
Volume 29 Number 4 November 2005

Special Issue:
Hot Topics in European Agent Research I

Guest Editors:
Andrea Omicini
Paolo Petta
Matjaž Gams

EDITORIAL BOARDS, PUBLISHING COUNCIL

Informatica is a journal primarily covering the European com-
puter science and informatics community; scientific and educa-
tional as well as technical, commercial and industrial. Its basic
aim is to enhance communications between different European
structures on the basis of equal rights and international referee-
ing. It publishes scientific papers accepted by at least two ref-
erees outside the author’s country. In addition, it contains in-
formation about conferences, opinions, critical examinations of
existing publications and news. Finally, major practical achieve-
ments and innovations in the computer and information industry
are presented through commercial publications as well as through
independent evaluations.

Editing and refereeing are distributed. Each editor from the
Editorial Board can conduct the refereeing process by appointing
two new referees or referees from the Board of Referees or Edi-
torial Board. Referees should not be from the author’s country. If
new referees are appointed, their names will appear in the list of
referees. Each paper bears the name of the editor who appointed
the referees. Each editor can propose new members for the Edi-
torial Board or referees. Editors and referees inactive for a longer
period can be automatically replaced. Changes in the Editorial
Board are confirmed by the Executive Editors.

The coordination necessary is made through the Executive Edi-
tors who examine the reviews, sort the accepted articles and main-
tain appropriate international distribution. The Executive Board
is appointed by the Society Informatika. Informatica is partially
supported by the Slovenian Ministry of Science and Technology.

Each author is guaranteed to receive the reviews of his article.
When accepted, publication in Informatica is guaranteed in less
than one year after the Executive Editors receive the corrected
version of the article.

Executive Editor – Editor in Chief
Anton P. Železnikar
Volaričeva 8, Ljubljana, Slovenia
s51em@lea.hamradio.si
http://lea.hamradio.si/˜s51em/

Executive Associate Editor (Contact Person)
Matjaž Gams, Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Phone: +386 1 4773 900, Fax: +386 1 219 385
matjaz.gams@ijs.si
http://ai.ijs.si/mezi/matjaz.html

Deputy Managing Editor
Mitja Luštrek, Jožef Stefan Institute
mitja.lustrek@ijs.si

Executive Associate Editor (Technical Editor)
Drago Torkar, Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Phone: +386 1 4773 900, Fax: +386 1 219 385
drago.torkar@ijs.si

Editorial Board
Suad Alagić (USA)
Anders Ardo (Sweden)
Vladimir Bajić (South Africa)
Vladimir Batagelj (Slovenia)
Francesco Bergadano (Italy)
Marco Botta (Italy)
Pavel Brazdil (Portugal)
Andrej Brodnik (Slovenia)
Ivan Bruha (Canada)
Wray Buntine (Finland)
Hubert L. Dreyfus (USA)
Jozo Dujmović (USA)
Johann Eder (Austria)
Vladimir A. Fomichov (Russia)
Janez Grad (Slovenia)
Hiroaki Kitano (Japan)
Igor Kononenko (Slovenia)
Miroslav Kubat (USA)
Ante Lauc (Croatia)
Jadran Lenarčič (Slovenia)
Huan Liu (USA)
Suzana Loskovska (Macedonia)
Ramon L. de Mantras (Spain)
Angelo Montanari (Italy)
Pavol Návrat (Slovakia)
Jerzy R. Nawrocki (Poland)
Franc Novak (Slovenia)
Marcin Paprzycki (USA/Poland)
Gert S. Pedersen (Denmark)
Karl H. Pribram (USA)
Luc De Raedt (Germany)
Dejan Raković (Serbia and Montenegro)
Jean Ramaekers (Belgium)
Wilhelm Rossak (Germany)
Ivan Rozman (Slovenia)
Sugata Sanyal (India)
Walter Schempp (Germany)
Johannes Schwinn (Germany)
Zhongzhi Shi (China)
Oliviero Stock (Italy)
Robert Trappl (Austria)
Terry Winograd (USA)
Stefan Wrobel (Germany)
Xindong Wu (USA)

Publishing Council:
Tomaž Banovec, Ciril Baškovič,
Andrej Jerman-Blažič, Jožko Čuk,
Vladislav Rajkovič

Board of Advisors:
Ivan Bratko, Marko Jagodič,
Tomaž Pisanski, Stanko Strmčnik

Informatica 29 (2005) 377–378 377

The Second AgentLink III Technical Forum: Main Issues and Hot Topics in
European Agent Research

1 Introduction
Together, this and the next issue of Informatica present a
collection of articles on the edge of agent research in Eu-
rope. The papers in this double special issue arise from sci-
entific exchanges and debates that took place at the Second
AgentLink III Technical Forum (AL3-TF2) hosted by the
Jozef Stefan Institute in Ljubljana, Slovenia, from Febru-
ary 28 to March 2, 2005.

AgentLink III is a European Commission (EC)-
sponsored Coordination Action (Project number: IST-
FP6-002006CA) to support research and development in
agent-based technologies and to strengthen Europe’s ef-
forts in this domain. This two-year project (2004-2005)
is funded through the Semantic-based Knowledge Systems
area of the Information Society Technologies (IST) The-
matic Priority of the Sixth Framework Programme (FP6).
AgentLink III follows the Thematic Networks AgentLink
(1998-2001) and AgentLink II (2001-2003) of the Fifth
Framework Programme. Its Management Committee com-
prises academic and industrial representatives from across
the European agent technology community. To support this
leadership, the project established in early 2004 a system of
membership by which institutions active in agent research
or development could apply to join the project. By 31 Au-
gust 2005, 192 organisations from 21 European and asso-
ciated states had become members of AgentLink III, out of
which there were 125 Universities, 30 Research Institutes
and 37 private companies. This high level of membership
indicates the considerable support for the project from Eu-
ropean organisations, both public and private.

