
Volume 30 Number 1 January 2006

Special Issue:
Hot Topics in European Agent Research II

Guest Editors:
Andrea Omicini
Paolo Petta
Matjaž Gams

EDITORIAL BOARDS, PUBLISHING COUNCIL

Informatica is a journal primarily covering the European com-
puter science and informatics community; scientific and educa-
tional as well as technical, commercial and industrial. Its basic
aim is to enhance communications between different European
structures on the basis of equal rights and international referee-
ing. It publishes scientific papers accepted by at least two ref-
erees outside the author’s country. In addition, it contains in-
formation about conferences, opinions, critical examinations of
existing publications and news. Finally, major practical achieve-
ments and innovations in the computer and information industry
are presented through commercial publications as well as through
independent evaluations.

Editing and refereeing are distributed. Each editor from the
Editorial Board can conduct the refereeing process by appointing
two new referees or referees from the Board of Referees or Edi-
torial Board. Referees should not be from the author’s country. If
new referees are appointed, their names will appear in the list of
referees. Each paper bears the name of the editor who appointed
the referees. Each editor can propose new members for the Edi-
torial Board or referees. Editors and referees inactive for a longer
period can be automatically replaced. Changes in the Editorial
Board are confirmed by the Executive Editors.

The coordination necessary is made through the Executive Edi-
tors who examine the reviews, sort the accepted articles and main-
tain appropriate international distribution. The Executive Board
is appointed by the Society Informatika. Informatica is partially
supported by the Slovenian Ministry of Science and Technology.

Each author is guaranteed to receive the reviews of his article.
When accepted, publication in Informatica is guaranteed in less
than one year after the Executive Editors receive the corrected
version of the article.

Executive Editor – Editor in Chief
Anton P. Železnikar
Volaričeva 8, Ljubljana, Slovenia
s51em@lea.hamradio.si
http://lea.hamradio.si/˜s51em/

Executive Associate Editor (Contact Person)
Matjaž Gams, Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Phone: +386 1 4773 900, Fax: +386 1 219 385
matjaz.gams@ijs.si
http://ai.ijs.si/mezi/matjaz.html

Deputy Managing Editor
Mitja Luštrek, Jožef Stefan Institute
mitja.lustrek@ijs.si

Executive Associate Editor (Technical Editor)
Drago Torkar, Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Phone: +386 1 4773 900, Fax: +386 1 219 385
drago.torkar@ijs.si

Editorial Board
Suad Alagić (USA)
Anders Ardo (Sweden)
Vladimir Bajić (South Africa)
Vladimir Batagelj (Slovenia)
Francesco Bergadano (Italy)
Marco Botta (Italy)
Pavel Brazdil (Portugal)
Andrej Brodnik (Slovenia)
Ivan Bruha (Canada)
Wray Buntine (Finland)
Hubert L. Dreyfus (USA)
Jozo Dujmović (USA)
Johann Eder (Austria)
Vladimir A. Fomichov (Russia)
Janez Grad (Slovenia)
Hiroaki Kitano (Japan)
Igor Kononenko (Slovenia)
Miroslav Kubat (USA)
Ante Lauc (Croatia)
Jadran Lenarčič (Slovenia)
Huan Liu (USA)
Suzana Loskovska (Macedonia)
Ramon L. de Mantras (Spain)
Angelo Montanari (Italy)
Pavol Návrat (Slovakia)
Jerzy R. Nawrocki (Poland)
Franc Novak (Slovenia)
Marcin Paprzycki (USA/Poland)
Gert S. Pedersen (Denmark)
Karl H. Pribram (USA)
Luc De Raedt (Germany)
Dejan Raković (Serbia and Montenegro)
Jean Ramaekers (Belgium)
Wilhelm Rossak (Germany)
Ivan Rozman (Slovenia)
Sugata Sanyal (India)
Walter Schempp (Germany)
Johannes Schwinn (Germany)
Zhongzhi Shi (China)
Oliviero Stock (Italy)
Robert Trappl (Austria)
Terry Winograd (USA)
Stefan Wrobel (Germany)
Xindong Wu (USA)

Publishing Council:
Tomaž Banovec, Ciril Baškovič,
Andrej Jerman-Blažič, Jožko Čuk,
Vladislav Rajkovič

Board of Advisors:
Ivan Bratko, Marko Jagodič,
Tomaž Pisanski, Stanko Strmčnik

Informatica 30 (2006) 1–1 1

The Second AgentLink III Technical Forum: Main Issues and Hot Topics in
European Agent Research — Part 2

1 Introduction

Together with the previous edition, the present number of
Informatica presents topics out of the leading edge of Euro-
pean research in agent-oriented systems. The contributions
collected in this double special issue originated in the pre-
sentations and discussions at and surrounding the Second
AgentLink III Technical Forum (AL3-TF2) hosted by the
Jozef Stefan Institute in Ljubljana, Slovenia, from February
28 to March 2, 2005. We refer the interested reader to the
companion issue (29(4)) for details on AgentLink III, a Eu-
ropean Commission (EC)-sponsored Coordination Action
aimed at supporting and strengthening European research
and development in agent-based technologies.

The double special issue includes both, broader survey
papers on different research areas, as well as hot topic
articles complementing the critical characterisation of the
consolidated achievements with deeper analyses and some
fresh ideas, thereby conveying an impression of the liveli-
ness of (still much needed!) research in this technological
area of ever-growing importance.

The first number of the double special issue includes arti-
cles from the areas of Agent-Oriented Software Engineer-
ing and the emerging research topic of Environments for
Multiagent Systems. The contributions in the present issue
cover three additional areas (for which the short names of
the AgentLink Technical Forum Groups pursuing the re-
search efforts are again given in parentheses1, as follows.

Multiagent Resource Allocation (TFG-MARA)

– Issues in Multiagent Resource Allocation, by Yann
Chevaleyre, Paul E. Dunne, Ulle Endriss, Jérôme
Lang, Michel Lemaître, Nicolas Maudet, Julian Pad-
get, Steve Phelps, Juan A. Rodríguez-Aguilar, and
Paulo Sousa, surveys some of the most salient issues
in Multiagent Resource Allocation, an emerging area
of research at the interface of Computer Science and
Economics.

Programming Multi-Agent Systems (TFG-PROMAS)

– A Survey of Programming Languages and Plat-
forms for Multi-Agent System, by Rafael Bordini,
Lars Braubach, Mehdi Dastani, Amal El Fallah-
Seghrouchni, Jorge J. Gomez-Sanz, João Leite, Gre-
gory O’Hare, Alexander Pokahr and Alessandro
Ricci, surveys the most recent research on program-
ming languages and development tools for MASs.

1Further information about AgentLink III Techni-
cal Fora is available from the AgentLink website at
http://www.agentlink.org/activities/al3-tf/.

Self-Organisation in MAS (TFG-SELFORG)

– Self-Organisation and Emergence in MAS: An
Overview, by Giovanna Di Marzo Serugendo, Marie-
Pierre Gleizes, and Anthony Karageorgos, aims at
defining the concepts of self-organisation and emer-
gence, and also at providing a state-of-the-art survey
about the different classes of self-organisation mech-
anisms applied in the MAS domain.

– Bio-inspired Mechanisms for Artificial Self-organised
Systems, by Jean-Pierre Mano, Christine Bourjot,
Gabriel Lopardo, Pierre Glize, analyses three forms of
biological self-organisation (stigmergy, reinforcement
mechanisms and cooperation), and discusses some
case studies to show how they could be transposed to
artificial systems.

– On Self-Organising Mechanisms from Social, Busi-
ness and Economic Domains, by Salima Hassas, Gio-
vanna Di Marzo Serugendo, Anthony Karageorgos
and Cristiano Castelfranchi, discusses examples of
socially-inspired self-organisation approaches, as well
as their use to build socially-aware, self-organising
computational systems.

– Applications of Self-Organising Multi-Agent Systems:
An Initial Framework for Comparison, by Car-
ole Bernon, Vincent Chevrier, Vincent Hilaire and
Paul Marrow, provides MAS examples where self-
organisation is used to solve complex problems, along
with a number of criteria for comparison of self-
organisation between different applications.

Acknowledgements
We would like to repeat our thanks to the AL3-TF2 TFG
Chairs for their exemplary efforts that most bespeakingly
reflect the enthusiasm and thrust in European research in
their areas. The lasting result of AgentLink III would not
have been possible without the dedication of its staff, the
impeccable work of the Management Committe, and the
infinite and patient support provided by Catherine Ather-
ton, Becky Earl, Adele Maggs and Serena Raffin. We also
wish to thank once again the local organisers and their staff
at the Jozef Stefan Institute in Ljubljana, Slovenia, who al-
lowed us to implement the many lessons learned with the
previous technical forum.

We hope you enjoy this second part of the double special
issue of Informatica: please do consider it an open invita-
tion to join the efforts described!

Andrea Omicini, Paolo Petta and Matjaž Gams

2 Informatica 30 (2006) 1–1 A. Omicini, P. Petta, M. Gams

Informatica 30 (2006) 3–31 3

Issues in Multiagent Resource Allocation

Yann Chevaleyre
LAMSADE, Université Paris-Dauphine (France)
E-mail: chevaley@lamsade.dauphine.fr

Paul E. Dunne
Department of Computer Science, University of Liverpool (UK)
E-mail: ped@csc.liv.ac.uk

Ulle Endriss
ILLC, Universiteit van Amsterdam (The Netherlands)
E-mail: ulle@illc.uva.nl

Jérôme Lang
IRIT, Université Paul Sabatier, Toulouse (France)
E-mail: lang@irit.fr

Michel Lemaître
ONERA, Centre de Toulouse (France)
E-mail: michel.lemaitre@cert.fr

Nicolas Maudet
LAMSADE, Université Paris-Dauphine (France)
E-mail: maudet@lamsade.dauphine.fr

Julian Padget
Department of Computer Science, University of Bath (UK)
E-mail: jap@cs.bath.ac.uk

Steve Phelps
Department of Computer Science, University of Liverpool (UK)
E-mail: sphelps@csc.liv.ac.uk

Juan A. Rodríguez-Aguilar
Artificial Intelligence Research Institute (IIIA-CSIC), Barcelona (Spain)
E-mail: jar@iiia.csic.es

Paulo Sousa
DEI, Instituto Superior de Engenharia do Porto (Portugal)
E-mail: psousa@dei.isep.ipp.pt

Keywords: resource allocation, negotiation, preferences, social welfare, complexity, simulation

Received: May 12, 2005

The allocation of resources within a system of autonomous agents, that not only have preferences over
alternative allocations of resources but also actively participate in computing an allocation, is an exciting
area of research at the interface of Computer Science and Economics. This paper is a survey of some of
the most salient issues in Multiagent Resource Allocation. In particular, we review various languages to
represent the preferences of agents over alternative allocations of resources as well as different measures
of social welfare to assess the overall quality of an allocation. We also discuss pertinent issues regarding
allocation procedures and present important complexity results. Our presentation of theoretical issues
is complemented by a discussion of software packages for the simulation of agent-based market places.
We also introduce four major application areas for Multiagent Resource Allocation, namely industrial
procurement, sharing of satellite resources, manufacturing control, and grid computing.

Povzetek: Opisana je alokacija virov v sistemu avtonomnih agentov.

4 Informatica 30 (2006) 3–31 Y. Chevaleyre et al.

1 Introduction
The allocation of resources is a central matter of concern
in both Computer Science and Economics. To emphasise
the fact that resources are being distributed amongst several
agents and that these agents may influence the choice of al-
location, the field is sometimes called Multiagent Resource
Allocation (MARA). The questions investigated by com-
puter scientists are often of a procedural nature (how do
we find an allocation?), while economists are more likely
to concentrate on qualitative issues (what makes a good
allocation?). A comprehensive analysis of the problem
at hand, however, requires an interdisciplinary approach.
Here the multiagent system (MAS) paradigm offers an ex-
cellent framework in which to study these issues.

MARA is relevant to a wide range of applications. These
include, amongst others, industrial procurement [45],
manufacturing and scheduling [15, 71, 89], network rout-
ing [38], the fair and efficient exploitation of Earth Obser-
vation Satellites [59, 60], airport traffic management [52],
crisis management [62], logistics [49, 77], public trans-
port [16], and the timely allocation of resources in grid ar-
chitectures [48].

This paper is a survey of some of the most salient is-
sues in MARA. In the remainder of this introduction, we
first give a tentative definition of MARA and introduce its
main parameters (Section 1.1). To illustrate the interdis-
ciplinary character of the field, we then list some of the
research questions that we consider particularly interesting
and challenging (Section 1.2). Finally, we give an overview
of the content of the main body of the paper (Section 1.3).

1.1 What is MARA?
A tentative definition would be the following:

Multiagent Resource Allocation is the process of
distributing a number of items amongst a number
of agents.

However, this definition needs to be further qualified: What
kind of items (resources) are being distributed? How are
they being distributed (in other words, what kind of allo-
cation procedure or mechanism do we employ)? And fi-
nally, why are they being distributed (that is, what are the
objectives of searching for an allocation and how are these
objectives determined)?

1.1.1 Resources

We refer to the items that are being distributed as resources,
while agents are the entities receiving them. We should
stress that this terminology is not universally shared. In the
context of applications of MARA in manufacturing, for in-
stance, we usually speak of tasks that are being allocated to
resources. That is, in this context, the term “resource” (i.e.
the resources available to the manufacturer for production)
refers to what we would call an “agent” here.

We can distinguish different types of resources. For in-
stance, resources may or may not be divisible. For divisible
resources (such as electricity), different agents may receive
different fractions of a resource. In the case of indivisible
resources, it may or may not be possible for different agents
to share (jointly use) the same resource (e.g. access to net-
work connections as opposed to items of clothing). For
many purposes, task allocation problems can be regarded
as instances of MARA (if we think of tasks as resources
associated with a cost rather than a benefit).

1.1.2 Allocations

A particular distribution of resources amongst agents is
called an allocation. For instance, in the case of non-
sharable indivisible resources, an allocation is a partition
of the set of resources amongst the agents. The set of re-
sources assigned to a particular agent is also called the bun-
dle allocated to that agent.

1.1.3 Agent Preferences

Agents may or may not have preferences over the bundles
they receive. In addition, they may also have preferences
over the bundles received by other agents (in the case of
network connections, for example, the value of a resource
diminishes if shared by too many users). The latter type of
preferences are called externalities.

Agents may or may not report their preferences truth-
fully. To provide incentives for agents to be truthful is one
of the main objectives of mechanism design.

1.1.4 Allocation Procedures

The allocation procedure used to find a suitable allocation
of resources may be either centralised or distributed. In
the centralised case, a single entity decides on the final al-
location of resources amongst agents, possibly after having
elicited the agents’ preferences over alternative allocations.
Typical examples are combinatorial auctions. Here the cen-
tral entity is the auctioneer and the reporting of preferences
takes the form of bidding. In truly distributed approaches,
on the other hand, allocations emerge as the result of a se-
quence of local negotiation steps.

1.1.5 Objectives

The objective of a resource allocation procedure is either
to find an allocation that is feasible (e.g. to find any allo-
cation of tasks to production units such that all tasks will
get completed in time); or to find an allocation that is opti-
mal. In the latter case, the allocation in question could be
optimal either for the central entity choosing the allocation
(e.g. a solution to a combinatorial auction that maximises
the auctioneer’s revenue); or with respect to a suitable ag-
gregation of the preferences of the individual agents in the
system (e.g. an allocation of resources that maximises the
average utility enjoyed by the agents).

MULTIAGENT RESOURCE ALLOCATION Informatica 30 (2006) 3–31 5

Combinations are also possible: The objective may be to
find an optimal allocation amongst a small set of feasible
allocations; and what is considered optimal could depend
both on the preferences of a central entity and on an ag-
gregation of the other agents’ individual preferences (e.g.
auction mechanisms aiming at balancing revenue maximi-
sation and bidder satisfaction). Of course, where comput-
ing an optimal allocation is not possible (due to lack of
time, for instance), any progress towards the optimum may
be considered a success.

1.1.6 Social Welfare

Multiagent systems are sometimes referred to as “societies
of agents” and the aggregation of individual preferences in
a MARA system can often be modelled using the notion of
social welfare as studied in Welfare Economics and Social
Choice Theory. Examples include utilitarian social wel-
fare, where the aim is to maximise the sum of individual
utilities, and egalitarian social welfare, where the aim is to
maximise the individual welfare of the agent that is cur-
rently worst off.

1.1.7 The Role of Agents

Our discussion shows that the term “multiagent” in Mul-
tiagent Resource Allocation can have different interpreta-
tions:

– If a distributed resource allocation procedure is used,
then the term “multiagent” indicates that the com-
putational burden of finding an allocation is shared
amongst several agents.

– If an aggregation of individual preferences is used to
assess the quality of the final allocation, then the term
“multiagent” refers to the fact that the choice of al-
location depends on the preferences of several agents
(rather than on the preferences of a single entity).

Of course, the term “multiagent” could also be derived
merely from the fact that resources are being allocated to
several different agents. However, if individual agents have
no preferences (or such preferences are not taken into ac-
count) and the allocation procedure is centralised, then us-
ing the term “multiagent” may be less appropriate.

1.1.8 A Computational Perspective

MARA, as introduced at the beginning of Section 1.1, may
not seem to differ significantly from what has tradition-
ally been studied in Microeconomics. However, a distinc-
tive feature of MARA is the focus on computational is-
sues. For instance, with respect to the preferences of in-
dividual agents, we are interested in representations that
can be efficiently managed and communicated. Similarly,
in the case of allocation procedures, MARA encompasses
both the theoretical analysis of their computational com-
plexity and the design of efficient algorithms for scenarios

for which this is possible. As a final example, concerning
the strategic aspects of negotiation, we may find that clas-
sical results in Game Theory fail to hold due to the compu-
tational limitations of the participating agents.

1.2 Research Topics
MARA is a highly interdisciplinary field; relevant disci-
plines include Computer Science, Artificial Intelligence,
Decision Theory, Microeconomics, and Social Choice The-
ory. Research in MARA can take a variety of forms:

– Preferences: What are suitable representation lan-
guages for agent preferences? Issues to consider in-
clude their expressive power, their succinctness, and
their suitability in view of preference elicitation.

– Social welfare: What are suitable measures of social
welfare to assess the quality of an allocation for a
given application? Under what circumstances can we
expect an optimal allocation to be found?

– Complexity: What is the overall complexity of find-
ing a feasible/optimal allocation? What is the com-
plexity of the decision problems that agents need to
solve locally? What is the communication complexity
(amount of information to be exchanged) of negotia-
tion?

– Negotiation: In particular for the distributed approach,
what are suitable negotiation protocols? What are
good strategies for agents using such protocols?

– Algorithm design: How can we devise efficient algo-
rithms for MARA (e.g. algorithms for combinatorial
auction winner determination in the centralised case;
algorithms to support complex negotiation strategies
in the distributed case)?

– Mechanism design: How can we devise negotiation
mechanisms that force agents to report their prefer-
ences truthfully (both to reduce strategic complexity
and to allow for a correct assessment of social wel-
fare)?

– Implementation: What are best practices for the devel-
opment of prototypes for specific MARA applications
and general-purpose platforms to support quick proto-
typing?

– Simulation and experimentation: How do different
optimisation algorithms or negotiation strategies per-
form in practice? How serious is the impact of the-
oretical impossibility results in practice? How pro-
hibitive are theoretical intractability results (computa-
tional complexity) in practice?

– Interplay of theory and applications: What con-
straints do real-world applications impose on theoret-
ical models for MARA? How can theoretical results
inform the development of new tools?

6 Informatica 30 (2006) 3–31 Y. Chevaleyre et al.

The aim of this survey is to provide a base line for some
of these issues. In particular, we present a range of lan-
guages for representing preferences, we give an overview
of the social welfare measures most relevant to MARA,
and we review known complexity results in the area. As
it is often difficult to make precise predictions on the per-
formance of a resource allocation procedure by theoretical
means alone, we also discuss the requirements to be met
by software packages for MARA simulations. To underline
the importance of further research in the area, we introduce
several prestigious applications and discuss the challenges
imposed on MARA models by these applications.

1.3 Paper Overview

The remainder of this survey paper is organised as follows.
In Section 2, we introduce four major application areas for
MARA technology. These are industrial procurement, the
joint exploitation of Earth Observation Satellites, manu-
facturing control, and grid computing. Throughout Sec-
tion 2, we highlight the specific challenges raised by these
applications.

Next we review three important parameters that are rel-
evant to the definition of a MARA problem. Firstly, in
Section 3, we discuss generic properties of resources, such
as being indivisible or sharable, and how such properties
would affect the design of a concrete MARA system. We
then move on, in Section 4, to the issue of preference rep-
resentation for individual agents. Each agent needs to be
endowed with a suitable representation of preferences over
alternative allocations and it is important to be able to ex-
press these preferences in a compact way. We discuss both
quantitative and ordinal preference languages. A third pa-
rameter in the definition of a MARA problem is the social
welfare measure (or a similar tool) we employ to assess the
overall quality of a given allocations. A range of differ-
ent concepts—including collective utility functions, Pareto
optimality, and envy-freeness—are reviewed in Section 5.

In Section 6, we attempt to give a short overview of the
parameters that are relevant when one chooses (or designs)
an allocation procedure. We discuss the respective merits
and drawbacks of centralised and distributed approaches to
MARA, and we briefly introduce some (centralised) auc-
tion protocols as well as (distributed) negotiation proto-
cols. We also report on results that establish under what
circumstances allocations can be expected to converge to
a socially optimal state in a distributed negotiation set-
ting. Section 7 is a survey of relevant complexity results.
We mostly concentrate on the computational complexity of
problems such as finding a socially optimal allocation, but
we also briefly discuss issues in communication complexity
for MARA, which is concerned with the length of negotia-
tion processes.

Our presentation of theoretical issues is complemented
by a discussion of software packages for the simulation of
agent-based market places in Section 8. We start by giving
an overview of the typical requirements to be met by such

packages and then list the most relevant software products
available to MARA researchers interested in simulation.
Finally, Section 9 concludes.

2 Application Areas
As mentioned already in the introduction, MARA is rele-
vant to a wide range of application domains. In this section,
we introduce four of these problem domains, all of which
have recently been addressed by (some of) the authors of
this survey.

2.1 Industrial Procurement
The sourcing process of multiple goods or services usu-
ally involves complex negotiations that include discussion
of product features as well as quality, service, and avail-
ability issues. Consequently, several commercial systems
to support online negotiation (e-sourcing tools) have been
developed. In fact, e-sourcing is becoming an established
part of the business landscape [90]. However, there are still
enormous challenges confronting users who want to get the
maximum value out of e-sourcing.

2.1.1 Problem Description

Traditionally, the core of the sourcing process comprises
the following tasks:

– request for quotation/proposal (RFQ/RFP);

– provider selection for RFQ/RFP delivery;

– offer generation;

– negotiation through offer/counter-offer interaction or
reverse auction; and

– selection of best offers.

Typically a buyer creates an RFQ by sequentially adding
items. Each item specifies a product, be it a good or ser-
vice. A paradigmatic example of multi-item RFQ occurs in
industrial settings. The production plan outlined by a com-
pany’s ERP (Enterprise Resource Planning) or SCM (Sup-
ply Chain Management) application comes in the shape of
a list of items to be produced along with the parts required
for each product, the so-called bill of material. This is
the basis for the buyer to initiate multiple sourcing events,
each devoted to the procurement of the parts for each of the
items to be produced.

Although several commercial systems to support online
negotiations have been released, to the best of our knowl-
edge, not a single system can claim to address the full com-
plexity of online negotiation. The first generation of sourc-
ing tools merely incorporate single-item, price-quantity re-
verse auction mechanisms. Others only offer basic nego-
tiation capabilities that are usually reduced to a demand-
offer matching tool. In general terms, there is a lack of

MULTIAGENT RESOURCE ALLOCATION Informatica 30 (2006) 3–31 7

decision support functionalities (decision making in sourc-
ing can involve a few hundred offers, each of which is de-
scribed by several dozen attributes). Furthermore, there
is a lack of technology support for computationally com-
plex negotiation paradigms, which inhibit the application
of promising mechanisms such as combinatorial reverse
auctions [24, 54].

2.1.2 Challenges

Although the degree of automation, namely of delegation
to trading agents, in industrial procurement settings is still
low, we do believe that MARA techniques can contribute to
improve this situation. In what follows we identify several
challenges that any commercial tool aiming at the success-
ful implementation of resource allocation amongst several
(human or software) agents in an industrial procurement
setting must address.

– Preferences of buyers and providers. How do we best
capture and represent trading agents’ preferences so
that they can effectively value their trading partners’
offers, counter-offers, and RFQs? While recent ad-
vances in preference elicitation are encouraging (see,
for instance, the work of Bichler et al. [6]), this still re-
mains as the Achilles’ heel of industrial procurement
applications.

– Business rules to constrain admissible allocations.
While in direct auctions, the items to be sold are phys-
ically concrete (they do not allow configuration), in a
negotiation involving highly customisable goods, buy-
ers need to express relations and constraints between
attributes of different items. On the other hand, multi-
ple sourcing is common practice, either for safety rea-
sons or because offer aggregation is needed to cope
with high-volume demands. This introduces the need
to express constraints on providers and on the con-
tracts they may be awarded. Providers may also im-
pose constraints on their offers. Therefore, highly
expressive languages for both buying and providing
agents are required.1 Incorporating business rules into
allocation procedures can lead to more balanced and
safer allocations.

– Automated negotiation strategies. There are several
dimensions to take into account when designing ne-

1Consider a buyer who wants to buy 200 chairs (any colour/model is
fine) for the opening of a new restaurant and who uses an e-procurement
solution that launches a reverse auction. If we employ a state-of-the-
art combinatorial auction solver, a possible solution might be to buy 199
chairs from provider A and 1 chair from provider B, simply because this
is 0.1% cheaper than the next best allocation and it has not been possible
to specify that, in case of buying from more than one provider, a minimum
of 20 chairs purchase is required. In a different scenario, the optimal so-
lution might tell us to buy 150 blue chairs from provider A and 50 pink
chairs from provider B. Why? Because, although we had no preferences
over the regarding colour, we could not specify that all chairs should be
of the same colour. Although simple, this example shows that without
modelling natural constraints, solutions obtained may be mathematically
optimal, but unrealistic.

gotiation strategies. Agents may negotiate over mul-
tiple attributes of the same item, over a bundle of
multiple items, or they may hold separate but inter-
dependent negotiations. Negotiation techniques such
as trade-off [37] or partial-order scheduling [102] are
candidate techniques put forward from the research
arena. The current procurement practices tell us that
the possibility of automatic offer submission is seen
with interest for repetitive sourcing events in private e-
sourcing platforms where providers and business rules
are well-known or result from a provider qualification
procedure or a frame contract. Nonetheless, the full
application of such automated trading still faces bar-
riers, such as providers not wanting to reveal their ca-
pabilities/preferences to third parties.

– Choice of mechanism. Commercial sourcing tools of-
fer an ever increasing number of customisable nego-
tiation mechanisms. Nonetheless, market design is a
highly complex, intricate task. New trends in auto-
mated mechanism design [22] as well as evolutionary
mechanism design [73] may prove valuable in assist-
ing in the design of market scenarios that ensure cer-
tain global properties.

– Winner determination algorithms. Further research
into algorithms capable of identifying the optimal
set of offers in multi-attribute, multi-item negotiation
scenarios with side constraints representing business
rules is required [45, 83].

– Bundling. Should a buyer (seller) conduct a single ne-
gotiation or auction for an entire bundle of goods he or
she is interested in purchasing (selling) or should they
group items into bundles and conduct several negotia-
tions? Unfortunately, for complexity reasons, combi-
natorial bidding capabilities are rarely found on com-
mercial systems. To overcome this problem, we can
think of a third approach: Based on past market real
data and knowledge, the whole bundle of items can be
divided into separate negotiations for which the ap-
propriate providing agents are invited and for which
certain properties are satisfied (e.g. invite providing
agents that can offer at least 90% of the items in the
bundle). These properties model the expertise of e-
sourcing specialists in the form of rules of thumb [76].

Some of these challenges are already being tackled by re-
cently developed negotiation support tools. iBundler [44,
44], for instance, is an agent-aware decision support ser-
vice acting as a combinatorial negotiation solver for both
multi-item, multi-unit negotiations and auctions that can
integrate business rules to constrain admissible solutions.
iAuctionMaker [76] is a novel decision support tool for
mixed bundling that can help an auctioneer determine how
to group items into promising bundles that are likely to pro-
duce a high revenue. Promising bundles are those that sat-
isfy certain properties believed to be present in competi-
tive sourcing scenarios. These properties are defined by

8 Informatica 30 (2006) 3–31 Y. Chevaleyre et al.

e-sourcing professionals and capture their experience and
knowledge in the domain.

2.2 Earth Observation Satellites
Next we consider another real-word application, namely
the exploitation of Earth Observation Satellites (EOSs) [10,
59, 60]. This application pertains to the problem of allocat-
ing a set of indivisible goods to some agents with no possi-
ble monetary compensation between them. As we will see,
this is a typical case of a sharing problem, different from an
auction situation, especially because fairness is a key issue.

2.2.1 Problem Description

Due to their high cost, space projects such as EOSs are of-
ten co-funded and then exploited by several agents (coun-
tries, companies, civil or military agencies, etc.). The mis-
sion of an EOS is to acquire images (photos) of specified
areas on the earth surface, in response to observation de-
mands from users. Such a satellite is operated by an Image
Programming and Processing Center. Each day, the Center
collects a set of observation demands from agents. Usu-
ally a demand can be covered by a single image, but more
complex demands may arise, as we will see below. Each
demand is given a weight (a positive integer), reflecting the
importance the requesting agent assigns to the satisfaction
of the demand. The daily task of the Center is, amongst
others, to build the imaging workload of the satellite for
the next day, by selecting the images to be acquired from
the set of agent demands.

Naturally, the exploitation of the satellite must obey a set
of physical constraints, such as time window visibility con-
straints, minimum transition times between successive im-
age acquisitions, or memory and energy management. Due
to these exploitation constraints, and due to the large num-
ber of (possibly conflicting) demands, a set of demands,
each of which could be satisfied individually, may not be
satisfiable as a whole on a single day. All these physical
constraints define the set of admissible allocations of im-
ages to agents. The exploitation of an EOS must also meet
the following requirements:

– Efficiency: The satellite should not be under-
exploited.

– Equity: Each agent should get a return on investments
that is proportional to its financial contribution.

2.2.2 Modelling

Let us first consider the simple problem where only one
agent exploits the resource. In this case, the allocation
problem consists of selecting, each day, an admissible se-
quence of images that will be acquired by the satellite over
the next day (and allocated to the agent). This agent mea-
sures its satisfaction by a utility function which may be de-
fined as the sum of the weights of the allocated images.

The efficiency requirement comes down to a simple opti-
misation problem: the utility function of the agent must
be maximised over the set of admissible allocations (see
Lemaître et al. [61] for the description of some algorithms
for solving this mono-agent allocation problem).

We now turn to the case where several agents exploit the
satellite. For simplicity, we assume in this paper that the
agents have equal rights over the resource (we may assume,
for example, that they have funded the satellite equally).
Of course, each agent wants to maximise its own utility
function, but generally they are antagonistic: increasing
the utility of one agent can lead to decreasing the utility
of others. So a fair compromise must be found, the reali-
sation of which is the role of a suitable preference aggre-
gation mechanism. Such mechanisms will be discussed in
detail in Section 5. Here, the min function (egalitarian so-
cial welfare) fits our requirements, as it naturally conveys
the equity requisite: we try to make the agent least happy
as happy as possible (a refinement of this approach is given
by the so-called leximin ordering; see Section 5.4).

As mentioned before, weights of demands are freely
fixed by agents. In order to be able to compare individ-
ual utilities between agents, a common utility scale must
be set and used; that is, the same number should express
the same level of satisfaction. To this end, Lemaître et
al. [59, 60] have adopted an approach known as the Kalai-
Smorodinsky solution (see Section 5.6), whereby individ-
ual utilities are compared relative to the maximum utility
that each agent can receive. It should be noted that, unlike
for auction problems, there are no preemptive constraints
in this application: the same image could be requested by
several agents, and allocated to them all (i.e. resources are
sharable).

This application is also of interest because it offers real-
word examples of dependencies between demands. As a
first example, a request may involve a pair of stereoscopic
images; receiving only one image would result in a poor
satisfaction level for the agent. A second example comes
from the fact that, for earth areas situated in high latitudes,
several images of the same area can be taken from distinct
angles during the same day. Consider a stereoscopic de-
mand concerning such an area, and suppose that it could
be photographed from two angles. Let o11 and o12 be the
pair of stereoscopic images from angle 1, o21 and o22 the
images from angle 2. The demand can be quite naturally
formulated as (o11 ∧ o12) ∨ (o21 ∧ o22).

To sum up, our EOS multiagent fair resource alloca-
tion problem can be formally stated in the following way.
Agents express their (weighted) demands as simple logical
propositions. An agent’s individual utility is the sum of the
weights of the satisfied demands. The global utility is an
aggregation of normalised individual utilities, the aggrega-
tion function being the min function (or, better, the leximin
ordering).

MULTIAGENT RESOURCE ALLOCATION Informatica 30 (2006) 3–31 9

2.3 Manufacturing Systems
Since the second half of the 20th century, the organisa-
tion of mass production has been shifting towards flexi-
ble manufacturing and customised products. From a tech-
nological point of view, it has been observed that current
manufacturing systems (e.g. computer-integrated manu-
facturing architectures) have several drawbacks, in partic-
ular excessive rigidity and centralisation [50, 71]. Fur-
thermore, future manufacturing systems are expected to
be characterised by globally distributed production units,
small quantities of a large variety of products, the provision
of individual solutions tailored to each customer’s specific
needs, and concurrent execution of all the activities in the
manufacturing process [95].

2.3.1 Problems and Requirements

Future manufacturing systems therefore require coordi-
nation amongst production units and it is expected that
rigid, static, and hierarchical manufacturing systems will
give way to systems that are more adaptable to rapid
change [15]. In order to overcome the identified problems
with current manufacturing systems and prepare them for
the expected future scenarios, the new generation of sys-
tems must possess such attributes as decentralisation, dis-
tribution, autonomy, adaptability, and incomplete informa-
tion handling [88].

In manufacturing, the term resource allocation is usually
synonymous for task scheduling. Furthermore, the term re-
source is understood as a physical resource, i.e. a machine,
of the manufacturing plant. One of the problems in this
area is that a task is a step of a production plan for a spe-
cific order (e.g. manufacture 100 chairs of type P12-5),
and there are usually dependencies between tasks that must
be obeyed (e.g. operation “drill hole 2” must be done be-
fore “cool surface” but after “drill hole 1”).

To further complicate things, the tasks involved in a pro-
duction plan will probably be done on different produc-
tion resources, thus creating a network of dependencies
amongst resources.

One issue in the manufacturing area is that the schedule
itself is only valid until the first disturbance (e.g. machine
or tool breakdown, rush order, etc.). Since manufacturing
control and execution is a real time application, the need
to find a feasible solution is much greater than to find one
that is optimal. The system as a whole must reach a stable
and feasible schedule without too much interruption of the
shop floor.

2.3.2 Manufacturing and Agents

Physically, a manufacturing system involves several re-
sources (numeric control machines, robots, automated
guided vehicles, conveyors) and several tasks can be car-
ried out at the same time. The number and configuration
of these may change of the lifetime of the system. Since
the manufacturing process is dynamic (e.g. suppliers and

consumers in a supply chain may change many times) it is
impossible to know the exact structure or topology of the
system in advance. The number of products and orders, as
well as different alternative production routes, account for
the highly complex nature of manufacturing systems.

All of the above make the design of manufacturing sys-
tems an excellent candidate for the application of agent-
based technology. In many implementations of multia-
gent systems for manufacturing scheduling and control, the
agents model the resources of the plant and the scheduling
and control of the tasks is done in a distributed way by
means of cooperation and coordination of actions amongst
agents [15, 53, 72]. As such, manufacturing scheduling and
control touches the areas of distributed planning and dis-
tributed artificial intelligence. Nonetheless, there are also
approaches that use a single agent for scheduling (usually
with a well-known centralised scheduling algorithm) that
dictates the schedules that the resource agents will exe-
cute [92]. The rationale for modelling resources as agents
is to better mimic the actual real-world environment and to
allow for the modelling of the characteristics of each re-
source (e.g. available operations, own agenda of tasks to
execute, cost of performing each operation, etc.)

When responding to disturbances, the distributed nature
of multiagent systems can also be a benefit to the reschedul-
ing algorithm by involving only the agents directly af-
fected, without disturbance to the rest of the community
that can continue with their work. Typical approaches to
rescheduling include the removal of a late order, realloca-
tion of low priority orders to make room for rush orders,
shifting of tasks from one resource to a similar one, etc.

An example for a MARA system for manufacturing con-
trol is the Fabricare prototype suite [89]. This a multia-
gent system for dynamic scheduling of manufacturing or-
ders. The agents are modelled as extended logic programs
with the ability to handle negative and incomplete knowl-
edge [88]. The system is very dynamic in what concerns its
agents, i.e. resource agents depend on the system descrip-
tion file; task agents depend on the existing tasks (dynamic
events). Each negotiation uses the set of agents that are
present and available at that time, thus giving the system
a high degree of adaptability to the dynamic nature of the
manufacturing arena.

2.4 Grid Computing

Perhaps one of the most pressing applications for MARA
techniques is grid computing [40]. It is true that there are
functioning systems for grid resource allocation, but these
largely operate in benevolent, cooperative subnets where
participants know and trust one another and there is typ-
ically no charge for the utilisation of resources, although
perhaps some artificial accounting system is applied. Such
frameworks are exactly what is needed in order to test out
many grid middleware functions where the objective is to
see a job executed across a range of grid resources. In
many respects, grid resource allocation—as distinct from

10 Informatica 30 (2006) 3–31 Y. Chevaleyre et al.

scheduling—and payment for resource usage is an orthog-
onal problem to the actual processing of a job.

However, at some stage, if the vision of grid computing
as a commodity not unlike energy is to become reality, then
resource allocation, payment and job processing will have
to come together and current research in MARA technol-
ogy aims to lay the foundations for this union.

2.4.1 Scalability Issues

If the benevolent, cooperative network of mutually trust-
ing participants is discarded, the client is faced with the
problem of piecing together a range of disparate resources
that are required to complete the processing of a particular
job. The parallels with markets, and especially commod-
ity markets, as efficient (by economic measures) resource
allocation mechanisms in the presence of large numbers of
traders and where possibly complex packages of goods are
required, are striking. Grid networks have not yet become
so large as to make such approaches essential, but that time
is not far off, even in cooperative scientific research net-
works, if one considers the grid that is foreseen to sup-
port the analysis of results emerging from CERN’s Large
Hadron Collider [17].

The issues could be seen as a function of scale: Ex-
isting grids can handle resource allocation through single
centralised mechanisms and (economic) efficiency of allo-
cations may not be important. As grids become larger with
a wider range of resources, and used for broader classes
of tasks, centralised allocation and inefficient allocation
of resources are likely to become less tolerable. In re-
sponse to this, various approaches need to be evaluated and
contrasted under carefully controlled conditions, from cen-
tralised systems seeking optimal allocation to distributed
mechanisms involving bilateral negotiation. Intuition—
which should of course be treated with circumspection—
suggests that neither of these can be entirely satisfactory,
but each may act in different ways as benchmarks against
which to measure the rest:

– Centralised systems relying on combinatorial auction
clearing algorithms can deliver optimal allocations,
but are currently limited by computation costs to hun-
dreds of items and thousands of bids [81].

– Distributed systems relying on bilateral negotiation
between consumer and service provider for each
component—that is, the consumer constructs their
own bundle—will almost certainly scale, but the re-
sults are much less likely to be “good”. The risks in-
herent in such an approach are significant: The order
in which to undertake negotiation, the possibility that
contracting for one resource constrains the choice of
subsequent resources, perhaps leading to incomplete
bundles, the difficulty in assessing the quality of a
bundle or indeed the valuation of a bundle are all sur-
rounded by uncertainty.

Implicit in both scenarios is that a client will need to com-
bine a range of resources from the grid in order to carry out
their computation.

2.4.2 Market-based Allocation

In between the two extremes of centralised and distributed
lie the many variants of market-based allocation. And
given the essentially decentralised nature of (geographi-
cally dispersed) grids, potentially with many administrative
centres and relatively weak control over individual nodes,
the grid seems well suited to market-based schemes, where
the twin benefits of reputation and decentralised negotia-
tion can facilitate the trading of computational resources.

Among the different market schemes that exist, one ap-
proach is to mimic ideas seen in commodity trading [48].
While analogies are both risky and seductive, there do
seem to be sufficient parallels to make more detailed
exploration—and simulation—desirable. Commodity mar-
kets are a blend of centralised and distributed in that there
are many commodity markets around the world, such that
at any one time a significant subset are trading, giving a
24/7 market, but within any given market trades take place
through bilateral mechanisms, typically continuous double
auctions. However, a trader may participate in more than
one market at a time, giving rise to communication between
markets as to current valuation trends along with the publi-
cation of “closing prices”.

But, commodity markets typically trade in lots of a sin-
gle kind and depending on the market, traders may be direct
buyers and sellers with no middle-men or market-makers.
Economic analyses and simulations indicate that market-
makers increase liquidity and enable the market to remain
(economically) efficient at lower levels of participation
than in the presence of buyers and sellers alone [7]. Fur-
thermore, in the case of bundles (lots of varying quantities
of several kinds of goods), market-makers become reposi-
tories of market memory, learning what bundles work (po-
tentially a combination of reputation and fit of resources)
and identifying trends as new kinds of bundles emerge.
Thus they become more than mediators between buyer and
seller, fully justifying the epithet of “market-maker”. A
trading framework such as this seems highly applicable to
grids and resource allocation within grid systems.

3 Types of Resources

A central parameter in any resource allocation problem is
the nature of the resources themselves. In this section, we
give a brief overview of the (abstract) properties of differ-
ent types of resources. Some of these properties are char-
acteristics of the resources (such as being perishable rather
than static, or continuous rather than discrete), while others
are better understood as being characteristics of the chosen
allocation system (for instance, whether or not a given item
is sharable amongst several agents will typically depend on

MULTIAGENT RESOURCE ALLOCATION Informatica 30 (2006) 3–31 11

the allocation procedure rather than on characteristics of
the item itself).

3.1 Continuous vs. Discrete

A resource may be either continuous (e.g. energy) or dis-
crete (e.g. fruit). This “physical” property will typically in-
fluence how the resource is being traded, although this need
not be the case. For instance, a continuous resource will
typically be regarded as being (infinitely) divisible. Still,
in a particular negotiation setting, it may only be possible
to buy or sell a certain quantity of such a continuous re-
source as a whole. Individual units of a discrete resource,
however, are always indivisible (an apple that can be sold
in small pieces would not count as a discrete resource).

In a setting with several continuous resources, a bundle
can be represented as a vector of non-negative reals (or,
alternatively, numbers in the interval [0, 1] to denote the
proportion of a particular resource owned by the agent re-
ceiving the bundle). Bundles of discrete resources can be
represented as vectors of non-negative integers. If there is
just a single item of each resource in the system, then vec-
tors over the set {0, 1} suffice.

A continuous resource may be discretised by dividing
it into a number of smaller parts to be traded as indivisi-
ble units. For instance, rather than treating 10.000 litres of
orange juice as a truly continuous resource that could be di-
vided into ever smaller subparts, we may agree to negotiate
over 200 units of 50 litres each. This means that methods
developed for discrete MARA are often also applicable in
the continuous case (although they may not be as efficient
as methods specifically tailored to continuous resources).

The allocation of continuous resources (often just a sin-
gle continuous resource), has been studied in depth in the
classical literature in Economics. More recent work in
Computer Science and Artificial Intelligence, on the other
hand, has often focussed on discrete resources. In this pa-
per, we also concentrate on discrete resources.

3.2 Divisible or not

As discussed above, resources may treated as being either
divisible or indivisible. While being either continuous or
discrete is a property of resources themselves, the distinc-
tion between divisible and indivisible resources is made at
the level of the allocation mechanism. In this survey, we
concentrate on indivisible resources.

3.3 Sharable or not

A sharable resource can be allocated to a number of differ-
ent agents at the same time. An example of such sharable
resources can be found in the context of the Earth Observa-
tion Satellite application discussed earlier (see Section 2.2):
A single picture taken by the satellite can be allocated to
several different agents (no preemptive constraints). The

canonical case, however, considers resources as being non-
sharable and in the rest of this paper we also make this
assumption.

3.4 Static or not

A resource may be consumable in the sense that the agent
holding the resource may use up the resource when per-
forming a particular action. For instance, fuel is consum-
able. Also, resources may be perishable, in the sense that
they may vanish or lose their value when held over an ex-
tended period of time. Food is a classical example of a
perishable resource.

We call resources that do not change their properties dur-
ing a negotiation process static resources. In general, re-
sources cannot be assumed to be static. In MARA however,
it is often assumed that they are (that is, that resources are
neither consumable nor perishable). The rationale behind
this stance is the fact that the negotiation process is not re-
ally concerned with the actions agents may undertake out-
side the process itself. That is, even if a resource is either
consumable or perishable, we can often assume that it re-
mains static throughout a particular negotiation process. In
this paper, in particular, we concentrate on static resources.

3.5 Single-unit vs. Multi-unit

In a multi-unit setting it is possible to have many resources
of the same type and to refer to these resources using
the same name. Suppose, for instance, there are a num-
ber of bottles of champagne available in the system, but
that agents cannot distinguish between these bottles. In a
single-unit setting, on the other hand, every item to be al-
located is distinguishable from the other resources and has
a unique name.

The differentiation between single- and multi-unit set-
tings is a matter of representation. Any multi-unit problem
can, in principle, be transformed into a single-unit problem
by introducing new names for previously indistinguishable
items. Vice versa, clearly, any single-unit problem is also a
(degenerate) multi-unit unit problem. An important advan-
tage of working within a multi-unit setting is that it may
allow for a more compact way of representing both alloca-
tions and the preferences of agents over alternative bundles.
On the downside, a richer language (variables ranging over
non-negative integers, rather than binary values) is required
in this case.

3.6 Resources vs. Tasks

At a sufficiently high level of abstraction, a task allocation
problem can be reduced to a resource allocation problem.
Indeed, tasks may be considered resources to which agents
assign a negative utility. However, an important character-
istic of tasks as opposed to resources is the fact that tasks
are often coupled with constraints regarding their coherent

12 Informatica 30 (2006) 3–31 Y. Chevaleyre et al.

combination. For instance, a task may require the achieve-
ment of another task as a precondition. In this respect,
treating allocations merely as assignments of bundles of
items to agents (without associated time constraints, for in-
stance) would be too simple a model.

In this paper, however, we concentrate on general re-
source allocation problems rather than issues that are spe-
cific to task allocation (and exception is our discussion in
Section 2.3).

4 Preference Representation
Preferences express the relative or absolute satisfaction of
an individual when faced with a choice between different
alternatives.2 In the context of MARA, these alternatives
are the different potential allocations of resources, or more
concretely, the bundle of resources received by an agent for
each of the alternative allocations.

A preference structure represents an agent’s preferences
over a set of alternatives X . There are several choices
that can be made regarding the definition of a mathemat-
ical model for preference structures (this is an important
question that has been discussed by researchers in decision
theory for a long time). We can distinguish four families of
preference structures:

– A cardinal preference structure consists of an evalua-
tion function (generally called utility) u : X → Val ,
where Val is either a set of numerical values (typi-
cally, N, R, [0, 1], R+, etc.), or a totally ordered scale
of qualitative values (e.g. linguistic expressions such
as “very good”, “good”, etc.). In the former case the
preference structure is called quantitative, in the latter
it is called qualitative.

– An ordinal preference structure consists of a binary
relation on alternatives, denoted by ¹, which is re-
flexive and transitive (and usually, although not nec-
essarily, complete).3

We write x ≺ y (strict preference) if and only if x ¹ y
but not y ¹ x, and x ∼ y (indifference) if and only if
both x ¹ y and y ¹ x.

– A binary preference structure is simply a partition of
X into a set of good and a set of bad states. A binary
preference structure can be seen as both a (degenerate)
ordinal preference structure and a (degenerate) cardi-
nal preference structure.

– A fuzzy preference structure is a fuzzy relation over
X , i.e. a function µ : X ×X → [0, 1]. µ(x, y) is the

2This is the decision-theoretic view of preferences, shared by many
communities, from mathematical economics to multi-criteria decision
making.

3Some work in preference modelling has also addressed non-transitive
preference relations, arguing that humans often exhibit non-transitive
preferences—for the sake of brevity we will omit this issue here.

degree to which x is preferred over y. Fuzzy prefer-
ences are more general than both ordinal and cardinal
preferences.

Since fuzzy and qualitative preferences have not been used
much as far as resource allocation is concerned, we are go-
ing to neglect these in this survey, and focus on quantitative
and ordinal preferences instead.

Observe that we have three “levels” for preference mod-
elling, according to the possible operations allowed by the
preference structure: Ordinal preferences allow only for
comparing the satisfaction of a given agent for different al-
ternatives, but cannot express preference intensity and do
not allow for interpersonal comparison of preferences (that
is, expressing statements such as “agent i is happier with x
than agent j with y”). Qualitative preferences do allow for
interpersonal comparison of preferences, and can express a
weak form of intensity, but they do not allow for any “met-
ric” use of preferences such as computing the difference
between two utility degrees so as to allow for a monetary
compensation—while quantitative preferences do.

Note that any cardinal preference induces an ordinal
preference, namely for a utility function u we can define
the complete weak order ¹u given by x ¹u y if and only
if u(x) ≤ u(y).

The explicit representation of a preference structure con-
sists of the data of all alternatives with their associated util-
ities (for cardinal preferences) or the whole relation ¹ (for
ordinal preferences). These representations have a spatial
complexity in O(|X|) for cardinal structures and O(|X|2)
for ordinal structures, respectively.

In many real-world domains, the set of alternatives X
is the set of assignments of a value to each of a given set
of variables. In such cases, the alternatives are exponen-
tially many. It is not reasonable to ask agents to report
their preference in an explicit way when the set of alter-
natives is exponentially large, as this amounts to listing the
exponentially many alternatives together with their utility
assessment or their ranking. This is the case, in particular,
when alternatives are allocations of resources (assignments
of resources to agents). For this reason, the MARA project
needs languages for preference representation aiming at
enabling a succinct representation of the description of the
problem, without having to enumerate a prohibitively large
number of alternatives. Such preference representation lan-
guages often allow for a much more concise representation
of the preference structure than an explicit enumeration.

In this section, we are going to give a brief survey of
languages for preference representation. We begin by dis-
cussing several ways of representing compactly quantita-
tive preferences (that is, utility functions), including lan-
guages specifically introduced for combinatorial auctions,
and then we move on to languages for representing ordinal
preferences.

MULTIAGENT RESOURCE ALLOCATION Informatica 30 (2006) 3–31 13

4.1 Quantitative Preferences
Let R = {r1, . . . , rm} be a set of indivisible resources. A
quantitative preference structure for a resource allocation
problem is a utility function u : 2R → Val mapping bun-
dles of resources (subsets of R) to numerical values (such
as the reals). By defining utilities over bundles, we assume
that the preferences of agents are free of so-called alloca-
tive externalities. That is, the value that an agent assigns
to a bundle R does not depend on the allocation of the re-
maining resources amongst the other agents.

In the case of task allocation (as opposed to resource al-
location), we may model the preferences of agents using
cost functions rather than utility functions. At the level of
abstraction being considered in the present survey, there is
no effective difference in the representation of utility func-
tions and cost functions. In the former case, agents would
usually aim at maximising their utility, while in the latter
case they would aim at minimising their costs.

Next we are going to review several languages for repre-
senting utility functions.

4.1.1 Bundle Enumeration

The most basic form of representing a utility function is
to enumerate the bundles to which it assigns a non-zero
value. That is, a utility function u can be presented as the
set of pairs 〈R, u(R)〉 with R those bundles of resources
for which u(R) 6= 0. We call this the explicit form, or the
bundle form.

The bundle form is obviously fully expressive in the
sense that any utility function may be so described. A
serious drawback, however, is that the length of such de-
scriptions will typically be exponential in the number of
resources. This has prompted researchers to develop more
succinct languages for utility representation.

4.1.2 The k-additive Form

For some (but not all) utilities it is possible to exploit reg-
ularities in the function structure in order to build succinct
and efficiently computable descriptions. Given k ∈ N, a
utility function u is said to be k-additive if and only if there
exists a coefficient αT for each set of resources T of size at
most k such that:

u(R) =
∑

T⊆R

αT

The coefficient αT represents the synergetic value of own-
ing all of the items in T together, beyond the utility asso-
ciated with any of its proper subsets. If a utility function is
presented in terms of such coefficients, then we say that it
is given in k-additive form.

The k-additive form is also fully expressive, but only in
the sense that it can describe any utility function provided k
is chosen large enough (for any k less than the overall num-
ber of resources there are functions that cannot be repre-
sented). It is typically considerably more succinct than the

simple bundles form (think of a function mapping bundles
to the number of items in a bundle), although there are also
counterexamples (such as functions mapping only bundles
with a single element to a non-zero utility value) [18].

In many application domains, it will be reasonable to
assume that utility functions are k-additive with a relatively
small value of k (which would allow for a very succinct
representation). Indeed, the larger a bundle of resources,
the more difficult for an agent to estimate the additional
benefit incurred by owning all the resources in that bundle
together (i.e. beyond the benefit incurred by the relevant
subsets).

The k-additive form of representing utility functions is
inspired by work in fuzzy measure theory [47]. It has
been introduced into the MARA domain by Chevaleyre et
al. [18] and, independently and in a combinatorial auction
setting, by Conitzer et al. [23].

4.1.3 Weighted Propositional Formulas

Many languages for compact preference representation
make an explicit use of logic (for a survey of such lan-
guages we refer to the work of Lang [57]). The basic
idea of logic-based preference representation for MARA
is that each resource r can be identified with a proposi-
tional variable pr, which is true if the agent whose prefer-
ences we are modelling owns the corresponding resource,
and false otherwise.4 That is, every bundle R corresponds
to a model. Agents can then express their preferences in
terms of propositional formulas (or goals) that they want to
be satisfied. We write R |= G to express that the goal G is
satisfied in the model corresponding to the bundle R.

The simplest (and prototypical) logical representation of
preferences simply consists of giving a single propositional
formula G (representing the agent’s goal). The utility func-
tion uG generated by G is extremely basic: uG(R) = 1
if R |= G, uG(R) = 0 if R |= ¬G. One possi-
ble refinement of this consists of considering a goal base
GB = {G1, . . . , Gn} and counting the number of goals
satisfied by R.

In a further refinement, goals are associated with numer-
ical weights, which tell how important the satisfaction of
the goal is considered to be. Formally, the preferences of an
agent are expressed by means of a finite set of such weighed
goals: GB = {〈G1, α1〉, . . . , 〈Gn, αn〉}, where each αi is
an integer and each Gi is a propositional formula. For ev-
ery bundle R, we define the penalty of R as follows:

pGB (R) =
∑

{αi |R 6|= Gi} (1)

The penalty of R can be viewed as its disutility, that is,
uGB (R) = −pGB (R). Many other operators can be used,
in place of the sum, for aggregating weights of violated (or
symmetrically, satisfied) formulas [56].

4In a multi-unit setting (see Section 3.5), we would have to consider
atomic sentences such as x ≥ 50, signifying a bundle with at least 50
units of type x.

14 Informatica 30 (2006) 3–31 Y. Chevaleyre et al.

4.1.4 Straight-line Programs

A further representation form for utility functions is based
on straight-line programs (SLPs). SLPs may be viewed
as directed acyclic graphs consisting of two distinguished
types of vertex: inputs which are sources (have in-degree
0) and gates, each of which has in-degree exactly 2. A
subset of the gates (with out-degree 0) are distinguished as
the program outputs. In addition to the graph structure an
SLP is fully defined by associating a binary Boolean oper-
ation with each gate vertex. For an SLP, C, with m inputs,
ordered as 〈x1, x2, . . . , xm〉 and p gates, a topological la-
belling of the vertices assigns a unique integer in the range
[1,m + p], λ(v), to each vertex of C in such a way that:
λ(xi) = i; if v is a gate with 〈w1, v〉 and 〈w2, v〉 edges
in C then λ(v) > max{λ(w1), λ(w2)}. A topological la-
belling may be efficiently computed for C using depth-first
search.

An SLP, C with inputs 〈x1, x2, . . . , xm〉 and p gates, t of
which are outputs labelled 〈s0, s1, . . . , st−1〉 computes its
result by executing the program consisting of exactly m+p
lines, at each of which a single bit value (res(i)) is com-
puted. Given an instantiation of the inputs 〈α1, . . . αm〉,
the ith line, li computes: res(i) := αi if 1 ≤ i ≤ m;
and res(j1)θires(j2) if m + 1 ≤ i ≤ m + p, where θi is
the binary operation associated with the ith gate and whose
inputs are the vertices labelled j1 and j2. The numerical
value computed by C as a consequence of a particular in-
stantiation α of its inputs is val(C, α) =

∑t−1
i=0 res(si)·2i.

This model provides an alternative representation for
utility functions, u : 2R → N by a suitable SLP, C: a
subset S defines an instantiation of the inputs via its m-bit
characteristic vector α(S); the value u(S) is then simply
val(C, α(S)). It is noted that, although this definition uses
N as the range, it is a trivial matter to extend to Z (allow
an additional output to act as a sign bit) and to Q (interpret
the output bits as two groups, one defining the numerator,
the other the denominator). As with the bundle form, the
SLP form has the property of being fully expressive. In
addition, however, there are the following advantages:

– The number of bits needed to encode utility functions
can be exponentially smaller than that required in the
bundle form.

– If the function u : 2Rm → Q is computable by a
deterministic Turing Machine in time T , then u may
be represented by an SLP, C containing O(T log T)
lines.

The first of these is easily seen by considering the func-
tion with value 1 if |S| is odd, and value 0 if |S| is even:
the number of bundles to be listed is exactly 2m−1. The
same function, however, is described by the program with
2m − 1 lines corresponding to the computation ⊕m

i=1 xi.
The second property is a consequence of the constructions
presented by Schnorr [85] and Fischer and Pippenger [39].
These simulations are effective (i.e. not simply existence
arguments) and can be efficiently implemented.

In principle, other “program-based” formalisms can be
defined, however, in order to be effective it must be pos-
sible efficiently to validate that a given bit-string does de-
scribe a syntactically correct program and to have an ef-
fective method of determining the program output. For the
SLP approach above, both of these are satisfied, the latter
since the runtime of a given SLP is exactly the number of
program lines contained within it.

Extensive complexity-theoretic treatments of the SLP
model (described in its usual terminology of combinational
logic networks) may be found in the monographs of Sav-
age [84], Wegener [96] and Dunne [28]. In the context of
MARA, the SLP form has been considered by Dunne et
al. [32].

4.1.5 Bidding Languages

Bidding languages are used in combinatorial auctions to al-
low agents to communicate their preferences to the auction-
eer.5 Preferences structures here are valuation functions or,
equivalently, positive and monotonic utility functions on
2R.

Bids are expressed as combinations of atomic bids of the
form 〈R, p〉, where p is the amount the bidder is prepared
to pay for the bundle R. Two prominent bidding languages
are the OR and the XOR languages:

– The OR language is probably the most widely used
bidding language. Here the valuation of a bundle is
taken to be the maximal value that can be obtained
when computing the sum over disjoint bids for subsets
of the bundle. For instance, a bid of the form

〈{a}, 2〉 OR 〈{b}, 2〉 OR 〈{c}, 1〉 OR 〈{a, b}, 5〉

expresses that the bidder is willing to pay 2 for a
alone, 2 for b alone, 5 for both a and b, and 6 for
the full set. Clearly, this language is not fully expres-
sive since it cannot represent subadditive utility func-
tions (for example, there is no way to specify that you
would only be prepared to pay 4 for the full set).

– In the XOR language [80], atomic bids are assumed
to be mutually exclusive. In this case, the valuation
of a bundle is simply the highest value offered for any
of its subsets. The XOR language can express any
(normalised) monotonic utility function.

While the XOR language is more expressive than the OR
language, it can also prove to be far less compact for cer-
tain types of preferences. For instance, the utility function
u(R) = |R| requires an exponential number of atomic bids
in the XOR language, but only a linear number of OR bids.

Because the OR language is widely considered a sim-
ple and natural bidding language, there have been several
attempts to extend its expressiveness without requiring an

5Of course, strategic considerations may cause agents not to report
their true preferences, but this issue is not relevant from the viewpoint of
preference representation.

MULTIAGENT RESOURCE ALLOCATION Informatica 30 (2006) 3–31 15

exhaustive listing of XOR bids. It is, for instance, possible
to combine the types of bids, and to thus to obtain OR-of-
XOR and XOR-of-OR bidding languages. For an extensive
discussion of such languages we refer to the review article
by Nisan [68].

An interesting alternative is to simulate XOR bids by
means of OR bids. The idea is simply to introduce “fake”
resources (or phantom goods, or dummy items), that have
no function other than making bundles mutually exclusive,
because the resource appears in both bundles [41]. For in-
stance, if one wanted to express that the set {a, b, c} should
be valued at 4, it would be possible to add the fake resource
f to obtain both 〈{c, f}, 1〉 and 〈{a, b, f}, 5〉, and to bid
in addition on 〈{a, b, c}, 4〉. This language, known as the
OR∗ bidding language (or OR with dummy items), is as
expressive as the XOR language.

4.2 Ordinal Preferences
Next we are going to discuss the representation of ordinal
preferences. Again, let R = {r1, . . . , rm} be a set of in-
divisible resources. An ordinal preference structure ¹ is a
binary relation over 2R. Here, logic-based languages play
a central role (see also our discussion of weighted proposi-
tional formulas in Section 4.1.3).

4.2.1 Prioritised Goals

Prioritised goals are the ordinal counterpart to weighted
goals: instead of numerical weights attached to goals (ex-
pressed as propositional formulas), we have a priority rela-
tion on goals, from which a preference relation on the set
of bundles can be drawn.

While some approaches make use of partial priority pre-
orders, most of them make the assumption that the priority
relation is complete. When this is the case, then priorities
on formulas can be expressed by a function r from inte-
gers to integers. A goal base is then a finite set of formu-
las with an associated function: GB = 〈{G1, . . . , Gn}, r〉.
If r(i) = j, then j is called the rank of the formula Gi.
By convention, a lower rank means a higher priority. The
question is now how to extend the priority on goals to a
preference relation over alternatives. The following three
choices are the most frequent ones:6

– best-out ordering [5]: R ¹bo
GB R′ iff

min{r(i) |R 6|= Gi} ≤ min{r(i) |R′ 6|= Gi}
– discrimin ordering [5, 14, 43]:

Let d(R, R′) = min{r(i) |R 6|=Gi & R′ |=Gi}.
R ¹dis

GB R′ iff d(R,R′) < d(R′, R) or
{Gi |R |= Gi} = {Gi |R′ |= Gi}

– leximin ordering [5, 58]:7

Let dk(R) = |{Gi |R |= Gi & r(i) = k}|.
6We are using the convention min(∅) = +∞.
7Not to be confused with (although related to) the leximin ordering for

the aggregation of individual preferences in a society of agents presented
in Section 5.4.

R ≺lex
GB R′ iff there exists a k such that

dk(R) < dk(R′) and ∀j < k, dj(R) = dj(R′)
R ¹lex

GB R′ iff R ≺lex
GB R′ or ∀j, dj(R)=dj(R′)

Note that¹lex
GB and¹bo

GB are complete preference relations
while¹dis

GB is generally not. We moreover have the follow-
ing chain of implications: R ≺bo

GB R′ entails R ≺dis
GB R′

entails R ≺lex
GB R′.

4.2.2 Ceteris Paribus Preferences

In this language, preferences are expressed in terms of
statements like: “all other things being equal, I prefer these
alternatives over those other ones.” Formally, let C, G and
G′ be three propositional formulas and V a set of proposi-
tional variables including those occurring in G and G′. The
ceteris paribus desire C : G > G′[V] means: “when C is
true, all irrelevant things being equal, I prefer G ∧ ¬G′ to
¬G ∧ G′”, where the “irrelevant things” are the variables
that are not in V . The preference relation induced by a set
of such preference statements is then the transitive closure
of the union of preference relations induced by individual
preference statements. This language can also be extended
so as to allow for indifference statements.

An important sublanguage of ceteris paribus preferences
is the language of (binary) CP-nets [9], which is obtained
by imposing the following syntactical restrictions:

– Goals G and G′ are literals speaking about the same
propositional variable.

– The variables mentioned in the context C of a prefer-
ence statement about variable p must belong to a fixed
set, called the parents of p.

– For each variable p and each possible assignment π of
the parents of p, there is one and only one preference
statement C : p > ¬p or C : ¬p > p such that
π |= C.

Various extensions of CP-nets have been proposed so as to
be more expressive. For instance, TCP-nets [12] are CP-
nets with a dominance relation between variables. Lan-
guages for cardinal preference representation in the style
of CP-nets have been defined as well, for instance UCP-
nets [8], which are based on generalised additive indepen-
dence.

4.3 Discussion
At least five very important issues should be addressed
when investigating preference representation languages:

– Elicitation: How hard is is to elicit preference from an
agent so as to obtain a statement expressed in a given
preference language L?

– Cognitive relevance: How close is a given language
L to the way in which humans would express their
preferences?

16 Informatica 30 (2006) 3–31 Y. Chevaleyre et al.

– Expressive power: Given a representation language L,
a relevant question is whether L can express all pre-
orders and/or all utility functions, or only complete
preorders, or only a strict subclass of them, etc.

– Computational complexity: For a given language L,
what is the computational complexity of comparing
two alternatives, of deciding whether a given alterna-
tive is optimal, or of finding an optimal alternative?

– Comparative succinctness: Given two languages L
and L′, determine whether every preference structure
that can be expressed in L can also be expressed in
L′ without a significant (that is, supra-polynomial) in-
crease in size (in which case L′ is said to be at least as
succinct as L).

A detailed discussion of these issues in view of all the dif-
ferent representation languages we have covered would be
beyond the scope of this survey. We limit ourselves to a
few indicative remarks.

With the exception of bidding languages, all the lan-
guages for quantitative preferences presented above are
fully expressive and we have already discussed several ex-
amples of comparative succinctness results for such lan-
guages. A problem with quantitative preferences in gen-
eral is the well-known difficulty of eliciting numerical pref-
erences from agents. Ceteris paribus preferences, being
rather close to human intuition and comparatively easy to
elicit, are interesting from a cognitive point of view. How-
ever, they have a high computational complexity in the
general case, and furthermore, they generally leave many
pairs of alternatives incomparable. As for prioritised goals,
their lack of expressive power (no compensation allowed
between goals) somewhat limits their range of use.

5 Social Welfare
A typical objective in MARA is to find an allocation that is
optimal with respect to a metric that depends, in one way or
another, on the preferences of the individual agents in the
system. The aggregation of individual preferences can of-
ten be modelled using the notion of social welfare as stud-
ied in Welfare Economics and Social Choice Theory. This
view is in line with the widely used metaphor of multiagent
systems as “societies of agents”. For instance, assuming
that individual agents model their preferences using utility
functions mapping bundles of resources to numerical val-
ues, the concept of utilitarian social welfare, defined as the
sum of individual utilities, can be used to measure the qual-
ity of an allocation from the viewpoint of the system as a
whole. This is probably the most widely used interpreta-
tion of the term “social welfare” in the multiagent systems
literature [79, 97].

In Welfare Economics and Social Choice Theory, on the
other hand, many different notions of social welfare and re-
lated concepts have been studied [2, 65, 86] and many of
these are also applicable to MARA systems [33]. In the

context of an e-commerce application, our aim may be to
maximise the average profit generated by the negotiating
agents. In this case, utilitarian social welfare provides a
suitable metric for assessing system performance. In an
application such as that introduced in Section 2.2, where
agents need to agree on the access to an Earth Observa-
tion Satellite that has been jointly funded by the owners of
these agents, on the other hand, it is important that each
agent receives a fair share of the common resource (possi-
bly reflecting the size of the financial contribution made by
its owner). In this case, average utility is clearly not a good
indicator of performance.

Generally speaking, before sending a software agent into
a system to negotiate on our behalf, we would like to know
under what (social) rules that system operates. If these
rules are not satisfactory, we may not be prepared to agree
to be bound by the outcome of a negotiation.

