service) provision.

Figure 1: Telecom Slovenia backbone network.

Increase of data communication traffic is expected
in the international connections of the network, in the
mobile network with the UMTS technology
implemented by the operator daughter company –
Mobitel. Other demands are expected regarding
bandwidth for the DRC (Disaster Recovery Centre),
which are becoming important customers. Inquiries for
such centres come from Slovenian State administration,
various Ministries and banks. These users in majority of
cases need SAN (Storage Area Network) interfaces.
Last larger group of customers that influence the
demand for bandwidth are systems or enterprises which
are asking for VPNs and own private Ethernet
networks.

Percentage of bandwidth occupied by the
particular interface (Year 2005)

49%

21%

30%
GbE interfaces

STM-1

International
connections

Percentage of bandwidth occupied by the
particular interface (Year 2009)

56%
20%

24% GbE interfaces

STM-1

International
connections

Figure 2: Comparison of bandwidth occupied by
particular interfaces in year 2005 and 2009.

They are interested in FE (Fast Ethernet) or GbE
bandwidth on the backbone level. The expected
changes in interface occupancy regarding bandwidth in
5 years time span is presented on Figure 2.

The fast growing needs for additional bandwidth,
required by the new services, are important, additional
challenge is the merge of different kind of traffic on one
backbone platform. The decision for a transmission
technology is simple as optical cable with single-mode

282 Informatica 31 (2007) 279–284 B. Jerman-Blažič

fibres is the only acceptable solution in economical and
physical aspects. The media for upgrading and
extension of the backbone network is known, the
question that needs an answer is the appropriate
technology. We have identified two technologies to be
available for the backbone upgrading and extension of
the Telecom network, wavelength multiplexing (WDM)
and SDH systems of transmission. The selection
depends on different factors and criteria. The next
section provides more information about the approach
and the upgrading proposal.

4 Technical and cost evaluation of
the upgrading

Telekom network customers are familiar with the SDH
interfaces as the current network is built up with SDH
technology. They are cheaper than WDM (for the
present needs); however they still have weakness in
comparison to WDM. With enlargement of the network
and the upgrading of the bandwidth capacities parallel
systems will be required as the current can not answer
to the increased demand. This can become expensive
and time wasting. Technical solution for upgrading the
existing network with WDM technology requires 16
channel DWDM transmission systems. The number of
channels is specified according to the number of
network elements in the loops and the estimated traffic.
In case of SDH based equipment an SDH STM-64
transmission system is required capable to provide
capacity of 10Gbit/s. In both cases the bandwidth per
channel is same, and as a consequence the locations of
the network elements are same. The upgrading with
SDH technology requires for the Telecom network
upgrading the following SDH equipment: network
elements on all specified relations shown at the network
topology (Fig.1), SDH STM-64 modules and
compensation fibres. The WDM technology upgrading
variant requires network elements on all locations with
appropriate number of channels (DWDM systems are
16 channelled), multiplexing equipment (for locations,
with highest traffic), compensating fibres, since in the
10Gbit/s transmission, the dispersion needs to be
compensated.

In order to evaluate the optimal solution for the
network upgrading in financial aspect CAPEX (capital
expenditure) index and OPEX (operational expenditure)
index were calculated for period of 5 year time span
(later, new technologies are expected). In the CAPEX
index price of equipment, software, installation,
takeover test, setting and wiring are considered.
(Caballero, 2005, page 190). In addition to that the
operational cost that was also calculated includes
depreciation of the equipment, maintenance of the
connections, monitoring the functioning of the system
and corrections, creation of new connections, system
support: - maintenance contract and costs of used
transmission media. The accounting regulations of
Telekom Slovenie, allow appreciation of 14, 3% for the
equipment and 5% for the media per year.

5 Findings and results
The calculation provided numerical values for both
indexes: CAPEX for SDH and for DWDM. They are
compared and presented on Figure 3.

0

200

400

600

800

1000

1200

2005 2006 2007 2008 2009

SDH (CAPEX)
DWDM (CAPEX)

Figure 3: Comparison of CAPEX values in millions of
euros for SDH and DWDM.

The data on Figure 3 shows clearly that the
investments cost in fixed assets for the DWDM variant
is significantly higher in the first year of investment
compared to the cost for SDH equipment. In the second
year both indexes come close together. In the last three
years of the 5 year time span the DWDM cost of
investment is much lower compared to the cost required
for the SDH. The higher cost in the first year for
DWDM is due the purchase of expensive amplifiers and
compensating fibres, later only line cards are necessary
to be purchased. In the case of SDH variant each
expansion of the line capacity, requires a purchase of
additional amplifiers, compensation fibres and
expensive line cards. In long term the investment in
SDH demands more spending and this is especially
obvious if the considered time period is longer e.g. 6 or
7 years. Feeding interfaces are same in both variants
since the same access traffic is expected in both cases.

0
50

100
150
200
250
300
350
400
450
500

2005 2006 2007 2008 2009

SDH (OPEX)
DWDM (OPEX)

Figure 4: Comparison of OPEX value in millions of
EUR between SDH and DWDM solutions.

The graph in Figure 4 shows the differences
between the two OPEX indexes and they are results of
two factors. The first is due to the large investments
required in the DWDM case variant in the first year. In
line with this the depreciation cost and maintenance
contract are also somehow higher than for the SDH
variant. Cost of personnel for maintenance of the
equipment or systems is the same for both variants, so
this does not contribute to the difference between both
OPEX indexes. The increase of a bandwidth requires

COMPARATIVE STUDY AND TECHNO-ECONOMIC... Informatica 31 (2007) 279–284 283

upgrading of the line capacity. Sufficient line capacity
in DWDM variant system is provided in the first year
and the system continuously works over two fibres,
upgrading, or additional fibres are not required. In
contrast to that in the case of SDH equipment usage
each increase of line speed demands additional two
fibres. This is why the media item appears as a constant
in the DWDM variant, while in the SDH variant this
item is much higher. In case of unexpected additional
needs for bandwidth, this variant becomes much more
disadvantageous. This is the second factor that
influence on the difference of the two OPEX indexes.
The next Figure 5 presents the comparison of both
variants with aggregation of both indexes. The lines
represent cumulative values of the aggregated indexes.

Comparison of SDH and DWDM solutions

0
500

1000
1500
2000
2500
3000
3500

2005 2006 2007 2008 2009

Year

in
 m

ill
. S

IT SDH (CAPEX +
OPEX)
DWDM (CAPEX +
OPEX)

Figure 5: Comparison of SDH and DWDM variants
with aggregated indexes (CAPEX + OPEX).

The findings from the two variant comparison of
particular index as presented on Table 1 and Table 2 are
reflected as well in the graphs presented on Figure 5.
The smaller cost of investment in SDH equipment is
followed with the higher costs of maintenance for
upgrading, in absolute value comes close to the cost of
the DWDM variant. The line for the SDH variants in
the second year is rising with bigger slope then the line
for the DWDM variant. In case of prolonged time
period e.g. for two more years (all together 7 years were
considered according to the accounting regulation of
Telekom Slovenia) the lifecycle of such equipment, and
the slope of the line will become even bigger and the
indexes will show bigger difference in favour of the
DWDM variant.

By taking into account all previously stated
findings it can be concluded that for the upgrading of
the Telekom Slovenia network much more attractive
variant is the selection of DWDM technology.
However, in this type of analysis the time component,
Network Present Value and Internal Rate of Return are
necessary to be considered as well. In this type of
calculation the network present value that is taken in
account contributes to positive and negative cash flows.
Positive cash flows are the inflows from bandwidth
lease, negative cash flows are the costs associated with
the investment (equipment, reserve units and services),
salaries, cost of the maintenance contract. In addition to
that as negative cash flow are considered also the use of
fibres. NPV (Net Present Value) is calculated
according to the dynamic investment evaluation method
that considers the life cycle of the investment (I), the

positive cash flow in particular year, the interest rate
and the initial investment.

() () ⎟
⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+
= ∑∑

==

n

t
t

t
n

t
t

t

r
I

r
DNPV

01 11

Here r is the interest rate and I am the investment
and D is the positive cash flow in particular year. The
calculation method clearly shows the dependence of the
NPV from the value of the capital used for the
investment in course of the time (1 to t) and the interest
rate associated with it. The other parameter calculated is
the Internal Rate of Return (IRR). In our case the
Modified IRR was used as this parameter enables re-
investing of the cash flow with lower interest rate. The
formula as suggested by Brigham (Brigham, 1977,
p.411) was applied:

()

()n

n

t

n
t

MISD

rD
I

+

+
=
∑

=

−

1

1
1

1

0 , where MISD is the modified

IRR.

Both variants were compared also with the value of
the Internal Rate of Return (IRR), which is calculated
three times with different value for the interest rate. In
the expression for NPV, r is the interest rate, I am the
investment and D is the positive cash flow in a
particular year. The other measure calculated is IRR. In
our case, the modified IRR (MIRR, [14]) was used, as
this parameter allows for the re-investment of the cash
flow with a lower interest rate. In Fig 6 the NPV
profiles for both variants (SDH and DWDM) are
shown.

1.0

2.0

3.0

4.0

5.0

0

NPV
106 €)

Cost of
Capital

(%)

WDM
SDH

Figure 6: Net present value profiles for SDH and
DWDM solutions.

We can see that the IRR method favours the SDH
technology (IRR = 33%) over DWDM (IRR = 28%),
but the NPV is the same for both variants at 15% ("the
crossover rate"), and higher for DWDM below that

284 Informatica 31 (2007) 279–284 B. Jerman-Blažič

point. Since both options are mutually exclusive, we
can say that if the capital costs are lower than 15% (as
they are in our case) the DWDM option is preferable,
since we can expect a greater NPV from it.

From the technological point of view the upgrade
of Telekom Slovenia backbone can be carried out with
either the SDH or DWDM technology. However, a
comparison of the costs of the concerned technologies
shows that the DWDM variant is a better as a long-term
choice, especially with current costs of capital below
15%, which enables greater NPV value. The DWDM
variant is better in longer time period e.g. 5-7 years and
could be said that is optimal. This solution offers as
well better price performance ratio. The same applies in
the case of capital investment and return.

6 Conclusion
Over the years there has been an evolution in the
backbone networks from analogue to digital
transmission, from Plesiochronous Digital Hierarchy
(PDH) to Synchronous Digital Hierarchy (SDH) and
recently from SDH to SDH upon Wavelength Division
Multiplexing (WDM). Initially digital transmission was
introduced with a capacity of 2 Mbit/s (the primary
multiplexers) and a granularity of 64 kbit. A next step
was to improve the transmission efficiency by allowing
higher bitrates and introducing cross-connection, so that
currently, with SDH, the granularity is 155 Mbit/s and a
line capacity of 10 Gbit/s is possible. Advances in
electronic processing could not follow the traffic
growth so the next step is obviously the introduction of
WDM. Here currently deployed systems are capable of
capacity of 1600 Gbit/s (160 wavelengths) or even
more, with a granularity of 10 Gbit/s. While the
capability to use 160 wavelengths allows growth
capacity, few systems currently deploy the full
capability. Recent technology evolution gives the
possibility of the WDM transport layer migrating from
simple transmission links into an elaborate network
providing switching, with higher manageability, lower
complexity and cost. In such network scenarios, optical
routes form connections between discrete point network
locations through optical add/drop and cross connect
nodes and provide traffic allocation, routing and
management of the optical bandwidth. They also
facilitate network expansion, traffic growth, churn and
network resilience. Optical cross-connects are located at
nodes cross-connecting a number of fibre pairs and also
support add and drop of local traffic providing the
interface with the service layer. Our study results show
also that WDM technology in the case of the Telecom
Slovenia network appears to present a better economic
solution (based on the NPV and IRR indicators)
compared to a SDH network upgrading. Thus, an
investment in WDM presents improved prospects for
answering to the increased demand of bandwidth and
services. The results were based on exactly the same
market demand and revenue assumptions for both
technologies considered in the study, a particular

concrete market with differentiation only in technology
chains and related cost assumptions.

Acknowledgment
Part of this work was carried out within European
project BReATH from FP6, BroadBand for all Strategic
Objective, 2004-2006.

References
[1] D. J. Bishop, C. R. Giles, and G. P. Austin 2002, “The

Lucent lambdarouter: MEMS technology of the future
here today,” IEEE Commun.Mag., pp. 75–79.

[2] P. B. Chu, S.-S. Lee, and S. Park 2002 “MEMS: The
path to large opticalcross-connects,” IEEE Commun.
Mag., pp. 80–87, Photon. Technol. Lett., vol. 10, pp.
896–898.

[3] P. De Dobbelaere, K. Falta, L. Fan, S. Gloeckner, and S.
Patra, 2004 “Digital MEMS for optical switching,” IEEE
Commun. Mag., pp. 88.

[4] R. DeSalvo et al., 2002, “Advanced Components and
Sub-Systems Solutions for 40 Gb/s Transmission”, J.
Lightwave Technol., vol. 20.

[5] E. Iannone, and R. Sabella, 1996, “Optical Path
Technologies: A Comparison Among Different Cross-
Connect Architectures”, J. Lightwave Technology Vol.
14, pp. 2184 - 2196,.

[6] M. Jose Caballero 2005, “Migration to Next Generation
SDH”, Barcelona: Printulibro, Intergroup, pp., 182-191.

[7] Costas Courcoubetis, Weber Richard, 2003, “Pricing
Communication Networks, Economics, Technology and
Modelling”, West Sussex, John Willey and Sons, 347.

[8] Sato Ken-ichi 2004, “Key enabling Technologies for
Future Networks”, Optics and Photonics News”, p. 34,
2004.

[9] J. Lacey 2002, “Optical cross-connect and add/drop
multiplexers: technologies and applications”, (Tutorial),
WT1, 83 IST OPTIMIST consortium: Technology Trend
Documents, (www.ist-optimist.org) pp.83-86.

[10] B. Jerman Blažič Borka 2000, “Notes from the subject
Contemporary telecommunications techniques and
services, Stack of TCP/IP protocols”, Ljubljana: Faculty
of Economics, p. 149-152.

[11] A. Jelinek 2003, “SURPASS hiT 70, A New Generation
of Networking”, ISN Carrier Networks”, Siemens, p.
32-33.

[12] Ministry for information society 2004, “Strategy of
development of broadband data networks in Republic of
Slovenia”; (URL: http://www2.gov.si/mid/mid/.nsf/)

[13] R. Ramaswami and K. N. Sivarajan 1998, “Optical
Networks, A Practical Perspective”. San Fransisco, CA:
Morgan Kaufmann, p.159-162.

[14] R. Ramaswam 2001, OFC“Using All-Optical
Crossconnects in the Transport Network”, (invited),
WZ1-I pp.8-10,

[15] A. Tzanakaki, I. Wright and S. S. Sian SCI2002,
“Wavelength Routed Networks: Benefits and Design
Limitations”, SCI Proceedings, Orlando, Florida, p.34-
38.

[16] G. Wilfong, B. Mikkelsen, C. Doerr, and M. Zirngib
1999, “WDM Cross-Connect Architectures with
Reduced Complexity”, J. Lightwave Technology Vol. 17,
pp. 1732 – 1741

Informatica 31 (2007) 285–309 285

Efficient Constraint Validation for Updated XML Databases

Béatrice Bouchou, Ahmed Cheriat and Mírian Halfeld Ferrari
Université François-Rabelais de Tours/Campus Blois - LI - France
E-mail: beatrice.bouchou@univ-tours.fr, ahmed.cheriat@univ-tours.fr, mirian.halfeld@univ-tours.fr

Dominique Laurent
Université de Cergy-Pontoise - ETIS - UMR CNRS 8051 - France
E-mail: dominique.laurent@dept-info.u-cergy.fr

Maria Adriana Lima
Pontifícia Universidade Católica de Minas Gerais - Poços de Caldas - Brazil
E-mail: adriana@pucpcaldas.br

Martin A. Musicante
Universidade Federal do Rio Grande do Norte - DIMAp - Natal - Brazil
E-mail: mam@dimap.ufrn.br

Keywords: XML, schema, constraints

Received: May 12, 2006

XML constraints are either schema constraints representing rules about document structure (e.g. a DTD,
an XML Schema definition or a specification in Relax-NG), or integrity constraints, which are rules about
the values contained in documents (e.g. primary keys, foreign keys, etc.).
We address the problem of incrementally verifying these constraints when documents are modified by
updates. The structure of an XML document is a tree, whose nodes are element (or attribute) names and
whose leaves are associated to values contained in the document. Considered updates are insertion, deletion
or replacement of any subtree in the XML tree. Schema constraints are represented by tree automata and
tree grammars. Key and foreign key constraints are represented by attribute grammars, adding semantic
rules to schema grammars, to carry key and foreign key values (to verify their properties).
Our incremental validation tests both schema and integrity constraints while treating the sequence of up-
dates, in only one pass over the document. Only nodes involved in updates trigger validation tests. An
analysis of complexity shows that worst cases are determined by the shape of the XML tree being pro-
cessed (asymptotic upper bounds are presented). Experimental results show that our algorithms behave
efficiently in practice.

Povzetek: Opisana je inkrementalna verifikacija podatkovnih baz XML.

1 Introduction

XML is now a standard for exchanging data and, by exten-
sion, for representing information. For reliable exchange
as well as for information system design, it is necessary to
define rules that data must conform to.

XML documents can be represented as unranked trees:
nodes are identified by a position and associated to a la-
bel, which is the name of an element or an attribute. Our
tree representation of an XML document is exemplified in
Fig.1. This figure shows the representation of part of an
XML document, which will be used in some of our exam-
ples. Notice that the data values in the XML document
appear as leaves of its tree representation.

XML documents can be constrained either by struc-
tural rules or semantic rules. Rules about the structure
of documents are called a schema: there are several for-
malisms to express these constraints, e.g. DTD, XML

Schema (XSD) [4] or Relax-NG [41]. It is a well known
fact that a schema can be represented by a tree grammar.
From this grammar, it is easy to derive a tree automa-
ton [20, 43]: the validation of the document wrt the schema
is the run of this tree automaton over the XML tree.

Integrity constraints impose restrictions to the values that
may appear in XML documents. Integrity constraints (e.g.,
primary and foreign keys) are devised to improve the se-
mantic expressiveness of XML, in the same way as their
counterpart in relational databases. In this paper we pro-
pose to represent integrity constraints by attribute gram-
mars [8, 40], adding semantic rules to schema grammars,
to carry key and foreign key values (to verify their proper-
ties).

We address the problem of incremental validation of
updates performed on a valid XML document (i.e., one
that respects a given set of constraints), represented by the
XML tree T . In our approach, update operations corre-

286 Informatica 31 (2007) 285–309 B. Bouchou et al.

spond to the insertion, the deletion and the replacement
of subtrees of T . They are results of a user request’s pre-
processing. A user can modify an XML document either by
using a text editor such as XmlSpy [1] or Stylus studio [46],
or by means of a program, written in an update language
such as XSLT [26] or UpdateX [47], which is embedded in
XQuery [16].

In the case of a text editor, different scenarios are pos-
sible: validity is tested while the user changes his docu-
ment (this method is cumbersome and not realistic since it
implies verification after each change) or validity tests are
explicitly activated (by the user) after the performance of
several changes. In the latter context, some updates can be
“subsumed” by others (e.g., the user can build or change a
part of the document and finally delete it). Thus, before ap-
plying an incremental validation method one should define
which updates are to be taken into account. To this end, one
can either use pre-processing over the set of changes per-
formed by the user or compute the difference between the
last verified version and the current (modified) one. In both
cases, the overhead caused by this pre-processing may be
greater than incremental validation profit, this is why most
of the existing XML editors apply a complete re-validation.

The use of a language to specify updates open different
possibilities of work. Considering the integration of such
an approach to a text editor framework, we may imagine
that an update language editor would be capable of spec-
ifying update positions and then our algorithms would di-
rectly apply. More generally, an update language allows
to specify updates such as, for example: increment by 10
percents all accounts of a given consumer. Thus, it allows
to manage XML documents from a database point of view.
To this end, update languages integrated in XQuery are the
most promising solutions. The W3C has edited a first pub-
lic working draft on XQuery Update Facility [22]: it recom-
mends that the evaluation of any expression produces either
a new XML document or a pending update list, which is a
set of update primitives. An update primitive has a target
node and consists in insertions, deletions or replacements
to be operated at this node (or just before, or just after or
just under this node, in case of insertions). The update list
can be held in wait until an operation (upd:applyUpdate)
is performed. An operation of validation (upd:revalidate)
must exist.

Update operations considered in this paper can be seen
as updates in such an update pending list.

Only updates that do not violate constraints are accepted.
Thus, before applying updates on a valid tree, we need to
test whether these updates do not violate the validity of the
tree. The goal of an incremental validation method is to
perform these tests without testing the entire tree, but just
the part of it which is concerned by the updates. In accor-
dance with the snapshot semantics [14, 47], document va-
lidity is assured just after considering the whole sequence
of updates. The snapshot semantics consists in delaying
update application to the end of query evaluation. In this

way, all updates always refer to the original document1.
In the following, we roughly explain how the incremen-

tal validation tests are performed. Let UpdateTable be the
sequence of updates to be performed on an XML tree T .
To visit T we proceed in a depth-first visit of the XML
document, triggering tests and actions according to the re-
quired updates (in UpdateTable). To simplify our expla-
nation, schema and integrity constraints are treated as sep-
arated sub-routines. A system that makes these routines
work together is a simple generalization of the one pre-
sented in this paper. The sub-routines can be summarized
as follows.
Schema constraint routine:
• When an update node is reached, the required update is
taken into account (considered as done). Nodes which are
descendant of update nodes are skipped i.e., they are not
treated.

• For each node p which is an ascendant of an update posi-
tion a validation step is activated when reaching the close
tag corresponding to p. A validation step at position p ver-
ifies whether p’s children (in the updated tree version) re-
spect schema constraints. For instance, if a sequence re-
quires updates on positions 0.1.2 and 0.3 of Fig. 1 then a
validation step is activated on nodes 0.1, 0 and ε.

• All other nodes (those that are not on the path between
the root and an update position) are skipped, i.e., no action
is triggered on them.

Integrity constraint routine:
• Similarly to the schema constraint routine, when an up-
date node is reached, the required update is taken into
account (considered as done). However, contrary to the
schema constraint routine, in the integrity constraint rou-
tine the removal of a subtree (rooted at an update position
p) triggers the subtree traversal for searching key and for-
eign key values involved in the update. For instance, con-
sider a key constraint on the document of Fig. 1 establish-
ing that in a collection, a recipe is uniquely identified by
its name and author. We assume that a deletion is required
at position 0.1. The deletion “treatment” is activated (in
order to find key values) when the open tag <recipe> is
reached. After the traversal of the subtree rooted at position
0.1, i.e., when reaching the close tag </recipe> a ver-
ification test is performed. This test consists in checking
whether the key value 〈Shrimp Soup, J.Fox〉 (involved
in the deletion) is referenced by a non deleted foreign key.
To perform this test the routine uses an auxiliary struc-
ture (called keyTree) created during the first key validation
(from scratch). During the tree traversal necessary to ana-
lyze an update sequence, some marks can be inserted into
the keyTree to indicate that the document is temporarily in-
valid. A subsequent update in the same transaction can re-
establish validity and remove the mark.

1The language XQuery! (“XQueryBang”) [33] extends XQuery 1.0
with compositional updates, offering user-level control over update appli-
cation. The user controls update semantics via an operator called “snap”
(for snapshot). However, it can also implements snapshot semantics.

EFFICIENT CONSTRAINT VALIDATION. . . Informatica 31 (2007) 285–309 287

0.1.2

0.3.0.20.3.0.10.3.0.0
0.1.2.10.1.2.0

0.3.00.2.20.2.10.2.00.1.30.1.10.1.0

0.30.20.10.0

number

authorname

name

authornameSoups

category

0

.....

collection

recipe recipe top_recipes

J. FoxShrimp Soup

ingredient
.....

ingredient

amount

Carrot 1 medium

Mushroom Soup M. Smith

ingredient

recipe_name

Mushroom Soup1

top_recipe

author_name

M. Smith

root
ε

Figure 1: Tree representation of an XML document.

• When reaching the root, a final test verifies if any viola-
tion mark exists in keyTree (i.e., a constraint violation not
corrected until the end of the traversal).

• All other nodes are skipped. 2

XML trees are treated in the style of SAX [3], in order to
allow the treatment of much bigger XML documents [42]2.
This choice implies a complete XML tree traversal but it
avoids the use of an auxiliary structure for incrementally
verifying some kinds of schema constraints. It is worth
noting that, although our algorithm visits all nodes in the
XML tree, only some nodes trigger validation actions while
others are just “skipped” (i.e., no action is activated when
reaching them). The cost of skipping nodes is not rele-
vant when compared to the cost of validation actions. Thus,
in Sections 3.2 and 4.3 we consider the complexity of our
method only wrt the total number of validation actions that
should be performed.

The algorithms presented in this paper have been imple-
mented in Java, and experimental results demonstrate ad-
vantages of the incremental schema verification over the
verification from scratch, for multiple updates over large
XML documents. Experimental results obtained with our
key and foreign key validation routines are also good, de-
spite their theoretical complexity: curves grow almost lin-
early with the size of the processed document. Tests for
the incremental key verification programs give even better
results than those for the verification from scratch.

The main contribution of this paper is the integration of
incremental schema, key and foreign key validation, while
dealing with multiple updates. It extends our previous
work [7, 17, 18] not only in this aspect but also in the use
of attribute grammars to deal with integrity constraint veri-
fication.

2It is also possible to consider our routines in a DOM context. In this
case space requirements are bigger, but time complexity can be smaller.

By dealing with unranked trees, usually much shorter
than the binary ones, the complexity of our incremental
schema validation method happens to be similar to the one
proposed in [11, 45]. However, contrary to [11, 45], our
update operations can be applied at any node of the XML
tree and auxiliary structures are not necessary when using
DTD and XSD. In terms of key validation, our proposition
is close to [23], but contrary to them, we treat foreign keys
and multiple updates. Moreover, our routines for schema
validation and integrity constraint verification can work si-
multaneously.

This paper is organized as follows. Section 2 introduces
some necessary concepts. In Section 3 we consider the
validation wrt schema constraints while in Section 4 we
present our validation method wrt key and foreign key con-
straints. In section 5 we conclude and discuss some per-
spectives.

2 Background

An XML document is an unranked labeled tree where: (i)
the XML outermost element is the tree root and (ii) every
XML element has its sub-elements and attributes as chil-
dren. Elements and attributes associated with arbitrary text
have a data child. Fig. 1 shows an XML tree.

To define our trees formally, let U be the set of all finite
strings of positive integers (which usually we separate by
dots) with the empty string ε as the identity. The prefix
relation in U , denoted by ¹ is defined by: u ¹ v iff u.w =
v for some w ∈ U .

Now, if Σ is an alphabet then a Σ-valued tree T (or just
a tree) is a mapping T : dom(T) → Σ, where dom(T)
is a tree domain. A finite subset dom(T) ⊆ U is a (fi-
nite) tree domain if: (1) u ¹ v, v ∈ dom(T) implies
u ∈ dom(T) and (2) j ≥ 0, u.j ∈ dom(T), 0 ≤ i ≤
j ⇒ u.i ∈ dom(T).

288 Informatica 31 (2007) 285–309 B. Bouchou et al.

Each tree domain may be regarded as an unlabeled tree,
i.e., a set of tree positions. We write T (p) = a for p ∈
dom(T) to indicate that the symbol a is the label in Σ as-
sociated with the node at position p. For XML trees, Σ is
composed by element and attribute labels together with the
label data. We consider the existence of a function value
that returns the value associated with a given data node.

Let T be an XML tree, valid wrt some integrity and
schema constraints, and consider updates on it. We assume
three update operations (insert, delete and replace) whose
goal is to perform changes on XML trees. Fig. 2 illustrates
the individual effect of each update operation over T .

In this paper we are interested in multiple updates, i.e.,
we suppose an input file containing a sequence of update
operations that we want to apply over an XML tree The
effective application of this sequence of updates depends
on its capability of preserving document validity. In other
words, a valid XML tree is updated (according to a given
update sequence) only if its updated version remains valid.
The acceptance of updates relies on incremental validation,
i.e., only the validity of the part of the original document
directly affected by the updates is checked.

A sequence of updates is treated as one unique transac-
tion, i.e., we assure validity just after considering the whole
sequence of updates - and not after each update of the se-
quence, independently. In other words, as a valid docu-
ment is transformed by using a sequence of primitive oper-
ations, the document can be temporarily invalid but in the
end validity is restored. This extends our previous work in
[7, 17, 18] and follows the ideas in [14, 47].

Let UpdateTable be the relation that contains updates to
be performed on an XML tree. Each tuple in UpdateTable
contains the information concerning the update position p
and the update operation op. In this paper we assume that
UpdateTable is the result of a pre-processing over a set of
updates required by a user. In the resulting UpdateTable
the following properties hold:
P1 - An update position in an UpdateTable always refers
to the original tree. Consider for instance the tree of Fig. 1.
In an UpdateTable an insertion operation refers to position
0.3 even if a deletion at position 0.1 precedes it.
P2 -An update on a position p excludes updates on descen-
dants of p. In other words, there are not in UpdateTable
two update positions p and p′ such that p ¹ p′.
P3 - UpdateTable then one of the operations involving p
can be replace or delete, but all others are insert.
P4 - Updates in an UpdateTable are ordered by position,
according to the document order.

3 Schema verification

A tree automaton can be built from a schema specified us-
ing schema languages such as DTD, XSD or RELAX NG.
In our approach, we use a bottom-up unranked tree automa-
ton capable of dealing with both (unordered) attributes and
(ordered) elements in XML trees [17].

Definition 1 - Non-deterministic bottom-up finite tree
automaton: A tree automaton over Σ is a tuple A =
(Q, Σ, Qf , ∆) where Q is a set of states, Qf ⊆ Q is a
set of final states and ∆ is a set of transition rules of the
form a, S, E → q where (i) a ∈ Σ; (ii) S is a pair of dis-
joint sets of states, i.e., S = (Scompulsory, Soptional) (with
Scompulsory ⊆ Q and Soptional ⊆ Q); (iii) E is a regular
expression over Q and (iv) q ∈ Q. 2

The tree automatonA obtained from a schema specifica-
tion D may have different characteristics according to the
schema language used for D. These characteristics, dis-
cussed below, match the taxonomy of regular tree gram-
mars introduced in [42].

LetA = (Q, Σ, Qf , ∆) be a tree automaton. Two differ-
ent states q1 and q2 in Q are competing if ∆ contains dif-
ferent transition rules (a, S1, E1 → q1 and a, S2, E2 → q2)
which share the same label a. Notice that we assume that
no two transition rules have the same state in the right-hand
side and the same label in the left-hand side, since two rules
of this kind can be written as a single one. A regular ex-
pression E in a transition rule restrains competition of two
competing states q1 and q2 if for any sequence of states αU ,
αV , and αW , either αUq1αV or αUq2αW fails to match E.

Based on the concepts of competing states and
competition-restrictive regular expressions, regular tree
languages are classified as follows:
C1− Regular tree languages (RTL): A regular tree lan-
guage is a language accepted by any tree automaton spec-
ified by Definition 1. The automaton obtained from a spe-
cialized DTD recognizes languages in this class.
C2− Local tree languages (LTL): A local tree language is
a regular tree language accepted by a tree automaton that
does not have competing states. This means that, in this
case, each label is associated to only one transition rule.
The automaton obtained from a DTD recognizes languages
in this class.
C3− Single-type tree languages (STTL): A single-type
tree language is a regular tree language accepted by a tree
automaton having the following characteristics: (i) For
each transition rule, the states in its regular expression do
not compete with each other and (ii) the set Qf is a sin-
gleton. The combination of these two characteristics im-
plies that although it is possible to have competing states,
the result of a successful3 execution of such an automaton
can consider just a single type (state) for each node of the
tree. The automaton obtained from a schema written in
XSD recognizes languages in this class.
C4− Restrained-competition tree languages (RCTL): A
restrained-competition tree language is a regular tree lan-
guage accepted by a tree automaton having the following
characteristics: (i) For each transition rule, its regular ex-
pression restraints competition of states and (ii) the set Qf

is a singleton. No schema language proposed for XML is
classified as a RCTL.

3See below the definition of the run of a tree automaton over a tree.

EFFICIENT CONSTRAINT VALIDATION. . . Informatica 31 (2007) 285–309 289

3.0

(iv)(iii)

(ii)(i)

replace at p = 1deletion at p = 2

insertion at p = 1insertion at p = 2

ε

εε

εεε a

εε

2.01.02.01.02.01.03.01.0

1.0
2.02.0

e

d

2

a

b c

0 1 3
m

p

10

cb

a

q

10

b d

e

2

w

e

d

2

a

b c

0 1

e

d

2

a

b c

0 1

p

m

310

cb

a

2

d

e

2

p

m

e

d

a

b

0 1 10

b

a

d

e

m

p

2

Figure 2: Update operations over a tree T . (i) Insertion at a frontier position. (ii) Insertion at a position of dom(T).
Right siblings are shifted right. (iii) Deletion. Right siblings are shifted left. (iv) Replace.

Notice that, as shown in [42], the expressiveness of the
above classes of languages can be expressed by the hierar-
chy LTL⊂ STTL⊂ RCTL⊂ RTL (where L1 ⊂ L2 means
that L2 is strictly more expressive than L1).

Example 1 Let A = (Q, Σ, Qf , ∆) be a tree automaton where
Qf = {qC}. Consider the following transition rules with qA1 and
qA2 as competing states. Assume that states q1, q2 and q3 are de-
fined by simple transition rules that do not introduce competition
and do not have regular expressions involving qA1 and qA2.

(1) a, (∅, ∅), q1q2? → qA1

(2) a, (∅, ∅), q1q3? → qA2

(3) b, (∅, ∅), (qA1 | qA2)
∗ → qB

(3′) b, (∅, ∅), (qA1)
∗ → qB

(4) c, (∅, ∅), (qB)∗ → qC

In this context, consider different sets ∆ containing subsets of
the above rules: Firstly, consider a set ∆ with rules (1), (2), (3)
and (4). The language recognized by A is a RTL which is not a
STTL. Secondly, assume that ∆ contains rules (1), (2), (3′) and
(4). Then the language recognized by A is a STTL which is not
a LTL. Finally, assume ∆ has no competing states (e.g., from the
above rules, only rules (1), (3′) and (4) are in ∆). In this case,
the language recognized by A is a LTL. 2

The execution of a tree automaton A over an XML tree
corresponds to the validation of the XML document wrt
to the schema constraints represented by A. In its general
form, a run r of A over an XML tree T is a tree such that:
(i) dom(r) = dom(T) and (ii) each position p is assigned
a set of states Qp. The assignment r(p) = Qp is done by
verifying whether the attribute and element constraints im-
posed to p’s children are respected. The setQp is composed
by all the states q such that:

1. There exists a transition rule
a, (Scompulsory, Soptional), E → q in A.

2. T (p) = a.

3. Scompulsory ⊆ Qatt and Qatt\Scompulsory ⊆
Soptional where Qatt is the set containing the states
associated to each attribute child of p.

4. There is a word w = q1, . . . , qn in L(E) such that
q1 ∈ Q1, . . . , qn ∈ Qn, where Q1 . . .Qn are the set
of states associated to each element child of p.

A run r is successful if r(ε) is a set containing at least
one final state. A tree T is valid if a successful run exists
on it. A tree is locally valid if the set r(ε) contains only
states that belong to A but that are not final states. This
notion is very useful in an update context [17].

Restricted forms of schema languages permit simplified
versions of run. For instance, in a run of a tree automa-
ton for (simple) DTD, the sets Qp are always singleton.
This situation considerably simplifies the implementation
of item (4) above [17]. Moreover, implementations can
be enhanced by considering the fact that XML documents
should be read sequentially to be validated. While read-
ing an XML document, we can store information useful to
avoid the possible ambiguity of state assignment, expressed
by the transition rules. For instance, in the implementation
of the run of a tree automaton for XSD, each tree node can
always be associated to one single state. This state is ob-
tained by intersecting a set of “expected” states (computed
during the sequential reading of the document so far) and
the set of states obtained by the bottom-up application of
the rules of the automaton (Proposition 1).

3.1 Incremental schema verification
Given a tree T and a sequence of updates over T , the incre-
mental validation problem consists in checking whether the
updated tree complies with the schema, by validating only
the part of the tree involved by the updates. We propose a
method to perform the incremental validation of an XML

290 Informatica 31 (2007) 285–309 B. Bouchou et al.

tree T by triggering a local validation method only on po-
sitions that are a prefix of an update position p (including
both the root position ε and p itself).