2 AgentLink III Objectives
The long-term goal of AgentLink III is to put Europe at
the leading edge of international competitiveness in the
increasingly-important area of agent technologies. To re-
alise this goal, AgentLink III has sought to achieve the fol-
lowing objectives:

– To gain competitive advantage for European industry
by promoting and raising awareness of agent systems
technology.

– To support standardisation of agent technologies and
promote interoperability.

– To facilitate improvement in the quality, profile, and
industrial relevance of European research in the area
of agent-based computer systems, and draw in rele-
vant prior work from related areas and disciplines.

– To support student integration into the agent commu-
nity and to promote excellence in teaching in the area

of agent-based systems.

– To provide a widely known, high-quality European
forum in which current issues, problems, and solu-
tions in the research, development and deployment of
agent-based computer systems may be debated, dis-
cussed and resolved.

– To identify areas of critical importance in agent tech-
nology for the broader IST community, and to focus
work in agent systems and deployment in these areas.

Further information about AgentLink III and its many
activities is available from the AgentLink website at
http://www.agentlink.org.

3 AgentLink III Technical Fora

In order to support co-ordination and collaboration of Eu-
ropean research efforts, AgentLink III established a series
of research meetings, called the AgentLink III Technical
Fora (TFs). These comprise a number of parallel work-
shops, called Technical Forum Group (TFG) meetings, on
topics suggested in response to a call for proposals issued
before each Technical Forum. Soliciting topics for TFGs in
this way ensures that the meetings retain flexibility, and can
reflect whatever is the current focus of research attention in
the agents community. This feature also implies that the
standard for acceptance can be quite high, with proposers
needing to show evidence of research co-ordination activ-
ities before, during, and after each Technical Forum. Ex-
amples of such activities include the establishment of per-
sisting web-sites and discussion forums, the production of
short and long reports of the activities at the event, integra-
tion of related activities, and development of joint survey
papers of the respective research area.

Three Technical Fora were organised under
AgentLink III:
– TF1: Rome, Italy: 30 June–2 July 2004.
– TF2: Ljubljana, Slovenia: 28 February–2 March 2005.
– TF3: Budapest, Hungary: 15–17 September 2005.
Over a hundred participants have registered for each TF
meeting, with attendance not only from European and
neighbouring countries, but also Australia, Japan, and the
USA.

Each Technical Forum supported between six and nine
TF Groups, with most of them meeting for a whole day, and
often mixing with other groups in planned, but also sponta-
neously arranged joint meetings on research topics of com-
mon interest. Given that AgentLink seeks to reach out and
establish links with related research disciplines and with
other research projects, special efforts have been aimed at

378 Informatica 29 (2005) 377–378 A. Omicini et al.

encouraging the formation of TF Groups which make con-
nections between the agents community and other commu-
nities. For instance, there have been TF Groups which
have looked at the intersection of agent technologies and
the law; biology and bio-informatics; and economics. In
addition, joint TF Groups have been held with two related
EC-funded projects, KnowledgeWeb1 and ASPIC2.

Further information about AgentLink III
Technical Fora and their articulation is
available from the AgentLink website at
http://www.agentlink.org/activities/al3-tf/.

4 Main Issues and Hot Topics in
European Agent Research

The double special issue of Informatica comprises re-
viewed invited and selected articles from the TFG meetings
held at the Second AgentLink III Technical Forum (AL3-
TF2). The aim of this collection is to provide a deep and co-
herent overview of the main issues and the hottest topics in
European research on agent technologies, as they emerged
from the work of the AgentLink III TFGs.

To this end, the TFG Chairs were asked to produce first
of all a survey of the main issues as they arose in the work
and scientific debate at their TFG meetings, and then pos-
sibly to invite some of the most prominent participants to
illustrate the hottest topics in their specific field of discus-
sion. Both the surveys and the “hot topics” articles were
then scrutinised and carefully reviewed by several Euro-
pean experts, who helped the Guest Editors to select the
best papers among the many submitted, and thereby con-
tributed significantly to the improvement of the accepted
papers. As a result, five surveys from among the most ac-
tive TFGs were selected for these Special Issues, with the
aim of giving a general overview of the current activities
and challenges in a number of key areas of agent technolo-
gies, and also of revealing the breadth and sophistication of
current research and development in Europe. In addition,
seven other “hot topic” papers from four of these TFGs
were also included, to provide readers of Informatica with
in-depth insights in some of the most controversial and po-
tentially fertile sub-areas in the agent field.

The contributions collected in the first number of the spe-
cial issue document work in the TFGs on Agent-Oriented
Software Engineering (TFG-AOSE) and Environments for
Multiagent Systems (TFG-ENV), and are described briefly
in the following. The articles in the second number of the
double special issue (30(1)) were provided by the TFGs on
Multiagent Resource Allocatoin (TFG-MARA), Program-
ming Multi-Agent Systems (TFG-PROMAS), and Self-
Organisation in MAS (TFG-SELFORG).