In this section, we are going to review some of the no-
tions of social welfare proposed in the literature on Wel-
fare Economics and Social Choice Theory that are relevant
to MARA. More specifically, we are going to present and
discuss different approaches to defining a social welfare or-
dering, i.e. a mapping from the preferences of the agents in
a society to the “preferences” of society as a whole. Good
references in this area are the Handbook of Social Choice
and Welfare, edited by Arrow, Sen and Suzumura [2], and
the textbook by Moulin [65]. We are going to cover prefer-
ence aggregation mechanisms for both ordinal and cardinal
agent preferences (utility functions). Given that every util-
ity function also induces an ordinal preference relation, any
concept defined for ordinal preferences also extends to the
cardinal case.

5.1 Notation

Let A = {1, . . . , n} be a set of agents. Depending on
whether we assume cardinal or ordinal preference struc-
tures, each of these agents i is equipped with either a utility
function ui or a preference relation ¹i. An allocation P
is a mapping from agents to bundles of resources; that is,
P (i) is the bundle held by agent i in allocation P .

Our presentation is independent from the exact nature of
the resources used (divisible or not, sharable or not, etc.).
In most cases, we only assume that agents have prefer-
ences over alternative allocations (only in the case of envy-
freeness, discussed in Section 5.7, we need to assume that
agents have preferences over alternative bundles). For in-
stance, P ¹i Q states that agent i likes allocation P no
more than allocation Q. Despite such generality, it makes
sense to think of preferences as being defined over bundles
of resources (as discussed in Section 4), i.e. to assume that
there are no allocative externalities. That is, P ¹i Q may
be considered an abbreviation for P (i) ¹i Q(i) and ui(P)
is short for ui(P (i)).

MULTIAGENT RESOURCE ALLOCATION Informatica 30 (2006) 3–31 17

5.2 Pareto Optimality
An allocation P is Pareto-dominated by another allocation
Q if and only if the following hold:

– P ¹i Q for all agents i ∈ A; and

– P ≺i Q for at least one agent i ∈ A.

An allocation is Pareto optimal (or Pareto efficient) if and
only if it is not Pareto-dominated by any other allocation.
That is, an allocation is Pareto optimal if and only if it is
not possible to (strictly) improve the individual welfare of
an agent without making any of the others worse off.

Pareto optimality is generally regarded as the most fun-
damental criterion for efficiency. Note that the concept of
Pareto optimality is purely ordinal: It does not require pref-
erences to be numerical, not even interpersonally compara-
ble. Also observe that the notion of Pareto dominance only
gives rise to a partial (rather than a complete) ordering over
alternative allocations.

5.3 Collective Utility Functions
If individual agents use utility functions to represent their
preferences, then every allocation P gives rise to a util-
ity vector 〈u1(P), . . . , un(P)〉. A collective utility func-
tion (CUF) is a mapping from such vectors to numerical
values (e.g. the reals). Given that every allocation P de-
termines a utility vector, a CUF may also be regarded as
a function from allocations P to numerical values. Every
CUF sw induces a social welfare ordering: The alloca-
tion Q is socially preferred over allocation P if and only if
sw(P) ≤ sw(Q).

In the sequel, we list several examples for such CUFs
and indicate the kind of MARA applications where they
may be useful.

5.3.1 Utilitarian Social Welfare

The utilitarian social welfare is defined as the sum of indi-
vidual utilities:

swu(P) =
∑

i∈A
ui(P) (2)

The utilitarian CUF is independent of the zeros of individ-
ual utilities. It can provide a suitable metric for overall (as
well as average) profit in a range of e-commerce applica-
tions.

5.3.2 Egalitarian Social Welfare

The egalitarian social welfare is given by the utility of the
agent that is currently worst off:

swe(P) = min{ui(P) | i ∈ A} (3)

This CUF offers a level of fairness and may be a suitable
performance indicator when we have to satisfy the min-
imum needs of a large number of customers. Fair divi-
sion [13, 66, 101] is an important area with many potential
applications in the field of MARA.

5.3.3 Nash Product

The Nash product is defined as the product of individual
utilities:

swN (P) =
∏

i∈A
ui(P) (4)

This notion of social welfare favours both increases in over-
all utility and inequality-reducing redistributions. In this
sense, it may be regarded as a good compromise between
the utilitarian and the egalitarian agendas. Another inter-
esting aspect of this CUF is that it is independent of the
individual scales of agent utility functions.

Observe that the Nash product can only provide a mean-
ingful metric of social welfare if all individual utilities are
non-negative (or better even, if they are all positive).

5.3.4 Elitist Social Welfare

The elitist social welfare is given by the utility of the agent
that is currently best off:

swel(P) = max{ui(P) | i ∈ A} (5)

The elitist CUF is clearly not a fair measure for social wel-
fare, but it can be useful in cooperation-based applications
where we require only one agent to achieve its goals.

5.3.5 Rank Dictators

The egalitarian and the elitist CUFs are both representatives
of the family of k-rank dictator CUFs, which we are going
to define next. Let (v↑P)k denote the kth smallest utility as-
signed to allocation P by any of the agents inA (this is the
kth coordinate in the ordered utility vector for allocation P ;
see also Section 5.4). Then the k-rank dictator CUF swk is
defined as follows:

swk(P) = (v↑P)k (6)

A special case of particular interest is the median rank dic-
tator CUF which is defined as swk with k = n

2 in case n
is even and k = n+1

2 in case n is odd. Indeed, for certain
applications the individual level of welfare on an agent that
does at least as well as half of the agents in the system but
not better than the other half may be considered as suitable
indicator for overall system performance.

5.4 The leximin Ordering
The leximin ordering is a social welfare ordering that re-
fines egalitarian social welfare. It works by comparing first
the utilities of the least satisfied agents, and in case these
utilities coincide, compares the utilities of the next least
satisfied agents, and so on. This idea is formalised as fol-
lows.

Suppose agents use utility functions to express their pref-
erences. Then every allocation P gives rise to an ordered
utility vector v↑P , which is the result of first computing

18 Informatica 30 (2006) 3–31 Y. Chevaleyre et al.

ui(P) for every agent i ∈ A and then arranging these
values in ascending order. For example, v↑P = 〈3, 5, 20〉
means that the agent worst off enjoys utility 3, the one best
off utility 20, and the third one utility 5.

Then Q is leximin-preferred to P if and only if there ex-
ists an integer k ∈ {1, . . . , n} such that:

– (v↑P)i = (v↑Q)i for all i < k; and

– (v↑P)k < (v↑Q)k.

In other words, the leximin ordering is the lexicographic or-
dering over ordered utility vectors. It favours the reduction
of inequalities between agents. An allocation is leximin-
optimal if and only if it is not leximin-preferred by any
other allocation.

5.5 Generalisations
It is possible to build families of parametrised CUFs able
to induce a continuous collection of social welfare order-
ings, including most of those defined above. Let us de-
scribe briefly two such families. The first one is defined by
the following additive CUF [65]:

sw(p)(P) =
∑

i∈A
g(p)(ui(P)) (7)

The parameter p is a real number, p 6= 0, and g(p)(x) =
sgn(p) · xp (where sgn(p) = 1 if p > 0 and sgn(p) = −1
if p < 0), with the convention g(0)(u) = log u. Obvi-
ously, sw(1) measures utilitarian social welfare, and sw(0)

induces the same social welfare ordering as the Nash prod-
uct. The leximin ordering is the limit of the social welfare
ordering induced by sw(p) as p goes to −∞.

The other family of CUFs is a particular case of what
is known as ordered weighted averaging (OWA) opera-
tors [99]. With the notation introduced above, let us define:

sww(P) =
∑

i∈A
wi · (v↑P)i (8)

Here, w = (w1, w2, . . . , wn) is a vector of real numbers.
Let us consider the vector w such that wi = 0 for all i 6= k
and wk = 1, then we have exactly the k-rank dictator CUF
(including the egalitarian and the elitist CUFs, which are
special cases of rank dictators). Consider now the vector
w such that wi = αi−1, with α > 0, then the case α = 1
corresponds to the utilitarian CUF, and the leximin ordering
is the limit of the social welfare ordering induced by sww

as α goes to 0.

5.6 Normalised Utility
It can often be necessary to normalise utility functions be-
fore aggregating individual preferences using any of the
methods presented here, because many of them require in-
dividual utilities to be intercomparable. For instance, if P0

is the initial allocation of resources, then we may restrict

our attention to allocations P that Pareto-dominate P0 and
use the utility gains ui(P) − ui(P0) rather than the utili-
ties ui(P) themselves as input to either a collective utility
function or the leximin ordering.

A further normalisation step would be to evaluate an
agent’s utility gains relative to the gains it could expect in
the best possible case. More precisely, let us define the
maximum individual utility for each agent as:

ûi = max{ui(P) |P ∈ Adm} (9)

Here, Adm is the set of admissible allocations. That is,
ûi is the utility that agent i could enjoy if it were the sole
agent exploiting the available resources. Then we define
the normalised individual utility of an agent i as follows:

u′i(P) =
ui(P)

ûi
(10)

Observe that max{u′i(P) |P ∈ Adm} = 1, for all agents
i. In other words, the maximum normalised utility is the
same for all agents.

The optimum of the leximin ordering with respect to nor-
malised utilities is known as the Kalai-Smorodinsky solu-
tion [66].

5.7 Envy-freeness

An allocation is envy-free if and only if each agent is at
least as happy with its share than it would be with any of
the bundles allocated to one of the other agents [13]. That
is, an allocation P is envy-free if and only if P (j) ¹i P (i)
holds for all agents i and j. Envy-freeness is a property
that does not require the intercomparability of the utilities
of different agents.

If we require all items to be allocated, then an envy-free
allocation does not always exist (consider, say, a an allo-
cation problem with a single resource that is desired by all
agents in the system). But even when not all items need to
be allocated, it is well-known that there are allocation prob-
lems for which there exists no allocation that is both Pareto
optimal and envy-free. One could therefore aim at finding
(Pareto optimal) allocations that would, at least, minimise
the overall “degree of envy” as much as possible. There are
several candidate definitions for minimal envy. Two possi-
ble approaches would be the following:

– Minimise the number of envious agents.

– Minimise the average degree of envy (the distance to
the most envied competitor) of all envious agents.

5.8 Example

To exemplify some of the concepts introduced in this sec-
tion, consider a scenario with two agents, 1 and 2, and a set
of three resources {a, b, c} that are indivisible and cannot

MULTIAGENT RESOURCE ALLOCATION Informatica 30 (2006) 3–31 19

be shared. Suppose the preferences of the two agents are
represented by the utility functions u1 and u2:

u1({a}) = 18 u1({b}) = 12 u1({c}) = 8
u2({a}) = 15 u2({b}) = 8 u2({c}) = 12

Furthermore, suppose u1 and u2 are additive, i.e. ui(R) =∑
r∈R ui({r}), and thereby fully specified by the above

values. Let P be the allocation giving a to 1 and b and c to
2.

Allocation P has maximal egalitarian social welfare
(18). Utilitarian social welfare, on the other hand, is not
maximal for this allocation (38 rather than 42) , and neither
is elitist social welfare (20 rather than 38).

P is Pareto optimal as well as leximin-optimal, but not
envy-free, since agent 1 would be happier with the share
of 2 than with its own. In fact, there is no allocation that
would be both Pareto and and envy-free for this problem.
On the other hand, for the slightly different problem where
u1({a}) = 20 instead of 18 (leaving the rest unchanged),
allocation P would be both Pareto optimal and envy-free.

5.9 Welfare Engineering
The insight that very different notions of social welfare
may be appropriate for different applications of MARA has
provided the impetus for the development of the Welfare
Engineering framework [19, 33], which addresses two is-
sues:

– the systematic choice of suitable social welfare order-
ings for a given application of MARA (and possibly
the application-driven design of new orderings); and

– the design of appropriate rationality criteria and social
interaction mechanisms for negotiating agents in view
of different notions of social welfare.

By “appropriate” we mean criteria and mechanisms that en-
sure the convergence of the negotiation process to an allo-
cation that is optimal with respect to the chosen social cri-
terion (see also Section 6.4). Of course, depending on the
application in question, such criteria need to be balanced
with the autonomy requirements of individual agents.

An example for the first aspect of Welfare Engineering
would be the elitist collective utility function discussed ear-
lier, which seems unethical for human society, but it may
be just the right performance indicator for a distributed
computing application where several agents are working
towards their own goals, but the system designer is only
interested in (at least) one of them achieving their objective
as quickly as possible. This aspect of Welfare Engineering
may be characterised as “welfare economics for artificial
agent societies”.

An example for the second aspect would be the follow-
ing convergence result: To achieve Pareto optimal out-
comes in negotiation without monetary side payments, ask
agents to negotiate mutually beneficial deals involving any
number of agents or resources, but also to participate in

deals that do at least not lower their own level of util-
ity [35]. This aspect of Welfare Engineering can be sum-
marised as “inverse welfare economics”, alluding to the
characterisation of mechanism design as “inverse game
theory” [70].

6 Allocation Procedures
Generally speaking, the allocation procedure used to find a
suitable allocation of resources could be either centralised
or distributed. In the centralised case, a single entity de-
cides on the final allocation of resources amongst agent,
possibly after having elicited the preferences of the other
agents in the system. Typical examples for the centralised
approach are combinatorial auctions [24]. Here the cen-
tral entity is the auctioneer and the reporting of preferences
takes the form of bidding. In truly distributed approaches,
on the other hand, allocations emerge as the result of a
sequence of local negotiation steps. Such local negotia-
tion is often restricted to bilateral trading as in the clas-
sical Contract-Net approach [87], but systems allowing for
multilateral exchanges of resources between more than two
agents are also possible.

A comprehensive survey on allocation procedures for
MARA would be beyond the scope of this paper. Any such
survey would have to address at least the following three
issues:

– Protocols: At this level, we need to address ontologi-
cal issues (what types of deals are possible?) and de-
vise communication protocols accordingly (what mes-
sages do agents have to exchange to agree on one such
deal?).

– Strategies: When designing individual agents, we
need to devise strategies for agents that allow them to
best exploit a given negotiation protocol. This can also
provide feedback to the first level: Where possible,
protocols should be designed in such a way that they
provide incentives to the negotiating agents to adopt a
particular desirable profile of behaviour (mechanism
design).

– Algorithms: At this level, we need to provide algo-
rithms to solve the computational problems faced by
agents when engaged in negotiation. This includes
both algorithms to decide how to respond to a pro-
posal in a distributed negotiation scenario and win-
ner determination algorithms for combinatorial auc-
tions. Again, this level may provide feedback to the
other two levels: If a particular computational prob-
lem proves too hard to be solved in a reasonable
amount of time then this may call for a simplification
of the negotiation protocol (or strategy).

In this paper, we concentrate on the first of these issues.
The most fundamental question to consider before devis-
ing a protocol for a MARA system is whether to adopt a

20 Informatica 30 (2006) 3–31 Y. Chevaleyre et al.

centralised or a distributed design. We therefore start with
a short discussion of the respective merits and drawbacks
of centralised and distributed approaches to MARA. This
is followed by an introduction to protocols for combinato-
rial auctions and an overview of the Contract-Net and re-
lated protocols for distributed resource allocation. Finally,
we make a connection to our discussion of social welfare
measures in Section 5 and review a number of results con-
cerning the convergence to a socially optimal allocation for
different protocols in the distributed setting.

6.1 Centralised vs. Distributed

Both the centralised and the distributed approach to MARA
have their advantages and disadvantages. Possibly the most
important argument in favour of auction-based mechanisms
concerns the simplicity of the communication protocols re-
quired to implement such mechanisms. Another reason for
the popularity of centralised mechanisms is the recent push
in the design of powerful algorithms for combinatorial auc-
tions that, for the first time, perform reasonably well in
practice [41, 80]. Of course, such techniques are, in princi-
ple, also applicable in the distributed case, but research in
this area has not yet reached the same level of maturity as
for combinatorial auctions. An important argument against
centralised approaches is that it may be difficult to find an
agent that could assume the role of an “auctioneer” (for in-
stance, in view of its computational capabilities or in view
of its trustworthiness).

The distributed model seems also more natural in cases
where finding optimal allocations may be (computation-
ally) infeasible, but even small improvements over the ini-
tial allocation of resources would be considered a success.
Step-wise improvements over the status quo are naturally
modelled in a distributed negotiation framework.

6.2 Auction Protocols

Auctions [24, 54, 55, 94, 98] are centralised mechanisms
for the allocation of goods amongst several agents. Agents
report their preferences and wait for the final allocation to
be made by the auctioneer (whether there is an initial al-
location of goods, as in combinatorial exchanges, or not,
as in regular combinatorial auctions). The act of reporting
preferences is called bidding and, naturally, agents are not
required to reveal their true preferences during bidding, but
they may submit whatever bid(s) they believe to best serve
their own interests.

Bidding may be public (open-cry) as in the well-known
English auction model or private (sealed bids). In the case
of open-cry bidding, we can further distinguish between as-
cending bids (English auction) and descending bids (Dutch
auction) [94]. In combinatorial domains, which is what we
are interested in here (i.e. there are many goods and agents
can submit bids for different combinations of goods), typ-
ically, most auction protocols foresee only a single round
of bidding using sealed bids. The bidding language (see

Section 4.1.5) determines what types of bids are admissi-
ble (and how to interpret them).

The auction protocol also specifies which agent would be
awarded which goods, based on the bids received in time,
and what price they should pay for the bundles allocated
to them. In some cases, this decision can be left entirely
to the auctioneer (who will seek to maximise her revenue).
In other cases, it is important that the auctioneer follows
the rules specified by the protocol, as these rules have been
designed in such a way as to provide incentives to the bid-
ders to bid truthfully. This is the case for the Vickrey auc-
tion model [94], and its extensions to combinatorial scenar-
ios, where the winning agents pay less then the prices they
specified in their bids.

For an extensive review of different auction models for
resource allocation in combinatorial domains we refer to
the forthcoming book on Combinatorial Auctions, edited
by Cramton, Shoham and Steinberg [24], and the review
article on the same topic by Kalagnanam and Parkes [54].

6.3 Negotiation Protocols
We now give a brief overview of some of the protocols de-
veloped for negotiation over resources in a distributed set-
ting.

6.3.1 Contract-Net

Perhaps the most popular negotiation protocol is the
Contract-Net protocol [87]. Although the protocol was
primarily designed for task allocation, it is also perfectly
suited to MARA. The protocol consists in four interaction
phases, involving two roles (manager and bidder):

– Announcement phase: The manager advertises the re-
source to a number of partner agents (the bidders).

– Bidding phase: The bidders send their proposals to the
manager.

– Assignment phase: The manager elects the best bid
and assign the resource accordingly.

– Confirmation phase: The elected bidder confirms its
intention to obtain the resource.

Any agent can initiate an interaction following the protocol
by assuming the adequate role. The protocol is really a one-
to-many protocol, leading to the assignment of a single task
(or resource) to a single contractor (that is, the resulting
deal is a one-to-one agreement regarding a single item).

6.3.2 Extensions

Many different extensions to this protocol have been pro-
posed and we briefly review some of these here. The TRA-
CONET system developed by Sandholm [77], for instance,
uses a variant of the classical Contract-Net protocol to al-
low negotiation over the exchange of bundles of resources.

MULTIAGENT RESOURCE ALLOCATION Informatica 30 (2006) 3–31 21

Golfarelli et al. [46] have proposed an extension where
the bidders have no explicit mechanism for utility transfer
(in other words, they cannot use money). The first phase
remains the same as in the original Contract-Net: the man-
ager announces a (bundle of) resource(s). But the proto-
col is based on exchanges: instead of bidding money, the
agents will bid for one or more resources they are inter-
ested in exchanging. This extension allows agents to agree
on swapping resources (rather than buying them from each
other).

Sousa et al. [89] have designed a version of the Contract-
Net protocol where bidders first propagate constraints be-
tween them in order to guarantee the coherence of different
operations related to the same task.

6.3.3 Concurrent Contract-Net

As pointed out by Aknine et al. [1], when many managers
negotiate simultaneously with many contractors, using the
Contract Net protocol can lead to unsatisfactory results. In
particular, because contractors are required to answer a sin-
gle bid at a time, they may miss some contracts. To over-
come this, they have proposed an extension to in which
a pre-bidding and a pre-assignment phase are added be-
fore the final bidding and assignment phase of classical
Contract-Net protocols. During the pre-bidding and pre-
assignment phases, which can last a long time, agents pro-
pose temporary bids and managers temporarily accept (or
reject) these bids. These new phases have several positive
effects:

– After a deal has been temporarily accepted, if the man-
ager receives a better offer, this deal can be turned into
temporarily rejected offer. It turns out that when many
negotiations are conducted simultaneously, by delay-
ing the final acceptance, better deals (from the man-
ager’s point of view) may be negotiated.

– Contractors can modify their offers many times by
making temporary offers. If the contractor receives a
better new offer from another manager, it can modify
its temporary bids before sending a definitive bid.

– The pre-bidding phase may be quite long. This has the
positive effect of reducing the risk of decommitment.

An alternative way to tackle this latter problem is to allow
agents to decommit, but to apply penalties when they do so.
This route has been followed in the levelled commitment
approach proposed by Sandholm and Lesser [82].

6.4 Convergence Properties

As discussed earlier, once a particular negotiation protocol
has been fixed, we need to devise strategies for the agents
using that protocol. Work in this area is often of a game-
theoretical nature. A different line of research has analysed
how the negotiation behaviour of individual agents affects

the quality of the overall distribution of resources (with re-
spect to some of the social welfare measures introduced in
Section 5) by abstracting away from the details of individ-
ual negotiation strategies [35, 78].

For instance, a rational agent may be defined as an agent
that will only agree to deals that result in a positive pay-
off for itself. That is, a set of rational agents will only
agree on mutually beneficial deals. Which of the possibly
many mutually beneficial deals agents will actually agree
on depends on the concrete strategies they use, and overly
aggressive negotiation strategies may even prevent agents
from identifying any mutually beneficial deal at all [67].
However, in cases where it is admissible to assume that
agents will agree on some deal meeting certain rationality
criteria (such as resulting in a strictly positive payoff for
everyone involved) whenever such a deal exists, it is some-
times possible to prove so-called convergence properties of
a negotiation framework.

For instance, in the context of negotiation over finitely
many indivisible resources, an important result, due to
Sandholm [78], states that any sequence of deals that are
mutually beneficial will eventually result in an alloca-
tion with maximal utilitarian social welfare, provided that
agents can use monetary side payments to compensate their
trading partners for otherwise disadvantageous deals (and
each agent’s payoff is linear in the amount of money re-
ceived). That is, there can be no infinite sequence of mu-
tually beneficial deals, and if agents keep on making such
deals the system will converge to an allocation that max-
imises the sum of individual utilities. A similar result states
that any sequence of mutually beneficial deals without side
payments will converge to a Pareto optimal allocation [35].

An important caveat is that these results apply to negoti-
ation settings where agents can agree on truly multilateral
deals: A single deal may involve any number of agents (as
well as any number of resources). Decomposing such a
multilateral deal into a sequence of bilateral deals is not al-
ways possible, because some of the bilateral deals making
up the overall deal may not be mutually beneficial to both
agents. Hence, myopic agents that require a positive payoff
for every single deal they take part in will not accept such
a deal.

Given the difficulty of implementing such general deals,
it is important to understand under what circumstances se-
quences of structurally simple deals suffice to guarantee
convergence to a socially optimal allocation of resources.
Recent results in this area show that mutually beneficial
deals with side payments that involve only a single resource
each (and thereby only two agents at a time) suffice to reach
allocations with maximal utilitarian social welfare in case
all agents use modular utility functions [35].8 In fact, the
class of modular utility functions is also maximal in the

8A utility function u is said to be modular if and only if we have
u(R1 ∪ R2) = u(R1) + u(R2) − u(R1 ∩ R2) for all bundles R1

and R2. This means that the utility assigned to a bundle of resource can
be computed as the sum of the utilities of the individual resources in that
bundle, i.e. the classes of modular and 1-additive functions coincide.

22 Informatica 30 (2006) 3–31 Y. Chevaleyre et al.

sense that for no class of functions strictly including that
class it would still be possible to guarantee that agents us-
ing utility functions from this larger class and negotiating
only mutually beneficial deals over single resources will
eventually reach an allocation with maximal utilitarian so-
cial welfare in all cases [21]. Related work has also identi-
fied classes of utility functions (and ordinal preference re-
lations) that guarantee the convergence to optimal alloca-
tions for sequences of deals involving at most k resources
each [20].

7 Complexity Results
A growing body of work within the study of MARA con-
siders various concepts of complexity, not only in the stan-
dard sense of computational complexity theory but also in
terms of concepts such as communication complexity. Such
work comprises both positive results—e.g. algorithms with
provably efficient performance characteristics, properties
of restricted classes of allocation settings, etc.—and a large
collection of negative results that suggest many naturally
arising decision and optimisation problems are unlikely to
admit generally applicable algorithmic solutions. Within
this section our aim is to review extant work that has ad-
dressed such questions and to catalogue related open prob-
lems.

7.1 Models and Assumptions
The structure we consider in the subsequent text will be
referred to as a resource allocation setting, by which we
mean a triple 〈A,R,U〉 where:

– A = {1, 2 . . . , n} is a set of n agents;

– R = {r1, r2, . . . , rm} is a collection of m resources;
and

– U = {u1, u2, . . . , un} describes the utility function
ui : 2R → Q for the agent i ∈ A.

We assume that each r ∈ R is indivisible and non-
shareable, i.e. at most one agent at a time will “own” r
(see also Section 3). An allocation of the resources in R
among the agents in A is a mapping P : A → 2R with
P (i)∩P (j) = ∅ for any i 6= j. The set of all allocations of
R among A will be denoted by Πn,m. From the fact that
there are n choices of agent for each of the m resources, it
is easily seen that |Πn,m| = nm.

7.2 Computational vs. Communication
Complexity

In very informal terms, traditional computational complex-
ity theory is concerned with the issue of classifying com-
putational problems with respect to how much of a partic-
ular computational resource is required for their solution.
Typically, computational problems are phrased as decision

questions, i.e. given an input instance I , is it the case that
some property φ holds true of I? For example, given a di-
rected graph H(V,E) and a vertex s in V , is it the case that
every vertex in V can be reached by some path that starts
in s? The concept of computational resource is modelled
via some formal model of computation. Thus, time (space)
as the (worst-case) number of moves (tape cells) made by
a (deterministic) 2-tape Turing machine (DTM) that cor-
rectly classifies input instances, i.e. accepts if φ(I) = >,
rejects if φ(I) = ⊥. For further introductions to computa-
tional complexity theory we refer the reader to the textbook
by Papadimitriou [69].

In the context of MARA problems, computational com-
plexity results have tended to address what might be termed
“global” properties of given resource allocation settings,
e.g. whether allocations satisfying particular criteria exist.
Recent work, however, has begun to address computational
properties of abstract high-level negotiation protocols as
reviewed in Section 6.4 above, e.g. given some constraint,
χ, that allowed deals must satisfy, a number of decision
problems may be formulated regarding allocations that are
reachable from a starting allocation via sequences of χ-
deals.

This view of complexity has not, in general, needed to be
concerned with “localised” questions, e.g. the overheads
involved in describing and implementing proposed deals;
how many deals may be needed in order to reach an alloca-
tion with desirable properties, etc. In the work of Endriss
and Maudet [34] the term communication complexity, de-
riving from the model put forward by Yao [100], is intro-
duced to capture the combination of number of deals and
communication to agree a deal that could be needed in or-
der for an allocation to be finalised. While the bulk of the
survey below is concerned with complexity issues from the
perspective of computational complexity, we also discuss
some results related to communication from the works of
Endriss and Maudet [34] and Dunne [29], that consider up-
per and lower bounds on the number of deals needed in
various contexts.

7.3 Allocations with Given Properties

Given a resource allocation setting, 〈A,R,U〉, the agents
concerned seek to bring about an allocation that will sat-
isfy certain criteria. As discussed in Section 5, such criteria
may be purely quantitative (e.g. the sum of the individual
utility valuations (utilitarian social welfare) is maximal (or
is above a given amount), but so-called qualitative prop-
erties (Pareto-optimal or envy-free outcomes, for instance)
are also of interest.

7.3.1 Representation Issues

Standard computational complexity theory considers prop-
erties of algorithms implemented within some “well-
defined” model of computation, e.g. Turing machines. In
order sensibly to consider the performance of a specific al-

MULTIAGENT RESOURCE ALLOCATION Informatica 30 (2006) 3–31 23

gorithm, this is reported as a function of the algorithm’s
input length. This convention presumes that, in comparing
different algorithmic approaches to a particular problem,
such comparisons are only “reasonable” if the representa-
tion of input instances is similar, or that (at worst) different
formats can be translated between efficiently.

In considering how instances are to be represented in the
case of decision problems concerning resource allocation
settings, a significant issue that arises is the encoding of
the collection of utility functions U . The domain of a utility
function is 2R: thus (from the viewpoint of upper bounds
on complexity) the characteristics of algorithms employ-
ing an enumerative form (listing all subset/value pairs) may
not be comparable with algorithms employing some com-
pact representation. We therefore give complexity results
for the three different forms of representing utility func-
tions discussed in Section 4.1: the bundle form, the SLP
form, and the k-additive form (here the 2-additive form is
of particular interest).

7.3.2 Quantitative Criteria

Two natural decision questions regarding the measure swu

of utilitarian social welfare, have been considered with re-
gard to each of the three formalisms for representing utility
functions:

Welfare Optimisation (WO)
Instance: 〈A,R,U〉; K ∈ Q
Question: ∃P ∈ Πn,m : swu(P) ≥ K?

Welfare Improvement (WI)
Instance: 〈A,R,U〉; P ∈ Πn,m

Question: ∃Q ∈ Πn,m : swu(Q) > swu(P)?

WI and WO are both NP-complete for the representa-
tion of utility functions in bundle form (reduction from
SET PACKING [18]); for the SLP form (reduction from 3-
SAT [32]); and for 2-additive functions (the simplest proof
is via a reduction from MAX-2-SAT [18]). Both the 2-
additive and SLP results apply even in systems contain-
ing only 2 agents; the SLP reduction shows that the prob-
lems remain NP-complete when (both) utility functions are
monotonic.

7.3.3 Qualitative Criteria

The qualitative measures of Pareto optimality and envy-
freeness give rise to the following decision problems:

Pareto Optimality (PO)
Instance: 〈A,R,U〉; P ∈ Πn,m

Question: Is P Pareto optimal?

Envy-Freeness (EF)
Instance: 〈A,R,U〉
Question: ∃P ∈ Πn,m : P is envy-free?

Deciding PO is coNP-complete for both SLP and 2-
additive utility functions. The former was shown by Dunne
et al. [32] (reduction from 3-UNSAT restricted to instances
with clause and variable numbers equal); the latter, al-
though not explicitly stated by Chevaleyre et al. [18], is
an immediate consequence of their proof that WI is NP-
complete. Again both continue to hold in 2-agent contexts,
with the SLP reduction also applying to monotonic utility
functions.

EF is examined in a variety of cases in the work of
Bouveret and Lang [11]. They consider a representation
based on concise logic-based descriptions of agent prefer-
ences (as discussed in Section 4.1.3 above). In addition
to the basic question of whether envy-free allocations are
possible—shown to be NP-complete even within 2-agent
settings—the question of allocations that combine envy-
freeness with Pareto optimality is examined (termed effi-
cient envy-free, or EEF, allocations). For such decision
problems they demonstrate completeness results ranging
from NP-complete up to Σp

2-complete, depending on the
restrictions placed on the preference relations. That NP-
completeness also holds for the question EF within the SLP
model in 2-agent settings has been shown by Dunne [30]
(reduction from 3-SAT).

7.4 Path and Convergence Properties

The collection of results referred to above, hold indepen-
dently of the regime used to negotiate allocations. There
are, however, a number of questions that arise specifically
in the context of distributed negotiation when the structure
of admissible deals is constrained. Thus suppose that only
individually rational deals may be used, i.e. deals that are
beneficial to all the agents involved. If monetary side pay-
ments are allowed, then individually rational deals are deals
〈P,Q〉 under which swu(Q) > swu(P) [35]. As has been
shown by Sandholm [78], if additional constraints, such
as “all deals are bilateral and involve exactly one resource
changing” (sometimes called the class of O-contracts), then
there are cases where some rational deals cannot be imple-
mented. A further problem that arises is that, even when
there is a rational O-contract path to go from P to Q this
may involve an agent repeatedly making deals involving
the same resource, i.e. such paths may contain more than
m distinct deals.

In general, given some predicate Φ on deals, the follow-
ing decision problem arises:

Φ-Path
Instance: 〈A,R,U〉; P (s), P (t) ∈ Πn,m with

swu(P (t)) > swu(P (s))
Question: ∃∆ = 〈P (0), P (1), . . . , P (r)〉 s.t.

P (0) = P (s) and P (r) = P (t) and
∀1 ≤ i ≤ r, Φ(P (i−1), P (i))?

Dunne et al. [32] consider the complexity of Φ-Path where
Φ(P, Q) holds only if the deal is individually rational and

24 Informatica 30 (2006) 3–31 Y. Chevaleyre et al.

involves at most some given number k of the resources be-
ing passed from one agent to another. Within 2-agent set-
tings using SLP representation it is shown that Φ-Path is
NP-hard for all k ≤ m

3 (and for the case k = m
2). In

the special case of O-contracts (i.e. k = 1) NP-hardness
holds with both utility functions being monotonic. Re-
cent work, presented in Dunne and Chevaleyre [31], im-
proves this NP-hardness lower bound and obtains an exact
complexity classification: Φ-Path is PSPACE-complete for
Φ(P,Q) holding if the deal is an individually rational O-
contract.

Introducing the idea of a maximal Φ-path (from an initial
allocation P) as a sequence of deals every one of which
satisfies Φ and with the final allocation, P (t) being such
that for every Q it is the case that ¬Φ(P (t), Q), leads to the
following related problem:

Φ-Convergence
Instance: 〈A,R,U〉
Question: Is it the case that ∀P ∈ Πn,m, for all

maximal Φ-paths ∆ starting from P ,
the allocation last(∆) these terminate
in, is one which maximises swu?

For instance, the basic convergence result first proved by
Sandholm [78] (discussed in Section 6.4) shows that the
answer to the above question is always “yes” when Φ does
not restrict the range of admissible deals in any way. Φ-
Convergence is the subject of ongoing work which has al-
ready established the following: For Φ corresponding to
individually rational O-contracts, Φ-Convergence is coNP-
complete for the SLP model and for 4-additive utility func-
tions [31] Both results hold in 2-agent settings. If all utility
functions are modular (i.e. 1-additive), then the answer to
Φ-Convergence is always “yes” [21].

We now return to an issue relating to the ideas of com-
munication complexity discussed above. The question of
interest also has a bearing on establishing upper bounds
on the complexity of Φ-Path. Given a resource allocation
setting and Φ, consider the (rational) deals that can be im-
plemented by Φ-paths. Dunne [29] has introduced the fol-
lowing measures:

– Lopt(P,Q): the length of the shortest Φ-path realising
〈P, Q〉.

– Lmax(A,R,U): the maximum value of Lopt(P, Q)
over those deals for which a Φ-path exists.

– ρmax(n,m): The maximum value (taken over all
choices of utility function) of Lmax(A,R,U).

– ρmax
C (n,m): As ρmax, but with the maximisation

taken over utility functions belonging to some class
C.

A related study (employing different terminology) is given
by Endriss and Maudet [34], where attention is focussed
on utility functions which allow any rational deal to be
implemented via some sequence of rational O-contracts;

the main case being considered in this respect is that of
1-additive functions.

Let Φ(P, Q) hold if and and only if the deal 〈P, Q〉 is an
individually rational O-contract:

– ρmax(n,m) ≤ nm −m(n− 1) [78]

– ρmax(n,m) ≥ 77
2562m − 1 [29]

– ρmax
1−add(n,m) = m [34]

– ρmax
mono(n,m) ≥ 77

1282
m
2 − 3 [29]

The latter two results pertain to the classes of 1-additive and
monotonic utility functions, respectively. The constructed
rational paths in the general and monotonic lower bound
cases are unique.

7.5 Open Problems and Conjectures
Given the existing results concerning the measure swu

wherein exact complexity classifications have been derived
for each of the three representation styles for utility func-
tions, the following conjectures seem plausible and ought
to be straightforward to verify.

Conjecture 1 Deciding if there is an allocation P with
swe(P) ≥ K is NP-complete (whether U is given in bundle
form, SLP form, or is 2-additive).

Conjecture 2 Given K ∈ Q, deciding if
max{swu(P) |P ∈ Πn,m} = K is DP -complete
(again in all three representation formalisms).

Conjecture 3 EF is NP-complete for 2-additive utility
functions.

8 Simulation Platforms
Theoretical work in Microeconomics and Auction Theory
provides a very strong foundation for analysing many re-
source allocation problems. However, on occasion we may
be faced with a problem in which some of the assumptions
underlying the theory are violated. This is especially the
case in MARA scenarios where computational concerns
are prominent [25]. For example, mechanism design as
originally developed in Economics is not concerned with
computational issues such as algorithmic or communica-
tion complexity. In a conventional auction design scenario
issues such as the speed of winner determination and the
communication costs of submitting bids are often not of
significant concern since they are not typically a bottle-
neck with respect to the entire auction process which can
involve protracted and lengthy decision making by human
traders. However, in a market place run entirely by auto-
mated trading agents, such issues are likely to be of more
concern since their performance costs can sometimes be
of similar order of magnitude as the overall computational
costs of running the auction. Once these costs are taken

MULTIAGENT RESOURCE ALLOCATION Informatica 30 (2006) 3–31 25

into account many of the results in auction theory become
somewhat brittle. For example, the revelation principle
no longer applies when transaction-throughput and reduc-
tion in communication complexity are adopted as design
goals [74].

In such cases experimental work using simulations of
agent-based market places—Agent-based Computational
Economics (ACE) [93]—can shed light on some of the grey
areas that are difficult to analyse using existing theoretical
tools.

As with any software engineering problem, in choosing
an appropriate software framework in which to implement
an ACE simulation it is important to consider the require-
ments that the software needs to meet. In this section, we
give an overview of the typical requirements addressed by
ACE software, and we then proceed to give an overview of
some commonly-used simulation frameworks.

8.1 Simulation vs. Implementation

Software for simulating multiagent systems typically ad-
dresses different requirements from that designed to imple-
ment multiagent systems. Although it is natural to view
a MAS implementation as its own simulation, there are a
number of problems with such an approach, which we shall
address in turn.

Firstly, ideally we would like the outcome of a simula-
tion experiment to be exactly reproducible given the initial
conditions of the experiment. This is not always possible in
a MAS implementation since many environmental factors
will be beyond the experimenter’s control. For example,
the precise outcome of an experiment may depend on the
exact timing with which an agent responds to a particular
message, and this time interval will depend on factors be-
yond the experimenter’s control, such as the memory and
CPU currently available to the agent.

Secondly, when we come to analyse the results of a sim-
ulation, we often need to generalise beyond a single run of
an experiment with a single set of initial conditions. Typ-
ically, we generalise by taking many samples of free ini-
tial variables and running the experiment many times for
each sample. Simulation frameworks are equipped to log
data from the outcome of each experiment to a format suit-
able for analysis using statistical analysis software, such as
MATLAB.

Thirdly, the performance considerations of a simulation
are qualitatively different to that of an implementation. The
software architecture of a MAS implementation is driven
by real-world requirements that do not always hold in a
simulation context. For example, trading agents need to
be able to run on different machines due to commercial
and practical considerations. This distributed parallelism
is detrimental to raw system-level performance however,
since inter-host network communication overheads dom-
inate other performance considerations. By running all
agents on the same host we can achieve several orders of
magnitude performance increase. This would be an im-

practical solution for a real MAS trading implementation.
However, such considerations do not apply in a simulation
context, and by relaxing these constraints we can achieve a
significant gain in performance.

Similarly, much of the technical complexity of a real
MAS implementation addresses requirements that are not
present in a simulation context. For instance, MAS im-
plementations need to be robust against system failures,
and they need to respond quickly to real-time asynchronous
events. This necessitates a highly parallel software archi-
tecture, involving, for example, many threads of execution
running simultaneously. Such considerations do not apply
in agent-based simulation, since real-time parallelism can
be simulated using a sequential program, and this greatly
reduces the complexity of the software (and hence the po-
tential for bugs).

Finally, any MAS interacts at some point with the en-
vironment. In a MARA scenario, for example, the envi-
ronment might constitute economically relevant character-
istics of the human owners of agents, such as their utility
functions. Unlike the agents in a MAS implementation, the
environment is not a software entity in a MAS implemen-
tation, and cannot be directly ported to an agent-based sim-
ulation. Rather, the environment itself must be simulated.
Agent-based simulation toolkits allow for the abstract sta-
tistical simulation of environmental factors. Hence a key
feature of any simulation toolkit is a library of pseudo-
random number generators (PRNGs). A good simula-
tion toolkit will provide high quality PRNGs, such as the
Mersenne Twister PRNG [64], with extremely large peri-
ods, low statistical correlation, and the ability to produce
random numbers according to arbitrary (non-uniform) dis-
tributions.

In summary, when developing a system to simulate a
MARA scenario, it is important to choose a framework or
toolkit that is specifically designed for agent-based simu-
lation, as opposed to toolkits such as JADE [51] that are
designed for implementing multiagent systems.

8.2 Simulating Time

For practical purposes we often prefer to simulate the par-
allelism of events using sequential computation, rather than
execute the simulation of multiple simultaneous events in
parallel in real-time. This necessitates a framework for
computing the outcome of events that occur simultane-
ously. There are several approaches to simulating time in a
model.

8.2.1 Continuous Time Models

Many physical processes are characterised by smooth and
continuous changes in time-dependent variables. Differ-
ential equation models are common in analytical microe-
conomics. Such models are applicable approximations of
real market places when there are very large numbers of
participants in the market since individual characteristics

26 Informatica 30 (2006) 3–31 Y. Chevaleyre et al.

of the participants play a less significant role and the en-
tities in the system can be treated as simple and homoge-
neous particles. However, these models break down when
the number of participants becomes very small and the in-
dividual and strategic characteristics of the participants be-
come more prominent.

Agent-based models address this issue by providing a
richer structure with which to model market participants.
In such models, macro-level variables describing the en-
semble of agents no longer vary smoothly with time. This
necessitates alternative approaches to temporal modelling.

8.2.2 Discrete-event Simulation

Discrete-event simulation frameworks [4, 42] model time
in discrete quanta called ticks. Intuitively, a tick can be
thought of as an “instant” of time. During the simulation of
a tick—the tick cycle—entities (agents) in the simulation
signal which agents they interact with during that instant
of time by sending events to each other. Individual events
specify the exact nature of the interaction between agents.
In an auction simulation, for example, an auctioneer agent
may send an end-of-auction event to all trading agents in
the auction when it has closed. At the end of a tick cycle,
once events have been exchanged, each entity updates its
internal state in response to any events it has received.

8.3 Agent Modelling

In a MARA simulation, agents often need to make intelli-
gent decisions in their resource utilisation and acquisition
behaviour. The intelligent agents community has tradition-
ally favoured symbolic approaches, such as the class of
BDI (Belief-Desire-Intention) models. In a MARA sce-
nario, however, an agent’s goals are often quantitative in
nature; for example, agents act to maximise their expected
utility. In the field of agent-based electronic commerce,
this has led to the adoption of Bayesian approaches to
agent’s decision problems such as (multiagent) reinforce-
ment learning.

Many agent-based simulation frameworks have been de-
veloped by the Artificial Life (ALife) community. Agents
in ALife models are imbued with very little intelligent be-
haviour at the outset; rather, intelligent behaviour emerges
collectively from the complex interactions between agents
equipped with relatively crude decision making machinery.
Connectionist approaches such as neural networks and evo-
lutionary approaches such as genetic algorithms, are popu-
lar in such models.

Since simulation is the main methodology used in AL-
ife research, ALife software toolkits tend to be the most
mature in terms of simulation functionality. Correspond-
ingly, since empirical methods are relatively rare in MAS
research, there are few frameworks for simulating BDI
agents, as opposed to implementing BDI agents.

8.4 Extensibility and Integration
When conducting research via simulation it is often nec-
essary to extend the existing functionality of the system.
Although all frameworks provide the ability to configure
simulations, the desired behaviour cannot always be imple-
mented by configuring the existing components provided
by the framework. In this case it is necessary for the re-
searcher to implement the desired behaviour by writing
their own code. Toolkits take two main approaches to al-
lowing extensibility: They allow either for scripting in a
custom language or for the introduction of new classes and
methods via inheritance.

8.5 Software Listing
We are now going to give a brief overview of some com-
monly used general-purpose simulation frameworks that
might be suitable for analysing MARA problems.

8.5.1 Swarm

Swarm [91] is one of the most famous ALife software
toolkits and has been continually improved by an active
community of users and developers since the early 1990s.
It provides an API for discrete-event simulation, uses high-
quality PRNGs, allows for spatial modelling, and includes
real-time visualisation tools. Swarm is an open-source
project written in the Objective-C programming language.

8.5.2 Extensions to Swarm

The Evo toolkit [36] is an extension to Swarm that provides
agents with the ability to mate and evolve new behaviour
over time using a system similar to genetic programming.

MAML [63] is an extension to Swarm that provides a
higher-level scripting language that is simpler to use than
Objective-C. The goal is to allow researchers from the so-
cial sciences, who are not necessarily skilled programmers,
to quickly develop simulations.

8.5.3 RePast

RePast [75] is another toolkit inspired by Swarm, but is
written entirely in Java, and the ultimate design goals of
this system are more MAS- rather than ALife-oriented. It
offers similar features as Swarm (discrete-event simulation,
high-quality PRNGs, spatial modelling, visualisation tools)
and it is also open-source and extensible.

The core simulation functionality of RePast is particu-
larly mature and robust (it use the COLT library for high-
performance scientific computing). The MAS-oriented fea-
tures, on the other hand, are still relatively immature (no
explicit reinforcement learning, no BDI support).

8.5.4 Desmo-J

Desmo-J [26] is implemented in Java and provides raw
discrete-event simulation functionality. While only pro-

MULTIAGENT RESOURCE ALLOCATION Informatica 30 (2006) 3–31 27

viding minimal functionality, the system comes with a
highly flexible, well-designed API. It uses the standard Java
PRNG, but the API should allow other (more advanced)
PRNGs to be plugged in as well.

8.5.5 AScape

AScape [3] is a Java-based discrete-event simulation
framework with an emphasis on spatial modelling of
agents.

8.5.6 DEx

DEx [27] is a high-performance toolkit providing high-
quality PRNGs, discrete-event simulation, spatial mod-
elling, and real-time visualisation tools (including 3D rep-
resentation).

9 Conclusion

We have presented a survey of salient issues in Multi-
agent Resource Allocation (MARA), a timely and fast-
developing area of research at the interface of Computer
Science and Economics. Naturally, the choice of topics
selected for detailed presentation has been driven, at least
in part, by personal interests and preferences. Neverthe-
less, we are confident that this material will prove useful to
many researchers working on different aspects of MARA
and related disciplines.

In the first part of the paper, after a short introduction to
the field, we have highlighted four major application do-
mains, which together both demonstrate the wide scope of
MARA and underline the urgent need to further advance
the field to meet the enormous challenges still posed by
these applications. The second part of the paper serves
as a catalogue of fundamental concepts in MARA: generic
properties of resources characterising a MARA problem at
hand; languages for preference representation to model the
interests of individual agents; and social welfare measures
and related tools to assess the overall quality of an alloca-
tion of resources. The third part of the paper then addresses
actual MARA techniques. This includes, in particular, an
introduction to allocation procedures and a selection of rel-
evant complexity results. Where theoretical results alone
are not sufficient, our survey of simulation platforms can
serve as a starting point for experimental work.

Two important issues that we have not covered are the
algorithmics of MARA and the game-theoretical analy-
sis of negotiation (and bidding) strategies. The former in-
cludes the design of algorithms for the winner determina-
tion problem in combinatorial auctions, and a survey of re-
cent work in this area is available elsewhere [81]. The liter-
ature on game-theoretical issues in negotiation, multiagent
systems, and Computer Science in general is vast and fast-
developing. A good starting point for readers interested
in the computational approach to Game Theory (and the

game-theoretic approach to Computer Science) is the short
paper by Papadimitriou [70].

Acknowledgements. This survey has been written in the
context of the activities of the AgentLink Technical Forum
Group on Multiagent Resource Allocation (TFG-MARA).

References
[1] S. Aknine, S. Pinson, and M. F. Shakun. An ex-

tended multi-agent negotiation protocol. Journal
of Autonomous Agents and Multi-Agent Systems,
8(1):5–45, 2004.

[2] K. J. Arrow, A. K. Sen, and K. Suzumura, editors.
Handbook of Social Choice and Welfare. North-
Holland, 2002.

[3] AScape System. http://www.brook.edu/es/

dynamics/models/ascape/main.htm.

[4] J. Banks, J. Carson, B. Nelson, and D. Nicol.
Discrete-event System Simulation. Prentice Hall, 4th
edition, 2005.

[5] S. Benferhat, C. Cayrol, D. Dubois, J. Lang, and
H. Prade. Inconsistency management and prioritized
syntax-based entailment. In Proc. 13th International
Joint Conference on Artificial Intelligence (IJCAI-
1993), pages 640–647. Morgan Kaufmann, 1993.

[6] M. Bichler, J. Kalagnanam, and H. S. Lee. RECO:
Representation and evaluation of configurable of-
fers. In H. K. Bhargava and N. Ye, editors, Compu-
tational Modeling and Problem Solving in the Net-
worked World: Interfaces in Computing and Opti-
mization. Kluwer, 2003.

[7] R. A. Bourne and R. Zaidi. A quote-driven auto-
mated market. In Proc. AISB Symposium on Infor-
mation Agents for E-Commerce. AISB, 2001.

[8] C. Boutilier, F. Bacchus, and R. I. Brafman. UCP-
networks: A directed graphical representation of
conditional utilities. In Proc. 17th Annual Confer-
ence on Uncertainty in Artificial Intelligence (UAI-
2001), pages 56–64. Morgan Kaufmann, 2001.

[9] C. Boutilier, R. I. Brafman, C. Domshlak, H. H.
Hoos, and D. Pool. CP-nets: A tool for representing
and reasoning with conditional ceteris paribus pref-
erence statements. Journal of Artificial Intelligence
Research, 21:135–191, 2004.

[10] S. Bouveret, H. Fargier, J. Lang, and M. Lemaître.
Allocation of indivisible goods: A general model
and some complexity results. In Proc. 4th Interna-
tional Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS-2005), pages 1309–
1310. ACM Press, 2005.

28 Informatica 30 (2006) 3–31 Y. Chevaleyre et al.

[11] S. Bouveret and J. Lang. Efficiency and envy-
freeness in fair division of indivisible goods: Logical
representation and complexity. In Proc. 19th Inter-
national Joint Conference on Artificial Intelligence
(IJCAI-2005), pages 935–940. Morgan Kaufmann,
2005.

[12] R. I. Brafman and C. Domshlak. Introducing vari-
able importance tradeoffs into CP-nets. In Proc. 18th
Conference in Uncertainty in Artificial Intelligence
(UAI-2002), pages 69–76. Morgan Kaufmann, 2002.

[13] S. J. Brams and A. D. Taylor. Fair Division: From
Cake-cutting to Dispute Resolution. Cambridge
University Press, 1996.

[14] G. Brewka. Preferred subtheories: An extended
logical framework for default reasoning. In Proc.
11th International Joint Conference on Artificial In-
telligence (IJCAI-1989), pages 1043–1048. Morgan
Kaufmann, 1989.

[15] H. van Brussel, J. Wyns, P. Valckenaers, L. Bon-
gaerts, and P. Peeters. Reference architecture for
holonic manufacturing systems: PROSA. Comput-
ers in Industry, 37(3):255–274, 1998.

[16] E. Cantillon and M. Pesendorfer. Auctioning bus
routes: The London experience. In P. Cramton et al.,
editors, Combinatorial Auctions. MIT Press, 2006.
To appear.

[17] CERN. LHC: The Large Hadron Collider. http:

//lhc.web.cern.ch.

[18] Y. Chevaleyre, U. Endriss, S. Estivie, and
N. Maudet. Multiagent resource allocation with
k-additive utility functions. In Proc. DIMACS-
LAMSADE Workshop on Computer Science and De-
cision Theory, Annales du LAMSADE 3, pages 83–
100, 2004.

[19] Y. Chevaleyre, U. Endriss, S. Estivie, and
N. Maudet. Welfare engineering in practice: On
the variety of multiagent resource allocation prob-
lems. In Engineering Societies in the Agents World
V, pages 335–347. Springer-Verlag, 2005.

[20] Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet.
Negotiating over small bundles of resources. In
Proc. 4th International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS-
2005), pages 296–302. ACM Press, 2005.

[21] Y. Chevaleyre, U. Endriss, and N. Maudet. On max-
imal classes of utility functions for efficient one-to-
one negotiation. In Proc. 19th International Joint
Conference on Artificial Intelligence (IJCAI-2005),
pages 941–946. Morgan Kaufmann, 2005.

[22] V. Conitzer and T. W. Sandholm. Complexity of
mechanism design. In Proc. 18th Annual Confer-
ence on Uncertainty in Artificial Intelligence (UAI-
2002), pages 103–110. Morgan Kaufmann, 2002.

[23] V. Conitzer, T. W. Sandholm, and P. Santi. Combi-
natorial auctions with k-wise dependent valuations.
In Proc. 20th National Conference on Artificial In-
telligence (AAAI-05), pages 248–254. AAAI Press,
2005.

[24] P. Cramton, Y. Shoham, and R. Steinberg, editors.
Combinatorial Auctions. MIT Press, 2006. To ap-
pear.

[25] R. K. Dash, D. Parkes, and N. R. Jennings. Com-
putational mechanism design: A call to arms. IEEE
Intelligent Systems, 18(6):40–47, 2003.

[26] Desmo-J: Discrete-Event Simulation and Modelling
in Java. http://www.desmoj.de.

[27] DEx: Dynamic Experimentation Toolkit. http://

dextk.org.

[28] P. E. Dunne. The Complexity of Boolean Networks.
Academic Press, 1988.

[29] P. E. Dunne. Extremal behaviour in multiagent con-
tract negotiation. Journal of Artificial Intelligence
Research, 23:41–78, 2005.

[30] P. E. Dunne. Multiagent resource allocation in the
presence of externalities. In Proc. 4th Interna-
tional Central and Eastern European Conference on
Multi-Agent Systems (CEEMAS-2005), pages 408–
417. Springer-Verlag, 2005.

[31] P. E. Dunne and Y. Chevaleyre. Negotiation can be
as hard as planning: Deciding reachability proper-
ties of distributed negotiation schemes. Technical
Report ULCS-05-009, Dept. of Computer Science,
University of Liverpool, 2005.

[32] P. E. Dunne, M. Wooldridge, and M. Laurence. The
complexity of contract negotiation. Artificial Intelli-
gence, 164(1–2):23–46, 2005.

[33] U. Endriss and N. Maudet. Welfare engineering in
multiagent systems. In Engineering Societies in the
Agents World IV, pages 93–106. Springer-Verlag,
2004.

[34] U. Endriss and N. Maudet. On the communication
complexity of multilateral trading: Extended report.
Journal of Autonomous Agents and Multi-Agent Sys-
tems, 11(1):91–107, 2005.

[35] U. Endriss, N. Maudet, F. Sadri, and F. Toni. On op-
timal outcomes of negotiations over resources. In
Proc. 2nd International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS-
2003), pages 177–184. ACM Press, 2003.

MULTIAGENT RESOURCE ALLOCATION Informatica 30 (2006) 3–31 29

[36] Evo Artificial Life Framework. http:

//sourceforge.net/projects/evo/.

[37] P. Faratin. Automated Service Negotiation Between
Autonomous Computational Agents. PhD thesis,
Dept. of Electronic Engineering, Queen Mary Col-
lege, University of London, 2000.

[38] R. Feldmann, M. Gairing, T. Lücking, B. Monien,
and M. Rode. Selfish routing in non-cooperative
networks: A survey. In Proc. 28th International
Symposium on Mathematical Foundations of Com-
puter Science (MFCS-2003), pages 21–45. Springer-
Verlag, 2003.

[39] M. Fischer and N. J. Pippenger. Relations among
complexity measures. Journal of the ACM, 26:361–
381, 1979.

[40] I. Foster and C. Kesselman, editors. The Grid:
Blueprint for a New Computing Infrastructure. Mor-
gan Kaufmann, 2nd edition, 2004.

[41] Y. Fujishima, K. Leyton-Brown, and Y. Shoham.
Taming the computational complexity of combinato-
rial auctions: Optimal and approximate approaches.
In Proc. 16th International Joint Conference on Ar-
tificial Intelligence (IJCAI-1999), pages 548–553.
Morgan Kaufmann, 1999.

[42] J. M. Garrido. Object-oriented Discrete-event Simu-
lation with Java: A Practical Introduction. Kluwer,
2001.

[43] H. Geffner. Default Reasoning: Causal and Condi-
tional Theories. MIT Press, 1992.

[44] A. Giovannucci, J. A. Rodríguez-Aguilar, A. Reyes,
F. X. Noria, and J. Cerquides. iBundler: An agent-
based decision support service for combinatorial ne-
gotiations. In Proc. 19th National Conference on Ar-
tificial Intelligence (AAAI-2004), pages 1012–1013.
AAAI Press, 2004.

[45] A. Giovannucci, J. A. Rodríguez-Aguilar, A. Reyes,
F. X. Noria, and J. Cerquides. Towards automated
procurement via agent-aware negotiation support.
In Proc. 3rd International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS-
2004), pages 244–253. ACM Press, 2004.

[46] M. Golfarelli, D. Maio, and S. Rizzi. A task-
swap negotiation protocol based on the contract net
paradigm. Technical Report 005-97, CSITE, Uni-
versity of Bologna, 1997.

[47] M. Grabisch. k-order additive discrete fuzzy mea-
sures and their representation. Fuzzy Sets and Sys-
tems, 92:167–189, 1997.

[48] P. Gradwell and J. Padget. Distributed combinatorial
resource scheduling. In Proc. AAMAS Workshop on
Smart Grid Technologies (SGT-2005), 2005.

[49] P. J. ’t Hoen and J. A. La Poutré. A decommitment
strategy in a competitive multi-agent transportation
setting. In Agent-Mediated Electronic Commerce V,
pages 56–72. Springer-Verlag, 2004.

[50] M. Höpf. Holonic manufacturing systems: The ba-
sic concept and a report of IMS test case 5. In
J. K. H. Knudsen et al., editors, Sharing CIM So-
lutions. IOS Press, 1994.

[51] JADE: Java Agent Development Framework. http:
//jade.tilab.com.

[52] G. M. Jonker, J.-J. Meyer, and F. Dignum. Mar-
ket mechanisms in airport traffic control. In Proc.
2nd European Workshop on Multiagent Systems
(EUMAS-2004), 2004.

[53] B. Kádár, L. Monostori, and S. Szelke. An object-
oriented framework for developing distributed
manufacturing architectures. Journal of Intelligent
Manufacturing, 9(2):173–179, 1998.

[54] J. Kalagnanam and D. C. Parkes. Auctions, bidding
and exchange design. In D. Simchi-Levi et al., edi-
tors, Handbook of Quantitative Supply Chain Analy-
sis: Modeling in the E-Business Era. Kluwer, 2004.

[55] V. Krishna. Auction Theory. Academic Press, 2002.

[56] C. Lafage and J. Lang. Logical representation
of preferences for group decision making. In
Proc. 7th International Conference on Principles
of Knowledge Representation and Reasoning (KR-
2000), pages 457–468. Morgan Kaufmann, 2000.

[57] J. Lang. Logical preference representation and com-
binatorial vote. Annals of Mathematics and Artificial
Intelligence, 42(1–3):37–71, 2004.

[58] D. J. Lehmann. Another perspective on default rea-
soning. Annals of Mathematics and Artificial Intel-
ligence, 15(1):61–82, 1995.

[59] M. Lemaître, G. Verfaillie, and N. Bataille. Exploit-
ing a common property resource under a fairness
constraint: A case study. In Proc. 16th International
Joint Conference on Artificial Intelligence (IJCAI-
1999), pages 206–211. Morgan Kaufmann, 1999.

[60] M. Lemaître, G. Verfaillie, H. Fargier, J. Lang,
N. Bataille, and J.-M. Lachiver. Equitable allocation
of earth observing satellites resources. In Proc. 5th
ONERA-DLR Aerospace Symposium (ODAS-2003),
2003.

30 Informatica 30 (2006) 3–31 Y. Chevaleyre et al.

[61] M. Lemaître, G. Verfaillie, F. Jouhaud, J.-M.
Lachiver, and N. Bataille. Selecting and scheduling
observations of agile satellites. Aerospace Sciences
and Technology, 6:367–381, 2002.

[62] B. López, S. Suárez, and J. L. de la Rosa. Task allo-
cation in rescue operations using combinatorial auc-
tions. In Proc. 6th Catalan Congress on Artificial
Intelligence (CCIA-2003). IOS Press, 2003.

[63] MAML: Multi-Agent Modeling Language. http:

//www.maml.hu.

[64] M. Matsumoto and T. Nishimura. Mersenne
Twister: A 623-dimensionally equidistributed uni-
form pseudo-random number generator. ACM
Transactions on Modeling and Computer Simula-
tion, 8(1):3–30, 1998.

[65] H. Moulin. Axioms of Cooperative Decision Mak-
ing. Cambridge University Press, 1988.

[66] H. Moulin. Fair Division and Collective Welfare.
MIT Press, 2003.

[67] R. B. Myerson and M. A. Satterthwaite. Efficient
mechanisms for bilateral trading. Journal of Eco-
nomic Theory, 29(2):265–281, 1983.

[68] N. Nisan. Bidding languages for combinatorial auc-
tions. In P. Cramton et al., editors, Combinatorial
Auctions. MIT Press, 2006. To appear.

[69] C. H. Papadimitriou. Computational Complexity.
Addison-Wesley, 1994.

[70] C. H. Papadimitriou. Algorithms, games, and the
Internet. In Proc. 33rd Annual ACM Symposium on
Theory of Computing (STOC-2001), pages 749–753.
ACM Press, 2001.

[71] H. Van Dyke Parunak. Applications of distributed
artificial intelligence in industry. In G. M. P. O’Hare
and N. R. Jennings, editors, Foundations of Dis-
tributed Artificial Intelligence. John Wiley and Sons,
1996.

[72] H. Van Dyke Parunak, A. D. Baker, and S. J. Clark.
The AARIA agent architecture: An example of
requirements-driven agent-based system design. In
Proc. 1st International Conference on Autonomous
Agents (Agents-1997), pages 482–483. ACM Press,
1997.

[73] S. Phelps, P. McBurney, S. Parsons, and E. Sklar.
Co-evolutionary auction mechanism design: A pre-
liminary report. In Agent-Mediated Electronic Com-
merce IV, pages 123–142. Springer-Verlag, 2002.

[74] S. Phelps, S. Parsons, and P. McBurney. An evolu-
tionary game-theoretic comparision of two double

auction market designs. In Agent-Mediated Elec-
tronic Commerce VI. Springer-Verlag, 2005. To ap-
pear.

[75] RePast: Recursive Porus Agent Simulation Toolkit.
http://repast.sourceforge.net.

[76] A. Reyes-Moro and J. A. Rodríguez-Aguilar.
iAuctionMaker: A decision support tool for mixed
bundling. In Agent-Mediated Electronic Commerce
VI. Springer-Verlag, 2005. To appear.

[77] T. W. Sandholm. An implementation of the contract
net protocol based on marginal cost calculations. In
Proc. 11th National Conference on Artificial Intel-
ligence (AAAI-1993), pages 256–262. AAAI Press,
1993.

[78] T. W. Sandholm. Contract types for satisficing task
allocation: I Theoretical results. In Proc. AAAI
Spring Symposium: Satisficing Models, 1998.

[79] T. W. Sandholm. Distributed rational decision mak-
ing. In G. Weiß, editor, Multiagent Systems: A Mod-
ern Approach to Distributed Artificial Intelligence.
MIT Press, 1999.

[80] T. W. Sandholm. Algorithm for optimal winner de-
termination in combinatorial auctions. Artificial In-
telligence, 135(1–2):1–54, 2002.

[81] T. W. Sandholm. Optimal winner determination al-
gorithms. In P. Cramton et al., editors, Combinato-
rial Auctions. MIT Press, 2006. To appear.

[82] T. W. Sandholm and V. R. Lesser. Leveled com-
mitment contracts and strategic breach. Games and
Economic Behavior, 35(1–2):212–270, 2001.

[83] T. W. Sandholm and S. Suri. Side constraints
and non-price attributes in markets. In Proc. IJ-
CAI Workshop on Distributed Constraint Reasoning,
2001.

[84] J. E. Savage. The Complexity of Computing. John
Wiley and Sons, 1976.

[85] C. P. Schnorr. The network complexity and Turing
machine complexity of finite functions. Acta Infor-
matica, pages 95–107, 1976.

[86] A. K. Sen. Collective Choice and Social Welfare.
Holden Day, 1970.

[87] R. G. Smith. The contract net protocol: High-level
communication and control in a distributed prob-
lem solver. IEEE Transactions on Computers, C-
29(12):1104–1113, 1980.

[88] P. Sousa, C. Ramos, and J. Neves. Manufacturing
entities with incomplete information. Studies in In-
formatics and Control, 9(2):79–88, 2000.

MULTIAGENT RESOURCE ALLOCATION Informatica 30 (2006) 3–31 31

[89] P. Sousa, C. Ramos, and J. Neves. The Fabri-
care scheduling prototype suite: Agent interaction
and knowledge base. Journal of Intelligent Manu-
facturing, 14(5):441–455, 2003.

[90] Stephens Inc. Internet Supply Chain Team. Strate-
gic Sourcing: Applications to Turn Direct Materials
Procurement into Competitive Advantage. Industry
Report, 2001.

[91] Swarm. http://www.swarm.org.

[92] K. Sycara, S. F. Roth, N. Sadeh, and M. S. Fox. Re-
source allocation in distributed factory scheduling.
IEEE Expert, 6(1):29–40, 1991.

[93] L. Tesfatsion. Agent-based computational eco-
nomics: Growing economies from the bottom up.
Artificial Life, 8(1):55–82, 2002.

[94] W. Vickrey. Counterspeculation, auctions, and com-
petitive sealed tenders. Journal of Finance, 16(1):8–
37, 1961.

[95] Visionary manufacturing challenges for 2020. Com-
mittee on Visionary Manufacturing Challenges, Na-
tional Research Council. National Academic Press,
1999.

[96] I. Wegener. The Complexity of Boolean Functions.
John Wiley and Sons, 1987.

[97] M. Wooldridge. An Introduction to Multiagent Sys-
tems. John Wiley and Sons, 2002.

[98] P. R. Wurman, M. P. Wellman, and W. E. Walsh. A
parametrization of the auction design space. Games
and Economic Behaviour, 35(1–2):304–338, 2001.

[99] R. Yager. On ordered weighted averaging aggre-
gation operators in multicriteria decision making.
IEEE Transactions on Systems, Man, and Cybernet-
ics, 18(1):183–190, 1988.

[100] A. C.-C. Yao. Some complexity questions related to
distributive computing (preliminary report). In Proc.
11th Annual ACM Symposium on Theory of Com-
puting (STOC-1979), pages 209–213. ACM Press,
1979.

[101] H. P. Young. Equity in Theory and Practice. Prince-
ton University Press, 1994.

[102] X. Zhang and V. Lesser. Multi-linked negotiation
in multi-agent systems. In Proc. 1st International
Joint Conference on Autonomous Agents And Mul-
tiagent Systems (AAMAS-2002), pages 1207–1214.
ACM Press, 2002.

The validity of all cited URLs has been verified at the time
of writing (August 2005).