Remark: When considering the most general classes of
schema languages, during an incremental validation, we
need to know which states were assigned by a previous val-
idation to each node of the tree being updated. A data struc-
ture containing the result of the run over the original doc-
ument should be kept. However, schema verification for
languages in STTL (i.e., XSD) and LTL (i.e., DTD), does
not impose the need for auxiliary, permanent data struc-
tures [42]. 2

ε

1

<root> </root>

<a>

3210

</c><c>

3.02.12.0

</e><e><c> </c>

<d> </d></c>

0.0 0.1

delete(0.1)

0.1.0

<d> </d>

2.1.0 2.1.1

<d> <d></d> </d>

<c>

<a>

2

insert(1, t)

replace(3, t)

Figure 3: XML tree and update operations.

The following example illustrates our method in an intu-
itive way.

Example 2 Consider the XML tree of Fig. 3, where update
positions are marked. Bold arcs represent the necessary tree
transversal for our method, to check the validity of the updates
we want to perform.

Let us suppose that there is a tree automaton A, representing
the schema to be verified. We also suppose that the original tree
(Fig. 3) is valid w.r.t. A, and that the subtrees being inserted are
locally valid w.r.t. A. It is interesting to remark that:

• When the open tag <d> (at position 0.1) is reached, the dele-
tion operation is taken into account and the subtree rooted at this
position is skipped. To verify whether this deletion can be ac-
cepted, we should consider the transition rules in A associated to
the parent of the update position. This test is performed when the
close tag (position 0) is found. Notice that to perform this
test we need to know the state assigned to position 0.0, but we do
not need to go below this position (those nodes, when they exist,
are skipped).
• When the second open tag <a> (position 1) is reached, the
insertion operation is taken into account and the new, locally valid
subtree, t1 (rooted at this position) is inserted. This implies that if
all the updates are accepted, right-hand side siblings of position 1
are shifted to the right. We proceed by reading nodes at (original)
positions 1 and 2. Notice that we can skip all nodes below position
2, since there is no update position below this point.
• The replace operation at position 3 combines the effects of a
deletion and an insertion.
• The close tag </root> activates a validity test that takes into
account the root’s children. This test follows the definition of the
run of the tree automaton. 2

The implementation of this approach is done by Algo-
rithm 1. This algorithm takes a tree automaton representing

the schema, an XML document and a sequence of updates
to be performed on the document. The algorithm checks
whether the updates should be accepted or not. It proceeds
by treating the XML tree in document order. During the
execution, the path from the root to the current position
p defines a borderline between nodes already treated and
those not already considered.

Our algorithm keeps two structures in order to perform
the validation. The first one stores the states allowed at
the current position by the tree automaton. The second one
contains, for each position p′ on the borderline path, the
states really assigned to the left-hand side children of p′.
In the following, we formally define these structures.

Definition 2 - Permissible states for children of a posi-
tion p: Let PSC(p) be inductively defined on positions p as
follows:

PSC(ε) = {q | ∃ a, S,E → qa ∈ ∆
such that t(ε) = a, q is a state
appearing in E and qa ∈ Qf}

PSC(pi) = {q | ∃ a, S,E → qa ∈ ∆
such that t(pi) = a, q is a state
appearing in E and qa ∈ PSC (p)} 2

Roughly speaking, for each position pi (labeled a, child
of node p), the set PSC (pi) contains the states that can
be associated to pi’s children. To this end, we find those
states appearing in the regular expression E, for each rule
associated to the label a. Notice however that we consider
only transition rules that can be applied at the current node,
according to the label of pi’s father (i.e., only those rules
having a head that belongs to the set of states PSC (p)).
For instance, suppose two rules a, S1, E1 → qa1 and
a, S2, E2 → qa2. Consider now that an element struct1
has a child that should conform to rule a, S1, E1 → qa1

while an element struct2 has a child that should conform
to rule a, S2, E2 → qa2. When computing the state associ-
ated to an element labeled a that is a child of struct1, state
qa2 is not considered. This is possible because PSC (p) for
the element being treated contains just qa1.

The following definition shows how each position p is
associated to a list composed by the set of states assigned
by the tree automaton to p’s children. This list is built tak-
ing into account the updates to be performed on the XML
document.

Definition 3 - State attribution for the children of a posi-
tion p: Given a position p, the list SAC(p) is composed
by the sets of states associated (by the schema verifica-
tion process) to the children of position p, i.e., SAC (p) =
[Qatt,Q1, . . . ,Qn], where each set Qi, for 1 ≤ i ≤ n is
calculated as described in Fig. 4. Moreover, the set Qatt

contains the states associated to p’s children that are at-
tributes. The set Φ contains the states associated to the
root of the subtree being inserted at position p, i.e., the re-
sult of a successful local validation. 2

EFFICIENT CONSTRAINT VALIDATION. . . Informatica 31 (2007) 285–309 291

Qi =

{ } If pi is a delete position
Φ ∩ PSC (p) If pi is an insert or a replace position
{q | q ∈ PSC (p), t(pi) = a, there is a rule a, S, E → q}

If pi has no descendant update positions
{q | there is a rule a, (Scompulsory, Soptional), E → q, such that

t(pi) = a, for Qatt of SAC (pi) we have Scompulsory ⊆ Qatt

and Qatt \ Scompulsory ⊆ Soptional and L(E) ∩ L(SAC (pi)) 6= ∅ }
If pi is an ascendant of an update position

Figure 4: Calculation of the sets Qi.

The construction of each set Qi in the list SAC (p) de-
pends on the situation of p wrt the update positions. When
pi is an update position the set Qi takes into account the
type of the update. If pi is an ancestor of an update posi-
tion then it represents a position where a validity test may
be necessary. In this case, Qi is the set of states associ-
ated to pi when the validation at this position succeeds. If
there is no update over a descendant of pi, then Qi con-
tains all possible states for pi. Now we present Algorithm 1
that is responsible for the construction of both PSC (p) and
SAC (p), for each position p.

Algorithm 1 - Incremental Validation of Multiple Updates
Input:
(i) doc: An XML document
(ii) A = (Q, Σ, Qf , ∆): A tree automaton
(iii) UpdateTable: A relation that contains updates to be per-
formed on doc.
Each tuple in UpdateTable has the form 〈pos, op, Tpos, Φ〉
where pos is an update position (considering the tree represen-
tation of doc), op is an update operation, Tpos is the subtree to
be inserted at pos (when op is an insertion or a replace operation)
and Φ is the set of states associated to the root of Tpos by the exe-
cution of A over Tpos (i.e., the result of the local validation). All
inserted subtrees are considered to be locally valid.
Output: If the XML document remains valid after all operations
in UpdateTable the algorithm returns the Boolean value true,
otherwise false.

(1) for each event v in the document
(2) skip:= false;
(3) switch v do
(4) case start of element a at position p:
(5) if a 6=“<root>”{
(6) if ∃ u = (p, delete, Tp, Φ) ∈ UpdateTable

then skip:= true;
(7) if ∃ u = (p, replace, Tp, Φ) ∈ UpdateTable

then {
(8) Compute Qp (Definition 3);
(9) if (Qp = ∅) then report “invalid” and halt;
(10) SAC (father(p)) = SAC (father(p))@Qp;

//Append Qp to SAC (father(p))
(11) skip:= true;
(12) }
(13) for each u = (p, insert, Tp, Φ) ∈ UpdateTable

do {
(14) Compute Qp (Definition 3);
(15) if (Qp = ∅) then report “invalid” and halt;
(16) SAC (father(p)) = SAC (father(p))@Qp;
(17) }

(18) if 6 ∃u′ = (p′, op′, T ′, Φ′) ∈ UpdateTable
such that p ≺ p′ {
//If there is no update over a descendant of p

(19) Compute Qp (Definition 3);
(20) SAC (father(p)) = SAC (father(p))@Qp;
(21) skip:= true;
(22) }
(23) }
(24) if a =“<root>” or ¬skip then {

//If p is an ascendant of an update position
(25) Compute PSC (p) (Definition 2);
(26) SAC (p) = SAC (p)@Qatt;

//Starting the construction of the list SAC (p)
(27) }
(28) if skip then skipSubTree(doc, a, p);
(29) case end of element a at position p:
(30) foreach u = (p.i, insrt, Tp.i, Φ) ∈ UpdateTable

where p.i is a frontier position do {
(31) Compute Qp.i (Definition 3);
(32) if (Qp.i = ∅) then report “invalid” and halt;
(33) SAC (p) = SAC (p)@Qp.i;
(34) }
(35) Compute Qp (Definition 3);
(36) if (Qp = ∅) then report “invalid” and halt;
(37) if a 6=“</root>”

then SAC (father(p)) = SAC (father(p))@Qp;
(38) report “valid” 2

Algorithm 1 processes the XML document as it is done
by SAX [3]. While reading the XML document, the algo-
rithm uses the information in UpdateTable to decide which
nodes should be treated. When arriving to an open tag rep-
resenting a position p concerned by an update, different ac-
tions are performed according to the update operation:

delete: The subtree rooted at p is skipped. This subtree
will not appear in the result and thus should not be consid-
ered in the validation process (line 6).

replace: The subtree rooted at p is changed to a new one
(indicated by Tp in the UpdateTable). The set of states
Qp indicates whether the locally valid subtree Tp is al-
lowed at this position. The set Qp is appended to the list
SAC (father(p)) to form the list that should contain the
states associated to each sibling of p. The (original) sub-
tree rooted at p is skipped (lines 7-12).

insert: The validation process is similar to the previous
case for each insertion at p (lines 13-17), but the (original)
subtree rooted at p is not skipped since it will appear in the
updated document on the right of the inserted subtrees.

292 Informatica 31 (2007) 285–309 B. Bouchou et al.

When we are in a position p (labeled a) where there
is no update over a descendant (lines 18-22) we can skip
the subtree rooted at p. The list SAC (father(p)) is ap-
pended with the set {q | there is a rule a, S, E → q in
∆ such that q ∈ PSC (father(p)) and T (p) = a}. In
other words, in SAC (father(p)), the set Qp contains the
permissible states for the child at position p. We use skip-
SubTree (line 28) to “skip nodes” until reaching a position
important for the incremental validation process. Notice
that when such a position is reached, skipSubTree changes
the value of the variable skip accordingly.

When reaching an open tag representing a position p
that is an ascendant of an update position, the structures
PSC (p) and SAC (p) should be initialized (lines 24-27) .
The set PSC (p) contains the states that can be associated
to the children of the element at position p (labeled a). To
this end, we find the states appearing in the regular expres-
sion E of rules associated to label a. Only rules that can
apply to the current element are considered, i.e., only those
having a head that belongs to PSC (father(p)) (see Defi-
nition 2).

When reaching a close tag representing a position p we
verify firstly if there is an insert operation on the frontier
position (i.e., on a position pi 6∈ dom(T) such that p ∈
dom(T)). In this case, the insertion is performed (lines 30-
34) .

Next (lines 35-37), we should test whether the p’s chil-
dren respect the schema. In fact, reaching a (not skipped)
close tag (representing position p), means that updates were
performed over p’s descendants.

Schema constraints for the current node p (labeled a)
are verified by taking into account the list SAC (p) (i.e.,
[Qatt,Q1, . . . ,Qn]) which, at this point, is completely
built. Recall that the set Qatt contains the states associated
to the attributes of p while the sets Q1, . . . ,Qn contain the
states associated to each element child of p (in the docu-
ment order). In fact, at this point of the algorithm, our goal
is to find the set Qp to be appended to SAC (father(p)).
This computation corresponds to the last case of Defini-
tion 3.

More precisely, we consider the language L(SAC (p))
which is defined by the regular expression (q0

1 | q1
1 |

. . . | qk1
1) . . . (q0

n | q1
n | . . . | qkm

n) where each ki =
|Qi| and each qj

i ∈ Qi (with 1 ≤ i ≤ n). The
resulting set of states Qp is composed by all states q
for which we can find transition rules in ∆ of the form
a, (Scompulsory, Soptional), E → q, that respect all the fol-
lowing properties: (1) q is a state in PSC (father(p)); (2)
Scompulsory ⊆ Qatt; (3) Qatt \ Scompulsory ⊆ Soptional

and (4) L(E) ∩ L(SAC (p)) 6= ∅.
Notice that Algorithm 1 considers all the updates over

the children of a node p before performing the validity test
on p.

Example 3 Let A = (Q, Σ, Qf , ∆) be a tree automaton where
Qf = {qr}. The set ∆ contains all the transition rules below to-
gether with rules data, (∅, ∅), ε → qdata, and α, (∅, ∅), qdata →

d b

c

d

m n

b

c

a a{q1}

{q} {qd}

{qc}

{q2}

{qd}{q′}

{qn}

{qm}
{qc}

x

r

{q4}

???

x

r

{q3}

{qr}

ε

0

0.0

0.0.0 0.0.1

0.0.0.0

0.0.0.0 0.0.0.1 0.0.0.2

Figure 5: XML tree and its running tree: (a) before updates
(b) after insertions.

qα (for α ∈ {c, d, m, n}).

(1)r, (∅, ∅), q3 | q4.qc → qr (2)x, (∅, ∅), q2 → q4

(3)x, (∅, ∅), q1 → q3 (4)a, (∅, ∅), q.q∗d → q1

(5)a, (∅, ∅), q′.q∗d → q2 (6)b, (∅, ∅), qc → q

(7)b, (∅, ∅), qc.qm.qn → q′

Fig. 5(a) shows a valid XML tree wrt the schema constraints ex-
pressed by A. Fig. 5(b) shows the tree we shall obtain after two
insertions on the frontier position 0.0.0.1. In both cases, the result
of the running is showed by the set of states associated to each po-
sition. Notice that the two insertions on 0.0.0.1 generate changes
not only on the set of states associated to its father (0.0.0) but also
on the sets of states associated its ancestors. Note that even the
set of states associated to the root changes and the tree is not valid
anymore! This example illustrates why, when dealing with non
LTL , the validator tests the ancestors of the update position (and
not just its parent). We propose an algorithm that performs tests
until reaching the root, but optimizations are possible: one should
perform tests until reaching a node whose associated set of states
does not need to be changed.

To illustrate the execution of Algorithm 1, consider, in the table
below, the situation of structures PSC () and SAC () at some spe-
cific instants, during the incremental validation process that take
into account the updates illustrated by Fig. 5(b).

Position Situation Situation Situation
of PSC () of SAC () of SAC ()
when we when we when we
reach reach reach <d>

0.0.0 {qc, qm, qn} [{qc}, {qm}, {qn}]
0.0 {q, q′, qd} [] [{q′}]
0 {q1, q2} [] []
ε {q3, q4, qc} [] []

According to Definition 2, when is reached, states
qc, qm, qn are put in PSC (0.0.0) since they appear in rules (6)
and (7) (which have label b and whose right-hand side are in
PSC (0.0)).

When we reach the list SAC (0.0.0) is complete since
it now contains the set of states assigned to all the children of
position 0.0.0. Notice that SAC (0.0) is an empty list since we
still do not know the states that are effectively associated to its
children. As is found, SAC (0.0.0) is popped and the state
associated to the leftmost child of position 0.0 can be computed.

EFFICIENT CONSTRAINT VALIDATION. . . Informatica 31 (2007) 285–309 293

Indeed, when we reach <d>, the list SAC (0.0) is not empty any-
more - it contains the set of the states we effectively associate to
position 0.0.0 (chosen among those in PSC (0.0) and taking into
account the transition rules that apply). 2

Our algorithm is general, however, as shown in the fol-
lowing proposition, for the case of single-type tree lan-
guages, SAC (p) (for each position p) is a list of singleton
sets. In this case, the operation L(E) ∩L(SAC (p)) 6= ∅ is
reduced to the verification of a word to belong to a regular
language.

Proposition 1 Given a schema defining languages in
STTL, for each position p in Algorithm 1, we have that the
set of states assigned to element children that are not delete
positions is always a singleton set, that is:
If SAC (p) = [Qatt,Q1, . . . ,Qn] then | Qi |= 1, for all
1 ≤ i ≤ n. 2

PROOF: By cases, on the definition of each Qi:
If pi is an insert or a replace position. In this case, we have
Qi = Φ ∩ PSC (p). If we suppose that {q1, q2} ⊆ Qi, then
(i) Both states q1 and q2 are in competition (since they belong
to Φ) and (ii) they belong to the same regular expression in a
transition rule (since they belong to PSC (p)). The conjunction
of the two conditions above contradicts the definition of a single-
typed language, to which the schema belongs.
If pi has no descendant update positions. In this case the set
Qi = {q | q ∈ PSC (p), T (pi) = a, there is a rule a, S, E →
q}.
If we suppose that {q1, q2} ⊆ Qi, then, by the definition of Qi,
the states q1 and q2 compete to each other (since there is only
one label associated to the position pi of the tree), leading to a
contradiction.
If pi is an ascendant of an update position. In this case the
set Qi is also defined as being composed by states which are in
the right-hand side of a rule for a given label a. The existence
of more than one state in this set contradicts the definition of a
single-typed language, to which the schema belongs. 2

Proposition 1 allows us to define a simplification on Al-
gorithm 1, to use single states instead of sets of states, in
such a way that, for these classes of tree languages, we can
represent SAC (p) = [Qatt,Q1, . . . ,Qn] as a set of states
Qatt and a word of states.

Notice that while performing validation tests, a new up-
dated XML tree is being built (as a modified copy of the
original one). If the incremental validation succeeds, a
commit is performed and this updated version is estab-
lished as our current version. Otherwise, the commit is
not performed and the original XML document stays as
our current version. The next section considers the imple-
mentation of our method, comparing it to a validation from
scratch.

3.2 Complexity and experimental results

As said in Section 1, the complexity of our method is pre-
sented taking into account that the cost of “skipping” nodes

is not relevant when compared to the cost of validation ac-
tions. In this context, notice that in Algorithm 1, valida-
tion steps are performed only for those nodes p ∈ dom(T)
which are ascendants of update positions.

Let E be the regular expression defining the structure of
p’s children. When a DTD or XSD schema is used, each
validation step corresponds to checking whether a word w
is in L(E). The word w is the concatenation of the states
associated to p’s children. Thus, for DTD or XSD schema
each validation step is O(|w|).

When a specialized DTD schema is used, each valida-
tion step corresponds to checking if there is a word w =
qi, . . . , qn in L(E) such that qi ∈ Qi, . . . , qn ∈ Qn (see the
definition of a run, in Section 3). In other words, we should
test if L(Eaux)∩L(E) 6= ∅, where Eaux is the regular ex-
pression representing all the words we can build from the
concatenation of the states associated to p’s children, i.e.,
Eaux = (q0

1 | q1
1 | . . . | qk1

1) . . . (q0
n | q1

n | . . . | qkn
n). This

test is done by the intersection of the two automata MEaux

and ME . The solution of this problem runs in time O(n2)
where n is the size of the automata [35, 36].

Thus, if we assume that n is the maximum number of
children of a node (fan out) in an XML tree T , then a val-
idation step runs in time O(n) (for DTD or XML schema)
or in time O(n2) (for specialized DTD).

Let m be the number of updates to be performed on a
tree t (of depth h). Given an update position p, in the
worst-case, a validation step should be performed for each
node on the path between p and the root. For a worst-case
analysis, we can also consider that all m updates are per-
formed on the leaves. We also suppose that all the paths
from nodes p to the root are disjoint. In this case, the com-
plexity of our algorithm can be stated as O(m.n.h) (DTD
or XML Schema) or O(m.n2.h) (when specialized DTD is
considered).

Notice that, in a general XML setting, updates can hap-
pen at any level of the tree (so that the limit imposed by h
is seldom reached). Moreover, when dealing with multiple
updates, part of the paths between the update nodes and the
root are common to two or more of these updates. In this
case, only one validation action is performed for the shared
nodes.

The worst-case of our algorithm is reached for a very un-
usual configuration of the tree being processed (the config-
uration maximizing the product n.h). In this configuration,
one half of the nodes are leafs, children of the root, while
the others form a list (pending from the root).

Other singular configurations are:

• A flat tree, where all the nodes (except the root) are
leaves, and children of the root node. In this case, the
depth of the tree is one and the complexity expressions are
reduced to O(m.n) (DTD or XML Schema) or O(m.n2)
(specialized DTD).

• A list, where there is exactly one leaf node and the
maximum fan-out of the tree nodes is one. In this case,
both complexity expressions are reduced to O(m.h) (DTD,

294 Informatica 31 (2007) 285–309 B. Bouchou et al.

XML Schema or specialized DTD).

• If we consider an n-ranked, balanced tree t, its depth
is given by h = logn |t|, where |t| is the size of the
tree. In this case, the complexity expressions are re-
duced to O(m.n. logn |t|) (DTD or XML Schema) or
O(m.n2. logn |t|) (specialized DTD).

Notice that when dealing with a DTD, we just need to
verify whether the state associated to the father of an up-
date position changes (see [17]). This is easily done by us-
ing transition rules. Thus, for multiple updates with DTD,
we just need to perform verifications until reaching the fa-
ther of the update position which is the nearest to the root.
Example 3 illustrates that this optimization cannot be ap-
plied to non-LTL schemas.

Experimental results (Table 1) show that our incremental
algorithm behaves very efficiently in practice. In order to
compare these approaches we use ten XML documents of
different sizes (from 3, 000 to 61, 000, 000 nodes). These
documents are in the STTL class of languages and describe
different car suppliers. They are valid wrt an XSD whose
principal schema constraints are expressed by the following
transition rules:

supplier, (∅, ∅), q+
shopq∗garage → qsupplier

shop, (∅, ∅), q∗newV eh → qshop

garage, (∅, ∅), q+
oldV eh → qgarage

vehicle, ({id}, {type}), qnameqcvqcat? → qnewV eh

vehicle, ({id}, ∅), qnameqcvqkm? → qoldV eh

Given an XML document, we consider a sequence of 50
updates over it. Our implementation is just a prototype in
Java. Experiments were performed on a 1.5 GHz Pentium
M system with 512MB of memory and a 40GB, 5400rpm
hard drive.

Table 1 and Fig. 6 show the superiority of Xerces [2]
when only validation from scratch is considered. This is
a natural result when comparing a prototype with a com-
mercial product. However, when we compare our incre-
mental validation method (Algorithm 1) to a validation
from scratch approach Table 1 and Fig. 7 show that our
incremental validation method is very efficient for large
documents4. Indeed, it takes almost a third of the time
needed for Xerces to validate 50 updates on a document
having 61, 000, 000 nodes. Similarly, it takes about half of
the time needed for Xerces to validate documents having
10, 000, 000 nodes.

A sufficient condition for commutative update lists is
given in [34]. In this paper, our UpdateTable respects this
condition and thus, single updates can be performed in any
order, without changing the result of the global update on
the XML tree. However, as our validation process is done
by using SAX, a left-right computation of updates is more
efficient than one that considers tree nodes at random. If
we do not care about loading all the XML file, a bottom up
computation might be proposed, since all update positions

4For small documents, the number of updates represents changes over
a high percentage of the document. In this case, incremental validation
cost is close to our validation from scratch cost and thus it is worse than
Xerces, a commercial product.

0.0e+000

1.0e+005

2.0e+005

3.0e+005

4.0e+005

5.0e+005

61M20M10M5M1.6M540K180K47K22K2.3K0

V
al

id
at

io
n

tim
e

in
 m

s

Document size (nodes number)

Xerces2 parser
Our validation from scratch

Figure 6: Comparing validation from scratch performed by
Xerces and our prototype.

0.0e+000

5.0e+004

1.0e+005

1.5e+005

2.0e+005

2.5e+005

3.0e+005

3.5e+005

4.0e+005

4.5e+005

61M20M10M5M1.6M540K180K47K22K2.3K0

V
al

id
at

io
n

tim
e

in
 m

s

Document size (nodes number)

Xerces2 parser
Our incrmental validation

Figure 7: Xerces (validation from scratch) × Our incre-
mental validation method.

activate validation verification on their ancestor nodes. In-
deed, schema validation performance depends on the depth
of update nodes as discussed before.

3.3 Related work

The importance of algorithms for the efficient validation of
XML documents grows together with the use of schema
languages. Algorithms for the incremental validation are
very useful when dealing with very large XML documents,
since they can substantially reduce the amount of time of
the verification process. Several XML document editors
such as XML Mind [5] and XMLSpy [1] include features
for the validation of documents (wrt one or more schema
languages). However, the documentation of most of these
tools include little or no information on their validation al-
gorithms.

In [42] validation algorithms are presented but incremen-
tal validation is not considered. One of the most referenced
work dealing with incremental validation of XML docu-
ments wrt schema constraint is [11, 45]. In those papers
incremental validation methods wrt DTD, XSD and spe-
cialized DTDs are presented. Their approach is based on
word automata, built from schema descriptions. The words
considered are lines (i.e., paths) computed from a binary
version of the document tree. Not only the binary version
of the document tree is stored as auxiliary data, but also

EFFICIENT CONSTRAINT VALIDATION. . . Informatica 31 (2007) 285–309 295

Document characteristics Existing product Our method
Attributes Attributes + Elements Xerces (ms) From scratch (ms) Incremental (ms)

700 3K 451 683 658 (50 updates)
6.5K 25K 727 814 773 (50 updates)
13K 50K 929 1 156 991 (50 updates)
52K 200K 1 509 2 435 1 520 (50 updates)

170K 600K 3 095 6 357 2 258 (50 updates)
500K 1.7M 7 855 18 100 4 526 (50 updates)
1.5M 5.2M 22 208 53 625 11 160 (50 updates)
2.4M 10.5M 45 065 107 195 23 200 (50 updates)
6M 21M 88 270 214 280 37 883 (50 updates)
18M 61.5M 186 144 532 505 66 009 (50 updates)

Table 1: Experimental results.

trees of transition relations, one for each line, representing
the potentially legal evolutions of the line. This is impor-
tant to notice because this is the reason why the method can
hardly generalize to updates on whole subtrees: such an up-
date would require to compute again ALL auxiliary data,
i.e., (i) the binary tree, (ii) the set of lines and (iii) trees of
transition relations. Indeed, the method is applied only for
updates on nodes: insertion or deletion of leaves, and re-
naming of one node. In [11, 45], they propose two main in-
cremental algorithms to validate a number m of updates on
the leaves of a given tree T . The first algorithm, for DTD
and XSD, has time complexity O(m.log|T |), and uses an
auxiliary structure of size O(|T |). The second algorithm,
for specialized DTDs, has time complexity O(m.log2|T |)
and also uses an auxiliary structure of size O(|T |).

Our approach deals with multiple updates and incremen-
tal validation over an unranked tree. As we have already
said, our algorithm visits all the nodes of an XML tree but
only some nodes trigger the validation actions that repre-
sent the relevant cost of the approach. Thus, we can say that
our time complexity is similar to the one found in [11, 45].
For updates on leaves and for node renaming, their method
may be more efficient than ours because the use of trees of
transition relations is quite efficient for incremental word
verification. However these updates are very special ones:
for more general updates, as considered in our paper (in-
volving whole subtrees), our method performs a minimum
of tests without maintaining huge auxiliary structures.

Due to our use of unranked trees instead of the binary
trees of [11, 45], each validation step on our method can be
more expensive, but our XML tree is usually much shorter.
Moreover, our work differs from that in [45] in four main
aspects:

1. Our update operations can be applied at any node of
the tree, and not just on the leaves. This feature permits
us to change large areas of the XML tree with one single
operation.

2. In [45], testing whether a word belongs to a language is
done in an incremental way by storing an auxiliary struc-
ture. This optimization might be easily integrated in our
algorithm for verifying child state word, but it seems to be

interesting only in case of very large fan-out.

3. When dealing with DTD and XSD we do not use any
auxiliary structures to store the result of a previous valida-
tion process.

4. Integrity constraint verification for keys and foreign keys
is naturally integrated to our algorithm (Section 4).

4 Integrity constraint verification
In this section we present our constraint language, called
CTK (for Context-Target-Key), and we show that con-
straints in CTK can be compiled to an attribute grammar.
CTK is used to specify absolute and relative keys, together
with foreign keys. As in [21], CTK uses path expressions
built from a fragment of XPath. This XPath fragment in-
cludes (a) the empty path ε, (b) an element or attribute
name, (c) a wildcard matching any single node name (_),
(d) an arbitrary downward path (//) and (e) the concatena-
tion of paths (P/Q where P and Q are paths, as defined
by these rules). Indeed, this fragment is the same used by
XML Schema to specify integrity constraints ([15]). No-
tice that a given path defines a language whose symbols
are XML labels. Path expressions are, in fact, regular ex-
pressions over XML labels.

The following example illustrates how keys and foreign
keys are specified. Next we define their syntax and seman-
tics.

Example 4 The XML document represented by the tree T in
Fig. 1 describes a collection of cooking recipes. Each collection
maintains a categorized list of recipes, and a list of the top recipes.
We want to validate this document wrt the following keys and
foreign key, defined in CTK:

- K1 : (/, (./collection, {./category}))
It indicates that, for the whole document, every collection must
be uniquely identified by its category.

- K2: (/collection, (.//recipe, {./name, ./author}))
It means that, in the context of a collection, a recipe is uniquely
identified by its name and author.

- K3: (//recipe, (./ingredient, {./name}))
Similarly to K2, it indicates that, in the context of a recipe, each
ingredient is uniquely identified by its name.

296 Informatica 31 (2007) 285–309 B. Bouchou et al.

- FK4: (/collection, (./top_recipes/top_recipe,
{./recipe_name, ./author_name}) ⊆ (.//recipe,
{./name, ./author})) where (/collection, (.//recipe,
{./name, ./author})) is the key K2.
The foreign key constraint indicates that, in a collection, the
name and the author of a top recipe must already exist as the
name and the author of a recipe (in the same collection, but
disregarding the order). 2

Definition 4 - CTK key and foreign key syntax [21]:
A key is represented by an expression (P, (P ′, {P 1,
. . . , Pm})) in which the path P is called the context path;
P ′ is the target path and P 1, . . . , Pm are the key paths.

A foreign key is represented by (P, (P ′0,
{P 1

0 , . . . , Pm
0 }) ⊆ (P ′, {P 1, . . . , Pm})) where (P, (P ′,

{P 1, . . . , Pm})) is a key K and P 1
0 , . . . , Pm

0 are called
foreign key paths. 2

In this paper, key and foreign key specifications respect
the following constraints: (a) Context and target paths
should reach element nodes; (b) Key paths always exist and
are unique and (c) Key (or foreign key) paths are required
to end at a node associated to a value, i.e., attribute nodes
or elements having just one child of type data. Notice that
our key specification corresponds to a special case of strong
keys defined in [21] and thus it imposes the uniqueness of
a key and equality of key values (i.e., keys values cannot
be null). This concept is similar to the concept of key in
relational databases.

In the following definition we use the notion of tuple in
a named perspective as described in [6]. Thus, tuples are
functions that associate a non-null value to each compo-
nent (name). The order of values appearing in the tuple is
not important since each component value is associated to
its name (in our case, the name of the tuple component is an
XML label, i.e., the name of the element or attribute whose
value we want to consider). Thus, wrt the textual repre-
sentation of an XML element, the definition below states
that the order of elements (or attributes) is unimportant in
defining equality.

Definition 5 - Semantics of CTK keys and foreign keys:
An XML tree T satisfies a key (P, (P ′, {P 1, . . . , Pm}))
if for each context position p reached by following path P
from the root, the following two conditions hold:

(i) For each target position p′ reachable from p via P ′ there
exists a unique position ph from p′, for each Ph(1 ≤ h ≤
m), and

(ii) For any target positions p′ and p′′, reachable from p via
P ′, whenever τ ′ = τ ′′ (where tuples5 τ ′ and τ ′′ are built
following P 1 . . . Pm from p′ and p′′, respectively) then p′

and p′′ must be the same position.

Similarly, an XML tree T satisfies a foreign key
(P, (P ′0, {P10, . . . , P

m
0 }) ⊆ (P ′, {P 1, . . . , Pm})) if:

5A tuple τ has the general format τ = [τ(P 1) : v1, . . . , τ(P m) :
vm]. We use τ(P h) to denote the name (label) of the component of τ
corresponding to the node reached via P h from a given target position.

(i) It satisfies its associated key K = (P, (P ′,
{P1, . . . , Pm})), and

(ii) For each target position p′0 reachable from the context
position p via P ′ there exists a unique position ph from p′,
for each Ph(1 ≤ h ≤ m), and

(iii) Each tuple τ0 = [τ0(P 1
0) : v1, . . . , τ0(Pm

0) : vm], that
was built following the paths P/P ′0/P 1

0 , . . . , P/P ′0/Pm
0

is equivalent in value to a tuple τ = [τ(P 1) :
v1, . . . , τ(Pm) : vm], built following paths P/P ′/P 1, . . . ,
P/P ′/Pm. In other words, for each 1 ≤ h ≤ m, the
τ0-component name Ph

0 corresponds to the τ -component
name Ph and their values are equal. 2

Example 5 In Example 4, if we assume an inversion of the two
rightmost children of position 0.3.0 of Fig. 1 (author_name on
position 0.3.0.1 and recipe_name on position 0.3.0.2) then we
obtain tuples [recipe_name: Mushroom Soup, author_name: M.
Smith] and [name: Mushroom Soup, author: M. Smith] which are
equivalent in value. This is because foreign key specification re-
lates recipe_name to name and author_name to author. Thus, ac-
cording to Definition 5, the foreign key is satisfied. This remark
is also valid when comparing key values.

2

In order to perform the validation of key constraints,
we represent the paths in key definitions by finite state
automata: for a context path P , we have the automaton
M = 〈Θ, Σ, δ, e, F 〉. This automaton will be referred to as
the context automaton. It is defined to recognize the lan-
guage generated by the path (regular expression) P .

Similar automata are defined for target, key and foreign
key paths: For a target path P ′, its corresponding target
automaton is defined as M ′ = 〈Θ′,Σ, δ′, e′, F ′〉; and for
key or foreign key paths P 1, . . . , Pm, their key or foreign
key automata are M ′′ = 〈Θ′′,Σ, δ′′, e′′, F ′′〉.

We denote by M.e the current state e of the finite state
automaton M . M.e is the configuration of the automaton,
representing a snapshot of it during its run. We illustrate
the above definitions with an example.

Example 6 Fig. 8 illustrates finite state automata that corre-
spond to the (context, target and key) paths in K1, K2, K3 and
FK4 of Example 4. Given the XML tree of Fig. 1, those finite
state automata are used in the tree traversal to perform constraints
validation. 2

4.1 Key and foreign key validation:
attribute grammar approach

We consider a context-free grammar G = (VN , VT , P , B)
where VN is the set of non-terminals, VT is the set of termi-
nals, P is the list of productions, and B is the start symbol.
In order to add “extra” information to a non-terminal sym-
bol we can attach a set of attributes to it. An attribute can
represent anything: a string, a number, a type, a memory
location or whatever [8]. An attribute grammar is G aug-
mented by semantic rules, which are declarative specifica-
tions describing how the attached attributes are computed.

EFFICIENT CONSTRAINT VALIDATION. . . Informatica 31 (2007) 285–309 297

*

*

e2

e4

e1

e3

e6

e5e4

e2 e3

e1e0

e5e4

e3e2

e1e0

e7

e6e5

e4e3e2

e1e0

M ′′
4 :

M ′
4 :

M4:

M ′′
3 :

M ′
3 :

M3:

M ′′
2 :

M ′
2 :

M2:M1:

M ′
1 :

M ′′
1 :

collection

author_name

recipe_name

top_recipes top_recipe

recipe

name

ingredient

recipe

name

author

collection

category

collection

e0

Figure 8: Context, target and key automata corresponding
to keys K1, K2, K3 and to the foreign key FK4.

Production Attributes
R → α1 . . . αm R.conf := { M.q0 }

/* Inherited Attributes */
for each αi (1 ≤ i ≤ m) do

αi .conf := { M.q′ | δM (q0, αi) = q′ }
if (q0 ∈ FM) then

αi .conf := αi .conf ∪
{ M ′.q′1 | δM′ (q′0, αi) = q′1 }

end for
/* Synthesized Attributes */
if (q0 ∈ FM) then

R.cK:=〈∀w, z: w 6= z ⇒ αw.t ∩ αz.t = ∅〉
if (∃ FK ⊆ K) ∧ (q0 ∈ FMF K) ∧

(R.tF K ⊆ R.tK) then
R.cF K := 〈true〉

if (q0 /∈ FM) then

R.c := 〈∀xw : αw.c = 〈xw〉 ⇒
m∧

w=1
xw〉

Table 2: Attribute Grammar for Keys and Foreign Keys
(Root block).