Agent-Oriented Software Engineering (TFG-AOSE)
An Overview of Current Trends in European AOSE

1See http://knowledgeweb.semanticweb.org/.
2See http://www.argumentation.org/.

Research, by Carole Bernon, Massimo Cossentino, and
Juan Pavón, provides an “aerial” perspective on current
research trends in Agent-Oriented Software Engineering
(AOSE), with a specific attention to the results coming
from European research groups.
Agent Modeling Language (AML): A Comprehensive
Approach to Modeling MAS, by Ivan Trencansky and
Radovan Cervenka, focuses on a semi-formal visual
modelling language for specifying, modelling, and docu-
menting systems that incorporate agent features.
The Tropos Metamodel and its Use, by Angelo Susi, Anna
Perini, John Mylopoulos, and Paolo Giorgini, illustrates
the Tropos metamodel from the basic concepts of actor,
goal, plan, resource, and social dependency, and discusses
its use through an extension toward security.

Environments for Multiagent Systems (TFG-ENV)
On the Role of Environments in Multiagent Systems, by
Danny Weyns and Tom Holvoet, suveys MAS research on
the long overlooked issue of the role and ontological status
of the environment of MAS, and presents a model for
MASs that alongside agents puts forward the environment
as first-order abstraction.
Towards a Unified View of the Environment(s) within
Multi-Agent Systems, by Abdelkader Gouaïch and Fabien
Michel, challenges the single-environment hypothesis
by allowing for multiple occurrences of the agent-
environment relationship within individual MAS.
Coordination Artifacts: A Unifying Abstraction for Engi-
neering Environment-Mediated Coordination in MAS, by
Alessandro Ricci and Mirko Viroli, proposes the notion
of coordination artifact as a unifying abstraction for
engineering environment-based coordination of agents.

Acknowledgements
A warm thanks goes to the AL3-TF2 TFG Chairs who have
so actively cooperated in inviting, selecting, and collecting
the papers for these Special Issues, and to the reviewers,
who have contributed so much to the improvement of the
scientific level of every paper in this collection.

We wish to thank all of those who have contributed to the
success of the AgentLink III Technical Fora; especially the
AgentLink III staff: Catherine Atherton, Becky Earl, Adele
Maggs and Serena Raffin. We also thank the AgentLink III
Management Committee for their support, and the local
organisers and their staff in Ljubljana, Slovenia. We also
thank Cristiano Castelfranchi, Peter McBurney, and Laszlo
Varga who, along with us, have served as Technical Forum
Chairs for AgentLink III.

We hope you will enjoy this—and look forward to the
second!—part of the double special issue.

Andrea Omicini, Paolo Petta and Matjaž Gams

 Informatica 29 (2005) 379–390 379

An Overview of Current Trends in European AOSE Research

Carole Bernon
IRIT – University Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France
E-mail: bernon@irit.fr, http://www.irit.fr/SMAC

Massimo Cossentino
ICAR-CNR, National Research Council, Viale delle Scienze, ed. 11, 90128 Palermo, Italy
E-mail: cossentino@pa.icar.cnr.it, http://www.pa.icar.cnr.it/~cossentino

Juan Pavón
Fac. Informática, Universidad Complutense Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
E-mail: jpavon@sip.ucm.es, http://grasia.fdi.ucm.es/jpavon

Keywords: Agent Oriented Software Engineering (AOSE), Agent oriented methodologies, Multi-Agent Systems

Received: June 31, 2005

The agent oriented approach is doing great steps towards its (not yet reached) maturity; from a software
engineering point of view, it is today positively used for the analysis and design of complex systems. In
this paper, which is related to the activity of the AgentLink AOSE TFG (Agent Oriented Software
Engineering Technical Forum Group), we provide a perspective of current research trends in this area
with a specific attention for results coming from European groups. We start with a discussion of what
are agents, specially from the perspective of the software engineer. We present recent trends in
modelling agents and multi-agent systems, and then we review the different activities in the agent
development process: from analysis and design to implementation, verification and finally testing.

Povzetek: Podan je povzetek evropskega raziskovanja AOSE.

1 Introduction
With the increasing amount of successful applications
and techniques based on the agent paradigm, which have
validated the feasibility of the approach, there is a big
concern on its applicability in an industrial context. This
implies the definition of repeatable, reusable, measurable
and robust software process and techniques for the
development of multi-agent systems (MAS). For this
reason, a lot of effort in the agent field has been devoted
to the definition of methods and tools for supporting
agent oriented software engineering (AOSE). This
involves the definition of modelling languages for the
specification of MAS, techniques for requirements
elicitation and analysis, architectures and methods for
designing agents and their organizations, platforms for
implementation and deployment of MAS, and validation
and verification methods. Taking into account the
diversity of influences in the agent paradigm (from
distributed objects to knowledge base systems, but also
from other fields such as Psychology, Biology and Social
sciences) there are many methodological approaches,
which should get unified and integrated in a common
body of knowledge and practices. This is one of the aims
of current actions at EU level, such as the AgentLink
(www.agentlink.org) effort, or the collaboration in
standardization organizations such as FIPA
(www.fipa.org).

In this paper we try to provide a perspective of
current research trends in this area, specially in EU
groups. This can be useful as a starting reference point to
look for specific matters (in this sense there is an

extensive bibliography), and is complemented in relevant
topics with other papers in this special issue.