32 Informatica 30 (2006) 3–31 Y. Chevaleyre et al.

Informatica 30 (2006) 33–44 33

A Survey of Programming Languages and Platforms for Multi-Agent Systems

Rafael H. Bordini
University of Durham, UK
E-mail: R.Bordini@durham.ac.uk, http://www.dur.ac.uk/r.bordini

Lars Braubach
Universität Hamburg, Germany
E-mail: braubach@informatik.uni-hamburg.de, http://vsis-www.informatik.uni-hamburg.
de

Mehdi Dastani
Utrecht University, The Netherlands
E-mail: mehdi@cs.uu.nl, http://www.cs.uu.nl/~mehdi

Amal El Fallah Seghrouchni
University of Paris 6, France
E-mail: Amal.Elfallah@lip6.fr, http://www-poleia.lip6.fr/~elfallah

Jorge J. Gomez-Sanz
Universidad Complutense de Madrid, Spain
E-mail: jjgomez@sip.ucm.es, http://grasia.fdi.ucm.es/jorge

João Leite
Universidade Nova de Lisboa, Portugal
E-mail: jleite@di.fct.unl.pt, http://centria.di.fct.unl.pt/~jleite

Gregory O’Hare
University College Dublin, Ireland
E-mail: Gregory.OHare@ucd.ie, http://www.cs.ucd.ie/staff/gohare

Alexander Pokahr
Universität Hamburg, Germany
E-mail: pokahr@informatik.uni-hamburg.de, http://vsis-www.informatik.uni-hamburg.de

Alessandro Ricci
Università di Bologna, Italy
E-mail: aricci@deis.unibo.it, http://lia.deis.unibo.it/~ari

Keywords: Multi-Agent Systems, Programming Languages, Platforms

Received: April 1, 2005

This paper surveys recent research on programming languages and development tools for Multi-Agent
Systems. It starts by addressing programming languages (declarative, imperative, and hybrid), followed
by integrated development environments, and finally platforms and frameworks. To illustrate each of these
categories, some systems were chosen based on the extent to which European researchers have contributed
to their development. The current state of these systems is described and, in some cases, indications of
future directions of research are given.

Povzetek: Podan je pregled jezikov in orodij za MAS.

1 Introduction

Research in Multi-Agent Systems (MAS) has recently led
to the development of practical programming languages
and tools that are appropriate for the implementation of
such systems. Putting together this new programming
paradigm is fast becoming one of the most important top-

ics of research in multi-agent systems, in particular because
this is an essential requirement for an eventual technology
transfer.

Surveying the MAS literature will reveal a large number
of different proposals for agent-oriented languages, rang-
ing from purely declarative, to purely imperative, and var-
ious hybrid approaches. Some are designed from scratch,

34 Informatica 30 (2006) 33–44 Bordini et al.

directly encoding some theory of agency, while others ex-
tend existing languages to suit the peculiarities of this new
paradigm. Using these languages, instead of more conven-
tional ones, proves useful when the problem is modelled as
a multi-agent system, and understood in terms of cognitive
and social concepts such as beliefs, goals, plans, roles, and
norms.

Most agent programming languages have some under-
lying platform which implements its semantics. However,
agent frameworks exist that are not tightly coupled with
one specific programming language. Instead, they are con-
cerned with providing general techniques for relevant as-
pects such as agent communication and coordination. The
most mature languages will be accompanied by some In-
tegrated Development Environment (IDE), intended to en-
hance the productivity of programmers by automating te-
dious coding tasks. Typically these will provide function-
alities such as project management, creating and editing
source files, refactoring, build and run process, and testing.

Despite the large number of languages, frameworks, de-
velopment environments, and platforms recently proposed,
implementing MAS is still an often daunting task. To ad-
dress the problem of managing the inherent complexity of
MAS and helping the structuring of their development, the
research community has produced a number of methodolo-
gies [4]. Nevertheless, even if MAS practitioners follow
such methodologies during the design phase, they still find
great difficulties in the implementation phase, partly due to
the lack of maturity of both methodologies and program-
ming tools. Among others, such difficulties can be traced
to the lack of specialised debugging tools; to the lack skills
that are necessary in mapping analysis/design concepts to
programming languages constructs; to the lack of profi-
ciency in dealing with the specific characteristics of differ-
ent agent platforms; and also to the lack of understanding
of the very foundations as well as practical characteristics
of the agent-oriented approach to programming.

Even though most of the languages and tools developed
so far have not been tried yet in large-scale, industrial-
strength applications, much progress has been achieved in
the last few years. This is, therefore, an appropriate time
for a reality check and a bird’s eye view of the field, help-
ing to consolidate existing achievements and guide future
developments. To this end, this paper surveys some of the
existing approaches situated in the MAS Programming area
of research, from programming languages to development
infrastructures, chosen in part according to the extent to
which European researchers have contributed to their de-
velopment.

The first part of the paper is devoted to the presenta-
tion of agent-oriented programming languages, structured
according to the existing paradigm on which they build.
In Section 2, we present declarative agent-oriented lan-
guages, while Section 3 covers the imperative languages
and Section 4 some hybrid languages. The second part will
cover various implementations of software infrastructure
for agents. These will be structured according to whether

they are development environments for MAS, in Section 5,
or MAS platforms and frameworks, in Section 6. The paper
ends with some reference to further readings on this subject
in Section 7, and some final remarks in Section 8.

2 Declarative Languages

Declarative languages are partially characterised by their
strong formal nature, normally grounded on logic. This is
the case with most of the declarative languages described
here: FLUX, Minerva, Dali, and ResPect. Other declara-
tive languages are also grounded on other formalisms, such
as CLAIM which finds parts of its roots in the ambient cal-
culus. Declarative languages that allow for easy integration
with imperative code will be reviewed in Section 4 below.

CLAIM (Computational Language for Autonomous,
Intelligent and Mobile Agents [23]) is a high-level declar-
ative agent-oriented programming language. It is part of
an unified framework called Himalaya [25] (Hierarchical
Intelligent Mobile Agents for building Large-scale and
Adaptive sYstems based on Ambients). It combines
the main advantages of agent-oriented programming lan-
guages, for representing cognitive aspects and reasoning,
with those of concurrent languages based on process alge-
bra, for representing concurrency and agent mobility.

The CLAIM language is inspired by ambient calcu-
lus [11] and agents are hierarchically organised, thus
supporting the design of Mobile Multi-Agent Systems
(MMAS) – a set of connected hierarchies of agents – to
be deployed on a network of computers. Every agent (i.e.,
a node of a hierarchy) contains cognitive elements (e.g.,
knowledge, goals, capabilities), processes, and sub-agents
and is also mobile as it can move within its hierarchy or
to a remote one. In addition, an agent can dynamically
acquire intelligent and computational components from its
sub-agents, which can be seen as some sort of inheritance.
The mobility and the inheritance as defined in Himalaya
framework favour a dynamic adaptability and reconfigura-
tion of systems [50] for coping with the increasing com-
plexity of distributed and cooperative applications. The
main elements of CLAIM agents are cognitive, interaction,
mobility, and reconfiguration primitives.

The formal semantics of CLAIM is based on Plotkin’s
[41] structural operational approach consisting of a transi-
tion relation, from an initial state of a program to another
state resulting from the execution of an atomic operation.
At each step of an agent execution, either a message is dealt
with, a running process executed, or a goal processed. For
a detailed presentation of the semantics, we refer the reader
to [24].

As an MMAS within Himalaya is deployed on a set of
connected computers, the language CLAIM is supported
by a distributed platform called SyMPA [51], which offers
all the necessary mechanisms for management of agents,
communication, mobility, security, fault-tolerance, and
load balancing [30]. SyMPA is implemented in Java and

A SURVEY OF LANGUAGES AND PLATFORMS. . . Informatica 30 (2006) 33–44 35

compliant with the specifications of the MASIF [37] stan-
dard from the OMG (Object Management Group). There
is a central system providing management functions. An
agent system is deployed on each computer connected to
the platform.

The Himalaya environment has been used for develop-
ing several complex applications that showed the expres-
siveness of the language and the robustness and strength
of the platform, such as: an application for information
search on the Web [22], several electronic commerce ap-
plications [23, 52], a load balancing and resource sharing
application using mobile agents [30], and an application for
a network of digital libraries.

FLUX [53] is a high-level programming system for cog-
nitive agents, which can be downloaded from http://
www.fluxagent.org. It consists of an implementation
of the Fluent Calculus, an action representation formalism
that provides a basic solution to the classical frame problem
using the concept of state update axioms, while addressing
a variety of aspects in reasoning about actions (hence the
relevance for agents), such as ramifications (i.e., indirect
effects of actions), qualifications (i.e., unexpected action
failure), nondeterministic actions, concurrent actions, con-
tinuous change, and noisy sensors and effectors.

An agent program in FLUX is a logic program consisting
of three parts: the kernel providing the agent with the cog-
nitive ability to reason about its actions and acquired sen-
sor data, a background theory providing an internal model
of its environment, and a strategy which specifies the task-
oriented behaviour in accordance with which the agent rea-
sons, plans, and acts. The full expressive power of logic
programming can be used to design strategies while facil-
itating formal proofs of the correctness of strategies with
respect to a problem-dependent specification.

The use of progression, where a (possibly incomplete)
initial world model is updated upon the performance of an
action, is one of the main characteristics of FLUX. This al-
lows for a computationally efficient solution to the frame
problem and, consequently, an efficient agent implemen-
tation based on the Fluent Calculus. Further information
regarding FLUX can be obtained in [54].

MINERVA [32, 33] is an agent system designed to pro-
vide a common agent framework based on the strengths
of Logic Programming, to allow for the combination of
several existing non-monotonic knowledge representation
and reasoning mechanisms. It uses MDLP and KABUL
to specify agents and their behaviour. A MINERVA agent
consists of several specialised, possibly concurrent, sub-
agents performing various tasks, whose behaviour is speci-
fied in KABUL, while reading and manipulating a common
knowledge base specified in MDLP.

MDLP (Multi-Dimensional Dynamic Logic
Programming) is the basic knowledge representation
mechanism of an agent in MINERVA. MDLP is an
extension of Answer Set Programming (ASP) where
knowledge is represented by logic programs arranged in
an acyclic digraph. In this digraph, vertices are sets of

logic programs, and edges represent the relations between
program. MDLP enjoys the merits of ASP such as default
negation. Default negation allows the definition of non-
monotonic behaviour thus facilitating the representation
of, and reasoning about, incomplete knowledge. MDLP
also allows for the simultaneous representation of several
aspects such as hierarchies and preferences, as well as the
evolution of the represented knowledge.

KABUL (Knowledge And Behavior Update Language),
as its recent evolution EVOLP [1], is a logic-programming
style language that allows the specification of updates to a
knowledge base and to itself. A program in KABUL is a
set of statements, each statement being a type of condition-
action rule that can be seen as encoding an agent behaviour.
The epistemic effects of actions can be either an update to
the knowledge base of the agent, represented by an MDLP
program, or a self update to the KABUL program, thus
changing the behaviour of the agent over time. Condi-
tions range from external observations, epistemic state of
the agent, as well as concurrent execution of other actions.
This allows for a combination of reactive and proactive be-
haviour, in the sense that no external stimuli are needed to
trigger the behaviour of the agent, while these can be com-
bined with the rational features provided by the underlying
MDLP knowledge representation framework and its formal
and precise ASP-based semantics. More information re-
garding MDLP, KABUL, and MINERVA can be found in
[32].

DALI [14] is an Active Logic Programming language
designed for executable specification of logical agents. It
uses plain Horn Clauses and its semantics is based on Least
Herbrand Models. It intends to provide constructs to rep-
resent reactivity and proactivity in an agent by means of
rules. A DALI agent is a logic program that contains re-
active rules, events, and actions aimed at interacting with
an external environment. The reactive and proactive be-
haviour of a DALI agent is triggered by several kinds of
events: external, internal, present, and past events. All the
events and actions are time stamped so as to record when
they occurred. The new syntactic entities, i.e., predicates
related to events and proactivity, are indicated with special
postfixes. When an event occurs in the agent’s “external
world”, the agent can perceive it and decide to react. The
reaction is defined by a reactive rule which has in its head
that external event. The internal events define the behaviour
of a DALI agent, making it proactive independently of the
environment and allowing it to manipulate and revise its
knowledge.

ReSpecT [38] is a logic-based language, with a well-
defined formal semantics, allowing for the definition of re-
actions, expressed in terms of rules. A rule in ReSpecT
consists of a head specifying the communication event that
triggers the reaction and a body specifying which actions
(tuples from the tuple centre) are atomically executed when
the reaction is triggered. When a basic action fails, the re-
action atomically fails and all its effects on the tuple cen-
tre state are rolled back. The coordinating behaviour of

36 Informatica 30 (2006) 33–44 Bordini et al.

tuple centres can be changed and adapted at runtime by
dynamically changing the reactions defined in ReSpecT.
Such a feature is typically exploited to deal with dynamism
and openness of MAS applications. The tuple centre pro-
grammed with these reactions acts as a basic scheduler,
encapsulating the policy adopted to coordinate the vari-
ous (autonomous) agent tasks. By changing the reactions,
the overall coordinating behaviour of the system changes,
without the need to change the agent’s behaviour. This lan-
guage is used within the TuCSoN framework (discussed
below in Section 6).

3 Imperative Languages
Purely imperative approaches to agent-oriented program-
ming are less common, mainly due to the fact that most
abstractions related to agent-oriented design are, typically,
declarative in nature. There are however many program-
mers who still use conventional, i.e. non-agent oriented,
imperative languages for developing multi-agent systems;
as a result, in practice agent notions are often implemented
in an ad-hoc manner. An example of an agent-oriented lan-
guage which is still essentially imperative, while incorpo-
rating agent-specific abstractions, is the language available
with the development environment JACK [57, 26].

The JACK Agent Language (JAL) has been developed
by a company called Agent Oriented Software. JAL is
based on ideas of reactive planning systems resulting from
the work on the BDI agent architecture and is, in this re-
spect, similar to the hybrid languages Jason, 3APL, and
Jadex (discussed below in Section 4). However, instead of
providing a logic-based language, JAL is an extension of
Java (implementing some features of logic languages such
as logical variables). A number of syntactic constructs is
added to Java, allowing programmers to create plans and
belief bases, all in a graphical manner as JAL has a so-
phisticated IDE which provides a tool for such purpose.
In JAL, plans can be composed of reasoning methods and
grouped into capabilities which, together, compose a spe-
cific ability an agent is supposed to have, thus supporting a
good degree of modularisation. Another structuring mech-
anism present in JAL is the ability to use teams of agents, or
agent organisations, a notion that is increasingly important
both in agent-oriented design [4] and because of recent de-
velopments in self-organising systems [47]. Although JAL
has no formal semantics, as a commercial platform, JACK
has extensive documentation and supporting tools. It has
been used in a variety of industrial applications as well as
for research. For evaluation purposes, a free trial license
for JAL can be obtained; more information is available at
http://www.agent-software.com.

4 Hybrid Approaches
Various well-known agent languages combine declarative
and imperative features. In this section we describe agent

programming languages which are declarative while at the
same time providing some specific constructs allowing for
the use of code implemented in some external imperative
language. These constructs serve as a means for the use of
legacy code. The languages chosen to illustrate the hybrid
approach are: 3APL, Jason, IMPACT, Go!, and AF-APL.

3APL (An Abstract Agent Programming Language
“triple-a-p-l”) is a programming language for implement-
ing cognitive agents that have beliefs, goals, and plans
as mental attitudes, can generate and revise their plans to
achieve their goals, and are able to interact with each other
and with the environment they share with other agents. The
first version of 3APL was designed by Hindriks et al. at
Utrecht University [28]. Since its initial design, the 3APL
programming language has been subject to continuous de-
velopment [17, 16].

One of the main features of 3APL consists of program-
ming constructs to implement mental attitudes of an agent
as well as the deliberation process which manipulates them
[15]. In particular, 3APL allows direct specification of
mental attitudes such as beliefs, goals, plans, actions and
reasoning rules. Actions form the basic building blocks of
plans and can be internal mental actions, external actions,
or communication actions. The deliberation-related con-
structs allow the implementation of selection and execution
of actions and plans through which an agent’s belief base
can be updated and through which the shared environment
can be modified. It also allows the selection and applica-
tion of reasoning rules through which the plan base can be
modified.

The 3APL programming language is designed so as to
respect a number of software engineering and program-
ming principles such as separation of concerns, modularity,
abstraction, and reusability. It also supports the integra-
tion of Prolog (declarative) and Java (imperative) program-
ming languages. Interested readers will find in the 3APL
user guide (http://www.cs.uu.nl/3apl) a number
of illustrative toy-problem applications such as the “blocks
world”, Axelrod’s tournament, an English auction system,
and the Contract Net protocol. 3APL has also been applied
to the implementation of the high-level control of mobile
robots. In particular, 3APL is being used for controlling the
behaviour of SONY AIBO robots and to implement small-
device mobile applications.

Jason is an interpreter, implemented by R.Bordini and
J.Hübner, for an extended version of AgentSpeak(L), a
logic-based agent-oriented programming language intro-
duced by A. Rao in [43]. The language is influenced by
the work on the Beliefs-Desires-Intentions (BDI) architec-
ture and BDI logics [44]. The semantics of the extended
language (which we call simply AgentSpeak), given by
Bordini and colleagues, was recently revised and appears
in [55]. The core of the interpreter available with Jason
is in fact an implementation of that operational seman-
tics. Jason is available Open Source under GNU LGPL
at http://jason.sourceforge.net [6]. Although
the documentation is available at that URL, the best mate-

A SURVEY OF LANGUAGES AND PLATFORMS. . . Informatica 30 (2006) 33–44 37

rial for an overview of the work on Jason is [7].
Some of the features available in Jason are: (i) speech-

act based inter-agent communication (and belief annotation
of information sources); (ii) annotations on plan labels,
which can be used by elaborate (e.g., decision-theoretic)
selection functions; (iii) fully customisable (in Java) se-
lection functions, trust functions, and overall agent archi-
tecture (perception, belief-revision, inter-agent communi-
cation, and acting); (iv) straightforward extensibility (and
use of legacy code) by means of user-defined “internal ac-
tions”; (v) a clear notion of a multi-agent environment,
which is implemented in Java (this can be a simulation of a
real environment, e.g., for testing purposes before the sys-
tem is actually deployed). Jason has a simple IDE which
is discussed in Section 5.

IMPACT is a system developed by Subrahmanian et
al. [49], with the main purpose of providing a framework
to build agents on top of heterogeneous sources of knowl-
edge, i.e., to transform legacy code into agents that can
communicate and act. To “agentise” such legacy code, IM-
PACT provides the notion of an agent program written over
a language of so-called code-calls. A code-call can be seen
as an encapsulation of whatever the legacy code is, repre-
sented logically through conditions and queries on the re-
sults produced by such code. These are used in clauses,
that form agent programs, determining constraints on the
actions that are to be taken by agents. Actions in IMPACT
use some deontic notions such as agent actions being, at
a certain time, “obligatory”, “permitted”, “forbidden”, etc.
Such agent programs and their semantics resemble logic
programs extended with deontic modalities. The seman-
tics is given by the notion of a rational status sets, which
are generalisations of the notion of stable models in logic
programming.

The IMPACT platform provides a number of fea-
tures, including agent deployment over a network, reg-
istration of available agent services and yellow-page
facilities. Information on the IMPACT platform is
available at http://www.cs.umd.edu/projects/
impact/. The framework has been extended to support
also temporal or probabilistic reasoning [20]. A recent
overview of the IMPACT language and platform can be
found in [21].

Go! [12] is a multi-paradigm agent programming lan-
guage, with a declarative subset of function and relation
definitions, an imperative subset comprising action proce-
dure definitions, and rich program structuring mechanism.
Based on the symbolic programming language April [36],
Go! extends it with knowledge representation features of
logic programming, yielding a multi-threaded, strongly
typed and higher order (in the functional-programming
sense) language.

Inherited from April, threads primarily communicate
through asynchronous message passing. Threads, execut-
ing action rules, react to received messages using pattern
matching and pattern-based message reaction rules. A
communication daemon enables threads in different Go!

processes to communicate transparently over a network.
Typically, each agent will comprise several threads, each
of which can directly communicate with threads in other
agents. Threads within a single Go! process, hence in the
same agent, can also communicate by manipulating shared
cell or dynamic relation objects. As in Linda tuple stores,
these elements are used to coordinate the activities of dif-
ferent threads within an agent. Go! is strongly typed, which
can often reduce the programmer’s burden, and compile-
time type checking improves code safety. New types can
be declared and thereby new data constructors can be in-
troduced.

The design of Go! took into consideration critical issues
such as security, transparency, and integrity, in regards to
the adoption of logic programming technology. Features
of Prolog that lack a transparent semantics, such as the cut
(‘!’) were left out. In Prolog the same clause syntax is
used both for defining relations, with a declarative seman-
tics, and for defining procedures which only have an op-
erational semantics. In Go!, behaviour is described using
action rules that have a specialised syntax.

Agent Factory Agent Programming Language (AF-
APL) is the core programming language that resides at the
heart of Agent Factory, which will be reviewed in Sec-
tion 5. AF-APL is originally based on Agent-Oriented Pro-
gramming as first put forward by Y.Shoham [48], but was
revised and extended with BDI concepts, such as beliefs
and plans. The syntax and semantics of the AF-APL lan-
guage have been derived from a logical model of how an
agent commits itself to a course of action. Details of this
model can be found in [13, 46]. Specifically, the model
defines the mental state of an agent to be comprised of
two primary mental attitudes: beliefs and commitments.
In AF-APL, the belief set is comprised of a set of decla-
rations about the current state of the environment. Agents
are situated, given that an AF-APL programmer can de-
clare explicitly, for each agent, a set of sensors referred
to as perceptors and a set of effectors known as actuators.
Perceptors are realized as instances of Java classes that de-
fine how to convert raw sensor data into beliefs that may
be added to the belief set of the agent. Similarly, an ac-
tuator is realized as an instance of a Java class, which has
two responsibilities: (1) to define the action identifier that
should be used when referring to the action that is realized
by the actuator, and (2) to contain code that implements the
action. Collectively, these declarations are termed the em-
bodiment configuration of the agent, and they are specified
within the agent program.

5 Integrated Development
Environments

Integrated Development Environments (IDEs), focus on the
programming language level and intend to enhance the pro-
ductivity by automating tedious coding tasks. Looking at
current IDEs from the object-oriented domain it can be

38 Informatica 30 (2006) 33–44 Bordini et al.

seen that such IDEs tend to provide functionalities that
can be classified into five categories: project management,
e.g. organising the project structure according to develop-
ers’ needs; creating and editing source files, e.g. provid-
ing structure views for quick and easy navigation, online
error detection, auto-completion, and so on; refactoring
to enable fast and reliable code restructuring operations;
build and run process allowing the execution of applica-
tions from within the IDE; and testing, e.g. supported by
unit testing with test cases.

In the agent world, the situation differs from conven-
tional programming in that there is no common ground
with respect to agent programming languages and agent ar-
chitectures. Hence, current agent IDEs exist only for agent
languages of specific agent frameworks. Additionally, we
found that only a small proportion of available agent frame-
works offer IDE support at all, considering AgentLink
(http://www.agentlink.org) as a representative
selection of existing agent-related software. From this
small number, we selected some representative examples:
3APL IDE, Jason IDE, JDE, CAFnE, Visual Soar, Agent-
Builder, AgentFactory, and the Living Systems Developer.

The 3APL IDE allows developers to load/edit 3APL
programs that implement individual agents, execute one or
more agent programs in either a step-by-step or continu-
ous fashion, implement and configure the environment that
is shared by the agents, monitor the internal state of in-
dividual agents through an agent property window, moni-
tor the exchange of messages through the sniffer tool, send
an external-user message to an individual agent, and read
the system messages. The 3APL IDE is built on top of
the 3APL multi-agent platform that consists of a direc-
tory facilitator called agent management system, a mes-
sage transport system which delivers agent messages, and
a plugin interface that allows agents to execute actions in
the shared environment. The 3APL platform thus allows
the implementation and concurrent execution of a set of
3APL agents. The 3APL development environment, its
user guide, and further documentation can be found at
http://www.cs.uu.nl/3apl.

Jason [6] is distributed with an IDE which provides a
graphical interface for editing a multi-agent system config-
uration file, as well as AgentSpeak code for the individ-
ual agents. Through the IDE, it is also possible to run and
control the execution mode of a multi-agent system, and
to distribute agents over a network in a very simple way.
The IDE also provides another tool, called “Mind Inspec-
tor”, which allows the user to inspect agents’ internal states
when the system is running in debugging mode. This is
very useful for debugging AgentSpeak MAS, as it allows
the programmer to inspect agents’ mental attitudes across
a distributed system.

The JACK Development Environment (JDE) is a full-
featured commercial IDE for the JACK BDI agent plat-
form [57] developed by Agent Oriented Software Ltd. It
is based on the JACK Agent Language (JAL) which was
presented in Section 3. JDE allows agent developers to or-

ganise their files into projects offering a semantically or-
ganised tree view with respect to the different kinds of con-
tained elements. The editing of agent code is supported
by a rudimentary integrated editor that, for example, pro-
vides syntax highlighting for JAL. More advanced features
such as auto-completion and error-detection are not avail-
able. However, the IDE provides a graphical plan editor
that allows the construction of a plan from visual com-
ponents similar to statecharts. Once the code base for a
project is complete, it is possible to compile and run an
application directly from within the IDE.

The CAFnE (Component Agent Framework for non-
Experts) tool [29] does not represent an IDE in the clas-
sical sense. Its objective is to enable domain experts to
modify an existing agent application. CAFnE has been
conceived to support the development of BDI agents based
on a rather platform-independent BDI component language
adapted from SMART [34]. The rationale of CAFnE is
to hide the agent code layer and provide interactive dia-
logues for the development. Transformer modules can then
be used to generate platform-dependent code from the in-
ternal representation.

Visual Soar is a freely available IDE for the Soar agent
architecture [31]. It supports basic project management
capabilities and mainly facilitates Soar agent program-
ming through syntax highlighting and some consistency
checking functionalities. Additionally, the IDE provides
a connection to a Soar runtime environment allowing Soar
agents to be executed from the IDE.

AgentBuilder is an agent platform directly based Agent-
Oriented Programming (AOP), as originally defined by
Shoham [48], developed by Acronymics Inc. It relies on
the Reticular Agent Language which is an extension of
Shoham’s Agent0. As the used agent language is not in-
tended for direct programming, an agent developer has to
use the AgentBuilder IDE, which consists of a variety of
different tools supporting all aspects of building agent ap-
plications. The IDE is conceived to hide agent code as
much as possible and offers graphical wizards and tools
whenever possible. It provides simple project management
functionalities and integrates with a compiler tool. Suc-
cessfully built agent applications can directly be executed
from the IDE.

The Agent Factory [13] Development Environment of-
fers support for basic project management, editing, and
assembling the different agent constituents. It contains a
cohesive layered framework for the development and de-
ployment of agent-oriented applications. At the centre
of this framework is the Agent Factory Agent Program-
ming Language (AF-APL) described above in Section 4.
The AF-APL interpreter is embedded within the distributed
FIPA-compliant Run-Time Environment (RTE) which can
be seen as a collection of agent platforms. Besides the IDE,
a tool named VIPER [45] allows the composition of Agent
UML Sequence Diagrams that sit at the heart of the Pro-
tocol Model. In addition to the tools that have been pro-
vided to support the development of AF-APL agents, the

A SURVEY OF LANGUAGES AND PLATFORMS. . . Informatica 30 (2006) 33–44 39

Agent Factory Development Environment also includes a
suite of tools that facilitate the testing and debugging of
agent-oriented applications.

The Living Systems Developer is a commercial IDE
for the Living Systems Technology Suite developed by
Whitestein (http://www.whitestein.com). The
underlying agent platform supports Java-based agents,
rather than supporting a specialised agent language.
The IDE is designed as an Eclipse (http://www.
eclipse.org) plug-in, hence providing sophisticated
editing and refactoring functionalities for Java code. In
addition, several agent related aspects such as project man-
agement in accordance to the agent features used have been
added. To facilitate the development process of agent-
based applications, the IDE has been extended to fully sup-
port all phases of ADEM, the Agent Development Method-
ology also created at Whitestein.

6 Agent Platforms and Frameworks

Most languages described in this paper have some un-
derlying platform which implements the semantics of the
agent programming language. However, some imple-
mented frameworks exist that are not so strongly tied to
a particular programming language. Instead, these frame-
works are more concerned with providing support for as-
pects such as agent communication and coordination. In
this Section we focus on such frameworks, having chosen
TuCSoN, JADE, and DESIRE as illustrative examples.

TuCSoN (Tuple Centre Spread over the Network) is
a framework for MAS coordination, based on a model
and a related infrastructure providing general-purpose, pro-
grammable services for supporting agent communication
and coordination [39]. The model is based on tuple centres
as runtime programmable abstractions whose coordinating
behaviour can be dynamically specified with a logic-based
language called ReSpecT. Tuple centres are an example of
coordination artifacts (see the survey on Environment mod-
elling for MAS [56]), i.e, first-class entities (tools) popu-
lating the agent cooperative working environment, shared
and used collectively by the agents to support their coor-
dination. Such abstractions are also used in the SODA
methodology (see the survey on Agent Oriented Software
Engineering [4]) as basic building blocks for designing the
social level and the environment in a MAS.

The TuCSoN technology is available as an open source
project (http://tucson.sourceforge.net). It is
completely based on Java, and is composed of: a runtime
platform to be installed on hosts to turn them into nodes
of the infrastructure; a set of libraries (APIs) to enable
agents access to the services; and a set of tools mainly
to support the runtime inspection and control (monitor-
ing, debugging) of tuple-centres’ state and coordinating be-
haviour. At the heart of the TuCSoN technology is the
tuProlog technology, a Prolog engine fully integrated with
the Java environment, available also as a standalone library

and environment (the tuProlog technology is available at
http://tuprolog.sourceforge.net [19]). Be-
sides being adopted in research projects (e.g., for dis-
tributed workflow management, logistics, and e-learning),
TuCSoN is currently used as one of the reference platforms
for building agent-based systems in academic projects and
thesis developed at the Engineering Faculties in Cesena and
Bologna.

JADE (Java Agent DEvelopment Framework) [2] is a
Java framework for the development of distributed multi-
agent applications. It represents an agent middleware pro-
viding a set of available and easy-to-use services and sev-
eral graphical tools for debugging and testing. One of the
main objectives of the platform is to support interoperabil-
ity by strictly adhering to the FIPA specifications concern-
ing the platform architecture as well as the communication
infrastructure. Moreover, JADE is very flexible and can be
adapted to be used on devices with limited resources such
as PDAs and mobile phones.

JADE has been widely used over the last years by many
academic and industrial organisations (see [2]) ranging
from tutorials for teaching support in agent-related Uni-
versity courses to Industrial prototyping. As an example,
Whitestein has used JADE to construct an agent-based sys-
tem for decision-making support in organ transplant centres
[10].

The JADE platform is open source software, distributed
by TILAB (Telecom Italia LABoratories) under the terms
of the LGPL license and can be obtained at http://
jade.tilab.com. Since May 2003, the International
JADE Board has been responsible for supervising the man-
agement of the project. Currently, the JADE Board consists
of five members: TILAB, Motorola, Whitestein Technolo-
gies AG, Profactor, and France Telecom.

Jadex [42] is a software framework for the creation of
goal-oriented agents following the belief-desire-intention
(BDI) model. The framework is realized as a rational
agent layer that sits on top of a middleware agent infras-
tructure such as JADE [2], and supports agent development
with well established technologies such as Java and XML.
The Jadex reasoning engine addresses traditional limita-
tions of BDI systems by introducing new concepts such
as explicit goals and goal deliberation mechanisms (see,
e.g., [8]), making results from goal-oriented analysis and
design methods (e.g., KAOS and Tropos) more easily trans-
ferable to the implementation phase.

Jadex has been used to build applications in different do-
mains such as simulation, scheduling, and mobile comput-
ing. For example, Jadex was used to develop a multi-agent
application for negotiation of treatment schedules in hospi-
tals [40]. Jadex has also been successfully used in several
software engineering courses at the University of Hamburg.

The Jadex system, developed at the Distributed Systems
and Information Systems group at the University of Ham-
burg, is freely available under the LGPL license and can
be downloaded from http://jadex.sourceforge.
net. Besides the framework and additional development

40 Informatica 30 (2006) 33–44 Bordini et al.

tools, the distribution contains an introductory tutorial, a
user guide, and several illustrative example applications
with source code.

DESIRE (DEsign and Specification of Interacting
REasoning components) is a compositional development
method for multi-agent systems, based on a notion of com-
positional architecture, and developed by Treur et al. [9]
at the Vrije Universiteit Amsterdam. In this approach,
agent design is based on the following main aspects: pro-
cess composition, knowledge composition, and relations
between knowledge and process composition. In this
component-based agent approach, an agent’s complex rea-
soning process is built up as an interaction between the
components representing the subprocesses of the overall
reasoning process [9]. The reasoning process is structured
according to a number of reasoning components that in-
teract with each other. Components may or may not be
composed of other components, where components that
are not further decomposed are called primitive compo-
nents. The functioning of the overall agent system is
based on the functionality of these primitive components
plus the composition relation that coordinates their inter-
action. Specification of a composition relation may in-
volve, for example, the possibilities of information ex-
change among components and the control structure that
activates the components. The DESIRE approach has been
used for applications such as load balancing of electric-
ity distribution and diagnosis systems. Further informa-
tion and documentation of the tools supporting the devel-
opment and implementation of multi-agent systems based
on DESIRE is available at http://www.few.vu.nl/
~wai/demas/tools2.html.

7 Further Reading

This paper should be complemented with related literature.
Besides the references spread throughout the text, point-
ing to more detailed explanations of the systems described,
we recommend the survey on agent programming lan-
guages by Mascardi et al. [35], which provides a detailed
view of ConGolog, Agent-0, IMPACT, DyLog, Concurrent
MetateM, and Ehhf . A reference book on programming
languages for Multi-Agent Systems has been published re-
cently [5]. It contains detailed description of a selection of
practical programming languages and tools which support
MAS programming and implement key MAS concepts in
a unified framework. Another extensive overview of agent
technology is available in [3], which includes a comprehen-
sive collection of papers on technologies, methodologies,
and current research trends in the MAS domain.

As we have mentioned before, the criteria in which we
based our choice of systems was, in part, the extent to
which European researchers have contributed to their de-
velopment. Of course there are various other agent lan-
guages, platforms, and tools besides those referred here. A
good collection of agent-related software can be found in

the AgentLink III website (www.agentlink.org).
Overall, the systems described here focus on the im-

plementation phase. However, current research trends
include the attempt to make implementation easier by
bridging the analysis and design phase directly to im-
plementation [4]. Examples of such research efforts
are INGENIAS and its Development Kit [27] (http:
//ingenias.sourceforge.net), and MaSE and
its AgenTool [18] (http://macr.cis.ksu.edu/
projects/agentTool/agentool.htm).

8 Final Remarks

Programming Multi-Agent Systems is rapidly turning into
a new discipline of its own. Throughout the paper, we have
described several examples of languages and systems cur-
rently being developed in this area. We now draw some
conclusions on the three main topics of this survey, namely
languages, IDEs, and platforms.
Languages. Most research in agent-oriented program-
ming languages is based on declarative approaches. There
are many declarative solutions, most of them logic based.
Purely imperative languages are unusual in the Agents lit-
erature, as in essence they are inappropriate for expressing
the high-level abstractions associated with agent systems
design. On the other hand, as we saw above, agent-oriented
programming languages tend to allow for easy integration
with (legacy) code written in imperative languages. Inter-
estingly, the characteristics of the underlying agent archi-
tectures determine that it is often more appropriate to use
interpreters rather than compilers.
IDEs. The existing IDEs provide basic support for project
management, creating/editing files, and building/running
the systems, but fail to support sophisticated features within
all these categories. In addition, none of the agent IDEs
covers aspects of refactoring and testing of agent applica-
tions. One reason for this is that, except for the Living
Systems Developer, all IDEs have been developed from
scratch and thus do not rely on existing reliable technol-
ogy. In general, IDE support for developing agent-based
systems is rather weak and the existing agent tools do not
offer the same level of usability as state-of-the-art object-
oriented IDEs. One of the main reason for this is the cur-
rently unavoidable tight coupling of agent IDEs and agent
platforms, which results from the lack of agreement on
an unified programming language for multi-agent systems.
Another trend (observable in some of the IDEs), which is
in contrast to object-oriented IDEs, is that they partly try to
abstract away from the underlying programming language
in favour of using graphical means of programming, such
as wizards and statecharts.
Platforms. Closed frameworks such as DESIRE, strongly
based on a platform, provide more complete solutions than
others such as Jadex or TuCSoN. They usually offer an
agent architecture and a system model, very useful for
novel developers, together with the communication infras-

A SURVEY OF LANGUAGES AND PLATFORMS. . . Informatica 30 (2006) 33–44 41

tructure and a range of robust services, such as directory
facilitators, agent management services, and monitoring
facilities. As a drawback, closed frameworks limit the
development. For example, the design approach of the
framework may not fit certain domain problems. Perhaps
that is the reason why most researchers tend to use more
open solutions. Currently, the most popular solution is
to use JADE as underlying agent infrastructure combined
with some other (higher-level) approach to program the
agents’ behaviour. When dealing with more general
frameworks (rather than tied to a platform), their use (i.e.,
defining the agents that will run within it, together with
the required services and resources) should be automated
as much as possible, in part to free the developer from
low-level details (e.g. location of the configuration files,
their concrete syntax, etc.). Despite this, few existing
frameworks have IDE support. Concerning the paradigm
of communication used, there are several on offer, often
being an important issue when choosing which framework
to adopt. TuCSoN is representative of tuple-centred
communication, JADE of message passing, and DESIRE
of data flow among processes.

The various approaches mentioned along this survey in-
dicate that there is still much work to be done. Among the
major challenges faced by this research community are:

– The conception and development of specialised de-
bugging tools, in particular for cognitive agent lan-
guages;

– The integration of agent tools into existing IDEs,
rather than starting from scratch;

– The separation of MAS frameworks from agent plat-
forms, so that each framework can be used for deploy-
ing systems on a variety of platforms.

– The dissemination of the MAS programming
paradigm, so that programmers have a better un-
derstanding of its foundations as well as practical
characteristics.

We believe that the recent developments surveyed here
show a lively interest in this area of research. Despite
the large number of open issues and challenges, we ex-
pect that the experience gathered in developing MAS with
these tools will take us closer to a more mature program-
ming paradigm. Arguably, this is one of the few concrete
ways for allowing wider audiences to use in practice, and in
a systematic way, the various techniques that the MAS re-
search community has developed over the last two decades.

Acknowledgements
We gratefully acknowledge the help and support of
AgentLink III, in particular its Technical Fora, which not
only motivated the authors to work together in producing

this joint survey, but also provided the conditions for much
of the discussion that we used in this paper and indeed that
will guide future work in this area of research. We also
acknowledge the valuable comments and suggestions pro-
vided by the anonymous referees.

References
[1] J. J. Alferes, A. Brogi, J. A. Leite, and L. M. Pereira.

Evolving logic programs. In S. Flesca, S. Greco,
N. Leone, and G. Ianni, editors, Proceedings of the
8th European Conference on Logics in Artificial In-
telligence (JELIA’02), volume 2424 of LNAI, pages
50–61. Springer, 2002.

[2] F. Bellifemine, F. Bergenti, G. Caire, and A. Poggi.
JADE — a java agent development framework. In
Bordini et al. [5], chapter 5, pages 125–148.

[3] F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors.
Methodologies and Software Engineering for Agent
Systems. Kluwer, 2004.

[4] C. Bernon, M. Cossentino, and J. Pavon. An overview
of current trends in european aose research. Journal
of Informatica, 2005. In this volume.

[5] R. H. Bordini, M. Dastani, J. Dix, and A. El Fal-
lah Seghrouchni, editors. Multi-Agent Programming:
Languages, Platforms and Applications. Number 15
in Multiagent Systems, Artificial Societies, and Sim-
ulated Organizations. Springer, 2005.

[6] R. H. Bordini, J. F. Hübner, et al. Ja-
son, manual, release 0.7 edition, Aug. 2005.
http://jason.sf.net/.

[7] R. H. Bordini, J. F. Hübner, and R. Vieira. Jason and
the Golden Fleece of agent-oriented programming. In
Bordini et al. [5], chapter 1, pages 3–37.

[8] L. Braubach, A. Pokahr, D. Moldt, and W. Lamers-
dorf. Goal representation for BDI agent systems.
In R. Bordini, M. Dastani, J. Dix, and A. El Fal-
lah Seghrouchni, editors, Programming Multi-Agent
Systems, second Int. Workshop (ProMAS’04), volume
3346 of LNAI, pages 44–65. Springer Verlag, 2005.

[9] F. Brazier, C. Jonker, and J. Treur. Principles of
compositional multi-agent system development. In
Proceedings of Conference on Information Technol-
ogy and Knowledge Systems, pages 347–360. Aus-
trian Computer Society, 1998.

[10] M. Calisti, P. Funk, S. Biellman, and T. Bugnon. A
multi-agent system for organ transplant management.
In A. Moreno and J. Nealon, editors, Applications
of Software Agent Technology in the HealthCare Do-
main, pages 199–212. Birkhäuser Verlag, 2004.

42 Informatica 30 (2006) 33–44 Bordini et al.

[11] L. Cardelli and A. D. Gordon. Mobile ambients. In
M. Nivat, editor, Foundations of Software Science and
Computational Structures, volume 1378 of LNCS,
pages 140–155. Springer, 1998.

[12] K. Clark and F. McCabe. Go! — a multi-
paradigm programming language for implementing
multi-threaded agents. Annals of Mathematics and
Artificial Intelligence, 41(2–4):171–206, 2004.

[13] R. W. Collier. Agent Factory: A Framework for the
Engineering of Agent-Oriented Applications. PhD
thesis, University College Dublin, 2001.

[14] S. Costantini and A. Tocchio. A logic program-
ming language for multi-agent systems. In S. Flesca,
S. Greco, N. Leone, and G. Ianni, editors, Proceed-
ings of the 8th European Conference on Logics in
Artificial Intelligence (JELIA’02), volume 2424 of
LNAI, pages 1–13. Springer, 2002.

[15] M. Dastani, F. de Boer, F. Dignum, and J.-J. Meyer.
Programming agent deliberation: An approach il-
lustrated using the 3APL language. In Proceed-
ings of the Second International Joint Conference
on Autonomous Agents and Multiagent Systems (AA-
MAS’03), pages 97–104. ACM, 2003.

[16] M. Dastani, M. B. van Riemsdijk, F. Dignum, and J.-
J. C. Meyer. A programming language for cognitive
agents: goal directed 3APL. In M. Dastani, J. Dix,
and A. El Fallah-Seghrouchni, editors, Programming
multiagent systems, first international workshop (Pro-
MAS’03), volume 3067 of LNCS, pages 111–130,
Berlin, 2004. Springer Verlag.

[17] M. Dastani, M. B. van Riemsdijk, and J.-J. C. Meyer.
Programming multi-agent systems in 3APL. In Bor-
dini et al. [5], chapter 2, pages 39–67.

[18] S. DeLoach. Analysis and design using MaSE and
agenTool. In Proceedings of Midwest Artificial In-
telligence and Cognitive Science. Miami University
Press, 2001.

[19] E. Denti, A. Omicini, and A. Ricci. Multi-paradigm
Java-Prolog integration in tuProlog. Science of Com-
puter Programming, 2005. In press.

[20] J. Dix, S. Kraus, and V. Subrahmanian. Agents deal-
ing with time and uncertainty. In M. Gini, T. Ishida,
C. Castelfranchi, and W. L. Johnson, editors, Pro-
ceedings of the First International Joint Conference
on Autonomous Agents and Multiagent Systems (AA-
MAS’02), pages 912–919. ACM Press, 2002.

[21] J. Dix and Y. Zhang. IMPACT: a multi-agent frame-
work with declarative semantics. In Bordini et al. [5],
chapter 3, pages 69–94.

[22] A. El Fallah Seghrouchni and A. Suna. An unified
framework for programming autonomous, intelligent
and mobile agents. In V. Marik, J. Müller, and M. Pe-
choucek, editors, Proceedings of Third International
Central and Eastern European Conference on Multi-
Agent Systems, volume 2691 of LNAI, pages 353–
362. Springer Verlag, 2003.

[23] A. El Fallah Seghrouchni and A. Suna. CLAIM:
A computational language for autonomous, intelli-
gent and mobile agents. In M. Dastani, J. Dix, and
A. El Fallah Seghrouchni, editors, Programming Mul-
tiagent Systems, first international workshop (Pro-
MAS’03), volume 3067 of LNCS, pages 90–110.
Springer Verlag, 2004.

[24] A. El Fallah Seghrouchni and A. Suna. Programming
mobile intelligent agents:an operational semantics. In
Proceedings of the International Conference on In-
telligent Agent Technology, pages 65–71. IEEE Com-
puter Society, 2004.

[25] A. El Fallah Seghrouchni and A. Suna. Hi-
malaya Framework: Hierarchical Intelligent Mobile
Agents for building Large-scale and Adaptive sYs-
tems based on Ambients. In T. Ishida, L. Gasser,
and H. Nakashima, editors, Proceedings of Mas-
sive Multi-Agent Systems workshop, number 3446 in
LNAI, pages 202–216. Springer Verlag, 2005.

[26] R. Evertsz, M. Fletcher, R. Jones, J. Jarvis, J. Brusey,
and S. Dance. Implementing industrial multi-agent
systems using JACKTM. In Programming multiagent
systems, first international workshop (ProMAS’03),
volume 3067 of LNAI, pages 18–48. Springer Verlag,
2004.

[27] J. Gomez-Sanz and J. Pavon. Agent oriented software
engineering with INGENIAS. In V. Marik, J. Müller,
and M. Pechoucek, editors, Proceedings of the Third
International Central and Eastern European Confer-
ence on Multi-Agent Systems, volume 2691 of LNCS,
pages 394–403. Springer Verlag, 2003.

[28] K. Hindriks, F. de Boer, W. van der Hoek, and J.-
J. Ch. Meyer. Agent programming in 3APL. Int.
J. of Autonomous Agents and Multi-Agent Systems,
2(4):357–401, 1999.

[29] G. Jayatilleke, L. Padgham, and M. Winikoff. Com-
ponent agent framework for non-experts (CAFnE)
toolkit. In R. Unland, M. Klusch, and M. Calisti, ed-
itors, Software Agent-Based Applications, Platforms
and Development Kits. Birkhäuser Publishing Com-
pany, 2005.

[30] G. Klein, A. Suna, and A. El Fallah Seghrouchni. Re-
source sharing and load balancing based on agent mo-
bility. In Proceedings of International Conference
on Enterprise Information Systems, pages 350–355.
ICEIS Press, 2004.

A SURVEY OF LANGUAGES AND PLATFORMS. . . Informatica 30 (2006) 33–44 43

[31] J. F. Lehman, J. E. Laird, and P. S. Rosenbloom. A
gentle introduction to Soar, an architecture for human
cognition. In S. Sternberg and D. Scarborough, edi-
tors, An invitation to Cognitive Science, vol. 4. MIT
Press, 1996.

[32] J. A. Leite. Evolving Knowledge Bases, volume 81 of
Frontiers in Artificial Intelligence and Applications.
IOS Press, 2003.

[33] J. A. Leite, J. J. Alferes, and L. M. Pereira. MIN-
ERVA — a dynamic logic programming agent archi-
tecture. In J.-J. Meyer and M. Tambe, editors, Intel-
ligent Agents VIII — Agent Theories, Architectures,
and Languages, volume 2333 of LNAI, pages 141–
157. Springer, 2002.

[34] M. Luck and M. d’Inverno. Understanding Agent Sys-
tems. Springer Series on Agent Technology. Springer,
2nd edition, 2004.

[35] V. Mascardi, M. Martelli, and L. Sterling. Logic-
based specification languages for intelligent software
agents. Theory and Practice of Logic Programming,
4(4):429–494, 2004.

[36] F. McCabe and K. Clark. April — agent process in-
teraction language. In M. Wooldridge and N. Jen-
nings, editors, Intelligent Agents, ECAI-94 Workshop
on Agent Theories, Architectures, and Languages,
volume 890 of LNAI, pages 324–340. Springer, 1995.

[37] D. Milojicic, M. Breugst, I. Busse, J. Campbell,
S. Covaci, B. Friedman, K. Kosaka, D. Lange,
K. Ono, M. Oshima, C. Tham, S. Virdhagriswaran,
and J. White. MASIF, the OMG mobile agent sys-
tem interoperability facility. In Proceedings of Mo-
bile Agents’98, volume 1477 of LNAI, pages 50–67.
Springer, 1998.

[38] A. Omicini and E. Denti. From tuple spaces to
tuple centres. Science of Computer Programming,
41(3):277–294, Nov. 2001.

[39] A. Omicini and F. Zambonelli. Coordination for
Internet application development. Int. J. of Au-
tonomous Agents and Multi-Agent Systems, 2(3):251–
269, 1999.

[40] T. O. Paulussen, A. Zöller, A. Heinzl, A. Pokahr,
L. Braubach, and W. Lamersdorf. Dynamic patient
scheduling in hospitals. In M. Bichler, C. Holtmann,
S. Kirn, J. Müller, and C. Weinhardt, editors, Coor-
dination and Agent Technology in Value Networks.
GITO, Berlin, 2004.

[41] G. Plotkin. A structural approach to operational se-
mantics. Technical Report DAIMI-FN 19, Depart-
ment of Computer Science, Arhaus University, 1981.

[42] A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex:
A BDI reasoning engine. In Bordini et al. [5], chap-
ter 6, pages 149–174.

[43] A. S. Rao. AgentSpeak(L): BDI agents speak out in a
logical computable language. In Proceedings of Mod-
elling Autonomous Agents in a Multi-Agent World,
number 1038 in LNAI, pages 42–55. Springer Verlag,
1996.

[44] A. S. Rao and M. P. Georgeff. BDI agents: From
theory to practice. In Proceedings of International
Conference on Multi Agent Systems, pages 312–319.
AAAI Press / MIT Press, 1995.

[45] C. F. B. Rooney, R. W. Collier, and G. M. P. O’Hare.
VIPER: A visual protocol editor. In R. D. Nicola,
G. Ferrari, and G. Meredith, editors, Proceedings of
the International Conference on Coordination Mod-
els and Languages, volume 2949 of LNCS, pages
279–293. Springer Verlag, 2004.

[46] R. Ross, R. Collier, and G. O’Hare. AF-APL:
Bridging principles and practices in agent oriented
languages. In R. Bordini, M. Dastani, J. Dix,
and A. El Fallah Seghrouchni, editors, Program-
ming Multi-Agent Systems, second Int. Workshop
(ProMAS’04), volume 3346 of LNCS, pages 66–88.
Springer Verlag, 2005.

[47] G. D. M. Serugendo, M.-P. Gleizes, and A. Karageor-
gos. Self-organisation and emergence in mas: An
overview. Journal of Informatica, 2005. In this vol-
ume.

[48] Y. Shoham. Agent-oriented programming. Artificial
Intelligence, 60(1):51–92, 1993.

[49] V. Subrahmanian, P. Bonatti, J. Dix, T. Eiter, S. Kraus,
F. Özcan, and R. Ross. Heterogenous Active Agents.
MIT-Press, 2000.

[50] A. Suna and A. El Fallah Seghrouchni. Adaptative
mobile multi-agent systems. In Proceedings of Inter-
national Central and Eastern European Conference
on Multi-Agent Systems, LNAI, 2005. To appear.

[51] A. Suna and A. El Fallah Seghrouchni. A mo-
bile agents platform: architecture, mobility and se-
curity elements. In R. Bordini, M. Dastani, J. Dix,
and A. El Fallah Seghrouchni, editors, Programming
Multi-Agent Systems, second Int. Workshop (Pro-
MAS’04), volume 3346 of LNAI, pages 126–146,
New-York, 2005. Springer Verlag.

[52] A. Suna, C. Lemaitre, and A. El Fallah Seghrouchni.
E-commerce using an agent oriented approach.
Revista Iberoamericana de Inteligencia Artifical,
9(25):89–98, 2005.

44 Informatica 30 (2006) 33–44 Bordini et al.

[53] M. Thielscher. FLUX: A logic programming method
for reasoning agents. Theory and Practice of Logic
Programming, 2005. To appear.

[54] M. Thielscher. Reasoning Robots: The Art and Sci-
ence of Programming Robotic Agents, volume 33 of
Applied Logic Series. Springer, 2005.

[55] R. Vieira, A. Moreira, M. Wooldridge, and R. H. Bor-
dini. On the formal semantics of speech-act based
communication in an agent-oriented programming
language. To appear, 2005.

[56] D. Weyns and T. Holvoet. On the role of environ-
ments in multiagent systems. Journal of Informatica,
2005. In this volume.

[57] M. Winikoff. JACKTM intelligent agents: An indus-
trial strength platform. In Bordini et al. [5], chapter 7,
pages 175–193.

 Informatica 30 (2006) 45–54 45

Self-Organisation and Emergence in MAS: An Overview
Giovanna Di Marzo Serugendo
University of Geneva, Switzerland
E-mail: Giovanna.Dimarzo@cui.unige.ch

Marie-Pierre Gleizes
IRIT, Université Paul Sabatier, France
E-mail: Marie-Pierre.Gleizes@irit.fr

Anthony Karageorgos
University of Thessaly, Greece
E-mail: karageorgos@computer.org

Keywords: multi-agent systems, self-organisation, emergence

Received: June 5, 2005

The spread of the Internet and the evolution of mobile communication, have created new possibilities for
software applications such as ubiquitous computing, dynamic supply chains and medical home care.
Such systems need to operate in dynamic, heterogeneous environments and face the challenge of
handling frequently changing requirements; therefore they must be flexible, robust and capable of
adapting to the circumstances. It is widely believed that multi-agent systems coordinated by self-
organisation and emergence mechanisms are an effective way to design these systems. This paper aims
to define the concepts of self-organisation and emergence and to provide a state of the art survey about
the different classes of self-organisation mechanisms applied in the multi-agent systems domain.
Furthermore, the strengths and limits of these approaches are examined and research issues are
provided.
Povzetek: Članek opisuje pregled samoorganizacije v MAS.

1 Introduction
Natural self-organising systems function without

central control and operate based on contextual local
interactions. The particularity of self-organised systems
is their capacity to spontaneously (without external
control) produce a new organisation in case of
environmental changes. These systems are particularly
robust, because they adapt to these changes, and are able
to ensure their own survivability. In some cases, self-
organisation is coupled with emergent behaviour, in the
sense that although individual components carry out a
simple task, as a whole they are able to carry out
complex tasks emerging in a coherent way through the
local interactions of the various components.
 The complexity of today's applications is such, e.g.
world scale, that no centralised or hierarchical control is
possible. In other cases, it is the unforeseeable context, in
which the application evolves or moves, which makes
any supervision difficult. Therefore, we are witnessing an
increased interest from both the academic community
and the industry in naturally inspired (robust and simple)
solutions for building modern applications favouring
self-organisation and/or emergence of properties.

We can foresee that among the applications of
tomorrow, a great many of them will be biologically
inspired: self-organising sensors networks, allowing the
control of aerospace vehicles, or of dangerous zones;

self-organising traffic management, allowing re-routing
of emergency vehicles, or individual cars; storage
facilities, or self-managing operating systems facilities.
Some others applications tackle with complex problem
solving in which complexity is due to the great space
search such as optimisation problems and non linear
problems.

Software agents naturally play the role of
autonomous entities subject to self-organise themselves.
Usually agents are used for simulating self-organising
systems, in order to better understand or establish
models. The tendency is now to shift the role of agents
from simulation to the development of distributed
systems where components are software agents that once
deployed in a given environment self-organise and work
in a decentralised manner towards the realisation of a
given (global) possibly emergent functionality.

Sections 2 and 3 review the notions of self-
organisation and emergence respectively. Section 4
provides the description of several implementations in
MAS. Section 5 discusses the strengths and limits of self-
organising approaches. The main problems and
challenges related to the software engineering of self-
organising systems which exhibit emergent properties are
discussed in Section 6. Finally, Section 7 concludes the
paper.

46 Informatica 30 (2006) 45–54 G. Di M. Serugendo et al.

2 Self-Organisation

2.1 History
By studying the social behaviour of insects

(termites), Grassé [29] proposed in 1959 the theory of
stigmergy, which can be summarised in “the work excites
the workers”. The consequence is that direct interactions
are not necessary to coordinate a group, for example
indirect communications through environment are
enough. Coordination and regulation tasks are realised on
the basis of information deposited into the environment,
without central control. In the case of ants and termites,
stigmergy is ensured by depositing a chemical substance
in the environment, called pheromone.

In the 70es, the term self-organisation itself has been
established by Nobel Prize Ilya Prigogine [26] and his
colleagues through thermodynamics studies. Essentially
the idea is that open systems decrease their entropy
(order comes out of disorder) when an external energy is
applied on the system. Matter organises itself under this
external pressure to reach a new state where entropy has
decreased. Compared to the stigmergy concept identified
by Grassé, there is a fundamental difference here. Indeed,
in the first case self-organisation results from a behaviour
occurring from inside the system (from the ants or
termites themselves). In the second case, self-
organisation is the result of a pressure applied from the
outside on the system.

In the 70es, through biological studies, Francisco
Varela [61] established the notion of autopoiesis
(meaning self-production) as being the process through
which an organisation is able to produce itself.
Autopoiesis applies to closed systems made of
autonomous components whose interactions self-
maintain the system through the generation of system’s
components, such as living systems (cells, or organisms).

Koestler [37] in the late 60es established the
definition of holons and holarchies. Holons are at the
same time whole systems and parts of larger systems.
Holarchies are hierarchies of such holons. Koestler gives
a hierarchical view of self-organisation, which applies to
the universe or to enterprise organisations. The idea here
is that, for complex organisations, order appears from
disorder, due to simple relations that statistically evolve
through complex relations progressively organising
themselves.

During the last 20 years, research in artificial
systems has been oriented towards introducing self-
organisation mechanisms specifically for software
applications. These different works take diverse
inspiration: from stigmergy, to autopoiesis, or to the
holon concept. Recently, in addition to reproducing
natural system behaviour into artificial systems, recent
research efforts have been oriented towards introducing
self-organisation mechanisms specifically for software
applications [20] . Section 4 describes such mechanisms
in more details.

2.2 Examples
Natural self-organising systems include well-known

examples concerning social insects, such as ants, termites
and honey bees. Communication occurs through
stigmergy by the means of pheromone deposited into
their environment. Other collective behaviours of
animals referred to as self-organising are flocks of birds,
and schools of fish. By following simple rules, such as
getting close to a similar bird (or fish) but not too much,
getting away from dissimilar birds (or fishes), they are
able to collectively avoid predators.

Social behaviour of humans is also self-organised
and gives rise to emergent complex global behaviours.
Human beings typically work with local information and
through local direct or indirect interactions producing
complex societies.

Biology provides a great source of self-organising
systems as well. Examples include the immune system of
mammalians, the regeneration of cells and brain
behaviour.

Among artificial multi-agent based self-organising
systems, we observe different trends ranging from
application of naturally-inspired self-organising models,
to the establishment of new mechanisms and whole
infrastructures supporting self-organisation of artificial
systems. Swarms provide a great source of inspiration,
especially for fixed and mobile networks systems
management [11] , such as routing, load balancing [43] ,
or security [25] . Holarchies as well have inspired
researchers dealing with e-Government and e-Society
issues [60] . At the level of whole infrastructures
(middleware) supporting artificial self-organising
systems, some works take their inspiration from
magnetic fields [40] , or ants [2] .

2.3 Definition
Self-organisation essentially refers to a spontaneous,

dynamically produced (re-)organisation. We present
here several definitions corresponding to the different
self-organisation behaviours identified in Section 2.1.

Swarm Intelligence. According to [Bonabeau,
1999] mechanisms identifying swarms behaviour are: 1.
Multiple interactions among the individuals; 2.
Retroactive positive feedback (increase of pheromone
when food is detected); 3. Retroactive negative feedback
(pheromone evaporation); 4. Increase of behaviour
modification (increase of pheromone when new path is
found).

Decrease of entropy. Prigogine and his colleagues
have identified four necessary requirements for systems
exhibiting a self-organising behaviour under external
pressure [26] . “Mutual Causality: At least two
components of the system have a circular relationship,
each influencing the other. Autocatalysis: At least one of
the components is causally influenced by another
component, resulting in its own increase. Far-from
equilibrium condition: the system imports a large amount
of energy from outside the system, uses the energy to
help renew its own structures (autopoiesis), and
dissipates rather than accumulates, the accruing disorder

SELF-ORGANISATION AND EMERGENCE... Informatica 30 (2006) 45–54 47

(entropy) back into the environment. Morphogenetic
changes: At least one of the components of the system
must be open to external random variations from outside
the system. A system exhibits morphogenetic change
when the components of the system are themselves
changed [15] .”

Autopoiesis. “An autopoietic system is organised
(defined as a unity) as a network of processes of
production (transformation and destruction) of
components that produces the components that: 1.
Through their interactions and transformations
continuously regenerate and realise the network of
processes (relations) that produced them; and 2.
Constitute it (the machine) as a concrete unity in the
space which they [the components] exist by specifying
the topological domain of its realisation as such a
network” [61] .

Artificial Systems. Works of the Agentlink
Technical Forum on Self-Organisation in MAS [21]
have established two definitions of self-organising
systems: 1. "Strong self-organising systems are systems
that change their organisation without any explicit,
internal or external, central control"; 2. "Weak self-
organising systems are systems where reorganisation
occurs as a result of internal central control or planning".

Furthermore, self-organisation implies organisation,
which in turn implies some ordered structure and
component behaviour. In this respect, the process of self-
organisation changes the respective structure and
behaviour and a new distinct organisation is self-
produced.
 When self-organisation meets emergence.
Emergence is the fact that a structure, not explicitly
represented at a lower level, appears at a higher level. In
the case of dynamic self-organising systems, with
decentralised control and local interactions, intimately
linked with self-organisation is the notion of emergent
properties. The ants actually establish the shortest path
between the nest and the source of food. However in the
general case, as pointed out by [18] self-organisation can
be witnessed without emergence and vice-versa.

3 The Emergence Concept

3.1 History
The emergent phenomena are studied since the

Greek antiquity and can be found in the writings of the
Socrate periods with the notion of “the whole before the
parts” or “the whole is more than all the parts”. There
were two different schools for studying the emergence:
the proto-emergentism during the XIX century and the
neo-emergentism during the XX century.

The proto-emergentists consider the emergent
process as a black box (see Figure 1). Only the inputs
and the outputs at the lowest level can be discerned. We
don’t know how the entries are transformed in outputs.
Researchers such as: G.H. Lewes, C.L. Morgan, J.S.
Mill, S. Alexander, D. Broad, W. Wheeler, and A.N.

Whitehead try to explicit the characteristics of emergent
phenomena.

Figure 1: Proto-emergentist view

From 1930 until just now, a different perspective has

been envisaged, by a movement called the neo-
emergentism. It has its root in dynamic of systems in
Physics, in Mathematics and in Computer Science with
main examples being the work of Haken, Holland,
Kauffman, Langton, Prigogine, and Thom. Its aim is to
develop tools, methods and constructions which enable
the expression of the emergent process as less dense and
by consequence as less miraculous (Figure 2). This
movement tries to understand and to reproduce the
process which leads to emergence.

Figure 2: Neo-emergentist view

3.2 Examples
To illustrate the notion of emergent phenomena, this

section presents examples of systems where emergent
phenomena can be observed.

The first example is taken from natural systems and
concerns foraging ants [16] . A foraging ant has the role
to explore an environment to find food. When it finds
food it comes back to the nest in tracing the path in the
environment with pheromone. The shortest path to find
food is the structure which emerges from the collective
activity of the ants. This path has reality only for an
observer of the system and an ant does not view it.

Another example concerns an application where
robots have to transport boxes from always the same
departure room to a destination one. Two corridors are
available to go from one room to the other and two
robots cannot cross in a corridor and there is no sense

48 Informatica 30 (2006) 45–54 G. Di M. Serugendo et al.

associated to them. The robots have a local perception.
In using cooperative attitude to embody robots, we can
observe corridors dedication and traffic way [50] .

The apparition of conscience is an example of
emergent phenomenon for humans. The conscience is
viewed by Searle [57] as a property of the brain at the
higher or global level. Biologically, the brain is a
complex system composed of a set of neurons and
interactions between them. These neurons are the lower
or micro level. Nowadays, we cannot understand or
explain the conscience in observing the neurons and their
interactions.

3.3 Definition
The emergence is a captivating concept and we try to
explain it in answering the following questions:

• What does emerge?
• What are the characteristics of an emergent

phenomenon? These characteristics must enable
to answer yes or no to the question: “is this
phenomenon an emergent one?”

• What are the properties of a system producing
emergent phenomena? These properties can guide
designers to build systems which provide
emergent phenomenon.

• What can be emergence in artificial systems?
How can you decide if a program provides an
emergent result or not?

The object of emergence is often called phenomenon
and it can be a structure or a framework such as the
Bénard’s cells, a behaviour such as the glider in the game
of life [4] , or a function (not as mathematic function but
as the functionality of a system) such as the building of a
course schedule by several local entities [44] , [52] .

An emergent phenomenon requires at least two
levels (a micro and a macro level), and needs to be
observable at least at the macro level. Its main property is
the irreducibility of the properties of a high level theory
to properties of a lower level theory [1] . In general, there
are interdependencies between the levels, the macro level
constrains the micro level and the micro level causes the
macro level. The phenomenon must show novelty:
something new is produced that did not exist previously;
must be ostensible; and must produce some coherence in
the sense that it has its own identity but it is strongly
linked to parts that produce it [28] . A chain of linear
activities enables explanation and predictability of a
collective phenomenon. On the opposite, an emergent
one needs non linear activities at the micro-level. For a
given phenomenon, if most of the previous properties can
be observed then the phenomenon can be qualified as
emergent.

Engineers should be provided with a guide including
models, tools and methods to design systems having an
emergent behaviour or presenting emergent results.
Furthermore, the guide should list the main properties
such systems should have. To provide emergent
phenomena, a system or a mechanism must at least have
two levels. The system must present a dynamic during its
time life. Because an emergent phenomenon is

observable during time, it needs a form of self-
maintained equilibrium. Nevertheless it is not a
homeostatic but dynamic equilibrium. Emergence occurs
in a narrow possibility space lying between conditions
that are too ordered and too disordered. This boundary or
margin is the edge of chaos [36] , which is always far
from equilibrium. Near these equilibriums, a system has
the ability to self-organise allowing an emergent
phenomenon.

The emergence in artificial system is conceptually
close to emergent computation defined by Stephanie
Forrest [24] as follows:

• a collection of interactive agents : the process;
• an epiphenomenon produced by this process at the

macro level;
• a natural interpretation of this epiphenomenon as

computation or computation results.
An operational definition is given by the SMAC

team at IRIT [13] . This “technical” definition of
emergence has strong computer science coloration and it
is based on two points:
1. The subject. The goal of a computational system is

to realise an adequate function, judged by a relevant
user. It is this function, which may evolve during
time, that has to emerge.

2. The condition. This function is emergent if the
coding of the system does not depend in any way of
the knowledge of this function. This coding has to
contain the mechanisms allowing the adaptation of
the system during its coupling with the environment,
so as to tend anytime towards the adequate function.

Therefore, when we design an agent for a multi-
agent system, the code of the agent doesn’t contain any
knowledge of the collective function we want the MAS
to compute. As a result, no agent controls the global
system.

4 Implementation in MAS
Studies on self-organisation and emergence focus on
naturally inspired approaches (bio-inspired approaches
[41] , and socially-based approaches [30]) and non
naturally inspired approaches. Researchers have been
experimented with several mechanisms leading to self-
organisation and often at the same time to emergent
phenomenon on different kinds of applications [5] . The
different approaches can be divided in five classes
depending on the mechanisms they are based on:

• direct interactions between agents using basic
principles such as broadcast and localisation;

• indirect interactions between agents and
stigmergy;

• reinforcement of agent behaviours;
• cooperation behaviour of individual agents;
• choice of a generic architecture.

For a more general survey of languages and platforms for
MAS implementations not directly related to self-

SELF-ORGANISATION AND EMERGENCE... Informatica 30 (2006) 45–54 49

organising mechanisms, the interested reader can refer to
[9] .

4.1 Mechanisms based on direct interactions
Zambonelli et al. [64] discuss different ways to

engineer self-organisation. The approaches proposed
consist in using few basic principles, such as localisation
and broadcast, coupled with local interactions and local
computations done by agents in order to provide a final
coherent global state. These algorithms differ from
traditional distributed algorithms in that they focus on
ensuring that they eventually will converge to and
maintain a desired stable state despite micro-level
contingencies and any perturbations in the environment,
for example changes in the network structure.

Typical examples of such mechanisms are those
applied in the areas of self-assembly and distributed self-
localisation where the formation of regular spatial
patterns in mobile objects is required. An example is
described in [40] where simple leader election algorithm
determines the centre of gravity of the objects and
propagates it to all objects which move until a specific
distance from the centre is reached. The result eventually
is a circular organisation of objects. The same
mechanism is used in the system for modelling fluid
dynamics [58] . Local interactions between drops and
interactions with a physical environment enable the
formation of rivers or ponds.

These mechanisms focus on changing the structural
aspects of the agent organisation, such as topological
placement of agents and agent communication lines.