Thus, the value of an attribute at a parse tree node is defined
by a semantic rule associated to the production used at that
node [8].

We recall that a schema can be seen as an extended con-
text free grammar G (regular tree grammar)[37]. Thus,
in the context of integrity constraint verification one may
augment G, whose production rules are those defining the
schema, by semantics rules [44], using attributes which
represent information about integrity constraints. In our
case, as we assume that integrity constraint validation is
independent from schema verification, we consider G as a
simpler grammar just describing any XML tree. We write
A → α1 . . . αm to indicate that the semantic rule applies to
the node labeled a and to its children (labeled αi). The se-
mantic rules provide a mechanism for annotating the nodes
of a tree with attributes, which can work either bottom-
up for synthesized attributes or top-down for inherited at-
tributes.

Tables 2, 3 and 4 present the attribute grammar for keys
and foreign keys. In these tables the definition of semantic

rules for a key K (or a foreign key FK) is given according
to the kind of production rules. Indeed, we classify our
production rules into three kinds, according to the XML
node over which they can be applied:
1: Rules applied at the root node (root block in Table 2).
2: Rules applied at the leaves (or data) nodes (data block in
Table 4).
3: General rules, applied at all other nodes (general block
in Table 3).

We use the top-down direction, i.e., inherited attributes,
in order to determine the role of each node wrt keys and
foreign keys, defined according to language CTK. We de-
fine just one inherited attribute, called conf. For each node,
conf is computed by executing the finite state automata that
recognize the paths in the definition of K (or FK).

In this way, Table 2 defines, for each key or foreign key,
how the attributes conf are computed for a rule in which
the left-hand side is a symbol that represents the root node.
To this end, we firstly assign to the root node the set of
values {M.q0} where M.q0 is the initial configuration of
the context automaton M . Then, we compute the value of
conf for each child of the root (by executing M), without
forgetting to verify whether we need to change from the
context to the target automaton.

In Table 3 the computation of conf is similar to the one
performed for the root’s children in Table 2. Notice that to
compute the value of conf for a node α, we start by consid-
ering each configuration M.q in the set of values associated
to the attribute conf of its parent A. We should also verify
if it is necessary to change from one automaton to another.

Example 7 - Consider the XML document, key K2 and foreign
key FK4 of Example 6 with their corresponding finite state au-
tomata (respectively M2, M ′

2, M ′′
2 and M4, M ′

4, M ′′
4). We have

one inherited attribute conf for each key or foreign key, as illus-
trated in Fig. 9. The attributes conf K2 and conf FK4 are computed
top-down by the execution of their finite state automata. For in-
stance, at the root node, we assign to conf K2 and conf FK4 their
corresponding initial configuration, respectively the sets {M2.e0}
and {M4.e0}. In order to compute conf K2 for node collection
we execute a first transition in M2 using the label collection as
input. The result is the set {M2.e1}. Similarly, the computation
of conf FK4 for node collection results in {M4.e1}. 2

We use the bottom-up direction, i.e., synthesized at-
tributes, to carry the values that are part of a key or for-
eign key up to their context node. At this level, we ver-
ify if the integrity constraints are respected. For each key
(or foreign key) definition K (according to language CTK),
we use three attributes, called c, t and k, for (respectively)
context values, target values and key values. At each node,
these attributes receive values depending on the role of the
node for K (i.e., the value of attribute conf), and depending
also on values of c, t and k from children nodes.

In this context, Table 4 shows that an attribute k obtains
the data value of a leaf whose parent is a key node for some
K. Then, Table 3 defines the values of the synthesized
attributes concerning a node p (labeled A) in the following
way:

298 Informatica 31 (2007) 285–309 B. Bouchou et al.

Production Attributes
A → α1 . . . αm /* Inherited Attributes */

for each αi (1 ≤ i ≤ m) do
for each M.q ∈ A.conf do

αi .conf := {M.q′ | δM (q, αi) = q′}
if (M = M) ∧ (q ∈ FM) then αi .conf := αi .conf ∪ {M ′.q′1 | δM′ (q′0, αi) = q′1}
if (M = M ′) ∧ (q ∈ FM′) then αi .conf := αi .conf ∪ {M ′′.q′′1 | δM′′ (q′′0 , αi) = q′′1 }

end for
end for
/* Synthesized Attributes */
for each configuration M.q in A.conf do

if (M = M ′′) ∧ (q /∈ FM′′) then A.k := < α1.k . . . αm.k >

if (M = M ′) ∧ (q ∈ FM′) ∧ (|< α1.k . . . αm.k >|= n) then A.t := A.t ∪ { < α1.k . . . αm.k > }

if (M = M ′) ∧ (q /∈ FM′) ∧ (∀w, z : w 6= z ⇒ αw.t ∩ αz.t = ∅) thenA.t :=
m⋃

w=1
αw.t

if (M = M) ∧ (q ∈ FM) then A.cK:= 〈∀w, z : w 6= z ⇒ αw.t ∩ αz.t = ∅〉
if (∃ FK ⊆ K) ∧ (M = MF K) ∧ (q ∈ FMF K) ∧ (A.tF K ⊆ A.tK) then A.cF K := 〈true〉
if (M = M) ∧ (q /∈ FM) then A.c :=〈∀xw :αw.c=〈xw〉⇒

m∧
w=1

xw〉
end for

Table 3: Attribute Grammar for Keys and Foreign Keys (General block).

Production Attributes
A → data /* Synthesized Attributes */

for each configuration M.q in A.conf do
if (M = M ′′) ∧ (q ∈ FM′′)

then A.k := < value(data) >
end for

Table 4: Attribute Grammar for Keys and Foreign Keys
(Data block).

1. If p is in a key path, then its attribute k is the tuple com-
posed by the key values (those associated to the attribute k
of each child of p).

2. If p is a target node, then its attribute t is a set contain-
ing the tuple composed by the key values carried up from
p’s children. This tuple is computed from the values of
attributes k, as explained in item 1. Notice that the assign-
ment of a value to the attribute t depends on the verification
of the key size (i.e., the size of the key tuple must respect
the key definition).

3. If p is in a target path and if all the tuple values carried up
by p’s children are distinct, then the attribute t for node p is
assigned with the union of the sets containing these tuples.

4. If p is a context node for a key and the tuple values
carried up by p’s children are distinct, then the attribute c
(wrt the key K) is assigned with a tuple containing the value
true. Otherwise the tuple contains the value false.

5. If p is a context node for a foreign key and the tuple val-
ues carried up by p’s children are also key values, then the
attribute c (wrt the foreign key FK) is assigned with a tu-
ple containing the value true. Otherwise the tuple contains
false.

6. If p is in a context path, then the attribute c is assigned
with a tuple containing the conjunction value of c’s values
obtained from p’s children.

Finally, Table 2 shows how to compute synthesized at-
tributes for the root, distinguishing whether it is a context
(for a key or a foreign key) or not.

<!DOCTYPE keyTree[
<!ELEMENT keyTree (context*)>
<!ATTLIST keyTree nameKey CDATA #REQUIRED>
<!ELEMENT context (target+)>
<!ATTLIST context pos CDATA #REQUIRED>
<!ELEMENT target (key+)>
<!ATTLIST target pos CDATA #REQUIRED

refCount CDATA #REQUIRED>
<!ELEMENT key #PCDATA>]

Figure 11: DTD specifying the structure keyTree

From the above explanation, we see that the values of
attributes c are computed from those of attributes t which
are, in turn, built from the values of the attributes k.

Example 8 - As in Example 7 we show in Fig. 10 how the syn-
thesized attributes are computed for K2 and FK4 for nodes in the
key, target and context paths:

Key path: The data values for K2, obtained from nodes name and
author, are collected in each k2. For FK4, recipe_name and
author_name are the foreign key nodes and their data values are
collected in attributes k4.

Target path: For K2, the key values are also concatenated into a
tuple and kept in a singleton set when reaching target node recipe.
At target node top_recipe, the attribute t4 receives a singleton
set containing the tuple obtained by the concatenation of the key
values for FK4. Node top_recipes is in the target path and its
attribute t4 groups all the target tuples coming from target nodes.

Context path: At the context node collection, as all the tuples
collected in the various t2 are all distinct, then the attribute cK2

is set to true. Still at node collection, the set of tuples coming
from t4 is compared to those coming from the various t2. As
all the tuples in t4 are contained in the set formed by the various
t2, then the attribute cFK4 is set to true. It means that for the
concerned collection node, the foreign key FK4 is valid.

At the root node, the attributes c2 and c4 are set to true, indicating
that the document respects K2 and FK4. In order to show neatly
the attribute values that are synthesized, those attributes (c, t or k)
for K2 or FK4 that are not concerned in the position are hidden.
2

At the same time that we compute the synthesized at-
tributes for a key, we build its corresponding keyTree. The

EFFICIENT CONSTRAINT VALIDATION. . . Informatica 31 (2007) 285–309 299

0.3.0.20.3.0.10.3.0.0

0.3.00.2.10.2.00.1.10.1.0

0.30.20.10.0

number

authornameauthorname

category

.....

recipe recipe top_recipes

top_recipe

recipe_name author_name

collection

root

Soups

Shrimp Soup J. Fox Mushroom Soup M. Smith

1 Mushroom Soup M. Smith

0

confK2 = { }

confK2 = {M ′
2.e2,M

′′
2 .e6}confK2 = {M ′

2.e2,M
′′
2 .e5}

confK2 = { }

confK2 = { }

confK2 = {M ′
2.e2, M

′′
2 .e6}confK2 = {M ′

2.e2,M
′′
2 .e5}

confK2 = {M ′
2.e2,M

′
2.e3}

confK2 = {M2.e1}

confK2 = {M ′
2.e2,M

′
2.e3}

confK2 = {M2.e0}

confK2 = { }

confFK4 = { }

confFK4 = { } confFK4 = { }

confFK4 = { }

confFK4 = { } confFK4 = { }

confFK4 = { }

confFK4 = {M4.e0}

confFK4 = {M4.e1}

confK2 = { }
confFK4 = {M ′

4.e3}

confK2 = { }

confFK4 = { }

confFK4 = {M ′
4.e4}

confFK4 = {M ′′
4 .e6} confFK4 = {M ′′

4 .e7}

ε

Figure 9: Inherited Attribute conf for K2 and FK4.

name

0.3.0.20.3.0.10.3.0.0

0.3.00.2.10.2.00.1.10.1.0

0.30.20.10.0

number

authorauthorname

category

0

root

M. SmithMushroom Soup1

M. SmithMushroom SoupJ. FoxShrimp Soup

Soups

collection

author_namerecipe_name

top_recipe

top_recipesreciperecipe

..........

ε

k4 =< M. Smith >k4 =< Mushroom Soup >

k2 =< M. Smith >k2 =< Mushroom Soup >k2 =< J. Fox >k2 =< Shrimp Soup >
t4 = {< Mushroom Soup, M. Smith >}

t4 = {< Mushroom Soup, M. Smith >}t2 = {< Mushroom Soup,M. Smith >}t2 = {< Shrimp Soup, J. Fox >}

cFK
4 =< true >

cK
2 =< true >

c4 =< true >

c2 =< true >

Figure 10: Synthesized Attributes for K2 and FK4.

keyTrees are structures storing the position of each context
and target nodes together with the key values associated to
each key node. Fig. 11 describes this structure index us-
ing the notation of DTDs. For each key constraint K that
should be respected by the XML document, we keep its
keyTreeK . Also, for each key, a reference counter refCount
is used to store how many times the key is referenced by
a foreign key. The keyTrees are kept to facilitate validation
of keys and foreign keys in update operations, as the accep-
tance of an update operation wrt integrity constraints relies
on information about key values. Fig. 12 shows keyTreeK2

that stores the key values and information for K2.

0.20.1

...

@pos

@nameKey

@pos @refCount key key @pos @refCount key key

targettarget

context

keyTree

Shrimp Soup

0

0 J. Fox 1 Mushroom Soup M. Smith

K2

Figure 12: KeyTreeK2 built over the XML document of
Fig. 1.

4.2 Incremental integrity constraint
verification

We consider a collection of keys Kj (1 ≤ j ≤ m) and for-
eign keys FKj ((m + 1) ≤ j ≤ n) constraints that should
be respected by a subtree T ′ being inserted, replaced or

300 Informatica 31 (2007) 285–309 B. Bouchou et al.

deleted. The execution of our key and foreign key con-
straints validator over a tree T ′ gives a tuple 〈〈l1, . . . , ln〉,
〈keyTreeK1

[T ′, ε],. . . , keyTreeKm
[T ′, ε]〉〉 where:

- 〈l1, . . . , ln〉 is a n-tuple of tuples 〈c, t, k〉. Each tuple
〈c, t, k〉 represents the synthesized attributes computed for
one key (or foreign key) at the root position ε of T ′.

- 〈keyTreeK1
[T ′, ε], . . . , keyTreeKm [T ′, ε]〉 is a m-tuple

containing one keyTree for each key.

Notice that the n-tuple that represents the synthesized
attributes has two distinct parts: tuples l1, . . . , lm represent
keys and tuples lm+1, . . . , ln represent foreign keys.

We introduce now the notion of local validity for keys
and foreign keys. When performing an insertion we want
to ensure that the new subtree T ′ has no internal validity
problems (as, for instance, duplicated values for a key K).

Definition 6 - Local Validity: Let T ′ be an XML tree.
Let Kj (1 ≤ j ≤ m) be a collection of keys and FKj

((m + 1) ≤ j ≤ n) be a collection of foreign keys,
both defined according to language CTK. The tree T ′ is
locally valid if the result of the validation gives a tuple
〈〈l1, . . . , ln〉, 〈keyTreeK1

[T ′, ε], . . . , keyTreeKm
[T ′, ε]〉〉 re-

specting the conditions below.
For each tuple lj (1 ≤ j ≤ n) we have:

(i) If the root of T ′ is a target position for Kj (or FKj) or a
position in the target path then all tuples in the set specified
by the attribute tj , which is in tuple lj , has length mj (i.e.,
its length equals the number of elements composing a key
(or foreign key) tuple).

(ii) If the root of T ′ is a context position for Kj (or FKj),
or a position in the context path, then the attribute cj in lj
is a tuple containing the value true. 2

Given a tree T and a sequence of updates over T , the in-
cremental validation problem wrt integrity constraints con-
sists in checking whether the updated tree does not violate
any constraints, by visiting only the part of T involved by
the updates. We propose an algorithm, similar to Algo-
rithm 1, to perform the incremental validation of an XML
tree T .

Example 9 Consider the XML tree of Fig. 3 where update po-
sitions are marked. As in Section 3, updates are treated in the
document order. Now, we remark that, in the incremental valida-
tion wrt integrity constraints the following steps are performed:

1. When the open tag <d> (position 0.1) is reached, the deletion
operation is taken into account and a search of key and foreign
key values is triggered in order to verify whether there are key
or foreign key values in the subtree rooted at the deletion posi-
tion. If such kind of values are found, we use the corresponding
keyTree to test whether the deletion does not imply any violation
of integrity constraints. If a violation is detected we mark posi-
tion 0.1 (in keyTree) and the document is considered to be tem-
porarily invalid. Only after analyzing late updates we can decide
whether this deletion operation can be performed. A late update
can indeed restore document validity (e.g., by removing foreign
key references from a key involved in our delete operation). In
this case, our deletion can be performed.

2. When the open tag <a> at position 1 is reached, we use the
corresponding keyTree to test whether the insertion does not imply
any violation of integrity constraints. We consider the insertion
as performed (similarly to Section 3). If the insertion represents a
violation of an integrity constraint, then there is a subtree where
key values are duplicated wrt those being inserted. We mark this
subtree in keyTree and proceed as in the above item. Notice that,
similarly to Section 3, we can skip nodes below position 2.

3. The replace operation at position 3 combines the effects of a
deletion and an insertion.

4. At the end of the tree traversal a final validity test is executed.
It consists on verifying whether the resulting keyTree does not
contain any violation label (meaning that a postponed violation
correction was not performed).

The implementation of this approach is done by the follow-
ing algorithm. Notice that it uses the UpdateTable to obtain
the update positions. When an update position is reached,
different tests are performed, according to the update oper-
ation.

Algorithm 2 - Incremental Validation of Keys in Multiple Up-
dates
Input:
(i) doc: An XML document.
(ii) UpdateTable: A relation that contains updates to
be performed on doc. Each tuple has the general form
〈pos, op, Tpos, Φ〉, similar to Algorithm 1.
(iii) KeysFSA: Set of finite state automata describing the paths
that appear in the keys and foreign keys.
(iv) KeyTree: Structure that contains the key values resulting
from the last validation performed on doc.
Output:
If doc remains valid after all operations in UpdateTable the al-
gorithm returns the Boolean value true, otherwise false.
Local Variables:
(i) CONF : structure storing the inherited attributes.
(ii) SY NT : structure storing the synthesized attributes.
(iii) keyTreeTmp: copy of the initial keyTree.

(1) keyTreeTmp := KeyTree
(2) CONFε := InitializeInhAttributes(KeysFSA)
(3) foreach event v in doc do
(4) switch (v) do
(5) case start of element a at position p
(6) Compute CONFp using KeysFSA
(7) foreach u = (p, insert, Tp, Φ) ∈ UpdateTable do
(8) if (¬insert(doc, p, Tp, keyTreeTmp))
(9) then report “invalid” and halt
(10) if 6 ∃u′ = (p′, op′, T ′, Φ′) ∈ UpdateTable

such that p ≺ p′

(11) then skipSubTree(doc, a, p);
(12) case end of element a at position p
(13) Compute SY NTp using CONFp

(14) if ∃ u = (p, delete, Φ) ∈ UpdateTable
(15) then if (¬delete(doc, p, SY NTp, keyTreeTmp))
(16) then report “invalid” and halt
(17) if ∃ u = (p, replace, Tp, Φ) ∈ UpdateTable
(18) then if ¬replace(doc, p, SY NTp, Tp, keyTreeTmp)
(19) then report “invalid” and halt
(20) case value
(21) str := value(p)
(22) Compute SY NTp using CONFp and str
(23) if (¬valid(keyTreeTmp))

then report “invalid” and halt

EFFICIENT CONSTRAINT VALIDATION. . . Informatica 31 (2007) 285–309 301

(24) return true 2

Algorithm 2 describes the incremental validation of key
and foreign key constraints while reading the XML tree in
the document order. Firstly, we make a work version of the
initial valid keyTree. This work version will be changed as
we process a sequence of update operations. At the end of
this sequence we check whether the obtained keyTreeTmp
is valid and, only in this case, it will replace the original
keyTree.

The algorithm uses two structures to store the attribute
values, namely CONF and SYNT. At each position p, the
structure CONFp keeps the roles of p wrt the keys and for-
eign keys being verified. Indeed, CONFp contains one in-
herited attribute conf (as defined in Tables 2 and 3) for each
key and foreign key at position p. The structure SYNTp

contains a tuple formed by the synthesized attributes k, t,
and c (see Tables 2, 3 and 4) for each key and foreign key
at position p.

When reaching an open tag at position p, the inherited
values to be stored in CONFp are computed and all re-
quested insertions at this position are performed according
to our insertion method (Algorithm 3). On the other hand,
when reaching a close tag in position p, we compute the
synthesized values to be kept in SYNTp and we perform the
requested deletions and replacements. Recall that the com-
putation of synthesized values depends not only on CONFp

but also on the result of each SYNTp′ (where p′ is a child
of p). Notice that SYNTp is necessary in delete and replace
operations, since for each key and foreign key, we need to
remove key and foreign key values from the corresponding
keyTreeTmp (see Algorithm 4).

Algorithm 3 defines the operation
insert(T, p, T ′, keyTreeTmp) to include a new sub-
tree T ′ in an XML tree T at position p. It first computes
the tuple τ which is the result of the local validation
for T ′. Recall that τ is composed by tuples containing
the synthesized attributes and by the (partial) keyTrees
associated to T ′.

An insert operation is accepted or rejected. If an inser-
tion is accepted then the key or foreign key values found
in T ′ are inserted in the corresponding keyTreeTmp. No-
tice that an insertion is temporarily accepted in two cases,
namely:
• If the key tuple value corresponding to a foreign key in-
stance being inserted does not exist. In this case, we add
the new key tuple value to keyTreeTmp and we mark it with
a null value at attribute pos.
• If the insertion of a key instance generates duplicated tu-
ple values for a key. In this case, we mark the original tuple
in keyTreeTmp as a duplicate value.

In both cases, we postpone the final decision of rejecting
or accepting the insertion. We just mark the involved tu-
ples in keyTreeTmp, keeping the document temporarily in-
valid. We should notice the difference between duplicating
key values and key (or foreign key) components. Indeed, if
the subtree to be inserted requests a duplication of key (or
foreign key) component nodes, then it is rejected since we

assume that nodes composing a key (or a foreign key) must
be unique. For instance, if we consider the key K1 of Ex-
ample 6, then the insertion at position 0.0 of a new category
under a collection (position 0) is rejected. As category is
the key node for K1, the subtree rooted at collection cannot
have more than one category child.

Algorithm 3 - The insert operation:
insert(T, p, T ′, keyTreeTmp)

(1) if ((τ := LocalValidation(T, p, T ′)) = ’invalid’)
then return false

(2) for each tuple li = 〈ki, ti, ci〉 (1 ≤ i ≤ m) in τ ,
corresponding to Ki do

(3) if (ki 6= <>) then return false
(4) if (ti 6= ∅) then

Find the context position p′ (above p) for Ki

(5) for each tuple v ∈ ti do
(6) if ∃u = v in keyTreeTmpKi [T, p′] then
(7) if u is associated to an attribute pos 6= null
(8) then Mark u in keyTreeTmpKi [T, p′]

with dup = “yes”
(9) Add keyTreeKi [T

′, p] to keyTreeTmpKi [T, p′]
(10) if (ci = 〈true〉) then
(11) Add keyTreeKi [T

′, p] to keyTreeTmpKi [T, ε]
(12) for each tuple lj = 〈kj , tj , cj〉 (m + 1 ≤ j ≤ n),

corresponding to FKj do
(13) if (kj 6= <>) then return false
(14) if (tj 6= ∅) then
(15) Find the context position p′ (above p) for FKj

(16) for each tuple v ∈ tj do
(17) if ∃u = v in keyTreeTmpKi [T, p′] then
(18) increment refCount of tuple u by 1
(19) else build a subtree β which corresponds to

tuple u as follows:
(20) ? Attribute pos is null
(21) ? Attribute refCount is 1
(22) ? Key values compose the tuple u
(23) add the subtree β in keyTreeTmpKi [T, p′]
(24) as rightmost child of context node p′. 2

The insertion of a new subtree rooted at position p is
possible if the following tests succeed:

1. The subtree being inserted is locally valid.

2. For each key Ki (1 ≤ i ≤ m) :

(a) If p is a position in the key path (i.e., a position below
the target node) then the update operation implies the du-
plication of key nodes. In this case, the insertion is rejected.

(b) If p is a position in the target path, then we insert the
new key values in keyTreeTmpKi under the corresponding
context. The key value may already exist in keyTreeTmpKi .
It is necessary to test if it exists as a duplicate or as an
“incomplete” insertion triggered by the previous insertion
of a foreign key. The test consists in verifying whether
attribute pos is null.

If there are duplicated key values wrt the one being in-
serted, then the duplication is annotated by adding dup =
“yes” in keyTreeTmpKi . If the insertion corresponds to an
incomplete previous insertion, it is completed by changing
the value of attribute pos.

302 Informatica 31 (2007) 285–309 B. Bouchou et al.

(c) If p is a position in the context path, then the insertion is
accepted since tree T ′ is locally valid wrt key and foreign
keys (item (1)) .

3. For each foreign key FKj (m + 1 ≤ j ≤ n) :

(a) If p is a position in the foreign key path, then we proceed
as in item 2(a).

(b) If p is a position in the target path, then we are insert-
ing new foreign keys wrt a key Ki. We increment the ref-
Count (in keyTreeTmpKi) of each Ki tuple corresponding
to a foreign key tuple being inserted. If there is not a corre-
sponding tuple in keyTreeTmpKi

then a subtree containing
the key values which correspond to the inserted foreign key
is added to keyTreeTmpKi

as the rightmost child of the con-
cerned context. For this subtree, attributes pos = null and
refCount = 1.

Algorithm 4 defines the update operation
delete(T, p, σ, keyTreeTmp) where p is the position
to be removed from the XML tree T , and σ is the tuple
resulting from the local validation of the subtree T ′

originally rooted at p.
If a deletion is accepted, then the key and foreign key

values are removed from the corresponding keyTreeTmp.
Notice that a deletion is temporarily accepted if it concerns
a key tuple whose refCount is not 0. Indeed, in this case,
the deletion is finally accepted only if all the foreign keys
referencing this tuple are also removed from T . We post-
pone the final decision of accepting or rejecting the deletion
to the end of the update sequence. We consider that key (or
foreign key) nodes cannot be deleted.

Algorithm 4 - The delete operation:
delete(T, p, σ, keyTreeTmp)

(1) for each tuple li = 〈ki, ti, ci〉 (1 ≤ i ≤ m) ∈ σ,
corresponding to Ki at position p do

(2) if (ki 6= <>) then return false
(3) if (ti 6= ∅) then
(4) Find the context position p′ (above p) for Ki.
(5) for each tuple v ∈ ti do
(6) Find the tuple u = v in keyTreeTmpKi [T, p′]
(7) if refCount associated to tuple u is 0
(8) then remove u from keyTreeTmpKi [T, p′]
(9) else mark tuple u in keyTreeTmpKi [T, p′]

with del = “yes”
(10) if (ci = 〈true〉) then
(11) for each context pos p′ under or equal p do
(12) remove keyTreeTmpKi

[T,p′]from keyTreeTmpKi
[T,p]

(13) for each tuple lj = 〈kj , tj , cj〉 (m + 1 ≤ j ≤ n)
in σ, corresponding to FKj do

(14) if (kj 6= <>) then return false
(15) if (tj 6= ∅) then
(16) Find the context position p′ (above p) for FKj

(17) for each tuple v ∈ tj do
(18) Obtain the tuple u that is referenced by v in

keyTreeTmpKi [T, p′];
(19) Decrement refCount associated to u by 1;
(20) if (refCount = 0) and (del = yes) in u
(21) then remove u from keyTreeTmpKi

[T, p′] 2

To remove a subtree rooted at position p we execute the
following tests for keys and foreign keys:

1. For each key Ki (1 ≤ i ≤ m):

(a) If p is a position in the key path, then the deletion is
rejected.

(b) If p is a position in the target path and if each target to
be deleted is not referenced by any foreign key, then the
deletion is accepted. Otherwise, the corresponding target
in keyTreeTmpKi

is labeled to be deleted subsequently.

(c) If p is a position in the context path, then the deletion is
possible for all contexts, since we are removing key values
and also the foreign key values that reference them.

2. For each foreign key FKj (1 ≤ j ≤ n):

(a) If p is a position in the foreign key path, then the dele-
tion is rejected.

(b) If p is a position in a target path, then the deletion is
accepted and we decrease the corresponding refCounts in
keyTreeTmpKi . If refCount turns to 0 and the target tuple in
keyTreeTmpKi

was earlier marked to be deleted, then this
tuple is removed.

The replace operation combines the deletion and the
insertion but it is not equivalent to the update se-
quence (insert(T, p, T ′, τ, keyTreeTmp); delete(T , p, σ,
keyTreeTmp)) since it allows the replacement of key (or
foreign key) nodes. For instance, the replace operation
allows the substitution of a recipe author, even if author is
part of key K2 of Example 6 (recall that the delete oper-
ation does not allow this removal). If there is a replace
operation to be performed at position 0.2.1 (to change the
value M. Smith to L. Greene), it is accepted if key K2 is
still respected after the update.

Example 10 We suppose the XML tree of Fig. 1 and an update
sequence composed by: (1) An insertion of a new recipe at posi-
tion 0.1; (2) A deletion at position 0.2; (3) A deletion at position
0.3.0.

The initial XML tree is valid, and we keep a work version of its
keyTree in the new structure keyTreeTmp, used here to verify the
validity of the updates wrt key and foreign keys. In this example
we consider keys K2 and FK4 defined in Example 6. The update
sequence is examined while reading the XML tree, as shown in
Algorithm 2. In this way, the tests are performed in the following
order:

1. When we reach the open tag of element recipe at position 0.1,
we find that there is an insertion to be performed. The new subtree
to be inserted is a new recipe that contains instructions and ingre-
dients for preparing a broccoli soup. To check if this insertion is
valid, the insert operation in Algorithm 3 is performed. The new
key values are inserted in keyTreeTmpK2 under the collection of
soups (context at position 0, prefix of position 0.1), as shown in
Fig. 13. Notice that attributes pos are not updated yet.

2. When the close tag of element recipe at position 0.2 is reached,
there is a deletion to be performed (the removal of the mushroom
soup recipe). To verify if this deletion is accepted, the delete op-
eration in Algorithm 4 is performed. It also concerns key K2,
and the key values under position 0.2 must be removed from
keyTreeTmpK2 under the collection of soups (context at position
0). Fig. 14 shows that this deletion is postponed, since the ref-
Count associated to mushroom soup in keyTreeTmpK2 is 1.

EFFICIENT CONSTRAINT VALIDATION. . . Informatica 31 (2007) 285–309 303

0.1 0.20

0

keyTree

context

target

@poskeykey@refCount

@nameKey

@pos

...

@pos @refCount key key

target

1 Mushroom Soup M. Smith

keykey@refCount

Shrimp Soup J. Fox0Broccoli Soup D.Simon

targetK2

Figure 13: keyTreeTmpK2 after insertion at position 0.1.

0.1 0.20

0

keyTree

context

target

@poskeykey@refCount

@nameKey

@pos

...

@pos @refCount key

target

1 Mushroom Soup M. Smith

keykey@refCount

Shrimp Soup J. Fox0Broccoli Soup D.Simon

target

key@del

yes

K2

Figure 14: keyTreeTmpK2 after deletion at position 0.2.

3. When the close tag of element top_recipe at position 0.3.0 is
reached, the deletion of the top recipe with number = 1 (mush-
room soup) should be done. Since this deletion concerns FK4

(that references K2), the foreign key values under position 0.3.0
are removed from keyTreeTmpK2 in the collection of soups (con-
text at position 0). This is done by decreasing of 1 the corre-
sponding refCount for mushroom soup. At this point, as refCount
becomes 0 and the mushroom soup tuple was already marked to
be deleted, then the deletion (earlier postponed) is accepted, as
illustrated in Fig. 15. At the end of the update sequence, we tra-
verse keyTreeTmpK2 in order to: (a) update attributes pos and (b)
verify the existence of violation marks.

0 0.1

0

keyTree

context

target

@poskeykey@refCount

@nameKey

@pos

...

keykey@refCount

Shrimp Soup J. Fox0Broccoli Soup D.Simon

targetK2

Figure 15: keyTreeTmpK2 after deletion at position
0.3.0.

Notice that we consider that the user provides our algo-
rithm with a set of updates. The processing of these up-
dates is performed in the document order, i.e., in the order
in which the nodes of the XML tree are visited6. This or-
dering is natural to our algorithm and is the most efficient
one, since we will perform only one pass over the tree.

The semantics of our method is independent of the order
in which the update operations are processed. Our method
has the following properties:

6This is why we present UpdateTable as a sequence built in a pre-
processing phase from a given set of updates and respecting properties
stated in Section 2.

• The operations are performed only whenever possible. In
the presence of errors in the verification of constraints, our
algorithm will not perform the updates. (this condition is
similar to that for transactions, in the context of relational
databases).

• The updates are performed if and only if there exists an
ordering for them, whose final result preserves the validity
of the document wrt the verified constraints.

Notice that the second condition above is verified since
our method is as general as possible. It has the same ef-
fect as the ordering which enables us to accept most update
sequences, that is: (i) remove foreign keys; (ii) remove pri-
mary keys; (iii) insert primary keys; (iv) insert foreign keys.

This condition means that our method is as general as
possible, accepting the largest class of possible sets of up-
dates.

4.3 Complexity and experimental results

The validation method proposed in Section 4.1 requires
only one pass on the XML document. As in [24], its run-
ning time is linear in the size of the XML document. This
complexity is not affected by the shape of the XML doc-
ument, but it can be affected by the size of the keyTree.
Indeed the time and space complexities of our method are
based on the size of the keyTree which indicates the number
of key instances existing in the document (i.e., the number
of target nodes). When the keyTree is big, the following
steps are time consuming: the set inclusion test done (once)
at the root level (Table 2) and list comparisons at the con-
text level, which are performed once for each key. The
space complexity for our method corresponds to the size of
keyTree. Each keyTree is a subset of the document, contain-
ing only the necessary information to verify the validity wrt
a given integrity constraint.

304 Informatica 31 (2007) 285–309 B. Bouchou et al.

In Algorithm 2, each update position p activates a val-
idation step (i.e., Algorithm 3 or Algorithm 4) which de-
pends on the kind of the required update. To find if key and
foreign key values are involved in the update, algorithms
consult the list τ containing the result of the local valida-
tion of the subtree Tp (being inserted of deleted). The list τ
is built in time O(|Tp|). We recall that insertions and dele-
tions trigger a subtree traversal to find the key and foreign
key values.

Algorithm 3 and 4 go through the resulting list τ in order
to detect non empty lists (i.e., those that correspond to the
key (or foreign) values being inserted or deleted). Then the
algorithms compare these values to those in the keyTree. To
this end, Algorithm 3 and 4 visit key nodes in the keyTree
corresponding to the context under which the insertion or
deletion is required. Let n be the number of key and foreign
key constraints and let ntarget be the maximum number
of target nodes (i.e., key tuples). This operation runs in
time O(n.ntarget.c2) where c2 is the maximum number of
components of a composed key (i.e., the number of key
nodes under a target).

In the worst case, each insertion (validation of the sub-
tree being inserted and Algorithm 3) and each deletion (Al-
gorithm 4) runs in time O(|Tp| + n.ntarget.c2). Let m be
the number of updates. Since validation steps are needed
only on update positions, if we disregard the value of c2

then the cost of incremental validation under m updates is
O(m.(|Tp|+ n.ntarget)). The last step of our incremental
validation corresponds to visiting and updating keyTrees.
To this end, we need to visit all the attribute nodes of each
keyTree concerned by the updates. This routine runs in time
O(n.ntarget).

The implementation of our validation method was done
in Java, and the Xerces SAX Parser was used for reading
the XML documents and loading them into our data struc-
tures. Each key or foreign key is checked by running the
finite state automata that corresponds to its path. We use
two stack structures to store the inherited and synthesized
attributes.

We now present the results of a preliminary experimen-
tal analysis of our validation method. All tests were exe-
cuted on the same 1.7GHz Pentium 4 machine with 256MB
memory, running Windows 2000. For these tests, we used
4 XML documents, varying in the number of nodes (XML
elements and attributes) from 250, 000 to 1, 000, 000.

To verify the validity of a set of keys and foreign keys
over an XML document, we fixed the number of keys to
2 and foreign keys to 1, and we varied the size of the
XML document to verify the method’s performance. The
CPU time required to check the validation from scratch of
the XML document wrt the given keys and foreign key is
shown in Fig. 16 (a).

To verify the checking time wrt the number of integrity
constraints, we fixed the size of the XML document to
500, 000 and we varied the number of keys and foreign
keys from 1 to 5. The results (for validation from scratch)
are shown in Fig. 16 (b).

The implementation of our incremental validation
method was also done in Java. The sequence of updates
is treated as a unique transaction and the updates are tested
in one traversal of the XML tree. In fact, the sequence of
updates is treated before being applied, so that the update
positions are sorted in the sequential order of the XML tree
lecture.

Our method incorporates the operations insert and delete
and tests for each operation, by using the KeyTree, if the
XML tree still respects the predefined set of integrity con-
straints. The KeyTree is stored in a hash table structure
that associates each constraint (primary key) with values
(the various contexts obtained for the constraint and their
corresponding targets, attributes, key data values and for-
eign key references). The hash table structure organizes
the constraints information reducing look up time and it
also improves the verification performance (Fig. 17).

The local validation of each subtree to be inserted or
deleted is triggered when the update position is reached.
The result of this local validation is loaded into new data
structures and a new KeyTree is built for the subtree.
We can note that if the update does not concern the set of
keys and foreign keys, then the local validation is an empty
structure, meaning that there are no verifications to be ex-
ecuted. On the other hand, updates concerning constraints
that have composed key paths are the ones which demand
more comparisons.

Fig. 18 summarizes the behavior of our algorithm for
the incremental validation of keys and foreign keys. We
ran two experiments, similarly to the ones for the valida-
tion from scratch, using a sequence of 50 updates. In the
first one we varied the size of the XML document to test
the updates wrt five fixed keys and foreign keys. The sec-
ond experiment was done by fixing the XML document size
(500, 000 nodes) and varying the number of constraints.