The paper starts with a discussion of what are
agents, specially from the perspective of the software
engineer (section 2). This is followed by a presentation
of trends in modelling this kind of systems (section 3).
Then, different activities in the development process for
MAS are reviewed: analysis and design (section 4),
implementation (section 5), verification and testing
(section 6). Finally, the conclusions (section 7) provide a
view, from the authors of this paper, on what lines of
work and trends should follow research in this area.

2 From Objects to Agents and Multi-

Agent Systems
When dealing with the agent notion and how to engineer
agent-based applications, one question often arises: may
agents be considered as an extension of objects and then
classical object-oriented software engineering be used as
well to build agent-based applications? Several papers
have tried to answer this question [76][106], others have
compared agents with programs [46] or with components
[7]. Many authors agree on the fact that distinguishing
agents and objects is difficult because they share some
aspects, but they also differ, mainly on notions such as
autonomy and interaction. Both agents and objects
encapsulate their state, which in objects is determined by
the values of a set of variables whilst in agents this can
be defined in terms of goals, beliefs, facts, etc., what
determines a mental state. Objects may have control over
their state by using private attributes or methods but any

380 Informatica 29 (2005) 379–390 C. Bernon et al.

public method of an object can be invoked by another
object forcing the former one to perform the action
described by the method. An object, contrary to an agent,
has then a limited control over its behaviour because the
decision on which method to execute is taken by an
external actor (the caller). An agent can determine which
behaviour to follow (depending on its goals, its internal
state and its knowledge from the environment) and not
because someone else forces it to do something.
Therefore, the notion of autonomy is stronger in agents.

This autonomy in agents implies that usually they
have their own thread of control, whilst, most of the time,
objects are passive entities, becoming active just when
one of their methods is invoked by another object. This
difference may be alleviated by the notion of active
objects in which an object has its own thread of control.
However, agents have some features which make them
something more than active objects. According to Van
Parunak and Odell [76], agents exhibit a dynamic
autonomy (their behaviour can be reactive as they react
to changes in their environment, proactive as they are
able to take initiatives to proceed into goal-directed
actions, and social as they communicate with other
agents in organizations) as well as an unpredictable
autonomy (their behaviour depends on their state, their
individual goals, and their interactions with others).
Active objects would become agents if they are able to
take “initiatives”. However, this distinction is not always
well established. For this reason some works in the agent
domain, for instance, on formalization of coordination
issues, usually are more related to classical concurrency
theory and do not consider intentional aspects of agents.

What makes really the difference, according to many
authors is the social dimension of agents (for instance,
the Huhns-Singh test [58] states that a system containing
one or more reputed agents should change substantively
if another of the reputed agents is added to the system).
Agents cannot be considered in isolation and are social
entities, which communicate and interact with other
entities that share a common environment.
Communication between objects is defined in terms of
messages that activate methods, but in the agent domain,
this communication is richer both in the diversity of
mechanisms and in the language, which is defined at a
more abstract level, in terms of ontologies and speech
acts, for instance. This social perspective is reflected also
in the definition of organizations with social rules and
relationships among agents [42].

Therefore, the use of object-oriented software
engineering techniques can be applied for the
development of MAS, but some extensions are required
to deal with social issues (organization, interaction,
coordination, negotiation, cooperation), more complex
behaviour (autonomy, mental state, goals, tasks), and a
greater degree of concurrency and distribution.

2.1 Definition of Agents

In [91], an agent is defined as anything that can be
viewed as perceiving its environment through sensors
and acting upon that environment through effectors. For
Ferber, agents are still plunged into an environment but
he endows agents with additional characteristics [41]. An

agent becomes then able to communicate directly or not
with other agents, it is driven by a set of tendencies,
possesses resources of its own, has a limited
representation of its environment, possesses skills and
can offer services, and may be able to reproduce itself.
Its behaviour tends towards satisfying its goals, taking
into account the resources and skills available to it in
accordance with its perception, its representation and the
communication it receives. Depending on the nature of
applications in which agents are used, different labels
exist for agents [46][77]: agents are qualified as being
autonomous, intelligent or mobile, for instance. This
plethora of labels makes the term “agent” almost
meaningless because it can be used too frequently to
characterise anything, so [69] recommends to formally
define the notion of agency. In this paper agents are
characterized through their essential properties: an agent
is able to act, is autonomous, proactive, communicates
with others, and perceives its environment1.

2.2 Definition of Multi-Agent Systems
(MAS)

Most of the authors agree on viewing a MAS as a system
composed of agents that communicate and collaborate to
achieve specific personal or collective tasks. This is
related to what was said before, an agent is not an
isolated entity but it is only understandable when located
in an environment where other agents exist, with which it
can interact.

MAS are appropriate to deal with complex and open
problems. The organization facilitates managing
complexity by determining structures, norms and
dependencies. In some cases, the organization is
explicitly a subject of analysis and design (e.g., [42]
[111]). But in certain approaches, the organization
emerges at run time (e.g., [10][36][93]). This allows the
analysis of emergent behaviours in systems in which is
not easy to know their structure in advance. From the
point of view of AOSE, this means that both top-down
and bottom-up approaches are feasible when building a
MAS, depending on the problem under study.