4.2 Mechanisms based on stigmergy
The self-organisation mechanisms based on the

stigmergy concept aim at achieving complex system
behaviours resulting of indirect interactions between
agents. These interactions are due to changes in the
environment. This behaviour leads towards the desired
global system behaviour.

Recently, several approaches to self-organisation
relying on this idea of stigmergy have been proposed and
their effectiveness in achieving difficult global
coordination tasks has been demonstrated. For instance,
this mechanism has been used for manufacturing control
[35] , supply network management [55] , managing
computer networks security [25] and coordination of
unmanned vehicles [48] . Stigmergy has also been
implemented with social spiders to detect regions in a
scene [10] . This principle is also used to obtain the
formation of non-symmetric patterns in self-assembly
applications [40] which in some cases are not exactly
known in advance but emerge during system execution
[53] . An example of such non-symmetrical pattern
formation using principles of biological formation of
morphogenesis is given in [40] .

These mechanisms can be evaluated by
experimentation, for example by simulation and
prototyping [23] , [38] . In particular there is a tendency
to integrate simulation experiments in the methodologies
for engineering such systems, such as the one described

in [47] . In such approaches, the design phase involves
selecting an appropriate self-organising model and
verifying its correctness via experimentation. Such a
model may be relevant, but not necessarily the most
suitable for the particular application scenario. Therefore,
the model is calibrated via iterative refinement based on
the experimentation results.

In these cases, due to the non-linearity and the
complexity of the phenomena involved, neither it is
possible to have direct control of the system behaviour
nor can it be proven that the desired behaviour will be
achieved. Furthermore, the resulting system state cannot
be accurately known in advance and multiple solutions
can be reached. One can only obtain some statistical
confidence about the system convergence to the desired
globally coordinated behaviour with experimentation.

4.3 Mechanisms based on reinforcement
In some approaches self-organisation is based on the

capabilities of the agents to modify dynamically their
behaviour according to some reinforcement. It consists in
the following basic principles: rewards increase agent
behaviour and punishments decrease agent behaviour.
The consequence is that an individual agent can adapt its
capabilities and we can observe specialisation of roles for
example. In these approaches self-organisation is based
on adaptive behaviour capabilities of individual agents
which are dependent on particular agent architectures. In
these approaches, agents dynamically select a new
behaviour (or action) based on the calculation of a
probability value which is dependent on the current agent
state and the perceived state of the environment, as well
as on the quality of the previous adaptation decisions, for
example the ones discussed in [39] and [17] . Other
early approaches to self-organisation that re-assign roles
and responsibilities to different organisational nodes are
detailed in [49] .

A typical example of this approach is the model of
adaptive agents described in [62] . The model focuses on
dynamically adapting logical relations between different
behaviours, represented by roles, an agent can
successively follow starting from its current state. These
relations are used to select the new agent behaviour when
adaptation of behaviour needs to be made. Agent
behaviour is described as a graph termed behaviour
graph. A behaviour graph includes two types of nodes
corresponding to roles and links. Role nodes are
connected to each other only via appropriate link nodes,
which contain conditions specifying when the agent can
switch between the respective roles. Adaptive role
selection takes place on runtime based on factors
associated with the links of the behaviour graph. Factors
are parameters representing properties of agents and their
perceived environment whose values can change
dynamically during agent execution.

4.4 Mechanisms based on cooperation
The Organisation Self-Design (OSD) framework

[33] uses the primitives of agents composition and
decomposition. Decomposition involves division of an

50 Informatica 30 (2006) 45–54 G. Di M. Serugendo et al.

agent into two and can be performed to respond to
overwhelming environmental demands. Composition
merges two agents into one and can be useful when
communication overheads between the two agents are
too high. The system tries to be cooperative with its
environment in creating one agent or in merging two
agents in order to improve the response time to the
environment. The initial organisation starts with one
agent containing all domain and organisational
knowledge. Simulation results demonstrate the
effectiveness of the approach in adapting to changing
environmental demands.

Cooperation is also used in the AMAS theory [27]
where the desired collective behaviour emerges, and can
always occur as the result of cooperation [13] , [14] .
This emergent outcome corresponds to the delivered
system functionality (referred to as the global function),
which is only modelled using emergence; in other words
there is no agent having a global view of the system
status or purpose and no centralised control. Each agent
possesses the ability of self-organisation, for example the
capability to locally rearrange its interactions with other
agents and the environment depending on its knowledge,
on its representation of the others and on the individual
task it has to solve. This enables realising dynamic
changes in the global system function without explicitly
coding the modifications at the upper level of the system.
Self-organisation is founded on the capability agents
possess to be locally “cooperative”. Cooperation
capabilities do not imply that agents are always helpful
or altruistic but they are able to recognise cooperation
failures called Non Cooperative Situations (NCS) (which
correspond to exceptions found in classical programs)
and handle them. The local handling of NCS maximises
the flexibility and adaptation capability of the system to
unexpected situation occurring due to the dynamism of
the agent interactions and the environment.

4.5 Mechanisms based on generic
architecture

A particular class of self-organisation mechanisms is
based on generic reference architectures or meta-models
of the agents’ organisation which are instantiated and
subsequently dynamically modified as needed according
to the requirements of the particular application.

Examples of reference architectures are the mediator
architecture proposed by Maturana and Norrie [42] and
the PROSA [8] architecture which are both based on the
holonic hierarchy model. The holonic hierarchy model
involves structural patterns that form nested hierarchies
of self-replicating structures named holarchies [37] . The
elements of holonic systems are referred to with the term
holon which is a combination of the Greek word holos,
meaning “whole”, with the suffix “on” meaning part as
in proton or neuron.

A common aspect in reference architectures is that
they involve characteristic agent types from which the
basic agents of a holonic organisation are derived. For
example, the mediator reference architecture is based on

the mediator agent type. In PROSA [8] the holonic
organisation consists out of three types of basic holons
⎯ order holons, product holons, and resource holons.
When agents are organised according to the holonic
metaphor they participate in holons forming holonic
structures. Self-organisation then refers to altering the
holonic hierarchy following perturbations of the agent
environment using a known decision making technique
such as fuzzy-evolutionary reasoning [59] .

Examples of approaches based on meta-models and
architectural reflection are presented in [22] and [54] . In
such approaches, the current system architecture
organisation is described as a particular configuration of
a generic architectural meta-model which provides the
architectural components and their features and also an
associated set of architectural constraints that define how
and when to safely reconfigure the software architecture.

The meta-model configuration can be inspected and
modified at run-time. Modifications of the architecture
meta-model result in modifications of the software
architecture itself, and the architecture is therefore
reflective. Such dynamic modifications can take place
either automatically, as is the case in [22] or after user
intervention as is done in [54] . The common technique
for representing such architectural meta-models is as a
typed, directed configuration graph.

5 Strengths and Limits
Mechanisms based on direct interactions have the

significant advantage that they enable the design of specific
robust self-organised behaviours with exactly known
outcomes. However, as mentioned in [64] these approaches
are needed only to a limited number of applications. The
reason is that only simple global equilibrium states (or
patterns of activity) that can be modelled in simple linear
terms can be achieved. As a result when more complex
behaviour involving non-linear interactions is needed then
either too many restrictions for the system operation need to
be made or direct mechanisms cannot be applied.

The mechanisms based on stigmergy have additional
advantages. Firstly, they enable increased reusability since
they make possible to reuse the strengths of known self-
organisation mechanisms from biology to build self-
organising software. Secondly, once modelling and
experimentation for the purposes of calibration has been
carried out, the simulation models can be the basis for the
actual implementation, reducing thus development time and
resources required and hence facilitating development.
Furthermore, the simple local behaviours they are based on
are quite easy to implement, resulting in increased ease of
programming. Furthermore, the multi-solution capability of
these mechanisms is one of their strengths since it increases
their robustness. Furthermore, although suboptimal
solutions are more likely to occur, the effectiveness of these
mechanisms is relatively high compared to their low
development cost.

The mechanisms based on cooperation behaviour,
enable to treat applications with continuous or
discontinuous global behaviour. The bottom-up design
simplifies also the development and the resulting systems

SELF-ORGANISATION AND EMERGENCE... Informatica 30 (2006) 45–54 51

are robust, because adaptive. For instance, the AMAS
theory guarantees that the system only adapts its
behaviour to be cooperative with its environment and to
satisfy it. The difficulty lies in the exhaustive list of all
the non cooperative situations an agent can be faced on.
Nevertheless, this is always theoretically feasible because
the number of non cooperative situations related to the
agent skills is enumerable.

However there are also disadvantages which are
essentially related with harnessing emergent behaviour.
Firstly, it is currently not possible to effectively control the
behaviour of such systems. As a result it is common for
undesired emergence states to occur [47] . Furthermore,
there can be cases where specific global states are required
to emerge, such as the positions of robot players in a
football game and hence the many possible solutions offered
by such mechanisms can be a problem. A relevant case is
when a global solution has emerged and then it is only
desirable to maintain it via self-organisation and not
converging to another one.

The rest of the mechanisms have similar limitations. An
additional strength of mechanisms based on adaptive
architectures and meta-mechanisms is that modelling is
done using agent-oriented software engineering terms which
increases ease of understanding by software designers – in
contrast to applying a model from another discipline which
would require them to obtain the necessary knowledge to
master the terminology and the concepts involved. However
this comes to the expense of increased difficulty in
modelling global emergent behaviour.

6 Problems and Challenges
From a multi-agent systems development point of

view, the central question is: how to program single
agents so that, when taken as a whole, they self-organise.
In the particular case of multi-agent systems, the interest
and the difficulty lies in having both self-organisation
and emergent properties, mainly emergent functionality
that arises from individual simple tasks performed by the
agents. Therefore, the engineering of self-organising
applications needs means to define a global goal, and to
design local behaviours so that the global behaviour
emerges. This is difficult, because the global goal is not
predictable as the sum or a function of the local goals.
Consequently, the verification task turns out to be an
arduous exercise, if not realised through simulation.

Traditional software engineering techniques are
insufficient, since they are based on interfaces fixed at
design time, or well established ontology. As for current
methodologies, they only make it possible to define a
global behaviour when it is a function of the behaviour of
the various parts.

Traditional practices in multi-agent systems
introduce basic techniques for autonomously interacting
or retrieving information, such as agent coordination,
service description, or ontology [6] . However, these
techniques rely on pre-programmed interaction patterns,
preventing adaptation to unexpected environmental
changes. Current engineering practices, which directly
address self-organisation, consist in designing distributed
algorithms taking inspiration from natural mechanisms,

both bio-inspired and socially-inspired. Some agent-
oriented methodologies such as ADELFE [51] provide
to designer means to design self-organising systems.
More recently, specific electronic interaction
mechanisms, non-naturally inspired, are being defined,
and middleware technology developed, that will help the
development of self-organising applications. However,
verification and whole engineering methods remain open
issues.

Currently, it is necessary to find means to “control”
emergence to use it to solve problems. It is antinomic to
speak about emergence and about control on the
emergence. But, when designing artificial systems, it is
necessary to have operational definition and tools to
enable such systems to produce the wanted emergent
phenomenon.

In addition the environment plays an important role
both as a coordination media and as source of changes
and adaptation for the agents. The environment, its
engineering and its role in self-organising systems must
be well understood and not be underestimated. For a
deeper discussion on environments, the interested reader
may refer to [63] .

A research axis will be to find new principles,
theories, models, mechanisms and methodologies to
engineer self-organising systems with or without
emergent phenomena. In this perspective it is important
to be aware of the differences, and to distinguish
solutions that tackle self-organisation issues only
(without intended causal emergence); emergent issues
only (without self-organisation), and solutions that intend
to consider both cases in the resulting system. However,
in any cases, this is a delicate problem, in the sense that
unintended emergent phenomenon that have a causal
effect on the system may always arise.

The growing complexity of applications needs
solutions that favour autonomous, robust and adaptive
systems. Natural systems must be an inspiration sources
but we have to devise really new techniques, mechanisms
to design self-organisation and emergent phenomenon.
This new wave of systems can be called neo-computation
and will be useful for designing applications in the
domains such as autonomic computing, pervasive and
ubiquitous computing.

7 Conclusion
Self-organisation and emergence interest more and

more the community of computer scientists and in
particular the MAS developers. This craze is due to the
fact that self-organisation enables to tackle a new field of
applications and that multi-agent systems are well
adapted to implement self-organisation.

The paper aims are twofold: it clarifies these two
concepts and proposes operational definitions; it then
gives an overview of researches on self-organising MAS
and emergent phenomena produced by MAS. The
different mechanisms studied can be grouped into five
families: direct mechanisms, characterized by simple
principle of functioning in the agents and direct

52 Informatica 30 (2006) 45–54 G. Di M. Serugendo et al.

communication; mechanisms based on stigmergy, which
use indirect interactions between agents and where the
perceptions reinforce some agent actions; reinforcement
mechanisms, which enable designing adaptive agents that
change their roles or their behaviour in runtime;
cooperative attitude of agents; and predefined
architecture of the system. The paper ends in proposing
some research axis such as finding new mechanisms,
developing methods to design self-organising systems,
providing means to control the global behaviour of the
system, or proving convergence.

8 Acknowledgement
This work is partly supported by the Swiss NSF

grant 200020-105476/1 and Agentlink III.

References
[1] S. Ali R. Zimmer and C. Elstob. The question

concerning emergence: implication for artificiality.
In D.M. Dubois (Ed.), First Computing
Anticipatory Systems Conference (CASYS’97),
CHAOS, Liège, Belgium, 1998.

[2] O. Babaoglu, H. Meling and A. Montresor. Anthill:
a framework for the development of agent-based
peer-to-peer systems. In Proceedings of the 22th
International Conference on Distributed Computing
Systems (ICDCS '02), pp. 15-22, IEEE Computer
Society, Los Alamitos, CA, USA, 2002.

[3] Y. Bar-Yam. Dynamics of Complex Systems.
Perseus Books, Cambridge, MA, 1997.

[4] E. R. Berlekamp, J. H. Conway, and R. K. Guy.
Winning Ways for your Mathematical Plays,
Volume 2, 2nd edition. AK Peters, Ltd., Wellesley,
MA, 2001.

[5] C. Bernon, V. Chevrier, V. Hilaire, P. Marrow,
Applications of self-organising multi-agent
systems: an initial framework of comparison.
Informatica, Ljubljana, Slovenia. In press, 2005.

[6] C. Bernon, M. Cossentino, J. Pavon. An Overview
of Current Trends in European AOSE Research.
Informatica, Ljubljana, Slovenia. In press, 2005.

[7] E. Bonabeau, M. Dorigo, and G. Théraulaz. Swarm
Intelligence: From Natural to Artificial Systems.
Santa Fe Institute Studies on the Sciences of
Complexity. Oxford University Press, New York,
NY, USA, 1999.

[8] L Bongaerts. Integration of Scheduling and Control
in Holonic Manufacturing Systems, PhD Thesis,
Katholieke Universiteit Leuven, 1998

[9] R. Bordini et al. A survey on languages and
platforms for MAS implementation. Informatica,
Ljubljana, Slovenia. In press, 2005.

[10] C. Bourjot, V. Chevrier, and V. Thomas. A new
swarm mechanism based on social spiders colonies:
from web weaving to region detection. Web
Intelligence and Agent Systems, 1(1): 47-64, IOS
Press, Amsterdam, The Netherlands, 2003.

[11] S. Brueckner and H.V. Parunak. Self-organising
MANET management. Engineering Self-

Organising Applications Systems. G. Di Marzo
Serugendo et al. (Eds), Lecture Notes in Artificial
Intelligence, volume 2977, pp. 20-35. Springer-
Verlag, Berlin, 2004.

[12] S. Camazine, J.-L. Deneubourg, R. F. Nigel, J.
Sneyd, G. Téraulaz, and E. Bonabeau. Self-
Organisation in Biological System. Princeton
Studies in Complexity. Princeton University Press,
Princeton, NJ, USA, 2001.

[13] D. Capera, J-P. Georgé, M-P. Gleizes, P. Glize.
Emergence of organisations, emergence of
functions. In AISB’03 symposium on Adaptive
Agents and Multi-Agent Systems, pp 103 – 108, D.
Kudenko, D. Kazakov, and E. Alonso (Eds),
University of Wales, Aberystwyth, 2003

[14] D. Capera, J. P. Georgé, M.-P. Gleizes, and P.
Glize. The AMAS theory for complex problem
solving based on self-organising cooperative agents.
International Workshop on Theory and Practice of
Open Computational Systems (TAPOCS). Twelfth
International IEEE International Workshops on
Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE-2003), pp.
383-388. IEEE Computer Society Press, Los
Alamitos, CA, 2003.

[15] N. S. Contractor and D. R. Seibold. Theoretical
frameworks for the study of structuring processes in
group decision support system - adaptive
structuration theory and self-organising systems
theory. Human Communication Research,
19(4):528-563, 1993.

[16] J-L., Deneubourg, S. Goss, N. Franks, A. Sendova-
Franks, C. Detrain, L. Chrétien. The dynamics of
collective sorting robot-like ants and ant-like robots
 - Simulation of animal behaviour. Proceedings of
the first international conference on simulation of
adaptive behaviour. J.A. Meyer and S. Wilson
(Eds), pp. 356-363, MIT Press, Cambridge, MA,
USA, 1991.

[17] T. De Wolf and T. Holvoet. Adaptive behaviour
based on evolving thresholds with feedback.
Proceedings of the AISB’03 Symposium on
Adaptive Agents and Multiagent Systems, pp. 91-96,
D. Kudenko, D. Kazakov, and E. Alonso (Eds.),
University of Wales, Aberystwyth, 2003.

[18] T. De Wolf and T. Holvoet. Emergence and self-
organisation: a statement of similarities and
differences. Engineering Self-Organising Systems.
S. Brueckner et al. (Eds), Lecture Notes in Artificial
Intelligence, volume 3464, pp. 1-15, Springer-
Verlag, Berlin, 2005.

[19] G. Di Marzo Serugendo et al. Self-organising
applications: paradigms and applications.
Engineering Self-Organising Systems. G. Di Marzo
Serugendo et al. (Eds), Lecture Notes in Artificial
Intelligence, volume 2977, pp. 1-19. Springer-
Verlag, Berlin, 2004.

[20] G. Di Marzo Serugendo, A. Karageorgos, O. F.
Rana, and F. Zambonelli (Eds). Engineering Self-
Organising Systems. Lecture Notes in Artificial

SELF-ORGANISATION AND EMERGENCE... Informatica 30 (2006) 45–54 53

Intelligence, volume 2977, Springer-Verlag, Berlin,
2004.

[21] G. Di Marzo Serugendo, M.-P. Gleizes, and A.
Karageorgos. AgentLink First Technical Forum
Group Self-Organisation in Multi-Agent Systems,
AgentLink Newsletter, Issue 16, ISSN 1465-3842,
pp. 23-24, 2004.

[22] J. Dowling and V. Cahill. The K-Component
Architecture Meta-Model for Self-Adaptive
Software. Proceedings of Reflection 2001. Lecture
Notes in Computer Science, volume 2192, pp. 81-
88. Springer-Verlag, Berlin, 2001.

[23] B. Edmonds. Using the experimental method to
produce reliable self-organised systems. In
Engineering Self-Organising Systems. S. Brueckner
et al. (Eds), Lecture Notes in Artificial Intelligence,
volume 3464, pp. 84-99. Springer-Verlag, Berlin,
2005.

[24] S. Forrest. Emergent computation: self-organising,
collective, and cooperative phenomena in natural
and artificial computing network. Proceedings of
the Ninth annual CLNS conference, 1990.

[25] N. Foukia. IDReAM: Intrusion Detection and
Response executed with Agent Mobility. The
International Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS’05), pp 264-270,
Utrecht, The Netherlands, 2005.

[26] P. Glansdorff and I. Prigogine. Thermodynamic
study of Structure, Stability and Fluctuations.
Wiley, 1971.

[27] M.-P. Gleizes, V. Camps, and P. Glize. A theory of
emergent computation based on cooperative self-
organisation for adaptive artificial systems. Fourth
European Congress of Systems Science. Valencia,
1999.

[28] J. Goldstein. Emergence as a construct: history and
issues. Emergence 1(1):49-72, ISCE Publishing,
Mansfield, MA, USA 1999.

[29] P. Grassé. La reconstruction du nid et les
interactions inter-individuelles chez les
bellicositermes natalenis et cubitermes sp. La
théorie de la stigmergie: essai d'interprétation des
termites constructeurs. Insectes Sociaux, 6:41-83,
1959.

[30] S. Hassas, G. Di Marzo Serugendo, A.
Karageorgos, C. Castelfranchi. Self-organising
mechanisms from social and business/economics
approaches, Informatica, Ljubljana, Slovenia. In
press, 2005.

[31] J.H. Holland. Emergence – from order to chaos.
Addison-Wesley, Boston, MA, 1997.

[32] O. Holland and C. Melhuis. Stigmergy, self-
organisation, and sorting in collective robotics.
Artificial Life, 5(2):173-202. MIT Press,
Cambridge, MA, USA, 1999.

[33] T. Ishida, L. Gasser, and M. Yoko. Organisation
self-design in distributed production systems. IEEE
Transactions on Knowledge and Data Engineering,
4(2): 123-134, IEEE Computer Society, Los
Alamitos, CA, USA, 1992.

[34] P. Jiang and Q. Mair. A self-organisational
management network based adaptive resonance
theory. Agent Technologies, Infrastructures, Tools,
and Applications for e-Services. Kowalczyk et al.
(Eds), Lecture Notes in Artificial Intelligence,
volume 2592, pp. 211-225. Springer-Verlag, Berlin,
2003.

[35] H. Karuna P. Valckenaers, B. Saint-Germain, P.
Verstraete, C. B. Zamfirescu, H. Van Brussels,
Emergent Forecasting using a stigmergy approach
in manufacturing coordination and control.
Engineering Self-Organising Systems. S. Brueckner
et al. (Eds), Lecture Notes in Artificial Intelligence,
volume 3464, pp. 210-226, Springer-Verlag, Berlin,
2005.

[36] S. A. Kauffman, S.A. and S. Johnsen. Coevolution
of the edge of chaos: coupled fitness landscapes,
poised states, and coevolutionary avalanches. C.G.
Langton et al. (eds.), Artificial Life II, Proceedings
Volume X in the Santa Fe Institute Studies in the
Sciences of Complexity, Addison-Wesley, Reading,
MA, 1992.

[37] A. Koestler. The Ghost in the Machine, Reprint
edition, Penguin, East Rutherford, NJ, USA,1990.

[38] J. Liu, X. Jin, and K. C. Tsui. Autonomy oriented
computing (AOC): formulating computational
systems with autonomous components. IEEE
Transactions on Systems, Man, and Cybernetics,
Part A: Systems and Humans, In press, IEEE
Computer Society, Los Alamitos, CA, USA, 2005.

[39] P. Maes. Modeling Adaptive Autonomous Agents.
C.G. Langton et al. (Eds), Artificial Life 1(1-2):135-
162, MIT Press, Cambridge, MA, 1994.

[40] M. Mamei, M. Vasirani, and F. Zambonelli. Self-
organising spatial shapes in mobile particles: the
TOTA approach. Engineering Self-Organising
System. S. Brueckner et al. (Eds), Lecture Notes in
Artificial Intelligence, volume 3464, pp. 138-153.
Springer-Verlag, Berlin, 2005.

[41] J-P. Mano, C. Bourjot, G. Leopardo, P. Glize. Bio-
inspired mechanisms for artificial self-organised
systems. Informatica, Ljubljana, Slovenia. In press,
2005.

[42] F. Maturana and D. H. Norrie. Multi-agent mediator
architecture for distributed manufacturing. Journal
of Intelligent Manufacturing, 7:257-270. Kluwer
Academic Publishers, Amsterdam, The
Netherlands. 1996.

[43] A. Montresor, H. Meling and O. Babaoglu. Messor:
load-balancing through a swarm of autonomous
agents. G. Moro and M. Koubarakis (Eds.) Agents
and Peer-to-Peer Computing, Lecture Notes in
Artificial Intelligence, volume 2530, pp. 125-137.
Springer-Verlag, Berlin 2003.

[44] J.-P. Müller. Emergence of Collective Behaviour
and Problem Solving. Engineering Societies in the
Agents World - 4th International Workshop (ESAW
2003), A. Omicini, P. Petta, and J. Pitt (Eds),
Lecture Notes in Artificial Intelligence, volume
3071, pp. 1-20. Springer-Verlag, Berlin, 2004.

54 Informatica 30 (2006) 45–54 G. Di M. Serugendo et al.

[45] H. V. Parunak and R. S. Vanderbok. Managing
emergent behaviour in distributed control systems.
Proceedings of ISA Tech '97, Instrument Society of
America, 1997.

[46] H. V. Parunak, J. Sauter, and S. Clark. Toward the
specification and design of industrial synthetic
ecosystems, Intelligent Agents IV: Agent Theories,
Architectures, and Languages, Lecture Notes in
Artificial Intelligence, volume 1365, pp. 45-59.
Springer-Verlag, Berlin, 1998.

[47] H. V. Parunak and S. Brueckner, Entropy and Self-
Organisation in Multi-Agent Systems. In
International Conference on Autonomous Agents
(Agents'01), 124-130. ACM Press, New York, NY,
USA, 2001.

[48] H. V. Parunak, S. Brueckner, J.A. Sauter: Digital
pheromone mechanisms for coordination of
unmanned vehicles. International Conference on
Autonomous Agents and Multi-Agent Systems
(AAMAS’02), pp. 449-450, ACM Press, New York,
NY, USA, 2002.

[49] H. E. Pattison, D. D. Corkill, and V. R. Lesser.
Instantiating descriptions of organisational
structures. Distributed Artificial Intelligence, pp.
59-96. M. N. Huhns (Ed.) Pitman, London, 1987

[50] G. Picard, M-P. Gleizes. An agent architecture to
design self-organising collectives: principles and
application. Proceedings of the AISB'02 Symposium
on Adaptive Agents and Multi-Agent Systems,
Lecture Notes in Artificial Intelligence, volume
2636, pp. 141-158. Springer-Verlag, Berlin, 2002.

[51] G. Picard, M-P. Gleizes. The ADELFE
methodology - designing adaptive cooperative
multi-agent systems. F. Bergenti, M-P. Gleizes, and
F. Zambonelli (Eds). Methodologies and Software
Engineering for Agent Systems. The Agent-Oriented
Software Engineering Handbook, pp. 57-176,
Kluwer Publishing, Amsterdam, The Netherlands,
2004.

[52] G. Picard, C. Bernon, M-P. Gleizes. ETTO:
emergent timetabling by cooperative self-
organisation. Proceedings of the third International
Workshop on Engineering Self-Organising
Applications (ESOA'05), pp. 31-45. Utrecht, The
Netherlands, 2005

[53] G. Poulton, Y. Guo, G. James, P. Valencia, V.
Gerasimov, and J. Li. Directed self-assembly of 2-
dimensional mesoblocks using top-down/bottom-up
design. Engineering Self-Organising Systems. S.
Brueckner et al. (Eds), Lecture Notes in Artificial
Intelligence, Volume 3464, pp. 154-166. Springer-
Verlag, Berlin, 2005.

[54] R. Razavi, J. F. Perrot, and N. Guelfi. Adaptive
modeling: an approach and a method for
implementing adaptive agents. Massively Multi-
Agent Systems I. T. Ishida, L. Gasser, H. Nakashima
(Eds). Lecture Notes in Artificial Intelligence,
volume 3446, pp. 136-148. Springer-Verlag, Berlin,
2005.

[55] A. Reitbauer, A. Battino, A. Karageorgos, N.
Mehandjiev, P. Valckenaers, and B. Saint-Germain.

The MaBE middleware: extending multi-agent
systems to enable open business collaboration. In
6th IFIP International Conference on Information
Technology for Balanced Automation Systems in
Manufacturing and Services (BASYS’04), 2004.

[56] M. Schillo, B. Fley, M. Florian, F. Hillebrandt, and
D. Hinck, Self-Organisation in Multiagent Systems:
From Agent Interaction to Agent Organisation.
Third International Workshop on Modelling
Artificial Societies and Hybrid Organisations
(MASHO), pp. 37-46, 2002.

[57] J. R. Searle. The rediscovery of the mind. MIT
Press, Cambridge, MA, USA, 1992.

[58] D. Servat, J. Leonard, E. Perrier, and J. P. Treuil.
The Rivage project: a new approach for simulating
runoff dynamics. J.Feyen and K.Wiyo, (Eds.)
Modelling of transport processes in soils, pp. 592-
601. Wageningen Press, Leuven, 1999.

[59] M. Ulieru, Emergence of holonic enterprises from
multi-agent systems: a fuzzy evolutionary approach.
Frontiers in Artificial Intelligence and Applications
- Soft Computing Agents, 83: 187-215. IOS Press -
Frontiers in AI and Applications Series,
Amsterdam, The Netherlands, 2002.

[60] M. Ulieru. Adaptive Information Infrastructures for
the e-Society. Engineering Self-Organising Systems
S. Brueckner et al. (Eds), Lecture Notes in Artificial
Intelligence, volume 3464 pp. 32-51. Springer-
Verlag, Berlin, 2005.

[61] F. Varela. Principles of Biological Autonomy.
Elsevier, New York, NY, USA, 1979.

[62] D. Weyns, K. Schelfthout, T. Holvoet, and O.
Glorieux. Role based model for adaptive Agents.
Fourth Symposium on Adaptive Agents and Multi-
agent Systems at the AISB '04 Convention, 2004.

[63] D. Weyns, T. Holvoet. On the role of environments
in multiagent systems. Informatica, Ljubljana,
Slovenia. In press. 2005.

[64] F. Zambonelli, M.-P. Gleizes, M. Mamei, and R.
Tolksdorf. Spray computers: frontiers of self-
organisation for pervasive computing. Second
International Workshop on Theory and Practice of
Open Computational Systems (TAPOCS 2004) in
13th IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative
Enterprises (WETICE'04), pp. 397-402. IEEE
Computer Society, Los Alamitos, CA, USA 2004.

 Informatica 30 (2006) 55–62 55

Bio-inspired Mechanisms for Artificial Self-organised Systems

Mano Jean-Pierre
Irit - Université Paul Sabatier - 118 Route de Narbonne - 31062 Toulouse Cedex – France
E-mail : mano@irit.fr, http://www.irit.fr/SMAC

Bourjot Christine

Loria - 615 rue du Jardin Botanique - 54600 Villers les Nancy - France
E-mail: bourjot@loria.fr, http://webloria.loria.fr/~bourjot/,

Lopardo Gabriel

Agents Research Lab, University of Girona - Campus Montilivi - 17071 Girona – Spain
E-mail: glopardo@eia.udg.es, http://eia.udg.es/arl

Glize Pierre
Irit - Université Paul Sabatier - 118 Route de Narbonne - 31062 Toulouse Cedex – France
E-mail: glize@irit.fr, http://www.irit.fr/SMAC

Keywords: self-organization, stigmergy, reinforcement, cooperation

Received: May 7, 2005

Self-organization is a growing interdisciplinary field of research about a phenomenon that can be
observed in the Universe, in Nature and in social contexts. Research on self-organization tries to
describe and explain forms, complex patterns and behaviours that arise from a collection of entities
without an external organizer. As researchers in artificial systems, our aim is not to mimic self-
organizing phenomena arising in Nature, but to understand and to control underlying mechanisms
allowing desired emergence of forms, complex patterns and behaviours. Rather than attempting to
eliminate such self-organization in artificial systems, we think that this might be deliberately harnessed
in order to reach desirable global properties. In this paper we analyze three forms of self-organization:
stigmergy, reinforcement mechanisms and cooperation. The amplification phenomena founded in
stigmergic process or in reinforcement process are different forms of positive feedbacks that play a
major role in building group activity or social organization. Cooperation is a functional form for self-
organization because of its ability to guide local behaviours in order to obtain a relevant collective one.
For each forms of self-organisation, we present a case study to show how we transposed it to some
artificial systems and then analyse the strengths and weaknesses of such an approach.
Povzetek: Biološke osnove umetnih samo-organizirajočih se sistemov.

1 Introduction
Self-Organization refers to a broad range of pattern-

formation processes in both physical and biological
systems, such as sand grains assembling into rippled
dunes, chemical reactants forming swirling spirals, cells
making up highly structured tissues, and fish joining
together in schools. Concepts and mechanisms relatives
to self-organization in biological systems have been
largely defined and explained in [1]: basic modes of
nonlinear interaction among components as well as
information acquisition and process. In most self-
organised systems in biology nonlinear interactions
involve amplification or cooperation. Complex
behaviours may emerge even though the system is
composed of similar units that follow local rules and
without intervention from external guiding influences.

Computer science is interested in understanding the
underlying principles of self-organization because -like

in nature- the rules specifying interactions among many
artificial system’s components are executed using only
local information, without reference to the global pattern,
which is not easily accessible or possible to be found. For
more developments on self-organization and emergence,
see the overview in [17].
The following three parts concern different mechanisms
of self-organization in either ethology or cellular biology:
stigmergy, reinforcement and cooperation. In each part,
after description of the general principles of the
mechanism, we develop the understanding of a particular
instance, especially for the quite new instances of
stigmergy and reinforcement mechanisms that come
from agent-based simulation models we undertook with
biologists.

Then we present a case study to show how we
transposed it to some artificial systems.

More indeed, in the first part we analyse the
stigmergy mechanism allowing indirect task coordination
and regulation in insects societies or social spiders. This

56 Informatica 30 (2006) 55–62 M. Jean-Pierre et al.

principle is replicated with some changes to be used in
some artificial applications like region detection.

In the second part we present a reinforcement
mechanism together with direct interactions studied in
ethology and how it leads to specialization in groups of
animals. The transposition of these mechanisms concerns
dynamic task allocation in a network.

In the third part we study a cooperation mechanism
observed between cells as well as in animal societies.
This phenomenon is applied in artificial neural networks
in order to produce plasticity and adaptation

In the last part we discuss about strengths and
weaknesses of self-organizing principles in order to
engineer artificial systems.

2 Self-organization Patterns from
Stigmergy Mechanisms

2.1 Stigmergy Mechanisms in Biology
Stigmergy has been defined by the biologist Grassé

[2] to refer to the mechanism by which the termites
coordinate their nest building activities. In stigmergic
labour it is the product of work previously accomplished,
rather than direct communication among nest mates, that
induces the insects to perform additional labour [3]. It
explained how individual builders could act
independently on a structure without direct interactions
or sophisticated communications. The state of the
building is the stimulus, its response is the construction
activity.

So a stigmergic process is a sequence of indirect
stimulus/responses behaviours and contributes to the
coordination between insects through the environment.
Another illustration of how stimergy and self-
organization can be combined into more subtle adaptive
behaviours is recruitment in social insects. Self-organised
trail laying by individual ants is a way of modifying the
environment to communicate with nest mates that follow
such trails. It appears that task performance by some
workers decreases the need for more task performance:
for instance, nest cleaning by some workers reduces the
need for nest cleaning [4], [5]. Therefore, nest mates
communicate to other nest mates by modifying the
environment (cleaning the nest), and nest mates respond
to the modified environment (by not engaging in nest
cleaning); that is stigmergy. Division of labor is another
paradigmatic phenomenon of stigmergy. But by far more
crucial, is how ants form piles of items such as dead
bodies (corpses), larvae, or grains of sand. There again,
stigmergy is at work: ants deposit items at initially
random locations. When other ants perceive deposited
items, they are stimulated to deposit items next to them,
being this type of symmetry clustering organization and
brood sorting a type of self-organization and adaptive
behaviour. There are other types of examples (e.g. prey
collectively transport), yet stigmergy is also present: ants
change the perceived environment of other ants (their
cognitive map, according to Chialvo [6]), and in every
example, the environment serves as a medium of

communication. Finally, stigmergy is often associated
with flexibility: when the environment changes because
of an external perturbation, the insects respond
appropriately to that perturbation, as if it were a
modification of the environment caused by the colony’s
activities. In other words, the colony can collectively
respond to the perturbation with individuals exhibiting
the same behaviour.

What all these examples have in common is that they
show how stigmergy can easily be made operational
because of the simplicity of the behaviours involved.

2.2 Stigmergy Mechanism Under-standing
Dorigo [5] replicated stigmergic principle from ants

colony, including the pheromone trails, to derive
algorithms applied either to static or dynamic
combinatorial optimization problems with applications
on many problems like the traveling salesman problem.
The brood sorting behaviour can be reproduced with
robots, for example, to achieve collective sort [7]. We
replicate another kind of stigmergic mechanism to
perform region detection. We analyse the stigmergy
process involved during the building of web in a species
of social spiders through an agent-based model. This
simulation shows that the mechanism that underlies the
movement of spiders can be expressed as a stigmergic
one where silk and silk attraction play the major role.

The web weaving activity needs two behavioural
items: movement and silk fixing. Items are independent
i.e., a spider-agent (SA) can make these two action types
at the same time: to move to a close stake and to fix a
silk dragline. Furthermore, items are fired stochastically
according to a constant or contextual probability. When
fixed, the dragline provides a new path (the shortest one)
between the current stake and the last on which silk was
fixed (whatever the spider moves were). The probability
to fix the silk is constant over time. When a SA moves, it
can be from the current stake to an adjacent one (the 8
accessible neighbours). Since silk draglines are fixed
between stakes, they offer new directions of movement.
When facing such a situation, the SA has to choose
whether to follow a dragline or to move to an adjacent
stake. The probability for a SA to move to a given stake
depends on the type of access. In the neighborhood, the
probability is constant.
When following a silk dragline, the probability is
proportional to the number of silk draglines and to the
silk attraction. This mechanism that underlies the
movement can be expressed as a stigmergic process.
Studies [18] demonstrated the key role of the silk
attraction: when too low, no web is built and all available
space is used; when too strong, SA were trapped in their
own silk and no collective weaving occurred; when well
chosen, we showed that the web size is related to the
attraction: the more the attraction is, the smaller the
covered surface is.
The behaviour of the colony of spider-agents can be
interpreted as much as:
• A stigmergy pattern a collective mechanism for

space exploration which is characterized by limited

BIO-INSPIRED MECHANISMS FOR... Informatica 30 (2006) 55–62 57

perception and indirect interaction, the environment
(the web woven by spiders) being the medium of
interaction,

• as a self-organised pattern with some regulation
performed without explicit coordination, the size of
the explored space (the size of the web) being related
to the silk attraction factor.

2.3 Region Detection by Stigmergy
This stigmergy process has been transposed to region

detection. The problem is to extract a region from an
image. A region must be a connected set of pixels with
homogeneous radiometric characteristics. In our case, all
the pixels of a region should have the same grey level,
more or less a given tolerance. From a given picture, our
model produces an intermediate structure constituted by
the woven collective web, interpreted later to deduce
region by considering the pixels on which the web is
fixed. It requires an exploration of a space that has to be
restricted to a subset of its elements (the pixels of the
region).

A grey level image is the environment in which
agents will evolve; stakes correspond to pixels and the
height to their grey level. The behavioural items of
agents are similar to SA. The movement remains
unchanged and silk fixing now depends on the context
and, thus, is related to the grey level of the region to
detect. The interaction principle is based on stigmergy.
To avoid different regions of the same grey level being
woven on a unique web a third behavioural item was
added to make an agent probabilistically return back to
the web [19]. All agents have the same features
determined by four parameters. Two parameters govern
the movements of the agents and thus the exploration
process. The two last ones are related to the selection of
pixels, thus determining the relevance of the extracted
region. Because the process is based on the stigmergy
ensured by the silk draglines laid down in the
environment, selection and movement are tied. But we
could initially specify the influence of silk attraction
factor as shown in figure 1: when it is high (the left
picture) the five agents construct five different webs and
do not explore the entire region. When it is low (the right
picture) the region covered is bigger and corresponds to a
collective web. Thus, when well chosen the parameters
for stigmergic process allow decentralised coordination.

Fig.1. Influence of silk-attraction factor on webs for detection region

3 Self-Organization from Reinfor-
cement Mechanisms

3.1 Reinforcement Mechanisms in Biology
Reinforcement has been discussed as a mechanism

that shapes the differentiation between specialists and the
remaining work force. The concept of reinforcement
proposes that the impact of a single worker on stimulus
intensity increases with experience. This can be achieved
in one of two ways: first, the efficiency of a worker may
increase with experience, e.g. because individuals learn
to perform a task. Second, response threshold for task
associated stimuli may decrease with experience in
performing the task [8]. Learning and increase in task
efficiency have often been considered as the main reason
for the efficiency of division of labor [9], [10]. Then,
reinforcement may play an important role in
specializations [11].

Reinforcement learning is a synonym of learning by
interaction. During learning, the adaptive system tries
some actions (i.e., output values) on its environment,
then, it is reinforced by receiving a scalar evaluation (the
reward) of its actions. The reinforcement learning
algorithms selectively retain the outputs that maximize
the received reward over time.

Reinforcement mechanisms like increase in task
efficiency assiociated with direct interactions in biology
conducts to social organization, specifically dominances
hierarchies [12]. For example, dominances hierarchies
are obtained by simple model based on positive
feedback. Two individuals enter in a contest. An
individual that wins or loses the contest is more likely to
win or lose subsequent contests. The reinforcement
mechanism amplifies small initial differences between
individuals.

3.2 Reinforcement Mechanism Under-
standing

The problem of reinforcement learning is knowing
what to reinforce. Motivation cannot rely on a blind
mechanism that strengthens or weakens connections
based on their temporal proximity to pain or pleasure
stimuli. While temporal difference reinforcement may
work well enough in small systems, it becomes
prohibitive in large systems.

The second reinforcement mechanism is relevant
when we want to realize a distributed collective task
implying a lot of agents. As an example, an elaborate
self-organized phenomenon is observed in rats’ groups in
the diving-for-food situation. This situation is a complex
social task in which, for a group of six rats, the food
accessibility decreases by progressive immersion of its
only path. This experimental schedule leads to the
emergence of a specialization in the group of rats, in two
profiles: supplier and non-carrier rat. The non-carrier
animals never dive, but get food only by stealing it from
the suppliers after fight. The supplier rats dive, bring the

58 Informatica 30 (2006) 55–62 M. Jean-Pierre et al.

food back to the cage and cannot defend the food they
carried.

An agent based simulation shows that this social
differentiation is possible from a set of interacting
individuals without any social cognition. It implements
two reinforcement mechanisms: when the action of
diving is performed the anxiety of the rat is reduced
according adaptive response thresholds models [8].
Whether the action of fighting is successful or not, the
strength of the winner is reinforced whereas the strength
of the looser is decreased. Alterations of strength are
computed according to dominance formula presented in
[12]. This specialization is stable, robust and presents
adaptive properties like adaptation to the number of
agents or adaptation to external conditions [13]. For
example, the ratio between carrier agents and supplier
agents’ number evolves according to the energetic supply
coefficient of a pellet.

3.3 Task Allocation in a Computer Network
by Reinforcement Mechanism

The general framework to transpose these
mechanisms consists in a dynamic task allocation
problem among machines, connected together in a
network. Initially the tasks are available on a central
server. The machines can acquire the data by accessing
directly the server or by ’attacking’ each other. As some
policies are put on the server in order to avoid crash,
some agents can easily access the server while other not.
The aim of the self organized process is to reduce the
exploitation of the network between the machines and
the server by means of specialization among machines. It
corresponds to dynamically (and efficiently) allocate
tasks on an unknown set of machines by making some of
them accessing directly the server (because it is easier for
them) while others acquire data indirectly (as shown in
figure 2).

Figure 2. Expected organization for task allocation problem in network

We developed a prototype at applicative layer of the

network that assumes existing communication
architecture and that only deals with the data processing
including execution and redirection. The first tests have
been performed with a simulator including the server, the
machines and the network. We got some encouraging
results like specialization appearance and some

improvements in processing time. These results are today
obtained with only specific instances of the problem and
with hand tuned parameters.

4 Functional Self-Organization from
Cooperative Mechanisms

4.1 Cooperative Mechanisms in Biology
We analyse cooperation in complex biological

systems trough four main kinds of mechanisms:
parallelism, coordination, specialization and recruitment.
Those mechanisms are presented according to the
interaction complexity between parts of the biological
system.
• Parallelism defines the more basic level of

cooperation. When different elements of the system
are independent in their activities, but share a
common goal, they make up a parallel system.
Polistes Wasps’ nest construction [20] is a good
example of parallel activity: wasp workers are
interchangeable; they share a same goal that is
building the biggest nets as quickly as possible.
Efficiency of such a system depends mainly on the
number of constitutive elements.

• Coordination is observable when at least two
elements of the biological system have to act
together or simultaneously in order to perform a
particular task impossible to achieve by an alone
agent. A demonstrative experience is provided when
ants have to act collectively to take a straw off the
entrance of their nest. Theoretically, at least two
ants are required: when the first ant has lifted up the
straw of a few millimetres, the second ant catch the
straw lower than the first ant and lift it up on her
turn. Because of the lack of intentionality in ants,
this example can be discussed as a singularity of
parallel system. So, another kind of coordination
appears when army ants make bridges with they
bodies to smooth the trail between sources of food
and their nest.

• Specialization increases the heterogeneity of the
biological system, addressing a particular task or
function to some elements of this system. In fact
system’s activity is improved thanks to some
elements that either become more efficient in a
subset of activities that was already performed or
become able to perform new kinds of tasks. The best
example in cellular streams [21] is the specialisation
of cells which at the simplest level favours a branch
of their metabolic activity to high rate to store and
produce metabolites for other cells or for the whole
organism. At a more complex level, cells can
specialize in modifying their structure and develop
particular abilities like production of antibodies in
immunity cells, gas transportation in blood red
corpuscles, chemical energy storage in liver cells, or
production and propagation of spikes in neurons.

• Recruitment and mass effect occurring in foraging
or in colony aggregation, present a real interest

BIO-INSPIRED MECHANISMS FOR... Informatica 30 (2006) 55–62 59

when collective behaviours improve single ones and
beyond trigger events that a few elements wouldn’t
have produced. This part of cooperative
mechanisms clearly includes reinforcement
mechanisms discussed in part 3.1. Many examples
in nature illustrate mass effect like temperature
regulation in penguin colonies, improvement of
predator detection in sheep flock, or reaching locally
a threshold concentration in trophic factor during
embryogenesis that will trigger specialization of
cells exposed to this threshold. Regulation is the
inherent counterpart of recruitment, and prevents the
biological system from being trapped in a single
activity before its exhaustion.

4.2 Cooperation Mechanism Under-
standing

Self-organization concerns always several entities
that act, from an external point of view, as a coherent
collective. Beyond self-organization, cooperative self-
organization constrains more precisely the behaviour of
these entities in order to make their interaction reach
most of the time, a state of cooperation. From the point
of view of the entity the three phases of her functioning
are concerned by cooperation:
• At the perception phase the signal received by an

entity from its environment or from a second entity
(social environment) must not be misunderstood or
ambiguous .

• At the processing phase, the information contained
in the signal must not be unproductiveness or
inability.

• At the action phase, the decision of the entity
(transformation of the world or even message
sending) must not be useless, or implying some
concurrency or conflict in its environment.

This is the basic cooperation principle inspiring the
AMAS theory [14], which will be used, in many
applications such as the following adaptive neural
network.

4.3 Cooperative Artificial Neural Network
Biological neural structures may be considered as the

combined result of self-organizing cellular activities and
of the following of many strong planned processes. Such
a system is the result of the permanent reorganization of
its parts upon among others, the pressure of its
environment.

The concept of cooperative neuro-agent (CNA) can
be detailed in three functional subsets that justify the
neuro-agent term [15]. CNAs have the usual transfer
function of an artificial neuron, have also a vegetative
behaviour and have moreover a set of cooperative social
behaviours according to the laws of the AMAS theory.
The role of vegetative and social behaviours accounts
mainly for balancing the lack of an initial topology in the
network.

Cooperative behaviour when addressing to CNAs,
means that CNAs help each other to find not only their

right place in the network but also their right function in
the network. Back propagation is cooperative as it helps
CNAs to find their function but is not sufficient to
position them in the network. So we can distinguish two
other sets of cooperative behaviours. The first includes
pro-cooperation, for example when a CNA informs one
of its neighbours that it is searching accountancies, with
the rest of its neighborhood (including virtual links). The
last set regroups the behaviours appearing to resolve
some particular potential and well defined troubles: the
non cooperative situations.

CNA Coordination. The objective of a CNA is to be
useful to the others by having a coherent activity and
supplying them with relevant information. So, learning
consists in reinforcing weights according to correlated
temporal activities of inputs. A CNA estimates the
rightness of its activation by interpreting messages from
its outputs. Following the mean error, a CNA adjusts the
weights of the concerned inputs. As in a back
propagation mechanism, a CNA informs in turn its inputs
of the error it has detected.

That means that a CNA modifies its functioning to
fulfil other CNAs it is working with. So at a given time
the behaviour of a CNA is the result of its code
expression under the regulation of its local environment.

CNA Specialization. A CNA realizes a positive
integration of the information carried through incoming
links, and then this weighted sum is transformed using a
non-linear transfer function into a positive integer value.
A CNA can also use an inhibitory input that nullifies the
transferred value.

When the coordination process adapts insufficiently
its output, a CNA modifies its transfer function. Thus we
can observe, at the collective level, clusters in which
neuro-agents have a similar transfer function. Moreover,
a CNA can be used as activator or inhibitor to others.
Without any predefined role, some CNAs tend to be used
preferably (but not exclusively) as inhibitors.

CNA Recruitment. If a CNA keeps on receiving
error messages that it cannot satisfy, it triggers an
adaptation process of the network structure. We call this
process vegetative behaviour, as the CNA can determine
by itself whether it has to proliferate or search for new
inputs, or if finally it has to disappear in an apoptosis-like
mechanism.

This vegetative behaviour grants the dynamics and
the self-organization of the network. That is why the
learning stage begins with a not connected network
where only inputs and outputs of the future network are
created. The mother CNA provides all the required
instances, which are an exact copy of it. Nevertheless,
the basic transfer function of the mother cell is adjusted
in each individual CNA in order to find the best
cooperative behaviour in accordance with its
neighbourhood.

Emergent Collective Behaviour. A CNA network is
initialized with only not connected CNAs located at the
interfaces (input and output of the network). The
behaviour of CNAs only depends on the local perception
CNAs get about the system, and finally there is no
imposed pattern which supervises the organization of the

60 Informatica 30 (2006) 55–62 M. Jean-Pierre et al.

system. Based on local non-cooperative criteria of neuro-
agents, the system adjusts its function by reorganizing its
parts. So the learning of the system globally results from
population growth and from neuro-agents adaptation
(weight adjustments, transfer function regulation, search
and disappearance of connections).

The simple test case of learning a XOR logical
function illustrates perfectly the different aspects of
cooperation in a neural network. The initial step requires
two inputs and one output as shell of the future network;
that means 3 CNAs. Obviously they are not sufficient for
computing a XOR function, so they have to recruit at
least a fourth CNA which will inhibit the output of the
network when both inputs are activated. In the figure 3
we can distinguish a first period of proliferations that do
not improve the global learning performance, but give
the network with the ability (in terms of neural
population) of realizing the right function. In a second
period, each CNA specialises itself in an integrator and
coordinates the information flow between them by
adjusting weights until outputs of the network do not
produce errors anymore. Useless CNAs are eliminated.

Figure 3 : Graph of the global error of a network learning a XOR

function

5 Strenghts and Weaknesses of Self-
organizing Mechanisms

5.1 Analysis of the Case Studies
The first experiments we undertook in region

detection demonstrate the potential of the transposition of
spiders-inspired self-organised mechanisms. As
mentioned by Bonabeau [4], stigmergy is a promising
first step to design groups of artificial agents which solve
problems: replacing coordination (and possibly some
hierarchy) through direct communications by indirect
interactions is appealing if one wishes to design simple
agents and reduce communication among agents.
Flexibility to perturbation is priceless: it means that the
agents can respond to a perturbation without being
reprogrammed to deal with that particular instability.
However a major drawback has to be solved in order to
produce a real application of detection region: parameters
are until now empirically adjusted and we also have to
determine initial conditions: the numbers of agents and

their initial position. The right number of agents could be
automatically adjusted by using for example a stimergic
mechanism from adaptive recruitment behaviours in
social insects.
Some results for dynamic task allocation in a network
have been obtained by transposing the model of
specialization in rats group. We show that apparition of
some social pattern is possible from a set of interacting
individuals without any social cognition and no direct
communication. But these results can only be obtained
by trial-error experiments in an iterative process since
exact behaviour of these systems could only be known a
posteriori . In order to understand influences of either the
parameters or the combinations of parameters,
differential analysis is required and a lot of experiments
are carried out. One experiment must be proceed a lot of
times in order to be statistically valid. So it is useful to
store a full and detailed review of preceding experiments
and often to analyse data from previous experiment with
multiple other views.
Cooperative neuro-agent network is today evaluated on
logical functions, but is also applied to model the
migration of leatherback turtles. Even working rightly on
these cases, tuning the cooperative local behaviour in
each entity of a system was difficult in order to obtain
good specialization, coordination and recruitment
behaviours. The result is mainly a very generic approach
for artificial neural networks and an efficient search
solution in the global space problem avoiding
experimentally local minima.

5.2 Tools for the Self-organization Process
Usual learning techniques (Q-learning, reinforcement

learning, genetic algorithms...) try to find a solution by
the way of an individual even its learning is improved by
the relationships with others. On the opposite, all self-
organizing systems -including ants algorithms or swarm
particle algorithms- share the ability to solve a global
problem at the collective level, where micro-level
components discover only a small part of the solution.
This is the case for the mechanisms showed in the paper:
1. Spiders work together to create a web corresponding

to an image region individually without knowing
what is the collective result.

2. Machine specialization in a network is obtained from
local reinforcement mechanisms without any
centralized control.

3. Adequate neural structures come from local
cooperative behaviour without any learning strategy
derived from the global function to obtain.
The main advantage for all these self-organizing

problem solving approaches is the complexity reduction,
because they are only concerned by specifying agent
behaviour, even the solved problem is related to the
collective complexity. We can exemplify that by
expliciting the parameters used in the case studies:
1. In stigmergy mechanisms, the two behavioural items

of an agent, movement and selection, are defined by
four parameters where silk attraction factor plays a
key role.

Proliferation Adjustments

BIO-INSPIRED MECHANISMS FOR... Informatica 30 (2006) 55–62 61

2. In reinforcement mechanisms the three behavioural
items, diving, fighting and eating are triggered
according to parameters characterizing the internal
state of an agent. These are hunger, strength and
anxiety. The reinforcement parameters concern
strength and anxiety.

3. In cooperation mechanisms, the local actions are
associated with each non cooperative action an agent
may encounter. For a cooperative neuro-agent these
actions are proliferation and apoptosis of a neuron,
regulation (increasing or decreasing the weight of an
input) between its current inputs or specialization
(improving or not the sensibility of the inputs) of its
own transfer function.

Self-organized systems are characterized mainly by non
linear dynamics, by sensibility to initial conditions and
parameter sensitivity. Thus the overall properties cannot
be understood simply by examining separately the
components. With agent-based modelling, a lot of work
remains to precisely identify the link between the local
parameters and the global results obtained. In order to
obtain dynamic equilibrium due to unexpected changes
in the environment and non linearities inside the system,
all self-organizing agents must manage a given action
and also its opposite one. This is the actual weaknesses
of self-organizing mechanisms, because a lot of time
must be spent by engineers in order to find from
experimentations the right decision criteria firing all
these actions.

6 Conclusion and Prospects
In this paper, three approaches of self-organization
inspired from biological systems were analysed and case
studies applying these mechanisms were presented. The
bio-inspired mechanisms showed have the main
descriptive criteria as defined in [22]. There is no
external control and no internal entity centralize
information or decision. The solution is built
dynamically and consequently unpredictable, due to the
set of interdependent individuals working in parallel and
able to react relevantly to their reciprocal activities.
These applications have also the anytime property,
because they are able to give a more or less good solution
according to the time given to the processes.

Even if these approaches are able to solve difficult
problems, the study of such complex systems needs
experiments to explore their behaviours as Zambonelli
claims [16]. Thus, a very useful perspective for these
mechanisms will be to define theories allowing automatic
tuning of their parameters.

Self-organization mechanisms guide the behaviour of
the local entities of a collective. Consequently these
approaches allow a drastic reduction of the solution
search space compared to global search algorithms.
Though this is experimentally observed, a lack of
demonstrations by formal proofs still remains today.

Working on self-organization implies the creation of
disorders inside a collective in order to obtain later a
more relevant response of the system faced with
unexpected events. From an engineering point of view it

could be interesting to propose global systems gauges
able to link disorder and relevance behaviour at the
system macro-level. Some tools are today available on
MAS platforms as described on the AOSE overview
[23]. They must be completed by new works on entropy
measure in artificial systems in order to have a more
relevant observables on their dynamics.

Acknowledgment
The authors wish to thank Aurélien Saint-Dizier for the
implementation of the network simulator.

References
[1] Camazine S., Deneubourg J.L., Franks N.R., Sneyd

J., Theraulaz G., Bonabeau E. (2001) Self-
Organization in Biological Systems, Princeton
University Press.

[2] Grassé P.P.(1959) La reconstruction du nid et les
coordinations interindividuelles chez
Bellicositermes natalensis et Cubitermes sp., La
théorie de la stigmergie : essais d’interprétation du
comportement des termites constructeurs, Insectes
Sociaux., 6, pp. 41-84.

[3] Wilson E. O. (1971), The insect societies.
Cambridge : Harvard University Press.

[4] Bonabeau, E.; Dorigo, M. and Théraulaz, G. (1999)
Swarm Intelligence: From Natural to Artificial
Systems, Santa Fe Institute in the Sciences of the
Complexity, Oxford Univ. Press, New York.

[5] Dorigo, M.; Bonabeau, E. & Theraulaz G. (2000)
Ant algorithms and stigmergy. Future Generation
Computer Systems 16: pp. 851–871

[6] Chialvo, D.R. and Millonas M.M. (1995) How
Swarms Build Cognitive Maps. In Steels, L. (Ed.):
The Biology and Technology of Intelligent
Autonomous Agents, 144, NATO ASI Series, 439-
450.

[7] Holland O., Melhuish C. (1999) Stigmergy, Self-
Organization, and Sorting, in Collective Robotics,
In Artificial Life 5: 173-202.

[8] Theraulaz, G., Bonabeau, E. & Deneubourg, J.
(1998) Response threshold reinforcement and
division of labour in insect societies Proceedings of
the Royal Society of London Series. 265: 327-332.

[9] Seeley, T. D. (1982) Adaptive significance of the
age polyethism schedule in honeybee colonies.
Behavioral Ecology and Sociobiology 11: 287-293.

[10] Jeanne, R. L. (1986) The organization of work in
Polybia occidentalis: costs and benefits of
specialization in a social wasp. . Behavioral
Ecology and Sociobiology 19: 333-341.

[11] O'Donnel, S. & Jeanne, R. L. (1992) Forager
success increases with experience in Polybia
occidentalis (Hymenoptera, Vespidae). Insectes
Sociaux, Birkhäuser Verlag, 39: 451-454.

[12] Hemelrijk, C. K. (1996) Dominance interactions,
spatial dynamics and emergent reciprocity in a
virtual world. In Proceedings of the fourth
international conference on simulation of adaptive

62 Informatica 30 (2006) 55–62 M. Jean-Pierre et al.

behavior, vol. 4 (ed. P. Maes, M. J. Mataric, J-A
Meyer, J Pollack & S. W. Wilson), pp. 545-552.
Cambridge, MA: The MIT Press.

[13] Thomas V., Bourjot C., Chevrier V., Desor D.
(2004) Hamelin : A model for collective adaptation
based on internal stimuli. In Stefan Schaal, Auke
Ijspeert, Aude Billard, Sethu Vijayakumar, John
Hallam, and Jean-Arcady Meyer, editors, From
animal to animats 8 - Eighth International Confe-
rence on the Simulation of Adaptive Behaviour
2004 - SAB’04, Los Angeles, USA, pages 425–434.

[14] Georgé J.P., Edmonds B. and Glize P. (2004)
Making Self-Organising Adaptive Multiagent
Systems Work. In: Methodologies and Software
Engineering for Agent Systems. Federico Bergenti,
Marie-Pierre Gleizes, Franco Zambonelli (Eds.),
Kluwer Academic Publishers, pp. 319-338

[15] Mano J.P. and Glize P. (2004) Self-adaptive
Network of Cooperative Neuro-agents, Symposium
on Adaptive Agents and Multi-Agent Systems,
Leeds, UK, pp. 129-134.

[16] Zambonelli, F. and Omicini, A. (2004) Challenges
and Research Directions in Agent-Oriented
Software Engineering, Autonomous Agents and
Multi-Agent Systems . New-York, USA, 9(3),
pp. 253-283.

[17] Di Marzo, Gleizes, Kargeorgos (2005) Self-
organization and emergence in MAS: an overview,
Informatica, this issue.

[18] Bourjot C., Chevrier V. (2001) Multi-agent
simulation in biology: application to social spiders
case, In Proc. of Agent Based Simulation Workshop
II, Passau, pp18-23.

[19] Bourjot C., Chevrier V., Thomas V.(2003) A new
swarm mechanism based on social spiders colonies
: From web weaving to region detection, in Web
Intelligence and Agent Systems: An International
Journal , IOS Press, Vol 1, N.1, pp. 47-64.

[20] Theraulaz, G., Bonabeau, E. & Deneubourg, J.L.
(1999) The mechanisms and rules of coordinated
building in social insects,. In: Detrain, C.,
Deneubourg, J.L. & Pasteels, J. Edits. Information
Processing in Social Insects. Birkhauser Verlag. pp.
309-330

[21] Chandebois R. (1999) Comment les cellules
construisent l'animal, Phénix éditions, Paris

[22] Bernon C., Chevrier V., Hilaire V., Marrow P.
(2005) Applications of self-organizing MAS,
Informatica , this issue.

[23] Bernon C., Cossentino M., Pavon J. (2005) An
overview of current trends in European AOSE
research, Informatica , this issue.

Informatica 30 (2006) 63–71 63

On Self-Organising Mechanisms from Social, Business and Economic Domains

Salima Hassas
LIRIS-CNRS, University of Lyon, France
E-mail: hassas@liris.cnrs.fr
http://www710.univ-lyon1.fr/~hassas

Giovanna Di Marzo-Serugendo
University of Geneva, Switzerland
E-mail: Giovanna.Dimarzo@cui.unige.ch
http://cui.unige.ch/~dimarzo/

Anthony Karageorgos
University of Thessaly, Greece
E-mail: karageorgos@computer.org
http://inf-server.inf.uth.gr/~karageorgos/

Cristiano Castelfranchi
Unit of AI, Cognitive Modelling and Interaction, CNR, Italy
E-mail: cristiano.castelfranchi@istc.cnr.it
http://www.istc.cnr.it/

Keywords: self-organisation, networks, social functions, business networks, social learning

Received: April 25, 2005

This paper discusses examples of socially inspired self-organisation approaches and their use to build
socially-aware, self-organising computing systems. The paper presents different mechanisms originating
from existing social systems, such as stigmergy from social insects behaviours, epidemic spreading, gos-
siping, trust and reputation inspired by human social behaviours, as well as other approaches from social
science related to business and economics. It also elaborates on issues related to social network dynamics,
social network patterns, social networks analysis, and their relation to the process of self-organisation. The
applicability of socially inspired approaches in the engineering of self-organising computing systems is
then illustrated with applications concerning WWW, computer networks and business communities.

Povzetek: Podani so primeri mehanizmov samoorganizacije.

1 Introduction

Nowadays computing systems are open systems evolving
in a dynamic complex environment. They are designed as
sets of interacting components, highly distributed both con-
ceptually and physically. The growing complexity of these
systems and their large scale distribution make the use of
traditional approaches based on hierarchical functional de-
composition and centralised control no more applicable.
Increasingly, a real need for new paradigms, mechanisms
and techniques allowing endowing these systems with the
capacity to autonomously manage their functioning and
evolution, is expressed. Existing social systems, for exam-
ple large scale, decentralised and autonomic human, insect
or business and economic systems, are well known to ex-
hibit interesting characteristics, such as robustness, capac-
ity of self-management and self-adaptation, survivability in

uncertain and dynamic environments. They can provide
a great inspiration for busiding self-organising computing
systems.

Socially inspired computing gathers computing tech-
niques that make use of metaphors inspired by social be-
haviours, exhibiting self-organisation, self-adaptation and
self-maintainance of the society organisation. These so-
cial behaviours range from those observed in biological
entities such as bacteria, cells and social insects to an-
imals and human societies. One important characteris-
tic of these societies is their emergence as patterns de-
veloped from relatively simple interactions in a network
of individuals. These patterns, are supposed to be driven
by self-organising processes that are governed by sim-
ple but generic laws [19][5]. This paper is focused on
self-organising mechanisms observed in natural social sys-
tems and in business and economic ones, and the illus-

64 Informatica 30 (2006) 63–71 S. Hassas et al.

tration of their use for building self-organising computing
systems. We distinguish natural systems from business
and economic systems, since generic laws guiding self-
organisation in the first kind of systems is dictated by na-
ture whereas in the others, self-organisation is governed by
business and market laws.

From a natural systems perspective, species survival is
the ultimate goal. This goal is not expressed explicitly
at the individual level, but seems to guide the collective
behaviour towards the emergence of social functions and
dynamics allowing the maintainance of the system organ-
isation. In business and economic systems, individual be-
haviours are goal-oriented and their primary goal is to in-
crease their profit. In this case, the system’s dynamics is
handled by the activity developed to face business and eco-
nomic constraints to reach a global equilibrium through
which the system can survive. In both systems, one im-
portant issue is their capacity to globally maintain a suffi-
ciently good level of information allowing them to deploy
the effective global behaviour that permits the realisation
of their intentional or non intentional goals.

In the following, we first present examples of socially in-
spired self-organising mechanisms in natural business and
economic systems. Before concluding, we present exam-
ple applications of such mechanisms in WWW, computer
networks and business communities.

2 The Social Human Behaviour
Inspiration

2.1 Social Functions

Human collective behaviour occurs without central con-
trol, and through self-organisation. In this case, intimately
linked with the notion of self-organisation is the notion of
"emergence" in the sense that "social functions" arise out
from (self-interested) human collective behaviour. In so-
cial sciences different interpretations of the notion of social
functions have been expressed, essentially considering that
even if social functions are not intentional and possibly un-
known they constitute the ultimate end of the society and
explain its existence.

The social functions concept has also been explained
as the "invisible hand" which would manage forms of un-
planned coordination (like market) in which human interest
increases [31] through the apparently "spontaneous emer-
gence of an unintentional social order and institutions". As
pointed out by [13], the problem with this view is: "how
an unintentional effect can be an end" for the society; and
"how is it possible that we pursue something that is not an
intention of ours". An alternative could be avoiding the
concept of social functions because of the problems and
questions that they provoke. However, this is not satisfac-
tory too, because nevertheless social emergence happens
and has the form of a goal-oriented process.

Therefore, it is important to distinguish two kinds of so-

cial emergence: 1. the emergent phenomenon is perceived
by an observer, but has no effect on the society; 2. the
emergent phenomenon has an effect on the society by self-
reproducing and enforcing the social phenomenon.

Given the considerations above, Castelfranchi considers
that "in order to have a function, a behaviour or trait or
entity must be replicated and shaped by its effects".

The principal argument is that "the invisible hand" is not
necessarily a good thing for society (especially in the case
of self-interested agents). The optimum order for the so-
ciety can actually be bad for individuals or for everybody.
For instance, prisons generate criminals that in turn feed
prisons. This is a function not a social objective.

The important thing is that "re-organisation simply
maintains the system, but not necessariy the optimal
value".

2.2 Social Activities Based on Social
Networks and Their Inspiration for
Computing

Propagation of information or knowledge allowing social
activities in social systems lays on the social network
formed by the the interaction held between the society in-
dividual components during social activities. Social be-
haviour both shapes and is shaped by such social networks.

2.2.1 Social Learning and Propagation of Knowledge

In social science, it is now established that social interac-
tions play a fundamental role in learning dynamics, and
lead to cognitive development. This phenomenon is known
as "Zone of Proximal Development" which Vygotsky de-
scribes it as "the distance between the actual development
level as determined by independent problem solving and
the level of potential development as determined through
problem solving under adult guidance or in collaboration
with more capable peers" [51] [15]. The effect of social-
isation has also been proven to benefit to the propagation
of knowledge inside an interconnected population. In [14]
the authors considered social learning in a population of
myopic, memoryless agents. They have made some exper-
iments to study how technology diffuses in a population
based on individual or collective evaluation of the tech-
nology. The authors have shown that under a learning
rule where an agent changes his technology only if he has
had a failure (a bad outcome), the society converges with
probability 1 to the better technology. In contrast, when
agents switch on the basis of the neighbourhood averages,
convergence occurs if the better technology is sufficiently
better. These experiments show how a better technology
spreads in a population through a mechanism of imitation
and thanks to neighbourhood connections. In another work
[3], the authors develop a general framework to study the
relationship between the structure of these neighborhoods
and the process of social learning. They show that, in a

ON SELF-ORGANISING MECHANISMS FROM SOCIAL. . . Informatica 30 (2006) 63–71 65

connected society, local learning ensures that all agents ob-
tain the same payoffs in the long run. Thus, if actions have
different payoffs, then all agents choose the same action.