Our last experiments aim at assessing the systems capa-
bilities with respect to keyTree construction. As an exam-
ple consider an absolute key, composed of three parts (an
order is identified by its number, the product number and
the supplier number). The validation of this key generates a
keyTree containing all values found for this key if they are
all different. Clearly, the size of the keyTree may vary dras-
tically with respect to the number of key instances found in
the document, and it is of particular interest for incremen-
tal validation. Fig. 19 shows the time response considering
XML documents that contain from 102 to 105 key instances
for validation from scratch. A sequence of 50 updates was
considered for incremental validation.

4.4 Related work

In this paper, we present the validation of XML documents
wrt schema and its verification wrt integrity constraints in
an independent way. However, if we assume that the given
integrity constraints are consistent with the given schema,
then the integration of both validation routines is a straight-
forward generalization of our method.

EFFICIENT CONSTRAINT VALIDATION. . . Informatica 31 (2007) 285–309 305

0
500 000 1 000 000250 000 750 000

20

40

60

80

100

120

140 140

120

100

80

60

40

20

0
1 2 3 4 5

(a) (b)

Figure 16: Validation from scratch: (a) Number of nodes× checking time (in seconds). (b) Number of integrity constraints
× checking time (in seconds).

.....T6T5T4T3T2T1

T1 T2 T3 T4 T5 T6

C2

....

C1

Hash Table for K2

....

T1 T2 T3 T4 T5 T6

.....T6T5T4T3T2T1

T1 T2 T3 T4 T5 T6

Hash Table for K1

C1

....

C2

C3

....

HashTable for Keys

.....

K2

K1

Figure 17: Two-level hash table structure to represent KeyTrees.

(b)(a)

54321
0

20

40

60

80

100

120

140140

120

100

80

60

40

20

750 000250 000 1 000 000500 000
0

Figure 18: Incremental validation: (a) Number of nodes× checking time (in seconds). (b) Number of integrity constraints
× checking time (in seconds).

306 Informatica 31 (2007) 285–309 B. Bouchou et al.

5432 1010101010 10 10 102 3 4 5

0

20

40

60

80

100

120120

100

80

60

40

20

0

(b)(a)

Figure 19: Number of key instances × checking time (in seconds): (a) Validation from scratch for an absolute key. (b)
Incremental validation.

In [21], the independence of key syntax from schema
constraints is presented as an advantage. One can wonder
if this advantage is so clear since structural and integrity
constraints are both parts of database design, implementa-
tion and optimization. However, as shown in [10], verify-
ing consistency of structural and integrity constraints for
XML documents is a difficult problem. In several cases,
in order to reason about satisfiability and implication, it is
better to consider only integrity constraints.

Proposals that deal with both structural and integrity
constraints usually impose restrictions on schema defini-
tions. In [30], for instance, the authors propose an Unified
Constraint Model (UCM) which is tightly coupled with the
schema model. The schema is defined using the type sys-
tem of XQuery algebra [32] which captures the structural
aspects of XSD. Validating a document wrt schema con-
straints corresponds to finding a unique type assignment to
each position on an XML tree. In other words, schemas
must only define LTL (Section 3). In UCM it is possible
to define the “key of a type” by specifying the type name
together with the key components (defined by path expres-
sions). A drawback of [30] is the lack of relative and for-
eign key constraints.

In [31] key paths are composed of a (possibly
empty) ranked sequence of up symbols (i.e., Kleene
closure cannot be used) followed by a nonempty simple
(downward) path. For instance, consider a document
with information about conference proceedings. Pro-
ceedings are identified by an absolute key keyProc =

(/bib/proc/, {confName, confY ear}) containing the
name of the conference and its year. As articles are iden-
tified by numbers inside a proceedings, we need a relative
key to express this constraint. Thus, we write keyArticle =

(/bib/proc/article/, {numArticle, [up]/confName,

[up]/confY ear}) where up is a wildcard denot-
ing a move up on the XML tree. Such a syn-
tactic possibility can be translated into CTK. Let
K1 = (/, (bib/proc/, {confName, confY ear})) and
K2 = (/bib/ proc/, (article/, {numArticle})) be two CTK
keys. Notice that keyArticle holds if K1 and K2 do.
More generally, let k be the length of the longest upward

wildcard sequence in a constraint C. It can be shown that
there is a set {C1, ..., Ck} of CTK constraints such that if
{C1, ..., Ck} is verified then C is verified too.

The goal of [12], where XPath and XSD are used to
express constraints, is to perform incremental constraint
checking. Their approach differs from ours since in [12]
constraints are translated into logic formula and updates on
documents are related to computation of incremental ver-
sions of the formula. They use schema information to opti-
mize their computation.

In [24], a validator for XML constraints is presented for
incrementally checking updates. Its performance is linear
in the size of the part being updated, for each key being
checked. Although this work is similar to ours, it is worth
noting that in [24] foreign keys are not treated and the
incremental validation is considered only for a single up-
date. In our approach, as the validation of keys and foreign
keys is done for multiple updates, the maintenance of the
keyTree is performed progressively (while considering the
update sequence). The keyTree can be temporarily invalid.
In this way, our complexity is bound to the number and type
of update operations, the number of constraints that are be-
ing verified and the number of tuple values corresponding
to a constraint.

The current work extends and merges our previous pro-
posals which have considered XML document validation
only under single updates. In [17], we propose an in-
cremental schema validation method, but only wrt DTD.
In [7, 18] we use a tree transducer to address the problem
of the key validation. In the current paper integrity con-
straints are specified by an attribute grammar which makes
our validation strategy simpler. At this point, some simi-
lar aspects with [13] can be observed. In [13] XML doc-
uments are mapped to relational databases. Indeed, rela-
tional DBMS are tuned to efficiently validate integrity con-
straints. Nevertheless, when relying on a relational DBMS,
the system must factorize XML documents before it can
store them in its data structures. This entails format map-
pings and interchanges between XML’s hierarchical struc-
ture and the DBMS structures, which raises non trivial, the-
oretical questions about the relational database design on

EFFICIENT CONSTRAINT VALIDATION. . . Informatica 31 (2007) 285–309 307

the one hand, and XML update (and XML query) transla-
tions on the other hand (as shown in, e.g., [19, 48, 38]).

Proposals for mapping XML in RDBMS by considering
XML integrity constraints exist [25, 28, 27, 39]. However,
in [28, 27], the authors state that it is impossible to effec-
tively propagate all forms of XML constraints supported by
XML Schema, including keys and foreign keys, even when
the transformations (from XML to relational) are trivial. In
contrast [39] does not deal with such theoretical considera-
tion, but the authors present an ad hoc translation of XML
constraints in a relational framework. Experimental results
reported in [39] compare this proposal to the one in [9],
and conclude that the translation of keys and foreign keys
leads to improve query execution time in the context of re-
lational databases.

Authors in [25] notice that, in current propositions, the
design of the relational database aimed to store XML data
is tuned either for updates (enforcing the constraints ef-
ficiently), or for queries workload (to achieve better per-
formance), however, to find a good compromise for both
seems to be still an open problem. Indeed, as noticed
in [38], one big, open challenge is to efficiently process
queries to hierarchical XML data, in a database whose fun-
damental storage is table-based and whose fundamental
query engine is tuple-oriented.

Update processing is even a bigger challenge in this con-
text: for instance one can notice that since a single XML
update may affect several tuples in the relational store,
transactions must be carefully used to prevent anomalies.
Moreover, the XML “view” of the relational database must
be updatable, i.e. there must be a unique, side effect free
translation from any update on this view to the underlying
relations. In [19] the authors show that this is still an open
problem for XML views that are not defined by general
nested relational algebra or that can not be rewritten into a
nest-last relational form.

To conclude, the use of relational databases for allow-
ing data to be imported, accessed and exported in the XML
format is still an important challenge, addressed by some of
the so-called “native XML data stores”. As argued in [48],
a natural implementation of such systems keeps an XML
logical format (even if the underlying storage is relational
or object-oriented) in order to achieve scalability, data-
access speed and reliability. We can place our work in this
context.

5 Conclusions and perspectives

In this paper we present a method to incrementally verify
multiple updates in the presence of schema and integrity
constraints in XML documents. Update operations are the
insertion, deletion and replacement of any subtree of the
XML tree. The validity of the resulting XML document
is determined only after having analyzed all update opera-
tions in a given set of updates. If the resulting document
does not violate the imposed constraints, then updates are

committed and the document is permanently changed.
Though there exist previous works on schema validation

on the hand, and key verification on the other hand, our
approach is new in the sense that it considers them both si-
multaneously, in one single pass over the XML document
being processed. This implies to deal with interesting re-
search topics, including incremental validation, unranked
tree processing (not translated into ranked trees) and at-
tribute grammars, as well as with non-elementary and non-
single update operations on XML documents.

The incremental verification of schema constraints is
performed by using a bottom-up tree automaton to re-
validate just the parts of the XML document affected by
the updates. Our algorithm is not restricted to schemas
specified by DTDs or XML Schema, but it also works
on schemas obtained from any regular tree grammar, even
those which are not local or single typed tree grammars.
Attribute grammars are used to formalize the process of in-
tegrity constraints verification.

The algorithms presented here have been implemented
in Java, and experimental results show that the incremen-
tal schema verification has advantages over the verification
from scratch, for multiple updates and for large XML doc-
uments. In large scale tests, our incremental schema vali-
dation algorithm (although implemented without optimiza-
tion) uses almost one third of the time needed for the vali-
dation from scratch performed by a highly optimized com-
mercial product.

The experimental results obtained with our key and for-
eign key validation routines are also encouraging. Despite
their theoretical complexity, their behavior led to a graphic
which grows almost linearly with the size of the processed
document (Fig. 16). Results for the incremental key verifi-
cation programs are similar, but more efficient, to those of
the verification from scratch. Indeed, the incremental ver-
ification of keys is, in the limit, better than the verification
from scratch (compare the results in Fig. 16 and 18).

Our asymptotic time complexity and experimental re-
sults show the efficiency of our incremental validation
of updates: it is at least as efficient as those proposed
by [23, 45] (even if it is hard to compare precisely). More-
over, it has some advantages over them, such as space re-
quirements, multiple updates on any tree node and flexibil-
ity of integrating schema and key constraint validation.

Several directions have to be investigated for future
work:

Integration of our approach into an existing update
framework: We have designed algorithms to run in the
"back office" of a framework enabling the performance of
updates over XML documents. As discussed in Introduc-
tion, it can be either a text editor and/or an update language.
Next step will be to integrate our routines in such a frame-
work.

New update operations: Our set of update opera-
tions conforms to recent recommendations for updates in

308 Informatica 31 (2007) 285–309 B. Bouchou et al.

XQuery ([22]), but it does not include insertion or deletion
of a node in a path, say under position p, i.e., an update op-
eration allowing changes on the hierarchy by the addition
or the removal of one level. Although these operations are
not explicitly recommended by [22], they may be useful
for some applications. Nevertheless, before implementa-
tion, their semantics must be carefully specified: this new
kind of insertion consists in adding to the child axis a new
node that becomes the father of one child of p. Moreover,
it can also be the nesting of several children of p under one
new level: in that case, the update must contain the spec-
ification of which children become children of the newly
inserted node. The new kind of deletion might be the in-
verse operation.

New classes of constraints: Our integrity constraint val-
idator can be adapted to verify different constraints such as
XML functional (XFD) and inclusion dependencies. Such
constraints can be expressed in a language very similar to
CTK. The approach to implement them can be exactly the
same as the one presented here for keys and foreign keys
(using the attribute grammar): we just need to adapt the
positions where tests must be performed and the kind of
tests to be performed.

Use of a more expressive constraint language: One of
the first possibilities to consider is to extend our key con-
straint language to include other XPath expressions, such
as predicates or the use of other axes. XPath has been
widely used in XML query languages and in XML spec-
ifications. In practice, many applications do not need the
excessive power of the full XPath (which makes it rather
expensive to process); they use only a fragment of XPath.
Considering the sub-languages of XPath studied in [15],
we notice that path expressions in CTK belongs to Xr the
XPath sublanguage which allows navigation along the an-
cestor and descendant axes (while others permit only par-
ent and child axes); but does not allow upward navigation
or the use of qualifiers (predicates). Indeed, since Xr is
the sublanguage used by XML Schema to specify integrity
constraints ([15]) we have (until now) considered that our
CTK was well adapted to most of the practical cases. Nev-
ertheless, it would be interesting to extend our proposition
to a quite general constraint language such as the one pre-
sented in [29].

References
[1] Altova XMLSpy. At http://www.altova.com.

[2] Apache XML editor. Available at
http://www.apache.org/xerces-j/.

[3] Official website for SAX. Available at
http://www.saxproject.org/.

[4] XML schema. Available at
http://www.w3.org/XML/Schema.

[5] XMLmind. Available at
http://www.xmlmind.com/xmleditor/.

[6] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley Publishing Company, 1995.

[7] M. A. Abrão, B. Bouchou, M. Halfeld Ferrari, D. Laurent,
and M. A. Musicante. Incremental constraint checking for
XML documents. In XSym, number 3186 in LNCS, 2004.

[8] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: princi-
ples, techniques, and tools. Addison-Wesley, 1988.

[9] Sihem Amer-Yahia, Fang Du, and Juliana Freire. A compre-
hensive solution to the xml-to-relational mapping problem.
In Alberto H. F. Laender, Dongwon Lee, and Marc Ron-
thaler, editors, WIDM, pages 31–38. ACM, 2004.

[10] M. Arenas and L. Libkin. A normal form for XML docu-
ments. In ACM Symposium on Principles of Database Sys-
tem, 2002.

[11] Andrey Balmin, Yannis Papakonstantinou, and Victor
Vianu. Incremental validation of XML documents. ACM
Trans. Database Syst., 29(4), 2004.

[12] M. Benedikt, G. Bruns, J. Gibson, R. Kuss, and A. Ng. Au-
tomated update management for XML integrity constraints.
In Program Language Technologies for XML (PLANX02),
2002.

[13] M. Benedikt, C-Y Chan, W. Fan, J. Freire, and R. Rastogi.
Capturing both types and constraints in data integration. In
ACM Press, editor, SIGMOD, San Diego, CA, 2003.

[14] Michael Benedikt, Angela Bonifati, Sergio Flesca, and
Avinash Vyas. Adding updates to XQuery: Semantics, op-
timization, and static analysis. In XIME-P, 2005.

[15] Michael Benedikt, Wenfei Fan, and Gabriel M. Kuper.
Structural properties of XPath fragments. In ICDT, 2003.

[16] S. Boag, D. Chamberlin, M.F. Fernandez, D. Florescu,
J. Robie, and J. Simï£¡on. XQuery 1.0, w3c can-
didate recommendation 8 june 2006. Available at
http://www.w3.org/TR/xquery.

[17] B. Bouchou and M. Halfeld Ferrari Alves. Updates and in-
cremental validation of XML documents. In Springer, edi-
tor, The 9th International Workshop on Data Base Program-
ming Languages (DBPL), number 2921 in LNCS, 2003.

[18] B. Bouchou, M. Halfeld Ferrari Alves, and M. A. Musi-
cante. Tree automata to verify key constraints. In Web and
Databases (WebDB), San Diego, CA, USA, June 2003.

[19] V. Braganholo, S. Davidson, and C. A. Heuser. On the up-
datability of xml views over relational databases. In Web
and Databases (WebDB), San Diego, CA, USA, June 2003.

[20] A. Brüggeman-Klein, M. Murata, and D. Wood.
Regular tree and regular hedge languages over
nonï£¡ranked alphabets. Technical Report HKUST
TCSC 2001 05, Hong Kong Univ. of Science and
Technology Computer Science Center (available at
http://www.cs.ust.hk/tcsc/RR/2001ï£¡05.ps.gz), 2001.

[21] P. Buneman, S. Davidson, W. Fan, C. Hara, and W. C. Tan.
Keys for XML. In WWW10, May 2-5, 2001.

[22] D. Chamberlin, D. Florescu, and J. Robie. XQuery update
facility, W3C Working Draft 11 July 2006. Available at
http://www.w3.org/TR/2006/WD-xqupdate-20060711/.

EFFICIENT CONSTRAINT VALIDATION. . . Informatica 31 (2007) 285–309 309

[23] Y. Chen, S. Davidson, and Y. Zheng. Validating constraints
in XML. Technical Report MS-CIS-02-03, Department of
Computer and Information Science, University of Pennsyl-
vania, 2002.

[24] Y. Chen, S. B. Davidson, and Y. Zheng. XKvalidator: a
constraint validator for XML. In ACM Press, editor, Pro-
ceedings of the 11th International Conference on Informa-
tion and Knowledge Management, pages 446–452, 2002.

[25] Yi Chen, Susan B. Davidson, and Yifeng Zheng. Con-
straints preserving schema mapping from xml to relations.
In WebDB, pages 7–12, 2002.

[26] J. Clark. XSL transformations (XSLT 1.0) -w3c
recommendation 16 november 1999. Available at
http://www.w3.org/TR/xslt.

[27] Susan B. Davidson, Wenfei Fan, and Carmem S. Hara. Prop-
agating xml constraints to relations. J. Comput. Syst. Sci.,
73(3):316–361, 2007.

[28] Susan B. Davidson, Wenfei Fan, Carmem S. Hara, and Jing
Qin. Propagating xml constraints to relations. In Umesh-
war Dayal, Krithi Ramamritham, and T. M. Vijayaraman,
editors, ICDE, pages 543–. IEEE Computer Society, 2003.

[29] A. Deutsch and V. Tannen. XML Queries and Constraints,
Containement and Reformulation. Theoretical Computer
Science, 336(1), 2005.

[30] W. Fan, G. M. Kuper, and J. Siméon. A unified constraint
model for XML. In WWW10, May 2-5, 2001.

[31] W. Fan, P. Schwenzer, and K. Wu. Keys with upward wild-
cards for xml. In DEXA ’01: Proceedings of the 12th Inter-
national Conference on Database and Expert Systems Ap-
plications, pages 657–667. Springer-Verlag, 2001.

[32] Mary F. Fernández, Jérôme Siméon, and Philip Wadler. An
algebra for xml query. In FSTTCS, 2000.

[33] G. Ghelli, C. Rï£¡, and J. Simï£¡on. XQuery! an XML query
language with side-effects. In DATA-X colocated with EDBT
2006, 2006.

[34] Mírian Halfeld Ferrari Alves. Aspects dynamiques de XML
et spécification des interfaces des services web avec PEWS.
Habilitation à diriger des recherches, Université François
Rabelais de Tours, 2007. In preparation.

[35] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction
to Automata Theory Languages and Computation. Addison-
Wesley Publishing Company, second edition, 2001.

[36] George Karakostas, Richard J. Lipton, and Anastasios Vi-
glas. On the complexity of intersecting finite state automata.
In IEEE Conference on Computational Complexity, 2000.

[37] C. Koch and S. Scherzinger. Attribute grammars for scal-
able query processing on XML streams. In Workshop on
Data Base Programming Languages (DBPL), pages 233–
256, 2003.

[38] Muralidhar Krishnaprasad, Zhen Hua Liu, Anand
Manikutty, James W. Warner, Vikas Arora, and Susan
Kotsovolos. Query rewrite for xml in oracle xml db. In
Mario A. Nascimento, M. Tamer Özsu, Donald Kossmann,
Renée J. Miller, José A. Blakeley, and K. Bernhard Schiefer,
editors, VLDB, pages 1122–1133. Morgan Kaufmann, 2004.

[39] Qiuju Lee, Stéphane Bressan, and J. Wenny Rahayu.
Xshrex: Maintaining integrity constraints in the mapping
of xml schema to relational. In DEXA Workshops, pages
492–496. IEEE Computer Society, 2006.

[40] M. Mernik and D. Parigot (Eds). Special issue on attribute
grammars and their applications. In Informatica, Vol 24 No
3, September, 2000.

[41] M. Murata. Relax (REgular LAnguage description for
XML). Available at http://www.xml.gr.jp/relax/, 2000.

[42] M. Murata, D. Lee, and M. Mani. Taxonomy of XML
schema language using formal language theory. In Extreme
Markup Language, Montreal, Canada, 2001.

[43] M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Taxonomy
of XML Schema Language using Formal Language Theory.
In ACM, Transactions on Internet Technology (TOIT), 2004.

[44] Frank Neven. Attribute grammars for unranked trees as a
query language for structured documents. J. Comput. Syst.
Sci., 70(2):221–257, 2005.

[45] Y. Papakonstantinou and V. Vianu. Incremental validation
of XML documents. In Proceedings of the International
Conference on Database Theory (ICDT), 2003.

[46] Stylus Studio. XMLStylus. Available at
http://www.stylusstudio.com.

[47] G. M. Sur, J. Hammer, and J. Simï£¡on. An XQuery-based
language for processing updates in XML. In PLAN-X -
Programming Language Technologies for XML A workshop
colocated with POPL 2004, 2004.

[48] Athena Vakali, Barbara Catania, and Anna Maddalena. Xml
data stores: Emerging practices. IEEE Internet Computing,
9(2):62–69, 2005.

310 Informatica 31 (2007) 285–309 B. Bouchou et al.

 Informatica 31 (2007) 311–323 311

Web-based Decision Support System for the Public Sector
Comprising Linguistic Variables

Jože Benčina
University of Ljubljana, Faculty of Administration
Gosarjeva 5, Ljubljana
E-mail: joze.bencina@fu.uni-lj.si

Keywords: decision support system, decision-making, municipality, fuzzy logic, linguistic variable

Received: September 7, 2006

Decision support systems are often demanding in terms of modelling and use, while purchasing software
can also represent too large an investment for many organizations. The level of maturity of an
organization influences the use (or non-use) of methods and tools for decision support, which is
definitely lower in the public sector than in the commercial sector. The public sector uses considerable
assets in its operation and investments, and therefore good decisions are of crucial importance for
further development (at state, regional and local levels). In this article we present a decision support
system which incorporates a process, approach and web-based software that is simple enough to use
and be accepted in organizations and environments less inclined to use a systematic approach to
decision making. The system is implemented as a web application, and the simplicity of the system is
enhanced by the use of fuzzy logic. With this article we are opening discussion on the question of
implementing management support systems in the public sector, where, with a suitable approach and the
support of responsible persons, such solutions could play an important role. The results of the case
studies on the use of the system in Slovenian municipalities indicate that the task will not be an easy one,
because the opinions of the participants concerning a systematic approach to decision making are
widely divergent.

Povzetek: V prispevku je predstavljen internetni sistem za podporo odločanju v javnem sektorju.

1 Introduction
Decision support systems are gaining recognition in the
public sector, which seeks solutions to various problems
in a number of diverse areas. Many solutions are closely
tied to individual fields, such as medicine [1], ecology
[2] and spatial planning [3]. Others, in a more general
way, are directed towards support in strategic planning
and solving problems in management [4], [5]. Lately, due
to the redirection of politics away from ascertaining
public opinion about the functioning of the public sector
towards public engagement and cooperation in decision-
making processes, the number of solutions in the area of
e-democracy is increasing [6], [7], [8], [9]. Support
systems and cooperation in decision making are,
however, still used mainly in narrow professional circles
and have not found their way to political decision makers
or to the public [10]. The challenge of successful
implementation of a decision support system in the
public sector, with engagement over the whole spectrum
of decision making, is still unmet.

An important negative effect is also the conviction
that there are great differences in decision making in the
private and public sectors. This conviction is perpetuated
by stereotypes of decision-making processes in both
sectors, as shown in Table 1 [11]. The authors of a
comparison, Bots and Lootsma [11], argue that all the
mentioned approaches, with regard to the areas of
operation and specifics of the branch of activity, can
occur in either the private or public sector. For this

reason, the question of decision making cannot be clearly
separated into public and private decision making, yet we
must take into account that the public sector has
numerous specific features. If we add to this the
increasingly emphasized demand for the engagement and
co-deciding of the civil society, it becomes clear that in
the development of decision support systems for the
public sector, as well as in cases of direct transfer of
solutions for the private sector to the public sector, we
must also take into consideration the specific needs and
demands of the public sector. Certain of these demands
can be addressed by adapting existing solutions, but there
are also numerous issues which demand special treatment
and the development of a specific solution adapted to the
environment.

Private sector Public sector
Decisions are made by a
single agent (individual
manager or management
team) whose authority is
defined by a hierarchical
organization structure.

Decisions are not made but
"happen" as a result of a
complex interaction
between administrators,
trade unions, pressure
groups, etc.

Decisions are dominated
by a single interest,
typically the competitive
position of the company.

Decisions involve many
and often divergent
interests of a society, and
aggregation into such

312 Informatica 31 (2007) 311–323 J. Benčina

notions as "general
welfare" only masks the
conflict

Decision alternatives are
evaluated on the basis of a
limited set of quantitative
economic criteria such as
market share, bottom line
profit or shareholder value.

The set of evaluation
criteria is large and has a
wide variety of both
quantitative and qualitative
criteria, whose values are
difficult to establish and/or
aggregate.

Decisions typically have a
planning horizon of
months to at most several
years (e.g. new products
and markets).

Decisions have a planning
horizon of several decades
(e.g. decisions on
infrastructure).

Table 1: Perceptions of decision-making processes

When we speak about decision support in the public

sector today, it is best to observe the issue in its most
general form. Representative democracy, as we know it
today, has a range of shortcomings. For this reason and
thanks to the development of information and
telecommunication technology, the public sector and
politicians are seeking possible solutions to enable an
approach to participatory democracy of an Athenian
type. It requires that citizens be involved in all phases of
decision making. They need, therefore, to learn about the
problem, its alternative solutions and their implications,
and about their own and other participants’ interests and
constraints. Since these interests may produce conflicts,
the citizens need to be able to identify these conflicts and
resolve them. It is also necessary that they be able and
willing to take responsibility for their decisions [8]. E-
democracy is today one of the principal challenges in the
development of e-government [10], [15], [16].

Any consideration of decision making in the public
sector must take into account that events take place in a
triangle – politics �� civil society �� administration,
where the civil society should be understood in the
broadest sense as non-political and non-administrative
(Figure 1) [7].

Figure 1: Basic spheres and relations in a democratic

governmental system [7].

In the figure, arrows indicate influence and circles

indicate domains of control. Intersections indicate
"transaction zones" where control is negotiated by
lobbyists and media, for example, on the left-hand side,
intermediary service deliverers on the right-hand side and

professional interaction in government boards and
committees on the top [17].

Joint decision making by all three groups of
participants is possible only if all of them are sufficiently
acquainted with the subject of their decision making.
Decision making should therefore be treated
comprehensively as a process which implements all the
phases necessary for high-quality decisions. The general
process framework of decision making must take into
consideration at least three phases (Figure 2) [18]:
� Formulating: Actors become aware of a decision

problem at the "Doing" level, which represents the
implementation phase, and initiate a decision process
instance. Depending on their own background,
experiences and agenda, as well as predefined goals
and constraints, they formulate alternatives and
criteria while seeking and filtering information about
the problem. The produced alternatives and values
are then passed to the appraising stage.

� Appraising: The role of actors at this stage is to
assess the alternatives produced in the previous
stage. Input that has been passed from the
"Formulating" phase is evaluated and alternatives
examined by the decision makers.

� Evaluating: The actors who are involved in this stage
devise a framework for the evaluation of alternative
interventions. Decision analysts or expert decision
makers calculate the consequences of alternatives
and choose a technique for the appraisal of
alternative interventions.
Support for the decision-making process must be

ensured with appropriate information and
telecommunication technology and tools. The question of
decision making in the public sector motivated our work
and research with the aim of contributing to solving the
issue and to adding a new solution to the range of current
tools, specific to the environment in question. We are not
alone in this, since the necessity of solving this type of
problem is recognized throughout the world [11], [15],
[16], [19], [20], [21].

Figure 2: General decision process framework [18].

We have established improving the quality of

decision making as our foremost goal. The concept of
quality decision making is defined by efficiency,
effectiveness, future-influencing capacity and legitimacy

Evaluating

Change

Information
flow

Revised
decision

model

Evaluation
output

Appraising

Implement
intervention

Decision
model

Request for
reformulation

Formulating Doing

Formal politics Administration

Civil society

WEB-BASED DECISION SUPPORT SYSTEM FOR… Informatica 31 (2007) 311–323 313

[22], [11]. Efficiency is the ratio between invested effort
and achieved results. In decision making, the internal
efficiency that we would normally find in the production
of products and services has little significance, since the
number of decisions with respect to the time they take
can only be an informative indicator, not to specify
effectiveness. For this reason, effectiveness is linked to
the decision-making results, that is, the effectiveness of
reaching goals.

If we wish to achieve the long-term positive effects
of the decision, we must set long-term goals, given that
such goals are an important element of effectiveness.
This especially holds true for the public sector.
Legitimate decisions are those which the participants
accept, and therefore the views of the participants must
be incorporated in the goals, meaning that in assessing
the quality of decisions in the public sector we are
dealing with only two aspects: invested effort or the time
consumed, and effectiveness, which is exemplified in
achieving goals and legitimacy. We must chose suitable
goals within a reasonable time and then select the
optimum path towards reaching them.

The paths to high-quality decisions can be very
diverse. In our case we must answer to various desires
and the needs of a large number of participants, and
therefore cooperation and reaching a consensus is
undoubtedly the correct path. Experience indicates that
effort invested in finding a consensus is rewarded with
better, more innovative and efficient solutions, which are
willingly accepted by the key participants [23]. Innes and
Booher [24] specified three classes of the effects of the
process of finding a consensus, which promise that
efforts invested in consensus will be richly rewarded
(Table 2):

First-order effects
� Social Capital: Trust, Relationships
� Intellectual Capital: Mutual Understanding, Shared

Problem Frameworks, Agreed Upon Data
� Political Capital: Ability to Work Together for

Agreed-Upon Ends
� High-Quality Agreements
� Innovative Strategies

Second-order effects
� New Partnerships
� Coordination and Joint Action
� Joint Learning Extends into the Community
� Implementation of Agreements
� Changes in Practices
� Changes in Perceptions

Third-order effects
� New Collaborations
� More Coevolution, Less Destructive Conflict
� Results on the Ground: Adaptation of Cities,

Resources, Services
� New Institutions
� New Norms and Heuristics
� New Discourses
Table 2: Potential outcomes of consensus building [24]

2 DSS in public sector
Before we start with detailed aspects of the issue, it
would be prudent to devote a few words to the definition
of decision support systems [12].

Decision Support Systems (DSSs) are interactive
computer-based systems intended to help decision
makers utilize data and models to identify and solve
problems and make decisions. The "system must aid a
decision maker in solving unprogrammed, unstructured
(or 'semistructured') problems...the system must possess
an interactive query facility, with a query language that
...is ...easy to learn and use" [13]. DSSs help
managers/decision makers use and manipulate data,
apply checklists and heuristics, and build and use
mathematical models. According to Turban [14], a DSS
has four major characteristics: it incorporates both data
and models; it is designed to assist managers in their
decision processes in semistructured (or unstructured)
tasks; it supports, rather than replaces, managerial
judgment; and its objective is to improve the
effectiveness of decisions, not the efficiency with which
decisions are being made. The five types of Decision
Support Systems are:
� Communications-Driven DSS – uses network and

communications technologies to facilitate
collaboration and communication;

� Data-Driven DSS – emphasizes access to and
manipulation of a time-series of internal company
data and sometimes external data;

� Document-Driven DSS – integrates a variety of
storage and processing technologies to provide
complete document retrieval and analysis;

� Knowledge-Driven - intended to suggest or
recommend actions to managers. These DSSs are
personal computer systems with specialized
problem-solving expertise;

� Model-Driven DSS or Model-oriented DSS –
emphasizes access to and manipulation of a model,
e.g. statistical, financial, optimization and/or
simulation. Simple statistical and analytical tools
provide the most elementary level of functionality.
Most current advanced DSSs are combinations of all,

or nearly all, five generic types. In the public sector, as a
result of problem scope, social diversity and dynamics,
the stakeholder network is generally more complex and
less transparent, and its interests are more diverse. The
variety of interests in particular seems to favor multi-
criteria decision analysis (MCDA) approaches to
decision support [11]. Thus at least two of the types of
DSSs listed above (communications-driven and model-
driven DSSs), especially for the public sector, should be
able to handle a multi-criteria decision analysis approach.

Group Decision Support Systems (GDSSs) are
interactive, computer-based systems that facilitate the
solution of unstructured and semi-structured problems by
a set of decision makers working together as a group. A
GDSS aids groups in analyzing problem situations and in
performing group decision-making tasks. Any of the five
generic types of DSSs can be built as a GDSS.

314 Informatica 31 (2007) 311–323 J. Benčina

Usually a DSS is tailored to either a specific
application area (e.g. strategic planning, water
management or policy making) or a particular decision-
making phase (e.g. problem framing or decision-tree
development), or both. According to Bots and Lootsma
[11], they can be divided into three categories.
� Generic DSSs. These decision-support information

technology (IT) applications are domain-
independent (spreadsheets, generic DSSs for
conceptual modeling, based on a particular problem
solving method, and generic DSSs consisting of
electronic meeting systems that support problem
solving in a group).

� Domain-specific DSSs. The core of these systems is
a model that computes the impact of measures on a
given subsystem (economic, biological, or other) and
presents the results in tabular or graphic form.

� Phase-specific DSSs. These applications aim to
support one particular phase in the decision-making
process (problem formulation phase, choice phase,
negotiation support systems).
The aim of our research is the development of a

model of a decision support system for the public sector
and usable solutions for a chosen research environment.
In this we have bound ourselves to the principle that the
solution must be as general as possible. However, given
the fact that for the development of e-democracy the
local environment is the most suitable [16], we have
decided to focus on local self-government and its key
development problem: deciding on investment projects in
local communities, with the aim of ensuring good
decisions, which is related to the quality of selection of
such projects. As the key point in ensuring the quality of
decision making, we have focused on cooperation and
reaching a consensus in determining that well prepared
investment projects will be selected [24] and that they
will be possible to realize within the set framework. It
will in turn have a beneficial effect on efficient use of the
local community's budget and ensure that the chosen
investment projects will bring the participants long-term
positive results.

A systematic approach to decision making is new to
most Slovenian municipalities. For this reason, and
because of time and financial limitations, we have
limited the scope of the planned model and solutions in
the sense of the typology of the projects [11] and a multi-
phase approach [10], taking into consideration only two
groups of participants. The subject of the research was
the decision-making process concerning investment
projects which are included in the Plan for Programme
Development, as well as the annual budget in the local
community. The aim of the research was to shape a
decision-making model and the use of support system in
a chosen environment within the following framework:
� Model-Driven Group Decision Support System

based on Multi-Criteria Decision Analysis with
suitable elements of Communications-Driven DSS:

� Domain-specific DSS, with the intention nearing a
generic DSS, covering local government decision
making on investment projects (plans for

development programs and investments from the
municipal budget);

� Phase-specific DSS with emphasis on the choice
phase with the intention to cover some aspects of the
problem-formulation phase and negotiation support
systems;

� Considering two basic areas of democratic
governmental systems (formal politics and
administration) with the intention to make the
participation of the civil society possible.
The research thesis refers to the feasibility of the

model in given circumstances in a given environment
and asserts: "The decision support system in a chosen
environment and set framework enable simple
expressions of appraisal and balanced participation in
decision making for all participants and ensure a final
solution which the decision makers and responsible
persons consider to be suitable". We have checked this
with case studies in three Slovenian municipalities.

3 Research design
We have addressed the issue by a review of the literature
and by setting basic guidelines for a solution. We then
studied the environment for dealing with the issue, i.e.
municipalities. Within the aim of our research, that is,
finding a solution to the issue, which encompassed a
study of documentation and interviews with participants
in the decision-making process, we sought answers to the
questions of how decision making progresses and why
undesired results occur.

We found answers to the following questions:
How…
� does decision making progress in including

investment projects in the municipal budget?
� are the interests of various political options

asserted?
� are various expert opinions and interests

asserted in decision making?
� do expert opinions affect political decisions?
� does adjustment of opinions about individual

projects and groups of projects that have been
selected take place?

Why…
� do the selected projects often fail to meet

expectations?
� can evidently less suitable projects dominate

clearly more suitable ones?
� are attempts in adjusting opinions often

unsuccessful?
On the basis of the case study we defined a solution

model and developed web-based software for support of
the model specified in the decision-making process. The
research theses were analysed in case studies in three
Slovenian municipalities within which we verified the
suitability of the model, functioning of the software and
the response of decision makers to this new, systematic
approach to decision making.