2.3 MAS Meta-models

Meta-modelling is a means to define concepts used in a
system. This can facilitate analysis and design by
identifying activities for instantiating the meta-model
entities with respect to the target application (i.e., the
meta-model identifies which elements should the
developer look for, and what relationships and
constraints exist for those elements). For instance,
Aalaadin defines one of the first meta-models for MAS
in terms of three main concepts: Agents, Groups and
Roles [42]. With this meta-model, the developer has an
organizational-driven approach to build a MAS. An
organization is a structural relationship between a
collection of agents and is described by a set of
interaction modes. Agents are defined by their function
in the organisation (Role) and belong to one or more
Groups, possibly for gaining some capabilities.

1 Properties defined during the second meeting of the
AgentLink3 AOSE TFG (Ljubljana, February 2005).

AN OVERVIEW OF CURRENT TRENDS IN... Informatica 29 (2005) 379–390 381

Meta-models are also useful to integrate concepts.
This is the approach of the MESSAGE project [21],
whose aim was to define a methodology for the
development of telecom applications using agent
technology. MESSAGE adopted concepts and notations
from different methodologies in a common framework.
Its definition was made using meta-models. Furthermore,
these meta-models were used to build graphical editors
[51]. In order to cope with complexity of MAS,
MESSAGE structured the specification of meta-models
in five viewpoints: organization, agent, goals/tasks,
domain, and interactions.

In the object world, the notion of object is clearly
defined by a set of criteria and almost all developers
agree on what makes a system object oriented. Meta-
modelling is then possible relying on standard notations
such as UML [90]. On the contrary, no universally
accepted structural representation of the elements (agent,
role, behaviour, ontology, etc.) that compose an actual
MAS, with their relationships, exists yet. This has led
several existing agent-oriented methodologies to propose
their own concepts and system structure illustrated by a
particular MAS meta-model. This lack of unification at
the MAS meta-model level, and then at the agents
concepts level, therefore prevents developers from
reusing fragments of existing agent-oriented
methodologies to build their own methodology especially
dedicated to their needs (this is the methodology
composition process suggested by the method
engineering approach [17][54]; this proposes to create a
new methodology starting from existing methodology
parts, called method fragments, that a method engineer
defines and stores in a method base).

A further step in this direction would be the
standardisation of the process that is necessary to follow
in order to build a new methodology. This would be
desirable to make agent-oriented engineering used in the
industrial world. From this perspective, some initial
attempts have been made to find a unified meta-model
based on several methodologies [11], or by trying to
reach an agreement in the agent community with the
work of the FIPA Modelling TC or the AgentLink III
AOSE TFG.

3 Modelling Agents
Modelling agents and MAS needs adapted modelling
languages, notations and tools. Agents, as said above, are
not far from objects and most of the modelling methods
are based on tools coming from the object-oriented
domain. The most generally accepted modelling
language used for object-oriented software engineering is
UML. UML is a de facto standard, and most modelling
tools are already based on it, which facilitates the
development of tools. However, UML does not provide
all the notation elements to model all the specific features
of agents.

UML extension abilities (i.e., stereotypes, tagged
values, constraints) have been used to support agent-
oriented modelling. For instance, Agent-UML (AUML)
[3] extends UML sequence diagrams to specify Agent
Interaction Protocols by providing mechanisms to define
agent roles, agent lifelines (interaction threads, which can

split into two or more lifelines and merge at some
subsequent points using connectors like AND, OR or
XOR), nested and interleaved protocols (patterns of
interaction that can be reused with guards and
constraints), and extended semantics for UML messages
(for instance, to indicate the associated communicative
act, and whether messages are synchronous or not).

Also in the context of AUML there are proposals for
extending class diagrams into agent class diagrams [2].
Here an agent class consists of several elements:

• An agent name used to differentiate objects from
agents in a diagram and providing an agent with
three information: instance, role and class.

• A state description that looks similar to the attribute
compartment in class diagrams but expresses well-
formed formulae for logical descriptions of the state,
it may be used to model beliefs, desires and
intentions of agents, for instance.

• Actions that can be reactive or proactive.

• Methods implementing services, as in UML classes.

• Capabilities describing what an agent can do.

• Organisation belonging, which specifies the different
groups in which an agent evolves, the roles it plays
and under which constraints it evolves in these
groups.

• Agent head automata, which define the behaviour of
an agent.
AUML is under study in the FIPA Modelling TC,

and being modified in order to take into account new
features in UML 2.0 [57]. For example, communication
between agents are now captured by enhanced sequence
diagrams, which become interaction diagrams, in which
agents can change their role, add or delete roles during
interactions, and notions of loop or break are added to the
AND, OR and XOR connectors that were available.
AUML is being smoothly introduced as an add-on into
different agent-oriented toolkits, such as OpenTool for
ADELFE [10] and the INGENIAS Development Kit
[82].

Another proposal for agent-oriented modelling as an
UML profile is AORML (Agent-Object-Relationship
Modelling Language) [104]. Here, agents are considered
from two perspectives: external and internal. The
external AOR model describes the perspective of an
external observer who is watching the agents and their
interactions. Agent Diagrams are used to depict the agent
types and objects of the domain and their relationships,
while interactions are modelled using Interaction Frame
Diagrams (possible interactions between two agent
types), Interaction Sequence Diagrams (instances of
interaction processes) and Interaction Pattern Diagrams
(general interaction patterns). An internal model adopts
the view of a particular agent to be modelled and depicts,
using three kinds of diagrams (Reaction Frame
Diagrams, Reaction Sequence Diagrams, Reaction
Pattern Diagrams), the world represented by the mental
state of this agent.