2.2.2 Epidemic Spreading and Gossiping Metaphors

As cited in [34] Gossip is one of the most usual social
activities. This mechanism allows for the aggregation of
a global information inside a population, through a peri-
odic exchange and update of individual information among
members of a group. The neighbourhood as well as the
level of precision of the exchanged information play an
important role on the nature of social learning which oc-
curs by this way. This mechanism provides a powerful ab-
straction metaphor for information spreading, knowledge
exchange and group organisation in large scale distributed
systems. In peer-to-peer (P2P) systems, a class of proto-
cols categorised as epidemic protocol has been proposed
[50]. These protocols are characterised by their high ro-
bustness and large scalability. This metaphor has been also
used for routing in sensor networks. For example in [8], a
rumour routing algorithm for sensors networks is proposed.
This algorithm is based on the idea of creating paths lead-
ing to each event and spreading events in the wide-network
through the creation of an event flooding gradient field. A
random walk exploration permits to find event paths when
needed.

2.2.3 Trust and Reputation

Uncertainty and partial knowledge are a key characteris-
tic of the natural world. Despite this uncertainty human
beings make choices, take decisions, learn by experience,
and adapt their behaviour.

Trust management systems deal with security policies,
credentials and trust relationships, for example issuers of
credentials. Most trust-based management systems com-
bine higher-order logic with a proof brought by a requester
that is checked at run-time. These systems are essentially
based on delegation, and serve to authenticate and give
access control to a requester [53]. Usually the requester
brings the proof that a trusted third entity asserts that it
is trustable or it can be granted access. These techniques
have been designed for static systems, where an untrusted
client performs some access control request to some trusted
server [1, 6]. Similar systems for open distributed environ-
ment have also been realised, for instance [38] proposes
a delegation logic including negative evidence, and dele-
gation depth, as well as a proof of compliance for both
parties involved in an interaction. The PolicyMaker sys-
tem is a decentralised trust management systems [4] based
on proof checking of credentials allowing entities to locally
decide whether or not to accept credentials (without relying
to a centralised certifying authority). Eigentrust [36] is a
trust calculation algotrithm that allows to calculate a global
emergent reputation from locally maintained trust values.
Recently, more dynamic and adaptive schemas have been
defined, which allow trust to evolve with time as a result

of evidence, and allows to adapt the behaviour of princi-
pals consequently. We report here the results of the Euro-
pean funded SECURE [11] project, which has established
an operational model for trust-based access control. Sys-
tems considered by the SECURE project are composed of
a set of autonomous components, called principals, able to
take decisions and initiatives, and are meaningful to trust or
distrust. Principals maintain local trust values about other
principals. A principal that receives a request for collabora-
tion from another principal decides to actually interact with
that principal or not on the basis of the current trust value
it has on that principal for that particular action, and on the
risk it may imply for performing it. If the trust value is too
low, or the associated risk too high, a principal may reject
the request. After each interaction, participants update the
trust value they have in the partner, based on the evaluated
outcome (good or bad) of the interaction. A principal may
also ask or receive recommendations (in the form of trust
values) about other principals. These recommendations are
evaluated (they depend on the trust in the recommender),
and serve for updating current trust values. Artificial sys-
tems built on the human notion trust as exposed above have
the particularity to exhibit a self-organising behaviour [16],
as identified by Nobel prize Ilya Prigogine and his col-
leagues [24]. Additional trust and reputation systems are
surveyed in [25], and for the particular case of multi-agent
systems they are reviewed in [41].

3 The Social Insects Behaviour
Metaphor

Social insects societies such as ants, bees, wasps and ter-
mites exhibit many interesting complex behaviours such as
emergent properties from local interactions between ele-
mentary behaviours achieved individually. The emergent
collective behaviour is the outcome of a process of self-
organisation, in which insects are engaged through their
repeated actions and interactions with their evolving en-
vironment [32]. Self-organisation in social insects relies
on an underlying mechanism : Stigmergy, originally in-
troduced by Grassé in 1959 [26]. Grassé studied the be-
haviour of a kind of termites during the construction of
their nests and noticed that the behavior of workers during
the construction process is influenced by the structure of
the constructions themselves. This mechanism is a power-
ful principle of cooperation in insect societies. It has been
observed within many insect societies such as wasps, bees
and ants. It is based on the use of the environment as a
medium of inscription of past behaviours effects, to influ-
ence future behaviours. This mechanisms defines what is
called auto-catalytic process, that is the more a process oc-
curs, the more it has a chance to occur in the future. More
generally, this mechanism shows how simple systems can
produce a wide range of more complex coordinated behav-
iors, simply by exploiting the influence of the environment.
Many behaviours in social insects, such as foraging or col-

66 Informatica 30 (2006) 63–71 S. Hassas et al.

lective sorting are rooted on the stigmergy mechanism.
Foraging is the collective behaviour through which ants

collect food. During the foraging process, ants leave their
nest and explore their environment following a random
path. When an ant finds a source of food, it carries a piece
of food and returns back to the nest by laying a trail of
a hormone called pheromone along its route. This chem-
ical substance persists in the environment for a particular
amount of time before it evaporates. When other ants en-
counter a trail of pheromone, while exploring their environ-
ment, they are influenced to follow the trail until the food
source, and while coming back to the nest they enforce the
initial trail by depositing additional amounts of pheromone.
The more the trail is followed, the more it is enforced and
has a chance to followed by other ants in the future. Ants
foraging behaviour have inspired many works in comput-
ing domains, ranging from "Ant Colony Optimisation" (ACO)
metaheuristic for optimisation problems [18], to the de-
sign of ant-like systems using mobile agents with applica-
tions in several domains such as computers network routing
and load-balancing [42][17][21], computers network secu-
rity [20][23], information sharing in peer to peer systems
[2], etc.

Collective clustering and sorting is a collective be-
haviour through which some social insects sort eggs, lar-
vae and cocoons. As mentioned in [7], an ordering phe-
nomenon is observed in some species of ants when bodies
are collected and later dropped in some area. The proba-
bility of picking up an item is correlated with the density
of items in the region where the operation occurs. This be-
haviour has been studied in robotics through simulations
and real implementations [32]. Robots with primitive be-
haviour are able to achieve a spatial environment structur-
ing by forming clusters of similar objects via the mecha-
nism of stigmergy described above. Moreover, these kind
of social insect behaviours have inspired many mechanisms
for building artificial self-organised systems [7][32] [30]
[39].

4 Business and Economics
Approaches

4.1 Market-based Mechanisms

Market-based mechanisms are built along the lines of eco-
nomic markets. In this approach, systems are modelled
along the lines of some economic model in which partic-
ipating entities act towards increasing their personal profit
or utility. System wide parameters are modelled in a man-
ner similar to macroeconomic variables such as economic
growth. The parameters of the individual entities corre-
spond to microeconomic parameters. The key point in such
systems is to select suitable micro level parameter values
and market interaction rules so that desired system goals,
both local and global, are achieved.

Market-based approaches contrast the traditional way of

modelling self-organisation and emergence in economic
systems, which is primarily based on analytic general equi-
librium models, for example as is done in [22]. The main
problem with analytic approaches is that they cannot rep-
resent all possible situations due to the non-linearity of
economic phenomena [10], which is due to the fact that
economies are complex dynamic systems [48]. Instead,
market-based approaches view macroeconomic phenom-
ena as emergent results of local interactions of the eco-
nomic entities [10, 33, 48]. An example is economic
growth which can be described at the macro level but it
can never be explained at that level [12]. The reason is that
economic growth results from the interaction of a variety
of economic actors, who create and use technology, and
demanding customers.

There are numerous variations of market-based self-
organisation mechanisms. An exemplar such mechanism
which is based on the creative destruction principle is de-
scribed in the following section.

4.1.1 Creative Destruction

Creative destruction is a term coined by Schumpeter [43]
to denote a "process of industrial mutation that incessantly
revolutionizes the economic structure from within, inces-
santly destroying the old one, incessantly creating a new
one." In other words, creative destruction occurs when a
new setting eliminates an old one leading to economic de-
velopment. According to this view an economic system
must destroy less efficient firms in order to make room
for new, possibly more efficient entrants. A representa-
tive example of creative destruction is the evolution of per-
sonal computer industry which under the lead of Microsoft
and Intel destroyed many mainframe computer companies;
however, at the same time one of the most important tech-
nological achievements of this century was created.

The main roles that economic actors play in a market-
based economy are those of producer, worker and con-
sumer. Producers produce goods or provide services that
consumers demand. Consumers consume the goods and
use the services in exchange of some monetary or utility
value. When there is high demand producers tend to hire
workers to assist them in goods production or service pro-
vision in exchange of some wage. Since producers cannot
sell their production beforehand, they must hold enough
money to pay the workers in order to start up production
and they can only get the necessary money by entering
debt. According to the creative destruction principle, if
producers are not able to pay the worker wages then they
go bankrupt and they are removed from the system, for ex-
ample they are reduced to simple workers, opening the way
to other economic entities to try to become successful pro-
ducers and satisfy the consumer demand.

The creative destruction process is better illustrated in a
credit economy. In contrast to a monetary economy where
producers can only borrow existing money from lenders,
credit economy allows producers to obtain credit up to a

ON SELF-ORGANISING MECHANISMS FROM SOCIAL. . . Informatica 30 (2006) 63–71 67

certain level from creditors in order to pay for production
of new products. In this way, producers can more easily
force their way into the market but the danger of becom-
ing bankrupt is increased. To explain economic develop-
ment in this framework one only needs to explain why en-
trepreneurs would want to introduce new products to the
market. Effective entrepreneurs survive the battle and in-
crease their profit. Failed entrepreneurs cannot repay their
debt and therefore they go bankrupt and they are elimi-
nated. As initially stated by Schumpeter [43] and later eval-
uated experimentally, for example [9], economic growth in
this model is generated in cycles that emerge from the dis-
turbance caused by entrepreneurs entering the market in-
troducing new products.

In such a model there is particular interest from both
the global, macro economic perspective and the local mi-
croeconomic one. Individual producers can decide on
their entrepreneur policy so that to increase their profit
and avoid the risk of getting bankrupt. On the other hand
the economic system regulators can decide on the self-
organisation rules so that to increase overall system pro-
duction and growth.

4.2 Business Related Mechanisms

Business related mechanisms are based on business models
and theories which use self-organisation. In an increasingly
complex global economy, businesses are faced with unpre-
dictable behaviours and fast pace of change. As a result,
the emphasis in contemporary business models has shifted
from efficiency to flexibility and the speed of adaptation.

More recent approaches, for example the one described
in [46], increasingly introduce business models originat-
ing from the study of complex adaptive systems. Adap-
tive business organisations are guided and tied together by
ideas, by their knowledge of themselves, and by what they
do and can accomplish. Therefore, the focus in such mod-
els is on the complex relationships between different busi-
ness components and the effects that a change into some
part of the system or its environment, however distant,
might have on the behaviour of the entire system.

As examples of self-organising business models we dis-
cuss personalised marketing and activity-based manage-
ment.

4.2.1 Personalised Marketing

Personalised marketing refers to following a personalised
market strategy for each individual customer which is
evolving according to customer reactions [52]. A typical
example of this approach is the one-to-one variable pric-
ing model [29], which refers to providing an individual
offer to each customer using Internet technologies. The
model uses self-organisation in the marketing policies by
changing customers targeted and the prices quoted based
on market dynamics, customer characteristics and the busi-
ness goals.

A shift towards to personalised marketing models is
viewed as being driven by syndication [54]. Syndication
involves the sale of the same good to many customers, who
then integrate it with other offerings and redistribute it, as
is the case in redistributing popular TV programs. An ex-
ample of a company using syndication is FedEx which syn-
dicates its tracking system in several ways [54]. The com-
pany allows customers to access computer systems via its
Web site and monitor the status of their packages. For cor-
porate customers FedEx provide software tools that enable
the organisation to automate shipping and track packages
using their own computing resource. Each customer is of-
fered different prices depending on a variety of parameters.
Many websites, such as eBay, also apply variable pricing
for their offers.

4.2.2 Activity-based Management

Another example from the area of management is the the-
ory of activity described in [49]. In this view a company
consists of networks of working groups that can change
their structure, links and behaviour in response to business
requirements. The aim is to capture the self-organisation
decisions that need to be taken during the business oper-
ations both by managers and by interactions between em-
ployees. The emphasis is on solving potential conflicts of
interests in both the inner and the external co-operative ac-
tivity of the company.

In this approach the structure of the company is virtual.
There is no clear hierarchy and control; instead control ef-
fects can be initiated both vertically and horizontally via
"round table meetings", which are organised along the lines
of assessment meetings normally held in companies to as-
sess results and handle exceptions. In these virtual round
tables suitable participants soon emerge as de facto leaders
due to their knowledge and experience. Subsequently, lead-
ers tend to participate in each newly formed "round table".
The view expressed in [49] is that to model the interactions
of participants in a "round table", it is necessary to simulate
the whole activity of each of them including their reasoning
and communication.

5 Socially Inspired Computing
Applications: An Illustration

5.1 E-mails and WWW Oriented
Applications

Based on the SECURE trust and risk security framework,
an anti-spam tool has been developed which allows
collaboration among e-mail users by exchanging recom-
mendations about e-mail’s senders. An authentication
scheme has been combined to the SECURE framework in
order to increase the level of sender authentication [44].

68 Informatica 30 (2006) 63–71 S. Hassas et al.

On the WWW, a plethora of systems have been devel-
oped for content retrieval, filtering or organisation using
socially inspired computing. As an illustration, we present
here a pioneering work [40], in information retrieval field
which combined inspiration of social human behaviours,
and economic markets to propose an interesting system for
information retrieval on the web. In this work, documents
are represented by keyword vectors, representing individ-
uals (agents) of an artificial ecosystem. This population
evolves through an evolutionary process of natural selec-
tion using a genetic algorithm to find documents which
best fit the user request. The user feedback is used to re-
ward (resp. to punish) the fittest individual (the less fitting
individual) by giving it a credit value. These credits are
then used by agents in a market based metaphor to esti-
mate the cost of inhabiting the artificial ecosystem. The
fittest agents have enough credits to continue living in the
ecosystem and the less fitting agents will die. Another sys-
tem called WACO has been proposed in [30]. The WACO
system is composed of a population of agents deployed on
the web to form clusters of semantically similar documents
and dynamically organise the web content. These agent be-
haviours, take inspiration of social insect behaviours. They
combine foraging ant behaviour and the collective sorting
behaviour.

5.2 Computer Network Applications

T-Man is a generic protocol based on a gossip communi-
cation model and serves to solve the topology management
problem [35]. Each node of the network maintains its local
(logical) view of neighbours. A ranking function (e.g. a
distance function between nodes) serves to reorganise the
set of neighbours (e.g. increasing distance). Through lo-
cal gossip messages, neighbour nodes exchange or com-
bine their respective views. Gradually, in a bottom-up
way, through gossiping and ranking, nodes adapt their list
of neighbours, and consequently change and re-organise
the network topology. The T-Man protocol is particularly
suited for building robust overlay networks supporting P2P
systems, especially in the presence of a high proportion of
nodes joining and leaving the network.

The SLAC (Selfish Link and behaviour Adaptation
to produce Cooperation) algorithm [28] favours self-
organisation of P2P network’s nodes into tribes (i.e. into
specialised groups of nodes). The SLAC algorithm is a
selfish re-wiring protocol, where by updating its links with
other nodes in order to increase its utility function, a spe-
cific node leaves its current tribe, and joins a new one.

In addition to P2P systems, the SLAC algorithm has
many potential applications, for instance to organise col-
laborative spam / virus filtering in which tribes of trusted
peers share meta-information such as virus and spam signa-
tures. This would elimite the need for trusted third parties
with central servers.

5.3 Applications in Business and Economics
5.3.1 Business Community Networks

Typical applications of market-based self-organisation
mechanisms can be found in the domains of business com-
munity networks [37]. An example of such approach is
the self-organising semantic network of document index-
ing agents described in [45].

In such a network, agents maintain indices to actual doc-
uments and to other agents as well, treating both in a similar
manner - based on the semantics of their content. The key
feature in this approach is content dependent query redirec-
tion, based on semantic indexing. If an agent is unable find
a document on a given topic, it re-directs the received query
to the agents which believes are most likely to find it. The
connections between the agents adapt themselves based on
the history of successfully served queries, forming a dis-
tributed self-organising search engine which is capable of
executing on heterogeneous servers over the internet and
dynamically indexing all available documents. The impor-
tant aspect of such a search engine is that each node, though
possessing only limited amount of local information, can
handle global queries.

Each piece of information received from an agent cor-
rects the coordinates of its representation in the semantic
index of the recipient. Furthermore, each link to an agent
has also its own utility based rating. Those ratings are
used for the selction of the right candidates for redirecting
queries.

Rating adaptation is done using a free market approach.
According to this approach agents provide chargeable
search services to each other. Each query has some lim-
ited amount of network currency, termed neuro, which dis-
sipates in the course of query processing in the network.
Neuros circulating through the network are used by the
agents to update their connections with the other agents,
based on their utility, in a similar manner that money flow
in a real economy determines the structure of business re-
lationships.

The semantic network economy is based on the follow-
ing simple rules:

– The cost of each delegated query processing is one
neuro;

– The cost of each document (query) transaction is one
neuro;

– Agents aim to minimize their expenditures.

According to these rules each agent keeps track of the
balance of transactions of all other agents it is linked with.
Agents are considered economically rational and aiming to
maximise their profit they tend to delegate queries to ex-
perts in the query topic, thus minimizing effective cost of
search in the network.

Similar market-based techniques are applied in trade net-
works where the aim is to select trade partners based on
continually updated expected payoffs [27, 47].

ON SELF-ORGANISING MECHANISMS FROM SOCIAL. . . Informatica 30 (2006) 63–71 69

6 Conclusion
In this paper we have surveyed some self-organising social
approaches and presented their use as metaphors for dis-
tributed computing systems. These socially inspired com-
puting techniques have shown their effectiveness for sys-
tems and applications evolving in distributed and highly
dynamic environments, such like current complex net-
works. Social behaviours ranging from those observed
in biological entities such as bacteria, cells and social in-
sects, to animals and human societies, are rooted in the
dynamics of their underlying social network. Social be-
haviour both shapes and is shaped by such social net-
works. One important characteristic of societies is their
emergence as patterns developed from relatively simple in-
teractions in a network of individuals. The obtained pat-
terns are then enforced through dynamics underlying the
so obtained social network. These systems are well known
to exhibit interesting characteristics such as robustness, ca-
pacity of self-adaptation and survivability in uncertain and
dynamic environment and tolerance to randomness. We
have presented different mechanisms of social behaviours
and showed their use in computing environments through
some illustrative applications. Socially inspired computing
metaphors, provide a real new paradigm for programming
highly distributed and dynamic computing systems. How-
ever, proposed approaches are still developped in an ad hoc
manner, and a real theory for socially inspired computing
needs to be provided.

References
[1] Andrew W. Appel and Edward W. Felten. Proof-

carrying authentication. In ACM Conference on Com-
puter and Communications Security, pages 52–62,
New York, NY, USA, 1999. ACM Press.

[2] O. Babaoglu, H. Meling, and A. Montresor. Anthill:
A framework for the development of agent-based
paeer to peer systems. In Proceedings of the
ICDCS’02, Vienna, A., July 2002.

[3] Venkatesh Bala and Sanjeev Goyal. Learning from
neighbours. Review of Economic Studies, 65(3):595–
621, 1998.

[4] M. Balze, J. Feigenbaum, and J. Lacy. Decentral-
ized trust management. In IEEE Symposium on Secu-
rity and Privacy, pages 164–173, Los Alamitos, CA,
USA, 1996. IEEE Computer Society Press.

[5] A. Barabasi and R. Albert. Emergence of scaling
in random networks. Science, 286(5439):509–512,
1999.

[6] L. Bauer, M. A. Schneider, and E. W. Felten. A
proof-carrying authorization system. Technical re-
port, Princeton University Computer Science, 2001.

[7] E. Bonabeau, G. Théraulaz, V. Fourcassié, and J-L.
Deneubourg. The phase-ordering kinetics of ceme-
tery organization in ants. Technical Report 98-01-
008, Santa Fe Institute, 1998.

[8] D. Braginsky and D. Estrin. Rumour routing algo-
rithm for sensor networks. In Proceedings of the
Fisrt Workshop on Sensor Networks and Applications
(WSNA), Atlanta, GA, USA, September 2002.

[9] Charlotte Bruun. The economy as an agent-based
whole simulating schumpeterian dynamics. Industry
and Innovation, 10(4):475–491, 2003.

[10] Charlotte Bruun. Introduction to agent-based com-
putational economics. Aalbog, Danemark, Aal-
borg University, Department of Economics, Poli-
tics and Public Administration, 2004. Available at:
http://www.socsci.auc.dk/~cbruun/aceintro.pdf.

[11] V. Cahill and al. Using trust for secure collabora-
tion in uncertain environments. IEEE Pervasive Com-
puting Magazine, special issue Dealing with Uncer-
tainty, 2(3):52–61, 2003.

[12] Bo Carlsson and Eliasson Gunnar. Industrial dynam-
ics and endogenous growth. In Industry and Innova-
tion, pages 1–25. Taylor & Francis, Abingdon, UK,
2003.

[13] C. Castelfranchi. The theory of social functions: chal-
lenges for computational social science and multi-
agent learning. Journal of Cognitive Systems Re-
search, 2(1):5–38, 2001.

[14] Kalyan Chatterjee and Susan H. Xu. Technology dif-
fusion by learning from neighbours. Advances in Ap-
plied Probability, 36(2):355–376, 2004.

[15] Nada Dabbagh. Lev vygotsky’s so-
cial development theory. Available at
http://www.balancedreading.com/vygotsky.html.

[16] G. Di Marzo Serugendo. Trust as an inter-
action mechanism for self-organising sys-
tems. In International Conference on Com-
plex Systems (ICCS’04), 2004. Available at
http://cui.unige.ch/~dimarzo/papers/iccs04.pdf.

[17] M. Dorigo and G. Di Caro. Ants colonies for adaptive
routing in packet-switched communication networks.
Lecture Notes in Computer Science, page 673, 1998.

[18] M. Dorigo, V. Maniezzo, and A. Colorni. Ant sys-
tem: Optimization by a colony of cooperating agents.
IEEE Transactions on Systems, Man and Cybernetics
- Part B, 26(1), 1996.

[19] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On
power-law relationships of the internet topology. In
Proceedings of the Special Interest Group on Data
Communications (ACM SIGCOMM’99), pages 251–
262, New York, NY, USA, 1999. ACM Press.

70 Informatica 30 (2006) 63–71 S. Hassas et al.

[20] S. Fenet and S. Hassas. A distributed intrusion de-
tection and response system based on mobile au-
tonomous agents using social insects communication.
Electronic Notes in Theoretical Computer Science,
63:21–31, 2002.

[21] S. Fenet and S. Hassas. An ant based system for dy-
namic multiple criteria balancing. In Proceedings of
the Fisrt Workshop on ANT Systems, Brussels, Bel-
gium, September 1998.

[22] Sergio Focardi, Silvano Cincotti, and Michele March-
esi. Self-organization and market crashes. Journal
of Economic Behavior and Organization, 49(2):241–
267, 2002.

[23] N. Foukia, S. Hassas, S. Fenet, and P. Albu-
querque. Combining immune systems and social
insect metaphors: a paradigm for distributed intru-
sion detection and response systems. In Proceedings
of the 5th International Workshop on Mobile Agents
for Telecommunication Applications, MATA’03, Mar-
rakech, Morocco, October 2003. Lecture Notes in
Computer Science -Springer Verlag.

[24] P. Glansdorff and I. Prigogine. Thermodynamic study
of structure, stability and fluctuations. Wiley, 1971.

[25] T. Grandison and M. Sloman. A survey of trust in
internet applications. IEEE Communications Surveys
and Tutorials, 3(4), 2000.

[26] P.P Grassé. La reconstruction du nid et les interac-
tions inter-individuelles chez les bellicoitermes natal-
enis et cubitermes, la théorie de la stigmergie - essai
d’interprétation des termites constructeurs. Insectes
Sociaux, 6:41–81, 1959.

[27] Sergei Guriev, Igor Pospelov, and Margarita
Shakhova. Self-organization of trade networks in an
economy with imperfect infrastructure. In Second In-
ternational Conference on Computing in Economics
and Finance, volume 22. Society for Computational
Economics, Geneva, Switzerland, 1996.

[28] D. Hales. Choose your tribe! evolution at the next
level in a peer-to-peer network. In S. Brueckner,
G. Di Marzo Serugendo, D. Hales, and F. Zam-
bonelli, editors, Engineering Self-Organising Appli-
cations (ESOA’05), Utrecht, The Netherlands, July
2005. (to appear).

[29] Glenn Hardaker and Gary Graham. Energizing
your e-commerce through self-organising collabora-
tive marketing networks. Technical report, School of
Business, University of Salford, UK, 2002.

[30] S. Hassas. Using swarm intelligence for dynamic web
content organization. In Proceedings of the IEEE
Swarm Intelligence Symposium, pages 19–25, Los
Alamitos, CA, USA, 2003. IEEE Computer Society.

[31] F. A. Hayek. Studies in philosophy, politics and eco-
nomics. Routledge & Kegan, London, 1967.

[32] O. Holland and C. Melhuis. Stigmergy, self-
organization and sorting in collective robotics. Ar-
tificial Life, 5(2):173–202, 1999.

[33] Peter Howitt and Robert Clower. The emergence of
economic organization. Journal of Economic Behav-
ior and Organization, 41(1):55–84, 2000.

[34] M. Jelasity. Engineering emergence through gossip.
In Bruce Edmonds, Nigel Gilbert, Steven Gustafson,
David Hales, and Natalio Krasnogor, editors, Pro-
ceedings of the Joint Symposium on Socially-Inspired
Computing, pages 123–126, Hatfield, UK, 2005. Uni-
versity of Hertfordshire.

[35] M. Jelasity and O. Babaoglu. T-man: Gossip-based
overlay topology management. In S. Brueckner,
G. Di Marzo Serugendo, D. Hales, and F. Zam-
bonelli, editors, Engineering Self-Organising Appli-
cations (ESOA’05), Utrecht, The Netherlands, July
2005. (to appear).

[36] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina.
The eigentrust algorithm for reputation management
in p2p networks. In 12th International World Wide
Web Conference : WWW2003, pages 640–651, Bu-
dapest, Hungary, May 20-24 2003.

[37] Ulrike Lechner and Beat F. Schmid. Communi-
ties - business models and system architectures: The
blueprint of mp3.com, napster and gnutella revisited.
In E. Sprague, editor, the 34th Hawaii International
Conference on System Sciences, 2001.

[38] N. Li, J. Feigenbaum, and B. N. Grosof. A
logic-based knowledge representation for authoriza-
tion with delegation. In 12th IEEE Computer Security
Foundations Workshop, page 162, 1999.

[39] J.-P. Mano, C. Bourjot, G. Lopardo, and P. Glize. Bio-
inspired mechanisms for artificial self-organised sys-
tems. Informatica, In press, 2006.

[40] A. Moukas. Amalthaea: Information discovery and
filtering using a multiagent evolving ecosystem. Ap-
plied Artificial Intelligence, 11(5):437–457, 1997.

[41] S. D. Ramchurn, D. Huynh, and N. Jennings. Trust
in multi-agent systems. Knowledge Engineering Re-
view, 19(1):1–25, 2004.

[42] R.Schoonderwoerd, O. Holland, and J.Bruten. Ant-
like agents for load balancing in telecommunications
networks. In Proceedings of the 1st International
Conference on Autonomous Agents, pages 209–216,
February 5-8 1997.

ON SELF-ORGANISING MECHANISMS FROM SOCIAL. . . Informatica 30 (2006) 63–71 71

[43] J. A. Schumpeter. The economy as a whole - seventh
chapter of the theory of economic development. In-
dustry and Innovation, 9(1/2), 2002.

[44] Jean-Marc Seigneur, Nathan Dimmock, Ciarn Bryce,
and Christian Damsgaard Jensen. Combating Spam
with TEA, Trustworthy Email Addresses. In Proceed-
ings of the Second Annual Conference on Privacy, Se-
curity and Trust (PST’04), pages 47–58, Fredericton,
New Brunswick, Canada, October 2004.

[45] Sergey Shumsky. Self-organizing internet semantic
network. White paper, NeurOK LLC, 2001.

[46] Max Stewart. The Coevolving Organization. Decom-
plexity Associates LtD, Rutland, UK, 2001.

[47] Leigh Tesfatsion. A trade network game with endoge-
nous partner selection. In H. Amman, B. Rustem, and
A. B. Whinston, editors, Computational Approaches
to Economic Problems. Kluwer Academic Publishers,
1997.

[48] Leigh Tesfatsion. Agent-based computational eco-
nomics: A constructive approach to economic theory.
In K. L. Judd and Leigh Tesfatsion, editors, Hand-
book of Computational Economics, Volume 2: Agent-
Based Computational Economics, Handbooks in Eco-
nomics Series. North-Holland, 2005.

[49] V. A. Vittikh and P. O. Skobelev. Multi-agent sys-
tems for modelling of self-organization and cooper-
ation processes. In XIII Intern. Conference on the
Application of Artificial Intelligence in Engineering,
pages 91–96, Galway, Ireland, 2002.

[50] S. Voulgaris, M. Jelasity, and M. van Steen. A ro-
bust and scalable peer-to-peer gossiping protocol. In
G. Moro, C. Sartori, and M.P. Singh, editors, Pro-
ceedings of Agents and Peer-to-Peer Computing: Sec-
ond International Workshop, AP2PC03, volume 2872
of Lecture Notes in Artificial Intelligence, pages 47–
58, Berlin, 2003. Springer-Verlag.

[51] L.S. Vygotsky. Mind and society: The development
of higher mental processes. Harvard University Press,
Cambridge, MA, USA, 1978.

[52] S.C. Wang, K.Q. Yan, and C.H. Wei. Mobile target
advertising by combining self-organization map and
decision tree. In Proceedings of the IEEE Interna-
tional Conference on e-Technology, e-Commerce and
e-Service (EEEí04), pages 249–252, 2004.

[53] S. Weeks. Understanding trust management systems.
In IEEE Symposium on Security and Privacy, pages
94–105, 2001.

[54] K. Werbach. Syndication: The emerging model for
business in the internet era. Harvard Business Review,
85:85–93, 2000.

72 Informatica 30 (2006) 63–71 S. Hassas et al.

 Informatica 30 (2006) 73–82 73

Applications of Self-Organising Multi-Agent Systems: An Initial
Framework for Comparison
Carole Bernon
IRIT, University Paul Sabatier
31062 Toulouse Cedex 09, France
E-mail: bernon@irit.fr, http://www.irit.fr/SMAC

Vincent Chevrier
LORIA
BP 239
54506 Vandoeuvre Les Nancy Cedex, France
E-mail: chevrier@loria.fr, http://www.loria.fr/~chevrier/

Vincent Hilaire
SeT, UTBM
90010 Belfort Cedex, France
E-mail: Vincent.Hilaire@utbm.fr, http://set.utbm.fr/membres/hilaire/index.php

Paul Marrow
Pervasive ICT Research Centre, BT Group plc
Orion 1 PP 12, Adastral Park, Ipswich IP5 3RE, United Kingdom
E-mail: paul.marrow@bt.com, http://www.btplc.com/

Keywords: multi-agent system, self-organisation, applications, software

Received: April 18, 2005

A lot of work is devoted to formalizing and devising architectures for agents' cooperative behaviour, for
coordinating the behaviour of individual agents within groups, as well as to designing agent societies
using social laws. However, providing agents with abilities to automatically devise societies so as to
form coherent emergent groups that coordinate their behaviour via social laws, is highly challenging.
These systems are called self-organised. We are beginning to understand some of the ways in which self-
organised agent systems can be devised. In this perspective, this paper provides several examples of
multi-agent systems in which self-organisation, based on different mechanisms, is used to solve complex
problems. Several criteria for comparison of self-organisation between the different applications are
provided.
Povzetek: Članek opisuje primere in kriterije samoorgarnizacije v agentnih sistemih.

1 Introduction
Multi-Agent Systems (MAS) have attracted much
attention as means of developing applications where it is
beneficial to define function through many autonomous
elements. As multi-agent systems get more complex,
questions arise about the best way to control agent
activity, and thus application performance. Centralised
control of MAS is one approach, but is of limited use
because of the risk of dependency on the controlling
element, and the consequential lack of robustness. This
also makes little sense when agents have capabilities of
autonomy that can provide useful benefits in
applications. Partially or completely decentralised
control is an alternative, but means of implementing this
without disrupting agent performance in support of
applications are important. Mechanisms of self-
organisation [7] are useful because agents can be
organised into configurations for useful application
without imposing external centralised controls.

This paper discusses several different mechanisms
for generating self-organisation in multi-agent systems
[8]. Reactive multi-agent systems [29] provide the basis
for self-organisation in several examples as the
interaction between the agents and their environment
provides the flexibility for dynamic change. Cooperation
drives self-organisation in the AMAS agent modelling
theory [2][8]. The holon concept can also be used to
define and analyse self-organising agent systems [26]. In
this introductory part, these approaches are now
discussed in a more detailed way.

1.1 Self-organisation by Reactive Multi-
agent Systems

Reactive multi-agent systems [29] are systems made up
of simply behaving units with decentralized control.
Agents are situated in a dynamic environment through
which they interact. They are characterized by limited
(possibly no) representation of themselves, of others and

74 Informatica 30 (2006) 73–82 C. Bernon et al.

of the environment. Their behaviours are based on
stimulus-response rules. Decision-making is based on
limited information about the environment and on limited
internal states and does not refer to explicit deliberation.
The individuals do not have an explicit representation of
the collective task to be achieved because of their
simplicity. Therefore, the solution of the problem is a
consequence of successive interactions between agents
and the environment. Their characteristics enable them to
adapt dynamically their function or structure to changing
conditions without external intervention.

Using such a model to solve a given problem
requires designing a system as three components: the
environment, the agent behaviours and the dynamics of
the whole such that the agent society is able to fulfil its
requirements with a reasonable efficiency.

1.2 Self-organisation using Cooperative
Information Agents

A specific example of a platform for self-organisation
using reactive multi-agents is provided by the DIET
Agents platform. This platform [14][6] is a suitable basis
for self-organising applications using cooperative
information agents. This platform was developed as part
of the EU DIET project, inspired by the way that
complexity emerges in natural ecosystems.

The DIET Agents platform [14][6] is designed as a
three layer architecture: (1) core layer; (2) application
reusable component layer; (3) application layer. The core
layer provides the minimal software needed to implement
multi-agent functionality, through the DIET platform
kernel. It also provides basic support for debugging and
visualisation. The basic classes and elements in the DIET
platform kernel are arranged around an element
hierarchy: worlds, environments; agents; connections,
and messages.

Agents are located in environments, and can form
connections with each other through which messages can
be passed. Multiple environments can be situated in
worlds. Agents are initially created with only four
possible behaviours: creation (of other agents);
destruction (of itself); communication (with other
agents); migration (between environments). But they are
designed so that their properties can be extended.

The other two layers of the platform, the application
reusable component (ARC) layer, and application layer
support this extension. The ARC layer provides
functionality that can be shared between applications, but
is not essential for the DIET kernel, while the application
layer provides application-specific functionality.
Software for applications can be developed in this layer
without having to disrupt the core layer.

This platform is appropriate for applications
involving cooperative information exchange because
individual agents can take on cooperative behaviour by
extension of their autonomous capability. The platform is
designed that agent action is resource-constrained, so that
actions will stop if they start consuming too much system
resources. Actions are also fail-fast; they will fail if they
are not executed immediately. In this way applications
requiring the interaction of many agents can be supported
within realistic resource constraints.

This platform is also suitable for applications
involving self-organisation because no decisions have
been made about how agents should be organised, and
they are free to rearrange within and between
environments according to application requirements.

1.3 Self-organisation by Cooperation in
AMAS

For several years the SMAC (for Cooperative MAS)
team has studied self-organisation as a means to get rid
of the complexity and openness of computing
applications [2]. A theory has been proposed (called
AMAS for Adaptive Multi-Agent Systems) in which
cooperation is the engine thanks to which the system
self-organises for adapting to changes coming from its
environment (see [2] and section 4.4. in [8]). Cooperation
in this context is defined by three meta-rules: (1)
perceived signals are understood without ambiguity, (2)
received information is useful for the agent’s reasoning,
and (3) reasoning leads to useful actions toward other
agents. Interactions between agents of the system depend
only on the local view they have and their ability to
cooperate with each other. These modifications make the
organisation of the system also change and therefore
make the global behaviour of the system emerge. At the
agent level, cooperation is described in a proscriptive
way: an agent knows how to detect situations it judges
being non cooperative, from its point of view, and acts
for always trying to remain cooperative toward others but
also toward itself.

1.4 Self-organisation by Holons
According to Koestler, a holon is a self-similar structure
that may consist of several holons as sub-structures [17].
The hierarchical structure composed of holons is called a
holarchy. Holarchies allow the description of systems as
recursive self-similar entities which constitute the holons.

We have chosen to describe the behaviour of the
members of a holon and their interactions in terms of
roles and organisation. These roles represent the "status"
of the holon inside a specific holon. In our approach each
holon may play four roles: StandAlone, Head, Part and
Multi-Part. As a holon joins a HMAS (Holonic Multi-
Agent System) Organisation, it has no special bindings
and does not collaborate with any other holon.

This situation represents a Stand Alone Behaviour. In
this state, the agent's decisions are not attached to any
restriction but its own goals and objectives. The holon
will remain in this state as long as it is satisfied. The
Stand-Alone represents how "non-members" are seen by
an existing holon. Following the Holonic Paradigm, the
holon seen as a Stand-Alone can actually be the
Representative of a holon.

As the representative, the holon plays the Head role.
According to the objective and rules of the holon, the
Head responsibilities and rights may range from merely
administrative tasks to be able to take decisions
concerning all members. The head is not necessarily a
unique holon. After an holon starts performing the Head
Role, it will be the representative of the members of his
Holon at this level and therefore, able to engage the
holon in new tasks.

APPLICATION OF SELF-ORGANISING... Informatica 30 (2006) 73–82 75

Members not playing the Head role are considered as
Parts of the holon. Once a holon is accepted in a Holon,
its autonomy is reduced because of its obligations with
the Holon. The degree of this autonomy lost may vary
according to the holon's purpose.

The MultiPart Role is a special case of the Part Role.
This role is played by holons belonging to more than one
Holon. Interesting possibilities are available when a
holon is shared.
In order to enable holons to dynamically change their
roles, we define a notion of satisfaction. Each holon tries
to be self-satisfied. If it cannot reach a satisfaction
threshold it tries to change its role. Eventually the last
concept of the framework is affinity. The affinity enables
one StandAlone holon to choose with which holon to
merge. It measures the compatibility of the holon's goals
and services.

Self-organisation by holons uses direct interactions
and cooperation (see section 4.5 in [8]).

1.5 Overview
Given the existence of multiple mechanisms for
generating self-organisation in multi-agent systems, what
can self-organised systems be used for? Section 2
reviews a variety of examples of MAS applications
drawing upon self-organisation. Section 3 seeks to
compare these applications, by identifying some criteria
that are general to multi-agent systems. Section 4
provides a conclusion.

2 Applications
The diversity of approaches for stimulating self-
organisation within multi-agent systems means that MAS
have the potential to support a variety of applications.
This section describes some example applications using
MAS that draw upon self-organisation to make the
applications more effective.

Two applications address problems in information
retrieval, using middle agents (section 2.1) and
evolutionary algorithms (section 2.2). Further
applications are considered in the areas of timetabling
(section 2.3), flood forecasting (section 2.4), land use
allocation (section 2.5), localisation and tracking (section
2.6), adaptive meshing in wireless networks (section 2.7)
and traffic simulation (section 2.8). Other examples of
application can be found in [18].This wide range of
examples gives an indication of the usefulness of self-
organisation in achieving the complex behaviour
required for real-world applications.

2.1 Self-organisation of User Communities
using Middle Agents

Multi-agent systems can be used to support information
exchange within user communities by providing each
user with a user agent that represents their interests. But
how does a user agent make contact with other user
agents that represent users with common interests?
Assuming that not all users know each other, which is
probably realistic, a pure peer-to-peer network could be
used. This would involve flooding a network with
queries. But this is inefficient, and risks overloading the

system with queries. Middle agents or brokers are an
alternative - user agents communicate with middle agents
[5]. Multi-agent systems for information exchange using
middle agents have been proposed which are centralised
(e.g. [22]) - all queries go to one broker - but there is a
risk that they will not be so robust, if the middle agent
does not perform well. In this example we consider an
application where middle agents are used in a
decentralised configuration.

The self-organising communities application [31]
assigns each user a user agent. There are also multiple
middle agents in the system. User agents do not retain a
profile for their user, but they forward queries to the
middle agents. The user agents carry and seek to acquire
information for their users. Each user agent registers with
at least one middle agent. Once they are registered with
the middle agent, the middle agent can access
information that the user agent holds that may be of
interest to other user agents. Each middle agent receives
queries from multiple user agents. Given these queries
the middle agent carries out a search of the pool of
information it holds from user agents already registered
with it. If it can respond to the query using this
information then that information is dispatched to the
user agent that issued the original query and the search is
rapidly completed. If not, the middle agent can interact
with other middle agents to try and obtain information
from them. Once the middle agent has carried out this
search, it relays the result to the user agent.

The middle agent then examines whether the search
was successful, and if so provides a positive mark to the
two user agents, both the requestor and the provider. If
the search was unsuccessful, the requestor gets a negative
mark, to indicate load on the system. After marks have
been assigned the middle agent checks the location of the
requestor and provider user agents. If the search has been
successful, and the requestor and provider agents are not
already registered with it, the middle agent requests the
middle agent with which the provider agent is currently
registered to transfer the provider agent to the group of
the requestor agent. Movement of agents between groups
is regulated by the awards given to user agents following
responses to queries, and designed to get user agents into
the same groups around middle agents where they often
have queries covering common areas. In this way user
communities can be built up using user agents and
middle agents, without any central control on agent
behaviour. This is a highly scalable process that
continues to operate highly efficiently even as the
number of users increases substantially.

2.2 Self-organisation through Evolving
Agent Populations

We can use a MAS to represent user interests through
user agents, but given that there may be many different
users in different locations there may be problem in
finding other users to interact with. The evolving
preferences application [18] considers an application
scenario where many users interact with each other via a
DIET Agents platform supporting user agents. Each user
deploys a user agent in a DIET environment, but because
users may interact with the system in different contexts,

76 Informatica 30 (2006) 73–82 C. Bernon et al.

there will be a lot of different environments. The
different environments are connected in a peer network.
User agents stay in their own environment, but create a
population of scout agents that they send through the
peer network to search out other user agents representing
users with common interests.

Each scout agent carries information representing the
interests of the user that it represents. It also has a
preference for environments determined by a bitstring
genome created when it is generated. Based on this
genome it will search out other environments and interact
with other scout agents in them. Scout agents then return
to their home environment and report back information
that they have gathered in other environments; both
about different environments and about their success in
interacting with other scout agents representing similar
interests. On return to their home environment scout
agents are destroyed, but their genome is used in an
evolutionary algorithm where the selection criteria is
defined by the success of the scout agent in locating
environments where there are other scout agents to
interact with that have similar interests. Over time the
evolutionary algorithm converges to a situation where
scout agents will converge in environments according to
their users' preferences, so that different environments
hold different user agents that can interact on behalf of
their users. This shows how an evolutionary algorithm
can be combined with agent interaction in a distributed
network to stimulate self-organisation of agents into
different environments, and thus to stimulate information
exchange between users in different environments.

2.3 Self-organisation for the School
Timetabling Problem

An example of a classical constraint-satisfaction problem
(CSP) is the school timetabling problem in which a
timetable for a certain duration must be found while
respecting the explicit constraints (availability,
specialisation, equipment needed…) of different
stakeholders (teachers, student groups and possibly
rooms) as well as their implicit constraints (for example,
impossibility to be in two places at the same time). The
inherent distributed aspect of the timetabling problem
explains a processing by a MAS. Unlike most of the
approaches using MAS (for instance [4]), agents do not
use negotiation to find a solution in ETTO (Emergent
Time Table Organisation), the problem solver presented
here [23].

The environment is made of a three-dimensional
virtual grid composed of cells. Each cell represents a
time slot for a given day, for a given hour, and for a
given lecture room.

Two kinds of cooperative agents were identified: a
Representative Agents (RA) and Booking Agents (BA).
A RA is associated with every human stakeholder,
manages its constraints and represents an interface with
the real world. RAs delegate time slot and room search to
Bas which are the actual self-organizing agents. A BA
explores the grid to find free cells and meet potential
partners in order to fulfil its aim: booking a time slot for
a given lecture to give (for a teacher) or to take (for a

student group) in accordance with constraints used by its
proxy RA.

The behavioural model is based on the AMAS
theory, the engine of self-organisation is cooperation.
Five different situations for reorganisation are identified
based on the three meta-rules ensuring cooperation (see
section 1.3) For instance, if a BA ba1 encounters, in a
given cell, another BA ba2 with which it cannot partner
(for example, two teachers meet), ba1 judges this
situation as incompetence and changes its location to find
a more relevant partner. Furthermore to enable a more
efficient exploration of partnership possibilities, ba1 will
memorise the location and the BAs it may know via ba2,
to exchange them during further encounters. In a
cooperative situation, a BA books the cell in which it is
situated, and partners with another BA.

The positive results obtained by now show that the
approach used is suited for this kind of problem. BAs are
able to relax constraints to find a solution. A solution is
found when constraints or stakeholders vary (added or
removed) in a dynamical way. Furthermore, the ability to
insert agents has enabled us to show that adding
supernumerary agents helps finding a solution and gives
better results. This can be explained by the fact that the
added agents can disrupt others which are satisfied with a
solution that could be optimised. However ETTO has
weaknesses. By nature, cooperative agents in AMAS
have only a limited knowledge about their environment
and do not know the global goal to achieve as well as the
global cost of the solution they may found. Thus they go
on exploring the grid to find a more relevant solution
even if the best solution is already found. An external
observer has to stop the solving process when the
organisation fits his requirements.

Many approaches have been used to try to solve such
a problem (see for example, the “Practice and Theory of
Automated Timetabling“ at the URL:
http://mat.gsia.cmu.edu/PATAT04/). Most of them are
(distributed) CSP-based solvers, some are agent-based
solutions, some use evolutionary approaches and others
ant algorithms [28]. Timetabling problems in the real
world are dynamic problems, restarting from scratch
each time a constraint is modified (added, removed)
would not be efficient and few works are interested in
this problem. Usually, the main objective is to have the
smallest impact possible on the current solution as in [21]
in which this is done by introducing a new search
algorithm that limits the number of additional
perturbations. In ETTO, self-organisation enables the
system to adapt to perturbations and changes in its
environment because modifying a stakeholder’s
constraint makes the corresponding BA question its
bookings and its possible partnership. If it judges that
they are inconsistent with its new state, it tries to find
new ones by roaming the grid and applying its usual
behaviour.

2.4 Self-organisation for Flood Forecasting
Flood forecasting is a complex dynamic problem,
parameters that can explain this phenomenon are
numerous and heterogeneous: including hygrometry,
declivity, surface, nature and permeability of the ground,

APPLICATION OF SELF-ORGANISING... Informatica 30 (2006) 73–82 77

rain heights, stations topologies, … Current forecasting
systems have a physical approach of this phenomenon:
the better these parameters are known, the better results
are. Tuning these parameters for a forecast station take
several months and they have to be adjusted when
environmental conditions evolve.

The STAFF real-time simulator uses an adaptive
model for flood forecasting, which is composed of two
levels of self-organizing multi-agent systems [13].

The environment is made of the sensors of the
Garonne river basin.

Agents of the lower level represent each physical
sensor. Such an agent has to encapsulate its datum for
determining its influence on the forecast that the system
has to model. The goal of each upper level agent is to
compute the water level variation during a unitary period
(typically an hour); for that, it uses a weighted sum of
agents in the lower level.

The behavioural model is based on the AMAS
theory. The hydrological model's adaptive nature is
obtained by adjustment of these weights, decided from
cooperation between the agents. Agents do not know the
objective of the global system, the self-organisation by
cooperation between agents defines how the model has to
be adjusted according to the input data, the results
coming from other agents and the error made on the
forecast. This makes the model generic and improves its
performances.

Positive results were obtained showing that the
model correctly followed the real evolution of the flood
even in limit use cases (such as noisy and missing data,
totally upstream stations or real-time learning) in which
usual hydrological models are inadequate. The model
does not need any predefined parameters because it is
adjusted just once, when installed, using historical flood
data. For example, one week was sufficient to adjust the
24 models currently used for the stations making flood
forecasting in the Garonne river basin.

Classical physic-hydrological forecasting models are
mathematical approaches that consist in generic formula
which parameters are tuned from measures on ground
and from historical account of flood. Neural networks
have been used in flood forecasting, for instance in [30]
or used with self-organising feature map [15]. In the
former approach, relevant stations must be selected by
hand and the learning algorithm is not a generic one. In
both approaches, contrary to STAFF, there is no real-
time learning.

2.5 Self-organisation for Land Use
Allocation

Based on a real-world problem, we applied a self-
organising approach to simulate the assignment of land-
use categories in a farming territory, in the north-east of
France [9][8]. This problem exhibits a function to
optimise, while respecting a set of constraints, both local
(compatibility of grounds and land-use categories) and
global (ratio of production between land-use categories).
This problem is one instance of quadratic assignment
problem.

The environment is the set of available zones in the
farming territory, each zone is featured by its surface, its
distance to the village, the kind of soil, etc.

Agents are gathered into groups, each being
associated to a land-use category. A group has a goal to
satisfy by conquering spatial zones in the environment
while respecting some constraints.

The behavioural model is based on a few principles
inspired by the eco-problem solving approach [11]. An
agent can conquer a zone in the environment and then
contribute to the satisfaction of its group; the zones are
more or less attractive for an agent; when searching for a
zone, an agent chooses the most attractive one. If the
zone is free the agent occupies it; if it is already
occupied, the two agents have to fight, and the outcome
is determined by the respective strengths of their groups.
Finally, the strength of a group decreases while its
satisfaction increases, in order to ensure that groups
farther from their objectives gain an advantage over
those closer.

The problem-solving process exhibits interesting
properties. The system produces results that fit the
expert's requirements and that are comparable with
results obtained by simulated annealing.

The dynamic of the problem-solving process is
convergent to a stable state (which is a solution to the
problem); is an anytime process (the system can be
stopped at any step and is able to produce a solution the
quality of which is dependent of the number of steps).
Furthermore, the model exhibits self-adaptation
properties: at runtime we can add or remove zones or
land-use category and the system stabilises again to a
solution. We obtained the same properties when
modifying a group's goal.

A lot of works on optimisation problems exist (e.g.
[3]), however most of them are not self-organizing; two
exceptions are built on reactive agents that self-organize.
The first (Ant Colony Optimisation) is inspired by the
foraging behaviour of ants [1] and the second (Particle
Swarm Optimisation) by flocking [10]. Both provide
results comparable to more conventional optimisation
methods.

In our case, we compared our system with simulated
annealing. Simulated annealing provided better mean
results even if the best solutions were found by the MAS
approach.

2.6 Localisation and Tracking using Self-
organisation

The localisation task can be defined as finding the
position of an object (or more than one), mobile or not, in
a well defined referential location. The tracking problem
is to provide a succession of positions that are spatially
and temporally coherent. We proposed a reactive model
to tackle this issue [12].

The environment of the agents is a representation of
the real world. It is a square grid in which each state
represents a target's possible position and is featured by
an altitude that represents the possibility of presence of a
target at this position and is provided by sensors.
Environment dynamics is determined by accumulation
and evaporation principles. The altitudes are refreshed

78 Informatica 30 (2006) 73–82 C. Bernon et al.

(accumulation) continuously as soon as sensors can
furnish data. In the absence of data, altitude is decreasing
(evaporation).

Agents are equivalent to weighted particles evolving
in an environment of force field.

The behavioural model used is inspired by a model
of flocking [24] but is expressed through a formulation
taken from Newtonian physics (i.e. all behaviours are
expressed as a combination of classical forces). Agents
are attracted by position according to their altitude and
are mutually repulse each other. Agents' movements are
the consequence of these forces.

We designed these antagonist behaviours to obtain a
focusing of the agents on the position of highest altitude
and a homogeneous spatial distribution of them in the
rest of the environment (where there is a null altitude).
Focusing is an emergent phenomenon, and is the solution
of the problem: a group corresponds to the detection of a
target.

We compare our proposition with the Kalman filter
in case of real robots' localisation [27]. The Kalman filter
is better than the agent-based method when there is no
noise. This advantage decreases when noise is
introduced. Furthermore, the agent-based approach
requires less knowledge about the problem than the
Kalman one.

The approach is able, at runtime, to deal with a
variable number of targets and it is possible to add or
remove sensors which is very difficult to take into
account with classical algorithms. As far as we know
there is no self-organized approach for localization.

2.7 Self-organisation for Adaptive
Meshing in Cellular Radio Networks

A distinguishing feature of cellular radio mobile
networks is the rapid increase of the consumer demand
and the ensuing complexity in their design and
management. Responding to this demand requires the
space to be partitioned between a large amount of service
units or cells. The adaptive meshing problem for
dimensioning considers traffic statistics as a predefined
resource that must be attributed to many adaptive low
power Base Transceiver Stations. The environment is
discretized in meshes which contains a number of
resources according to traffic statistics. Each mesh will
be assigned an agent whose main and unique goal is to
cover the traffic in that mesh [26]. This goal must be
accomplished respecting certain constraints like
geometry and the maximal traffic that an antenna can
cover. The problem solving is done by building up
holons which cover a resource.

In the adaptive mesh problem, a stand-alone holon
must ensure the coverage of its resource, then it will try
to join a mesh immediately. The only situation where it
remains in a stand-alone role is when its resource can get
an antenna for it alone. A holon that performs the head
role will be responsible for respecting the constraints of a
mesh. It will be representing a possible mesh in the
system, and will accept or refuse other holon's requests to
fusion according the constraints. Although all heads
represent possible meshes in the system, a Holon Head
can decide to leave its role if, after trying to improve the

Holon's satisfaction, the satisfaction is insufficient to
remain as a Holon. In order to improve the Holon's
satisfaction, will accept new holons to increase the Holon
covered resource, or will command member holons to
leave the Holon if they don't respect the geometrical
constraints or if the covered resource has exceeded the
maximum.

A holon gets the Part role if negotiations with a
Holon succeed. It will remain in the Holon if its
satisfaction level is raising. However, it is also possible
that the agent receives a command to leave the holon, in
that case, it must return to Stand-Alone and restart the
merging process.

The holon's identifier should give the position of the
holon's resource (X, Y coordinates) and the traffic it
contains.

Using these values, a holon can determine whether
or not to merge. As explained before, the affinity should
give a measure of the compatibility of the holon's goal
and services. In this particular case, both holons will
have the same goal, to ensure the coverage of their
resources. Therefore, the main problem is to ensure that
the geometrical constraints are respected. The affinity
could be decomposed in two main parts: the distance
affinity will provide a geometry dependent value used to
ensure that the geometrical constraints are respected. As
we need square meshes, we will use two parameters to
test the distance affinity. First, we will check if the holon
trying to merge is inside the acceptance distance. The
Resource affinity is used to ensure that the limits of an
antenna are not exceeded.

2.8 Self-organisation for Traffic
Simulation

Multi-agent Systems operate within an environment and
therefore, in an Agent Based Simulation (ABS) special
attention must go to the analysis, model and
implementation of the environment [20].

We propose the use of holarchies for the modelling
of environments [25]. We simulate traffic within an
industrial plant. The environment of this simulation is
defined by the topology and road network of the plant.
The concept of road is divided into links. A link
represents a one-way lane of a road. A segment is
composed of two exchange points, called input and
output exchange points, and a link. Exchange points let
vehicles pass from one link to the other. An exchange
point is always shared by at least two segments and thus
plays the multi-part role. The industrial plant is
composed of a set of zones, that in turn contain Buildings
and Segments. Buildings and Segments can also
communicate through shared exchange points. Usually
an exchange point represents a crossroad, but in can also
represent an entrance used by trucks to access buildings.
The agents will be the different vehicles driving through
the plant. Each holon of the holarchy represents a
specific context. For this simulation (HTS in the sequel)
it's a specific place in the plant. These places have
different granularity levels according to their level in the
holarchy. During the simulation vehicle agents move
from one holon to another and the granularity is chosen
by execution or simulation constraints such as which

APPLICATION OF SELF-ORGANISING... Informatica 30 (2006) 73–82 79

features can be observed. The dynamic choice of the
environment granularity level during the simulation is
transparent for the agents. The problem here is the
simulation of traffic and the solving process is again
based upon building and re-organisation of holarchies as
vehicles drive through the plant and change the holon
they belong to.

This holarchy defines the organisational and
topological structure in which agents will evolve. Each
environmental holon will enforce contextual physical
laws and represent a specific granularity level of the real
plant topology. This holarchy is predefined as it
represents the real plant environment. Indeed, the latter
can't evolve and the physical laws we need to enforce are
known a priori. All necessary information to simulate the
traffic inside a link is local (other vehicles, road signs,
etc). This makes the model easier to distribute in a
network and leaves the door open to Real-time
applications as well as Virtual Reality implementations.

This approach has many advantages for the
simulation. Indeed, such a definition of the environment
allows the progressive decomposition of the environment
complexity and enables to assign environmental laws to
the pertinent holon.

3 Comparison and Discussion
This part is an attempt to compare self-organised systems
presented above using a list of criteria inspired by the
work done in the AgentLinkIII “Self-organisation in
MAS” Technical Forum Group. The first paragraph of
this section lists all the criteria we use along a
classification based on the level at which they can be
expressed. In the next section, each criterion is discussed
in more detail with regard to our different approaches.

3.1 Criteria Used
Some of the criteria we use can be considered as
descriptive/static criteria of the approach whilst others
are related to the dynamical aspects of the problem
solving process. Criteria belonging to the first group can
be stated without running the system but by “simply”
looking at its description:

• Absence of external or of centralised control: no
entity, external or internal to the system, is
explicitly responsible for the actions of agents or
for centralising information flow.

• Dynamic operation: the solution is built in a
dynamic way and not by applying a predefined
plan or by instantiating a predefined solution.

• Emergent properties: properties that emerge from
local interactions within the system and that
cannot be deduced by simply observing
individual behaviours (see section 3 in [8]).

• Simple local rules: do simple individual
behavioural rules lead to complex patterns?

• Reusability: is the solution (or part of it) reusable
in other contexts?

On the contrary, criteria found in the second group need
experiments to be tested:

• Anytime property: the system can be stopped at
any step and is able to produce a solution the

quality of which is dependent of the number of
steps.

• Instability: is the system non-linear, is it sensitive
to parameters variations?

• Adaptation: how does the system react to
changes coming from the environment of the
system?

3.2 Discussion
In some applications, the absence of external control
may not exist and some entities may centralise
information or decision. Therefore, applications can be
classified from fully decentralised to partially centralised.

For example, localisation application is fully
decentralised, as well as timetabling or flood forecasting.

On the contrary, in the holonic approach, Head role
refers to a partial centralisation of decisions. This loss of
autonomy corresponds to the holarchy handling.
Moreover, the Head role may be played by the entire
holon as a group.

The self-organising communities application, using
middle agents, is decentralised in that information
retrieval is distributed across multiple middle agents. But
the evolving preferences application, which evolves
environmental preferences for information exchange,
includes an element of centralisation through the use of
selection on scout agent populations; although this is
only partial as multiple populations are selected in
parallel.

In all the applications presented above, the solution is
built dynamically.

Emergent properties refer to simplicity of individuals, in
terms of local rules or behaviours, despite their collective
ability to produce a complex pattern. In other words the
concepts needed to explain the global properties are not
present at agents' level.
For example, in the land use allocation problem, the
global constraint (ratio of production between land-use
categories) is not explicitly represented at the agent level
but implicitly formulated through the groups' goal and
the strength of groups that affect the conflict's outcome.
In the localisation problem, we need to interpret the
spatial positions of the agents in order to detect groups
and then obtaining the target position. In the examples of
allocation and localisation, the agents' behaviour is
equivalent to stimulus-response rules and therefore is
simple (at least simpler than the collective patterns that
emerge).

In all problems solved with self-organisation by
cooperation, and following the AMAS theory, the
function of the system is not known by the agents which
only know their own local and simple function led by
cooperation rules. By not being able to have a global
knowledge, agents do not know when a solution is found,
and an external observer is needed to make this
detection.

For the holonic approach since holons are recursive
structures the behaviour of a holon may be the result of
interaction of sub-holons. Indeed, a holon which is

80 Informatica 30 (2006) 73–82 C. Bernon et al.

unable to accomplish its goal will try to merge with a
holon with complementary capabilities.

Emergent properties are also apparent in the self-
organising communities application, which converges to
a situation where groups of user agents with common
interests can interact despite an arbitrary configuration of
agents initially.

Following the anytime property, experiments have
shown that the main feature of the timetabling
application is that modifications can be done without
stopping the search for a solution (the schedule) while
this latter is in progress, unexpected events are processed
while actors are changing their constraints. The schedule
is constantly changing as agents are searching for better
bookings and partnerships and it becomes better as the
solving makes progress. In the flood forecasting, a
current solution (model) is given also at anytime, it
becomes better as the learning process progresses.
However, if disturbances appear, in both cases, the
current solution may be questioned by agents for which
unpredictable changes create non cooperative situations.
Therefore the solution may be totally changed, may
become totally “false” before converging again towards a
good solution in a more or less great time.

In the AM there is a first step which is the
construction of holarchies. After then the solution
improves as the time allocated grows.

All applications based on reactive agents
experimentally show their anytime ability.

In the self-organising communities application, user
agents and middle agents rearrange user communities
dynamically depending upon queries, and this can be
stopped and resumed at any time, and thus support the
anytime property. The evolving preferences application
uses an evolutionary algorithm to stimulate preferences
in populations of scout agents; the algorithm can be
stopped and restarted but it will not continue changing
for ever as an optimum will be reached.

Some solutions are reusable like the application
independent framework of the holonic approach which
can be applied to problem solving or simulation in
different contexts. The general framework of the solution
built for the timetabling problem can be also reused in
other constraint satisfaction problems (such as supply
chain management, for example) but rules enabling
agents to detect and solve non cooperative situations are
specifically suited to the problem.

Reaction to perturbations (sensitivity, robustness,
adaptation or instability). Given a system that stabilizes
on a state (solution), when a perturbation occurs the
system can i) escape from this state and potentially reach
another stable one (this is adaptation); ii) temporarily
change its state and come back to the initial stable state
(this is robustness), iii) change from state to state without
stabilizing (instability), or iv) change of state even in
case of small perturbations (sensitivity). To assess these
criteria, we need to perturb the system at runtime. A
perturbation can be viewed as an external event on the
system in relation with the unpredictable and dynamic
features of the application domain. In the timetabling

application, perturbations come from the stakeholders
that may change their constraints in a dynamic way, new
actors can also vary at runtime. Failures of sensors can
also be viewed as unexpected events for the flood
forecasting application.

In land-use assignment, we did successful
experiments where at runtime we changed the number of
zones, the number of land use categories or by changing
the goal of groups. In localization application, the system
can successfully deal with situations where the number
of targets and of sensors can vary at runtime. In all these
situations, the systems were robust or adaptive according
to the degree of the perturbation.

The timetabling application is a good example of a
non-linear complex system in which simple and small
variations (personal constraints, for example) may imply
major changes in the problem solution. Partnerships an
agent makes can disturb other agents, thus a little
modification in the timetable can question the current
solution which may vary greatly. The system is sensitive
to perturbations, but is also able to adapt to these
changes. Indeed, the very essence of systems built by
applying the AMAS theory is adaptation which is
obtained by enabling agents to locally decide to change
their interactions with each others using cooperation as a
local criterion.

In the AM and HTS the adaptation is done by the
reorganisation of holarchies and is the basis of the
approach.

In the self-organising communities application, the
behaviour of middle agents is designed to respond to
perturbations from users introduced via their user agents.
In this example a perturbation is in the form of a novel
query. This may provide information about a change of
interests of the user and hence of the user agent, and as a
result the user agent may move from one community
around a middle agent to another. The use of rewards for
successful responses to queries provides a mechanism to
react to perturbations. In the evolving preferences
application such response to perturbation is reflected in
changes in selection pressure on the scout agent
population, and hence changes in the outcome of the
evolutionary algorithm.

This framework is still a tentative way to compare self-
organised applications and it can be improved in two
directions.

The first is the criteria list itself: it is still subject to
discussion as the definition of criteria can be questioned
and other criteria can be added to refine this comparison
framework.

The second is related to the kind of answer for each
criterion; it is currently subjective according to the
interpretation of the definition. It would be of interest,
when criteria are well established, to provide
measurements of them. For example, measuring the
decentralisation degree by the percentage of agents in the
system that are directly involved by the decision of
another one (this can be measured by the number of
agent in a holon when the head agent takes a decision).

APPLICATION OF SELF-ORGANISING... Informatica 30 (2006) 73–82 81

4 Conclusion
Multi-agent systems can be developed in many different
ways. The autonomous nature of individual agents means
that complex properties can emerge at the multi-agent
system level. Self-organisation can be a useful way of
controlling and regulating this complexity, especially
when seeking to support an application. In a general way,
applications that are too complex to give an a priori
algorithm, that are plunged into open and real
environments (the Internet, for instance) and for which a
perfect design cannot be guaranteed can benefit from
self-organisation.

This paper has presented several examples of
applications based on multi-agent systems that use self-
organising behaviour among the agents to facilitate
application properties. The AMAS theory which uses
self-organisation by cooperation has been successfully
applied to various application domains: simulation, e-
commerce, network management, collective robotics,
mechanical design in avionics, flood forecasting, and
biological modelling. Reactive multi-agent systems have
proved useful in diverse application areas such as
localisation in mobile robotics They have also provided
the basis for cooperative information agents for
information retrieval. Agents based on self-organisation
through holons have been useful in meshing for cellular
networks, and in traffic simulation, for example.

Self-organising multi-agent systems are at an early

stage of development, with many different mechanisms
of self-organisation to be explored. Despite this a number
of examples have been outlined here, and already a
diversity of application areas are being explored. We can
anticipate self-organisation being of further relevance for
applications of multi-agent systems in the future.

The framework of comparison we have provided has
proven its usefulness to understand these approaches
even if it has to be considered as a first and tentative
approach that needs to be improved. It is obvious that the
choice of one approach is application-dependent and
these criteria may be of some help in this choice.

The authors would like to thank the participants of the
two meetings of the AgentLinkIII “Self-organisation in
MAS” TFG for their fruitful discussions.

References
[1] Bonabeau E., Dorigo M., and Théraulaz G. (1999)

Swarm Intelligence: From Natural to Artificial
Systems. Santa Fe Institute Studies on the Sciences
of Complexity. Oxford University Press, New
York, NY, USA.

[2] Gleizes M.-P., Camp, V. and Glize P. (1999) A
Theory of Emergent Computation Based on
Cooperative Self-Organisation for Adaptive
Artificial Systems, 4th European Congress of
Systems Science, Valencia.

[3] Corne D., Dorigo M., and Glover F. (1999) New
Ideas in Optimization, Mac Graw Hill.

[4] De Causmaecker P., Ouelhadj D., and Vanden
Berghe G. (2003) Agents in Timetabling Problems.
Proc. of the 1st Multidisciplinary International

Conference on Scheduling Theory and
Applications, pp. 67-71, UK.

[5] Decker K., Sycara K. and Williamson M. (1997)
Middle-Agents for the Internet. Proc. of
International Joint Conference on Artificial
Intelligence (IJCAI-97), Japan, pp. 172-175.