We first presented the solution and its goals to the
leaders in the municipality. We then analysed the
situation in the area of investment projects and chose

WEB-BASED DECISION SUPPORT SYSTEM FOR… Informatica 31 (2007) 311–323 315

projects (five to seven projects) about which decisions
had been made. In two cases the responsible persons in
the municipality invited experts and municipal
counsellors, while in one case, due to local elections, we
decided to first make an appraisal with the municipal
expert services and postpone the counsellor appraisals to
a time after the elections. The number of questionnaires
handed in by representatives of expert services was six,
nine and ten, while the municipal counsellors contributed
two and four. The assessment was initially conceived as
anonymous; however, in the first case it was decided to
have personal signatures, and in the second case, a
statement of affiliation to the expert services department.
In the case of the counsellors the process was
anonymous, while in the third case, appraisal by expert
services was also fully anonymous.

We processed the results and presented them to the
participants in the appraisals. During the presentation we
initiated a discussion concerning the usefulness of the
approach, and in two cases we made a survey by which
we measured the opinions of the participants concerning
the approach and the end results. On the basis of the
results we have made an appraisal of the model and
solutions, and developed guidelines for further steps.

4 Solution model design

4.1 Investigative case studies
The Local Government Act [25] and Municipal

Statutes [26] regulate the functioning of municipalities.
The statutes define the organisational structure of the
municipality in detail (division into sub-units of local
self-government – local communities, specification of the
committees and boards of the municipal council and the
organizational structure of the municipal government). In
deciding on investment needs, the public participates
through a council of presidents of the local communities,
which is the mayor's counselling body, expert staff of the
municipal government represented by heads of the
department and the mayor’s collegium, and municipal
counsellors who work through committees and the
municipal council. If we add to this the forms of direct
public decision making (people's assembly, referendum
and public initiative), we find that the organizational
structure of decision making in the municipality is
sufficiently comprehensive.

However, for efficient progress in decision making
this is not nearly enough. We would need a firm
framework for decision making which would define the
procedures, roles, inter-relations and limitations of the
decision-making process. Unfortunately, we have not
found this in any of the processed cases.

Due to this, preparation of the projects and
preliminary appraisal of the participants’ response (civil
society, politicians and municipal government)
progresses in an unsystematic and non-transparent
manner. Investment projects are prepared within narrow
political or expert circles, and the number of people who
are well acquainted with all the parameters is low.
Cooperation and balance between the participants is

lacking, and the opinions and arguments of those who
think in a different way are often ignored. This causes
frequent situations where poorly prepared projects
without prior discussion within the civil society and/or
interaction between expert staff of the municipal
government and/or counsellors reach the phase of final
decision making by a poorly informed municipal council.

This situation is an ideal environment for asserting
informal or formal power over arguments and the needs
and desires of different-thinking people. The municipal
government is aware of this problem, but has neither the
knowledge nor the motivation to alter the situation.
Numerous urgent and "urgent" projects, the first based on
the actual needs of the participants and the other
supported by informal (political) power, give the
government little hope that this situation can be changed.

On the basis of the collected answers in our research,
we can confirm that the environment in question is
relatively immature in the area of decision making and
that municipalities are confronting numerous difficulties:
� unorganized progress of opinion adjustment and

deciding on preparing investment projects and their
inclusion in the development plan or municipal
budget

� powerful influence of the distribution of informal
and formal powers in the municipality on the
selection of possible investment projects and
inclusion of approved projects in the budget

� difficulties in balancing opinions between
professional fields, between political options and
between or with the civil society

� the mayor’s great direct influence on shaping expert
opinion and political decisions

� absence of a comprehensive overview of the
development of the local community

� poorly informed decision makers and public
concerning the plans, realization and effects of the
projects

� lack of qualifications and lack of motivation of the
municipal government to improve the current
situation

� unawareness and lack of motivation of the
politicians to cooperate in solving issues

� a low level of public involvement in the preparation
of decisions concerning solutions
Despite the relatively poor state of affairs, we were

encouraged by the fact that leading staff of the municipal
government understand the problem and are willing to
invest the time and effort to find a solution.

4.2 Solution framework
The basic goal of our work is to improve the quality of
decision making with the aid of a tool for decision
support. Apart from ensuring the best possible
participation of well-informed participants in the
decision-making process, consensus is the central point
of quality and success in decision making [23].
Implementing the principles of new public management
in local self-government requires greater differentiation
and responsibility in decision making, for which reason

316 Informatica 31 (2007) 311–323 J. Benčina

the motivation and qualification of professional decision
makers and especially municipal councillors is of key
importance for successful development of the local
community [27].

This is why the model, and with it the solution, had
to ensure a decision-making framework in accordance
with the conclusions expressed thus far, with a definition
of the procedure and roles in decision making through
the following steps:
� specification of the selection of alternatives,
� specification of the participants in decision making,
� specification of criteria and limitations,
� appraisal and choice,
� iteration (in case the solution is not satisfactory),
� documentation and archiving,
and a simple approach to enable appraisal without special
knowledge in the area of decision-making or intuitive
response, and by this to attract decision makers to
cooperate and to appreciate the results of this method of
decision making. Here we must point out the importance
of knowledge exchange and constant adjustment, and
improvement of the solution with regard to the capacity
and motivation of the chosen environment, since this is
the only correct way to achieve better decisions [28].

4.3 Solution model
The solution consists of the framework for decision
making and web-based software for decision support
within the following scope:
� specification of of alternatives
� specification of the participants in the decision

making
� specification of attributes, criteria and limitations
� designing questionnaires
� appraisal
� analysis of the results and level of consensus
� selection
� export of the results by various cross-sections of the

given structure.

The definition of a multiple-attribute decision
problem encompasses the following:
� a set of attributes (parameters, factors, viewpoints,

views, ranges) C={c1,…,cn};
� a set of alternatives (possibilities, projects, scenarios,

actions, goals, purposes) A={a1,…,am};
� specific information in each pair ��� , ���; 	
�1, , ��, �
 �1, , ��, ascertaining the relative

importance of each attribute cj – weight wj;
� suitability rij, which is the decision maker’s appraisal

of the alternative ai with regard to the attribute cj;
� the merging function U, by which the appraisals of

criteria rij for individual alternatives are aggregated
into joint alternative appraisals;

� in group decision making, the given alternatives are
appraised by the set of individuals D = {d1,…,dk}.

The core of the solution is a three-dimensional group
multi-attribute decision space:
� the basic structures are decision trees for each

individual alternative, where the appraisals of the
attributes cij (leaves) join into the appraisal of the
alternative ai by the aggregating function Ua,

� the individual alternatives ai join into subsets of the
set A, ��
 ���� and the common appraisal for the
subset of alternatives is given by the aggregating
function Uv,

� the appraisals of individual appraisers dl are joined
into group appraisals for all the nodes and leaves of
the decision tree by all the alternatives and variants ���; ��
 ����; � � 1, , |����|.
For the sake of simplicity, we have upgraded the

decision-making model with fuzzy logic methods and
implemented the appraisal with linguistic variables [29].

One thinks in terms of descriptive categories for
which reason the appraisal by descriptive values
demands much less mental effort. An appraisal method
that demands less mental effort will be more precise than
a method that demands greater mental capacity [30]. We
can therefore claim that a descriptive appraisal is more
precise than a numeric one. Additionally, a definition of
the appraisal by linguistic variables is easier for the
appraiser [31], [32]. These are undoubtedly sufficiently
substantial arguments to support our approach.

In fuzzy logic theory we can find suitable solutions
for joining values, based on the mapping of linguistic
values into fuzzy numbers and the use of aggregation
operators for fuzzy numbers in making the calculation.

The starting point is Zadeh’s definition of linguistic
variables [33, 34]:

A linguistic variable is defined by a quintuple �!, "�!�, �, �, #$� in which ! is the name of the
variable; "�!� (or simply") is the term set of !, that is,
the set of names for linguistic values !, with each value
being a fuzzy variable denoted generically by % and
ranging over a universe of discourse � which is
associated with the base variable &; � is a syntactic rule
(which usually has the form of grammar) for generating
names % of values of !; and # is a semantic rule for
associating each % with its meaning #$�%�, which is a
fuzzy subset of �. A particular %, that is, a name
generated by � is called a term. A term consisting of a
word or words which function as a unit (i.e. always occur
together) is called an atomic term. A concatenation of
components of a composite term is a subterm. An
example of the term set (abbreviated by " instead of "�(�) is:

WEB-BASED DECISION SUPPORT SYSTEM FOR… Informatica 31 (2007) 311–323 317

" �)*+�+�,, -./+0,, �+12 -./, -./, #	334+, 5	67,�+12 5	67, 5	67+0,, #&0, 8+ 9.
The basic variable & is the assessed probability or degree
of support, and comprises the values from the unit
interval &
 ;0,1= [35]. The general rule that assigns a
fuzzy set to the term % can be written as: #$�%� �>�&, ?@�&��; &
 ;0,1=A, which is for the term high:

#$�5	67� � BC&, ?D�EF�&�G ; &
 ;0,1=H.

What we have just written is in fact the definition of
a fuzzy set:

Given a universe of discourse �, the fuzzy set �I in �
is given by its membership function ?JK�&�: � M ;0,1=, in
which the function ?JK�&� is interpreted as the degree of
membership of & in the fuzzy set �I. Clearly, the fuzzy set �I is fully determined by the set of ordered pairs �I �>�&, ?JK�&��; &
 �A.

Operations with fuzzy sets within given universe of
discourse are operations with membership functions,
which allows us relatively easy calculations with fuzzy
sets defined with sufficiently simple membership
functions. Expectations connected to this are fulfilled by
Bonissone and Decker with the uniform scale for
mapping linguistic conditional terms to fuzzy intervals
[35], which are fuzzy subsets in the set of real numbers.

In this manner we have merged the advantages of
using linguistic variables with the simplicity of
mathematical operations over numeric variables. Thus
we have avoided problematic and complex definitions of
aggregation functions and unsurpassable limitations in
respect of the branching out and size of the decision-
making tree in aggregating linguistic values based on
logical rules (rule-based aggregation). We have
preserved the flexibility of modelling logical rules with a
system of weights, which determine at each node the
contribution of the child to the appraisal of the parent.

4.4 Software tool characteristics
The software itself consists of four modules (Figure

3). The module for implementing groups of cases is
intended for defining the basic parameters of processing.
With its help we can define the basic structure of the
system and choose the methods of aggregation in tree
structures. The number of questions is the number of the
leaves of the appraisal tree; the content of the questions
and the appraisal scale are determined with regard to the
needs of each individual group of cases.

We first determine the decision-makers and the
alternatives about which the decisions will be made for
each separate case in the module for data collection, and
if necessary we merge them into groups of decision-
makers and subsets of projects – alternatives. The
module also includes a user interface for appraisal. The
job of calibrating the mapping is intended for registering
the posture and mood of each individual decision-maker
concerning the mapping of linguistic values into fuzzy
numbers. With the help of the calculation module from
the acquired appraisals, we fill in every point (leaf, node
or root) of the given structure with three values:
linguistic, fuzzy and real (Figure 4).

The module for presenting and exporting the results
allows presentation and export along various cross-
sections of the given structure.

The software tool is a web based application based
on PHP 5 with database engine MySQL 5. It allows
flexible settings of:
� structure of decision tree,
� appraisal scales (term sets) and mapping functions

from linguistic values to fuzzy trapezoidal numbers,
� aggregation functions and distance measures.

With the intention of sharing ideas, knowledge and
software itself after some tests the source code will be
given in open source community.

Module for data collection for individual
cases
� data on users and groups of users
� data on projects and groups of

projects – alternatives
� appraisal
� calibration of mapping of linguistic

variables into fuzzy numbers

Presentation and export of results
� values and graphic presentations
� export to a table – Excel or Calc

Module for implementation of a group of cases
� definition of the decision-making tree
� developing questionnaires
� setting functions and weights

Figure 3: Software modules

Calculation module
� mapping linguistic values into fuzzy

numbers and real numbers
� aggregating the values of all nodes

along the entire structure,
approximation and sharpening of the
fuzzy values into linguistic values
and real numbers

fuzzy
number

real number

linguistic
value with
deviation

appraisal
(linguistic value)

aggregation

approximation

mapping

defuzzyfication

Figure 4: Functionality of the calculation module [36]

318 Informatica 31 (2007) 311–323 J. Benčina

 The software tool is available at http://www.fu.uni-
lj.si/bsc/. To obtain a user name and password, please
contact the author of this article.

5 Case studies
5.1 Settings of the model

The research comprised three case studies in which
we could, due to the similarity of the issues, use the same
settings of the model, which include the decision-making
tree, appraisal scale and functions of the mapping,
aggregation, approximation and defuzzyfication.

Decision tree
Starting from the framework of deciding on capital

investments in the public sector [36], legally prescribed
definitions and the analysis of the method of decision
making in local communities in Slovenia, we have
determined the structure of the decision tree (Figure 5).

Appraisal scale and mapping
The appraiser approves each attribute with a

linguistic appraisal, which represents the degree of trust
in the suitability of the project in terms of the given
attribute (Table 3 and Figure 6).

Term Fuzzy number Label

Reject 0 0 0 0 L1

Lowest .01 .02 .01 .05 L2

Very Low .1 .18 .06 .05 L3

Low .22 .36 .05 .06 L4

Medium .41 .58 .09 .07 L5

High .63 .80 .05 .06 L6

Very High .78 .92 .06 .05 L7

Highest .98 .99 .05 .01 L8

Must Be 1 1 0 0 L9

Table 3: Linguistic values and equivalent fuzzy
trapezoidal numbers

Figure 6: Graph of the mapping function

Arithmetic, aggregation function and distance measure

As a short break, have a look at a graph of a fuzzy
number (more precisely, a fuzzy interval or trapezoidal
fuzzy number, Figure 7):

Figure 7: Graph of a fuzzy trapezoidal number

For fuzzy numbers, the computation necessary for

algebraic operations are considerably simplified. The
calculations within the decision-making framework are
only done with positive fuzzy numbers (?JK�(� �0, N (O 0), and therefore only the arithmetic for a
positive fuzzy number will be introduced (the definitions
(Table 4) comprise the fuzzy numbers �I � ��, P, Q, R� ��3 8K � ��, 3, S, T�):

Table 4: Arithmetic operations for trapezoidal fuzzy
numbers [35:230]

For the model to work, it will also need a
aggregating operator. Following the simplicity principle,
we have opted among the many operators for generalised
operators of weighed mean expressed in the formula:

Operation Result

1
�I U1P , 1� , RP�P V R� , Q��� W Q�X

�I V 8K �� V �, P V 3, Q V S, R V T�

�I W 8K �� W 3, P W �, Q V T, R V S�

�I · 8K ���, P3, �S V �Q W QS, PT V 3R W RT�

�I
8K U�3 , P� , �T V 3Q3�3 V T� , PS V �R��� W S�X

Contribution to the
goals

Importance of the
problem solved by
the project

Quality of project
preparation

Feasibility

Risk

Project price and
costs during project
exploitation

Cost-benefit ratio

Compatibility with
the goals

Project
contribution

Feasibility
and risk

Cost-benefit

Appraisal of
the
alternative

Figure 5: Decision tree of the module of multi-
attribute appraisal of investment projects

WEB-BASED DECISION SUPPORT SYSTEM FOR… Informatica 31 (2007) 311–323 319

7Z[��\, … , �^� � �∑ /���Z�̂`\ �ab, ��
 ;0,1=, 	
 c^, Q
 d�Q e 0�
where for the components of the vector /f � �/\, … , /^�
holds ∑ /� � 1, /� g 0N	
 c^.�̂`\ The vector /hhi is
termed the weighed vector, and its components /� the

weights. In the simplest version (equal weights /� � \
^

and Q � 1) it is simply the arithmetic mean.
The final results of these calculations, trapezoidal

fuzzy numbers, are not suitable for the presentation of
results to appraisers. We must therefore map them back
to linguistic values. We must find the linguistic value of
which the fuzzy equivalent is the closest to the given
trapezoidal fuzzy number.

For this purpose we need a metric of the fuzzy sets.
The Tran-Duckstein distance takes into account the
fuzziness of the fuzzy numbers and is confirmed in
practice in an environmental-vulnerability assessment.
We have, therefore, decided to choose it for our
framework. For trapezoidal fuzzy numbers the general
definition is simplified as (j�Q� � Q, �I � ��, P, Q, R�,8K � ��, 3, S, T�):

�kl��I, 8K , Q� � U� V P2 W � V 32 Xl

V 13 U� V P2 W � V 32 X ;R W Q W T V S=
V 23 UP W �2 Xl V 19 UP W �2 X ;R V Q=
V 23 U3 W �2 Xl V 19 U3 W �2 X ;T V S=
V 118 ;Rl V Ql V Tl V Sl=
W 118 ;QR V ST=
V 112 ;RS V QT V RT V QS=

Figure 8: Tran-Duckstein distance for generalized left-

right fuzzy numbers (GLRFN) [37:340].

Calculations
The linguistic values of the leaves are the direct result of
the appraisal process, and the equivalent fuzzy numbers
are the images of a simple mapping between them
(Figure 6). The values of the parent nodes are calculated
from the leaves towards the root of the tree as fuzzy
arithmetic mean of fuzzy values of the children

�I�,� � 1q�,� r �I�s\,�,�; 	 � t W 1, ,1; � � 1, , u�; v � 1, , q�,�;�

where I is the number of levels of the tree, i is the current
level of the tree, Ji is the branching of the tree, j is the
position of the node at the i-th level, Ki,j is the number of
children of the parent in question at the level i+1, and k is
the position of the child of the parent in question.

The calculated trapezoidal fuzzy numbers �I are
approximated back to linguistic values - so that the
closest representative -K of the linguistic values -� is
found: -w�� � -: �k��I, -K, Q� � min� �k��I, -K� , Q� ; 	 � 1, … , �.

For higher granularity of the end results we
introduced the approximation deviation. This is defined
as the relative number of the difference in distance of the
approximated fuzzy number and the fuzzy number image
of the linguistic approximation and the difference
between two adjacent linguistic values: �+{ �

|}
~
}�W �k��I, -Kw��, Q�

�k�-Kw���\, -Kw��, Q� , 	j �k��I, 0K, Q� W �k�-Kw�� , 0K, Q� O 0
�k��I, -Kw��, Q�

�k�-Kw��, -Kw��s\, Q� , 	j �k��I, 0K, Q� W �k�-Kw��, 0K, Q� g 0
�

The approximation with the deviation is then
labelled as: � -w��, 	j �+{ O W0,25-w��, 	j W 0,25 � �+{ � 0,25-w�� M, 	j �+{ O 0,25.

This is our original solution, distinguished by its clarity,
which allows precise and efficient presentation of the
results to the decision makers [38].

The values of all the variables in the tree are merged
into an appraisal of the variants � of the plan for the
development programmes and into joint group appraisals
of several appraisers �. This aggregation is also done
with the calculation of the fuzzy arithmetic mean of the
fuzzy numbers:

�I�,� � 1|�| · |�| r r �I�,�; �
�� ����; �
 ����; 	
� 1, t; � � 1, u�;

for all subsets of the set of alternatives A and the set of
appraisers D, for which it is reasonable in the given case.

5.2 Results
The case studies derive from the execution of the model
in the chosen municipalities with the following steps:
� presenting solutions to the leaders (management

director, heads of departments)
� preparation, adjustment and certification of the

appraisal plan
� specification of the decision makers and groups
� specification of alternatives – projects
� presentation of the model and procedure to the

appraisers
� executing the appraisal
� presentation of the results and discussions
� appraisal of the solution model

A detailed report about the progress and results of
the case studies would unfortunately exceed the scope of
this article, and we have therefore focused on the results,
connected to the thesis of feasibility and usefulness of the
model presented in the introduction. We verified the
thesis by two methods:
� leading a discussion with the appraisers after

presenting the results of the appraisal
� with a questionnaire about the progress and

usefulness of the solution
The discussion revealed that the municipal

government was well aware of the question of decision
making. Municipal counsellors were less forthcoming.

320 Informatica 31 (2007) 311–323 J. Benčina

They recognised the question of decision making, but
they did not accept it as theirs.

The appraisers filled in the questionnaire in two
cases, but only representatives of the municipal
government responded. We have presented the appraisals
in Appendix 1 at the end of this article.

The questionnaire referred to the following elements
of the appraisal and attitude of the participants in the
appraisal of the presented solutions:
1. Dissatisfaction with existing decision-making

methods.
2. Willingness to cooperate in implementing new

methods and approaches.
3. The method allows for easy expression of opinions

about the projects and efficient cooperation in
decision making.

4. The results will contribute to faster and better
choices of projects.

5. The questionnaire is easily understood and allows
for good expression of opinions.

6. I am content with the proposed decisions.
7. All the chosen projects are acceptable to me.
8. I wish to use the method in the future.

The results showed two very different facets of the
municipalities. In the first municipality the collective
satisfaction rating was High, an estimation given by all
but one appraiser, who responded negatively (rejected) to
the proposed choice of projects (Statement 7). Among
other appraisers one could feel that all the proposed
projects were not fully acceptable to them. Nevertheless,
lower ratings than High were generally rare, so that the
collective ratings, except two which refer to the results of
the ratings themselves (Statements 6 and 7), were High.
The highest estimated statement about willingness to
cooperate in introducing new methods was Very High.

The results in the second municipality showed that
the appraisers had different views of the presented
method. The collective rating Medium was the result of
three High and Medium ratings each and four ratings of
Low. The collective rating Medium was given to almost
all the individual statements, with the exception of
willingness to cooperate in implementing new methods.
Estimation of the method (Statements 3, 4 and 5) was in
the opinion of most appraisers in accordance with their
willingness to use the method in the future. Only one
appraiser deviated from this pattern, who estimated
willingness for future use of the presented method as
High, but gave much lower ratings for the method.

The results of the case studies more or less confirm
the thesis that the presented solution enables simple
expression of the estimations in the municipalities, as
well as balanced participation in decision making and
ensures a final result which the decision makers and
responsible persons accept as suitable. Of course, we
cannot ignore the facts that necessitate an appropriate
level of caution in confirming the thesis, since we have
done the survey in only two municipalities. The
appraisers in the second municipality were quite critical
of the method, and we have yet to discover the reasons
for such differences among appraisers in the same
municipality. In any case we can claim that the method is

suitable and enables, with correct preparation, swift
execution of the appraisal procedure without major
difficulties. Most of the participants in the three cases
studies responded well to the method, and we thus can
expect a positive response in the future.

We have attached the questionnaire and the appraisal
results in both cases to this article.

6 Discussion
On the basis of the literature and studies of the situation
and circumstances in the chosen environments we
formulated certain principles and developed a decision-
making model for investment projects in the public
sector. We implemented a general model, which we have
concluded must be simple for use in collecting data as
well as in presentation of results, in a web-based
software solution and tested it in three case studies. The
study showed that we have fulfilled the requirement for
simplicity and that the appraisers recognized the results
as legitimate. We have confirmed the research statement
within the given framework and have thus confirmed the
approach and solution as a suitable tool for decision
support in the public sector.

The formulated principles for the general decision-
making model proved to be suitable and their realisation
led to the successful execution of the appraisals. Our
expectations concerning the approach to appraising and
the quality of the results were met [30]. The chosen
limitations described at the end of the first chapter
prevented us from declaring the model a comprehensive
solution to the question of decision making in the public
sector. It will still have to be extended and generalized,
which means that we must surpass the limitations and
expand the model from the domain of local government
to other domains, cover all the phases of decision making
starting with recognition and definition of the problems
and engage all participants involved in one way or
another in the decision-making process.

The implemented solution showed that our approach
is suitable and that we can ensure good-quality decision
making. The approach with linguistic variables
simplified the system, which is especially important from
the point of view of presenting the results. A two-stage
presentation of the results (with deviations and only with
basic values of linguistic variables) allows overview on
two levels of resolution (23 values and 7 values). Due to
the limitations of the software, we could only test one
setting of the model. This limitation will be rectified in
the future version of the solution.

We have confirmed the research thesis in a given
context, which is only the first step to comprehensive
confirmation of the model as a good solution for the
problem in question. Our expectations that the solution
would make the decision process easier have been met.
Unfortunately we were unable to attract a larger number
of municipal counsellors. We therefore foresee additional
presentations to the municipal council for the next
appraisal, by which we will ensure the suitable
participation of municipal counsellors. In addition, the
expansion of the model to all phases of decision-making

WEB-BASED DECISION SUPPORT SYSTEM FOR… Informatica 31 (2007) 311–323 321

and to other domains awaits us in the future. We will
devote special attention to the question of reaching a
consensus and the quality of decision-making, and
develop a method for assessment of the quality of
decision-making in the public sector, which will enable
us to prepare a comprehensive estimation of the
circumstances of decision-making in given environments
and the usefulness and quality of the presented decision
support model.

7 Conclusion
Using fuzzy logic, we extended the selection of cases for
the use of these methods. By mapping linguistic variables
into fuzzy numbers we avoided the limitations connected
to indirect aggregation of linguistic values [39], [40] and
to the breadth of the tree structure stemming from the
approaches based on defining the values of the parents
with logical expressions for all possible values of the
children [41]. In this manner we managed aggregation
without limiting the number of leaves, levels, alternatives
and appraisers. We also enabled the formation of subsets
of alternatives – variants and subsets of appraiser groups.
The calculations are simple enough so that the applied
system is not demanding in terms of computer capacity.
Of course new dangers and limitations accompany new
approaches. Since there are no directly comparable
systems we will need more time and effort to confirm the
results. This is similar to mapping the values of linguistic
variables into fuzzy numbers. There are only a few cases
in use, and it will require additional time and effort for
further development in this area.

Implementation of the model in an environment of
local self-government is a contribution to the
development of decision support in a local environment
and thus a contribution to the development of e-
democracy in the matter of public co-deciding. The
possibility of formation of variants (subsets of
alternatives) is especially important here, as well as the
groups (subsets of appraisers) that can profitably be used
in seeking a consensus. Activation of the public in
recognising the problems of decision-making and
engaging them in seeking a consensus can considerably
contribute to better understanding between all the
participants in the local community [24].

The proposed solution is suitable for any system in
which we wish to aggregate and compare values of
various types of variables in organizations and systems
with a hierarchical structure of goals and indicators, since
the new version will accept all three types of entry data
(numeric, linguistic and fuzzy numbers) and convert
them into the other two forms according to rules
prescribed for implementation of the solution. This will
enable not only comparison of various types of variables,
but also a flexible adaptation of the conversions, which
will additionally enable comparability between the same
types of variables from various definition areas.

Our article is a small piece in a mosaic of activity
and research in the area of e-democracy [15]. It upgrades
electronic election systems in which the voters choose
between confirming or rejecting an individual alternative

and enables estimation of the level of agreement among
the participants. Based on fuzzy logic, which facilitates
the comparability of various indicators, the solution also
becomes a tool for monitoring success and outcomes of
the functioning of the public sector.

8 References
[1] Plaper, G., Piletič, M., Bohanec, M., Rajkovič, V.,

Urh, B. (1999): "Hierarchical multi-attribute models
for decision support in the management of diabetic
foot syndrome". In: Kokol, P., Zupan, B., Stare, J.,
Premik, M., Engelbrecht, R.: Medical Informatics
Europe '99, Studies in Health Technology and
Informatics, Vol. 68. Amsterdam [etc.]: IOS Press;
Tokyo: Ohmsha, pp. 970–972.

[2] Hämäläinen, R., Kettunen, E., Marttunen, M.,
Ehtamo, H. (2001): "Evaluating a Framework for
Multi-Stakeholder Decision Support in Water
Resources Management", Group Decision and
Negotiation, Vol. 10, No. 4, pp. 331-353.

[3] Oñate, E., Piazzese, J. (2003) Decision support
system for risk assessment and management of
floods. International Center for Numerical Methods
in Engineering (CIMNE) Gran Capitán, s/n,
Campus Norte UPC, 08034 Barcelona, Spain.
<http://www.eu-lat.org/eenviron/Onate.pdf>
(accessed July, 2006).

[4] Benkovič, J., Bohanec, B., Rajkovič, V., Vrtačnik,
M. (1998): "Knowledge-based evaluation of higher
education institutions", Preprints of the 6th IFAC-
Symposium "Automated systems based on human
skill", Kranjska Gora, Slovenia, Pergamon Press,
pp. 157–160.

[5] Di Mauro, C., Nordvik, J.P., Lucia, A.C. (2002):
Multi-criteria decision support system and Data
Warehouse for designing and monitoring
sustainable industrial strategies – an Italian case
study. European Commission – Directorate General
JRC – Joint Research Centre, Ispra Institute for the
Protection and Security of the Citizen (IPSC)
Technological and Economic Risk Management
Unit I-21020 Ispra (VA), Italy
<http://www.iemss.org/iemss2002/proceedings/pdf/
volume%20uno/434_dimauro.pdf> (accessed July,
2006).

[6] Bouras, C., Katris, N., Triantafillou, V. (2003): "An
electronic voting service to support decision-
making in local government", Telematics and
Informatics, Vol. 20, Issue 3, pp. 255–274.

[7] Grönlund, Å. (2003): "e-democracy: in search of
tools and methods for effective participation",
Journal of Multi-Criteria Decision Analysis, Vol.
12, No. 2-3, pp. 93-100.

[8] Kersten, G.E. (2003): "e-democracy and
participatory decision processes: lessons from e-
negotiation experiments", Journal of Multi-Criteria
Decision Analysis, Vol. 12, No. 2-3, pp. 127-143.

[9] Walker, W.E. (2000): "Policy analysis: a systematic
approach to supporting policymaking in the public

322 Informatica 31 (2007) 311–323 J. Benčina

sector", Journal of Multi-Criteria Decision
Analysis, Vol. 9, No. 1-3, pp. 11-27.

[10] Gammack, J., Barker, M. (2003): E-democracy and
public participation: a global overview of policy
and activity. School of Management, Griffith
University Queensland.

[11] Bots, P.W.G., Lootsma, F.A. (2000): "Decision
support in the public sector", Journal of Multi-
Criteria Decision Analysis, Vol. 9, No. 1-3, pp. 1-6.

[12] Power, D.J. (1999): "Decision Support Systems
Glossary", DSS Resources, World Wide Web,
<http://DSSResources.COM/glossary/> (accessed
July, 2006)).

[13] Bonczek, R.H., Holsapple, C.W., Whinston, A.B.
(1981): Foundations of Decision Support Systems.
Academic Press, New York.

[14] Turban, E. (1995): Decision Support and Expert
Systems: Management Support Systems. 4th
Edition, Macmillan Publishing Company, New
York.

[15] Coleman, S., Norris, D.F.: (2004); "A New Agenda
for e-Democracy", Forum Discussion Paper No. 4,
Oxford Internet Institute.
www.oii.ox.ac.uk/resources/publications/FD4.pdf>
(accessed July, 2006).

[16] Rosen, T. (2001): E-democracy in practice,
Swedish experiences of a new political tool.
<http://www.sociedadinformacion.unam.mx/reposit
orio/documentos/E-democracySwedish.pdf>
(accessed July, 2006).

[17] Molin, B., Mansson, L., Stromberg, L. (1975):
Offentlig forvaltning, (Public Administration).
Bonniers.

[18] Papamichail, K.N., Robertson, I. (2003):
"Supporting societal decision-making: a process
perspective", Journal of Multi-Criteria Decision
Analysis, Vol. 12, No. 2-3, pp. 203-212.

[19] Perri, 6 (2004): Re-Wiring Decision-making for
Local Government, Not Local Administration.
<http://www.egovmonitor.com/features/perri6.html
> (accessed July, 2006).

[20] Mittuniversitetet (2006): Decision analytic support
tools in e-government.
<http://www.miun.se/mhtemplates/MHPage____23
601.aspx> (accessed July, 2006).

[21] Podger, A. (2002): Improving Government
decision-making.
<http://www.apsc.gov.au/media/podger310502.htm
> (accessed July, 2006).

[22] Dror, Y. (1997): "Strengthening government
capacity for policy development", International
Journal of Technical Cooperation, Vol. 3, No. 1,
pp. 1–15.

[23] Harter, P.J. (1997): "Fear of commitment: an
affliction of adolescents", Duke Law Journal, No.
46, pp. 1389–1428.

[24] Innes, J.E., Booher, D.E., (1999): "Consensus
Building and Complex Adaptive Systems – A
Framework for Evaluating Collaborative Planning".
Journal of the American Planning Association, Vol.
65, No. 4, pp. 412–423.

[25] Local Government Act (officially approved text)
(2005) /ZLS-UPB1/ (Ur.l. RS, No. 100/2005).

[26] Municipality of Koper (2006): Statute of the
Municipality of Koper (unofficially approved text).
<http://www.koper.si/dokument.aspx?id=11415>
(accessed July, 2006).

[27] Hansen, K. (2001): "Local Councillors: Between
Local Government and Local Governance", Public
Administration, Vol. 79, No.1, 2001 (105-123).

[28] Roberto, M.A. (2005): "Why making decisions the
right way is more important than making the right
decisions", Ivey Business Journal Online, Ivey
Management Services, Richard Ivey School of
Business.
<http://www.iveybusinessjournal.com/view_article.
asp?intArticle_ID=578> (accessed July, 2006).

[29] Zimmerman, H.J.: Fuzzy Set Theory and Its
Applications, 4th ed. Kluver Academic Publishers,
Boston/Dordrecht/London, 2001, p. 514.

[30] Zimmer, A.C. (1986): "What Uncertainty
Judgement Can Tell About the Underlying
Subjective Probabilities". In: Uncertainty in
Artificial Intelligence. Machine Intelligence and
Pattern Recognition, Kanal, L.N., Lemmer, J.F.,
Amsterdam, Elsevier Science Publisher B.V., Vol.
4, pp. 249–258.

[31] Chin, W.C., Ramachandran, V. (2000): "Fuzzy
Linguistic Decision Analysis for Web Server
System Future Planning", International Journal of
the Computer, the Internet and Management, Vol.
8, No. 3.

[32] Herrera, F., Herrera-Viedma, E., Lopez, E. (1996):
"On the Linguistic Approach in Multi-Person
Decision-Making", International Conference on
Intelligent Technologies in Human-Related
Sciences, ITHURS'96. Leon (Spain), pp. 205–213.

[33] Zadeh, L. A. (1975): "The concept of a linguistic
variable and its application to approximate
reasoning – I", Information Sciences, No. 8,
pp.199–249.

[34] Zadeh, L. A. (1973): The concept of lingustic
variable and its application to approximate
reasoning. Memorandum ERL-M 411, Berkeley,
October 1973.

[35] Bonissone, P.P., Decker, K.S. (1986): "Selecting
Uncertainty Calculi and Granularity: An
Experiment in Trading-off Precision and
Complexity". In: Uncertainty in Artificial
Intelligence. Machine Intelligence and Pattern
Recognition, Kanal, L.N. and Lemmer, J.F.,
Amsterdam, Elsevier Science Publisher B.V., Vol.
4, pp. 217–247.

[36] GAO/AIMD-98-110 (1998): Leading Practices in
Capital Decision-Making, U.S. General Accounting
Office, Washington,
http://www.gao.gov/special.pubs/ai99032.pdf
(accessed, June 2006).

[37] Tran, L., Duckstein, L. (2002): "Comparison of
fuzzy numbers using a fuzzy distance measure",
Fuzzy Sets and Systems, No. 130, pp. 331–341.

WEB-BASED DECISION SUPPORT SYSTEM FOR… Informatica 31 (2007) 311–323 323

[38] Benčina, J. (2004): Optimisation of the selection of
investment projects in the public sector by methods
of mathematical programming and fuzzy logic.
Doctorial dissertation. Ljubljana: Faculty of
Economics.

[39] Herrera, F., Herrera-Viedma, E. (1997):
"Aggregation operators for linguistic weighted
information", IEEE Transactions on Systems, Man,
and Cybernetics, Vol. 27, pp. 646–656.

[40] Herrera, F., Martinez, L. (1999): A 2-tuple Fuzzy
Linguistic Representation Model for Computing

with Words. Dept. Computer Sciences and A.I.,
Granada University, Technical Report#DECSAI-
990102.
<http://citeseer.nj.nec.com/herrera99tuple.html]>
(accessed May, 2006).

[41] Von Altrock, C. (1997): Fuzzy Logic and
NeuroFuzzy Applications in Business and Finance.
Prentice Hall, Upper Saddle River, New Jersey.