A more recent extension of UML for MAS is AML,
which is described in another paper of this special issue
[25]. Two UML profiles for AML are given and enable
implementing AML in CASE tools based on UML 1.* or
UML 2.0. Furthermore, using these AML profiles, a

382 Informatica 29 (2005) 379–390 C. Bernon et al.

designer is free to customise AML through the definition
of extensions to this language.

There are also approaches based on OPM (Object
Process Methodology) [37]. OPM considers processes
and objects as equally important classes of things, which
together describe the function, structure and behaviour of
systems. A single diagramming tool, Object-Process
Diagrams (OPDs), is enough for modelling the system.
This has been extended in OPM/MAS [99] by taking
MAS building blocks from Gaia methodology. For
instance, organization, society, platform, rule, role, user,
protocol, belief, desire, fact, goal, intention, and service
are modelled as OPM objects. And the behavioural
concepts such as agent, task, and messaging are modelled
using the process concept. Another approach [74], taking
inspiration from OPM, allows zooming through different
abstraction layers and apply this feature to SODA [79], a
methodology that addresses the coordination aspects of
agent societies. The analysis of complexity is also
considered from the perspective of interactions in [83].

In section 4.3 we discuss how the management of
complexity can be also addressed by considering
complementary aspects of a MAS.

4 Analysing and Designing Agents
According to Sommerville [97], all the different kinds of
software development processes share some fundamental
activities. These include specification (consisting in the
definition of software functionalities and constraints, i.e.,
requirements analysis), design and implementation
(consisting in the production of the software), validation
(where the produced software should be validated against
customer requirements) and evolution (the software
evolves according to customer new needs). In this section
we discuss the first two items of this list: specification
analysis and design.

During the specification phase, the designer collects
and analyzes the software requirements, which are
usually considered from two perspectives: User and
System. The latter being the detailed and more technical
expression of what the customer specifies in the User
Requirements. System Requirements consist of
functional (services the software should provide), non–
functional (constraints on the services) and domain
requirements (coming from the application domain).

Design consists in converting system specifications
into an executable system. This is usually achieved by
structuring the software into modules, defining the data
to be managed and the interfaces between components.
Sometimes a specific attention is given to the algorithms
that are necessary to solve the problem.

A fundamental contribution in defining the impact of
agents in these phases has been argued by Jennings [63]
in the sense that agents can be a successful solution for
two major problems of contemporary approaches:
rigidity of components interactions and limitedness of
available system’s organizational structures.

In the next sub-sections we present existing
contributions in this area (with a specific attention for
European ones) according to their key features.
Specifically, we consider formal and non formal

approaches, multi-views paradigms, agent design life
cycles and some other remaining issues.

4.1 Formal approaches

Many authors looked at the problem of analysis and
design of agent-oriented systems with a formal approach.
This usually includes the adoption of a mathematical
formalism to obtain a correct specification of the system
to be; the output of a formal method is a formal
specification that can be used for implementing the
system, verifying its correspondence with user
requirements or evaluating the final result [85].

Several of these works adopt a kind of logic (usually
a modal logic [96]) to represent the system. As an
example, LORA (Logic of Rational Agents) [107] which
is founded on a first-order logic, includes a BDI (Belief-
Desire-Intention) [87] component (used for the agent
architecture), a temporal component (used for specifying
the system dynamics), and an action component (used to
represent agents’ actions). LORA is adopted by MABLE
(a language for the design of MAS) that allows an
automatic verification of the agent system [108].

Situation Calculus [71] is another expression of this
field of research; it is a first-order logic (with some
extensions to second-order logic) capable of representing
dynamic domains. IndiGolog [34] is a recent
implementation of situation calculus, supporting the
high-level programming of robotic intelligent agents that
can perform online planning and plan execution in
partially unknown environments. In IndiGolog (that is
part of the GOLOG [67] family), environment dynamics
is modelled using situation calculus while the agent
behaviour is designed in a procedural way.

Another formal approach is due to M. Luck and M.
D’Inverno [69] and it is an application of the Z language
[98] to the specification of agents. Z is based on first
order predicate calculus with the original introduction of
the concept of schema. A schema is composed of a
declarative part (declaration of variables and their types)
and another part where variables are related and their
constraints expressed. Agents in Z are defined within a
four-layer hierarchy that includes: entities (inanimate
objects with attributes), objects (entities with
capabilities), agents (objects with goals), autonomous
agents (agents with motivations). In this work the authors
take profit of the great number of existing experiences in
Z for inheriting a great number of tools that include code
production and model checking capabilities. Another
approach that uses the Z formalism (and statecharts) can
be found in [56].

4.2 Non-formal Approaches

Non-formal approaches to the specification and design of
agent systems are mostly based on the use of structured
natural language and graphical notations. Among these,
for system requirements specification, UML-related
diagrams like use-case and sequence diagrams are very
common use. These approaches are mainly requirement-
oriented and they often aim at capturing system
functionalities through a set of heuristics and views.

Several agent-oriented design methodologies
perform the specification in this way; they generally

AN OVERVIEW OF CURRENT TRENDS IN... Informatica 29 (2005) 379–390 383

include a complete design process, not only system
specification aspects. We can fundamentally identify
three categories of non-formal specifications: functional-
oriented [62] (often adopting use-case diagrams), goal-
oriented approaches [103] (that aim at identifying the
goals of the system and eventually dividing them among
agents), and, finally, role-oriented approaches [65] (they
adopt the role as the key abstraction for specifying a
MAS, they are often also concerned about designing
roles/agents coordination). While the functional and
goal-oriented specifications are well-known and widely
adopted in the object-oriented context, role-guided
specifications are more specific of the agent community.