[6] DIET Agents platform: http://diet-
agents.sourceforge.net/index.html

[7] Di Marzo Serugendo G., Foukia N., Hassas S.,
Karageorgos A., Kouadri Mostéfaoui S., Rana O.
F., Ulieru M., Valckenaers P., and Van Aart C.,
(2004) Self-Organising Applications: Paradigms
and Applications. Engineering Self-Organising
Systems: Nature-Inspired Approaches to Software
Engineering, G. Di Marzo Serugendo, A.
Karageorgos, O. F. Rana, F. Zambonelli (Eds),
Lecture Notes in Artificial Intelligence 2977,
Springer-Verlag, Berlin, pp. 1-19.

[8] Di Marzo Serugendo G., Gleizes M-P., and
Karageorgos A., (2005) Self-Organisation and
Emergence in MAS: An Overview, Informatica,
this issue, Ljubljana, Slovenia.

[9] Dury A., Le Ber F., and Chevrier V. (1998) A
Reactive Approach for Solving Constraint
Satisfaction Problems: Assigning Land Use to
Farming Territories, In Proc. of Agents Theories,
Architectures and Languages 98 (ATAL’98),
Lecture Notes in Artificial Intelligence 1555
“Intelligent Agents V”, J.P. Muller, M.P. Singh et
A. S. Rao (eds), Springer-Verlag, pp. 397-412.

[10] Eberhart R., Kennedy J., and Shi Y. (2001) Swarm
Intelligence, Morgan Kaufmann Publishers.

[11] Ferber J., and Jacopin E. (1990) The Framework of
Eco-problem Solving. In Proceedings of the
European Workshop on Modelling Autonomous
Agents in a Multi-Agent World (MAAMAW'90), pp.
181-193.

[12] Gechter F., Chevrier V., and Charpillet F. (2004)
Localizing and Tracking Targets with a Reactive
Multi-Agent System, In Second European
Workshop on Multi-Agent Systems (EUMAS'04),
pp. 255-262.

[13] Georgé J.-P., Gleizes M.-P. Glize P., and Régis C.
(2003) Real-time Simulation for Flood Forecast: an
Adaptive Multi-Agent System STAFF, Proceedings
of the AISB'03 Symposium on Adaptive Agents and
Multi-Agent Systems, University of Wales,
Aberystwyth, pp. 7-11.

[14] Hoile C., Wang F., Bonsma E., and Marrow P.
(2002) Core Specification and Experiments in
DIET: a Decentralised Ecosystem-Inspired Mobile
Agent System, Proc. 1st Intl. Conf. Autonomous
Agents and Multi-Agent Systems (AAMAS’02), pp.
623-630.

[15] Hsu K., Sorooshian S., Gupta H. Y., Gao X., and
Imam B. (2002) Hydrologic Modeling and Analysis
Using a Self-Organizing Linear Output Network, In
Rizzoli A.E. and Jakeman A.J. (eds), Integrated
Assessment and Decision Support, Proceedings of
the First Biennial Meeting of the International
Environmental Modelling and Software Society
(iEMSs’0), Manno, Switzerland, pp. 172-177.

82 Informatica 30 (2006) 73–82 C. Bernon et al.

[16] Kaplansky E., Kendall G., Meisels A., and Hussin
N. (2004) Distributed Examination Timetabling, In
Proc. of the 5th International Conference of the
Practice and Theory of Automated Timetabling
(PATAT), Pittsburg, USA, pp. 511-516.

[17] Koestler A. (1990) The Ghost in the Machine,
Reprint edition, Penguin, East Rutherford, NJ,
USA.

[18] Mano J.-P., Bourjot C., Lopardo G., and Glize P.
(2005) Bio-inspired Mechanisms for Artificial Self-
organised Systems, Informatica, this issue,
Ljubljana, Slovenia.

[19] Marrow P., Hoile C., Wang F., and Bonsma E.
(2003) Evolving Preferences among Emergent
Groups of Agents, In Adaptive Agents and Multi-
Agent Systems, E. Alonso, D. Kudenko & D.
Kazakov (eds.), Lecture Notes in Artificial
Intelligence 2636, Springer-Verlag, Berlin, pp.
157-173.

[20] Michel F., Gouaich A., and Ferber J. (2003) Weak
Interaction and Strong Interaction in Agent Based
Simulations. Multi-Agent Based Simulation III. D.
Hales et al. (Eds), Lecture Notes in Artificial
Intelligence 2927, Springer-Verlag, Berlin, pp. 43-
56.

[21] Müller T., and Rudova H. (2004) Minimal
Perturbation Problem in Course Timetabling, In
Proc. of the 5th International Conference of the
Practice and Theory of Automated Timetabling
(PATAT’04), Pittsburg, USA, pp. 283-304.

[22] Paolucci, M., Niu Z., Sycara C., Domashev S.,
Owens S. and Van Velsen, M. (2000) Matchmaking
to Support Intelligent Agents for Portfolio
Management, In Proc. of the 17th National
Conference on Artificial Intelligence and 12th
Conference on Innovative Applications of Artificial
Intelligence, Calif., AAAI Press, pp. 1125-1126.

[23] Picard G., Bernon C., and Gleizes M.-P., (2005)
ETTO: Emergent Timetabling by Cooperative Self-
Organisation, Third International Workshop on
Engineering Self-Organising Applications
(ESOA’05), Utrecht, The Netherlands, pp. 31-45.

[24] Reynolds C. W. (1987) Flocks, Herds, and Schools:
A Distributed Behavioral Model, In Computer
Graphics, SIGGRAPH Conference Proceedings, pp.
25–34.

[25] Rodriguez S., Hilaire V., and Koukam (2005) A.
Holonic Modelling of Environments for Situated
Multi-Agent Systems, Submitted to E4MAS’05.

[26] Rodriguez S., Hilaire V., and Koukam A. (2003)
Towards a Methodological Framework for Holonic
Multi-agent Systems, In Proceedings of the Fourth
Workshop on Engineering Societies in the Agents
World (ESAW’03), pp. 31-45.

[27] Roumeliotis S.I., Sukhatme G.S., and Bekey G.
(1999) Circumventing Dynamic Modeling:
Evaluation of the Error-State Kalman Filter applied
to Mobile Robot Localization, IEEE International
Conference on Robotics and Automation, IEEE
Computer Society Press, Los Alamitos, CA, USA,
pp. 1656-1663.

[28] Socha K., Sampels M., and Manfrin M. (2003) Ant
Algorithms for the University Timetabling Problem

with Regard to The-State-of-the-Art, In
Proceedings of the 3rd European Workshop on
Evolutionary Computation in Combinatorial
Optimization (EvoCOP’03), Essex, UK, pp. 334-
345.

[29] Van Parunak H. (1997) Go to the Ant: Engineering
Principles from Natural Multi-Agent Systems,
Annals of Operations Research 75, pp. 69-101.

[30] Vergnes J.-C. (1995) Etude de modèles de prévision
à la station de Nant - Exploitation de l’utilisation
des réseaux neuronaux en prévision de crues,
Report ENSEEIHT/DIREN.

[31] Wang F. (2002) Self-organising Communities
Formed by Middle Agents, Proc. 1st Intl. Conf.
Autonomous Agents and Multi-Agent Systems
(AAMAS’02), pp. 1333-1339.

[32] Yokoo M., Durfee E., Ishida Y., and Kubawara K.
(1998) The Distributed Constraint Satisfaction
Problem: Formalization and Algorithms, IEEE
Transactions on Knowledge and Data Engineering,
10, pp. 673-685.

 Informatica 30 (2006) 83–86 83

Eye-Tracking Adaptable e-Learning and Content Authoring Support
Maja Pivec, Christian Trummer and Juergen Pripfl
Department of Information Design,
Alte Poststrasse 152, A- 8020 Graz, Austria, Europe
University of Applied Sciences FH JOANNEUM, Graz, Austria

Keywords: adaptive e-learning, real time eye tracking, learning research, cognition, authoring

Received: May 28, 2005

In this paper we describe our ongoing research project called AdeLE, a framework for adaptive e-
learning utilising both eye tracking and content tracking technology. Possible areas of application are
described, such as using the information about the position of the eye for providing additional context
specific information to the learner. We report more in detail about current research challenges where
we observe users’ learning behaviour in real time by monitoring characteristics such as objects and
areas of interest, time spent on objects, frequency of visits, and sequences in which content is consumed.
This research is focused on analysing eye-movement patterns during learning and linking these patterns
with cognitive processes. The concept of the appropriate authoring tool is outlined as one of the
challenges for the future work.
Povzetek: V članku je opisan raziskovalni projekt AdeLE, katerega cilj je postaviti okvirno rešitev za
adaptivno učno okolje, ki temelji tako na tehnologiji sledenja pogledu in spremljanja učnih vsebin.

1 Introduction
Past research and projects at FH JOANNEUM,
Department of Information Design, have been among
others in the area of adaptive hypermedia systems
[SCALEX] and application of eye tracking for web
usability evaluation in the Web Usability Center. Gained
competences and experiences from the previous research
in the area of adaptivity and personalisation, as well as
user centered applications, created the motivation to
merge adaptive hypermedia systems and eye-tracking
technology with the goal of making learning more
efficient and effective. The AdeLE prototype offers a
solution framework in the direction of eye tracking based
real-time adaptive hypermedia systems.

What is AdeLE? The presented research of the AdeLE
(Adaptive e-Learning with Eye tracking) project is
focused on a new generation of adaptable knowledge
transfer in e-learning environments [AdeLE]. This new
and innovative approach strives to capture dynamically
user behaviour based on a real-time eye-tracking system
(see also [Pivec et. al 2004], [Pivec et al. 2005a]). We
apply eye-tracking for a more profound learning research
and improvement of cognitive processes understanding to
be able to support adaptive teaching and learning in a
technology-based e-learning environment in the future.

In our research we are concentrating on how information
from eye-movements could be used to support the
learning process. In most e-learning environments
information is mainly provided by means of written text.
Thus, reading this information is essential for learning.
By means of real-time tracking of the user behaviour,
unseen sections of content units provided to the learner
are identified by the system and the system might

intervene in an appropriate way. Of course, this method
can not reflect information about pre-knowledge. Based
on the information about content sections skipped by the
learner, adaptable and context specific assessment tests
can be compiled to check the learner’s knowledge about
these particular concepts.

The aim of this paper is to present the research
endeavours of the AdeLE project. The paper is based on
two conference publications: (i) Look Into My Eyes And
I Will Tell You How To Learn, by [Pripfl et al. 2005],
and (ii) Adaptable Features and needed Content
Authoring Support, by [Pivec et al. 2005b]. The paper
gives inside in the eye-tracking technology and outlines
application scenarios of adaptable e-learning by means of
eye tracking, as well as ongoing research and further
developments in the field of adaptive authoring.

2 Adaptable Learning Based on Eye-
Tracking

Real-time Eye-tracking (User Tracking)
Defining a reliable set of parameters is one of the
emerging research issues in the AdeLE project. Eye
movements, scanning patterns and pupil diameter are
indicators of thought and mental processing involved
during visual information extraction [Rayner 1998],
[Kahneman and Beatty 1966]. Thus, real-time
information of the precise position of gaze and of pupil
diameter could be used for supporting and guiding
learners through their learning journey.

How does eye-tracking work? Very roughly, eye
movements can be divided into two components:
fixations, i.e. periods of time with relatively stable eye

84 Informatica 30 (2006) 83–86 M. Pivec et al.

movements, where visual information is processed, and
saccades, which are defined as rapid eye movements that
bring a new part of the visual scene into focus. However,
more important indicators can be gained by analysing
both components together with other derived parameters.
Gaze duration (i.e. time spent on an object) and fixations
are not indicative of attention per se, because one can
also pay attention to objects, which do not lie in the
centre of the focused region. Nevertheless, by
considering other indicators, such as saccadic velocity,
blink velocity and rate as well as eyelid’s degree of
openness, a better and more meaningful approximation
can be gained. Saccadic velocity, for example, is said to
decrease with increasing tiredness and to increase with
increasing task difficulty [Fritz et al. 1992]. Further,
blink rate, decreasing blink velocity and decreasing
degree of openness may be indicators for increasing
tiredness [Galley 2001]. Thus, if tiredness is identified, it
should be possible through adaptive e-learning
mechanisms to suggest optimised strategies such as the
best time to take a break.

At the present there basically exist two types of eye-
tracking systems on the market: remote systems and
head-mounted systems. Remote systems are
characterised by the fact that one or more cameras record
the eye of the participant and trace the gaze in a scene
through imaging algorithms. The cameras are positioned
in front of the participant. One of the advantages of these
systems is given by the fact that the camera can be
integrated into the monitor, and therefore remains
basically invisible (i.e. a relatively non-intrusive
monitoring is possible). Head-mounted systems are
characterised by a special device that the participant has
to wear on the head like a helmet. More characteristics of
both systems along with advantages and disadvantages
related to the requirements of the AdeLE project are
outlined in detail in [Pivec et al. 2004].

The AdeLE project team decided to utilize the remote
eye-tracking system “Tobii 1750” with the infrared diode
lamps and camera are integrated into a 17” TFT monitor.
This system is easy to operate and all tracking processes
run automatically. Thus, it can be used for all forms of
eye-tracking studies with stimuli that can be presented on
a monitor, such as Web sites, slide shows, videos and text
documents. With real-time eye tracking user gaze data
are gathered. The evaluation of the users’ eye gaze data
gives information about what the user is doing, e.g.
learning or reading, looking at the pictures and
illustrations or eventually struggling with the system’s
navigation.

Eye Movement Parameters and Their
Influence on Adaptation
In our research we are concentrating on how information
from eye-movements could be used to support the
learning process. The study focuses on finding eye-
movement patterns which distinguish between skimming
through, reading of and learning facts from written text.

Based on various research findings different models of
eye-movement control during reading have been
developed. Their application is in general not feasible for
the contents of a real life e-learning environment. Guided
by the research literature but also considering the
practical usage of our system, we designed an eye-
tracking study in which subjects have to deal with texts
of three difficulty levels under four different conditions
(1. skimming through text, 2. single reading of text, 3.
learning the content of the text and 4. searching for a
specific information within the text). The study was
carried out with 40 test persons. The gathered data of this
study are applied for the definition of eye-movement
parameters which can reliably distinguish between the
four conditions listed above. In a further step these
parameters will be taken to identify user behaviour
within an e-learning environment in real-time (e.g. if the
user really learns a text or just reads it).

By merging eye-tracking technology with proper content
presentation the goal of the research is to identify,
evaluate and develop methods of adaptive instruction for
personalised e-learning. From real-time eye tracking data
six different user behaviour parameters are reported to
the AdeLE prototype: (i) learning, (ii) reading, (iii)
skimming through text, (iv) searching in text, (v)
observing a picture or reading a text and (vi) looking on
the navigational elements. User parameters can be in the
range between 0 and 1 expressing the probability of a
certain user behaviour. Reported user parameters trigger
further various reactions of the system in terms of
adaptation of the content and additional information
offered to the user. Application of SCORM run time
environment enables dynamic content sequencing, which
calculates the next steps and provides personalised
content for the individual user (see Garcia-Barrios et al.
2004 for detailed description of the AdeLE framework
architecture). For example in an e-learning course about
the handling of dangerous chemicals our system will
react as follows: The user is faced with a text he should
learn and know for understanding the following chapters
– the system detects that the user is just skimming
through this text – the system consults the user if he just
wants to get quick information about the lecture content
or structure, or if he already knows the details of the
content - – according the answers the system interacts in
one of the following ways: it suggests to show just the
abstracts of each chapter or to go on without any
changes; it provides some content specific questions or
suggests to repeat the lecture.

Real time user observation can be applied also for the
enhancement of a user profile that has influence on
adequately personalised course content presentation for
each individual learner. For example, the prototype can
distinguish between (a) learning style of the user (e.g.
text based, acoustic) and (b) cognitive style i.e. holist or
analyst, meaning that to the analyst the entire content is
presented consequently in contrast to the presentation of
the content to the holist, where an overview of chapters
and subchapters along with summaries is optionally
offered.

EYE-TRACKING ADAPTABLE E-LEARNING... Informatica 30 (2006) 83–86 85

Possible Application Scenarios
Currently, the research efforts of the AdeLE team
concentrate on three issues, which are discussed in the
following sections. The first issue is to develop methods
to extract individual learning strategies from the learner’s
gaze behaviour and adapt against the identified learning
style. Comprehensive reviews of cognitive psychology
research indicate that people exhibit significant
individual differences in how they learn [Schmeck 1988],
[Glaser 1984], [Honey 1986]. A simple example being
individuals who have a strong visual memory but weaker
verbal processing will find text based material harder to
process than individuals who have stronger verbal skills.
In the traditional classroom environment a teacher has
the chance to adapt or explain material to suit
individual’s needs. In e-learning environments where a
teacher is frequently not present, pedagogical material is
nowadays more uniformly presented. In an e-learning
environment information about the learner’s gaze
behaviour would be a great opportunity to optimise
material to an individual’s needs. For example, if
somebody prefers text and ignores pictures the amount of
pictures presented could be reduced, and vice versa.

The second issue addresses the usage of information
about the specific content accessed by the user (specific
words, paragraphs, areas of pictures, tables, and the like)
to provide additional context specific information. For
example, an animated picture could accompany textual
information, whereas the integration of the picture
proceeds in relation to the words or paragraphs accessed
by the user, as illustrated in the following example. In an
e-learning course concerned with Alexander the Great’s
Conquest of Persia, a map of Alexander’s advance in the
region is shown parallel to the text. The map content is
updated in correspondence to the paragraph currently
read by the learner. When the second paragraph about
Granikos is being read, the map shows in animated form
the journey of Alexander from Macedonia to Granikos.
When the reader has advanced to the fourth and fifth
paragraph about Alexander’s journey to Gaugamela, the
map is automatically updated with a corresponding
illustration containing the passage from Issos to
Gaugamela. Further research questions related to this
topic are “Does such an eye-triggered animation really
help a student to learn?” or “How should such an
animation be integrated into the text to support cognitive
processes?” among others.

The third research challenge is based on developing and
testing appropriate intervention strategies when the
learner is found to have problems. The e-learning
environment might react in an appropriate way when a
learner is not focused on a relevant part of the computer
screen, or is focused completely outside the task area for
a certain period of time, or the eye gaze is sufficiently
quick for a given period of time. Just to give one
example, in case of knowledge acquisition problems for a
particular content section more detailed content or
background information can be provided to the learner.

3 Adaptable Content Authoring Tool
Concept

To provide content structured to support adaptable and
personalised content presentation, adequate authoring
tools for content authors have to be provided. The basic
requirements of such a tool are as follows: to make the
authoring a structured process; to keep this process as
simple as possible and not to require from the authors to
think explicitly about adaptivity and various content
presentations.

Authoring Templates

Advancer

Novice

Expert

User Model User State

Repository

I-CH
I-CH

I-CHI-CH

I-CH

Adaption Engine

Presentation
Layers

User specific presentation

Figure 1: Authoring of adaptable contents

Within the further development of the AdeLE framework
a template based authoring tool that supports stepwise
authoring and separation of presentation layers and
content chunks will be provided. The structure of the
authoring tool is depicted on Figure 1. Based on
Templates the author is guided to provide different
chunks of content appropriate for different knowledge
levels of the learner (e.g. novice, advancer, expert: note
that the levels can be broken down in various manners).
Templates enable stepwise and structured authoring. The
information and knowledge chunks are then semi-
automatically tagged with meta-data and saved in the
Content Repository. The authoring tool has to support the
re-use of the content i.e. the application of the content
chunks from various repositories. The function of the
Adoption Engine is to dynamically create personalised
content from the available information chunks and
different presentation layers. The presentation layers can
be of different kinds e.g. role specific (learner, teacher,
author, etc.), goal or context specific (introduction to the
topic, basic definitions, application scenarios, etc.),
respective to the output device. The creation of a user
specific presentation is also influenced by the user model
and the user state.

4 Conclusions
The AdeLE framework with the assets of extreme
adaptation and personalisation to each individual user on
various levels (e.g. macro level in terms of general
adaptations of the course and micro level, where each
page can be different, considering also the pace and
momentary user performance) is the first step to

86 Informatica 30 (2006) 83–86 M. Pivec et al.

innovative human centered technology enhanced learning
and knowledge management solutions.

The ultimate goal of our approach is to interpret various
users’ parameters in form of input data for an adaptable
e-learning system that assists users to improve their
learning behaviour thus achieving better learning results.
In the context of user behaviour interpretation, it is very
important not to rely exclusively on eye tracking data,
but to supplement it also with constant user feedback. It
is possible to suggest optimised strategies such as the
best time to take a break, the best time for repeating
specific learning content considering the forgetting curve
[Davis and Palladino 2002] or suggesting better
sequencing of the learning objects. However, the user
will always retain the final decision on whether to accept
or reject the system’s suggestions.

The AdeLE framework can be integrated into different
applications e.g. content management systems, e-learning
environments, knowledge management systems etc., thus
providing new highly user sensitive personalised
adaptive solutions. The proposed authoring tool will
support appropriate adaptive content authoring.

Evidently, the price of an advanced eye-tracking system
plays a decisive role in the application possibilities of the
AdeLE solution approach. Nevertheless, existing systems
show that the eye-tracking device can be integrated into a
standard monitor. Due to the continuing trend of rapid
technical progress, we expect that in the next few years it
will be possible to build a low-cost but high-quality eye-
tracking system based on standard hardware components,
which will be suitable for real-time analysis of eye-
tracking information as described in this paper. This will
make it possible to provide applications related to
attentive workplaces for broad populations.

Acknowledgements
The AdeLE project is partially funded by the Austrian
ministries BMVIT and BMBWK, through the FHplus
impulse programme. The support of the following
institutions and individuals is gratefully acknowledged:
Department of Information Design, Graz University of
Applied Sciences (FH JOANNEUM); Institute for
Information Systems and Computer Media (IICM),
Faculty of Computer Science at Graz University of
Technology; especially Karl Stocker and Hermann
Maurer.

References
[AdeLE] AdeLE “Adaptive e-Learning with Eye

Tracking” project page http://adele.fh-joanneum.at,
accessed on 26.01.2005

[Davis and Palladino 2002] Davis, S. F. & Palladino, J.
J.: Psychology (3rd ed.), Prentice-Hall: Upper
Saddle River, NJ, 2002.

[Fritz et al. 1992] Fritz, A., Galley, N., Groetzner, Ch.:
Zum Zusammenhang von Leistung, Aktivierung
und Motivation bei Kindern mit unterschiedlichen

Hirnfunktionsstörungen, Zeitschrift für
Neuropsychologie, 1(1), pp. 79-92, 1992.

[Galley 2001] Galley, N.: “Physiologische Grundlagen,
Meßmethoden und Indikatorfunktion der
okulomotorischen Aktivität“; In Frank Rösler (ed.):
Enzyklopädie der Psychologie, 4, Grundlagen und
Methoden der Psychophysiologie, 2001, 237-315.

[Glaser 1984] Glaser, R.: Education and Thinking: The
Role of Knowledge, American Psychologist, 39, pp.
93-104, 1984.

[Honey 1986] Honey, P.: The Manual of Learning Styles,
Peter Honey: Maidenhead, Berks, 1986.

[Kahneman and Beatty 1966] Kahneman, D. & Beatty,
J.: Pupil diameter and load on memory, Science,
154, pp. 1583-1585, 1966.

[Pivec et al. 2004] Pivec M., Preis M.A., Garcia V.,
Guetl C., Mueller H., Trummer C., Moedritscher F.:
Adaptive Knowledge Transfer in E-Learning
Settings on the Basis of Eye Tracking and Dynamic
Background Library, in Proceedings of EDEN 2004
Annual Conference, Budapest, Hungary.

[Pivec et al 2005a] Pivec, M., Pripfl, J., Gütl, C., Garcia-
Barrios, V.M., Mödritscher, F. & Trummer, C.:
AdeLE First Prototype: Experiences Made. In
Proceedings of I-KNOW’05, 2005.

[Pivec et al.2005b]] Pivec, M., Pripfl, J., & Trummer,
C.: Adaptable Features and needed Content
Authoring Support. In Proceedings of the World
Conference on E-Learning in Corporate,
Government, Healthcare, & Higher Education (E-
Learn 2005), October 24-28, Vancouver, Canada.

[Pripfl et al. 2005] Pripfl, J., Pivec, M., Trummer, C. &
Umgeher, M.: Look into my eyes and I will tell you
how to learn. Proceedings of the European Distance
and E-Learning Network 2005 Annual Conference,
June 21-23, Helsinki, Finland.

[Rayner 1998] Rayner, K.: Eye movements in reading
and information processing: 20 years of research,
Psychol Bull, 124, pp. 372-422, 1998.

[SCALEX] SCALEX home page
http://www.scalex.info/, accessed on 20. 08. 2005

[Schmeck 1988] Schmeck, R.R.: Learning Strategies and
Learning Styles, New York, Plenum Press, 1988.

Informatica 30 (2006) 87–95 87

Integration of Access Control in Information Systems: From Role Engineering
to Implementation

Thion Romuald and Coulondre Stéphane
LIRIS / INSA University of Lyon
20 Av. Albert Einstein
69621 Villeurbanne Cedex, France
romuald.thion@insa-lyon.fr and stephane.coulondre@insa-lyon.fr

Keywords: role-based access control, object-oriented models, role engineering, security

Received: November 11, 2005

Pervasive computing and proliferation of smart gadgets lead organizations to open their information sys-
tems, especially by extensive use of mobile technology: information systems must be available any-time,
any-where, on any media. This cannot be done reasonably without thorough access control policies. Such
access control must be able to deal with user profile, time and even with more complex contexts including
geographical position. This paper shows that it is possible to take into account confidentiality constraints
straight into the logical data model in a homogeneous way, for various aspects generally treated indepen-
dently (user profile, time, geographical position, etc.). We propose a language called RAPOOL which
allows the expression of authorizations at the class level. We first present the syntactical aspects, then the
semantics of the language, based on the object-oriented paradigm.

Povzetek: Članek opisuje mobilne informacijske sisteme.

1 Introduction

Companies and general public interest for new technolo-
gies keeps growing, either for mobile use (laptops, Wi-fi,
pocket-PC, GPS, UMTS, Java technology in GSM, etc..) or
for legacy use. Information Systems (IS) now become open
and online. Therefore, security is in great demand, par-
ticularly for IS containing confidential data. New mobile
and pervasive technologies introduce the concept of con-
text. The need to include it in access control mechanisms
arises [16, 13]. Thus, from now on, access control tends
towards integration of user profile, time, state of the com-
puting environment and even geographical position [8].

1.1 Motivations

Security is considered as a non-functional requirement in
software engineering. Contrary to other non-functional re-
quirements, such as efficiency, modularity or usability, con-
fidentiality has been unconsidered for long. Thus, access
control management is often postponed until the end of the
design cycle and is implemented at the very end of the de-
sign process. The software is therefore developed without
taking confidentiality constraints into account. This usual
approach often leads to serious design challenges (e.g. in-
tegration of roles) and problems (e.g. software vulnerabili-
ties, information leakage) [17].

In this paper, we show how to take into account general
context data (user roles, spatio-temporal environment, etc.)
in a homogeneous way, straight in the object data model

(and more generally in Information Systems, Objects, Web
Services, etc) to provide an object-oriented language which
allows the expression of authorizations at the class level.
We do think that security must be present throughout the
whole development cycle. Our proposal describes a logical
data model in which contextual role-based access control is
integrated. We thus provide a support to upstream design
methods [9, 14] which can rely on it.

1.2 Our approach

We do think that security concerns must be considered
all the development cycle long. As user interface is
incorporated in software architecture (e.g. the model-
view-controller architecture separates an application’s data
model, user interface and its control logic), we argue that
access control, and in a broader sense security, must be
considered in the software development cycle, and not ne-
glected until the very end of this process.

To bridge this gap between the security will and its im-
plementation, our approach is to provide a consistent logi-
cal data model including role-based access control policies.
Since Role-Based Access Control (RBAC) is currently one
of the most seducing security models and since extending
Object-Oriented (OO) systems with roles has been amply
studied in the literature, we chose to integrate role-based
authorization policies at the class level. With such embed-
ded authorizations in an OO language, developers can now
integrate their security policies in their code in a declarative
manner. As inheritance is used by programmers without

88 Informatica 30 (2006) 87–95 R. Thion et al.

worrying about how polymorphism or dynamic linking are
implemented, authorization policies can be used without
worrying about the mechanisms involved in the authoriza-
tion decision.

The rest of the paper is organized as follows. Section 2
presents the original Role-Based Access Control on which
our proposal relies for describing privileges organization
within an IS. Section 3 details syntactical aspects of the
RAPOOL (for Role-based Authorizations Policies Object-
Oriented Language) language we propose. Section 4 de-
tails functional aspects with an illustrative example in the
medical area. This section also describes how to imple-
ment RAPOOL. Section 5 surveys attempts in integrat-
ing the role concept in object data models and compare
our approach to related work on security integration within
object-oriented models. Section 6 finally concludes the pa-
per and discusses some perspectives on security integration
within the software design process.

2 Modelling authorizations with
roles

Role modelling has been introduced into many computer
sciences areas: databases, programming languages, ontolo-
gies or agent oriented modelling. For security purposes,
roles have been introduced to make access control policies
administration easier: this is the main idea of the Role-
Based Access Control (RBAC) model.

2.1 An Access Control model
Access control denotes the fact of determining whether a
user (not necessarily an human user: process, computer,
etc.) is able to perform an operation (read, write, execute,
delete, search, etc.) on an object (more generally: a tuple
in a database, a table, an object, a file, etc.). An operation
right on an object is called permission. An access control
model define how to organize the permissions of users.

The RBAC Model [21] was defined in the 90’s and has
been extended in many ways (temporal, geographical ex-
tensions, etc. [8, 13]). It was introduced in order to tackle
the weaknesses of DAC (Discretionary Access Control)
and MAC (Mandatory Access Control) models: the former
is difficult to implement with a large number of users, and
the latter is too rigid for modern applications. We focused
on RBAC rather than other recent access control models
because it is currently the most seducing access control
paradigm, as shown by its use in major databases man-
agement systems such as Oracle Enterprise Server v.8 or
Sybase Adaptive Server v.11.5. Even for legacy systems
which are not role- based, the use of RBAC may simplify
management [18].

The basic RBAC philosophy is based on the observation
that most of the access permissions are determined by a
person authority or function, inside an organization. This
defines the central concept of role. The introduction of role

concept in access control policies as an intermediate layer
between users and permissions, really facilitates and sim-
plifies the system administration task. The RBAC defini-
tion of a role is “a job function within the organization with
some semantics regarding the authority and responsibility
conferred on the member of the role"([21]).

The RBAC model family is based on the identification of
a certain number of roles [20], each of them representing a
set of actions and responsibilities within the system (roles
can be seen as a collection of permissions). Thus in the
RBAC model (figure 1):

– no permission is granted directly to the user, permis-
sions are only granted to roles,

– the users endorse the roles which are given by the ad-
ministrator (it is only possible to specify positive au-
thorizations, no prohibitions),

– roles are defined and organized in a hierarchy: a child
role has the permissions granted to his/her parents.

In OO systems, the concept of permission is related
to objects methods. A permission is an access privi-
lege on a ressource. In OO systems, ressources are ob-
jects (or attributes of objects) and access privileges are ob-
jects methods (e.g. getAttribute() is a read-access,
setAttribute() is a write-access). Thus, granting an
access privilege to an object consists in authorizing the ob-
ject method call. The rules defining permission assign-
ments to roles are access control policies.

2.2 Access control policies

Access control policies define the users rights on ob-
jects, in order to enforce the security of an organization.
In the RBAC model, policies define which permissions
are granted to roles (permission-role assignment in fig-
ure 1). Thus users are granted permissions through role-
assignment (user-role assignment in figure 1).

An example of role-oriented access control policies in
health sector would be:

– a nurse can only read the patient prescriptions. But
she can write the last care date and time, provided it
takes place during her working time,

– a doctor can only prescribe if he/she is geographically
located in the hospital. He has access to the whole
medical record, but he/she cannot write the last care
date and time,

– a head nurse has read access to prescriptions and cares
history without conditions of time.

Permissions associated to roles allow the expression of
access authorizations in a generic way. Therefore we do not
specify that Dr. Johnson has access to Mr. Rabot records.
Instead we only specify that doctors have write access to

INTEGRATION OF ACCESS CONTROL IN INFORMATION SYSTEMS. . . Informatica 30 (2006) 87–95 89

Figure 1: The RBAC Model

patient records. According to RBAC principle “permis-
sions are only granted to roles", our proposal do not in-
clude policies related to individuals. Thus is is not possible
to specify that only Dr. Johnson has access to Mr. Rabot
record. The RBAC roles, their hierarchical organization
and the associated permissions make up the organization
confidentiality policy.

The language we chose to express access control poli-
cies has been heavily influenced by [8] which formalize
authorization policies, including temporal aspects, in first-
order logic (FOL). Thus we use a tractable fragment of
FOL (no function symbol, no negation, only conjunctive
and disjunctive connectors) suitable to express role-based
authorization policies at the class level.

2.3 A suitable subset of RBAC

Our approach intends to include role-based authorizations
into class models. Thus, authorizations policies are com-
mon to every objects instantiated from a class. As classes
are most-of-the-time static in OO systems, we are not able
to express dynamic aspects of RBAC. The session concept
for example, cannot be included into the class model: each
session is related to exactly one user, and it represents the
roles its user is actually endorsing.

Moreover, our proposal is an OO language designed for
secured software. Its goal is not to integrate the whole
RBAC model into class models, but only a subset describ-
ing authorizations policies related to the application which
is to be developed. Thus user-role assignments, sessions
or delegations are outside the scope of this work: we only
model the authorization policies related to the application.
For example, let us suppose that a hospital is developing
an intranet web-portal. User-role assignments are stored
in a dedicated directory (which is used by other applica-
tions), not in web-portal itself. Only the policies describing
“which role can access a given method of a given class of
the web-portal" are included straight into the code.

Thus, the concepts of user, user-role assignment, ses-

sions and context retrieval are not included in our proposal
and will be referred as user profile (section 4).

3 The RAPOOL Language
In order to tackle the problems of RBAC integration
within object data models, we propose a generic language
RAPOOL allowing the expression of RBAC authorizations
and integrating an access control mechanism. The declara-
tive part of the language is composed of:

– the body, which relies on C++ syntax (on a purely
illustrative basis, as any class-based language could
have been used: Java, Python, etc.) while adding ac-
cess authorizations formulae to methods,

– the header, which defines the roles which are to be
used within the definition of access authorizations.

3.1 The Header
The header is used to specify (BNF grammar is given in
annex):

– various categories of roles to be taken into account. In
the example we included the categories of [3] which
are adapted to organizations: functional, seniority and
context. These categories, freely chosen by the devel-
oper, form groups of roles. These groups represent
transverse role aspects, which are combined to form
complex roles. It would be possible to add some other
groups such as ward (ex: cardiology, radiology, etc.
which remains static), or sensitivity (ex: white, grey,
black information according to the sensitivity of data)
which can be used to simulate a MAC access control,

– hierarchical relations between roles [15]. For example
head << assistant means that the head has (at least)
all the privileges of the assistant. Thus, the conjunc-
tion of seniority roles with the functional role doctor

90 Informatica 30 (2006) 87–95 R. Thion et al.

makes it possible to specify complex roles, for exam-
ple head doctor, who would have more privileges than
a doctor, but fewer privileges than the manager doc-
tor,

– the various contexts in which the access authoriza-
tions are defined. These contexts can be geographical
(by using the predicate position) or temporal (with the
predicate hour). We suppose that the position of the
user is obtained by reliable mechanisms which are not
in the scope of this paper. We suppose we can get an
absolute reference as a couple of (X, Y) co-ordinates,
indicating the user position from where he/she invokes
the service. In practice, space modelling by mean
of linear constraints is sufficient for many cases [7].
Within the header we can for example restrict access
only if the user is located within the hospital or the
building.

All simple roles defined in the header are combinable
via conjunctions and disjunctions, in order to create com-
plex roles, modelling access control constraints based on
the transverse aspects of the profile, time and space at the
same time.

Functional Roles {
Roles : nurse, doctor, day_nurse, night_nurse;
Hierarchy : day_nurse << nurse, night_nurse << nurse;
}

Seniority Roles {
Roles : manager, head, assistant;
Hierarchy : manager << head << assistant;
}

Contextual Roles {
Hospital_enclosure = (position(X,Y)

and X>10 and X<50 and Y<10 and Y>30);
First_shift = (hour(H) and H>=4 and H<12);
Second_shift = (hour (H) and H>=12 and H<20);
Third_shift = ((hour (H) and H>=20)

or (hour(H) and H<4));
}

3.2 The Body
In RAPOOL, the body part allows the expression of access
authorizations at the method level. This is made possible
using the auth keyword, followed by an appropriate logi-
cal formula. The authorization logical formulae are used to
condition access to each method, according to the roles de-
fined in the header. These access authorizations model ac-
cess control rules defined in the confidentiality policy (sec-
tion 2.2).

Class CElectronicPatientRecord {
Public:
contact getPatientContact()

auth (doctor or nurse);
string getLastPrescription()

auth (doctor or nurse);
string getPrescriptionHistory()

auth (doctor or (nurse and head));
string getCareHistory()

auth (doctor or (nurse and head));
void setPrescription(string prescription)

auth (doctor and Hospital_enclosure);
void setLastCare(hour h, string care)

auth ((day_nurse and first_shift)
or (day_nurse and second_shift)
or (night_nurse and third_shift));

/* This authorization prevents a day nurse from
filling the LastCare field of the e-Patient
record during night, and a night nurse during the day */
}

4 Functional aspects
As the access control we propose is defined at the class
level, the following statements hold:

– for confidentiality-critical applications, access control
authorizations should be taken into account from the
very beginning of an information system design cy-
cle [17]. We do think that it does not have to be post-
poned until the end of the cycle,

– roles must be defined as soon as the requirement engi-
neering stage [20, 11],

– roles and authorizations can only be static [3], as the
class structure is modified, therefore recompiling is
necessary. We consider that this is not necessarily
a major problem, as the set of information defined
in the header and authorizations are very static (ex:
hierarchical levels, internal organization, administra-
tive responsibilities, etc.). However, no recompiling
is necessary for dynamic user role assignment or revo-
cation. Moreover, privilege delegation is possible be-
tween users. In the case of developing a wrapper (for
accessing legacy application through web services for
instance), recompilation does only involve the wrap-
per, not the wrapped applications.

4.1 The authorization decision
The principle of access control decision is as follows: when
a method call is detected, the RAPOOL engine checks if
the dynamic user profile fulfills the method authorization
policy. As described in section 2.3, our proposal does not
include the management of user profiles: we suppose that a
system storing role assignments, running sessions and pro-
viding contextual information (e.g. time) exists. Once this
information is retrieved (a cache mechanism can be used
to improve retrieval efficiency), the RAPOOL engine can
check if the requested access is granted. An architecture
for such a context repository is described in [16].

The basic idea of the access control decision is based on
logical implication. The user profile and the authorization
policy of the requested method needs to be translated into
first-order logic formulae:

1. each role is replaced by itself and the conjunction of
all its parents roles. If two roles are set to be mutually
inherited, they are considered as a same role,

2. each category c act as a predicate symbol. Each role r
defined within c is replaced by atom c(r),

INTEGRATION OF ACCESS CONTROL IN INFORMATION SYSTEMS. . . Informatica 30 (2006) 87–95 91

3. if a role is equivalent to a formula, then it is replaced
by this formula,

Once theses transformations are applied to both user pro-
file and requested authorization formula, we need to add
contextual information to the user profile. This informa-
tion is obtained by mean of software/hardware tools such
as LDAP, GPS, time clock, etc. and are also translated into
atoms. E.g. hour(18) or position(10, 23). Then if the user
profile (plus context) implies the authorization formula of
the requested method, the method is invoked, otherwise a
catchable exception is raised.

4.2 Example of authorization decision
Let us suppose that a user, John, wants to ac-
cess the setLastCare() method from his mobile de-
vice. John, who has previously identified himself
on the information system, has the following pro-
file: functional(nurse) ∧ functional(night_nurse) ∧
position(150, 45) ∧ hour(23) The functional part can be
extracted from a LDAP directory for example, and the
spatio-temporal part can be added by a time and position
server.

The authorization policy associated with the set-
LastCare() method is specified within the RAPOOL
body, as ((day_nurse ∧ first_shift) ∨ (day_nurse ∧
second_shift) ∨ (night_nurse ∧ third_shift)) The
RAPOOL engine replaces these role names by logical pred-
icates, as defined in the header:

– day_nurse is replaced by functional(nurse) ∧
functional(day_nurse). Indeed, day_nurse has at
least all the privileges of nurse. The same hold for
night_nurse,

– first_shift is replaced by hour(H) ∧ H ≥ 4 ∧
H < 12. The same holds for second_shift and
third_shift.

The resulting formula (under disjunctive form) is:
(functional(nurse) ∧ functional(night_nurse) ∧
hour(H) ∧ H < 4) ∨ (functional(nurse) ∧
functional(night_nurse) ∧ hour(H) ∧ H ≥
20) ∨ (functional(nurse) ∧ functional(day_nurse) ∧
hour(H) ∧ H ≥ 4 ∧ H < 12) ∨ (functional(nurse) ∧
functional(day_nurse)∧hour(H)∧H ≥ 12∧H < 20)

The RAPOOL engine checks if the dynamic user pro-
file logical formula implies this formula. As the user pro-
file is functional(nurse)∧functional(night_nurse)∧
position(150, 45)∧hour(23). Implication holds, therefore
access is granted.

4.3 Implementation in an object-oriented
framework

The first approach to implement RAPOOL is to add a layer
over an existing object-oriented language. Such a layer

has to retrieve user profile and contextual information from
role-assignment database. This layer needs to implement
the profile and authorization policy transformation into log-
ical formulae. This framework allows software designers
to integrate access control in a declarative manner, without
worrying about the mechanisms involved in authorization
decision.

A proof-of-concept pre-processor RAPOOL to C++ has
been implemented. For a developer, the RAPOOL to C++
pre-processor is a black-box transforming his code into
C++. The basic steps of the pre-processor are:

– the input is a RAPOOL source file, as written by de-
velopers according to RAPOOL grammar,

– the pre-processor includes the C++ framework files to
the source code,

– the pre-processor parse the header of RAPOOL (ac-
cording to its grammar) and suppress it from the
source file,

– the pre-processor analyse the body of RAPOOL and
transform authorization policies into logical formu-
lae (section 4.1) according to the previously parsed
header,

– the pre-processor add a call to the authorization deci-
sion mechanism (included from C++ framework files)
at the beginning of each method,

– the output is a C++ source file, obtained from
RAPOOL source file once header and authorization
policies are translated into calls to the framework.

4.4 Implementation in a role-based
object-oriented model

In many class-based object-oriented systems the associa-
tion between an instance and a class is exclusive and per-
manent. Therefore these systems have serious difficulties
in representing dynamic evolution of objects over time.
The problem is the most severe for OO databases in which
objects are stored over long periods during which the enti-
ties evolve. Object-role oriented models intend to fill this
shortcomings of object-oriented models by adding an or-
thogonal concept to classes: roles.

The authors of [23] describe an RBAC framework orga-
nized into 7 layers, as the OSI (Open Systems Interconnect)
network stack is (from physical layer #1 to abstract appli-
cation layer #7). The least abstract layer is the object layer,
used by the directly higher one: objects handles. This sec-
ond layer is used to keep the association between objects
and roles. An object-role oriented model integrate directly
such a layer: handles are no more needed, associations be-
tween roles and objects are handled in declarative manner
in the object-role oriented paradigm.

The implementation of RAPOOL in a role-based object-
oriented model is possible if:

92 Informatica 30 (2006) 87–95 R. Thion et al.

– the model integrates a role hierarchy,

– the role hierarchy is independent of the class hierar-
chy,

– the model respects the Object Data Management
Group (ODMG) standard (e.g. encapsulation, inher-
itance, polymorphism, etc.) to be compliant with an
existing object-oriented language.

Section 5.2 survey previous works on integration of role
mechanisms into object-oriented models. According to
previous surveys [2, 10], Samovar is the most suitable
model for hosting the RAPOOL language. This model re-
spects the ODMG standard and integrate roles into object-
oriented model. In this model, class can be seen as abstract
role containers: no method is directly associated to a class.
Attributes are only associated to roles or combinations of
roles (including conjunction and disjunction). These com-
binations are expressed in first-order logic formulae (the
same fragment of FOL used to express authorization poli-
cies in RAPOOL).

Thus, to implement RAPOOL in a role-based object-
oriented model, we must carry a prior transformation step
on access control policies. In RAPOOL, each authorization
is associated to an object method, roughly said as “policies
are organized by permissions". In order to implement our
language, we must infer on these policies to organize them
by roles, rather than by permissions. Note that this process
can be performed automatically without human interven-
tion.

For example, assuming we are working with
the example from section 3.2. Policies of the
CElectronicPatientRecord class are organized by
permissions:

– permission getPatientContact() is granted to
roles (doctor or nurse),

– permission getLastPrescription() is granted
to roles (doctor or nurse),

– permission getPrescriptionHistory()
is granted to roles
(doctor or (nurse and head)).

In order to be implemented in a role-based object-
oriented model, policies must be organized by roles. Thus,
the above example will be organized as follows:

– role (doctor) is granted ac-
cess to getPatientContact(),
getLastPrescription() and
getPrescriptionHistory(),

– role (nurse) is granted access
to getPatientContact() and
getLastPrescription()

– role (nurse and head) is granted access to
getPrescriptionHistory().

Everybody who is assigned to several roles is granted
all permissions assigned to each role, as permitted by role
hierarchy. Thus, (nurse and head) is also granted
access which (nurse) is granted.

5 Related work
Very few work focused on integrating of access control
models within logical data models. This section survey re-
lated work on introduction of security in object-oriented
models and on the role-object oriented paradigm.

5.1 Integration of access control in
object-oriented systems

Many papers have described how to implement security
mechanisms involving roles and contexts (e.g. [16, 3]) in a
role-oriented system. Our goal is not to describe how role-
based access control can be implemented with classes, but
is to describe how (and which subset of) role-based access
control mechanisms can be implemented in classes.

Integration of access control into OO systems has al-
ready been studied. The authors of [24] describe how
to implement Mandatory Access Control (MAC) in OO
database systems. Roughly stated, MAC is a military-
oriented model, in which users and resources are associated
to labels. Access is granted if and only if the user label is
as least as high as the requested resource label. Commonly
used labels are unclassified, confidential, secret and top-
secret. However, MAC has been shown to be too rigid for
current applications, particularly when multiple users with
different profiles are working on the system.

A more recent approach in [5] integrate MAC to UML
diagrams. Their framework bridges the gap between soft-
ware engineers and an organization security. A very inter-
esting contribution which is not limited to class diagram
and intends to integrate MAC in use cases and sequence
diagrams. This paper describes a logic data model, but we
are working on a conceptual model integrating role-based
authorizations (section 6).

5.2 Extending object-oriented systems with
roles

The object paradigm is a very expressive framework,
largely used. According to [22], implementing object roles
is a difficult task. Indeed, the multiplicity of roles and their
lifecycle (creation, deletion) is incompatible with the hard
constraints of class-based models: object identity, strong
typing, etc.

This problem could be partly solved with multiple in-
heritance (figure 2a) in an object programming language.
But each combination of role must lead to create a new
class, which leads to an explosion of the number of neces-
sary classes. Moreover, their existence is only motivated
by technical reasons and not by a modelling need. Another

INTEGRATION OF ACCESS CONTROL IN INFORMATION SYSTEMS. . . Informatica 30 (2006) 87–95 93

solution is to create a structure of handles [23] (figure 2b)
which corresponds to the desired multiple-role instances.
The handle references several OIDs, each of them corre-
sponding to a role played by this instance. This leads to a
referencing problem and involves the use of message dele-
gation. Moreover, Jacques would be only a handle, loosing
its encapsulation, and therefore not an object anymore.

The implementation of RBAC models in OO systems
clearly points out that maintaining association between
roles and classes can be a tough design challenge, par-
ticularly when dealing with role hierarchies. For exam-
ple, [3, 4] describes a, UML class-diagram to implement
RBAC. Their framework includes role and role instance
classes. Thus, software designers have to implement a
mechanism to ensure that an object instance of role is
linked with another object instance of role instance.

A review of role-based object models in the program-
ming and database areas can be found in [10, 2, 6]. How-
ever, these models are intended mainly to take into account
the dynamic part of the objects during their life, but either
they do not propose in general any access control primi-
tive or they do not totally respect the standard paradigms
of object programming (e.g. [25]).

5.3 Integration of security in role-oriented
systems

To the best of our knowledge, the closest paper to our
is [25]. This approach intends to integrate a subset of
RBAC into a role-oriented system: DOOR. This model
permits modelling an owner relationship between roles and
objects, but this approach does not entirely respect the stan-
dard paradigms of object programming. Section 5.2 ex-
plains how RAPOOL can be implemented in role-object
oriented systems, nevertheless in such implementation,
roles can still be used for non role-based authorization pur-
poses. The Samovar model [2] is well suited to include a
basic form of RBAC because it includes role definition in
a logical manner. These role formulae can easily capture
permission-role assignments of RBAC.

The aspect-oriented paradigm can be seen as an alterna-
tive to the role-oriented one. Both of them aim at a more
flexible use of objects in OO systems. The authors of [19]
describe their approach based on an “aspect-oriented mod-
elling (AOM) technique that allows system developers to
isolate cross-cutting design structures in aspects to support
controlled evolution of the structures". In this approach,
design structures that represent access control policies are
treated as aspects. Policies are integrated into system by
merging aspects with the system design model in which
acces control concerns are not adresses. This composition
results in a woven model. This approach is interesting for
its dynamic perspectives on access control modelling but
do not consider role hierarchy. We chosed to exclude dy-
namic concerns in our approach to provide a less flexible
but easier to use language. In our approach the basic subset
of RBAC is incorporated directly, thus do not impose the

composition of two models. We are investigating whether
RAPOOL can be as easily implemented in an aspect-based
model as it is in a role-based model.

6 Discussion
Our proposal makes possible to take into account RBAC
access control straight into the logical object data model.
We presented the generic RAPOOL language, which con-
tains two parts. The header allows specification of roles
categories and hierarchies. The body part allows specifi-
cation of authorizations at the method level, by mean of
logical connectors in order to build more complex ones.
We also presented the functional part of RAPOOL, which
relies on a first-order logic engine.

Security is often divided into confidentiality, reliability
and integrity. Confidentiality is the least considered non-
functional requirements of security. Access control mod-
els, and nowadays role-based ones, are designed to en-
hance confidentiality. Integration of Mandatory Access
Control [5] in UML diagrams and security extensions for
UML [12, 14] are promising. They will bridge the gap be-
tween a security will and its implementation. These con-
ceptual and logical propositions can be core models for
methodologies considering security as in integral part of
the whole software design process such as [17]. We are
currently working on automatic translation into RAPOOL
of UML diagrams expressed in specific security models.
RAPOOL can indeed be used as a target language for a
CASE supporting a RBAC-based design method, such as
SecureUML. We currently plan to validate this approach
using our prototype, a RAPOOL to C++ pre-processor,
with the Foundstone SecureUML Visio template [1].

References
[1] R. Araujo and S. Gupta (2005) Design authorisation

systems using SecureUML, Foundstone, Technical
report.

[2] S. Coulondre and T. Libourel (2002) An integrated
object-role oriented database model, Data Knowl.
Eng., 42(1):113–141.

[3] R. Crook, D. C. Ince, and B. Nuseibeh (2003) Mod-
elling access policies using roles in requirements
engineering, Information & Software Technology,
45(14):979–991.

[4] J. P. Davis and R. D. Bonnell (1999) Role-playing: A
mechanism for bridging the object-oriented design-
level gap, OOPSLA-97: Workshop on Object Tech-
nology, Architectures and Domain Analysis.

[5] T. Doan, S. Demurjian, T. C. Ting, and A. Ketterl
(2004) Mac and uml for secure software design,
FMSE ’04: Proceedings of the 2004 ACM workshop

94 Informatica 30 (2006) 87–95 R. Thion et al.

Figure 2: Empirical solutions for role implementation

on Formal methods in security engineering, ACM
Press, 75–85.

[6] G. Gottlob, M. Schrefl, and B. Rock (1996) Extend-
ing object-oriented systems with roles, ACM Trans.
Inf. Syst., 14(3):268–296.

[7] S. Grumbach, P. Rigaux, and L. Segoufin (2001)
Spatio-temporal data handling with constraints,
GeoInformatica, 5(1):95–115.

[8] J. Joshi, E. Bertino, U. Latif, and A. Ghafoor (2005)
A generalized temporal role-based access control
model, IEEE Transactions on Knowledge and Data
Engineering, 17(1):4–23.

[9] J. Jürjens (2002) UMLsec: Extending UML for se-
cure systems development, UML 2002 - The Unified
Modeling Language. Model Engineering, Languages,
Concepts, and Tools. 5th International Conference,
Springer, Dresden Germany, 412–425.

[10] G. Kappel, W. Retschitzegger, and W. Schwinger
(1998) A comparison of role mechanisms in object-
oriented modeling, Modellierung CEUR Workshop
Proceedings, CEUR-WS.org.

[11] A. Kern, M. Kuhlmann, A. Schaad, and J. D. Mof-
fett (2002) Observations on the role life-cycle in the
context of enterprise security management, SACMAT,
43–51.

[12] D.-K. Kim, I. Ray, R. B. France, and N. Li (2004)
Modeling role-based access control using parameter-
ized uml models, FASE, Lecture Notes in Computer
Science, 180–193.

[13] A. Kumar, N. Karnik, and G. Chafle (2002) Con-
text sensitivity in role-based access control, SIGOPS
Oper. Syst. Rev., 36(3):53–66.

[14] T. Lodderstedt, D. A. Basin, and J. Doser (2002) Se-
cureuml: A uml-based modeling language for model-
driven security, UML ’02: Proceedings of the 5th

International Conference on UML, Springer-Verlag,
London UK, 426–441.

[15] J. D. Moffett and E. Lupu (1999) The uses of role hi-
erarchies in access control, ACM Workshop on Role-
Based Access Control, 153–160.

[16] G. K. Mostéfaoui and J. Pasquier-Rocha (2003)
Deterministic context-based security policies: An
object-oriented approach, SNPD, ACIS, 160–165.

[17] H. Mouratidis, P. Giorgini, and G. A. Manson (2003)
Integrating security and systems engineering: To-
wards the modelling of secure information systems,
CAiSE, Lecture Notes in Computer Science, 63–78.

[18] S. L. Osborn, Y. Han, and J. Liu, (2003) A methodol-
ogy for managing roles in legacy systems, SACMAT,
ACM, 33–40.

[19] I. Ray, R. B. France, N. Li, and G. Georg (2004)
An aspect-based approach to modeling access con-
trol concerns, Information & Software Technology,
46(9):575–587.

[20] H. Roeckle, G. Schimpf, and R. Weidinger (2000)
Process-oriented approach for role-finding to imple-
ment role-based security administration in a large in-
dustrial organization, ACM Workshop on Role-Based
Access Control, 103–110.

[21] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman (1996) Role-based access control models,
IEEE Computer, 29(2):38–47.

[22] F. Steimann (2000) On the representation of roles
in object-oriented and conceptual modelling, Data
Knowl. Eng., 35(1):83–106.

[23] D. Thomsen, D. O’Brien, and J. Bogle (1998) Role-
based access control framework for network enter-
prises, ACSAC ’98: Proceedings of the 14th Annual
Computer Security Applications Conference, IEEE
Computer Society, Washington DC USA.

INTEGRATION OF ACCESS CONTROL IN INFORMATION SYSTEMS. . . Informatica 30 (2006) 87–95 95

[24] M. B. Thuraisingham (1989) Mandatory security
in object-oriented database systems, OOPSLA ’89:
Conference proceedings on Object-oriented program-
ming systems, languages and applications, ACM
Press, New York USA, 203–210.

[25] R. K. Wong (1997) Rbac support in object-oriented
role databases, RBAC ’97: Proceedings of the second
ACM workshop on Role-based access control, ACM
Press, New York USA, 109–120.

Annex: BNF Grammar of RAPOOL
header
Note: grammar of non–terminal symbol logical_formula
is not included.

RAPOOL_header := groups_list
groups_list := groups_list group
|
group := group_identifier ’Roles’ ’{’ definitions_list ’}’
group_identifier := IDENTIFIER

definitions_list := definitions_list definition
|
definition := role_definition
| hierarchy_definition
| equivalency_definition

role_definition := ’Roles’ ’:’ roles_list ’;’
roles_list := role_identifier roles_list_suite
roles_list_suite := ’,’ role_identifier roles_list_next
|
role_identifier := IDENTIFIER

hierarchy_definition := ’Hierarchy’ ’:’ hierarchi-
cal_relations_list ’;’
hierarchical_relations_list := hierarchical_relation hierar-
chical_relations_list_suite
hierarchical_relations_list_suite := ’,’ hierarchical_relation
hierarchical_relations_list_suite
|
hierarchical_relation := role_identifier ’<<’ role_identifier

equivalency_definition := equivalency_identifier ’:=’
logical_formula ’;’
equivalency_identifier := IDENTIFIER

96 Informatica 30 (2006) 87–95 R. Thion et al.

 Informatica 30 (2006) 97–110 97

A Formal Framework Supporting the Specification of the
Interactions between Agents
Farid Mokhati
Département d’Informatique
Université d’Oum El Bouaghi - Algérie
E-mail: Mokhati@yahoo.fr

Mourad Badri and Linda Badri

Département de Mathématiques et d'Informatique
Université du Québec à Trois-Rivières - Canada
E-mail: Mourad.Badri@uqtr.ca, Linda.Badri@uqtr.ca

Keywords: multi-agent systems, RCA, Maude, translation, behavior, interactions, formal specification,
verification and validation.

Received: May 24, 2005

In this paper we present a formal framework supporting the translation of interactions between agents
(the interactions are described with the help of the RCA formalism) in a Maude specification. Based on
rewriting logic, the formal and object-oriented language Maude supports formal specification and
programming for a wide range of applications. The main motivations of our work are essentially: (1) to
formally specify the behavior of multi-agent systems and (2) to provide a solid basis for their
verification and validation. The translation process is illustrated by means of a real case study.
Povzetek: Opisano je prevajanje interakcij med agenti.

1 Introduction
In Multi-Agent Systems (MAS), agents interact in order
to exchange information, to cooperate and to coordinate
their tasks [24]. The usual approach to the description of
interactions between agents consists in using protocols
[8, 26]. Several agents’ interaction protocols (AIP) have
been proposed in the literature [7]. They constitute an
important part of MAS's infrastructures. However, most
of the protocols published in the literature are semi-
formal, vague or contain errors as mentioned in [23].
Knowing that AIP play a crucial role in MAS
development [30], their formal specification as well as
their verification constitute essential tasks [11]. In the
field of agents’ behavior specification, three major
approaches emerge in the literature: state-charts based
approaches [27, 22], Petri Nets based approaches [5, 1],
and approaches representing an adaptation of object-
oriented specification methods [19, 20].

Among the agents’ interaction protocols proposed in
the literature, we can mention the RCA formalism
(Représentation des Comportements d’Agents) [27],
which is based on strongly typed states-transitions
graphs. The RCA formalism allows describing agents'
behaviors graphically. This formalism has been used in
the design of several Cooperative Information Systems
(CIS) based on informational agents. We can mention,
for example, the NetMan project based on the
coordination of several agents [4], a project related to the
reactive reorganization of production shops and treating
the cooperation between agents having to solve a
problem in a distributed and cooperative way [28], as

well as a project on the hydraulic management of the
Camargue ecosystem and based on a negotiation process
between agents (Project SIMFONHYC) [18].

One of the strong points of the RCA formalism [18,
28] resides in the modular design of agents' behaviors.
Indeed, the use of composite action states makes it
possible the overlapping of behavioral plans and
therefore a description by successive refinements of
agents' behavior. This characteristic comes directly from
the notion of composite state of RCA graphs.
Nevertheless, some critiques on RCA graphs can be
formulated, notably on their formalization and on the
sequential aspect of the execution cycle of behavioral
plans [28]. Furthermore, this formalism allows the
visualization of the synchronization points between dual
protocols thanks to the complementarity between
communication states and external transition. It is then
easy to recognize the coordination points between dual
protocols [28]. However, RCA graphs as well as the
existing formalisms in the literature describing agents'
interaction protocols are not endowed again with a
formal semantics [28]. They only offer a semi-formal
specification [23] of interactions between agents. These
weaknesses can generate several problems in MAS
development and verification.

Using formal notations for the description of MAS'
behavior offers several advantages. It essentially allows
producing rigorous and precise descriptions supporting
efficiently their verification and validation process. The
Maude language, based on the rewriting logic, seems to

98 Informatica 30 (2006) 97–110 F. Mokhati et al.

us to be an interesting candidate. It offers, through its
rich notation, an interesting way for concurrent systems
formal specification and programming. Furthermore, it
also supports the description of multi-agent interactions
[21, 16]. In this paper, we present a formal framework
supporting the translation of multi-agent interactions,
specified using the RCA formalism, in a Maude
specification. The main motivations of our approach are
essentially: (1) to specify formally the behavior of multi-
agent systems, in particular, the interactions between
agents, and (2) to provide a solid basis for their
verification and validation process. The Maude
specifications, generated in the context of the developed
framework, have been validated using the platform
supporting the Maude language. The remainder of the
paper is organized as follows: Section 2 gives a brief
survey on the main related works. We present summarily
the RCA formalism in section 3. In section 4, we give the
basic concepts related to the rewriting logic as well as the
Maude language. Section 5 presents the translation
process. The proposed approach is illustrated using a
concrete case study in section 6. Finally, section 7 gives
some conclusions and future work directions.

2 Related Work
We present briefly in this section three formalisms
(AUML, CATN and RCA) supporting the description of
agents' interaction protocols. AUML [19, 9] is an
extension of the UML language allowing describing
interactions between agents. To represent multi-agent
interaction protocols, AUML adopts in fact an approach
in three layers. It uses, in the first level, packages and
templates to represent the protocol in whole. Sequence
diagrams, collaboration diagrams, activity diagrams, and
states-transitions diagrams are used to represent
interactions between agents. Activity diagrams and
states-transitions diagrams are also used to capture
agents’ internal behavior (for more details see [19]).
However, AUML only offers a semi-formal specification
of the interactions between agents.

The CATN formalism (Coupled Augmented
Transition NetWork) [10] is a states-transitions machine,
to which a particular goal (or significance) is associated.
A CATN can be decomposed in sub-CATNs. Each of
these components is a CATN, having its own goal. The
components of a CATN are joined together by ad-hoc
transitions named "interactions transitions". Among
these, we distinguish the non-terminal interactions
transitions of those that are terminal. These last
correspond to language acts (between agents) or to
private actions of agents. This recursive aspect of the
CATN allows a top-down design approach, from the
most abstract behavior of a group of agents until their
most concrete actions (individual terminal actions and
communications through the interactions transitions).
Each agent can execute in a concurrent way several
CATNs depending on the tasks that it has to achieve [10,
25].

The RCA formalism [27, 28], supporting the
description of role protocols, is used to describe agents'

behavior. It is based on states-transitions diagrams
introducing seven types of states and two types of
transitions. The seven states are: the initial state, the final
state, the elementary action state, the composite action
state, the communication state and the waiting states
(limited and unlimited). The two types of transitions are
the internal transition and the external transition. Using
this formalism, it is easy to recognize the coordination
points between dual protocols. The RCA formalism is
not limited to the description of the exchanges of
messages between agents (as the case in the other
formalisms). It also allows clarifying the actions that they
undertake. In addition, the RCA graphs describe the
working of the agents and help thus the design of their
interactions. The links that exist between the macro level
(i.e. the system's behavior) and the micro level (i.e. the
agent's behavior) may be considered in an integrated way
[28, 29].

These different approaches certainly offer some
elements of answer to some problems related MAS
development. However, they only allow a partial
formalization of MAS. Furthermore, some authors [6, 5]
opposed to the use of formalisms based on state-
transition graphs two major arguments: 1) the
impossibility to be able to verify the consistency of the
protocols thus specified; and 2) the absence of taking into
account the concurrent aspects of protocols [28]. In spite
of the advantages that it offers relatively to the other
formalisms, the RCA formalism only offers a graphic
semi-formal description [18]. Furthermore, it is not
endowed again with a formal semantics. These
weaknesses combined to the complexity of MAS can
generate several problems in their development and
verification processes. The use of an appropriate formal
notation for the description of MAS' behavior offers
several advantages. It essentially allows the production
of rigorous and precise descriptions supporting
efficiently their verification and validation process. Our
approach is similar, in terms of objectives, to the
previously quoted approaches. It consists, essentially, to
support the important stage of the specification of agents'
behaviors. However, we preferred to adopt a more formal
approach in the specification of agents' behaviors in
terms of interactions allowing, among others, to support
the verification of consistency (internal and global) in the
behavior. Our approach allows translating the interaction
protocols described using the RCA formalism in the
Maude language. The Maude system consists in a high-
level language of programming, specification and
modeling based on rewriting logic [2, 15, 21]. It is also
endowed with a high performance interpreter. It allows
describing concurrent systems and supports the formal
specification of distributed systems [14, 29, 12].

3 RCA Formalism
RCA (Représentation des Comportements d'Agents) [27,
28] is a formalism allowing describing an agent's
behavior graphically. It is based on a strongly typed
graph: seven types of states and two types of transitions
(figure 1). The seven states are the initial state (to show

A FORMAL FRAMEWORK SUPPORTING... Informatica 30 (2006) 97–110 99

the beginning of the graph), the final state (to mark the
end of the graph), the elementary action state (that
corresponds to the agent's simple action), the composite
action state (it is in fact about the call to another
protocol), the communication state (sending of message),
and the limited and unlimited waiting states (waiting of
treatments done by other agents). The two types of
transitions are the internal transition (it corresponds to
the end of an activity and provokes the passage to
another state) and the external transition (it is in fact a
reception of a message that provokes, like an internal
transition, the change of the agent's activity). An external
transition is triggered by a communication state at
another agent.

Figure 1 : Convention of representation
of the RCA formalism.

The number of internal and external transitions

depends on the type of the starting state and its
transitions. It can be either null, limited or unlimited
(figure 2).

Authorized
internal

transitions
number

Authorized
external

transitions
number

Type of transition’s
departure state

[Min..Max] [Min..Max]
Initial state [0 .. 1] [0 .. 1]
Elementary action state [1 .. ∞] [0 .. 0]
Composite action state [1 .. ∞] [0 .. 0]
Communication state [1 .. 2] [0 .. 0]
Limited waiting state [1 .. 1] [1 .. ∞]
Unlimited waiting state [0 .. 0] [1 .. ∞]
Final state [0 .. 0] [0 .. 0]

Figure 2 : Authorized transitions number according

to the starting state.

Each states graph starts with a unique initial state and
finishes by a unique final state. The internal events are
the consequence of the agent's actions represented by
action states (elementary or composite). They trigger the

internal transitions. The external events result from
communication activities of the agents, i.e. a reception of
message constitutes an external event and provokes the
crossing of an external transition. Of this fact, the type of
allowed transition at a precise place of the graph depends
exclusively of the origin state type of this transition:

• Initial state : only one transition (internal or

external) may quit this state.
• Action state (simple or composite) : the internal

transitions are in any number not null after
action states.

• Communication state : one or two internal
transitions may quit the communication state.

• Limited waiting state : the waiting may stop
after the reception of a message (external
transition), or if no message has been received
beyond the waiting delay (internal transition).
Furthermore, only one internal transition may
quit a limited waiting.

• Unlimited waiting state : this waiting type
remains while that it doesn't occur an external
event (reception of message). It is therefore
about a blocking state.

4 Rewriting Logic and Maude
Language

4.1 Rewriting Logic
The rewriting logic, having a sound and complete
semantics, was introduced by Meseguer [14]. It allows
describing concurrent systems. This logic unifies all the
formal models that express concurrence [13, 15]. In
rewriting logic, the logic formulas are called rewriting
rules. They have the following form: R:[t] [t’] if C.
Rule R indicates that term t becomes (is transformed
into) t’ if a certain condition C if verified. Term t
represents a partial state of a global state S of the
described system. The modification of the global state S
of the system to another state S’ is realized by the
parallel rewriting of one or more terms that express the
partial states. The distributed state of a concurrent system
is represented as a term whose sub-terms represent the
different components of the concurrent state. The
concurrent state’s structure can have a variety of
equivalent representations because it satisfies certain
structural laws (equivalence class).

Figure 3 : Example of a portion of the Maude program.

1. sort Configuration .
2. sort Object .
3. sort Msg .
4. subsort Object < Configuration .
5. subsort Msg < Configuration .
6. op null : -> Configuration .
7. op_ _ : Configuration Configuration ->
 Configuration [assoc comm id : null] .