9 Appendix
The data captured in two case studies and the

appraisal results are presented in two following tables.
The first information in appendix is the legend of tables
which contains the labels of input data (variables -
questions, Table 5) and the labels of linguistic values
(results, answers, Table 6).

c1
Dissatisfaction with existing decision-making
methods.

c2
Willingness to cooperate in implementing new
methods and approaches.

c3
The method allows for easy expression of
opinions about the projects and efficient -
cooperation in decision-making.

c4
The results will contribute to faster and better
choices of projects.

c5
The questionnaire is easily understood and allows
for good expression of opinions.

c6 I am content with the proposed decisions.
c7 All the chosen projects are acceptable to me.
c8 I wish to use the method in the future.

Table 5: Labels of input variables

Label Term

L1 Reject

L2 Lowest

L3 Very low

L4 Low

L5 Medium

L6 High

L7 Very high

L8 Highest

L9 Must be

Table 6: Labels of linguistic values
The data of the case studies are given in the rows of

the tables, while the results calculated are presented in
the last columns (overall appraisal of the model given by
a particular appraiser) and in the last rows (collective
appraisal of an attribute), thus the collective overall
appraisal occupies the outmost right cells in the last rows
(Table 7 and Table 8).

 c1 c2 c3 c4 c5 c6 c7 c8 Σ

1 L8 L5 L6 L6 L7 L6 L1 L6
L6
←

2 L8 L8 L7 L6 L6 L6 L5 L6
→
L6

3 L5 L8 L6 L6 L6 L5 L5 L7 L6

4 L7 L7 L6 L6 L5 L5 L5 L7 L6

5 L3 L6 L5 L5 L7 L7 L5 L7
→
L5

6 L7 L8 L6 L6 L7 L6 L6 L7
L7
←

Σ L6 L7 L6 L6 L6
L6
←

L5
←

L7
←

L6

Table 7: Data and results of the first case study

 c1 c2 c3 c4 c5 c6 c7 c8 Σ

1 L5 L5 L6 L5 L5 L5 L5 L5 L5

2 L1 L7 L3 L7 L5 L5 L5 L5
L4
←

3 L5 L8 L6 L5 L5 L5 L5 L7
→
L5

4 L8 L5 L6 L6 L6 L5 L5 L6
L6
←

5 L5 L5 L4 L4 L5 L5 L5 L4
→
L4

6 L5 L7 L5 L5 L6 L5 L5 L5 L5

7 L2 L6 L4 L2 L5 L5 L5 L6
→
L4

8 L7 L7 L1 L1 L1 L5 L5 L2 L4

9 L7 L7 L8 L7 L7 L5 L5 L7 L6

10 L7 L6 L7 L7 L7 L5 L5 L7 L6

Σ L5 L6
→
L5

L5 L5 L5 L5 L5 L5

Table 8: Data and results of the second case study

324 Informatica 30 (2006) 311–323 J. Benčina

Informatica 31 (2007) 325–335 325

Dynamic Distribution of Java Applications

Gita Alagbhand and David Gnabasik
University of Colorado at Denver and Health Sciences Center
Department of Computer Science and Engineering
Campus Box 109, P.O. Box 173364, Denver CO 80217-3364, USA
E-mail: Gita.Alaghband@cudenver.edu P:303-556-2940 F:303-556-8369
E-mail: DavidGnabasik@comcast.net P:303-994-2740 F:303-617-7877

Keywords: Java, component streams, class loader, mobile devices

Received: April 10, 2007

This paper describes a streaming mechanism that distributes Java class bytecode streams to a client from
a database server. The class server uses a 1st-order Markov probability model to effectively predict the
client’s next class request. Experimental results demonstrate that class prediction can deliver a class cache
hit ratio of up to 54% using a modest cache size of 64kb on the client, whereas a 16kb cache delivers a hit
ratio of 37%. The model is designed to mitigate the distribution and deployment problems of monolithic
application software and is useful for applications running on resource-constrained, mobile computing
devices.

Povzetek: Članek opisuje postopek dinamičnega porazdeljevanja aplikacij v Javi.

1 Introduction and problem
description

Dynamic component streams can address several client
software distribution and deployment issues, including the
automated update of applications from a centralized soft-
ware repository, as well as the delivery of application
streams to resource-constrained mobile devices. We submit
that the process of application deployment can take advan-
tage of the dynamic linking and class loading [3] mecha-
nisms in Java compilers to support a distributed component
model that does not require the streaming of large mono-
lithic applications to these devices. Java class hierarchies
are stored as Java bytecode streams into database rows by
a class author. A streaming mechanism then transmits a
virtual application to a client’s process space from a class
server. Our class server uses a 1st-order Markov transition
probability model to effectively predict the client’s next
class request based upon the statistical analysis of histori-
cal application runs. This permits for the effective overlap-
ping of client-server communication with client process-
ing. The Java linking model and class file format are suited
for managing this problem since the class file is analyzed
and stored as the unit of compilation [2]. We manage and
optimize system performance by:

– decomposing and storing class hierarchies into a
database;

– defining an effective asynchronous streaming compo-
nent model;

– retrieving the most probable class subgraphs to be ac-
tivated next;

– effectively managing limited available client memory.

This paper is organized as follows. In section 2, we de-
scribe each architectural component of the system and the
underlying theory. Section 3 outlines its design and im-
plementation. Section 4 describes our experimental mea-
surements. Section 5 discusses related work, and section 6
presents our conclusions and summarizes the contributions
of this paper.

2 System architecture

2.1 Class authoring and client access roles
The role of the class author is to correctly compile and store
Java components or entire applications as binary streams
of Java bytecode into a database. By doing so, the class
authoring interface encapsulates much of the complexity of
class relations and their distribution. The primary function
of the interface is to scan each class for referenced classes
and to store this list into the database as well. The authoring
interface also manages the following information:

– appropriate class / application authorization and secu-
rity measures;

– any class digital signatures or certificates;

– what foundation set of Java classes are required lo-
cally on the client;

– the set of client deployment preferences that indicate
how and when the classes in a particular application
trace should be updated.

326 Informatica 31 (2007) 325–335 G. Alagbhand et al.

Consumer-Producer Channel (CPC)

Client PC

Class Browser

Event Notification System

JVM1 on Client1

ClassLoader-NameSpace 1

Connection 1A

ClassLoader-NameSpace 2

Connection 2AConnection 2B

Client Comsumer Buffer

Class
Database

Class Streamer

Performance
monitor

Database
Security
Interface

Client1 Cache

Client2 Cache

Common Cache

Class Name
Resolution

Service

Streaming
Dsitribution

Monitor Thread Pool

Connection
Pool

Database Server 1

TCP/IP Connection

Figure 1: Overall architectural schema.

Clients use a class browser or the Java Naming Directory
Interface (JNDI) to request a particular application through
a well-known URL address. The client request establishes
a consumer-producer channel with the class server. Once
the client is authorized, the server retrieves and transmits a
custom class loader to the client who loads it into his Java
virtual machine (JVM). It is this custom class loader which
initially loads an application’s main class and which makes
any further class requests on behalf of the application. No
other changes to existing Java classes are necessary. Figure
1 diagrams our system architecture.

2.2 The class loading and linking process

Class loaders are responsible for importing binary data that
define a running program’s classes and interfaces. The
JVM’s flexible class loader architecture provides for dy-
namically extended applications. Linking a class stream
into a JVM’s run time state is divided into three steps: ver-
ification, preparation, and resolution [4]. Verification en-
sures that the stream is properly formed, preparation allo-
cates memory needed by the stream, and resolution trans-
forms symbolic class references into direct machine refer-
ences for the sake of run time speed and efficiency. During
the class activation process, the JVM must give the impres-
sion that it loads classes as late as possible, a process called
lazy activation [3]. This on-demand activation process per-
mits the transmission of individual Java classes to a client
by a class server.

2.3 Class transmission mechanism

The server retrieves a requested set of classes, or class sub-
graphs, according to a class transition probability model.
This model, which forms the basis for prediction, is de-
scribed in section 1.4. Based on this model, the class server
attempts to prefetch and transmit the next set of expected
classes while the client is busy executing. Even though
some classes are prefetched and delivered that may not be
loaded by the client into his JVM, this network traffic oc-
curs while the client is busy processing the current class, in
effect, overlapping operations. Any successful access to a
prefetched class is a measurable performance gain. Over-
all system performance is maintained by an efficient class
prefetching algorithm, client and server caching, a simple
database schema, and judicious threading.

When the client attempts to load another class, the cus-
tom class loader searches for classes in the following order:
the client JVM, the client’s class cache (CCC), the client’s
standard Java class libraries, and the class server. If the
class is found in the client’s cache, it is decompressed by
the JCL or built-in classes of the JVM, loaded into the run-
ning JVM, and removed from the cache. If the requested
class is not in the CCC, the JCL requests the class from
the class server. The class is retrieved from the database
along with its previously parsed list of symbolically ref-
erenced classes, which was generated when the class was
inserted into the database by the class author. The list of
classes is compressed and streamed to the CCC in the or-
der in which a JVM internally resolves all of its referenced

DYNAMIC DISTRIBUTION OF JAVA APPLICATIONS Informatica 31 (2007) 325–335 327

classes. The amount of data transmitted is limited by the
size of the client’s cache, which is managed by the client’s
JCL.

Classes from the Java libraries are loaded by the na-
tive, primordial class loader. Classes in the class cache
are loaded by the custom object class loader. The differ-
ent class loaders are related by a policy called delegation.
For each class it loads, the JVM keeps track of which class
loader, whether primordial or object, loaded the class [4].
Our model uses a separately threaded class loader derived
from the SecureClassLoader Java class to load all sub-
sequent classes. SecureClassLoader extends ClassLoader
with additional support for defining classes with an associ-
ated code source and permissions. The protection domain
in the model is the class server database itself, which has
permissions assigned to it as a code source. It also uses
the parent-delegation model introduced in Java 1.2 to deter-
mine which class loader actually loads a given class. The
rule is that the JVM uses the same class loader that loaded
the referencing or calling class to load the referenced or
called class. The custom class loader is the first class the
client receives in an application stream.

A Java class is initialized in a certain order. In stage I,
all the class’s superclasses are recursively initialized, then
the class itself, and then its inner classes, followed by the
class’s static variables. Once the class is initialized for ac-
tive use, then the class’s private variables are initialized fol-
lowed by all classes referenced in any constructors. These
references are necessary to initialize a class; therefore their
invocation probability is 1. Class initialization is described
in detail in the next section. Stage I classes are always
transmitted to the client in their own package.

Stage II classes include any method argument classes,
method return types, and all classes referenced in any
method. These referenced classes are conditionally in-
voked by an application. Stage II classes are retrieved from
the database, ordered by invocation probability, and trans-
mitted to the client in a separate package. This strategy
allows the class server to act as a predictive look-ahead
class feeder for the client. Figure 2 diagrams these sepa-
rate stages.

2.4 Transition probability model and class
invocation

The delivery effectiveness ratio H is defined as the number
of requests satisfied by a particular cache divided by the
total number of requests during an entire application trace.
Given that CC is the number of class requests satisfied by
the client cache, SC is the number of class requests that had
to be satisfied by the server, and CR is the total number of
class requests made by the client’s class loader, such that
CC +SC = CR, then HC = CC/CR. The effectiveness of
prediction is then the ratio of class requests satisfied by the
CCC to requests satisfied by the class server. The model-
ing question becomes: How can the server more effectively
predict which classes to stream to the client?

The proposed model generates a set of invocation proba-
bilities, one for each context classj that invokes a particu-
lar classi. Given a class, the model enumerates all the invo-
cation probabilities of the classes that it symbolically refer-
ences. Since the probability of transmitting a specific class
depends upon the class that calls it, the model establishes
a conditional probability vector of P (classi|classj) =
P (classi ∩ classj)/P (classj) probability values, where
classj is the context class for classi. Each classi instance
may be invoked by different classes; hence each class has
multiple classj context classes. Each class also maintains
a total count of class invocations per context class. These
class values are accumulated during the execution of an ap-
plication. Class invocation prediction implies distributing
both the globally most frequently accessed classes as well
as the class most likely to be invoked next at any point in
the program. Good prediction means transmitting those
classes that are most likely to be consumed by the client.
Given a particular context class, stage I classes are always
transmitted, but stage II classes are transmitted according
to their invocation probabilities.

To illustrate, Table 1 lists the set of classes that are in-
voked by the class TelnetDriver over 20 program runs of
a Telnet application. Stage I classes are DialerAccess,
Plugin, Common and ReturnFocusRequest because Telnet-
Driver always invokes them. The invocation probabilities
for the other classes are lower because they were condi-
tionally invoked depending upon the flow of execution.
Clearly, TelnetDriver is a stage I class because it was also
invoked the same number of times the application was run.
Each invocation probability is calculated as the number of
invocations divided by the number of program runs (e.g.,
20). For example, P (invoking Class OnlineStatusListener
within Telnet) = 2/20 = 0.1. The 103 total classes and
interfaces in this Telnet application range in size from 124
to 26158 bytes, with an average size of 2083 bytes for all
classes.

2.5 Markov chain modeling

A 1st-order, finite state, probabilistic Markov model is pro-
posed because a Markov model is suitable to the local de-
pendencies embedded in Java class invocation structure,
and the finite-state machine model accurately reflects the
necessary and unique set of state transitions that occurs
in an application trace. Since classes are conditionally in-
voked in an application trace, the model is able to charac-
terize their invocations by probability values. The Markov
model has an additional advantage in that it reveals an ap-
plication’s locality of reference, since "the performance of
demand-driven caching depends on the locality of refer-
ence exhibited by the stream of requests made to the cache"
[13](abstract). Vanichpun et al [13] further claim that "the
two main contributors to locality of reference are tempo-
ral correlations in the streams of requests and the popular-
ity distribution of requested objects", which are both ac-
counted for by the model. The "temporal correlations" cor-

328 Informatica 31 (2007) 325–335 G. Alagbhand et al.

 Class A 1.0
 Class B 1.0
 Class C 1.0
 ...

Stage 1: Directly
Requested Classes

Stage 2: Prefetched
Classes
 Class X .64
 Class Y .50
 Class Z .38
 ...

Class R

Figure 2: Invocation probability stages.

Table 1: Conditional probability vector (CPV) for class TelnetDriver.
Invoked Class Name Invocation Probability Number of Invocations
DialerAccess 1.0 20
Plugin 1.0 20
Common 1.0 20
OnlineStatusListener .10 2
FocusStatusListener .10 2
SocketRequest .80 16
VisualTransferPlugin .66 13
ReturnFocusRequest 1.0 20

respond to the sequential flow of class invocations and the
"popularity distribution" corresponds directly to the proba-
bility of invocation for a particular class.

Markov chains can dynamically model these class invo-
cation patterns found in applications. A discrete Markov
chain model is defined as the tuple < S,A, λ > where S
corresponds to the state space, Aij is a matrix representing
the invocation probabilities from one state to another, and
λ is the initial probability distribution of the states in S(0).
In our model, S represents every possible application trace,
Aij represents the invocation probabilities for each class,
and λ is the initial class invocation distribution retrieved
from the database. If the vector sc denotes the probability
vector for all the subsequent possible class invocations dur-
ing execution of a specific class c, where c ∈ S, then the
overall set of expected transition state values for class c is
ŝc(j) = sc(i)Aij . The A matrix is recalculated during each
application trace and stored in the database. The class re-
quest mechanism simply selects the largest probability val-
ues from the vector ŝc either until a threshold probability
value is reached or their cumulative class sizes are greater
than the client’s class cache size. The conditional proba-
bility vector for a class directly supports the calculation of
ŝc.

For example, table 2 calculates ŝc(j =TelnetDriver≥
.75) for sc(i =TelnetDriver= .50). It is these combined
stage I and II classes that are actually delivered to the
client because the invocation probability for ŝc(j) is≥ .75.
ŝc(i = .50) is the probability that the application would

invoke TelnetDriver in the first place.
Given the semi-hierarchical structure of nearly all appli-

cations, this Markov chain model is not irreducible, that it
is possible to get to any state from any other state. Some
states would be transient, such that given a starting state
there is a non-zero probability that the application would
never return to that particular state. Most states would in-
stead be recurrent or persistent, that at some point in time
the application would return to that state. Most applica-
tion states also avoid the Markov property of absorbing,
where it is impossible to leave a particular state. Since our
Markov chain model is not irreducible, there is no guar-
antee that the model provides a steady-state or equilibrium
distribution. In practice, however, the probability transition
matrix quickly approached a set of relatively stable values.

2.6 Threaded queue representation

Although we do not present a detailed queuing model in
this paper, it is important to note that our system can also be
represented by queuing circuits because of Java’s stringent
class loading requirements and the way the system is archi-
tected around several queue components. Relevant queuing
centers are the client request queue (CRQ) and the more
complicated class server queue (CSQ), each of which are
distinguished by their own average service times. See sec-
tions 2.4 and 2.5 for complete descriptions of the queuing
mechanism. The CSQ is accessed by two threads per client:
one thread for handling class requests to the server and the

DYNAMIC DISTRIBUTION OF JAVA APPLICATIONS Informatica 31 (2007) 325–335 329

Table 2: Expected transition state values sc for class TelnetDriver.
Class Transition Transition Prob.
DialerAccess 1.0× .50 = 0.50
Plugin 1.0× .50 = 0.50
Common 1.0× .50 = 0.50
ReturnFocusRequest 1.0× .50 = 0.50
SocketRequest .80× .50 = 0.40

second thread for receiving predicted, prefetched classes.
The third client thread accesses locally referenced classes.
The same queuing components are managed by each thread
including a common cache, a client delivery cache, and a
database fetch component. Figure 3 diagrams the funda-
mental queuing centers of the system. Operating system
and database-specific queues are not included for the sake
of simplicity.

Following Gunther [9], our system is characterized by
a first-in, first-out (FIFO) service policy which assumes
an exponential service time distribution for both queues,
the custom and native class loaders. Under FIFO, the ser-
vice time can only depend upon the queue length at each
queuing center. The system is considered open because the
server queuing center can access a possibly infinite number
of elements or classes, even though only a limited and in-
determinate number of classes are actually invoked in an
application trace. Highleyman [11] argues that an open
queuing center model is a reasonably accurate approxima-
tion if N is at least 10 times larger than the average queue
length, which is indeed the case. The two queuing streams
are also separable and mergeable. The streams are separa-
ble because it is possible to evaluate the performance mea-
surements of the complete set of queuing centers as though
each of the centers were evaluated separately in isolation.
The streams are mergeable because the performance of the
entire system is then built by combining the separate so-
lutions. These queuing characteristics establish two differ-
ent servers in an open, overlapping configuration with an
infinite population, which we describe as a M/M/2/FIFO
delay queue model.

3 Design and implementation

3.1 Optimizing overall system performance

Our system architecture attempts to minimize overall net-
work traffic by delivering only the immediately needed
classes of an application trace, since the model claims that
overall delivery throughput is increased by incorporating
and limiting the Markov probability model to the 1st-order
when predicting the client’s next class request. Network
delivery time is reduced by writing the class subgraph into
a single Java ARchive (JAR) or ZIP package for transmis-
sion.

The major problems to resolve in order to maintain ade-
quate system performance are (along with

– decomposing and storing class hierarchies into a
database where each Java class file is stored as pre-
compiled Java bytecode in a database row;

– defining an effective asynchronous streaming com-
ponent model that overlaps execution with network
communication as implemented in the CSQ and CRQ
queueing centers;

– retrieving the most probable class subgraphs to be ac-
tivated next from the class server which uses a 1st-
order Markov probability model to effectively predict
the client’s next class request to reduce invocation la-
tency;

– caching the most frequently invoked bytecodes at the
client while prefetching and caching class bytescodes
at the server to reduce database access delay;

– managing class elements as discrete database rows,
which allows for database access optimization;

– avoiding slow file system accesses and disk paging by
storing the class bytecodes in database rows;

– effectively managing limited available client memory
by allocating a minimum client cache;

– the use of judicious I/O threading.

Other design goals include:

– not modifying the client’s virtual machine executable;

– not allowing the class server to manage client state be-
yond minimal client authentication, authorization and
initialization, which reduces the overall complexity of
the application;

– expending time and effort at the class-producing or -
authoring stage instead of the class-consuming stage.

When non-duplicated classes are inserted into the CCC,
they are associated with the class that invoked them. If
a class is extracted from the CCC for activation, the dis-
card policy marks the list of explicitly associated classes for
discard, too. These classes are either sequentially pushed
out of the CCC to make room for new classes or they are
extracted for activation. Note that any inherited or par-
ent classes or interfaces have themselves already been ex-
tracted from the CCC since a class’s parents must be com-
pletely activated before the class itself. Since only the

330 Informatica 31 (2007) 325–335 G. Alagbhand et al.

 Client JVM
 Class Cache
 Java Libraries

Client Request Queue Class Server Queue

 Client Delivery Cache
 Common Cache
 Database Fetch

Client
JVM

Class

Request

Thread A:
Requested

Classes

Thread B:
Requested

Classes

Thread C:
Prefetched

Classes

Figure 3: Queuing request centers.

client removes classes from the CCC, there is no need for
the client to inform the server that the client has unloaded
a class. The client JCL is responsible for cache overflows.

Storing Java bytecodes instead of source text offers sev-
eral advantages: the bytecode does not have to be recom-
piled for each client; unlike machine code, the Java byte-
code supports a heterogeneous computing environment. In
addition, the source analysis and compilation is performed
by several powerful class authors instead of by the clients
themselves.

3.2 Server caching strategy

The server implements the following caching strategy. A
common cache is maintained by the server which contains
classes or resources that have recently been used by two or
more active clients, as shown in Figure 1. A smaller, client-
specific delivery cache is also established on the server for
each client which receives the anticipated set of classes ref-
erenced in the class subgraph. These caches are informed
and populated by the application’s class invocation proba-
bilities.

Using these previously computed probabilities for
the requested class, the database keys of the re-
quested class and its subgraph are fetched from
the class server database as shown in Figure 3.
Then the class fetching algorithm works as follows:
while requested classes not in client-specific

buffer do

THREAD C:

receive prefetched classes and buffer them

locally

while requested classes not in common buffer

concurrently do

THREAD A:

fetch, buffer, transmit requested class

stream

THREAD B:

fetch, order, buffer, transmit subgraph

stream

endwhile

endwhile

The Java environment also supports the effective use of
multiple threads for asynchronous events. As shown above,
each connected client allocates at least three threads: two
to process class requests and one to receive class data.
The server allocates and manages a separate thread from a
thread pool per connected client. This coarse-grained par-
allelism, coupled with the use of dedicated socket ports,
permits for effective overlapping of client-server commu-
nication with client processing. Note that a client does not
establish a direct connection to the server database.

Determining the proper size of the client cache is of crit-
ical importance. This size must balance the critical con-
straints of limited client memory with the fact that class
prediction may be incorrect, which therefore may transmit
unneeded classes to the client. The viability of class predic-
tion is demonstrated only if these constraints are effectively
reconciled; i.e., if the delivery effectiveness ratio H can be
increased.

4 Performance measurements

4.1 Experimental setup

In the experiments, a 600MHz computer simulates a
resource-constrained client with a specified cache size.
It is connected to a 1.7GHz server computer over a
10Mb TCP/IP network through a router. The server pro-

DYNAMIC DISTRIBUTION OF JAVA APPLICATIONS Informatica 31 (2007) 325–335 331

gram executes within a single Java JVM instance, version
1.4.1.02.b06. The representative Telnet client application
is designed to exercise the two different stages of classes
to be delivered. The application has a reasonably rich class
hierarchy including superclasses, inner classes, static and
private variables, class variables and constructors.

The goal of this paper is to present the feasibility and
effectiveness of the proposed methods. Experiments with
more applications and benchmarks running on more suit-
able hardware, say one of the newer mobile handsets, will
be the subject of future publications.

4.2 Verifying the effectiveness of a common
cache

A performance-experiment was conducted in order to test
the effectiveness of a common cache on the server (as de-
fined in the Server caching strategy section) under the as-
sumption of multiple client JVMs. A common class pack-
age was transmitted to a set of 4, 16 and 32 clients all run-
ning under their own JVM instance on the same client com-
puter. Figure 4 shows the effect of averaged package in-
stantiation time with and without the common 256k server
cache operating. The performance effect of using the 256k
common cache is not significant until 32 clients are being
serviced simultaneously, at which point the average pack-
age instantiation time is cut in half from 15 seconds to 7
seconds. We will use a common cache of 256K for the
next set of experiments.

4.3 Experimental results
After exercising the client source application under multi-
ple and various traces using different class method calls,
the delivery effectiveness ratio H is calculated as a func-
tion of client cache size. Table 3 presents the class transfer
data gathered for a complete application run using a 32 kb
cache. In the table, the effectiveness ratio is calculated as
HC = CC/CR.

The server records the stream size it delivers to the client.
Previous experiments [7] had demonstrated that activating
the class prediction mechanism delivered twice as many
bytes to the client as opposed to simply delivering every
class stream on-demand. The separately threaded client
class loader, threads B and C, records the total stream trans-
fer time it took to receive requested data as the amount of
time the class loader blocks on the server, not including ac-
tual class instantiation. However, the two-stage packaging
mechanism that transmits the two separate class package
streams does not double the amount of transfer time be-
cause the predicted classes are transmitted asynchronously
to the client. The additional network traffic occurs while
the client is busy processing the current class, in effect,
overlapping operations. By convention, the custom class
loader itself and the application’s main class are counted in
SC . We do not count those classes that are already accessi-
ble within the client’s JVM.

Recall that multiple stage I classes are usually required
to initialize any particular class for active use, which sim-
ply activates the class in the client JVM. Depending upon
the application’s structural class hierarchy, these implicitly
loaded classes and interfaces may be satisfied by either the
CCC or the server. In either case, CR = 52 reflects the
actual number of classes the application trace instantiates,
both implicit and explicitly named. Without prediction, the
server has to deliver 27 out of 52 classes (52%) to the ap-
plication stream while the client blocks. Note that the cus-
tom class loader makes a fewer number of explicit class
requests than what is actually delivered to the CCC, and so
does not produce a reliable number for comparison.

With prediction, the number of classes SC satisfied by
the server, where the client is forced to request, block and
wait for a class stream, is 4 less because the server has an-
ticipated their use, then prefetched and transmitted them to
the CCC. Now the server delivers only 23 out of 82 classes
(28%) to the application stream responding to a blocked
request. The total client class cache count, CR = 82, is
larger because the server has transmitted additional, pre-
dicted stage II classes. However, the prediction process
increases CC , the number of classes fetched from the local
client cache. We claim that any successful local access by
the client to a prefetched class is a significant performance
gain. The end benefit is that the client effectiveness ratio
HC , has increased from 0.48 to 0.72, an improvement of
50%.

Figure 5 illustrates the averaged instantiation times and
HC ratios, prediction over no prediction, under four dif-
ferent cache sizes: 8k, 16k, 32k, and 64k. A client cache
size of 16k accommodates most class requests relatively
efficiently. A client cache size of 32k nearly approximates
immediate class activation, as measured by averaged time
of class activation. The averaged class cache hit ratios ap-
proached 54% with a cache size of 64k, revealing the effec-
tive limits of the prediction mechanism as well as demon-
strating the effective parallelization of class delivery with
program execution. For a modest increase in client mem-
ory, say 32k, a large application can be effectively delivered
to an otherwise resource-constrained client.

To show the effect of communication overlap of the re-
quired additional data transfer to the client’s overall exe-
cution time, we compare estimates of the total application
trace execution time te with and without prediction. Be-
cause we are interested in client I/O-bound applications,
it is fair to factor out the common duration of in-memory
class execution time and to concentrate on the I/O param-
eter of total blocking time tb, which includes total class
transmission time. We ask at what client class cache size,
if any, does the ratio of total blocking time over trace exe-
cution time ever become less with prediction than without
prediction? Tables 4 and 5 present the following averaged
results for 1 client at various client class cache sizes. Again,
the total size of the stream transmitted was 84746 com-
pressed bytes without prediction and 169104 bytes with
prediction.

332 Informatica 31 (2007) 325–335 G. Alagbhand et al.

Performance effect of 256k
common cache on the server

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00
C

lie
n

t
In

st
an

ti
at

io
n

 T
im

e

(s
ec

o
n

d
s)

Without Common Cache, Multiple JVM

With Common Cache, Multiple JVMs

Figure 4: Common class package instantiation for 4, 16 and 32 clients.

Table 3: Effectiveness of class prediction for 1 client.
32kb Client Cache: 1 Active Client No Prediction No Prediction P/NP
. Stage I Only Plus stage II .
Total stream size (compressed bytes) 84746 169104 1.995
Total stream transfer time (secs) = tb 14.2 19.3 1.36
Classes satisfied by server = SC 27 23 0.85
Classes satisfied by client cache = CC 25 59 2.36
Total client class cache count = CR 52 82 1.58
Effectiveness ratio HC = CC/CR 0.48 0.72 1.50

Table 4: Total execution te and blocking times tb (sec)
without prediction.

CCC Size 8k 16k 32k 64k
tb 23.7 17.5 15.2 15.0
te 38.1 34.1 31.8 31.2
tb/te 62% 51% 48% 48%

Table 5: Total execution te and blocking times tb (sec) with
prediction.

CCC Size 8k 16k 32k 64k
tb 29.5 18.9 12.1 12.0
te 39.9 31.5 28.1 28.6
tb/te 74% 60% 43% 42%

As shown in Figure 6, we conclude that prediction be-
comes more effective than not in terms of reducing total
client execution time at a client cache size of 32k, even
though twice as many class bytes are delivered to the client.

5 Related work
Arnold’s recent survey [14] of adaptive optimization in
virtual machines presents the three major developments
of adaptive optimization technology in virtual machines
over the last thirty years: 1) selective optimization, 2)
feedback-directed code generation, and 3) other feedback-
directed optimizations in order to improve VM perfor-
mance. The survey discusses the benefits and drawbacks of
just-in-time compilers, synchronized thread management,
dynamic class loading, native code caches, class splitting
and dynamic class caching. Most of these techniques ex-
ploit some form of temporal locality to be effective.

Krintz’s work [5] proposes Java class file splitting and
prefetching optimizations as an effective latency-hiding op-
timization for mobile programs which also does not require

DYNAMIC DISTRIBUTION OF JAVA APPLICATIONS Informatica 31 (2007) 325–335 333

8k: 18%

16k: 37%

64k: 54%32k: 50%

0

500

1000

1500

2000

2500

3000

3500

Cache sizes and class cache hit ratio percents

(m
se

c)

Figure 5: Client cache size vs. average time of class instantiation.

redefining the Java Virtual Machine specification. The
combination of techniques reduces the overall transfer de-
lay encountered during a mobile program’s execution by
25% to 30% on average. However, Krintz’s method re-
quires inserting prefetch statements into the Java source
code as well as compilation using a binary modification
tool.

Bartels et al [1] describe an adaptive fault-based
prefetching scheme based on a one-level Markov net that
achieved high prediction accuracy for some classes of sci-
entific applications.

Thiebaut’s work [10] with synthetic traces demonstrated
the structural importance of the locality of reference in real
programs and its impact on hit and miss ratios.

Chilimbi [12] proposes a data reference framework and
an exploitable locality abstraction called hot data streams
as a quantitative basis for understanding and optimizing
data reference locality.

Our general approach is indebted to Patterson’s semi-
nal paper [6] on informed aggressive disk prefetching and
caching (TIP), where it is shown that prefetching can not
only mask latency with asynchrony, by overlapping I/O
with computation, but also expose parallelism for the sake
of greater throughput.

6 Conclusions
Our paper describes a streaming mechanism that distributes
Java class bytecode streams to a client from a class server
using a 1st-order Markov probability model to predict
the client’s next class request. The experimental results
demonstrate that a simple class prediction mechanism sig-

nificantly reduces client blocking using a dedicated client
cache size of 32k. At the cost of the client receiving
twice as many bytes over the network and a modestly-larger
cache, the client is able to execute rich and complex appli-
cations not otherwise possible. We acknowledge that this
extra network processing is clearly a concern for power-
sensitive devices.

Using the Java architecture requires writing and deliver-
ing a custom class loader for mobile devices. Sun’s Java 2
Micro Edition (J2ME) CLDC, targeted to cell phones, re-
quires 128K to 512K total memory available with less than
256K ROM/Flash and less than 256K RAM (JSR-000030).
However, it currently does not support user-defined class
loaders or native method access. The mobile device man-
ufacturers would themselves have to embed modified class
loaders into these devices in order to handle the proposed
streaming mechanism.

To summarize, this paper makes the following contribu-
tions:

– The Java linking process permits dynamic class load-
ing that delivers application streams to clients.

– A 1st-order Markov class invocation probability
model effectively predicts the client’s next class re-
quest in order to reduce invocation latency and trans-
fer delay by overlapping program execution with net-
work communication. Prediction is worth the effort.

– The current implementation does not require the mod-
ification of the Java Virtual Machine definition. How-
ever, due to the lack of a dynamic class loading mech-
anism, the current version of J2ME/CLDC would re-
quire significant modification.

334 Informatica 31 (2007) 325–335 G. Alagbhand et al.

0 10 20 30 40 50 60 70
40

45

50

55

60

65

70

75

Client Cache Size (kb)

B
lo

ck
in

g/
E

xe
cu

tio
n

T
im

es
 (

%
)

No prediction
With prediction

Figure 6: Execution and blocking time percent vs client cache size.

– We also plan to carry out the methods developed in
this work with various benchmarks on appropriate
hardware, such as mobile handsets.

References

[1] Bartels, G., Karlin, A., Levy, H., Voelker, G.; Ander-
son, D., Chase, J. (1999). Potentials and Limitations
of Fault-Based Markov Prefetching for Virtual Mem-
ory Pages, ACM SIGMETRICS Performance Evalu-
ation Review, Volume 27 , Issue 1, June 1999.

[2] Gosling, J., B. Joy, G. Steele, and G. Brach. (2000).
Java Language Specification, 2nd Ed. Boston: Addi-
son Wesley.

[3] Liang, Sheng and Bracha, Gilad. (1998). Dynamic
Class Loading in the Java Virtual Machine, in Pro-
ceedings of OOPSLA ’98, published as ACM SIG-
PLAN Notices, Volume 33, Number 10, October
1998, pages 36-44.

[4] Venners, Bill. (1999). Inside the Java 2 Virtual Ma-
chine, 2nd Ed., New York: McGraw-Hill Companies.

[5] Krintz, C., Calder, B., and Holzle, U. (1999). Reduc-
ing Transfer Delay Using Java Class File Splitting
and Prefetching, UCSD Technical Report, CS99-615,
March 1999.

[6] Patterson, R.H. Gibson, G.A., Ginting, E., Stodolsky,
D. and Zelenka, R. (1995). Informed Prefetching and

Caching, J. Proc. of the 15th Symposium of Oper-
ating Systems Principles, Copper Mountain Resort,
CO, December 3-6, 1995, pp. 79-95.

[7] Alagbhand, G., Gnabasik, D. (2004). Streaming Java
Applications to Mobile Computing Devices, Proceed-
ing of the 2004 International Conference on Wireless
Networks, Monte Carlo Resort, Las Vegas, Nevada,
June 21-24, 2004, pp. 637-643.

[8] Sun Microsystems. (1998). Java Object Se-
rialization Specification. Available online:
http://java.sun.com/products/jdk/1.2/docs/
guide/serialization/spec/serialTOC.doc.html

[9] Gunther, N., (1998). The Practical Performance An-
alyst: Performance-By-Design Techniques for Dis-
tributed Systems, New York: McGraw-Hill Compa-
nies.

[10] Thiebaut, D., Wolf, J.L., and Stone, H.S. (1992). Syn-
thetic Traces for Trace-Driven Simulation of Cache
Memories. IEEE Trans. Computers. 41(4):388-410.

[11] Highleyman, W.H., (1989). Performance Analysis
of Transaction Systems. Englewood Cliffs, N.J.:
Prentice-Hall

[12] Chilimbi, Trishul. (2001). Efficient Representations
and Abstractions for Quantifying and Exploiting Data
Reference Locality. Microsoft Research, One Mi-
crosoft Way, Redmond, WA

[13] Vanichpun, S., Makowski, A.M., (2004). Compar-
ing strength of locality of reference - Popularity, ma-

DYNAMIC DISTRIBUTION OF JAVA APPLICATIONS Informatica 31 (2007) 325–335 335

jorization, and some folk theorems. To appear in Per-
formance Evaluation and Planning Methods for the
Next Generation Internet, A. Girard, B. Sanso and F.J.
Vazquez-Abad, Editors, Kluwer Academic Press.

[14] Arnold, M., Fink, S.J., Grove, D., Hind, M., Sweeney,
P.F. (2004).A Survey of Adaptive Optimization in
Virtual Machines. IBM Research Report, RC23143
(W0312-097).