Functional specifications (mostly looking at
European works) are adopted in the PASSI methodology
[29] and the ROADMAP [64], an extension of Gaia
[109], both of them adopting use-case diagrams.

PASSI starts analysis with use-cases and arrives to
code production and testing in an iterative process. It
includes an extensive patterns reuse practice and it is
conceived to be supported by a specific design tool
(PTK), since several of its activities are partially
automated.

Identification and modelling of system goals is part
of the MESSAGE methodology [21], which is based on a
set of meta-models supporting five different views of the
MAS: organization, agent, tasks/goals, interactions, and
environment. INGENIAS [82] refines and extends these
meta-models, and uses them to build support tools for all
stages of the development cycle. Furthermore, for
requirements elicitation, INGENIAS proposes to base on
Activity Theory to analyse intentional and social issues
of the system, by providing a set of contradiction patterns
that guide the developer in the identification of conflicts
in the specification about the agent and the organization
goals [47].

Tropos [16] starts from the i* framework [110],
which has been developed mainly thinking on
information systems, actors, beliefs, commitments and
goals are used to model system organization. Tropos uses
this requirements analysis approach and incorporates it in
a complete process that moves from the specification to
detailed design.

One of the key features of agency consists in
interaction; we can even note that this is also the
fundamental aspect of some standardization attempts
coming from FIPA (Abstract Architecture Specification
[43]) or OMG MAF (Mobile Agent Facility [78]). As a
consequence, many authors devoted their attention to
capturing interaction aspects often by modelling agents’
roles [65][18].

European methodologies that give a prominent
importance to role modelling are Gaia [109], SODA [79]
and RICA [94] (but also the cited MESSAGE,
INGENIAS, and PASSI).

Gaia has been, probably, the most influent
methodology concerning the analysis of the system as a
society/organization consisting on a set of roles that are
later assigned to agents. Gaia’s roles are related with one
another, and participate in pre-defined patterns of
interactions with other roles. Implementation issues are
not dealt in this methodology since considered depending
on the chosen deployment agent platform. Although

initially Gaia suffered from the limitation of being
conceived for closed systems and ignoring the possibility
of self-interesting agents, a new release of it [111]
included concepts like organizational rules as the way to
manage more complex open systems.

SODA (Societies in Open and Distributed Agent
Spaces) [79] aims at modelling the behaviour of agent
societies (considered as not deducible from the behaviour
of single agents) and their environments (that can be
open, distributed, dynamic and unpredictable). It has a
specific attention for agent interactions (starting from a
role model) but does not face the design of the agent’s
inner structure.

Another methodology that puts in a prominent
position roles is RICA (Role/Interaction/Communicative
Action) [94]. It integrates relevant aspects of Agent
Communication Languages (ACL) and Organisational
Models and it is itself based on the concepts of
Communicative Roles and Interactions.

Other authors concentrated their efforts to
coordination among agents [27][80]. A coordination-
based approach should consider system openness, the
presence of self-interested agents and MAS social laws
that rule the overall behaviour of the agents thus
encompassing single-role modelling issues.

Coordination is sometimes pursued by adopting a
programmable coordination media (like the MARS
system presented in [19]), but other authors specifically
conceived their design methodologies for dealing with
coordination.

Another interesting methodology specifically
conceived for coordination of robotic agents is
Cassiopeia [38]. Cassiopeia design process is based on
the concept of role, agent, dependency, and group; an
agent is seen as a set of roles (there can be individual
roles, relational roles and organizational roles). The
methodology enumerates several different layers, among
them the organizational roles layer describes the
dynamics of the groups by defining the roles that the
agents have to play to let the group appear. Dependencies
among roles can be of three types: functional, resource-
based or goal-based and in this sense the methodology
partially recalls the already cited i* framework.

Cassiopeia assumes that agents are cooperative and
this is the same hypothesis that is behind the ADELFE
methodology, which focuses on adaptive MAS [9].
Adaptive software can be profitably used in situations in
which the environment is unpredictable or the system is
open. Contrary to Cassiopeia, in ADELFE agents are not
characterised by roles but by the cooperation rules they
follow. These rules are described in a proscriptive way,
they express what are non cooperative situations, and
make an agent locally decide why and when changing its
interactions with others. Cooperation is thus viewed as
the engine of adaptation according to the AMAS
(Adaptive Multi-Agent System) theory [22].

Other contributions about non-formal agent design
come from MaCMAS/UML [84], which is a fragment of
methodology devoted to deal with large/complex MAS,
and the works on modelling electronic institutions and
their norms in Islander [95].

384 Informatica 29 (2005) 379–390 C. Bernon et al.

4.3 Multi-view Approaches

Multi-views, multi-perspectives, multi-level approaches
base their philosophy on three well-known methods for
tackling complexity, already mentioned by Booch [12]:
Abstraction, Decomposition, Hierarchy. After all, as it
can be deduced from the discussion in sections 2 and 3,
agent-oriented systems can be more complex than object-
oriented ones and therefore a well structured way to
manage this complexity is necessary.