Initial Elementary Limited waiting
state action state state

Final Composite Unlimited waiting
 state action state state

Communication Internal External
 state transition transition

100 Informatica 30 (2006) 97–110 F. Mokhati et al.

For example, in an object-oriented system the
concurrent state that is usually called configuration has
the structure of a multi-set of objects and messages.
Therefore, we can have configurations constructed by a
binary operator applied to binary sets as illustrated in
figure 3.

The portion of program illustrated in figure 3 gives a
definition of three types: Configuration, Object and
Msg. In lines 4 and 5, Object and Msg are sub-types of
Configuration. Objects and messages are in fact multi-
set configuration singletons. More complex
configurations are generated from the application of the
union on these multi-set singletons (objects and
messages). Where there is neither floating messages nor
live objects, we have in this case an empty configuration
(line 6). The construction of a new configuration in terms
of other configurations is done with line 7’s operation.
We can note that this operation has no name and that the
two sub lines indicate the positions of two parameters of
configuration type. This operation, which is the multi-set
union, satisfies the structural laws of association and of
commutation. It also possesses a neutral element null.
For example, if we have a message M1 that represents a
configuration, and an object <O : C|atts > (please note
that O is an object’s identifier, C its class and atts the list
of its attributes) that represents in itself another
configuration, then we can construct another
configuration in terms of those two configurations: M1
< O : C | atts >. This one is equivalent to the
configuration < O : C | atts > M1 because the __
operation is commutative.

4.2 Maude
Maude is a specification and programming language
based on the rewriting logic [14, 3]. Three types of
modules are defined in Maude. Functional modules allow
defining data types and their functions through equations
theory. Figure 4.a represents the functional module Nat
specifying natural numbers. Such a module is imported
in the module FACT (figure 4.b) to calculate the factorial
of natural numbers. System modules define the dynamic
behavior of a system. This type of modules extends
functional modules by introducing rewriting rules. A
maximal degree of concurrence is offered by this type of
module. Finally, there are the object-oriented modules
that can be reduced to system modules. In relation to
system modules, object-oriented modules offer a more
appropriate syntax to describe the basic entities of the
object paradigm as, among others: objects, messages and
configuration. Only one rewriting rule allows expressing
the consumption of certain floating messages, the
sending of new messages, the destruction of objects, the
creation of new objects, state change of certain objects,
etc.

Figure 5.a illustrates the use of a system module
BANK-ACCOUNT to define an object counts banking A
and the two operations capable to affect its content credit
and debit while executing the rewriting rules defined in
this module. Figure 5.b represents the same BANK-

ACCOUNT module with a more appropriate object-
oriented syntax.

 (a) (b)

Figure 4 : Functional Modules Nat and FACT.

We note, that after the execution of the unconditional

rule [credit], the message credit(A, M) is consumed and
the content of the account is increased. In the same way,
the execution of the conditional rule [debit] requires that
the condition (N>=M) be verified. The execution of such
rule generates the consumption of the message
debit(A,M) and the reduction of the content of the
account.

 (a)

(b)

Figure 5 : The same BANK-ACCOUNT module in system
module and O.O module forms.

fmod NAT is
sorts Zero NzNat Nat .
subsort Zero NzNat < Nat .
***constructors
op 0 : -> Zero .
op s_ : Nat -> NzNat .
….
endfm

fmod FACT is
Including NAT .
op _! : Nat -> NzNat .

var N : Nat .
eq 0 ! = 1 .
eq (s N) ! = (s N) * N !.
endfm

mod BANK-ACCOUNT is
protecting INT .
 including CONFIGURATION .
op Account : -> Cid.
op bal :_ : Int -> Attribute .
ops credit debit : Oid Nat -> Msg .
var A : Oid . vars M N : Int .

rl [credit] : < A : Account | bal : N > credit(A, M)
 => < A : Account | bal : N + M > .

crl [debit] : < A : Account | bal : N > debit(A, M)

 => < A : Account | bal : N - M >
 If N >= M .

endm

(omod BANK-ACCOUNT is
protecting MACHINE-INT .
class Account | bal : MachineInt .
msgs credit debit : Oid MachineInt -> Msg .
var A : Oid .
vars M N : MachineInt .

rl [credit] : < A : Account | bal : N > credit(A, M)
 => < A : Account | bal : (N + M) > .

crl [debit] : < A : Account | bal : N > debit(A, M)

 => < A : Account | bal : (N – M) >
 If N >= M .

endom)

A FORMAL FRAMEWORK SUPPORTING... Informatica 30 (2006) 97–110 101

5 Translating RCA Descriptions in
Maude

We developed a formal framework allowing the formal
specification of role protocols described using RCA
formalism. The framework is composed, as illustrated by

figure 6, of several modules: an object-oriented module
(ROLE-PROTOCOLE) and several functional modules
(the remainder of modules).

Figure 6 : RCA-Maude frameworks’ architecture.

Figure 7 : The functional module AGENT-STATE.

The functional module AGENT-STATE (figure 7)

contains the different necessary type declarations for the
definition of a state (line [1]) and, on the other hand, the
definition of operations used for the construction and the
manipulation of a state (lines [2, 3, 4, 5, 6, 7, 8, 9, 10]),

as well as equations implementing these operations (lines
[11, 12, 13, 14, 15, 16, 17]).

In the ACTION module (figure 8), in addition to the
type Action, we define the two functions
IsSendingToOnlyOne and IsSendingToAll. The first

ACTION

AGENT-STATE

IDENTIFICATION

RCA

ACQUAINTANCE-LIST

ROLE-
PROTOCOLE

: Module
: Import

USER-RCA1

RCA -LINK

(fmod AGENT-STATE is
sorts AgentState KindAgentState NameAgentState . ***[1]

ops initial final communication elementary composite
 limitedWaiting UnlimitedWaiting : -> KindAgentState . ***[2]

op AgentState : NameAgentState KindAgentState -> AgentState . ***[3]
op IsInitial : AgentState -> Bool . ***[4]
op IsFinal : AgentState -> Bool . ***[5]
op IsOfCommunication : AgentState -> Bool . ***[6]
op IsElementary : AgentState -> Bool . ***[7]
op IsComposite : AgentState -> Bool . ***[8]
op IslimitedWaiting : AgentState -> Bool . ***[9]
op IsUnlimitedWaiting : AgentState -> Bool . ***[10]

var k : KindAgentState . var ns : NameAgentState .

eq IsInitial(AgentState(ns, k)) = if k == initial then true ***[11]
 else false fi .
eq IsFinal(AgentState(ns, k)) = if k == final then true ***[12]
 else false fi .
eq IsOfCommunication(AgentState(ns, k)) = if k == communication then true * **[13]
 else false fi .
eq IsElementary(AgentState(ns, k)) = if k == elementary then true ***[14]
 else false fi .
eq IsComposite(AgentState(ns, k)) = if k == composite then true ***[15]
 else false fi .
eq IslimitedWaiting(AgentState(ns, k)) = if k == limitedWaiting then true ***[16]
 else false fi .
eq IsUnlimitedWaiting(AgentState(ns, k)) = if k == UnlimitedWaiting then true ***[17]
 else false fi .
endfm)

102 Informatica 30 (2006) 97–110 F. Mokhati et al.

function determines if an action is destined to only one
agent's acquaintance, on the other hand the second
function indicates if it is necessary to send a message to
all agent's acquaintances. To describe the identification
mechanism of agents, we define the functional module
IDENTIFICATION (figure 9). Furthermore, an agent
must be endowed with a list of its acquaintances allowing
it to exchange messages with the other agents. We define
for it the functional module ACQUAINTANCE-LIST to
manage the lists of the agents’ acquaintances . Due to
imitation of space and a considerable size of this last
module, we don't present it in this paper.

Figure 8 : The functional module ACTION.

Figure 9 : The functional module

IDENTIFICATION.

To define an RCA diagram, we propose the RCA

module (figure 10). This module reuses the AGENT-
STATE and ACTION modules. It includes the definition
of two operations: TargetState that determines the target
state according to a state source and an action, and the
FeedBack operation used in the case where the treatment
accomplished by the agent takes place while toppling
between two states during a limited length. To each event
coming from a state source, such a function determines
the appropriate action that should be executed from the
target state as a feedback.

Figure 10 : The functional module RCA.

For the construction of an RCA diagram for an

application, we propose to extend the RCA module in
another USER-RCA module (figure 11). In this module,
the user must: mention all states constituting the RCA
diagram, define all possible actions, attach the actions in
the states using the TargetState function, determine the
actions constituting feedbacks using the Feedback

function, and finally specify for every communication
action whether it is sent to all (using the
IsSendingActionToAll function) or to only one (using
IsSendingActionToOnlyOne). An USER-RCA module
(figure 11) is associated with every category of agents
(playing the same role).

Figure 11 : The functional

Module USER-RCA.

To respect the interaction protocol used between
agents, we propose to realize a sort of link between the
RCA diagrams of the different agents. Basing on the
synchronization points, main characteristic of this
formalism, such a link consists in guaranteeing that at the
moment of the reception of a message, an agent can't
consume such a message except if it is in the
corresponding state of the state of the sender agent. An
agent that is in a communication state generates an
external event that causes an external transition at the
agent receiver. To receive such an event, this last must be
in a waiting state (limited or unlimited). Indeed, the
sending actions accomplished by a sender agent represent
events for receiver agent. Thus, there is a correspondence
between the sending actions of the sender and the events
received by the receiver. For it, the user must develop the
RCA-LINK module (figure 12) that contains the
correspondence on the one hand, between the different
states of agents and, on the other hand, between the
events generated by the sender and the events received
by the receiver.

 Figure 12 : The functional module RCA-LINK.

The object-oriented module ROLE-PROTOCOL
(figure 13) represents the main module. It imports the
RCA-LINK, IDENTIFICATION, and ACQUAINTANCE-
LIST modules. For the formal description of agents, we
propose the class Agent (line 2).

The definition of this class has as attributes PlayRole,
State, and AcqList, to contain in this order, the agent's
actual role, the current state of the agent, and the list of
its acquaintances. In addition to different types of states
defined in figure 7, we define in this module (figure 13)

(fmod ACTION is
protecting BOOL .
sort Action .
op IsSendingToAll : Action -> Bool .
op IsSendingToOnlyOne : Action -> Bool .
endfm)

(fmod IDENTIFICATION is
 sort AgentIdentifier .
 subsort AgentIdentifier < Oid .
 endfm)

(fmod RCA is
protecting ACTION .
protecting AGENT-STATE .
op TargetState : AgentState Action -> AgentState .
op FeedBack : Action -> Action .
endfm)

(fmod USER-RCA is
extending RCA .

User part
endfm)

(fmod RCA-LINK is
protecting USER-RCA .
…
op CorrespondingState : AgentState -> AgentState .
op CorrespondingAction : Action -> Action .

User part************
…
endfm)

A FORMAL FRAMEWORK SUPPORTING... Informatica 30 (2006) 97–110 103

the type EventType (line 1) relative to the two types of
events used in this formalism (Internal and External).
The appearance of an event is expressed by message
Event (line 3) having as parameters an agent, a role, the
type of the event, the agent's state, and an action.

In the RCA formalism, an agent changes state while
doing either an internal transition or an external one.
Figure 13 illustrates the necessary rewriting rules we
developed modeling the possible cases of transitions
(internal and external), while respecting the constraints
of this formalism described by the table given in figure 2.

Figure 13 : The object-oriented module ROLE-PROTOCOLE.

(omod ROLE-PROTOCOLE is
protecting RCA-LINK .
protecting IDENTIFICATION .
protecting ACQUAINTANCE-LIST .
sorts Agent Role EventType .

ops Internal External : -> EventType . ***[1]
class Agent | PlayRole : Role, State : AgentState, AcqList : acquaintanceList . ***[2]
Msg Event : Oid Role EventType AgentState Action -> Msg . ***[3]

**
vars A A1 : Oid . var S : AgentState . vars R R1 : Role .
var Act : Action . var ACL : acquaintanceList .

*******************************Possible cases of internal transition****************************
First case**********************************
crl[InternalTransitionCase1] : ***[4]
 Event(A, R, Internal, S, Act)
 < A : Agent | PlayRole : R, State : S, AcqList : ACL >
 =>
 < A : Agent | PlayRole : R, State : TargetState(S, Act), AcqList : ACL >
 if (IsInitial(S) or IsElementary(S) or IsComposite(S) or IslimitedWaiting(S)) .

Second case*********************************
crl[InternalTransitionCase2] : ***[5]
 Event(A, R, Internal, S, Act)
 < A : Agent | PlayRole : R, State : S, AcqList : ACL >
 =>
 < A : Agent | PlayRole : R, State : TargetState(S, Act), AcqList : TailA(ACL) >
 Event(HeadA(ACL), R1, External, CorrespondingState(S), CorrespondingAction (Act))
 if IsOfCommunication(S) and IsSendingToOnlyOne(Act) .

Third case***********************************
crl[InternalTransitionCase3] : ***[6]
 Event(A, R, Internal, S, Act)
 < A : Agent | PlayRole : R, State : S, AcqList : ACL >
 =>
 < A : Agent | PlayRole : R, State : S, AcqList : TailA(ACL) >
 Event(A, R, Internal, S, Act)
 Event(HeadA(ACL), R1, External, CorrespondingState(S), CorrespondingAction(Act))
 if IsOfCommunication(S) and IsSendingToAll(Act) and ACL =/= EmptyacquaintanceList .

*********************Possible case of External transition***
crl[ExternalTransition] : ***[7]
 Event(A, R, External, S, Act)
 < A : Agent | PlayRole : Initiator, State : S, AcqList : ACL >
 =>
 < A : Agent | PlayRole : Initiator, State : TargetState(S, Act), AcqList : ACL >
 if IsInitial(S) or IslimitedWaiting(S) or IsUnlimitedWaiting(S) .

**
…
endom)

104 Informatica 30 (2006) 97–110 F. Mokhati et al.

An agent doesn't do an internal transition except if it
is in one of the following states: initial, elementary,
composite, limited waiting or communication (see figure
2). In the first four states, an internal transition is
described by the rewriting rule (line 4) of figure 13. Such
a rule expresses that at the moment of the appearance of
an internal event, the agent consumes the message and
changes its state using the TargetState function defined
in the RCA module (figure 10). We treated separately the
case of a communication state, knowing that from this
state the agent generates an external event (sending of
message) allowing its acquaintances that are in waiting to
change their states. A message can be sent by an agent to
only one agent belonging to its acquaintance list or to all
its acquaintances.

The first case is described by the rule of the line 5.
Such a rule expresses, on the one hand, the consumption
of an internal event, on the other hand, the generation of
an external event sent to only one agent (here we adopt
the strategy choosing the agent that is at the head of the
acquaintances list using the HeadA function), if the agent
sender is in a communication state. The second case is
described by the rule of the line 6. Such a rule presents
the sending of a message by the agent A to all its
acquaintances. It presents a conditional loop. Indeed, it
allows browsing the acquaintance list (ACL) of the agent,
while using the two operations HeadA (determines the
head of the list) and TailA (determines the rest of the
list). Such a loop stops when the list is browsed
completely. An agent doesn't do an external transition
except if it is in a waiting state (limited either unlimited)
or sometimes in its initial state (see figure 2). This is
expressed by the rewriting rule of the line 7. When it
occurs an external event to an agent, this last changes its
state while doing an external transition, but the agent
must be in an initial or waiting state (limited either
unlimited).

6 Case Study : Auction Application
This section illustrates the application of our approach on
a concrete example. It is about a simple example of an
auction.

We have two kinds of agents: Auctioneer and Bidder.
Each auction involves one Auctioneer and several
Bidders.

The Auctioneer has a catalog of products. Before
beginning the auction, the Auctioneer sends the catalog
to all participants. Then, it begins the auction for all
products. The products are proposed sequentially to the
participants. Figures 14.a and 14.b describe the
representation of the Auctioneer and Bidder roles
respectively using the RCA formalism.

6.1 Application of the Translation Process
The formal description of the behaviors of the agents
whose roles are described using the RCA formalism
implies all defined modules previously with the
definition of the USER-RCA and RCA-LINK modules.
Figures 15 and 16 illustrate the defined modules
corresponding to the Auctioneer and Bidder roles
respectively. The correspondence between these roles is
presented in figure 17. Indeed, the two modules USER-
RCA1 (figure 15) and USER-RCA2 (figure 16) describe
the Auctioneer and Bidder roles respectively in the same
way. We limit ourselves to detail the USER-RCA1
module only.

In figure 15, we define the different states of the
Auctioneer agent (lines 1 and 2). For example, the state
AgentState(CommitmentDecision, communication)
means that the state named CommitmentDecision is a
communication state (see figure 14.a). The actions given
in figure 14.a are described by line 3. To determine the
target state (line 4) according to a source state and a
given action, we used the operation TargetState defined
in figure 10. If the Auctionner agent is in its
CommitmentDecision state, and the action to execute is
AcceptProposalSent, the target state of this transition
must be the final state EndI. To select the conditional
rule to execute when the agent is in a communication
state (see figure 13, lines 5 and 6), it is necessary to
know the type of the action. For example, the line 5 of
figure 15 indicates that the CFP-Sent action must be sent
by the Auctioneer to all Bidders.

AcceptProposal,
RejectProposals

Sent

StartI
TrueCond

EndI

Commitment
Decision

No
Proposal

Has
Proposals

OfferEvalu-ationI

Proposal
saved

Received
Proposal

Saving
Proposal

Waiting
Proposals

ExpiredTime
Out CFP Sent

Sending
CFP

Reject sentWaiting
Result

Receiving
Acceptance

Receiving
Reject

EndP

Proposal sent

StartP OfferEvaluationP
 ReceivingCFP

Figure 14 : Representation of the roles, Auctioneer and Bidder using RCA formalism.

A FORMAL FRAMEWORK SUPPORTING... Informatica 30 (2006) 97–110 105

Figure 15 : The module USE-RCA1 corresponding to the Auctioneer agent.

Figure 16 : The module USER-RCA2 corresponding to the Bidder agent.

fmod USER-RCA 1 is
extending RCA .

****************States of an Auctioneer***
ops StartI SendingCFP WaitingProposals OfferEvaluationI SavingProposal
 CommitmentDecision EndI : -> NameAgentState . ***[1]

ops AgentState(StartI, initial) AgentState(SendingCFP, communication)
 AgentState(WaitingProposals, limitedWaiting) AgentState(OfferEvaluationI, elementary)
 AgentState(SavingProposal, elementary) AgentState(CommitmentDecision, communication)
 AgentState(EndI, final) : -> AgentState . ***[2]

***************Actions to accomplish by an Auctioneer************************************
ops TrueCondition CFP-Sent ExpiredTimeOut NoProposal HasProposal ReceivedProposal
 ProposalSaved AcceptProposalSent RejectProposalSent : -> Action . ***[3]

***************Determination of the target state according to a state source and an action *********
eq TargetState(AgentState(StartI, initial), TrueCondition) = AgentState(SendingCFP, communication) .
…
eq TargetState(AgentState(CommitmentDecision, communication), AcceptProposalSent) =
 AgentState(EndI, final) . ***[4]
eq TargetState(AgentState(CommitmentDecision, communication), RejectProposalSent) =
 AgentState(EndI, final) .

************* Determination of the type of an action ***************************************
eq IsSendingToAll(CFP-Sent) = true . ***[5]
eq IsSendingToOnlyOne(AcceptProposalSent) = true .

endfm

fmod USER-RCA2 is
extending RCA .

****************States of a Bidder**
ops StartP OfferEvaluationP WaitingResult EndP : -> NameAgentState .

ops AgentState(StartP, initial) AgentState(OfferEvaluationP, communication)
 AgentState(WaitingResult, UnlimitedWaiting) AgentState(EndP, final) : -> AgentState .

***************Action to accomplish by a Bidder***************************************
ops ReceivingCFP ProposalSent RejectSent ReceivingAcceptance ReceivingReject : -> Action .

****************Determination of the target state according to a state source and an action *****
eq TargetState(AgentState(StartP, initial), ReceivingCFP) = AgentState(OfferEvaluationP, communication) .
…
eq TargetState(AgentState(WaitingResult, UnlimitedWaiting), ReceivingAcceptance) = AgentState(EndP, final) .
eq TargetState(AgentState(WaitingResult, UnlimitedWaiting), ReceivingReject) = AgentState(EndP, final) .

*************** Determination of the type of an action************************************
eq IsSendingToOnlyOne(ProposalSent) = true .
eq IsSendingToOnlyOne(RejectSent) = true .

endfm

106 Informatica 30 (2006) 97–110 F. Mokhati et al.

The RCA-LINK module of figure 17, presents a
correspondence on the one hand, between the different
states of the agents Auctioneer and Bidder and, on the
other hand, between the events they exchange. For
example, if the Auctioneer agent is in its communication
state SendCFP, the Bidder must be in its initial state
StartP (line 1). In the same way, if the Bidder is in its
communication state OfferEvaluationP (line 3), the
Auctioneer must wait its decision. Indeed, an external

event for an agent receiver corresponds to a message sent
by a sender agent. For example, when the Auctioneer
throws a call-for-proposal (CFP-Sent), the Bidder agent
receives the call-for-proposal event (ReceivingCFP).
This is expressed by the rule of the line 2. Also, when the
Bidder accepts to propose, it sends its proposition
(ProposalSent), and of the other side, the Auctionner
receives its proposition (ReceivedProposal) (line 4).

Figure 17 : The module RCA-LINK.

Figure 17 : The module RCA-LINK.

6.2 Validation of the Generated
Description

The rewriting logic offers a great flexibility in terms of
simulation of a specification, in particular, concerning
the choice of the initial configuration. This choice plays a
primordial role in the validation of the description of a

system. Using all the system’s description, we can
validate a part of the system without involving the rest.
For a validation of the AIP given by figure 14, we
consider two essential cases: the case where there are
Bidders that accept to propose and others do not, and the
case where all Bidders refuse to propose. For the first
case, we propose the following initial configuration :

Figure 18 : Initial configuration.

fmod RCA-LINK is
protecting RCA1 .
protecting RCA2 .
sort EventType .

ops Internal External : -> EventType .
op CorrespondingState : AgentState -> AgentState .
op CorrespondingAction : Action -> Action .

************************************Auctioneer Part***********************************

eq CorrespondingState(AgentState(SendingCFP, communication)) = AgentState(StartP, initial) . ***[1]
eq CorrespondingState(AgentState(CommitmentDecision, communication)) =
 AgentState(WaitingResult, UnlimitedWaiting) .
…
eq CorrespondingAction(CFP-Sent) = ReceivingCFP . ***[2]
eq CorrespondingAction(AcceptProposalSent) = ReceivingAcceptance .

************************************Bidder Part***

eq CorrespondingState(AgentState(OfferEvaluationP, communication)) =
 AgentState(WaitingProposals, limitedWaiting) . ***[3]
…
eq CorrespondingAction(ProposalSent) = ReceivedProposal . ***[4]

endfm

< "Auctioneer" : Agent | PlayRole : Initiator, State : AgentState(StartI, initial), AcqList : ("Bidder1" :
 ("Bidder2" : “Bidder3”)) >
< "Bidder1" : Agent | PlayRole : Participant, State : AgentState(StartP, initial), AcqList : "Auctioneer" >
< "Bidder2" : Agent | PlayRole : Participant, State : AgentState(StartP, initial), AcqList : "Auctioneer" >
< "Bidder3" : Agent | PlayRole : Participant, State : AgentState(StartP, initial), AcqList : "Auctioneer" >
Event("Auctioneer", Initiator, Internal, AgentState(StartI, initial), TrueCondition)
Event("Auctioneer", Initiator, Internal, AgentState(SendingCFP, communication), CFP-Sent)
Event("Bidder1", Participant, Internal, AgentState(OfferEvaluationP, communication), ProposalSent)
Event("Bidder2", Participant, Internal, AgentState(OfferEvaluationP, communication), ProposalSent)
Event("Bidder3", Participant, Internal, AgentState(OfferEvaluationP, communication), RejectSent) .

A FORMAL FRAMEWORK SUPPORTING... Informatica 30 (2006) 97–110 107

We define an initial configuration including an agent
initiator '' Auctionneer '', and three agents participants
("Bidder1", "Bidder2", "Bidder 3"). In the beginning,
every agent is in its initial state. From its
OfferEvaluationP state a Bidder agent can send a
proposition as it can refuse to propose. In the

configuration of figure 18, Bidder1 and Bidder2 send
their propositions whereas Bidder3 refuses to propose
while sending a reject. The unlimited rewriting (without
indicating the number of the rewriting steps) of this
configuration gives the result illustrated by figure 19.

Figure 19: Auctioneer and Bidders in their final states.

After it sends a call for proposal to all Bidders, the

agent Auctioneer begins to receive the proposal from
Bidders agents. Once the considered deadline is expired
(internal event) the initiator throws its evaluation process
while choosing the most appropriate proposition (here we
adopt the strategy based on the first proposing).

So, the Auctioneer sends to the chosen Bidder (here
"Bidder1") an acceptance, and to the other (here
"Biddert2") a reject. Bidder3 is not concerned because it
refused to propose and therefore passes to its final state
(see figure 14.b). For the second case, we propose the
initial configuration of the following figure:

Figure 20 : Initial configuration.

The configuration of figure 20 looks like the one of
figure 18 except that the Bidders refuse to propose. The
unlimited rewriting (without indicating the number of the

rewriting steps) of this configuration gives the result
illustrated by figure 21.

Figure 21: Auctioneer and Bidders in their final states.

Every participant who refuses to propose passes to

the EndP state (see figure 14.b). In the same way, the
initiator waits for the expiration of the deadline and as it
doesn't receive any proposition during this interval of
time, it passes on its turn in the EndP state (see figure
14.a). Indeed, the configuration of figure 21 seems to be
the same that the one of figure 19. It is due to the fact
that in the RCA formalism an agent can have only one
final state. However, such configurations are different
(for example, the EndP state of agent Bidder1 in figure

19 is a success state, but in figure 21 such a state presents
a failure).

6.3 Implementation
Figure 22 illustrates a part of the code we developed. It
visualizes the rewriting rule that describes the reception
of an external event by the agent A1 who plays the
Participant role and exists in the state S. This rule also
expresses the transition from the state S of the agent A1
to another target state determined by the function

< "Auctioneer" : Agent | PlayRole : Initiator, State : AgentState(EndI, final), AcqList :
 ("Bidder1" : ("Bidder2" : "Bidder3") >
< "Bidder1" : Agent | PlayRole : Participant, State : AgentState(EndP, final), AcqList : "Auctioneer" >
< "Bidder2" : Agent | PlayRole : Participant, State : AgentState(EndP, final), AcqList : "Auctioneer" >
< "Bidder3" : Agent | PlayRole : Participant, State : AgentState(EndP, final), AcqList : "Auctioneer" >

 < "Auctioneer" : Agent | PlayRole : Initiator, State : AgentState(StartI, initial), AcqList :
 ("Bidder1" : ("Bidder2" : “Bidder3”)) >
 < "Bidder1" : Agent | PlayRole : Participant, State : AgentState(StartP, initial), AcqList : "Auctioneer" >
 < "Bidder2" : Agent | PlayRole : Participant, State : AgentState(StartP, initial), AcqList : "Auctioneer" >
 < "Bidder3" : Agent | PlayRole : Participant, State : AgentState(StartP, initial), AcqList : "Auctioneer" >
 Event("Auctioneer", Initiator, Internal, AgentState(StartI, initial), TrueCondition)
 Event("Auctioneer", Initiator, Internal, AgentState(SendingCFP, communication), CFP-Sent)
 Event("Bidder1", Participant, Internal, AgentState(OfferEvaluationP, communication), RejectSent)
 Event("Bidder2", Participant, Internal, AgentState(OfferEvaluationP, communication), RejectSent)
 Event("Bidder3", Participant, Internal, AgentState(OfferEvaluationP, communication), RejectSent) .

< "Auctioneer" : Agent | PlayRole : Initiator, State : AgentState(EndI, final), AcqList :
 ("Bidder1" : ("Bidder2" : "Bidder3") >
< "Bidder1" : Agent | PlayRole : Participant, State : AgentState(EndP, final), AcqList : "Auctioneer" >
< "Bidder2" : Agent | PlayRole : Participant, State : AgentState(EndP, final), AcqList : "Auctioneer" >
< "Bidder3" : Agent | PlayRole : Participant, State : AgentState(EndP, final), AcqList : "Auctioneer" >

108 Informatica 30 (2006) 97–110 F. Mokhati et al.

TargetState(S, Act). The triggering of such a transition
only takes place if the agent A1 is in one of waiting
(limited or unlimited) or initial states. This is expressed

in this conditional rule by the boolean functions
IsUnlimitedWaiting(S), IslimitedWaiting(S) and
IsInitial(S) respectively.

Figure 22 : Part of the developed code.

Furthermore, figure 22 shows the limited rewriting
(after 20 rewriting steps) of an initial configuration. In
this configuration, we have the agent '' Auctioneer ''
playing the Initiator role, and the three agents '' Bidder1
'', '' Bidder2 '' and '' Bidder3 '' each playing the
Participant role. All agents are in the departure in their
initial states (StartI for agent Auctioneer and StartP for
the Bidders). We suppose, in this initial configuration,
that after the sending of the call for proposal by the
Auctionner to all Bidders, these last send propositions in

the case where they are in state of evaluation of proposal
OfferEvaluationP. This state is a communication state
(see figure 14).

The result of rewriting of such an initial configuration
is illustrated by figure 23. The Auctioneer throws its
decision process, and all Bidders wait for an answer from
it. The agent Auctioneer is in its elementary state
OfferEvaluationI and all Bidders are in their unlimited
waiting states WaitingResult.

Figure 23 : Result of limited rewriting (after 20 steps) of the initial configuration.

7 Conclusions and Future Work
The RCA formalism allows specifying the roles
protocols and is used to describe agents’ behavior.
Compared to others formalisms, RCA allows recognizing
the synchronization points between dual protocols. As
for the other existing formalisms, RCA is not endowed

yet with a formal semantics [28]. Furthermore, it only
allows a partial formalization of MAS [17, 22].

In this article, we proposed a formal framework
supporting the translation of interactions between agents,
specified using the RCA formalism, in a Maude
specification. The translation process is based on the
RCA graphs. All the concepts used by the RCA

A FORMAL FRAMEWORK SUPPORTING... Informatica 30 (2006) 97–110 109

formalism are supported by Maude. Based on rewriting
logic, the formal and object-oriented language Maude
supports formal specification and programming for a
wide range of applications. The result of the translation
procures a formal description of the interactions between
agents preserving the consistency in their behavior. It
offers a solid basis for their verification and validation
process. The generated Maude specifications are flexible
and remain open to extension.

Maude is supported by a tool. This allowed us, as a
first experiment, in addition to the modeling, to perform
a validation (based on a simulation) of our approach.
Furthermore, we work on the extension of our approach
in order to integrate the possibilities offered by the
Maude language (model-checker) to verify some
properties of the interactions between agents described
using RCA graphs and translated in Maude.

References

[1] Bakam I., Kordon F., Le Page C., Bousquet F.
« Formalization of a Spatialized Multiagent Model
Using Coloured Petri Nets for the Study of a Hunting
Management System ». First International Workshop,
FAABS 2000, Greenbelt, MD, USA, April 2000.
FAABS 2000.

[2] Bruni R., and Meseguer J., « Generalized rewrite
theories ». In J. C. M. Baeten, J. K. Lenstra, J. Parrow,
and G. J. Woeginger, editors, Proc. 30th International
Colloquium on Automata, Languages and
Programming (ICALP 2003), volume 2719 of Lecture
Notes in Computer Science, pages 252-266. Springer,
2003.

[3] Clavel M., and al. “Maude : Specification and
Programming in Rewriting Logic”. Internal report, SRI
International, 1999.

[4] Cloutier L. «Une approche multi-agents par
conventions et contrats pour la coordination de
l'entreprise manufacturière réseau », Université de
Droit d'Economie et des Sciences d'Aix-Marseille III,
DIAM-IUSPIM, Marseille, 1999.

[5] Cost R., and al. «Modeling Agent Conversations with
colored Petri Nets», dans Working Notes of the
Workshop on Specifying and Implementing
Conversation Policies, Autonomous Agents’99, Seattle,
Washington, mai 1999.

[6] El Fallah-Seghrouchni A., et Mazouzi H., «Une
démarche méthodologique pour l’ingénierie des
protocoles d’interaction», in. Actes Ingénierie des
systèmes multi-agents, JFIADSMA’99, 8-10 novembre
1999, Saint-Gilles, Ile de la Réunion.

[7] Guessoum Z. «Modèles et Architectures d’Agents et de
Systèmes Multi-Agents Adaptatifs ». Dossier
d’habilitation à diriger des recherches de l’Université
Pierre et Marie Curie. Décembre 2003.

[8] Huget M.P., «Model Checking Agent UML Protocol
Diagrams ». Technical report ULCS-02-012 from the
department of computer science, University of
Liverpool. Version 2002/04/16.

[9] Huget M.P., and Odell J. «Representing Agent
Interaction Protocols with Agent UML » AAMAS'04,
July 19-23, 2004, New York, New York, USA.

[10]Lemaître C., Prat, X., Magnin, L. et Dury A.
«Description, programmation et validation
d'interactions par Coupled Augmented Transition
Network(CATNs) ». In Actes des Secondes Journées
Francophones sur les Modèles Formels d'Interactions
(MFI’03). Lille, France, 20-23 mai 2003.

[11]Mazouzi H., El fallah Seghrouchni A.,, and Haddad S.,
«Open protocol design for complex interaction in
multi-agent systems ». In Proceedings of the first
international joint conference on Autonomous agent
and multi-agent systems, pages 517-526. ACM Press,
2002.

[12]McCombs T., «Maude 2.0 Primer, Version 1.0».
Internal report, SRI International, 2003.

[13]Meseguer J., «Rewriting as a unified model of
concurrency» In Proceedings of the Concur’90
Conference, Amsterdam, Pg 384-400, Springer LNCS
Vol. 458, 1990.

[14]Meseguer J., «Logical Theory of Concurrent Objects
and its Realization in the Maude Language» In G.
Agha, P. Wegner, and A. Yonezawa, Editors, Research
Directions in Object-Based Concurrency. MIT Press,
1992.

[15]Meseguer J., «Rewriting Logic and Maude : a Wide-
Spectrum Semantic Framework for Object-Based
Distributed Systems» In S. Smith and C. L. Talcott,
editors, Formal Methods for Open Object-Based
Distributed Systems, FMOODS2000, 2000.

[16]Mokhati F., Boudiaf N., Badri L., & Badri M.,
«Generating Maude Specification from AUML
Diagrams: Toward A Systematic Approach». In Proc of
CSITeA-04 conference. Cairo, Egypt. December 27-29,
2004.

[17]Mokhati F., Boudiaf N., Badri M., & Badri L.,
«DIMA-Maude: Toward a Formal Framework for
Specifying and Validating DIMA Agents». In Proc of
the MOCA’04 conference. Arrhus, Denmark, October
11-13, 2004. pp. 169-187.

[18]Nathalie F., «Modélisation et simulation multi-agents
d'écosystèmes antropisés : une application à la gestion
hydraulique en grande Camargue», Université de Droit
d'Economie et des Sciences d'Aix-Marseille III,
IUSPIM-DIAM, Marseille, 2001.

[19]Odell J., Parunak H.V.D., Bauer B., «Representing
agent Interaction protocol In UML» conférence AAAI
Agents 2000, Barcelone, 3-7 juin 2000.

[20]Odell J., Parunak H. V. D., Bauer B., «Representing
agent Interaction protocol In UML», Agent Oriented
Software Enginering, Paolo Ciancarini and Michael
Wooldridge (eds.), Springer-Verlag, Berlin, 2001, pp.
121-140.

[21]Olveczky P.C., «Modeling and Analyzing Protocols in
Maude» 8th Brazilian Symposium on Programming
Languages (SBLP'04). May 26-28, 2004.

[22]Paurobally S, Cunningham J., «Achieving Common
Interaction Protocols in Open Agent Environments»,
2nd international workshop on Challenges in Open

110 Informatica 30 (2006) 97–110 F. Mokhati et al.

Agent Environments, AAMAS 2003, Melbourne,
Australia 14-18th July 2003.

[23]Paurobally S, Cunningham J, and Jennings N R.,
«Developing Agent Interaction Protocols Using
Graphical and Logical Methodologies» in Proc.
AAMAS03 PROMAS Workshop on Programming
Multi-Agent Systems , 2003.

[24]Paurobally S., Cunningham J., and Jennings, N. R.,
«Verifying the contract net protocol: a case study in
interaction protocol and agent communication
semantics». In Proceedings of 2nd International
Workshop on Logic and Communication in Multi-
Agent Systems, Nancy, France 2004, pp. 98-117.

[25]Pham V. T., Laurent M., Houari S., «Adaptation
dynamique des systèmes multi-agents basée sur le
concept de méta-CATN». In Actes de la Deuxième
Conférence Internationale Associant Chercheurs
Vietnamiens et Francophones en Informatique, Hanoï
Vietnam, 2-5 Février 2004.

[26]Toivonen S. and al. «Using Interaction Protocols in
Distributed Construction Processes». In Seruca, I.,
Filipe, J., Hammoudi, S., and Cordeiro, J. (Eds.):
Proceedings of the 6th International Conference on
Enterprise Information Systems (ICEIS'04), Porto,
Portugal, April 2004, pp. 344—349

[27]Tranvouez E., Espinasse B., «Protocoles de
coopération pour le réordonnancement d’atelier». In
Actes des journées francophones d’Intelligence
Artificielle Distribuée et Systèmes Multi-Agents
(JFIADSMA’99) à Saint-Gilles, île de la Réunion,
novembre 1999, Gleizes J.-P., Marcenac P., Ed.
Hermès, 1999.

[28]Tranvouez E., «IAD et ordonnancement : une
approche coopérative du réordonnancement par
systèmes mulit-agents». Thèse de doctorat. Université
de Droit, d'Economie et des Sciences d'Aix-Marseille
III. 2001

[29]Wooldridge M., and al., «A Methodology for Agent-
Oriented Analysis and Design». Proc. 3rd Int. Conf. On
Autonomous Agents (Agents99), Seatle, WA, 1999.

[30]Wooldridge M., and al., «The gaia methodology for
agent-oriented analysis and design». Autonomous
Agent and Multi-agent Systems, 3(3):285-312, 2000.

 Informatica 30 (2006) 111–129 111

A Review of Modular Multiplication Methods and Respective
Hardware Implementations
Nadia Nedjah
Department of Electronics Engineering and Telecommunications, Engineering Faculty,
State University of Rio de Janeiro, Rio de Janeiro, Brazil
nadia@eng.uerj.br, http://www.eng.uerj.br/~nadia

Luiza de Macedo Mourelle
Department of System Engineering and Computation, Engineering Faculty,
State University of Rio de Janeiro, Rio de Janeiro, Brazil
ldmm@eng.uerj.br, http://www.eng.uerj.br/~ldmm

Keywords: cryptography, encryption, modular multiplication, modular reduction.

Received: April 18, 2005

Generally speaking, public-key cryptographic systems consist of raising elements of some group such as
GF(2n), Z/NZ or elliptic curves, to large powers and reducing the result modulo some given element.
Such operation is often called modular exponentiation and is performed using modular multiplications
repeatedly. The practicality of a given cryptographic system depends heavily on how fast modular
exponentiations are performed. Consequently, it also depends on how efficiently modular
multiplications are done as these are at the base of the computation. This problem has received much
attention over the years. Software as well as hardware efficient implementation were proposed.
However, the results are scattered through the literature. In this paper we survey most known and recent
methods for efficient modular multiplication, investigating and examining their strengths and
weaknesses. For each method presented, we provide an adequate hardware implementation.
Povzetek: Podan je pregled modernih metod kriptografije.

1 Introduction
Electronic communication is growing exponentially

so should be the care for information security issues [10].
Data exchanged over public computer networks must be
authenticated, kept confidential and its integrity protected
against alteration. In order to run successfully, electronic
businesses require secure payment channels and digital
valid signatures. Cryptography provides a solution to all
these problems and many others [17].

One of the main objectives of cryptography consists
of providing confidentiality, which is a service used to
keep secret publicly available information from all but
those authorized to access it. There exist many ways to
providing secrecy. They range from physical protection
to mathematical solutions, which render the data
unintelligible. The latter uses encryption/decryption
methods [10], [17], [30], [31].

The modular exponentiation is a common operation
for scrambling and is used by several public-key
cryptosystems, such Deffie and Hellman [8], [9] and the
Rivest, Shamir and Adleman encryption schemes
[34], as encryption/decryption method. RSA
cryptosystem consists of a set of three items: a modulus
M of around 1024 bits and two integers D and E called
private and public keys that satisfy the property TDE ≡ T
mod M. Plain text T obeying 0 ≤ T < M. Messages are
encrypted using the public key as C = TE mod M and

uniquely decrypted as T = CD mod M. So the same
operation is used to perform both processes: encryption
and decryption. The modulus M is chosen to be the
product of two large prime numbers, say P and Q. The
public key E is generally small and contains only few
bits set (i.e. bits = 1), so that the encryption step is
relatively fast. The private key D has as many bits as the
modulus M and is chosen so that DE = 1 mod
(P−1)(Q−1). The system is secure as it is
computationally hard to discover P and Q. It has been
proved that it is impossible to break an RSA
cryptosystem with a modulus of 1024-bit or more.

The modular exponentiation applies modular
multiplication repeatedly. So the performance of public-
key cryptosystems is primarily determined by the
implementation efficiency of the modular multiplication
and exponentiation. As the operands (the plaintext or the
cipher text or possibly a partially ciphered text) are
usually large (i.e. 1024 bits or more), and in order to
improve time requirements of the encryption/decryption
operations, it is essential to attempt to minimize the
number of modular multiplications performed and to
reduce the time required by a single modular
multiplication.

Modular multiplication A×B mod M can be

performed in two different ways: multiplying, i.e.
computing P = A×B; then reducing, i.e. R = P mod M or

112 Informatica 30 (2006) 111–129 N. Nedjah et al.

interleave the multiplication and the reduction steps.
There are various algorithms that implement modular
multiplication. The most prominent are Karatsuba-
Ofman’s [12] and Booth’s [3] methods for multiplying,
Barrett’s [2], [6], [7] method for reducing, and
Montgomery’s algorithms [18], and Brickell’s method
[4], [37] for interleaving multiplication and reduction.

Throughout this paper, we will consider each one of
the methods cited in the previous paragraph. The review
will be organised as follows: First we describe, in
Section 2, Karatsuba-Ofman’s and Booth’s methods for
multiplying. Later, in Section 3, we present Barrett’s
method for reducing an operand modulo a given
modulus. Then we detail Montgomery’s algorithms for
interleaving multiplication and reduction, in Section 4.

2 Efficient Multiplication Methods
The multiply-then-reduce methods consist of first

computing the product then reducing it with respect to
the given modulus. This method is generally preferred as
there are very fast on-the-shelf multiplication algorithms
as they were over studied [3], [12], [33]. The nowadays
most popular multiplication methods that are suitable for
hardware implementation are Karatsuba-Ofman’s
method and Booth’s method.

2.1 Karatsuba-Ofman Method
Karatsuba-Ofman’s algorithm is considered one of the
fastest ways to multiply long integers. Generalizations of
this algorithm were shown to be even faster than
Schönhage-Strassen’s FFT method [35], [36]. Karatsuba-
Ofman’s algorithm is based on a divide-and-conquer
strategy. A multiplication of a 2n-digit integer is reduced
to two n-digits multiplications, one (n+1)-digits
multiplication, two n-digits subtractions, two left-shift
operations, two n-digits additions and two 2n-digits
additions.

Even though this algorithm was proposed long ago
and as far as we know, there is no published hardware
implementation for this algorithm. In contrast with the
work presented in this paper, and after an extensive paper
research, we only found publications on hardware
implementations of Karatsuba-Ofman’s algorithm
adapted to multiplication in the Galois fields [13], [32].
Unlike in our implementation, the addition (mod 2) of
two bits in these implementations delivers a single bit
using a XOR gate In contrast with these, our
implementation cares about the carryout bit, as it is
necessary to obtaining the product. It is unnecessary to
emphasize that this makes the designer face a completely
different problem as explained later on.

The hardware specification is expressed using the
most popular hardware description language VHDL [20].
Note that VHDL does not provide a recursive feature to
implement recursive computation [1], [27], [28]. The
proposed model exploits the generate feature to yield the
recursive hardware model.

This subsection is organized as follows: First, we
describe the Karatsuba-Ofman’s algorithm and sketch its

complexity. Then, we adapt the algorithm so that it can
be implemented efficiently. Subsequently, we propose a
recursive and efficient architecture of the hardware
multiplier for Karatsuba-Ofman’s algorithm. After that,
we implement the proposed hardware using the Xilinx™
project manager and present some figures concerning
time and space requirements of the obtained multiplier.
We then compare our hardware with a Synopsis™ library
multiplier and two other multipliers that implement
Booth’s multiplication algorithm.

2.1.1 Karatsuba-Ofman’s Algorithm
We now describe the details of Karatsuba-Ofman’s

multiplication algorithm [12], [27], [36]. Let X and Y be
the binary representation of two long integers:

X = ∑
−

=

1

0

2
k

i

i
ix and Y = ∑

−

=

1

0

2
k

i

i
iy

We wish to compute the product XY. The operands X
and Y can be decomposed into to equal-size parts XH

 and
XL, YH and YL respectively, which represent the n higher
order bits and lower order bits of X and Y. Let k = 2n. If k
is odd, it can be right-padded with a zero.

X = ∑∑
−

=

−

=
+ +⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ 1

0

1

0

222
n

i

i
i

n

i

i
ni

n xx = XH 2n + XL

Y = ∑∑
−

=

−

=
+ +⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ 1

0

1

0

222
n

i

i
i

n

i

i
ni

n yy = YH 2n + YL

So the product P = XY can be computed as follows:

P = XY
 = (XH 2n + XL)(YH 2n + YL)
 = 22n(XHYH) + 2n(XHYL + XLYH) + XLYL

Using the equation above, it needs 4 n-bits
multiplications to compute the product P. The standard
multiplication algorithm is based on that equation. So
assuming that a multiplication of k-bits operands is
performed using T(k) one-bit operations, we can
formulate that T(k) =T(n) + δ k, wherein δk is a number
of one-bit operations to compute all the additions and
shift operations. Considering that T(1) = 1, we find that
the standard multiplication algorithm requires:

T(k) = ()42logk = ()2k

The computation of P can be improved by noticing
the following:

XHYL + XLYH = (XH + XL)(YH + YL) − XHYH − XLYL

The Karatsuba-Ofman’s algorithm is based on the
above observation and so the 2n-bits multiplication can
be reduced to three n-bits multiplications, namely XHYH,
XLYL and (XH + XL)(YH + YL). The Karatsuba-Ofman’s
multiplication method can then be expressed as in the
algorithm in Figure 1. wherein function Size(X) returns
the number of bits of X, function High(X) returns the
higher half part of X, function Low(X) returns the lower
half of X, RightShift(X, n) returns X2n and

A REVIEW OF MODULAR MULTIPLICATION... Informatica 30 (2006) 111–129 113

OneBitMultiplication(X, Y) returns XY when both X and
Y are formed by a single bit. If Size(X) is odd, then
High(X) and Low(X) right-pad X with a zero before
extracting the high and the low half respectively.
The algorithm above requires 3 n-bits multiplications to
compute the product P. So we can stipulate that:

T(k) = 2T(n) + T(n+1)+ δ′ k ≈ 3T(n) + δ′ k

wherein δ′n is a number of one-bit operations to compute
all the additions, subtractions and shift operations.
Considering that T(1) = 1, we find that the Karatsuba-
Ofman’s algorithm requires:

T(k) ≈ ()32logk = ()58.1k ,

and so is asymptotically faster than the standard
multiplication algorithm.

2.1.1 Adapted Karatsuba’s Algorithm
We now modify Karatsuba-Ofman’s algorithm of Figure
1 so that the third multiplication is performed efficiently.

For this, consider the arguments of the third
recursive call, which computes Product3. They have
Size(X)/2+1 bits. Let Z and U be these arguments left-
padded with Size(X)/2-1 0-bits. So now Z and U have
Size(X) bits. So we can write the product Product3 as
follows, wherein Size(X) = 2n, ZH and UH are the high
parts of Z and U respectively and ZL and UL are the low

parts of Z and U respectively. Note that ZH and UH may
be equal to 0 or 1.

Product3 = ZU
 = (ZH 2n + ZL)(UH 2n + UL)
 = 22n(ZHUH) + 2n(ZHUL + ZLUH) + ZLYL

Depending on the value of ZH and UH, the above
expression can be obtained using one of the alternatives
of Table 1.
As it is clear from Table 1, computing the third product
requires one multiplication of size n and some extra
adding, shifting and multiplexing operations. So we
adapt Karatsuba-Ofman’s algorithm of Figure 1 to this
modification as shown in the algorithm of Figure 2.

ZH UH Product3
0 0 ZLYL
0 1 2n ZL + ZLYL
1 0 2nUL + ZLYL
1 1 22n + 2n(UL + ZL) +

ZLYL
Table 1: computing the third product2.1.3 Recursive
Hardware Architecture

In this section, we concentrate on explaining the
proposed architecture of the hardware.

The component KaratsubaOfman implements the

Algorithm KaratsubaOfman(X, Y)

 If (Size(X) = 1) Then KaratsubaOfman= OneBitMultiplier(X, Y)

 Else Product1 := KaratsubaOfman(High(X), High(Y));

 Product2 := KaratsubaOfman(Low(X), Low(Y));

 Product3 := KaratsubaOfman(High(X)+Low(X), High(Y)+Low(Y));

 KaratsubaOfman := RightShift(Product1, Size(X)) +

 RightShift(Product3-Product1-Product2, Size(X)/2) +
Product2;

End KaratsubaOfman.

Figure 1: Karatsuba-Ofman recursive multiplication algorithm

Algorithm AdaptedKaratsubaOfman(X, Y)

 If (Size(X) = 1) Then KaratsubaOfman := OneBitMultiplier(X, Y)

 Else Product1 := KaratsubaOfman(High(X), High(Y));

 Product2 := KaratsubaOfman(Low(X), Low(Y));

 P := KaratsubaOfman(Low(High(X)+Low(X)), Low(High(Y)+Low(Y)));

 If Msb(High(X)+Low(X)) = 1 Then A := Low(High(Y)+Low(Y)) Else A := 0;

 If Msb(High(Y)+Low(Y)) = 1 Then B := Low(High(X)+Low(X)) Else B := 0;

 Product3 := LeftShift(Msb(High(X)+Low(X))•Msb(High(X)+Low(X)), Size(X)) +
 LeftShift(A + B, Size(X)/2) + P;

 KaratsubaOfman = LeftShift(Product1, Size(X)) +

 LeftShift(Product3-Product1-Product2, Size(X)/2) +
Product2;

End AdaptedKaratsubaOfman.

Figure 2: Adapted Karatsuba-Ofman’s algorithm

114 Informatica 30 (2006) 111–129 N. Nedjah et al.

algorithm of Figure 2. Its interface is given in Figure 3.
The input ports are the multiplier X and the multiplicand
Y and the single output port is the product XY. It is clear
that the multiplication of 2 n-bit operands yields a
product of 2n-bits product.

The VHDL recursive specification of the component
architecture is given in the concise code of Figure 4. The
architecture details of the component KaratsubaOfman
are given in Figure 5.

Entity KaratsubaOfman is

 Generic(

 n: positive

);

 Port(

 X: In bit_vector (Size-1 To 0);

 Y: In bit_vector (Size-1 To 0);

 XY: Out bit_vector(2*Size-1 To 0)

);

End KaratsubaOfman;

Figure 3: Interface of component KaratsubaOfman

The signals SXL and SYL are the two n-bits results of
the additions XH + XY and YH + YL respectively. The two
one-bit carryout of these additions are represented in
Figure 5 by CX and CY respectively.

The component ShiftnAdd (in Figure 5) first
computes the sum S as SXL + SYL, SXL, SYL, or 0
depending on the values of CX and CY (see also Table 1).
Then computes Product3 as depicted in Figure 6, wherein

T represents CX ×CY.
The computation implemented by component

ShiftSubnAdd (in Figure 5) i.e. the computation specified
in the last line of the Karatsuba-Ofman algorithm in
Figure 1 and Figure 2 can be performed efficiently if the
execution order of the operations constituting it is chosen
carefully. This is shown in the architecture of Figure 7.

Figure 6: Operation performed by the ShiftnAdder2n

Component ShiftSubnAdd proceeds as follows: first
computes R = Product1 + Product2; then obtains 2CR,
which is the two’s complement of R; subsequently,
computes U = Product3 + 2CR; finally, as the bits of
Product1 and U must be shifted to the left 2n times and n
times respectively, the component reduces the first and
last additions as well as the shift operations in the last
line computation of Karatsuba-Ofman’s algorithm (see
Figure 1 and Figure 2) to a unique addition that is
depicted in Figure 8.

Architecture RecursiveArchitecture of KaratsubaOfman is

 -- declaration part including components and temporary signals

Begin

 Termination: If k = 1 Generate

 TCell: OneBitMultiplier Generic Map(n) Port Map(X(0), Y(0), XY(0));

 End Generate Termination;

 Recursion: If k /= 1 Generate

 ADD1: Adder Generic Map(k/2) Port Map(X(k/2-1 Downto 0), X(k-1 Downto k/2), SumX
);

 ADD2: Adder Generic Map(k/2) Port Map(Y(k/2-1 Downto 0), Y(k-1 Downto k/2), SumY
);

 KO1: KaratsubaOfman Generic Map(k/2)

 Port Map(X(k-1 Downto k/2),Y(k-1 Downto k/2),Product1);

 KO2: KaratsubaOfman Generic Map(k/2)

 Port Map(X(k/2-1 Downto 0),Y(k/2-1 Downto 0),Product2);

 KO3: KaratsubaOfman Generic Map(k/2)

 Port Map(SumX(k/2-1 Downto 0), SumY(k/2-1 Downto 0), P);

 SA: ShiftnAdder Generic Map(k)

 Port Map(SumX(k/2),SY(n/2), SX(k/2-1 Downto 0), SY(k/2-1 Downto 0),
P,Product3);

 SSA: ShifterSubnAdder Generic Map(k) Port Map(Product1, Product2, Product3, XY
);

 End Generate Recursion;

End RecursiveArchitecture;

Figure 4: Recursive architecture of the component KaratsubaOfman of size n

A REVIEW OF MODULAR MULTIPLICATION... Informatica 30 (2006) 111–129 115

2.2 Booth’s Multiplication Method
Algorithms that formalize the operation of multiplication
generally consist of two steps: one generates a partial
product and the other accumulates it with the previous
partial products. The most basic algorithm for
multiplication is based on the add-and-shift method: the
shift operation generates the partial products while the
add step sums them up [3].

Figure 7: Architecture of ShiftSubnAdder2n

Figure 8: Last addition performed by ShiftSubnAdder2

The straightforward way to implement a

multiplication is based on an iterative adder-accumulator
for the generated partial products as depicted in Figure 9.
However, this solution is quite slow as the final result is
only available after n clock cycles, n is the size of the
operands.

Figure 9: Iterative multiplier
A faster version of the iterative multiplier should add

several partial products at once. This could be achieved

≈ right shift

Figure 5: Macro view of KaratsubaOfman2n in terms of KaratsubaOfman of size 2n

116 Informatica 30 (2006) 111–129 N. Nedjah et al.

by unfolding the iterative multiplier and yielding a
combinatorial circuit that consists of several partial
product generators together with several adders that
operate in parallel. In this paper, we use such a parallel
multiplier as described in Figure 10. Now, we detail the
algorithms used to compute the partial products and to
sum them up.

Figure 10: Parallel multiplier.

2.2.1 Booth’s Algorithm
Now, we concentrate on the algorithm used to compute
partial products as well as reducing the corresponding
number without deteriorating the space and time
requirement of the multiplier.

Let X and Y be the multiplicand and multiplicator
respectively and let n and m be their respective sizes. So,
we denote X and Y as follows:

∑∑
==

×=×=
m

i

i
i

n

i

i
i yYxX

00
2 and 2

⇒ ∑
=

××=×
n

i

i
i YxYX

0
2

Inspired by the above notation of X, Y and that of
X×Y, the add-and-shift method [2], [3] generates n partial
products: xi×Y, 0 ≤ i < n. Each partial product obtained is
shifted left or right depending on whether the starting bit
was the less or the most significant and added up. The
number of partial products generated is bound above by
the size (i.e. number of bits) of the multiplier operand. In
cryptosystems, operands are quite large as they represent
blocks of text (i.e. ≥ 1024 bits).

Another notation of X and Y allows to halve the
number of partial products without much increase in
space requirements. Consider the following notation of X
and X×Y:

⎡ ⎤

∑
−+

=

××=
12/)1(

0

22~
n

i

i
ixX , where 12212 2~

+××−× ×−+= iiii xxxx

 and 0~~~
11 === +− nn xxx

⎡ ⎤

∑
−+

=

×××=×
12/)1(

0

22~
n

i

i
i YxYX

The possible values of ix~ with the respective values
of x2×i+1, x2×i, and x2×i−1 are −2 (100), −1 (101, 110), 0
(000, 111), 1 (001, 010) and 2(011). Using this recoding
will generate ⎡(n+1)/2⎤ −1 partial products.

Inspired by the above notation, the modified Booth
algorithm [3], [12] generates the partial products ix~ ×Y.
These partial products can be computed very efficiently
due to the digits of the new representation ix~ . The
hardware implementation will be detailed in Section 3.

In the algorithm of Figure 11, the terms 4×2n+1 and
3×2n+1 are supplied to avoid working with negative
numbers. The sum of these additional terms is congruent
to zero modulo 2n+⎡(n+1)⎤ − 1. So, once the sum of the
partial products is obtained, the rest of this sum in the
division by 2n+⎡(n+1)⎤ −1 is finally the result of the
multiplication X×Y.

The partial product generator is composed of k Booth
recoders [3], [6]. They communicate directly with k
partial product generators as shown in Figure 12.
Algorithm Booth(x2×i-1,x2×i,x2×i+1,Y)
 Int product := 0;
 Int pp[⎡(n+1)/2⎤ −1];
 pp[0] := (0

~x ×Y + 4×2n+1)×22×i ;

 For i = 0 To ⎡(n+1)/2⎤ −1 Do
 pp[i] := (ix~ ×Y + 3×2n+1)×22×i ;

 product := product + pp[i];
 Return product mod 2n+⎡(n+1)⎤ − 1;
End Booth

Figure 11: Multiplication algorithm

The required partial products, i.e. ix~ ×Y are easy

multiple. They can be obtained by a simple shift. The
negative multiples in 2’s complement form, can be
obtained form the positive corresponding number using a
bit by bit complement with a 1 added at the least
significant bit of the partial product. The additional terms
introduced in the previous section can be included into
the partial product generated as three/two/one most
significant bits computed as follows, whereby, ++ is the
bits concatenation operation, 〈A〉 is the binary notation of
integer A, 0i is a run of i zeros and B[n:0] is the selection of
the n less significant bits of the binary representation B.

() j
jjjjj ssYxspp

ssYxssspp
×

××××× +++⊕×++=

+⊕×++=
2

22222

0000000

0~1

~

for 1 ≤ j < k−1 and for j = k −1 = k′, we have:

()
k

nkk

k
kkkkk

Yxpp

ssYxspp
×

××

′×
′×′×′×′×′×

++×=

+++⊕×++=
2

]0:[22

2
22222

0~
0~

A REVIEW OF MODULAR MULTIPLICATION... Informatica 30 (2006) 111–129 117

Figure 12: The partial product generator architecture.

The Booth selection logic circuitry used, denoted by
BRi for 0 ≤ i ≤ k in Figure 12, is very simple. The cell is
described in Figure 13. The inputs are the three bits
forming the Booth digit and outputs are three bits: the
first one SY is set when the partial product to be
generated is Y or −Y, the second one S2Y is set when the
partial product to be generated is 2×Y or −2×Y, the last
bit is the simply the last bit of the Booth digit given as
input. It allows us to complement the bits of the partial
products when a negative multiple is needed.

Figure 13: Booth recoder selection logic.

The circuitry of the partial generator denoted by PPi

Generator, is given in Figure 14.
In order to implement the adder of the generated

partial products, we use a hybrid new kind of adder. It
consists cascade of intercalated stages of carry save
adders and delayed carry adders.

2.3 Multipliers Area/Time Requirements
The entire design was done using the Xilinx™ Project
Manager (version Build 6.00.09) [40] through the steps
of the Xilinx design cycle shown in Figure 15.

Figure 14: The partial product generator.

Figure 15: Design cycle.

The design was elaborated using VHDL [20]. The
synthesis step generates an optimized netlist that is the
mapping of the gate-level design into the Xilinx format:
XNF. Then, the simulation step consists of verifying the
functionality of the elaborated design. The
implementation step consists of partitioning the design
into logic blocks, then finding a near optimal placement
of each block and finally selecting the interconnect
routing for a specific device family. This step generates a
logic PE array file from which a bit stream can be
obtained. The implementation step provides also the
number of configurable logic blocks (CLBs). The
verification step allows us to verify once again the
functionality of the design and determine the response
time of the design including all the delays of the physical
net and padding. The programming step consists of
loading the generated bit stream into the physical device.

The design was implemented into logic blocks using
a specific device family, namely SPARTAN S05PC84-4.

As explained before, the Karatsuba’s multiplier
reduces to an ensemble of adders. These adders are
implemented using ripple-carry adders, which can be
very efficiently implemented into FPGAs as the carryout
signal uses dedicated interconnects in the CLB and so
there is no routing delays in the data path. An n-bit
ripple-carry adder is implemented using n/2+2 CLBs and
has a total fixed delay of 4.5+0.35n nanoseconds.

118 Informatica 30 (2006) 111–129 N. Nedjah et al.

Table 2 shows the delay introduced and area
required by the Karatsuba-Ofman multiplier (KO)
together with those for a hardware implementation of the
Booth multiplier which uses a Wallace tree for adding up
the partial products (BW), another hardware
implementation of Booth’s algorithm that uses a
redundant binary Booth encoding (PRB) and the
Synopsys™ library multiplier (DW02) [11]. This is given
for three different operand sizes. The delays are
expressed in ns. These delays are represented graphically
in Figure 16.

KO BW PRB DW02 size

delay area delay area delay area delay area

8 12.6 1297 44.6 1092 31.8 862 56.2 633

16 22.8 6300 93.9 5093 46.6 3955 114.9 2760

32 29.1 31740 121.5 20097 64.9 17151 164.5 11647

Table 2: Delays and areas for different multipliers

Table 2 also shows the area required by our
multiplier compared with those needed for the
implementation of BW, PBR and DW02. The areas are
given in terms of total number of gates necessary for the
implementation. These results are represented
graphically in Figure 17.

It is clear from Figure 16 and Figure 17 that the
engineered Karatsuba-Ofman multiplier works much
faster than the other three multipliers. However, it

consumes more hardware area. Nevertheless, the
histogram of Figure 18, which represents the area×time
factor for the four compared multipliers implementations,
shows that proposed multiplier improves this product.

Figure 18: Representing area×time factor

So, our multiplier improves the area×time factor as
well as time requirement while the other three improve
area at the expense of both time requirement and the
area×time factor. Moreover, we strongly think that for
larger operands, the Karatsuba-Ofman multiplier will
yield very much better characteristics, i.e. time and area
requirements as it is clear from Figure 16, Figure 17 and
Figure 18.

3 Barrett’s Reduction Method
A modular reduction is simply the computation of the
remainder of an integer division. It can be denoted by:

M
M
XXMX ×⎥⎦
⎥

⎢⎣
⎢−=mod

However, a division is very expensive even
compared with a multiplication.

The naive sequential division algorithm successively
shifts and subtracts the modulus until the remainder that
is non-negative and smaller than the modulus is found.
Note that after a subtraction, a negative remainder may
be obtained. So in that case, the last non-negative
remainder needs to be restored and so will be the
expected remainder. This computation is described in the
algorithm of Figure 19.

Algorithm NaiveReduction(P, M)

 Int R := P;

 Do R := R – M;

 While R > 0;

 If R ≠ 0 Then R := R + M;
 Return R;

End NaiveReduction

Figure 19: Naive reduction algorithm

In the context of this paper, P is the result of a
product so it has at most 2n bits assuming that the
operands have both n bits.

The computation performed in the naïve algorithm
above is very inefficient as it may require 2n−1
subtractions, 2n comparisons and an extra addition.
Instead of subtracting a single M one can subtract a

Figure 16: Representing time requirement

Figure 17: Representing space requirement

A REVIEW OF MODULAR MULTIPLICATION... Informatica 30 (2006) 111–129 119

multiple of it at once. However, in order to yield
multiples of M further computations, namely
multiplications, need be performed, except for power of
two multiples, i.e. 2kM. These are simply M left-shifted k
times, which can very cheaply implemented on hardware.
This idea is described in the restoring division algorithm
given in Figure 20. It attempts to subtract the biggest
possible power of two multiple of M from the actual
remainder. Whenever the result of that operation is
negative it restores the previous remainder and repeats
the computation for all possible power of two multiples
of M, i.e. 2nM, 2n−1M, …, 2M, M.

Algorithm RestoringReduction(P, M)

 Int R0 := P;

 Int N := LeftShift(M, n);

 For i = 1 To n Do

 Ri := Ri-1 – N;

 If R < 0 Then Ri := Ri-1;

 N := RightShift(N);

 Return Ri;

End RestoringReduction

Figure 20: Restoring reduction algorithm
The computation performed in the restoring

reduction algorithm requires n subtractions, n
comparisons and some 2n shifting as well as some
restoring operations. This is very much more efficient
than the computation of the algorithm in Figure 19.

An alternative to the restoring reduction algorithm is
the non-restoring one. The non-restoring reduction
algorithm is given in Figure 21.

Algorithm NonRestoringReduction(P, M)

 Int R0 := P;

 Int N := LeftShift(M, n);

 For i = 1 To n Do

 If R > 0 Then Ri := Ri-1 – N;

 Else Ri := Ri-1 + N;

 N := RightShift(N);

 If Ri < 0 Then Ri := Ri-1 + N;

 Return Ri;

End RestoringReduction

Figure 21: Non-restoring reduction algorithm

It allows negative remainder. When the remainder is
non-negative it sums it up with the actual power of two
multiple of M. Otherwise, it subtracts that multiple of M
from it. It keeps doing so repeatedly for all possible
power of two multiples of M, i.e. 2nM, 2n−1M, …, 2M, M.
The non-restoring reduction computation requires a final
restoration that adds M to the obtained remainder when
the latter is negative.

Using Barrett’s method [2], [6], we can estimate the
remainder using two simple multiplications. The
approximation of the quotient is calculated as follows:

⎥
⎥
⎥
⎥
⎥

⎦

⎥

⎢
⎢
⎢
⎢
⎢

⎣

⎢

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
×⎥

⎦

⎥
⎢
⎣

⎢

=

⎥
⎥
⎥
⎥
⎥

⎦

⎥

⎢
⎢
⎢
⎢
⎢

⎣

⎢

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢ ×
×⎥

⎦

⎥
⎢
⎣

⎢

=⎥
⎦

⎥
⎢
⎣

⎢
+

×

−

+

+−

−

1

2

1

1

11

1

2

2
2

2

22
2

n

n

n

n

nn

n M
X

M
X

M
X

The equation above can be calculated very efficiently as
division by a power of two 2x are simply a truncation of
the operand’ x-least significant digits. The term
⎣ ⎦Mn×22 depends only on M and so is constant for a
given modulus. So, it can be pre-computed and saved in
an extra register. Hence the approximation of the
remainder using Barrett’s method [2], [6] is a positive
integer smaller than 2×(M−1). So, one or two
subtractions of M might be required to yield the exact
remainder (see Figure 22).

4 Booth-Barrett’s Method
In this section, we outline the architecture of the
multiplier, which is depicted in Figure 4. Later on in this
section and for each of the main parts of this architecture,
we give the detailed circuitry, i.e. that of the partial
product generator, adder and reducer.
The multiplier of Figure 4 performs the modular
multiplication X×Y mod M in three main steps:

Figure 22: The modular multiplier architecture

120 Informatica 30 (2006) 111–129 N. Nedjah et al.

1. Computing the product P = X×Y;
2. Computing the estimate quotient Q = P/M

⇒ Q ≅ ⎣ ⎦MP nn ×− × 21 22 ;
3. Computing the final result P − Q×M.