336 Informatica 31 (2007) 325–335 G. Alagbhand et al.

 Informatica 31 (2007) 337–350 337

A Formal Framework Supporting the Specification of the
Interactions between Agents
Farid Mokhati
Département d’Informatique
Université d’Oum El Bouaghi - Algérie
E-mail: Mokhati@yahoo.fr

Mourad Badri and Linda Badri

Département de Mathématiques et d'Informatique
Université du Québec à Trois-Rivières - Canada
E-mail: Mourad.Badri@uqtr.ca, Linda.Badri@uqtr.ca

Keywords: multi-agent systems, RCA, Maude, translation, behavior, interactions, formal specification,
verification and validation.

Received: May 24, 2005

In this paper we present a formal framework supporting the translation of interactions between agents
(the interactions are described with the help of the RCA formalism) in a Maude specification. Based on
rewriting logic, the formal and object-oriented language Maude supports formal specification and
programming for a wide range of applications. The main motivations of our work are essentially: (1) to
formally specify the behavior of multi-agent systems and (2) to provide a solid basis for their
verification and validation. The translation process is illustrated by means of a real case study.
Povzetek:Opisan je formalni okvir za prevajanje interakcij med agenti.

1 Introduction
In Multi-Agent Systems (MAS), agents interact in order
to exchange information, to cooperate and to coordinate
their tasks [24]. The usual approach to the description of
interactions between agents consists in using protocols
[8, 26]. Several agents’ interaction protocols (AIP) have
been proposed in the literature [7]. They constitute an
important part of MAS's infrastructures. However, most
of the protocols published in the literature are semi-
formal, vague or contain errors as mentioned in [23].
Knowing that AIP play a crucial role in MAS
development [30], their formal specification as well as
their verification constitute essential tasks [11]. In the
field of agents’ behavior specification, three major
approaches emerge in the literature: state-charts based
approaches [27, 22], Petri Nets based approaches [5, 1],
and approaches representing an adaptation of object-
oriented specification methods [19, 20].

Among the agents’ interaction protocols proposed in
the literature, we can mention the RCA formalism
(Représentation des Comportements d’Agents) [27],
which is based on strongly typed states-transitions
graphs. The RCA formalism allows describing agents'
behaviors graphically. This formalism has been used in
the design of several Cooperative Information Systems
(CIS) based on informational agents. We can mention,
for example, the NetMan project based on the
coordination of several agents [4], a project related to the
reactive reorganization of production shops and treating
the cooperation between agents having to solve a
problem in a distributed and cooperative way [28], as

well as a project on the hydraulic management of the
Camargue ecosystem and based on a negotiation process
between agents (Project SIMFONHYC) [18].

One of the strong points of the RCA formalism [18,
28] resides in the modular design of agents' behaviors.
Indeed, the use of composite action states makes it
possible the overlapping of behavioral plans and
therefore a description by successive refinements of
agents' behavior. This characteristic comes directly from
the notion of composite state of RCA graphs.
Nevertheless, some critiques on RCA graphs can be
formulated, notably on their formalization and on the
sequential aspect of the execution cycle of behavioral
plans [28]. Furthermore, this formalism allows the
visualization of the synchronization points between dual
protocols thanks to the complementarity between
communication states and external transition. It is then
easy to recognize the coordination points between dual
protocols [28]. However, RCA graphs as well as the
existing formalisms in the literature describing agents'
interaction protocols are not endowed again with a
formal semantics [28]. They only offer a semi-formal
specification [23] of interactions between agents. These
weaknesses can generate several problems in MAS
development and verification.

Using formal notations for the description of MAS'
behavior offers several advantages. It essentially allows
producing rigorous and precise descriptions supporting
efficiently their verification and validation process. The
Maude language, based on the rewriting logic, seems to

338 Informatica 31 (2007) 337–350 F. Mokhati et al.

us to be an interesting candidate. It offers, through its
rich notation, an interesting way for concurrent systems
formal specification and programming. Furthermore, it
also supports the description of multi-agent interactions
[21, 16]. In this paper, we present a formal framework
supporting the translation of multi-agent interactions,
specified using the RCA formalism, in a Maude
specification. The main motivations of our approach are
essentially: (1) to specify formally the behavior of multi-
agent systems, in particular, the interactions between
agents, and (2) to provide a solid basis for their
verification and validation process. The Maude
specifications, generated in the context of the developed
framework, have been validated using the platform
supporting the Maude language. The remainder of the
paper is organized as follows: Section 2 gives a brief
survey on the main related works. We present summarily
the RCA formalism in section 3. In section 4, we give the
basic concepts related to the rewriting logic as well as the
Maude language. Section 5 presents the translation
process. The proposed approach is illustrated using a
concrete case study in section 6. Finally, section 7 gives
some conclusions and future work directions.

2 Related Work
We present briefly in this section three formalisms
(AUML, CATN and RCA) supporting the description of
agents' interaction protocols. AUML [19, 9] is an
extension of the UML language allowing describing
interactions between agents. To represent multi-agent
interaction protocols, AUML adopts in fact an approach
in three layers. It uses, in the first level, packages and
templates to represent the protocol in whole. Sequence
diagrams, collaboration diagrams, activity diagrams, and
states-transitions diagrams are used to represent
interactions between agents. Activity diagrams and
states-transitions diagrams are also used to capture
agents’ internal behavior (for more details see [19]).
However, AUML only offers a semi-formal specification
of the interactions between agents.

The CATN formalism (Coupled Augmented
Transition NetWork) [10] is a states-transitions machine,
to which a particular goal (or significance) is associated.
A CATN can be decomposed in sub-CATNs. Each of
these components is a CATN, having its own goal. The
components of a CATN are joined together by ad-hoc
transitions named "interactions transitions". Among
these, we distinguish the non-terminal interactions
transitions of those that are terminal. These last
correspond to language acts (between agents) or to
private actions of agents. This recursive aspect of the
CATN allows a top-down design approach, from the
most abstract behavior of a group of agents until their
most concrete actions (individual terminal actions and
communications through the interactions transitions).
Each agent can execute in a concurrent way several
CATNs depending on the tasks that it has to achieve [10,
25].

The RCA formalism [27, 28], supporting the
description of role protocols, is used to describe agents'

behavior. It is based on states-transitions diagrams
introducing seven types of states and two types of
transitions. The seven states are: the initial state, the final
state, the elementary action state, the composite action
state, the communication state and the waiting states
(limited and unlimited). The two types of transitions are
the internal transition and the external transition. Using
this formalism, it is easy to recognize the coordination
points between dual protocols. The RCA formalism is
not limited to the description of the exchanges of
messages between agents (as the case in the other
formalisms). It also allows clarifying the actions that they
undertake. In addition, the RCA graphs describe the
working of the agents and help thus the design of their
interactions. The links that exist between the macro level
(i.e. the system's behavior) and the micro level (i.e. the
agent's behavior) may be considered in an integrated way
[28, 29].

These different approaches certainly offer some
elements of answer to some problems related MAS
development. However, they only allow a partial
formalization of MAS. Furthermore, some authors [6, 5]
opposed to the use of formalisms based on state-
transition graphs two major arguments: 1) the
impossibility to be able to verify the consistency of the
protocols thus specified; and 2) the absence of taking into
account the concurrent aspects of protocols [28]. In spite
of the advantages that it offers relatively to the other
formalisms, the RCA formalism only offers a graphic
semi-formal description [18]. Furthermore, it is not
endowed again with a formal semantics. These
weaknesses combined to the complexity of MAS can
generate several problems in their development and
verification processes. The use of an appropriate formal
notation for the description of MAS' behavior offers
several advantages. It essentially allows the production
of rigorous and precise descriptions supporting
efficiently their verification and validation process. Our
approach is similar, in terms of objectives, to the
previously quoted approaches. It consists, essentially, to
support the important stage of the specification of agents'
behaviors. However, we preferred to adopt a more formal
approach in the specification of agents' behaviors in
terms of interactions allowing, among others, to support
the verification of consistency (internal and global) in the
behavior. Our approach allows translating the interaction
protocols described using the RCA formalism in the
Maude language. The Maude system consists in a high-
level language of programming, specification and
modeling based on rewriting logic [2, 15, 21]. It is also
endowed with a high performance interpreter. It allows
describing concurrent systems and supports the formal
specification of distributed systems [14, 29, 12].

3 RCA Formalism
RCA (Représentation des Comportements d'Agents) [27,
28] is a formalism allowing describing an agent's
behavior graphically. It is based on a strongly typed
graph: seven types of states and two types of transitions
(figure 1). The seven states are the initial state (to show

A FORMAL FRAMEWORK SUPPORTING... Informatica 31 (2007) 337–350 339

the beginning of the graph), the final state (to mark the
end of the graph), the elementary action state (that
corresponds to the agent's simple action), the composite
action state (it is in fact about the call to another
protocol), the communication state (sending of message),
and the limited and unlimited waiting states (waiting of
treatments done by other agents). The two types of
transitions are the internal transition (it corresponds to
the end of an activity and provokes the passage to
another state) and the external transition (it is in fact a
reception of a message that provokes, like an internal
transition, the change of the agent's activity). An external
transition is triggered by a communication state at
another agent.

Figure 1 : Convention of representation
of the RCA formalism.

The number of internal and external transitions

depends on the type of the starting state and its
transitions. It can be either null, limited or unlimited
(figure 2).

Authorized
internal

transitions
number

Authorized
external

transitions
number

Type of transition’s
departure state

[Min..Max] [Min..Max]
Initial state [0 .. 1] [0 .. 1]
Elementary action state [1 .. ∞] [0 .. 0]
Composite action state [1 .. ∞] [0 .. 0]
Communication state [1 .. 2] [0 .. 0]
Limited waiting state [1 .. 1] [1 .. ∞]
Unlimited waiting state [0 .. 0] [1 .. ∞]
Final state [0 .. 0] [0 .. 0]

Figure 2 : Authorized transitions number according

to the starting state.

Each states graph starts with a unique initial state and
finishes by a unique final state. The internal events are
the consequence of the agent's actions represented by
action states (elementary or composite). They trigger the

internal transitions. The external events result from
communication activities of the agents, i.e. a reception of
message constitutes an external event and provokes the
crossing of an external transition. Of this fact, the type of
allowed transition at a precise place of the graph depends
exclusively of the origin state type of this transition:

• Initial state : only one transition (internal or

external) may quit this state.
• Action state (simple or composite) : the internal

transitions are in any number not null after
action states.

• Communication state : one or two internal
transitions may quit the communication state.

• Limited waiting state : the waiting may stop
after the reception of a message (external
transition), or if no message has been received
beyond the waiting delay (internal transition).
Furthermore, only one internal transition may
quit a limited waiting.

• Unlimited waiting state : this waiting type
remains while that it doesn't occur an external
event (reception of message). It is therefore
about a blocking state.

4 Rewriting Logic and Maude
Language

4.1 Rewriting Logic
The rewriting logic, having a sound and complete
semantics, was introduced by Meseguer [14]. It allows
describing concurrent systems. This logic unifies all the
formal models that express concurrence [13, 15]. In
rewriting logic, the logic formulas are called rewriting
rules. They have the following form: R:[t] [t’] if C.
Rule R indicates that term t becomes (is transformed
into) t’ if a certain condition C if verified. Term t
represents a partial state of a global state S of the
described system. The modification of the global state S
of the system to another state S’ is realized by the
parallel rewriting of one or more terms that express the
partial states. The distributed state of a concurrent system
is represented as a term whose sub-terms represent the
different components of the concurrent state. The
concurrent state’s structure can have a variety of
equivalent representations because it satisfies certain
structural laws (equivalence class).

Figure 3 : Example of a portion of the Maude program.

1. sort Configuration .
2. sort Object .
3. sort Msg .
4. subsort Object < Configuration .
5. subsort Msg < Configuration .
6. op null : -> Configuration .
7. op_ _ : Configuration Configuration ->
 Configuration [assoc comm id : null] .

Initial Elementary Limited waiting
state action state state

Final Composite Unlimited waiting
 state action state state

Communication Internal External
 state transition transition

340 Informatica 31 (2007) 337–350 F. Mokhati et al.

For example, in an object-oriented system the
concurrent state that is usually called configuration has
the structure of a multi-set of objects and messages.
Therefore, we can have configurations constructed by a
binary operator applied to binary sets as illustrated in
figure 3.

The portion of program illustrated in figure 3 gives a
definition of three types: Configuration, Object and
Msg. In lines 4 and 5, Object and Msg are sub-types of
Configuration. Objects and messages are in fact multi-
set configuration singletons. More complex
configurations are generated from the application of the
union on these multi-set singletons (objects and
messages). Where there is neither floating messages nor
live objects, we have in this case an empty configuration
(line 6). The construction of a new configuration in terms
of other configurations is done with line 7’s operation.
We can note that this operation has no name and that the
two sub lines indicate the positions of two parameters of
configuration type. This operation, which is the multi-set
union, satisfies the structural laws of association and of
commutation. It also possesses a neutral element null.
For example, if we have a message M1 that represents a
configuration, and an object <O : C|atts > (please note
that O is an object’s identifier, C its class and atts the list
of its attributes) that represents in itself another
configuration, then we can construct another
configuration in terms of those two configurations: M1
< O : C | atts >. This one is equivalent to the
configuration < O : C | atts > M1 because the __
operation is commutative.

4.2 Maude
Maude is a specification and programming language
based on the rewriting logic [14, 3]. Three types of
modules are defined in Maude. Functional modules allow
defining data types and their functions through equations
theory. Figure 4.a represents the functional module Nat
specifying natural numbers. Such a module is imported
in the module FACT (figure 4.b) to calculate the factorial
of natural numbers. System modules define the dynamic
behavior of a system. This type of modules extends
functional modules by introducing rewriting rules. A
maximal degree of concurrence is offered by this type of
module. Finally, there are the object-oriented modules
that can be reduced to system modules. In relation to
system modules, object-oriented modules offer a more
appropriate syntax to describe the basic entities of the
object paradigm as, among others: objects, messages and
configuration. Only one rewriting rule allows expressing
the consumption of certain floating messages, the
sending of new messages, the destruction of objects, the
creation of new objects, state change of certain objects,
etc.

Figure 5.a illustrates the use of a system module
BANK-ACCOUNT to define an object counts banking A
and the two operations capable to affect its content credit
and debit while executing the rewriting rules defined in
this module. Figure 5.b represents the same BANK-

ACCOUNT module with a more appropriate object-
oriented syntax.

 (a) (b)

Figure 4 : Functional Modules Nat and FACT.

We note, that after the execution of the unconditional

rule [credit], the message credit(A, M) is consumed and
the content of the account is increased. In the same way,
the execution of the conditional rule [debit] requires that
the condition (N>=M) be verified. The execution of such
rule generates the consumption of the message
debit(A,M) and the reduction of the content of the
account.

 (a)

(b)

Figure 5 : The same BANK-ACCOUNT module in system
module and O.O module forms.

fmod NAT is
sorts Zero NzNat Nat .
subsort Zero NzNat < Nat .
***constructors
op 0 : -> Zero .
op s_ : Nat -> NzNat .
….
endfm

fmod FACT is
Including NAT .
op _! : Nat -> NzNat .

var N : Nat .
eq 0 ! = 1 .
eq (s N) ! = (s N) * N !.
endfm

mod BANK-ACCOUNT is
protecting INT .
 including CONFIGURATION .
op Account : -> Cid.
op bal :_ : Int -> Attribute .
ops credit debit : Oid Nat -> Msg .
var A : Oid . vars M N : Int .

rl [credit] : < A : Account | bal : N > credit(A, M)
 => < A : Account | bal : N + M > .

crl [debit] : < A : Account | bal : N > debit(A, M)

 => < A : Account | bal : N - M >
 If N >= M .

endm

(omod BANK-ACCOUNT is
protecting MACHINE-INT .
class Account | bal : MachineInt .
msgs credit debit : Oid MachineInt -> Msg .
var A : Oid .
vars M N : MachineInt .

rl [credit] : < A : Account | bal : N > credit(A, M)
 => < A : Account | bal : (N + M) > .

crl [debit] : < A : Account | bal : N > debit(A, M)

 => < A : Account | bal : (N – M) >
 If N >= M .

endom)

A FORMAL FRAMEWORK SUPPORTING... Informatica 31 (2007) 337–350 341

5 Translating RCA Descriptions in
Maude

We developed a formal framework allowing the formal
specification of role protocols described using RCA
formalism. The framework is composed, as illustrated by

figure 6, of several modules: an object-oriented module
(ROLE-PROTOCOLE) and several functional modules
(the remainder of modules).

Figure 6 : RCA-Maude frameworks’ architecture.

Figure 7 : The functional module AGENT-STATE.

The functional module AGENT-STATE (figure 7)

contains the different necessary type declarations for the
definition of a state (line [1]) and, on the other hand, the
definition of operations used for the construction and the
manipulation of a state (lines [2, 3, 4, 5, 6, 7, 8, 9, 10]),

as well as equations implementing these operations (lines
[11, 12, 13, 14, 15, 16, 17]).

In the ACTION module (figure 8), in addition to the
type Action, we define the two functions
IsSendingToOnlyOne and IsSendingToAll. The first

ACTION

AGENT-STATE

IDENTIFICATION

RCA

ACQUAINTANCE-LIST

ROLE-
PROTOCOLE

: Module
: Import

USER-RCA1

RCA -LINK

(fmod AGENT-STATE is
sorts AgentState KindAgentState NameAgentState . ***[1]

ops initial final communication elementary composite
 limitedWaiting UnlimitedWaiting : -> KindAgentState . ***[2]

op AgentState : NameAgentState KindAgentState -> AgentState . ***[3]
op IsInitial : AgentState -> Bool . ***[4]
op IsFinal : AgentState -> Bool . ***[5]
op IsOfCommunication : AgentState -> Bool . ***[6]
op IsElementary : AgentState -> Bool . ***[7]
op IsComposite : AgentState -> Bool . ***[8]
op IslimitedWaiting : AgentState -> Bool . ***[9]
op IsUnlimitedWaiting : AgentState -> Bool . ***[10]

var k : KindAgentState . var ns : NameAgentState .

eq IsInitial(AgentState(ns, k)) = if k == initial then true ***[11]
 else false fi .
eq IsFinal(AgentState(ns, k)) = if k == final then true ***[12]
 else false fi .
eq IsOfCommunication(AgentState(ns, k)) = if k == communication then true * **[13]
 else false fi .
eq IsElementary(AgentState(ns, k)) = if k == elementary then true ***[14]
 else false fi .
eq IsComposite(AgentState(ns, k)) = if k == composite then true ***[15]
 else false fi .
eq IslimitedWaiting(AgentState(ns, k)) = if k == limitedWaiting then true ***[16]
 else false fi .
eq IsUnlimitedWaiting(AgentState(ns, k)) = if k == UnlimitedWaiting then true ***[17]
 else false fi .
endfm)

342 Informatica 31 (2007) 337–350 F. Mokhati et al.

function determines if an action is destined to only one
agent's acquaintance, on the other hand the second
function indicates if it is necessary to send a message to
all agent's acquaintances. To describe the identification
mechanism of agents, we define the functional module
IDENTIFICATION (figure 9). Furthermore, an agent
must be endowed with a list of its acquaintances allowing
it to exchange messages with the other agents. We define
for it the functional module ACQUAINTANCE-LIST to
manage the lists of the agents’ acquaintances . Due to
imitation of space and a considerable size of this last
module, we don't present it in this paper.

Figure 8 : The functional module ACTION.

Figure 9 : The functional module

IDENTIFICATION.

To define an RCA diagram, we propose the RCA

module (figure 10). This module reuses the AGENT-
STATE and ACTION modules. It includes the definition
of two operations: TargetState that determines the target
state according to a state source and an action, and the
FeedBack operation used in the case where the treatment
accomplished by the agent takes place while toppling
between two states during a limited length. To each event
coming from a state source, such a function determines
the appropriate action that should be executed from the
target state as a feedback.

Figure 10 : The functional module RCA.

For the construction of an RCA diagram for an

application, we propose to extend the RCA module in
another USER-RCA module (figure 11). In this module,
the user must: mention all states constituting the RCA
diagram, define all possible actions, attach the actions in
the states using the TargetState function, determine the
actions constituting feedbacks using the Feedback

function, and finally specify for every communication
action whether it is sent to all (using the
IsSendingActionToAll function) or to only one (using
IsSendingActionToOnlyOne). An USER-RCA module
(figure 11) is associated with every category of agents
(playing the same role).

Figure 11 : The functional

Module USER-RCA.

To respect the interaction protocol used between
agents, we propose to realize a sort of link between the
RCA diagrams of the different agents. Basing on the
synchronization points, main characteristic of this
formalism, such a link consists in guaranteeing that at the
moment of the reception of a message, an agent can't
consume such a message except if it is in the
corresponding state of the state of the sender agent. An
agent that is in a communication state generates an
external event that causes an external transition at the
agent receiver. To receive such an event, this last must be
in a waiting state (limited or unlimited). Indeed, the
sending actions accomplished by a sender agent represent
events for receiver agent. Thus, there is a correspondence
between the sending actions of the sender and the events
received by the receiver. For it, the user must develop the
RCA-LINK module (figure 12) that contains the
correspondence on the one hand, between the different
states of agents and, on the other hand, between the
events generated by the sender and the events received
by the receiver.

 Figure 12 : The functional module RCA-LINK.

The object-oriented module ROLE-PROTOCOL
(figure 13) represents the main module. It imports the
RCA-LINK, IDENTIFICATION, and ACQUAINTANCE-
LIST modules. For the formal description of agents, we
propose the class Agent (line 2).

The definition of this class has as attributes PlayRole,
State, and AcqList, to contain in this order, the agent's
actual role, the current state of the agent, and the list of
its acquaintances. In addition to different types of states
defined in figure 7, we define in this module (figure 13)

(fmod ACTION is
protecting BOOL .
sort Action .
op IsSendingToAll : Action -> Bool .
op IsSendingToOnlyOne : Action -> Bool .
endfm)

(fmod IDENTIFICATION is
 sort AgentIdentifier .
 subsort AgentIdentifier < Oid .
 endfm)

(fmod RCA is
protecting ACTION .
protecting AGENT-STATE .
op TargetState : AgentState Action -> AgentState .
op FeedBack : Action -> Action .
endfm)

(fmod USER-RCA is
extending RCA .

User part
endfm)

(fmod RCA-LINK is
protecting USER-RCA .
…
op CorrespondingState : AgentState -> AgentState .
op CorrespondingAction : Action -> Action .

User part************
…
endfm)

A FORMAL FRAMEWORK SUPPORTING... Informatica 31 (2007) 337–350 343

the type EventType (line 1) relative to the two types of
events used in this formalism (Internal and External).
The appearance of an event is expressed by message
Event (line 3) having as parameters an agent, a role, the
type of the event, the agent's state, and an action.

In the RCA formalism, an agent changes state while
doing either an internal transition or an external one.
Figure 13 illustrates the necessary rewriting rules we
developed modeling the possible cases of transitions
(internal and external), while respecting the constraints
of this formalism described by the table given in figure 2.

Figure 13 : The object-oriented module ROLE-PROTOCOLE.

(omod ROLE-PROTOCOLE is
protecting RCA-LINK .
protecting IDENTIFICATION .
protecting ACQUAINTANCE-LIST .
sorts Agent Role EventType .

ops Internal External : -> EventType . ***[1]
class Agent | PlayRole : Role, State : AgentState, AcqList : acquaintanceList . ***[2]
Msg Event : Oid Role EventType AgentState Action -> Msg . ***[3]

**
vars A A1 : Oid . var S : AgentState . vars R R1 : Role .
var Act : Action . var ACL : acquaintanceList .

*******************************Possible cases of internal transition****************************
First case**********************************
crl[InternalTransitionCase1] : ***[4]
 Event(A, R, Internal, S, Act)
 < A : Agent | PlayRole : R, State : S, AcqList : ACL >
 =>
 < A : Agent | PlayRole : R, State : TargetState(S, Act), AcqList : ACL >
 if (IsInitial(S) or IsElementary(S) or IsComposite(S) or IslimitedWaiting(S)) .

Second case*********************************
crl[InternalTransitionCase2] : ***[5]
 Event(A, R, Internal, S, Act)
 < A : Agent | PlayRole : R, State : S, AcqList : ACL >
 =>
 < A : Agent | PlayRole : R, State : TargetState(S, Act), AcqList : TailA(ACL) >
 Event(HeadA(ACL), R1, External, CorrespondingState(S), CorrespondingAction (Act))
 if IsOfCommunication(S) and IsSendingToOnlyOne(Act) .

Third case***********************************
crl[InternalTransitionCase3] : ***[6]
 Event(A, R, Internal, S, Act)
 < A : Agent | PlayRole : R, State : S, AcqList : ACL >
 =>
 < A : Agent | PlayRole : R, State : S, AcqList : TailA(ACL) >
 Event(A, R, Internal, S, Act)
 Event(HeadA(ACL), R1, External, CorrespondingState(S), CorrespondingAction(Act))
 if IsOfCommunication(S) and IsSendingToAll(Act) and ACL =/= EmptyacquaintanceList .

*********************Possible case of External transition***
crl[ExternalTransition] : ***[7]
 Event(A, R, External, S, Act)
 < A : Agent | PlayRole : Initiator, State : S, AcqList : ACL >
 =>
 < A : Agent | PlayRole : Initiator, State : TargetState(S, Act), AcqList : ACL >
 if IsInitial(S) or IslimitedWaiting(S) or IsUnlimitedWaiting(S) .

**
…
endom)

344 Informatica 31 (2007) 337–350 F. Mokhati et al.

An agent doesn't do an internal transition except if it
is in one of the following states: initial, elementary,
composite, limited waiting or communication (see figure
2). In the first four states, an internal transition is
described by the rewriting rule (line 4) of figure 13. Such
a rule expresses that at the moment of the appearance of
an internal event, the agent consumes the message and
changes its state using the TargetState function defined
in the RCA module (figure 10). We treated separately the
case of a communication state, knowing that from this
state the agent generates an external event (sending of
message) allowing its acquaintances that are in waiting to
change their states. A message can be sent by an agent to
only one agent belonging to its acquaintance list or to all
its acquaintances.

The first case is described by the rule of the line 5.
Such a rule expresses, on the one hand, the consumption
of an internal event, on the other hand, the generation of
an external event sent to only one agent (here we adopt
the strategy choosing the agent that is at the head of the
acquaintances list using the HeadA function), if the agent
sender is in a communication state. The second case is
described by the rule of the line 6. Such a rule presents
the sending of a message by the agent A to all its
acquaintances. It presents a conditional loop. Indeed, it
allows browsing the acquaintance list (ACL) of the agent,
while using the two operations HeadA (determines the
head of the list) and TailA (determines the rest of the
list). Such a loop stops when the list is browsed
completely. An agent doesn't do an external transition
except if it is in a waiting state (limited either unlimited)
or sometimes in its initial state (see figure 2). This is
expressed by the rewriting rule of the line 7. When it
occurs an external event to an agent, this last changes its
state while doing an external transition, but the agent
must be in an initial or waiting state (limited either
unlimited).

6 Case Study : Auction Application
This section illustrates the application of our approach on
a concrete example. It is about a simple example of an
auction.

We have two kinds of agents: Auctioneer and Bidder.
Each auction involves one Auctioneer and several
Bidders.

The Auctioneer has a catalog of products. Before
beginning the auction, the Auctioneer sends the catalog
to all participants. Then, it begins the auction for all
products. The products are proposed sequentially to the
participants. Figures 14.a and 14.b describe the
representation of the Auctioneer and Bidder roles
respectively using the RCA formalism.

6.1 Application of the Translation Process
The formal description of the behaviors of the agents
whose roles are described using the RCA formalism
implies all defined modules previously with the
definition of the USER-RCA and RCA-LINK modules.
Figures 15 and 16 illustrate the defined modules
corresponding to the Auctioneer and Bidder roles
respectively. The correspondence between these roles is
presented in figure 17. Indeed, the two modules USER-
RCA1 (figure 15) and USER-RCA2 (figure 16) describe
the Auctioneer and Bidder roles respectively in the same
way. We limit ourselves to detail the USER-RCA1
module only.

In figure 15, we define the different states of the
Auctioneer agent (lines 1 and 2). For example, the state
AgentState(CommitmentDecision, communication)
means that the state named CommitmentDecision is a
communication state (see figure 14.a). The actions given
in figure 14.a are described by line 3. To determine the
target state (line 4) according to a source state and a
given action, we used the operation TargetState defined
in figure 10. If the Auctionner agent is in its
CommitmentDecision state, and the action to execute is
AcceptProposalSent, the target state of this transition
must be the final state EndI. To select the conditional
rule to execute when the agent is in a communication
state (see figure 13, lines 5 and 6), it is necessary to
know the type of the action. For example, the line 5 of
figure 15 indicates that the CFP-Sent action must be sent
by the Auctioneer to all Bidders.

AcceptProposal,
RejectProposals

Sent

StartI
TrueCond

EndI

Commitment
Decision

No
Proposal

Has
Proposals

OfferEvalu-ationI

Proposal
saved

Received
Proposal

Saving
Proposal

Waiting
Proposals

ExpiredTime
Out CFP Sent

Sending
CFP

Reject sentWaiting
Result

Receiving
Acceptance

Receiving
Reject

EndP

Proposal sent

StartP OfferEvaluationP
 ReceivingCFP

Figure 14 : Representation of the roles, Auctioneer and Bidder using RCA formalism.

A FORMAL FRAMEWORK SUPPORTING... Informatica 31 (2007) 337–350 345

Figure 15 : The module USE-RCA1 corresponding to the Auctioneer agent.

Figure 16 : The module USER-RCA2 corresponding to the Bidder agent.

fmod USER-RCA 1 is
extending RCA .

****************States of an Auctioneer***
ops StartI SendingCFP WaitingProposals OfferEvaluationI SavingProposal
 CommitmentDecision EndI : -> NameAgentState . ***[1]

ops AgentState(StartI, initial) AgentState(SendingCFP, communication)
 AgentState(WaitingProposals, limitedWaiting) AgentState(OfferEvaluationI, elementary)
 AgentState(SavingProposal, elementary) AgentState(CommitmentDecision, communication)
 AgentState(EndI, final) : -> AgentState . ***[2]

***************Actions to accomplish by an Auctioneer************************************
ops TrueCondition CFP-Sent ExpiredTimeOut NoProposal HasProposal ReceivedProposal
 ProposalSaved AcceptProposalSent RejectProposalSent : -> Action . ***[3]

***************Determination of the target state according to a state source and an action *********
eq TargetState(AgentState(StartI, initial), TrueCondition) = AgentState(SendingCFP, communication) .
…
eq TargetState(AgentState(CommitmentDecision, communication), AcceptProposalSent) =
 AgentState(EndI, final) . ***[4]
eq TargetState(AgentState(CommitmentDecision, communication), RejectProposalSent) =
 AgentState(EndI, final) .

************* Determination of the type of an action ***************************************
eq IsSendingToAll(CFP-Sent) = true . ***[5]
eq IsSendingToOnlyOne(AcceptProposalSent) = true .

endfm

fmod USER-RCA2 is
extending RCA .

****************States of a Bidder**
ops StartP OfferEvaluationP WaitingResult EndP : -> NameAgentState .

ops AgentState(StartP, initial) AgentState(OfferEvaluationP, communication)
 AgentState(WaitingResult, UnlimitedWaiting) AgentState(EndP, final) : -> AgentState .

***************Action to accomplish by a Bidder***************************************
ops ReceivingCFP ProposalSent RejectSent ReceivingAcceptance ReceivingReject : -> Action .

****************Determination of the target state according to a state source and an action *****
eq TargetState(AgentState(StartP, initial), ReceivingCFP) = AgentState(OfferEvaluationP, communication) .
…
eq TargetState(AgentState(WaitingResult, UnlimitedWaiting), ReceivingAcceptance) = AgentState(EndP, final) .
eq TargetState(AgentState(WaitingResult, UnlimitedWaiting), ReceivingReject) = AgentState(EndP, final) .

*************** Determination of the type of an action************************************
eq IsSendingToOnlyOne(ProposalSent) = true .
eq IsSendingToOnlyOne(RejectSent) = true .

endfm

346 Informatica 31 (2007) 337–350 F. Mokhati et al.

The RCA-LINK module of figure 17, presents a
correspondence on the one hand, between the different
states of the agents Auctioneer and Bidder and, on the
other hand, between the events they exchange. For
example, if the Auctioneer agent is in its communication
state SendCFP, the Bidder must be in its initial state
StartP (line 1). In the same way, if the Bidder is in its
communication state OfferEvaluationP (line 3), the
Auctioneer must wait its decision. Indeed, an external

event for an agent receiver corresponds to a message sent
by a sender agent. For example, when the Auctioneer
throws a call-for-proposal (CFP-Sent), the Bidder agent
receives the call-for-proposal event (ReceivingCFP).
This is expressed by the rule of the line 2. Also, when the
Bidder accepts to propose, it sends its proposition
(ProposalSent), and of the other side, the Auctionner
receives its proposition (ReceivedProposal) (line 4).

Figure 17 : The module RCA-LINK.

Figure 17 : The module RCA-LINK.

6.2 Validation of the Generated
Description

The rewriting logic offers a great flexibility in terms of
simulation of a specification, in particular, concerning
the choice of the initial configuration. This choice plays a
primordial role in the validation of the description of a

system. Using all the system’s description, we can
validate a part of the system without involving the rest.
For a validation of the AIP given by figure 14, we
consider two essential cases: the case where there are
Bidders that accept to propose and others do not, and the
case where all Bidders refuse to propose. For the first
case, we propose the following initial configuration :

Figure 18 : Initial configuration.

fmod RCA-LINK is
protecting RCA1 .
protecting RCA2 .
sort EventType .

ops Internal External : -> EventType .
op CorrespondingState : AgentState -> AgentState .
op CorrespondingAction : Action -> Action .

************************************Auctioneer Part***********************************

eq CorrespondingState(AgentState(SendingCFP, communication)) = AgentState(StartP, initial) . ***[1]
eq CorrespondingState(AgentState(CommitmentDecision, communication)) =
 AgentState(WaitingResult, UnlimitedWaiting) .
…
eq CorrespondingAction(CFP-Sent) = ReceivingCFP . ***[2]
eq CorrespondingAction(AcceptProposalSent) = ReceivingAcceptance .

************************************Bidder Part***

eq CorrespondingState(AgentState(OfferEvaluationP, communication)) =
 AgentState(WaitingProposals, limitedWaiting) . ***[3]
…
eq CorrespondingAction(ProposalSent) = ReceivedProposal . ***[4]

endfm

< "Auctioneer" : Agent | PlayRole : Initiator, State : AgentState(StartI, initial), AcqList : ("Bidder1" :
 ("Bidder2" : “Bidder3”)) >
< "Bidder1" : Agent | PlayRole : Participant, State : AgentState(StartP, initial), AcqList : "Auctioneer" >
< "Bidder2" : Agent | PlayRole : Participant, State : AgentState(StartP, initial), AcqList : "Auctioneer" >
< "Bidder3" : Agent | PlayRole : Participant, State : AgentState(StartP, initial), AcqList : "Auctioneer" >
Event("Auctioneer", Initiator, Internal, AgentState(StartI, initial), TrueCondition)
Event("Auctioneer", Initiator, Internal, AgentState(SendingCFP, communication), CFP-Sent)
Event("Bidder1", Participant, Internal, AgentState(OfferEvaluationP, communication), ProposalSent)
Event("Bidder2", Participant, Internal, AgentState(OfferEvaluationP, communication), ProposalSent)
Event("Bidder3", Participant, Internal, AgentState(OfferEvaluationP, communication), RejectSent) .

A FORMAL FRAMEWORK SUPPORTING... Informatica 31 (2007) 337–350 347

We define an initial configuration including an agent
initiator '' Auctionneer '', and three agents participants
("Bidder1", "Bidder2", "Bidder 3"). In the beginning,
every agent is in its initial state. From its
OfferEvaluationP state a Bidder agent can send a
proposition as it can refuse to propose. In the

configuration of figure 18, Bidder1 and Bidder2 send
their propositions whereas Bidder3 refuses to propose
while sending a reject. The unlimited rewriting (without
indicating the number of the rewriting steps) of this
configuration gives the result illustrated by figure 19.

Figure 19: Auctioneer and Bidders in their final states.

After it sends a call for proposal to all Bidders, the

agent Auctioneer begins to receive the proposal from
Bidders agents. Once the considered deadline is expired
(internal event) the initiator throws its evaluation process
while choosing the most appropriate proposition (here we
adopt the strategy based on the first proposing).

So, the Auctioneer sends to the chosen Bidder (here
"Bidder1") an acceptance, and to the other (here
"Biddert2") a reject. Bidder3 is not concerned because it
refused to propose and therefore passes to its final state
(see figure 14.b). For the second case, we propose the
initial configuration of the following figure:

Figure 20 : Initial configuration.

The configuration of figure 20 looks like the one of
figure 18 except that the Bidders refuse to propose. The
unlimited rewriting (without indicating the number of the

rewriting steps) of this configuration gives the result
illustrated by figure 21.

Figure 21: Auctioneer and Bidders in their final states.

Every participant who refuses to propose passes to

the EndP state (see figure 14.b). In the same way, the
initiator waits for the expiration of the deadline and as it
doesn't receive any proposition during this interval of
time, it passes on its turn in the EndP state (see figure
14.a). Indeed, the configuration of figure 21 seems to be
the same that the one of figure 19. It is due to the fact
that in the RCA formalism an agent can have only one
final state. However, such configurations are different
(for example, the EndP state of agent Bidder1 in figure

19 is a success state, but in figure 21 such a state presents
a failure).

6.3 Implementation
Figure 22 illustrates a part of the code we developed. It
visualizes the rewriting rule that describes the reception
of an external event by the agent A1 who plays the
Participant role and exists in the state S. This rule also
expresses the transition from the state S of the agent A1
to another target state determined by the function

< "Auctioneer" : Agent | PlayRole : Initiator, State : AgentState(EndI, final), AcqList :
 ("Bidder1" : ("Bidder2" : "Bidder3") >
< "Bidder1" : Agent | PlayRole : Participant, State : AgentState(EndP, final), AcqList : "Auctioneer" >
< "Bidder2" : Agent | PlayRole : Participant, State : AgentState(EndP, final), AcqList : "Auctioneer" >
< "Bidder3" : Agent | PlayRole : Participant, State : AgentState(EndP, final), AcqList : "Auctioneer" >

 < "Auctioneer" : Agent | PlayRole : Initiator, State : AgentState(StartI, initial), AcqList :
 ("Bidder1" : ("Bidder2" : “Bidder3”)) >
 < "Bidder1" : Agent | PlayRole : Participant, State : AgentState(StartP, initial), AcqList : "Auctioneer" >
 < "Bidder2" : Agent | PlayRole : Participant, State : AgentState(StartP, initial), AcqList : "Auctioneer" >
 < "Bidder3" : Agent | PlayRole : Participant, State : AgentState(StartP, initial), AcqList : "Auctioneer" >
 Event("Auctioneer", Initiator, Internal, AgentState(StartI, initial), TrueCondition)
 Event("Auctioneer", Initiator, Internal, AgentState(SendingCFP, communication), CFP-Sent)
 Event("Bidder1", Participant, Internal, AgentState(OfferEvaluationP, communication), RejectSent)
 Event("Bidder2", Participant, Internal, AgentState(OfferEvaluationP, communication), RejectSent)
 Event("Bidder3", Participant, Internal, AgentState(OfferEvaluationP, communication), RejectSent) .

< "Auctioneer" : Agent | PlayRole : Initiator, State : AgentState(EndI, final), AcqList :
 ("Bidder1" : ("Bidder2" : "Bidder3") >
< "Bidder1" : Agent | PlayRole : Participant, State : AgentState(EndP, final), AcqList : "Auctioneer" >
< "Bidder2" : Agent | PlayRole : Participant, State : AgentState(EndP, final), AcqList : "Auctioneer" >
< "Bidder3" : Agent | PlayRole : Participant, State : AgentState(EndP, final), AcqList : "Auctioneer" >

348 Informatica 31 (2007) 337–350 F. Mokhati et al.

TargetState(S, Act). The triggering of such a transition
only takes place if the agent A1 is in one of waiting
(limited or unlimited) or initial states. This is expressed

in this conditional rule by the boolean functions
IsUnlimitedWaiting(S), IslimitedWaiting(S) and
IsInitial(S) respectively.

Figure 22 : Part of the developed code.

Furthermore, figure 22 shows the limited rewriting
(after 20 rewriting steps) of an initial configuration. In
this configuration, we have the agent '' Auctioneer ''
playing the Initiator role, and the three agents '' Bidder1
'', '' Bidder2 '' and '' Bidder3 '' each playing the
Participant role. All agents are in the departure in their
initial states (StartI for agent Auctioneer and StartP for
the Bidders). We suppose, in this initial configuration,
that after the sending of the call for proposal by the
Auctionner to all Bidders, these last send propositions in

the case where they are in state of evaluation of proposal
OfferEvaluationP. This state is a communication state
(see figure 14).

The result of rewriting of such an initial configuration
is illustrated by figure 23. The Auctioneer throws its
decision process, and all Bidders wait for an answer from
it. The agent Auctioneer is in its elementary state
OfferEvaluationI and all Bidders are in their unlimited
waiting states WaitingResult.

Figure 23 : Result of limited rewriting (after 20 steps) of the initial configuration.

7 Conclusions and Future Work
The RCA formalism allows specifying the roles
protocols and is used to describe agents’ behavior.
Compared to others formalisms, RCA allows recognizing
the synchronization points between dual protocols. As
for the other existing formalisms, RCA is not endowed

yet with a formal semantics [28]. Furthermore, it only
allows a partial formalization of MAS [17, 22].

In this article, we proposed a formal framework
supporting the translation of interactions between agents,
specified using the RCA formalism, in a Maude
specification. The translation process is based on the
RCA graphs. All the concepts used by the RCA

A FORMAL FRAMEWORK SUPPORTING... Informatica 31 (2007) 337–350 349

formalism are supported by Maude. Based on rewriting
logic, the formal and object-oriented language Maude
supports formal specification and programming for a
wide range of applications. The result of the translation
procures a formal description of the interactions between
agents preserving the consistency in their behavior. It
offers a solid basis for their verification and validation
process. The generated Maude specifications are flexible
and remain open to extension.

Maude is supported by a tool. This allowed us, as a
first experiment, in addition to the modeling, to perform
a validation (based on a simulation) of our approach.
Furthermore, we work on the extension of our approach
in order to integrate the possibilities offered by the
Maude language (model-checker) to verify some
properties of the interactions between agents described
using RCA graphs and translated in Maude.

References
[1] Bakam I., Kordon F., Le Page C., Bousquet F.

« Formalization of a Spatialized Multiagent Model
Using Coloured Petri Nets for the Study of a
Hunting Management System ». First International
Workshop, FAABS 2000, Greenbelt, MD, USA,
April 2000. FAABS 2000.

[2] Bruni R., and Meseguer J., « Generalized rewrite
theories ». In J. C. M. Baeten, J. K. Lenstra, J.
Parrow, and G. J. Woeginger, editors, Proc. 30th
International Colloquium on Automata, Languages
and Programming (ICALP 2003), volume 2719 of
Lecture Notes in Computer Science, pages 252-266.
Springer, 2003.

[3] Clavel M., and al. “Maude : Specification and
Programming in Rewriting Logic”. Internal report,
SRI International, 1999.

[4] Cloutier L. «Une approche multi-agents par
conventions et contrats pour la coordination de
l'entreprise manufacturière réseau », Université de
Droit d'Economie et des Sciences d'Aix-Marseille
III, DIAM-IUSPIM, Marseille, 1999.

[5] Cost R., and al. «Modeling Agent Conversations
with colored Petri Nets», dans Working Notes of
the Workshop on Specifying and Implementing
Conversation Policies, Autonomous Agents’99,
Seattle, Washington, mai 1999.

[6] El Fallah-Seghrouchni A., et Mazouzi H., «Une
démarche méthodologique pour l’ingénierie des
protocoles d’interaction», in. Actes Ingénierie des
systèmes multi-agents, JFIADSMA’99, 8-10
novembre 1999, Saint-Gilles, Ile de la Réunion.

[7] Guessoum Z. «Modèles et Architectures d’Agents
et de Systèmes Multi-Agents Adaptatifs ». Dossier
d’habilitation à diriger des recherches de
l’Université Pierre et Marie Curie. Décembre 2003.

[8] Huget M.P., «Model Checking Agent UML
Protocol Diagrams ». Technical report ULCS-02-
012 from the department of computer science,
University of Liverpool. Version 2002/04/16.

[9] Huget M.P., and Odell J. «Representing Agent
Interaction Protocols with Agent UML »

AAMAS'04, July 19-23, 2004, New York, New
York, USA.

[10] Lemaître C., Prat, X., Magnin, L. et Dury A.
«Description, programmation et validation
d'interactions par Coupled Augmented Transition
Network(CATNs) ». In Actes des Secondes
Journées Francophones sur les Modèles Formels
d'Interactions (MFI’03). Lille, France, 20-23 mai
2003.

[11] Mazouzi H., El fallah Seghrouchni A.,, and Haddad
S., «Open protocol design for complex interaction
in multi-agent systems ». In Proceedings of the first
international joint conference on Autonomous agent
and multi-agent systems, pages 517-526. ACM
Press, 2002.

[12] McCombs T., «Maude 2.0 Primer, Version 1.0».
Internal report, SRI International, 2003.

[13] Meseguer J., «Rewriting as a unified model of
concurrency» In Proceedings of the Concur’90
Conference, Amsterdam, Pg 384-400, Springer
LNCS Vol. 458, 1990.

[14] Meseguer J., «Logical Theory of Concurrent
Objects and its Realization in the Maude Language»
In G. Agha, P. Wegner, and A. Yonezawa, Editors,
Research Directions in Object-Based Concurrency.
MIT Press, 1992.

[15] Meseguer J., «Rewriting Logic and Maude : a
Wide-Spectrum Semantic Framework for Object-
Based Distributed Systems» In S. Smith and C. L.
Talcott, editors, Formal Methods for Open Object-
Based Distributed Systems, FMOODS2000, 2000.

[16] Mokhati F., Boudiaf N., Badri L., & Badri M.,
«Generating Maude Specification from AUML
Diagrams: Toward A Systematic Approach». In
Proc of CSITeA-04 conference. Cairo, Egypt.
December 27-29, 2004.

[17] Mokhati F., Boudiaf N., Badri M., & Badri L.,
«DIMA-Maude: Toward a Formal Framework for
Specifying and Validating DIMA Agents». In Proc
of the MOCA’04 conference. Arrhus, Denmark,
October 11-13, 2004. pp. 169-187.

[18] Nathalie F., «Modélisation et simulation multi-
agents d'écosystèmes antropisés : une application à
la gestion hydraulique en grande Camargue»,
Université de Droit d'Economie et des Sciences
d'Aix-Marseille III, IUSPIM-DIAM, Marseille,
2001.

[19] Odell J., Parunak H.V.D., Bauer B., «Representing
agent Interaction protocol In UML» conférence
AAAI Agents 2000, Barcelone, 3-7 juin 2000.

[20] Odell J., Parunak H. V. D., Bauer B., «Representing
agent Interaction protocol In UML», Agent
Oriented Software Enginering, Paolo Ciancarini and
Michael Wooldridge (eds.), Springer-Verlag,
Berlin, 2001, pp. 121-140.

[21] Olveczky P.C., «Modeling and Analyzing Protocols
in Maude» 8th Brazilian Symposium on
Programming Languages (SBLP'04). May 26-28,
2004.

[22] Paurobally S, Cunningham J., «Achieving Common
Interaction Protocols in Open Agent

350 Informatica 31 (2007) 337–350 F. Mokhati et al.

Environments», 2nd international workshop on
Challenges in Open Agent Environments, AAMAS
2003, Melbourne, Australia 14-18th July 2003.

[23] Paurobally S, Cunningham J, and Jennings N R.,
«Developing Agent Interaction Protocols Using
Graphical and Logical Methodologies» in Proc.
AAMAS03 PROMAS Workshop on Programming
Multi-Agent Systems , 2003.

[24] [24]Paurobally S., Cunningham J., and Jennings, N.
R., «Verifying the contract net protocol: a case
study in interaction protocol and agent
communication semantics». In Proceedings of 2nd
International Workshop on Logic and
Communication in Multi-Agent Systems, Nancy,
France 2004, pp. 98-117.

[25] Pham V. T., Laurent M., Houari S., «Adaptation
dynamique des systèmes multi-agents basée sur le
concept de méta-CATN». In Actes de la Deuxième
Conférence Internationale Associant Chercheurs
Vietnamiens et Francophones en Informatique,
Hanoï Vietnam, 2-5 Février 2004.

[26] Toivonen S. and al. «Using Interaction Protocols in
Distributed Construction Processes». In Seruca, I.,
Filipe, J., Hammoudi, S., and Cordeiro, J. (Eds.):
Proceedings of the 6th International Conference on
Enterprise Information Systems (ICEIS'04), Porto,
Portugal, April 2004, pp. 344—349

[27] Tranvouez E., Espinasse B., «Protocoles de
coopération pour le réordonnancement d’atelier». In
Actes des journées francophones d’Intelligence
Artificielle Distribuée et Systèmes Multi-Agents
(JFIADSMA’99) à Saint-Gilles, île de la Réunion,
novembre 1999, Gleizes J.-P., Marcenac P., Ed.
Hermès, 1999.

[28] Tranvouez E., «IAD et ordonnancement : une
approche coopérative du réordonnancement par
systèmes mulit-agents». Thèse de doctorat.
Université de Droit, d'Economie et des Sciences
d'Aix-Marseille III. 2001

[29] Wooldridge M., and al., «A Methodology for
Agent-Oriented Analysis and Design». Proc. 3rd
Int. Conf. On Autonomous Agents (Agents99),
Seatle, WA, 1999.

[30] Wooldridge M., and al., «The gaia methodology for
agent-oriented analysis and design». Autonomous
Agent and Multi-agent Systems, 3(3):285-312,
2000.

Informatica 31 (2007) 351–352 351

Multi-resolution Parameterization for Texture Classification and Its Use in the
Scintigraphic Image Analysis

Luka Šajn
Faculty of computer and information science, Tržaška 25, SI-1000 Ljubljana
Slovenia
E-mail: luka.sajn@fri.uni-lj.si
http://www.fri.uni-lj.si/file/75244/phd-sajn.pdf

Thesis Summary

Keywords: texture analysis, association rules, texture classification, multi-resolution texture parameterization, medical
image analysis, scintigraphy analysis, whole-body bone scintigraphy segmentation

Received: July 17, 2007

Article presents the abstract of the dissertation [4] which studies multi-resolution approach for texture
parameterization.

Povzetek: Članek predstavlja povzetek disertacije [4], ki preučuje uporabo večresolucijskega pristopa pri
parametrizaciji tekstur.

1 Introduction
This dissertation [4, 2] addresses multi-resolution texture
parameterization and proposes an original algorithm ARes
for finding more informative resolutions in the sense of
classification accuracy. ARes is designed to be used in
combination with the existing parameterization algorithm
ArTex [3]. The results obtained using the ArTex parameter-
ization algorithm in combination with ARes are compared
with standard parameterization methods such as Gabor fil-
ters, Haar and Laws wavelets and Image Processor. Pri-
mary application areas include whole-body bone scintigra-
phy for pathology detection and heart scintigraphy for di-
agnosing ishaemic heart disease.

2 Thesis overview
The idea on multi-resolution approach is based on the al-
gorithm SIFT [1]. SIFT is a computer vision algorithm
for extracting distinctive features from images, to be used
in algorithms for tasks like matching different views of an
object or scene and object recognition. The major step in
the computation of the image features is scale-space ex-
trema detection, which can be directly applied to the search
of resolutions at which a geometric parameterization algo-
rithm captures most textural information inside a certain
region. The observed pixel neighborhood size in case of
geometric algorithms is limited due to the time and com-
putational complexity. To extract most rules inside a cer-
tain region the resolutions at which the most extremes take
place should be used. This enables the parameterization al-
gorithm to describe local characteristics which can be cov-
ered with the predefined region size.

Our study explores the multi-resolution texture parame-
terization approach based on the image content with regard
to the parameterization quality, especially in case of the Ar-
Tex algorithm. ARes finds resolutions at which most local
intensity peaks appear. It searches the scale space with a
certain step calculated from the attributes of the used pa-
rameterization algorithm. ARes is, to our knowledge, the
first algorithm to detect resolutions depending on the prop-
erties of the learning set for improving the classification
quality. The tested parameterization algorithms (geometric
algorithms, signal processing methods and statistical meth-
ods) using multi-resolution approach have demonstrated
significant improvements in results over one scale parame-
terization. This supports the hypothesis that the resolution
selection is important for texture parameterization.

2.1 Applications

For the multi-resolution parameterization applicative do-
main two medical cases have been used, sequential diag-
nostics of coronary artery disease (CAD) and diagnostics
of whole-body bone scintigraphy.

The whole-body scintigraphy segmentation process is
presented which uses reference points detected with lo-
cal cumulative uptake extremes. Some standard image
processing algorithms were tailored and used in combi-
nation to achieve the best reference point detection accu-
racy on scintigraphic images. In order to work satisfac-
torily, the presence of artifacts, pathologies and poor res-
olution of scintigraphic images, compared to radiography,
requires algorithms to use as much background knowledge
on anatomy and spatial relations of bones as possible (see
example in fig. 2.1). This combination gives good results

352 Informatica 31 (2007) 351–352 L. Šajn

and we expect that further studies on automatic scintigram
diagnostics using reference points for image segmentation
will improve the accuracy and reliability of results regard-
ing previous approaches.

Figure 1: Bone detection in pelvic region.

In the case of coronary artery disease we have shown
that multi-resolution ArTex parameterization using ma-
chine learning techniques can be successfully used as an
intelligent tool for image evaluation, as well as as a part of
the sequential diagnostic process. Automatic image param-
eterization and machine learning methods can help physi-
cians to evaluate medical images and thus improve their
combined performance (in terms of accuracy, sensitivity
and specificity).

3 Results and conclusion
The developed algorithm ARes in combination with the
ArTex algorithm achieves statistically significant improve-
ments over single resolution and also over equidistant res-
olutions. ARes in many cases also improves the perfor-
mance of other parameterization algorithms in compari-
son to single resolution approach, whereas compared to the
equidistant resolution approach it usually shows no signif-
icant improvement. We have confirmed that the use of the
equidistant resolution space when parameterizing textures
significantly outperforms the use of the exponential resolu-
tion space, which is used by majority of authors.

The presented computer-aided system for bone scintig-
raphy is a step towards automating the routine medical pro-
cedures. This approach can be used as an additional tool for
radiologists as it can point out some unregistered patholo-
gies or even give some new insight on the patient condi-
tion. The reference point detection is evaluated on a clini-
cal data-set and two methods for bone segmentation using
the proposed reference points are presented.

The most significant contribution of our CAD study is
the improvement of the predictive power of the sequential
diagnostic process. Almost 10% improvement of positive
and negative diagnosis of patients who would not need to
be examined with costly additional tests, represents a sig-
nificant contribution in quality and potential rationalization

of the existing CAD diagnostic procedures.

References
[1] D. Lowe (2003) Distinctive image features from

scale-invariant keypoints, International Journal of
Computer Vision, pp. 91–110.

[2] L. Šajn, M. Kukar, I. Kononenko, M. Milčinski
(2005) Computerized segmentation of whole- body
bone scintigrams and its use in automated diagnostics,
Computer Methods and Programs in Biomedicine,
80(1):47–55.

[3] M. Bevk (2005) Feature extraction from textures with
association rules, PhD Thesis, University of Ljubl-
jana, Faculty of Computer and Information Science.

[4] L. Šajn (2007) Multi-resolution parameterization for
texture classification and its use in the scintigraphic
image analysis, PhD Thesis, University of Ljubljana,
Faculty of Computer and Information Science.

Informatica 31 (2007) 353

JOŽEF STEFAN INSTITUTE

Jožef Stefan (1835-1893) was one of the most prominent
physicists of the 19th century. Born to Slovene parents,
he obtained his Ph.D. at Vienna University, where he was
later Director of the Physics Institute, Vice-President of the
Vienna Academy of Sciences and a member of several sci-
entific institutions in Europe. Stefan explored many areas
in hydrodynamics, optics, acoustics, electricity, magnetism
and the kinetic theory of gases. Among other things, he
originated the law that the total radiation from a black
body is proportional to the 4th power of its absolute tem-
perature, known as the Stefan–Boltzmann law.

The Jožef Stefan Institute (JSI) is the leading indepen-
dent scientific research institution in Slovenia, covering a
broad spectrum of fundamental and applied research in the
fields of physics, chemistry and biochemistry, electronics
and information science, nuclear science technology, en-
ergy research and environmental science.

The Jožef Stefan Institute (JSI) is a research organisation
for pure and applied research in the natural sciences and
technology. Both are closely interconnected in research de-
partments composed of different task teams. Emphasis in
basic research is given to the development and education of
young scientists, while applied research and development
serve for the transfer of advanced knowledge, contributing
to the development of the national economy and society in
general.

At present the Institute, with a total of about 800 staff,
has 600 researchers, about 250 of whom are postgraduates,
nearly 400 of whom have doctorates (Ph.D.), and around
200 of whom have permanent professorships or temporary
teaching assignments at the Universities.

In view of its activities and status, the JSI plays the role
of a national institute, complementing the role of the uni-
versities and bridging the gap between basic science and
applications.

Research at the JSI includes the following major fields:
physics; chemistry; electronics, informatics and computer
sciences; biochemistry; ecology; reactor technology; ap-
plied mathematics. Most of the activities are more or
less closely connected to information sciences, in particu-
lar computer sciences, artificial intelligence, language and
speech technologies, computer-aided design, computer ar-
chitectures, biocybernetics and robotics, computer automa-
tion and control, professional electronics, digital communi-
cations and networks, and applied mathematics.

The Institute is located in Ljubljana, the capital of the in-
dependent state of Slovenia (or S♥nia). The capital today
is considered a crossroad between East, West and Mediter-

ranean Europe, offering excellent productive capabilities
and solid business opportunities, with strong international
connections. Ljubljana is connected to important centers
such as Prague, Budapest, Vienna, Zagreb, Milan, Rome,
Monaco, Nice, Bern and Munich, all within a radius of 600
km.

From the Jožef Stefan Institute, the Technology park
“Ljubljana” has been proposed as part of the national strat-
egy for technological development to foster synergies be-
tween research and industry, to promote joint ventures be-
tween university bodies, research institutes and innovative
industry, to act as an incubator for high-tech initiatives and
to accelerate the development cycle of innovative products.

Part of the Institute was reorganized into several high-
tech units supported by and connected within the Technol-
ogy park at the Jožef Stefan Institute, established as the
beginning of a regional Technology park "Ljubljana". The
project was developed at a particularly historical moment,
characterized by the process of state reorganisation, privati-
sation and private initiative. The national Technology Park
is a shareholding company hosting an independent venture-
capital institution.

The promoters and operational entities of the project are
the Republic of Slovenia, Ministry of Higher Education,
Science and Technology and the Jožef Stefan Institute. The
framework of the operation also includes the University of
Ljubljana, the National Institute of Chemistry, the Institute
for Electronics and Vacuum Technology and the Institute
for Materials and Construction Research among others. In
addition, the project is supported by the Ministry of the
Economy, the National Chamber of Economy and the City
of Ljubljana.

Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Tel.:+386 1 4773 900, Fax.:+386 1 251 93 85
WWW: http://www.ijs.si
E-mail: matjaz.gams@ijs.si
Public relations: Polona Strnad

Informatica 31 (2007)

INFORMATICA
AN INTERNATIONAL JOURNAL OF COMPUTING AND INFORMATICS

INVITATION, COOPERATION

Submissions and Refereeing

Please submit an email with the manuscript to one of the editors
from the Editorial Board or to the Managing Editor. At least two
referees outside the author’s country will examine it, and they are
invited to make as many remarks as possible from typing errors to
global philosophical disagreements. The chosen editor will send
the author the obtained reviews. If the paper is accepted, the editor
will also send an email to the managing editor. The executive
board will inform the author that the paper has been accepted, and
the author will send the paper to the managing editor. The paper
will be published within one year of receipt of email with the
text in Informatica MS Word format or Informatica LATEX format
and figures in .eps format. Style and examples of papers can be
obtained from http://www.informatica.si. Opinions, news, calls
for conferences, calls for papers, etc. should be sent directly to
the managing editor.

QUESTIONNAIRE
Send Informatica free of charge

Yes, we subscribe

Please, complete the order form and send it to Dr. Drago Torkar,
Informatica, Institut Jožef Stefan, Jamova 39, 1000 Ljubljana,
Slovenia. E-mail: drago.torkar@ijs.si

ORDER FORM – INFORMATICA

Name: .

Title and Profession (optional): .

. .

Home Address and Telephone (optional): .

. .

Since 1977, Informatica has been a major Slovenian scientific
journal of computing and informatics, including telecommunica-
tions, automation and other related areas. In its 16th year (more
than ten years ago) it became truly international, although it still
remains connected to Central Europe. The basic aim of Infor-
matica is to impose intellectual values (science, engineering) in a
distributed organisation.

Informatica is a journal primarily covering the European com-
puter science and informatics community - scientific and educa-
tional as well as technical, commercial and industrial. Its basic
aim is to enhance communications between different European
structures on the basis of equal rights and international referee-
ing. It publishes scientific papers accepted by at least two ref-
erees outside the author’s country. In addition, it contains in-
formation about conferences, opinions, critical examinations of
existing publications and news. Finally, major practical achieve-
ments and innovations in the computer and information industry
are presented through commercial publications as well as through
independent evaluations.

Editing and refereeing are distributed. Each editor can conduct
the refereeing process by appointing two new referees or referees
from the Board of Referees or Editorial Board. Referees should
not be from the author’s country. If new referees are appointed,
their names will appear in the Refereeing Board.

Informatica is free of charge for major scientific, educational and
governmental institutions. Others should subscribe (see the last
page of Informatica).

Office Address and Telephone (optional): .

. .

E-mail Address (optional): .

Signature and Date: .

Informatica WWW:

http://www.informatica.si/

Referees:

Witold Abramowicz, David Abramson, Adel Adi, Kenneth Aizawa, Suad Alagić, Mohamad Alam, Dia Ali, Alan
Aliu, Richard Amoroso, John Anderson, Hans-Jurgen Appelrath, Iván Araujo, Vladimir Bajič, Michel Barbeau,
Grzegorz Bartoszewicz, Catriel Beeri, Daniel Beech, Fevzi Belli, Simon Beloglavec, Sondes Bennasri, Francesco
Bergadano, Istvan Berkeley, Azer Bestavros, Andraž Bežek, Balaji Bharadwaj, Ralph Bisland, Jacek Blazewicz,
Laszlo Boeszoermenyi, Damjan Bojadžijev, Jeff Bone, Ivan Bratko, Pavel Brazdil, Bostjan Brumen, Jerzy
Brzezinski, Marian Bubak, Davide Bugali, Troy Bull, Sabin Corneliu Buraga, Leslie Burkholder, Frada Burstein,
Wojciech Buszkowski, Rajkumar Bvyya, Giacomo Cabri, Netiva Caftori, Particia Carando, Robert Cattral, Jason
Ceddia, Ryszard Choras, Wojciech Cellary, Wojciech Chybowski, Andrzej Ciepielewski, Vic Ciesielski, Mel Ó
Cinnéide, David Cliff, Maria Cobb, Jean-Pierre Corriveau, Travis Craig, Noel Craske, Matthew Crocker, Tadeusz
Czachorski, Milan Češka, Honghua Dai, Bart de Decker, Deborah Dent, Andrej Dobnikar, Sait Dogru, Peter
Dolog, Georg Dorfner, Ludoslaw Drelichowski, Matija Drobnič, Maciej Drozdowski, Marek Druzdzel, Marjan
Družovec, Jozo Dujmović, Pavol Ďuriš, Amnon Eden, Johann Eder, Hesham El-Rewini, Darrell Ferguson, Warren
Fergusson, David Flater, Pierre Flener, Wojciech Fliegner, Vladimir A. Fomichov, Terrence Forgarty, Hans Fraaije,
Stan Franklin, Violetta Galant, Hugo de Garis, Eugeniusz Gatnar, Grant Gayed, James Geller, Michael
Georgiopolus, Michael Gertz, Jan Goliński, Janusz Gorski, Georg Gottlob, David Green, Herbert Groiss, Jozsef
Gyorkos, Marten Haglind, Abdelwahab Hamou-Lhadj, Inman Harvey, Jaak Henno, Marjan Hericko, Henry
Hexmoor, Elke Hochmueller, Jack Hodges, John-Paul Hosom, Doug Howe, Rod Howell, Tomáš Hruška, Don
Huch, Simone Fischer-Huebner, Zbigniew Huzar, Alexey Ippa, Hannu Jaakkola, Sushil Jajodia, Ryszard
Jakubowski, Piotr Jedrzejowicz, A. Milton Jenkins, Eric Johnson, Polina Jordanova, Djani Juričič, Marko
Juvancic, Sabhash Kak, Li-Shan Kang, Ivan Kapustøk, Orlando Karam, Roland Kaschek, Jacek Kierzenka, Jan
Kniat, Stavros Kokkotos, Fabio Kon, Kevin Korb, Gilad Koren, Andrej Krajnc, Henryk Krawczyk, Ben Kroese,
Zbyszko Krolikowski, Benjamin Kuipers, Matjaž Kukar, Aarre Laakso, Sofiane Labidi, Les Labuschagne, Ivan
Lah, Phil Laplante, Bud Lawson, Herbert Leitold, Ulrike Leopold-Wildburger, Timothy C. Lethbridge, Joseph
Y-T. Leung, Barry Levine, Xuefeng Li, Alexander Linkevich, Raymond Lister, Doug Locke, Peter Lockeman,
Vincenzo Loia, Matija Lokar, Jason Lowder, Kim Teng Lua, Ann Macintosh, Bernardo Magnini, Andrzej
Małachowski, Peter Marcer, Andrzej Marciniak, Witold Marciszewski, Vladimir Marik, Jacek Martinek, Tomasz
Maruszewski, Florian Matthes, Daniel Memmi, Timothy Menzies, Dieter Merkl, Zbigniew Michalewicz, Armin
R. Mikler, Gautam Mitra, Roland Mittermeir, Madhav Moganti, Reinhard Moller, Tadeusz Morzy, Daniel Mossé,
John Mueller, Jari Multisilta, Hari Narayanan, Jerzy Nawrocki, Rance Necaise, Elzbieta Niedzielska, Marian
Niedq’zwiedziński, Jaroslav Nieplocha, Oscar Nierstrasz, Roumen Nikolov, Mark Nissen, Jerzy Nogieć, Stefano
Nolfi, Franc Novak, Antoni Nowakowski, Adam Nowicki, Tadeusz Nowicki, Daniel Olejar, Hubert Österle,
Wojciech Olejniczak, Jerzy Olszewski, Cherry Owen, Mieczyslaw Owoc, Tadeusz Pankowski, Jens Penberg,
William C. Perkins, Warren Persons, Mitja Peruš, Fred Petry, Stephen Pike, Niki Pissinou, Aleksander Pivk, Ullin
Place, Peter Planinšec, Gabika Polčicová, Gustav Pomberger, James Pomykalski, Tomas E. Potok, Dimithu
Prasanna, Gary Preckshot, Dejan Rakovič, Cveta Razdevšek Pučko, Ke Qiu, Michael Quinn, Gerald Quirchmayer,
Vojislav D. Radonjic, Luc de Raedt, Ewaryst Rafajlowicz, Sita Ramakrishnan, Kai Rannenberg, Wolf Rauch, Peter
Rechenberg, Felix Redmill, James Edward Ries, David Robertson, Marko Robnik, Colette Rolland, Wilhelm
Rossak, Ingrid Russel, A.S.M. Sajeev, Kimmo Salmenjoki, Pierangela Samarati, Bo Sanden, P. G. Sarang, Vivek
Sarin, Iztok Savnik, Ichiro Satoh, Walter Schempp, Wolfgang Schreiner, Guenter Schmidt, Heinz Schmidt, Dennis
Sewer, Zhongzhi Shi, Mária Smolárová, Carine Souveyet, William Spears, Hartmut Stadtler, Stanislaw Stanek,
Olivero Stock, Janusz Stokłosa, Przemysław Stpiczyński, Andrej Stritar, Maciej Stroinski, Leon Strous, Ron Sun,
Tomasz Szmuc, Zdzislaw Szyjewski, Jure Šilc, Metod Škarja, Jiřı Šlechta, Chew Lim Tan, Zahir Tari, Jurij Tasič,
Gheorge Tecuci, Piotr Teczynski, Stephanie Teufel, Ken Tindell, A Min Tjoa, Drago Torkar, Vladimir Tosic,
Wieslaw Traczyk, Denis Trček, Roman Trobec, Marek Tudruj, Andrej Ule, Amjad Umar, Andrzej Urbanski,
Marko Uršič, Tadeusz Usowicz, Romana Vajde Horvat, Elisabeth Valentine, Kanonkluk Vanapipat, Alexander P.
Vazhenin, Jan Verschuren, Zygmunt Vetulani, Olivier de Vel, Didier Vojtisek, Valentino Vranić, Jozef Vyskoc,
Eugene Wallingford, Matthew Warren, John Weckert, Michael Weiss, Tatjana Welzer, Lee White, Gerhard
Widmer, Stefan Wrobel, Stanislaw Wrycza, Tatyana Yakhno, Janusz Zalewski, Damir Zazula, Yanchun Zhang,
Ales Zivkovic, Zonling Zhou, Robert Zorc, Anton P. Železnikar

Informatica
An International Journal of Computing and Informatics

Web edition of Informatica may be accessed at: http://www.informatica.si.

Subscription Information Informatica (ISSN 0350-5596) is published four times a year in Spring, Summer,
Autumn, and Winter (4 issues per year) by the Slovene Society Informatika, Vožarski pot 12, 1000 Ljubljana,
Slovenia.
The subscription rate for 2007 (Volume 31) is
– 60 EUR for institutions,
– 30 EUR for individuals, and
– 15 EUR for students
Claims for missing issues will be honored free of charge within six months after the publication date of the issue.

Typesetting: Borut Žnidar.
Printing: Dikplast Kregar Ivan s.p., Kotna ulica 5, 3000 Celje.

Orders may be placed by email (drago.torkar@ijs.si), telephone (+386 1 477 3900) or fax (+386 1 251 93 85). The
payment should be made to our bank account no.: 02083-0013014662 at NLB d.d., 1520 Ljubljana, Trg republike
2, Slovenija, IBAN no.: SI56020830013014662, SWIFT Code: LJBASI2X.

Informatica is published by Slovene Society Informatika (president Niko Schlamberger) in cooperation with the
following societies (and contact persons):
Robotics Society of Slovenia (Jadran Lenarčič)
Slovene Society for Pattern Recognition (Franjo Pernuš)
Slovenian Artificial Intelligence Society; Cognitive Science Society (Matjaž Gams)
Slovenian Society of Mathematicians, Physicists and Astronomers (Bojan Mohar)
Automatic Control Society of Slovenia (Borut Zupančič)
Slovenian Association of Technical and Natural Sciences / Engineering Academy of Slovenia (Igor Grabec)
ACM Slovenia (Dunja Mladenič)

Informatica is surveyed by: Citeseer, COBISS, Compendex, Computer & Information Systems Abstracts,
Computer Database, Computer Science Index, Current Mathematical Publications, DBLP Computer Science
Bibliography, Directory of Open Access Journals, InfoTrac OneFile, Inspec, Linguistic and Language Behaviour
Abstracts, Mathematical Reviews, MatSciNet, MatSci on SilverPlatter, Scopus, Zentralblatt Math

The issuing of the Informatica journal is financially supported by the Ministry of Higher Education, Science and
Technology, Trg OF 13, 1000 Ljubljana, Slovenia.

Volume 31 Number 3 October 2007 ISSN 0350-5596

Supervised Machine Learning: A Review of
Classification Techniques

S.B. Kotsiantis 249

An Overview of Content-Based Spam Filtering
Techniques

A. Khorsi 269

Comparative Study and Techno-Economic Analysis
of Broadband Backbone Upgrading: a Case Study

B. Jerman-Blažič 279

Efficient Constraint Validation for Updated XML
Databases

B. Bouchou,
A. Cheriat,
M.H. Ferrari,
D. Laurent,
M.A. Lima,
M.A. Musicante

285

Web-based Decision Support System for the Public
Sector Comprising Linguistic Variables

J. Benčina 311

Dynamic Distribution of Java Applications G. Alagbhand,
D. Gnabasik

325

A Formal Framework Supporting the Specification of
the Interactions between Agents

F. Mokhati, M. Badri,
L. Badri

337

Multi-resolution Parameterization for Texture
Classification and Its Use in the Scintigraphic Image
Analysis

L. Šajn 351

Informatica 31 (2007) Number 3, pp. 249–353