During the first step, the modular multiplier first

loads register1 and register2 with X and Y respectively;
then waits for PPG to yield the partial products and
finally waits for the ADDER to sum all of them. During
the second step, the modular multiplier loads register1,
register2 and register3 with the obtained product P, the
pre-computed constant ⎣ ⎦Mn×22 and P respectively;
then waits for PPG to yield the partial products and
finally waits for the ADDER to sum all of them. During
the third step, the modular multiplier first loads register1
and register2 with the obtained product Q and the
modulus M respectively; then awaits for PPG to generate
the partial products, then waits for the ADDER to provide
the sum of these partial products and finally waits for the
REDUCER to calculate the final result P−Q×M, which is
subsequently loaded in the accumulator acc.

4.1 The Montgomery Algorithm
Algorithms that formalize the operation of modular

multiplication generally consist of two steps: one
generates the product P = A×B and the other reduces this
product P modulo M.

The straightforward way to implement a
multiplication is based on an iterative adder-accumulator
for the generated partial products. However, this solution
is quite slow as the final result is only available after n
clock cycles, n is the size of the operands [19].

A faster version of the iterative multiplier should add
several partial products at once. This could be achieved
by unfolding the iterative multiplier and yielding a
combinatorial circuit that consists of several partial
product generators together with several adders that
operate in parallel [15], [16].

One of the widely used algorithms for efficient
modular multiplication is the Montgomery’s algorithm
[18]. This algorithm computes the product of two
integers modulo a third one without performing division
by M. It yields the reduced product using a series of
additions

Let A, B and M be the multiplicand and multiplier
and the modulus respectively and let n be the number of
digit in their binary representation, i.e. the radix is 2. So,
we denote A, B and M as follows:

 2 and 2 ,2
1

0

1

0

1

0
∑∑∑

−

=

−

=

−

=

×=×=×=
n

i

i
i

n

i

i
i

n

i

i
i mMbBaA

The pre-conditions of the Montgomery algorithm are as
follows:

The modulus M needs to be relatively prime to the
radix, i.e. there exists no common divisor for M and the
radix;

The multiplicand and the multiplicator need to be
smaller than M.

As we use the binary representation of the operands,
then the modulus M needs to be odd to satisfy the first
pre-condition.

The Montgomery algorithm uses the least significant
digit of the accumulating modular partial product to
determine the multiple of M to subtract. The usual
multiplication order is reversed by choosing multiplier
digits from least to most significant and shifting down. If
R is the current modular partial product, then q is chosen
so that R+q×M is a multiple of the radix r, and this is
right-shifted by r positions, i.e. divided by r for use in the
next iteration. So, after n iterations, the result obtained is
R =A×B×r−n mod M [14]. A modified version of
Montgomery algorithm is given in Figure 23.

algorithm Montgomery(A, B, M)

 int R = 0;

 1: for i= 0 to n-1

 2: R = R + ai×B;
 3: if r0 = 0 then

 4: R = R div 2

 5: else

 6: R = (R + M) div 2;

 return R;

end Montgomery.

Figure 23: Montgomery modular algorithm.

In order to yield the right result, we need an extra
Montgomery modular multiplication by the constant 2n

mod M. However as the main objective of the use of
Montgomery modular multiplication algorithm is to
compute exponentiations, it is preferable to Montgomery
pre-multiply the operands by 22n and Montgomery post-
multiply the result by 1 to get rid of the 2−n factor. Here
we concentrate on the implementation of the
Montgomery multiplication algorithm of Figure 23.

In order to yield the right result, we need an extra
Montgomery modular multiplication by the constant r2n

mod M. As we use binary representation of numbers, we
compute the final result using the algorithm of Figure 24.

algorithm ModularMult(A, B, M, n)

 const C := 2n mod M;

 int R := 0;

 R := Montgomery(A, B, M);

 return Montgomery(R, C, M);

end ModularMult.

Figure 24: Modular multiplication algorithm

4.2 Iterative Montgomery Architecture
In this section, we outline the architecture of the
Montgomery modular multiplier. The interface of the
Montgomery modular multiplier is given in Figure 25. It
expects the operands A, B and M and it computes
R = (A×B×2−n) mod M.

A REVIEW OF MODULAR MULTIPLICATION... Informatica 30 (2006) 111–129 121

Figure 25: Montgomery multiplier interface

The detailed architecture of the Montgomery
modular multiplier is given in Figure 26. It uses two
multiplexers, two adders, two shift registers, three
registers and a controller. The latter will be described in
the next section.

The first multiplexer of the proposed architecture,
i.e. MUX21 passes 0 or the content of register B depending
on whether bit a0 indicates 0 or 1 respectively. The
second multiplexer, i.e. MUX22 passes 0 or the content of
register M depending on whether bit r0 indicates 0 or 1
respectively. The first adder, i.e. ADDER1, delivers the
sum R + ai × B (line 2 of algorithm of Fig. 1), and the
second adder, i.e. ADDER2, yields the sum R + M (line 6
of the same algorithm). The shift register SHIFT
REGISTER1 provides the bit ai. In each iteration i of the
multiplier, this shift register is right-shifted once so that
a0 contains ai.

The role of the controller consists of synchronizing
the shifting and loading operations of the SHIFT
REGISTER1 and SHIFT REGISTER2. It also controls the
number of iterations that have to be performed by the
multiplier. For this end, the controller uses a simple
down counter. The counter is inherent to the controller.
The interface of the controller is given in Figure 27.

Figure 26: Montgomery multiplier architecture

Figure 27: Interface of the Montgomery controller

In order to synchronize the work of the components of
the architecture, the controller consists of a state
machine, which has 6 states defined as follows:

• S0: Initialize of the state machine;
 Go to S1;

• S1: Load multiplicand and modulus into
 the corresponding registers;
 Load multiplier into shift register1;

 Go to S2;
• S2: Wait for ADDER1;

 Wait for ADDER2;
 Load multiplier into shift register2;
 Increment counter;
 Go to S3;

• S3: Enable shift register2;
 Enable shift register1;

• S4: Check the counter;
 If 0 then go to S5 else go to S2;

• S5: Halt;

4.3 Modular Multiplier Architecture
The modular multiplier yields the actual value of
A×B mod M. It first computes R = A×B×2−n mod M using
the Montgomery modular multiplier. Then, it computes
R × C mod M, where C = 2n mod M. The modular
multiplier interface is shown in Figure 28.

Figure 28: The modular multiplier interface

The modular multiplier uses a 4-to-1 multiplexer MUX4
and a register REGISTER.

• Step 0: Multiplexer MUX4 passes 0 or B. MUX2
passes A. It yields R1 = A×B×2−n mod M. The register
denoted by REGISTER contains 0.

• Step 1: Multiplexer MUX4 passes 0 or R. MUX2
passes C. It yields R = R1×C mod M. The register
denoted by REGISTER contains the result of the first
step computation, i.e. R = A×B×2−n mod M.

122 Informatica 30 (2006) 111–129 N. Nedjah et al.

The modular multiplier architecture is given in Figure 29.
In order to synchronize the actions of the components of
the modular multiplier, the architecture uses a controller,
which consists of a state machine of 10 states. The
interface of CONTROLLER is that of Figure 30.

The modular multiplier controller does all the control
that the Montgomery modular multiplier needs as
described in the previous section. Furthermore, it
controls the changing from step 0 to step 1, the loading
of the register denoted by REGISTER. The state machine is
depicted in Figure 31.
• S0: Initialize of the state machine;

 Set step to 0; Go to S1;
• S1: Load multiplicand and modulus; Load

multiplier
 into SHIFT REGISTER1; Go to S2;

Figure 29: The modular multiplier architecture

Figure 30. The interface of the multiplier controller

• S2: Wait for adder1; Wait for ADDER2;
 Load partial result into SHIFT REGISTER2;
 Increment counter; Go to S3;

• S3: Enable SHIFT REGISTER2;
 Enable SHIFT REGISTER1; Go to S4;

• S4: Load the partial result of step 0 into REGISTER;
 Check the counter;
 If 0 then go to S5 else go to S2;

• S5: Load constant into SHIFT REGISTER1;
 Reset REGISTER;
 Set step to 1; Go to S6;

• S6: Wait for ADDER1; Wait for ADDER2;
 Load partial result into SHIFT REGISTER2;
 Increment counter; Go to S7;

• S7: Enable SHIFT REGISTER2;
 Enable SHIFT REGISTER1; Go to S8;

• S8: Check the counter;
 If 0 then go to S9 else go to S6;

• S9: Halt.

4.4 Simulation Results
The project of the modular multiplier described
throughout this section was specified in Very High Speed
Integrated Circuit Description Language - VHDL [20],
and simulated using the XilinxTM Project Manager [40].
It allows the user to design and simulate the functionality

Figure 31: The state machine of the multiplier controller

A REVIEW OF MODULAR MULTIPLICATION... Informatica 30 (2006) 111–129 123

of his/her design. Moreover, it allows the synthesis of a
correct design as well as its download on a specific
FPGA.

First, we functionally simulated the Montgomery
modular multiplier prototype for operands A = 15,
B = 26, M = 47 and so the constant C = 22x6 mod 47,
which is C = 7. The signal values are shown in
Figure 32 and Figure 33. The result is shown by signal R.

Figure 32 shows the behavior of the multiplier
during the first modular multiplication (note that signal
step is not set). Figure 33 shows the results of the second
modular multiplication (note that signal step is set).

Also, we simulated the Montgomery modular
multiplier prototype for bigger operand size, i.e. 16 bits.
The operands are A = 120, B = 103, M = 143 and so the
constant C = 22x8 mod 143, which is C = 42. The result of
the simulation is shown in Figure 34 and Figure 35.

Figure 32: The modular multiplier behavior during the first multiplication: Montgomery(15, 26, 47) = 34

Figure 33: The modular multiplier behavior during the second multiplication: Montgomery(7,34,47) = 14

124 Informatica 30 (2006) 111–129 N. Nedjah et al.

As before, Figure 34 shows the behavior of the
multiplier during the first modular multiplication and
Figure 35 shows the results of the second modular
multiplication (note that signal step is set).

4.5 Systolic Montgomery Algorithm
A modified version of Montgomery algorithm [29] is that
of Figure 36. The least significant bit of R + ai×B is the
least significant bit of the sum of the least significant bits
of R and B if ai is 1 and the least significant bit of R
otherwise. Furthermore, new values of R are either the

old ones summed up with ai×B or with ai×B + qi×M
depending on whether qi is 0 or 1.
algorithm ModifiedMontgomery(A, B, M)

 int R := 0;

 1: for i := 0 to n-1

 2: qi := (r0 + ai×b0) mod 2;
 3: R := (R + ai×B + qi×M) div 2;
 return R;

end ModifiedMontgomery.

Figure 36: Modified Montgomery algorithm

Figure 34: The multiplier behavior during the first multiplication: Montgomery(120, 103, 143) = 160

Figure 35: The modular multiplier behavior during the second multiplication: Montgomery(42, 160, 142) = 62

A REVIEW OF MODULAR MULTIPLICATION... Informatica 30 (2006) 111–129 125

Consider the expression R + ai×B + qi×M of line 2 in the
algorithm of Figure 36. It can be computed as indicated
in the last column of Table 3 depending on the value of
the bits ai and qi.

ai qi R + ai×B +
qi×M

1 1 R + MB
1 0 R + B
0 1 R + M
0 0 R

Table 3: Computation of R + ai×B + qi×M
A bit-wise version of the algorithm of Fig. 4, which is at
the basis of our systolic implementation, is described in
Figure 37. All algorithms, i.e. those of Figure 23, Figure
24 and Figure 37 are equivalent. They yield the same
result. In the algorithm of Figure 37, MB represents the
result of M + B, which has at most has n + 1 bits.

4.6 Systolic Hardware Multiplier
Assuming the algorithm of Figure 37 as basis, the main
processing element (PE) of the systolic architecture of
the Montgomery modular multiplier computes a bit rj of
residue R. This represents the computation of line 8. The

left-border PEs of the systolic arrays perform the same
computation but beside that, they have to compute bit qi
as well. This is related to the computation of line 1. The
duplication of the PEs in a systolic form implements the
iteration of line 0. The systolic architecture of the
systolic Montgomery multiplier is shown in Figure 38.

algorithm SystolicMontgomery(A,B,M,MB)
 int R := 0;
 bit carry := 0, x;
 0: for i := 0 to n

 1: qi :=
(i)
0r ⊕ ai.b0;

 2: for j := 0 to n
 3: switch ai, qi
 4: 1,1: x := mbi;
 5: 1,0: x := bi;
 6: 0,1: x := mi;
 7: 0,0: x := 0;

 8: 1)(i
jr

+ := (i)
1jr + ⊕ xi ⊕ carry;

 9: carry:= (i)
1jr + .xi+

(i)
1jr + .carry+xi.carry;

 return R;
end SystolicMontgomery.

Figure 37: Systolic Montgomery algorithm

Figure 38: Systolic architecture of Montgomery multiplier

126 Informatica 30 (2006) 111–129 N. Nedjah et al.

The architecture of the basic PE, i.e. celli,j
1 ≤ i ≤ n−1 and 1 ≤ i ≤ n−1, is shown in Figure 39. It
implements the instructions of lines 2-9 in systolic
Montgomery algorithm of Figure 37. The architecture of
the right-most top-most PE, i.e. cell0,0, is given in Figure
40. Besides the computation of lines 2-9, it implements
the computation indicated in line 1. However as)0(

0r is
zero, the computation of q0 is reduced to a0.b0. Besides,
the full-adder is not necessary as carry in signal is also 0
so)0(

1r ⊕ xi ⊕ carry and)0(
1r .xi+)0(

1r .carry+xi.carry
are reduced to xi and 0.

Figure 39: Basic PE architecture

Figure 40: Right-most top-most PE – cell0,0

The architecture of the rest of the PEs of the first
column is shown in Figure 41. It computes q0 in the more
general case, i.e. when)(

0
ir is not null. Moreover, the

full-adder is substituted by a half-adder as the carry in
signals are zero for these PEs.

The architecture of the architecture of the left border
PEs, i.e. cell0,j, is given in Figure 42. As)(i

nr = 0, the
full-adder is unnecessary and so it is substituted by a
half-adder.

Figure 41: Right-border PEs – celli,0

Figure 42: Left-border PEs – cell0,j

The sum M+B is computed only once at the
beginning of the multiplication process. This is done by a
row of full adder.

4.7 Time and Area Requirements
Consider the architecture of the systolic modular
Montgomery multiplier of Figure 38. The output bit

)1(+n
jr of the modular multiplication is yield after 2n + 2

+ j after bits bj, mj and mbj are fed into the systolic array
plus an extra clock cycle, which is needed to obtain the
bit mbj. So the first output bit appears after 2n + 3 clock
cycles.

Table 4 shows the performance figures obtained by
the Xilinx project synthesizer for the iterative multiplier
the systolic modular multiplier, wherein IM and SM stand
for iterative multiplier and systolic multiplier
respectively. The synthesis was done for VIRTEX-E [40]
family.

In Table 4, we present the clock cycle time required,
the area, i.e. the number of CLBs necessary as well as the
time×area product delivered by the synthesis and the
verification tools of the Xilinx project manager [40] for

A REVIEW OF MODULAR MULTIPLICATION... Informatica 30 (2006) 111–129 127

the iterative and systolic version of Montgomery
multiplier.

Area
(CLBs)

clock cycle
time (ns) area×time operand

size IM SM IM SM IM SM
128 89 259 46 23 4094 5957

256 124 304 102 42 12648 12767

512 209 492 199 76 41591 37392

768 335 578 207 82 69345 47396

1024 441 639 324 134 142884 85626

Table 4: Performance figures: iterative vs. systolic

The chart of Figure 43 compares the area×time
product of iterative multiplier implementation vs. the
systolic implementation. It shows that the latter improves
the product as well as time requirement while the former
improves area at the expense of both time requirement
and the product.
 The results show clearly that despite of requiring
much more hardware area, our implementation improves
substantially the time requirement and the performance
factor when the operand size is bigger than 256 bits. This
is almost always the case in RSA encryption/decryption
systems. Nowadays, the hardware area has a very
reasonable price so can be bought. However, the
encryption/decryption throughput of cryptographic
systems is the most fundamental characteristic and so
cannot be sacrificed.

5 Further Improvements
The modular multiplication algorithm and respective
hardware can be further improved if the representation of
the operands is considered. The bits of the binary
representation can be grouped to increase the
representation base. For instance, if the bits are grouped
into pairs or triples, the base will be 4 or 8 respectively.
Although other bases are possible, usually a power of 2 is
preferred to make conversion to and from binary easy.
Increasing the base reduces the number of digits in the
operand and so reduces the number of clock cycles
required to complete a modular multiplication. Another
improvement consists of using the so-called redundant
representation of the operand together with the
Montgomery algorithm. This avoids the unbounded
propagation of carries.

Figure 43: The area×time factor for iterative vs. systolic

6 Discussion
As stated in the introduction, the methods used to
compute modular products fall in two categories: (i)
those that first compute the product then reduced
product, and (ii) those that compute the modular product
directly.

The advantage of the first category method is that
one can use any on-the-shelf method for multiplication
and reduction. However, the only such methods that are
efficient consist of those presented here, i.e. Karatsuba-
Ofman’s and Booth’s methods for multiplication and
Barrett’s method for reduction. As far as the authors are
concerned, these methods are the only ones appropriate
for hardware implementation. Another disadvantage of
using the multiply-then-reduce method is that the product
is generally large and thus requires a great deal of space
to store it for further use by the reduction step.

In contrast, the methods that interleave
multiplication and reduction steps to produce the
modular product do not have to store the product.
However, also as far as the authors are concerned, only
Montgomery’s method that yields the modular product in
such a way. Hardware implementation of Montgomery’s
algorithm always require very much less area than the
implementations of the first category methods.
Furthermore, these implementations are always very
much slower than the implementations of Montgomery
method.

7 Conclusions
In this paper we surveyed most known and recent
methods for efficient modular multiplication. For each
method presented, we provide an adequate hardware
implementation.

We explained that the modular multiplication A×B
mod M can be performed in two different ways:
obtaining the product then reducing it; or obtaining the
reduced product directly. There are various algorithms
that implement modular multiplication. The most
prominent algorithms are Karatsuba-Ofman’s [27], [28]
and Booth’s [21], [22] methods for multiplying, Barrett’s
[21] method for reducing, and Montgomery’s algorithms
[5], [23], [24], [25], [26], [38], [39] for interleaving
multiplication and reduction.

128 Informatica 30 (2006) 111–129 N. Nedjah et al.

Throughout this paper, we considered each one of
the methods cited previously. The review was organized
as follows: First we described the Karatsuba-Ofman’s
and Booth’s methods for multiplying. Subsequently, we
presented Barrett’s method for reducing an operand
modulo a given modulus. For each method, we detailed
the hardware architecture and then compared the
respective hardware with respect to area and response
time requirements. The implementation of the modular
multiplication using Karatsuba-Ofman’s method for
multiplying and Barrett’s method for reducing the
obtained result presents a shorter signal propagation
delay than using Booth’s method together with Barrett’s
method, without much increase in hardware area
requirements.

After that, we detailed the Montgomery’s algorithm
for interleaving multiplication and reduction. For the
method, we presented two hardware implementations:
one iterative and the other systolic. The systolic
implementation is much better that the sequential one but
requires more hardware area.

Subsequently, we reviewed some techniques that
should allow further improvement to the implementation
of the modular multiplication with long operand.

8 Acknowledgments
We are grateful to the reviewers and the editor that
contributed to the great improvement of the original
version of this paper with their valuable comments and
suggestions. We also are thankful to FAPERJ (Fundação
de Amparo à Pesquisa do Estado do Rio de Janeiro,
http://www.faperj.br) and CNPq (Conselho Nacional de
Desenvolvimento Científico e Tecnológico,
http://www.cnpq.br) for their continuous financial
support.

9 References
[1] Ashenden, P.J., Recursive and Repetitive Hardware

Models in VHDL, Joint Technical Report, TR
160/12/93/ECE, University of Cincinnati, and TR
93-19, University of Adelaide, 1993.

[2] Barrett, P., Implementating the Rivest, Shamir and
Aldham public-key encryption algorithm on
standard digital signal processor, Proceedings of
CRYPTO'86, Lecture Notes in Computer Science
263:311-323, Springer-Verlag, 1986.

[3] Booth, A., A signed binary multiplication
technique, Quarterly Journal of Mechanics and
Applied Mathematics, pp. 236-240, 1951.

[4] Brickell, E. F., A survey of hardware
implementation of RSA, In G. Brassard, ed.,
Advances in Cryptology, Proceedings of
CRYPTO'98, Lecture Notes in Computer Science
435:368-370, Springer-Verlag, 1989.

[5] S. E. Eldridge and C. D. Walter, Hardware
implementation of Montgomery’s modular
multiplication algorithm, IEEE Transactions on
Computers, 42(6):619-624, 1993.

[6] Bewick, G.W., Fast multiplication algorithms and
implementation, Ph. D. Thesis, Department of
Electrical Engineering, Stanford University, United
States of America, 1994.

[7] Dhem, J.F., Design of an efficient public-key
cryptographic library for RISC-based smart cards,
Ph.D. Thesis, Faculty of Applied Science, Catholic
University of Louvain, May 1998.

[8] W. Diffie and M.E. Hellman, New directions in
cryptography, IEEE Transactions on Information
Theory, vol. 22, pp. 644-654, 1976.

[9] ElGamal, T., A public-key cryptosystems and
signature scheme based on discrete logarithms,
IEEE Transactions on Information Theory,
31(4):469-472, 1985.

[10] Gutmann P., Cryptographic Security Architecture:
Design and Verifcation, Springer-Verlag, 2004.

[11] Kim, J.H., Ryu, J. H., A high speed and low power
VLSI multiplier using a redundant binary Booth
encoding, Proc. of 6th Korean Semiconductor
Conference, PA-30, 1999.

[12] Knuth, D.E., The art of computer programming:
seminumerical algorithms, vol 2, 2nd Edition,
Addison-Wesley, Reading, Mass., 1981.

[13] Jung, M., Madlener, F., Ernst, M. and Huss, S.A., A
reconfigurable coprocessor for finite field
multiplication in GF(2n), Proc. of IEEE Workshop
on Heterogeneous Reconfigurable systems on Chip,
Hamburg, Germany, 2002.

[14] Koç, Ç.K., High speed RSA implementation,
Technical report, RSA Laboratories, RSA Data
Security Inc. CA, version 2, 1994.

[15] Lim, C.H., Hwang, H.S. and Lee, P.J., Fast
modular reduction with precomputation, In
Proceedings of Korea-Japan Joint Workshop on
Information Security and Cryptology, Lecture
Notes in Computer Science, 488:323-334, 1991.

[16] MacSorley, O., High-speed arithmetic in binary
computers, Proceedings of the IRE, pp. 67-91,
1961.

[17] Menezes, A. van Oorschot, P. and Vanstone, S.,
Handbook of Applied Cryptography, CRC Press,
1996.

[18] Montgomery, P.L., Modular Multiplication without
trial division, Mathematics of Computation,
44: 519-521, 1985.

[19] Mourelle, L.M. and Nedjah, N., Compact iterative
hardware simulation model for Montgomery’s
algorithm of modular multiplication, Proceedings
of ACS/IEEE International Conference on
Computer Systems and Applications, Tunis,
Tunisia, July 2003.

[20] Navabi, Z., VHDL - Analysis and modeling of
digital systems, McGraw Hill, Second Edition,
1998.

[21] Nedjah, N. and Mourelle, L.M., Yet another
implementation of modular multiplication,
Proceedings of 13th. Symposium of Computer
Architecture and High Performance Computing,
Brasilia, Brazil, IFIP, pp. 70-75, 2001.

A REVIEW OF MODULAR MULTIPLICATION... Informatica 30 (2006) 111–129 129

[22] Nedjah, N. and Mourelle, L.M., Simulation model
for hardware implementation of modular
multiplication, In: Mathematics nad Simulation
with Biological, Economical and Musicoacoustical
Applications, C.E. D’Attellis, V.V. Kluev, N.E.
Mastorakis Eds. WSEAS Press, 2001, pp. 113-118.

[23] Nedjah, N. and Mourelle, L.M., Reduced hardware
architecture for the Montgomery modular
multiplication, WSEAS Transactions on Systems,
1(1):63-67.

[24] Nedjah, N. and Mourelle, L.M., Two Hardware
implementations for the Montgomery modular
multiplication: sequential versus parallel,
Proceedings of the 15th. Symposium Integrated
Circuits and Systems Design, Porto Alegre, Brazil,
IEEE Computer Society Press, pp. 3-8, 2002

[25] Nedjah, N. and Mourelle, L.M., Reconfigurable
hardware implementation of Montgomery modular
multiplication and parallel binary exponentiation,
Proceedings of the EuroMicro Symposium on
Digital System Design − Architectures, Methods
and Tools, Dortmund, Germany, IEEE Computer
Society Press, pp. 226-235, 2002

[26] Nedjah, N. and Mourelle, L.M., Efficient hardware
implementation of modular multiplication and
exponentiation for public-key cryptography,
Proceedings of the 5th. International Conference on
High Performance Computing for Computational
Science, Porto, Portugal, Lecture Notes in
Computer Science, 2565:451-463, Springer-Verlag,
2002

[27] Nedjah, N. and Mourelle, L.M., Hardware
simulation model suitable for recursive
computations: Karatsuba-Ofman’s multiplication
algorithm, Proceedings of ACS/IEEE International
Conference on Computer Systems and
Applications, Tunis, Tunisia, July 2003.

[28] Nedjah, N. and Mourelle, L.M., A Reconfigurable
recursive and efficient hardware for Karatsuba-
Ofman’s multiplication algorithm, Proceedings of
IEEE International Conference on Control and
Applications, Istambul, Turkey, June 2003, IEEE
System Control Society Press.

[29] Nedjah, N. and Mourelle, L.M. (Eds.), Embedded
Cryptographic Hardware: Methodologies and
Applications, Nova Science Publishers, Hauppauge,
NY, USA, 2004.

[30] Nedjah, N. and Mourelle, L.M. (Eds.), Embedded
Cryptographic Hardware: Design and Security,
Nova Science Publishers, Hauppauge, NY, USA,
2005.

[31] Nedjah, N. and Mourelle, L.M. (Eds.), New Trends
on Embedded Cryptographic Hardware, Nova
Science Publishers, Hauppauge, NY, USA (to
appear).

[32] Paar, C., A new architecture for a parallel finite
field multiplier with low complexity based on
composite fields, IEEE Transactions on Computers,
45(7):856-861, 1996.

[33] Rabaey, J., Digital integrated circuits: A design
perspective, Prentice-Hall, 1995.

[34] Rivest, R., Shamir, A. and Adleman, L., A method
for obtaining digital signature and public-key
cryptosystems, Communications of the ACM,
21:120-126, 1978.

[35] Shindler, V., High-speed RSA hardware based on
low-power piplined logic, Ph. D. Thesis, Institut für
Angewandte Informations-verarbeitung und
Kommunikationstechnologie, Technishe Universität
Graz, January 1997.

[36] Zuras, D., On squaring and multiplying large
integers, In Proceedings of International
Symposium on Computer Arithmetic, IEEE
Computer Society Press, pp. 260-271, 1993.

[37] Walter, C.D., A verification of Brickell’s fast
modular multiplication algorithm, International
Journal of Computer Mathematics, 33:153:169,
1990.

[38] Walter, C.D., Systolic modular multiplication, IEEE
Transactions on Computers, 42(3):376-378, 1993.

[39] Walter, C. D., Systolic modular multiplication,
IEEE Transactions on Computers, 42(3):376-378,
1993.

[40] Xilinx, Inc. Foundation Series Software,
http://www.xilinx.com.

130 Informatica 30 (2006) 111–129 N. Nedjah et al.

 Informatica 30 (2006) 131–137 131

Researchers and Development – Young Researches
Metod Černetič
Univerza v Mariboru, Fakulteta za organizacijske vede,
Kidričeva 55a, 4000 Kranj
E-mail: metod.cernetic@fov.uni-mb.si

Brina Černetič
Univerza v Ljubljani, Fakulteta za družbene vede
E-mail: brina.cernetic@yahoo.com

Technical paper

Keywords: Lisbon strategy, research and development, share of GDP, young researchers

Received: February 3, 2005

Although Slovenian science is permanently subject of analysis and reorganization, there are no evident
improvements of its organizational structure and share of researchers in so called governmental and
economic sector. There are opinions that the key problems of Slovenian science are in the field of
technical sciences; that the cause of industrial non-competitiveness are engineers. The search of data of
expenses (share of GDP for R&D) respectively investments in science and based on the data of number
of young researchers in Slovenia show: (1) Lisbon strategy incorporate right goals, clear mechanisms –
the critical points are instruments and coordination for achieving these goals; (2) As s model Slovenia
has to take new members, which already introduce their own, with budget supported goals of Lisbon
strategy; (3) Ever since the establishment of new country Slovenia we are not able to reach consensus
among all the pillars of political power and decide what should the role of science (primarily of R & D)
in what should be relation between universities and economy.
Lisbon strategy gives us the answers to the question how EU can be competitive in long term and at the
same time preserve European model of life; that means a balance between economical, social and
environmental goals. The first condition for maintenance of social sustainability and kindness towards
an environment is economical growth.
Povzetek: Ob stalnih analizah in reorganizacijah slovenske znanosti se ne izboljšuje njena
organizacijska struktura, način organiziranosti in deleži raziskovalcev.

1 Introduction
The summary of tasks from the report by the PHARE
project (A Science and Technology…), which can be
understood as instructions for changes in measures in
current science and technology policies (ZTP), must be
divided up into measures taken by the government and
measures taken by the public ministries (MZT).
As a result of measures taken in the form of laws,
decrees etc. the government should have created a
suitable environment that (Černetič 1999, 274-275):

• Is stimulating for the development of
proprietorship and innovation,

• Is stimulating for industrial development,
especially in sectors that show competitive
advantage,

• Is stimulating for technological innovation and
the transfer of technologies, especially from
abroad.

• Is stimulating for scientific – research work,
whereby the needs of the state in different areas
(economic development, education, natural and

cultural heritage, national identity etc.) should
be taken into consideration.

The MTZ should also probably change its evaluation
regarding the management of current medium-term
science and technology policies, which have also been
identified by the PHARE report (not only PHARE but
also many domestic experts) as generic problems of the
ZT sector:

• The connectedness between the ZT sectors (and
also inside this sector) and the end-user is
weak,

• The absence of a system of priorities,
• Mobility is poor for researchers,
• An insufficient amount of R&D activities in

industries,
• Deficiencies in the technological transfer

system,
• Researchers lack certain experience, which is

important for successful R&D,

132 Informatica 30 (2006) 131–137 M. Černetič et al.

• The lack of stimulation for the flow of (young)
researchers in industry and other sectors,

• Low levels of motivation in researchers for
useful research.

The above-mentioned discoveries about the weaknesses
of science and technology policies in Slovenia are also
current issues, even though in the meantime the new state
of Slovenia had been established, the ministries had been
restructured, social and state responsibility had taken on
new political option (government), etc. Slovenia is
incapable of achieving consensus within society about
the vision and aims of development and furthermore
making them operational (Sočan, Bučar 2003, 118-120).
Today, a Europe with “many gears” is already a reality.
The following paragraph contains some data and
evaluations, regarding questions relating to the title of
this paper.

2 New Ties, New Government – Old
Problems

In the last few months there have been many conferences
regarding the theme of new scientific and technological
policies in Slovenia relating to the Lisbon strategy, which
define that the EU is going to be the most competitive
economy in 2010. These conferences were made by the
European Commission in Slovenia, the newspaper
Finance and the Slovenian Chamber of Commerce
(GZS). Let us mention a few reasons why the Slovenian
sciences have not been achieving the desired objectives
and expected progress:

• On explanation states that Slovenia still has a
great concentration of research and researches in
big research organizations.

• The second explanation states that we lag
behind in the share of investment for R&D

• The third explanation, which deals with the
decrease in the competitiveness of the Slovenian
economy, emphasizes that there is an
insufficient amount of researchers and
developers in the (FTE) economy.

• The fifth explanation states that there are not
enough young researchers in the technical
sciences.

• The fifth explanation talks about the failures in
implementing R&D that are found in the
deficiencies in managing the sciences at the
national level (within individual national
economies and the EU level, in which amongst
all others “Lisbon” and cohesive funds etc. are
also available.

2.1 Science at the State Level in the
Market

Recently, the Minister for Higher Education and Science
answered the question how to increase the participation
between science and the economy in the following
manner: companies should find out what kind of R&D

projects they need, unite and then inform the ministry.
Then a tender would be published, whereby scientific
research organizations would apply who would also then
carry out these projects. The minister’s commentary
shows that it would be necessary to notify him, for a
while now we have not had a system of central planning
and his appeal for a national program that would
organize the disharmony in developmental policies does
not mean anything but an appeal for the strengthening of
an already strong sentiment of economic totalitarianism.
Why? (Pezdir, Finance no. 43/05)
The conditions within the institutional framework of the
Slovenian economy are therefore, according to the
central plan to monitor the economy, crushing. What
kinds of opportunities are given to companies that would
like to become more innovated in the institutional
framework of Slovenian science as suggested by the
minister? If the minister’s statement is a central moment
for the future mechanism in increasing the innovation
potential of the Slovenian economy, we can expect that
the process of increasing collaboration between science
and the economy will take place according to the
scenario, which is quite unusual for a market economy.
As we already know in the first place, there will be
companies only because they exist, they will be forced to
join the “fraternity”, which is known to always confiscate
a part of their revenues and assign them to the financing
the process of finding ways for individual groups of rent
seekers, which are lead through the Chamber of
Commerce straight to the carries of economic policies.
They will in turn proclaim them as national champions
(as a rule, the strongest group of rent seekers), who will
unite at individual projects and notify the authorized
ministries about them. The notified ministry will then
carry out a tender, in which the needs of the national
champions will be serviced by pre-transitional research
and development organizations financed by the national
budget. These types of projects will only be able to be
financed by the taxes paid by proprietors that did have
any luck in becoming the national champions. In other
words – unprivileged companies, who had already paid
taxes into the Chamber of Commerce for the
transformation of rent seekers into national champions,
will pay again – whether it is for achieving the aims of
rent seekers or for creating an illusion that the economic
policies stimulate collaboration between science and the
economy. What does it really stimulate? (Pezdir,
Finance no. 43/05). Above all things, within the system
of legalized rent seeking it stimulates a competition
amongst rent seekers for the best starting point in getting
a share of the national budget, the state financed
sciences, which is a big slice and the competition for
access to the largest possible number of state financed
projects for rent seekers (Pezdir, Finance št. 43/05).

2.2 A Weak Point – Management and
Funds for R&D

In realizing the Lisbon strategy, each country must also
take into consideration specific national objectives and
the main problem of the strategy is in its weak

RESEARCHERS AND DEVELOPMENT... Informatica 30 (2006) 131–137 133

management and co-ordination between the EU and
member states. All foundations for the documents have
been implemented and now it is important to better
comprehend the meaning of partnership in the realization
of the Lisbon strategy. One of the important instruments
for its realization is also the EU’s budget in which the
“Lisbon” and “cohesive” funds are available. There is a
catch that exits in that the first part of the funds are going
to be distributed according to excellence, which for the
most part means ending up in the developed members
and the rest for lesser developed states. At this point,
smaller EU member states emphasize the need for the
restructuring of the European budget.

2.3 Germany and France Should Not Be
Our Role Models

The main problem of the EU is in its heterogeneity and
Slovenia should not model themselves after the
traditional EU members (France and Germany) as much,
which have been plagued with small growth in GDP and
a high rate of unemployment. We should look at new
member states (Slovakia, Latvia), which are more
ambitious in development, more decisive and have
already introduced their own budget supported goals of
the Lisbon strategy. As a result, they have already
organized three areas: a friendlier business environment
(tax and other reforms), the liberalisation of the labour
market, intend more funds fir subsidising technological
development and finding synergy between universities,
the area of research and the economy. In the opinions of
some, this is the right path for realizing the Lisbon
strategy.

2.4 Expenditures of EU Members for
Research and Development

In 2002, 25 of the EU members assigned an average of
1.93% of GDP for R&D in comparison to 1.82 % of
GDP in 1998 according to Eurostat (Kenda, Finance, no.
40/05). They have also published data for EFTA
members, candidates China, Japan and the USA so that
international comparisons could easily be made. Once
again, Sweden assigned the most followed by Holland
and The UK. On the other hand, Luxembourg assigned
the greatest expenditure in the private sector for total
R&D expenditure. As a result, the % in Luxembourg
was 90% followed by Sweden, Finland, Ireland and
Germany. According to this information Slovenia
assigned 1.53 % of GDP in 2003 and 67% of this in the
private sector of total expenditure for R&D in 2002.

3 Intolerable Effortless Planning

3.1 Bureaucracy Cannot Direct
Development

We are moving into an “economy driven by intelligence”
(Kos, Finance, no. 33/05). However, who will be the one
to surpass the incapability of the economic elite and the
government? Writers in this area also do not have the

knowledge about innovative mechanisms and creative
people. We cannot expect technological progress to
come from universities and institutes because someone
must direct their research into a team that works in this
area.
Jobs are disappearing in our economy. However, the
state bureaucracy will not solve anything with its ideas
but will only intensify the crisis. An individual with their
ideas is needed, who also takes responsibility for their
actions. However, within a thousand ideas only one can
succeed and therefore it is necessary to divide up the
state funds accordingly and weed out the bad ideas
before time and money is wasted on them. This is how
the founders of innovative companies abroad operate and
it is hard to find them at home.
We have tenders, whereby regional developmental
agencies participate and there is no individual who would
take responsibility for their ideas. These are bureaucratic
efforts in obtaining funds for some common goals, which
are organized in a general way and are in no way
productive for creating new jobs. They are just new
public administration sectors that are going to use up the
state budget.
Some even support the idea for a central distribution of
funds. This is nothing other than just transferring the
competencies to the state level, where the funds will be
distributed even more inefficiently.
The foundation of every strategy for creating new jobs
must be proprietor-individual, who has a developed idea
about the product. This is an alternative to
unemployment regarding sectors that have been written
off.

3.2 The Minister of Technology on
Inheritance Mines

Slovenian science and its influence on the
competitiveness of companies, has decreased by four or
more places on international lists after the departure of
the former government, which is a somewhat poor
inheritance for the new Minister of Science and
Technology. The government only invested in well-
established research spheres and not in the economy.
Investments into the economy had decreased from 9% to
5%, which is in contrast to the operations of EU
governments that have been incorporating innovations
into the economy more and more, which is the
foundation of the Lisbon strategy.
This is why reforms on developmental policies are
necessary. Measures must be taken in two areas (Kos,
Finance no. 33/05):
First of all, financing must originate from research and
development projects. Program financing is abolished.
State intuitions have battled for “program financing”,
which does not demand the selection of project topics
regarding innovation and that is why the orders in the
economy have been cut. State institutions can do
whatever they like, which is very irresponsible of the
government and at the same time it does not bring any
progress to the innovativeness of Slovenia.

134 Informatica 30 (2006) 131–137 M. Černetič et al.

Secondly, there is restructuring. The percentage of
institutes, which are only mainly research-oriented,
should fall under universities and the other part should be
in the ownership of companies as industry institutes.
This is how we shall develop strong universities, which
would otherwise weaken and also a strong science
economy with research capable of progress in
innovation.

3.3 Decreased Competitiveness in the
Slovenian Economy

Graduates of post-graduate and graduate studies will not
achieve the Lisbon strategy, only the engineers of
technical natural sciences will. Our planners (for
achieving the Lisbon strategy) are still far from reality.
Great numbers of sociologists, humanists and people in
the legal profession cannot at the least influence product
innovation of, exporting and GDP. Innovations are the
fruit of talented engineers that work in companies, even
though there are many who only have a BA or a
secondary technical school diploma. Researchers in the
government sector have not yet developed and
manufactured no new product (Kos, Finance, no.
175/04).
Unfortunately, only 27% of all 23.691 engineering
graduates work in industry, others are in the service
sector (24%), public administration (10%) and in
education, where innovation is lost.
As a result, we are a country lagging behind in
innovation. As a result of no aid from the government
and thousands of companies not investing a single tolar
in innovation low-quality exports, no new jobs and a
social crisis has resulted.
Even a quick glance of the graph (Graph 1) shows us that
it is impossible to reach 2% of GDP for achieving the
Lisbon strategy through a natural process, without radical
measures taken by the state, which will at least triple the
flow of engineers and kick-start innovation. However,
we are not capable of doing this because there is a
blockade of lobbies that have special interests.

Graph 1: Number of researchers and developers
(Source: Kos, Finance, no. 175/04)

4 Where is the Knowledge – in
Companies, Universities or
Institutes?

4.1 Young Researchers
One of the instruments for the scientific policy of
research agencies is financing post-graduate studies and
research training for young researchers. The program has
been successfully operating since 1985 and has
additionally contributed to the increase in the amount of
research and adding young minds to research groups. As
a result of the program’s success, a large part of the
agency’s budget funds are intended for human resource
training. Until now, 5347 young researchers have been
part of the program.
Characteristics of the young researchers
program(http://www.arrs.gov.si):

• During their post-graduate studies young
researchers do research on fundamental or
research-development application projects,

• They have a fixed employment contract,
• The ministry ensures funds for their salaries,

contributions, material and non-material
expenses for their research work and post-
graduate studies.

Scholarships for training young researchers are given for
a certain period of time, which includes four years and
six months at most for a PhD. On average, 6.6 million
tolars is needed to finance a young researcher yearly.

4.2 The Size and Structure for Financing
Every year, the agency finances about 1200 young
researchers, which represents about the equivalent of 850
to 900 fully paid young researchers. Every year, 200 to
250 young researchers complete the training program,
which is the same amount that is financed once again.

Graph 2: The number of newly accepted young
researchers according to the type of research
organization.

RESEARCHERS AND DEVELOPMENT... Informatica 30 (2006) 131–137 135

Graph 3: Number of newly accepted young researchers
according to the disciplines

Graph 4: Total number of financially supported young
researchers according to the type of research
organization.

4.3 The Number of Young Researchers
and ZTP Direction

After constant analyses of Slovenian science, its
reflection in companies, development and influence of
high technology sometimes bear negative thoughts and
energy by researchers who participate with companies.
As a result of these analyses a doubt arises in researchers
in the area of technical sciences in that they are being
constantly dealt with as the only ones, to whom the fault
can be attributed to in Slovenia for the slow (too slow)
development of the nation. That is to say that the
problem in Slovenian science is exclusively in the area of
technical science and that the problems in the lack of
competitiveness industry are exclusively because of
engineers. (Duhovnik, Finance, št. 226/04).
This had been established in 2004 at the business
conference in Portorož, which is organized by the daily
Finance. There were discussion on innovation processes
with domestic and foreign consultants and some new
ones, who had mad contributions about how to teach
Slovenian development engineers so that they could
understand the new technology. This transfer of
knowledge should be made by those who manage
business systems. Members of management boards for
development in multinationals or of famous consulting
companies also had lectures. There was also special
emphasis put on investing in science. It is difficult to
understand that within such an elite group of speakers, a
domestic scientist in the technical field is not allowed to

(or better yet it would not be suitable to) make a
commentary. (Duhovnik, Finance, št. 226/04). Even
more so, if they are employed at any institute or technical
faculty and do not deal with “management” but does
research and development, even having patents in certain
areas.

Graph 5: Number of young researchers in technical
science (Source: Duhovnik, Finance no. 226/04)

Therefore, if we take a look at the programs for young
researchers in the area of science, we can establish that
we have six areas: natural-mathematical, technical,
medical, biotechnical, social sciences and humanities.
There could only be four areas with a rough division:
natural-mathematical, technical, medical/biotechnical
and social sciences with humanities. Older researchers
and responsible employees in companies are familiar
with the infamous project 2000 MR, which had been
introduced to the Slovenian public by Dr. Boris Frlec. It
was accepted with enthusiasm and thus in was continued.
One year it was a little better and in others it was not as
successful. It is understandable that it cannot be totally
successful. In comparison with the entire period it had a
success rate of 75%. If we take a look at only the last
few years or the years after 1990, we can see an
exceptional success rate of 97%. First of all we can
evaluate the success rate with a formally obtained
academic title, with a doctorate in the last little while.
An important fact is that in the last few years 420 to 500
candidates who have all the credentials have appeared
and only 180 to 280 are rightfully selected. In some
areas, the quality of the candidature of young researchers
is so high that young researchers who only have an
average mark of nine are cut. The prerequisite for each
candidate is their average grade for the university
program. This already shows the disproportion of grades
in the programs that are only four years or those that are
six. As a result an expert system has been implemented,
however with a cut-off rate (50 %) of a limited number
of accepted young researchers, which is almost a
disgrace for evaluators who see a young researcher with
exceptional potential in front of their eyes. (Duhovnik,
Finance, št. 226/04).

4.4 The Project of Young Researchers and
Domestic Consulters

Let us take a look at how they decided on making an
investment in the project for young researchers from
1985 onwards. If we imagine that as a rule young
researchers in companies are not going to introduce high

136 Informatica 30 (2006) 131–137 M. Černetič et al.

technology but are going to design a product, which is
going to use the functions of high technology then we
can probably expect them to be from the area of technical
science. From the diagram, we can clearly see the
relation between young researchers in the area of
technical science and the total number of accepted young
researchers. That is why it would be proper that the
investment analysts for science understand investment in
science at all level, which the state must harbour or it is
already defined in their development strategy.
From 1997 onwards, a levelling of wages in the placing
of funds has been used for the different sciences. This
means that a development strategy for a certain science
had not been even used. Even what is more alarming is
that nothing has changed amongst young talented
engineers in Slovenia. There has been no change in the
growth of talents. Impossible! It can be achieved with
the use of hard policies!
In the upcoming years we will have to increase GDP
intensely. That is why above all other things it will be
very important, how the knowledge of young researchers
will be directly used. What will be the answer from the
Slovenian business world? Will anyone conjure to say
that our young researchers are incapable, in light of the
data on average grades? The question arises: Have we
opened the doors for employment for theses exclusive
young researchers? Or will they rather return to projects
using high technology for the manufacturing of products
as R&D engineers in multinational corporations? I doubt
that foreign lecturers are going to be able to respond in a
strategic way to such a question at Slovenian business
conferences. I shall be especially satisfied (Duhovnik,
Finance, št. 226/04), if they could respond to one more
important question: Can a modern state without its own
products, which means industrial ownership collect
enough money from taxes and contributions that it could
cover all the costs pertaining to the public administration,
a normal pension fund and finally a good healthcare
system? For future business conferences it is important
to invite domestic experts of acclamation, who also know
how to take on the responsibility of technological
development in Slovenian companies. Therefore,
domestic lectures need to be invited to these conferences.
Only these people would be able to explain what exactly
could be done regarding the situation of industrial
ownership in Slovenia.

5 Conclusion
The Lisbon strategy incorporates the right goals and clear
mechanisms, although the critical points are instruments
and coordination for achieving these goals.
Representatives of the European Commission in Slovenia
on the Lisbon strategy stated that the newcomers have
been especially successful.
The Lisbon strategy gives us the answers to the question
how the EU can be competitive in the long run and at the
same time preserve the European model of life with a
balance in economical, social and environmental goals.
The first condition for the maintenance of social

sustainability and kindness towards an environment is
economical growth.
In realizing the Lisbon strategy, each country must also
take into consideration specific national objectives and
the main problem of the strategy is in its weak
management and co-ordination between the EU and
member states. All foundations for the documents have
been implemented and now it is important to better
comprehend the meaning of partnership in the realization
of the Lisbon strategy.
One of the important instruments for its realization is
also the EU’s budget in which the “Lisbon” and
“cohesive” funds are available. There is a catch that
exits in that the first part of the funds are going to be
distributed according to excellence, which for the most
part means ending up in the developed members and the
rest for lesser developed states. At this point, smaller EU
member states emphasize the need for the restructuring
of the European budget. Evidently, there are still three
problems regarding expenditures for R&D (Černetič,
2003, 16):

• Lack of vision or consensus in development
• The creation of a list of priorities, which should

be able to strengthen the gathering of funds fore
R&D

• How to create an environment of innovation
intended for most small and medium-sized
companies with the measures and instruments of
current economic policies.

References
[1] A Science and Technology Strategy for Slovenia,

GOPA, MZT, Ljubljana 1994.
[2] Černetič M: Ekonomika izobraževanja in

raziskovanja, Moderne organizacija, Kranj
1999.Černetič M: Sociological and economic point
of wiev on globalization and development,

[3] Adult Education – A Key to the 21. Century,
Proceedings of the International Coference,
Hrvatsko andragoško društvo, Zagreb 2004.

[4] Černetič M: Knowledge and Education –
Management of Development, Informatologija
no.2, Zagreb 2003.

[5] Černetič M. Razvoj človeških virov –primer
podiplomskega študija(PŠ) v Sloveniji,
Organizacija št. 7, Kranj, 1998.

[6] Černetič, M. Vlaganje v razvoj in modeli univerz.
Organizacija št. 10, Kranj, 2002.

[7] Černetič, M. Znanje in informacijska družba.
Organizacija, št. 8, Kranj, 2002.

[8] Duhovnik J:Znanost v podjetjih-ali kje sploh je?
Finance št. 226, Ljubljana, 18. 11. 2004.

[9] Kos M: Birokracija ne more usmerjati razvoja.
Finance št.33.Ljubljana, 16.02 2005.

[10] Kos M: Minister za znanost na minah dediščine.
Finance št. 256, Ljubljana, 1.12. 2004.

[11] Kos M: Neznosna lahkotnost planiranja. Finance št.
175, Ljubljana, 07. 09. 2004.

[12] Kos M: O regionalizaciji: enakost, denar, ideje.
Finance št. 145, Ljubljana, 27.07. 2004.

RESEARCHERS AND DEVELOPMENT... Informatica 30 (2006) 131–137 137

[13] Kos M: Izdelčno vodena konkurenčnost. Finance št.
115, Ljubljana, 14. 06. 2004.

[14] Stanovnik, P: Nujnost prehoda v družbo znanja s
krepitvijo slovenskega raziskovalno-razvojnega
sistema. Posvet DOF v DS, 27.01.2004, Ljubljana,
2004.

[15] http://www.arrs.gov.si/sl/mr/razpisi/-20. 06. 2005

138 Informatica 30 (2006) 131–137 M. Černetič et al.

Informatica 30 (2006) 139

JOŽEF STEFAN INSTITUTE

Jožef Stefan (1835-1893) was one of the most prominent
physicists of the 19th century. Born to Slovene parents,
he obtained his Ph.D. at Vienna University, where he was
later Director of the Physics Institute, Vice-President of the
Vienna Academy of Sciences and a member of several sci-
entific institutions in Europe. Stefan explored many areas
in hydrodynamics, optics, acoustics, electricity, magnetism
and the kinetic theory of gases. Among other things, he
originated the law that the total radiation from a black
body is proportional to the 4th power of its absolute tem-
perature, known as the Stefan–Boltzmann law.

The Jožef Stefan Institute (JSI) is the leading indepen-
dent scientific research institution in Slovenia, covering a
broad spectrum of fundamental and applied research in the
fields of physics, chemistry and biochemistry, electronics
and information science, nuclear science technology, en-
ergy research and environmental science.

The Jožef Stefan Institute (JSI) is a research organisation
for pure and applied research in the natural sciences and
technology. Both are closely interconnected in research de-
partments composed of different task teams. Emphasis in
basic research is given to the development and education of
young scientists, while applied research and development
serve for the transfer of advanced knowledge, contributing
to the development of the national economy and society in
general.

At present the Institute, with a total of about 700 staff,
has 500 researchers, about 250 of whom are postgraduates,
over 200 of whom have doctorates (Ph.D.), and around
150 of whom have permanent professorships or temporary
teaching assignments at the Universities.

In view of its activities and status, the JSI plays the role
of a national institute, complementing the role of the uni-
versities and bridging the gap between basic science and
applications.

Research at the JSI includes the following major fields:
physics; chemistry; electronics, informatics and computer
sciences; biochemistry; ecology; reactor technology; ap-
plied mathematics. Most of the activities are more or
less closely connected to information sciences, in particu-
lar computer sciences, artificial intelligence, language and
speech technologies, computer-aided design, computer ar-
chitectures, biocybernetics and robotics, computer automa-
tion and control, professional electronics, digital communi-
cations and networks, and applied mathematics.

The Institute is located in Ljubljana, the capital of the in-
dependent state of Slovenia (or S♥nia). The capital today
is considered a crossroad between East, West and Mediter-

ranean Europe, offering excellent productive capabilities
and solid business opportunities, with strong international
connections. Ljubljana is connected to important centers
such as Prague, Budapest, Vienna, Zagreb, Milan, Rome,
Monaco, Nice, Bern and Munich, all within a radius of 600
km.

In the last year on the site of the Jožef Stefan Institute,
the Technology park “Ljubljana” has been proposed as part
of the national strategy for technological development to
foster synergies between research and industry, to promote
joint ventures between university bodies, research institutes
and innovative industry, to act as an incubator for high-tech
initiatives and to accelerate the development cycle of inno-
vative products.

At the present time, part of the Institute is being reor-
ganized into several high-tech units supported by and con-
nected within the Technology park at the Jožef Stefan In-
stitute, established as the beginning of a regional Technol-
ogy park “Ljubljana”. The project is being developed at
a particularly historical moment, characterized by the pro-
cess of state reorganisation, privatisation and private ini-
tiative. The national Technology Park will take the form
of a shareholding company and will host an independent
venture-capital institution.

The promoters and operational entities of the project are
the Republic of Slovenia, Ministry of Science and Tech-
nology and the Jožef Stefan Institute. The framework of
the operation also includes the University of Ljubljana, the
National Institute of Chemistry, the Institute for Electron-
ics and Vacuum Technology and the Institute for Materials
and Construction Research among others. In addition, the
project is supported by the Ministry of Economic Relations
and Development, the National Chamber of Economy and
the City of Ljubljana.

Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Tel.:+386 1 4773 900, Fax.:+386 1 219 385
Tlx.:31 296 JOSTIN SI
WWW: http://www.ijs.si
E-mail: matjaz.gams@ijs.si
Contact person for the Park: Iztok Lesjak, M.Sc.
Public relations: Natalija Polenec

Informatica 30 (2006)

INFORMATICA
AN INTERNATIONAL JOURNAL OF COMPUTING AND INFORMATICS

INVITATION, COOPERATION

Submissions and Refereeing

Please submit three copies of the manuscript with good copies of
the figures and photographs to one of the editors from the Edito-
rial Board or to the Contact Person. At least two referees outside
the author’s country will examine it, and they are invited to make
as many remarks as possible directly on the manuscript, from typ-
ing errors to global philosophical disagreements. The chosen ed-
itor will send the author copies with remarks. If the paper is ac-
cepted, the editor will also send copies to the Contact Person. The
Executive Board will inform the author that the paper has been
accepted, in which case it will be published within one year of
receipt of e-mails with the text in Informatica LATEX format and
figures in .eps format. The original figures can also be sent on
separate sheets. Style and examples of papers can be obtained by
e-mail from the Contact Person or from FTP or WWW (see the
last page of Informatica).

Opinions, news, calls for conferences, calls for papers, etc. should
be sent directly to the Contact Person.

QUESTIONNAIRE
Send Informatica free of charge

Yes, we subscribe

Please, complete the order form and send it to Dr. Drago Torkar,
Informatica, Institut Jožef Stefan, Jamova 39, 1111 Ljubljana,
Slovenia.

ORDER FORM – INFORMATICA

Name: .

Title and Profession (optional): .

. .

Home Address and Telephone (optional): .

. .

Since 1977, Informatica has been a major Slovenian scientific
journal of computing and informatics, including telecommunica-
tions, automation and other related areas. In its 16th year (more
than ten years ago) it became truly international, although it still
remains connected to Central Europe. The basic aim of Infor-
matica is to impose intellectual values (science, engineering) in a
distributed organisation.

Informatica is a journal primarily covering the European com-
puter science and informatics community - scientific and educa-
tional as well as technical, commercial and industrial. Its basic
aim is to enhance communications between different European
structures on the basis of equal rights and international referee-
ing. It publishes scientific papers accepted by at least two ref-
erees outside the author’s country. In addition, it contains in-
formation about conferences, opinions, critical examinations of
existing publications and news. Finally, major practical achieve-
ments and innovations in the computer and information industry
are presented through commercial publications as well as through
independent evaluations.

Editing and refereeing are distributed. Each editor can conduct
the refereeing process by appointing two new referees or referees
from the Board of Referees or Editorial Board. Referees should
not be from the author’s country. If new referees are appointed,
their names will appear in the Refereeing Board.

Informatica is free of charge for major scientific, educational and
governmental institutions. Others should subscribe (see the last
page of Informatica).

Office Address and Telephone (optional): .

. .

E-mail Address (optional): .

Signature and Date: .

Informatica WWW:

http://www.informatica.si/

Referees:

Witold Abramowicz, David Abramson, Adel Adi, Kenneth Aizawa, Suad Alagić, Mohamad Alam, Dia Ali, Alan
Aliu, Richard Amoroso, John Anderson, Hans-Jurgen Appelrath, Iván Araujo, Vladimir Bajič, Michel Barbeau,
Grzegorz Bartoszewicz, Catriel Beeri, Daniel Beech, Fevzi Belli, Simon Beloglavec, Sondes Bennasri, Francesco
Bergadano, Istvan Berkeley, Azer Bestavros, Andraž Bežek, Balaji Bharadwaj, Ralph Bisland, Jacek Blazewicz,
Laszlo Boeszoermenyi, Damjan Bojadžijev, Jeff Bone, Ivan Bratko, Pavel Brazdil, Bostjan Brumen, Jerzy
Brzezinski, Marian Bubak, Davide Bugali, Troy Bull, Sabin Corneliu Buraga, Leslie Burkholder, Frada Burstein,
Wojciech Buszkowski, Rajkumar Bvyya, Giacomo Cabri, Netiva Caftori, Particia Carando, Robert Cattral, Jason
Ceddia, Ryszard Choras, Wojciech Cellary, Wojciech Chybowski, Andrzej Ciepielewski, Vic Ciesielski, Mel Ó
Cinnéide, David Cliff, Maria Cobb, Jean-Pierre Corriveau, Travis Craig, Noel Craske, Matthew Crocker, Tadeusz
Czachorski, Milan Češka, Honghua Dai, Bart de Decker, Deborah Dent, Andrej Dobnikar, Sait Dogru, Peter
Dolog, Georg Dorfner, Ludoslaw Drelichowski, Matija Drobnič, Maciej Drozdowski, Marek Druzdzel, Marjan
Družovec, Jozo Dujmović, Pavol Ďuriš, Amnon Eden, Johann Eder, Hesham El-Rewini, Darrell Ferguson, Warren
Fergusson, David Flater, Pierre Flener, Wojciech Fliegner, Vladimir A. Fomichov, Terrence Forgarty, Hans Fraaije,
Stan Franklin, Violetta Galant, Hugo de Garis, Eugeniusz Gatnar, Grant Gayed, James Geller, Michael
Georgiopolus, Michael Gertz, Jan Goliński, Janusz Gorski, Georg Gottlob, David Green, Herbert Groiss, Jozsef
Gyorkos, Marten Haglind, Abdelwahab Hamou-Lhadj, Inman Harvey, Jaak Henno, Marjan Hericko, Henry
Hexmoor, Elke Hochmueller, Jack Hodges, Doug Howe, Rod Howell, Tomáš Hruška, Don Huch, Simone
Fischer-Huebner, Zbigniew Huzar, Alexey Ippa, Hannu Jaakkola, Sushil Jajodia, Ryszard Jakubowski, Piotr
Jedrzejowicz, A. Milton Jenkins, Eric Johnson, Polina Jordanova, Djani Juričič, Marko Juvancic, Sabhash Kak,
Li-Shan Kang, Ivan Kapustøk, Orlando Karam, Roland Kaschek, Jacek Kierzenka, Jan Kniat, Stavros Kokkotos,
Fabio Kon, Kevin Korb, Gilad Koren, Andrej Krajnc, Henryk Krawczyk, Ben Kroese, Zbyszko Krolikowski,
Benjamin Kuipers, Matjaž Kukar, Aarre Laakso, Sofiane Labidi, Les Labuschagne, Ivan Lah, Phil Laplante, Bud
Lawson, Herbert Leitold, Ulrike Leopold-Wildburger, Timothy C. Lethbridge, Joseph Y-T. Leung, Barry Levine,
Xuefeng Li, Alexander Linkevich, Raymond Lister, Doug Locke, Peter Lockeman, Vincenzo Loia, Matija Lokar,
Jason Lowder, Kim Teng Lua, Ann Macintosh, Bernardo Magnini, Andrzej Małachowski, Peter Marcer, Andrzej
Marciniak, Witold Marciszewski, Vladimir Marik, Jacek Martinek, Tomasz Maruszewski, Florian Matthes, Daniel
Memmi, Timothy Menzies, Dieter Merkl, Zbigniew Michalewicz, Armin R. Mikler, Gautam Mitra, Roland
Mittermeir, Madhav Moganti, Reinhard Moller, Tadeusz Morzy, Daniel Mossé, John Mueller, Jari Multisilta, Hari
Narayanan, Jerzy Nawrocki, Rance Necaise, Elzbieta Niedzielska, Marian Niedq’zwiedziński, Jaroslav Nieplocha,
Oscar Nierstrasz, Roumen Nikolov, Mark Nissen, Jerzy Nogieć, Stefano Nolfi, Franc Novak, Antoni Nowakowski,
Adam Nowicki, Tadeusz Nowicki, Daniel Olejar, Hubert Österle, Wojciech Olejniczak, Jerzy Olszewski, Cherry
Owen, Mieczyslaw Owoc, Tadeusz Pankowski, Jens Penberg, William C. Perkins, Warren Persons, Mitja Peruš,
Fred Petry, Stephen Pike, Niki Pissinou, Aleksander Pivk, Ullin Place, Peter Planinšec, Gabika Polčicová, Gustav
Pomberger, James Pomykalski, Tomas E. Potok, Dimithu Prasanna, Gary Preckshot, Dejan Rakovič, Cveta
Razdevšek Pučko, Ke Qiu, Michael Quinn, Gerald Quirchmayer, Vojislav D. Radonjic, Luc de Raedt, Ewaryst
Rafajlowicz, Sita Ramakrishnan, Kai Rannenberg, Wolf Rauch, Peter Rechenberg, Felix Redmill, James Edward
Ries, David Robertson, Marko Robnik, Colette Rolland, Wilhelm Rossak, Ingrid Russel, A.S.M. Sajeev, Kimmo
Salmenjoki, Pierangela Samarati, Bo Sanden, P. G. Sarang, Vivek Sarin, Iztok Savnik, Ichiro Satoh, Walter
Schempp, Wolfgang Schreiner, Guenter Schmidt, Heinz Schmidt, Dennis Sewer, Zhongzhi Shi, Mária Smolárová,
Carine Souveyet, William Spears, Hartmut Stadtler, Stanislaw Stanek, Olivero Stock, Janusz Stokłosa,
Przemysław Stpiczyński, Andrej Stritar, Maciej Stroinski, Leon Strous, Ron Sun, Tomasz Szmuc, Zdzislaw
Szyjewski, Jure Šilc, Metod Škarja, Jiřı Šlechta, Chew Lim Tan, Zahir Tari, Jurij Tasič, Gheorge Tecuci, Piotr
Teczynski, Stephanie Teufel, Ken Tindell, A Min Tjoa, Drago Torkar, Vladimir Tosic, Wieslaw Traczyk, Denis
Trček, Roman Trobec, Marek Tudruj, Andrej Ule, Amjad Umar, Andrzej Urbanski, Marko Uršič, Tadeusz
Usowicz, Romana Vajde Horvat, Elisabeth Valentine, Kanonkluk Vanapipat, Alexander P. Vazhenin, Jan
Verschuren, Zygmunt Vetulani, Olivier de Vel, Didier Vojtisek, Valentino Vranić, Jozef Vyskoc, Eugene
Wallingford, Matthew Warren, John Weckert, Michael Weiss, Tatjana Welzer, Lee White, Gerhard Widmer, Stefan
Wrobel, Stanislaw Wrycza, Tatyana Yakhno, Janusz Zalewski, Damir Zazula, Yanchun Zhang, Ales Zivkovic,
Zonling Zhou, Robert Zorc, Anton P. Železnikar

Informatica
An International Journal of Computing and Informatics

Archive of abstracts may be accessed at America: http://ocean.ocean.cs.siu.edu/informatica/index.html,
Europe: http://www.informatica.si/, Asia: http://www3.it.deakin.edu.au/ hdai/Informatica/.

Subscription Information Informatica (ISSN 0350-5596) is published four times a year in Spring, Summer,
Autumn, and Winter (4 issues per year) by the Slovene Society Informatika, Vožarski pot 12, 1000 Ljubljana,
Slovenia.
The subscription rate for 2006 (Volume 30) is
– 60 EUR (80 USD) for institutions,
– 30 EUR (40 USD) for individuals, and
– 15 EUR (20 USD) for students
Claims for missing issues will be honored free of charge within six months after the publication date of the issue.

Typesetting: Borut Žnidar.
Printed by Dikplast Kregar Ivan s.p., Kotna ulica 5, 3000 Celje.

Orders for subscription may be placed by telephone or fax using any major credit card. Please call Mr. Drago
Torkar, Jožef Stefan Institute: Tel (+386) 1 4773 900, Fax (+386) 1 219 385, or send checks or VISA card number
or use the bank account number 900–27620–5159/4 Nova Ljubljanska Banka d.d. Slovenia (LB 50101-678-51841
for domestic subscribers only).

Informatica is published in cooperation with the following societies (and contact persons):
Robotics Society of Slovenia (Jadran Lenarčič)
Slovene Society for Pattern Recognition (Franjo Pernuš)
Slovenian Artificial Intelligence Society; Cognitive Science Society (Matjaž Gams)
Slovenian Society of Mathematicians, Physicists and Astronomers (Bojan Mohar)
Automatic Control Society of Slovenia (Borut Zupančič)
Slovenian Association of Technical and Natural Sciences / Engineering Academy of Slovenia (Igor Grabec)
ACM Slovenia (Dunja Mladenič)

Informatica is surveyed by: AI and Robotic Abstracts, AI References, ACM Computing Surveys, ACM Digital
Library, Applied Science & Techn. Index, COMPENDEX*PLUS, Computer ASAP, Computer Literature Index,
Cur. Cont. & Comp. & Math. Sear., Current Mathematical Publications, Cybernetica Newsletter, DBLP Computer
Science Bibliography, Engineering Index, INSPEC, Linguistics and Language Behaviour Abstracts, Mathematical
Reviews, MathSci, Sociological Abstracts, Uncover, Zentralblatt für Mathematik

The issuing of the Informatica journal is financially supported by the Ministry of Higher Education, Science and
Technology, Trg OF 13, 1000 Ljubljana, Slovenia.

Volume 30 Number 1 January 2006 ISSN 0350-5596

Introduction A. Omicini, P. Petta,
M. Gams

1

Issues in Multiagent Resource Allocation Y. Chevaleyre,
P.E. Dunne, U. Endriss,
J. Lang, M. Lemaître,
N. Maudet, J. Padget,
S. Phelps, J.A.
Rodríguez-Aguilar,
P. Sousa

3

A Survey of Programming Languages and Platforms
for Multi-Agent Systems

R.H. Bordini, L.
Braubach, M. Dastani,
A. El F. Seghrouchni,
J.J. Gomez-Sanz,
J. Leite, G. O’Hare,
A. Pokahr, A. Ricci

33

Self-Organisation and Emergence in MAS: An
Overview

G. Di M. Serugendo,
M.-P. G. Irit,
A. Karageorgos

45

Bio-inspired Mechanisms for Artificial
Self-organised Systems

M. Jean-Pierre,
B. Christine,
L. Gabriel, G. Pierre

55

Self-Organising Mechanisms from Social and
Business/Economics Approaches

S. Hassas, G. Di
Marzo-Serugendo,
A. Karageorgos,
C. Castelfranchi

63

Applications of Self-Organising Multi-Agent
Systems: An Initial Framework for Comparison

C. Bernon, V. Chevrier,
V. Hilaire, P. Marrow

73

End of special section / Start of normal papers

Eye-Tracking Adaptable e-Learning and Content
Authoring Support

M. Pivec, C. Trummer,
J. Pripfl

83

Integration of Access Control in Information
Systems: From Role Engineering to Implementation

T. Romuald,
C. Stéphane

87

A Formal Framework Supporting the Specification of
the Interactions between Agents

F. Mokhati, M. Badri,
L. Badri

97

A Review of Modular Multiplication Methods ands
Respective Hardware Implementation

N. Nedjah,
L. de Macedo Mourelle

111

Researchers and Development - Young Researches M. Černetič,
B. Černetič

131

Informatica 30 (2006) Number 1, pp. 1–139