The structuring of a MAS in several viewpoints
appears in many methodologies. One of the first to
propose this was Vowels Engineering, which has been
the basis for the MAGMA approach [35]. It considers the
five Latin vowels (initially only the first four): Agent,
Environment, Interactions, Organization, and User.
Different techniques can be applied to analyse and design
each aspect. Agents can be conceived as simple automata
or complex knowledge-based systems. Interactions can
be studied as physical models, e.g., wavelength
propagation, or as speech acts. Organizations can be
inspired in biological models or ruled by sociological
models. The purpose of this methodology is to consider
component libraries that provide solutions for each
aspect, so that the designer can instantiate an agent
model, an organization model, and so on. The
methodology proposes to consider vowels (aspects) in a
certain order, depending on the kind of system being
developed. For instance, if social relationships are
important, the development process should start with the
organization. If the process starts with agents, then the
system will have an organization that probably emerges
as a result of the interactions of individual agents. These
viewpoints have been applied similarly in the MESSAGE
[21] and INGENIAS methodologies [81], which redefine
viewpoints as organization, agent, domain/environment,
goals/tasks, and interactions.

The concept of level in agency is also another way of
considering several views. It has been initially introduced
by Newell [75] and Jennings [63] recalled the knowledge
level and complemented it with a new social level. The
knowledge level is concerned with the agent seen as an
asocial problem solver while the social level looks at the
agent organization as its main focus.

Other works in this direction presented different
perspectives [28][32], which are more directed to the
representation of the system from a different point of
view (architectural, social, knowledge, computer,
resource, autonomy) rather than a different level of
abstraction.

Other examples of methodologies that emphasize the
modelling of the MAS from different viewpoints are
MAS-CommonKADS [60] (organization, tasks,
experience, agents, communications, coordination, and
design), ODAC [50], which uses the five ODP
viewpoints (enterprise, information, computational,
technology and engineering) [61], and MASSIVE [68]
(that includes seven views: environment, task, role,
interaction, society, architectural, system).

4.4 Agent Design Life Cycle Models

The whole set of activities and phases needed to develop
and maintain a software system is usually addressed as a

Software (Engineering or Development) Process.
Fuggetta in [48] defines it as “the coherent set of
policies, organizational structures, technologies,
procedures, and artifacts that are needed to conceive,
develop, deploy, and maintain (evolve) a software
product”, sometimes this is also known as a Software
Life Cycle Process [59]. Usually the sequence of phases
(here we mean high level activities or set of activities)
that compose a Software Process is ruled by a software
life cycle model. Examples of software life cycle models
are the waterfall model, the prototyping model, the
evolutionary development, the incremental/iterative
delivery, the spiral model, and so on.

A classification of many agent-oriented
methodologies according to the software life cycle model
they adopt, can be found in [24]. The paper remarks that
current research in the area of AOSE methodologies
underestimate the importance of the process model in the
development of MAS; according to the authors, this is
confirmed by the fact that in many cases, AOSE
methodologies do not make explicit reference to the
underlying process model. Anyway, most of them
propose iterative and incremental development process in
the same way as the Unified Process.

Some novelties about life cycle models for agents
come from the application of the Extreme Programming
[5] and Agile Manifesto [4] principles to agents.
Proposed design approaches [26][66] seem to show that
besides the respect for the main principles of this
research stream (attention for code rather than
documentation, central role of customer, and so on) a
fundamental importance in MAS agile design is played
by its ontological aspects (both of the cited approaches
give great importance to drawing some ontological
models of the problem domain).

4.5 Other Issues In Designing Agents

Despite of the number of works we have discussed, we
are still leaving apart some specific areas. These for
instance include the design of Internet specific
applications by means of agents (see [112]); the
importance of this field is growing up in conjunction
with the studies on web-services [72] (and their
extensions to agent-services [33]).

Another important aspect of design is evaluation. In
the last years several works have been proposed on this
topic. Some look at specific attributes of the
methodology to evaluate it (this is the case of [23][100])
while some others more generically try to identify the
elements that a methodology should include to deal with
specific aspects of agency like for instance managing
complexity [83].

Finally, we would like to report some studies on the
composition of new methodologies based on the reuse of
existing portions of them (usually called method
fragments). These works start with experiences from
classical software engineering [17][86] and have their
primary justification in the claim that one single design
methodology cannot be suited to face all problems and
developing contexts. According to this paradigm, each
class of problems should be faced by a specific
methodology that properly considers the skills of the

AN OVERVIEW OF CURRENT TRENDS IN... Informatica 29 (2005) 379–390 385

development group and other factors affecting the
software production (like for instance strategic choices
about implementing environment and technologies).

Actually, a wide repository of method fragments
coming from diffused agent methodologies (Gaia, MaSE,
PASSI, Prometheus, Tropos) is included in the Open
Process Framework [44]. A similar approach is pursued
by the FIPA Methodology Technical Committee, whose
results can also be found in works of some of its
members [31][45]. Although some experiences exist in
supporting tools for object-oriented approaches [102], the
lack of specific agent-oriented instruments and the
intrinsic complexity of the approach has still limited the
diffusion of this paradigm.

5 Implementing Agents
Agent systems can be implemented and deployed on a
variety of target platforms. There are agent-oriented
platforms that conform to some standards such as FIPA
or MAF [78], but it can be the case that a MAS is finally
realized on more conventional technology, for instance,
as Java distributed objects or components. Here we
describe both agent platforms (section 5.1) and proposals
for transformation from MAS design models to
implementation (section 5.2). Finally, in section 5.3 we
consider agent-oriented programming languages.

5.1 Agent Platforms

Agent platforms support developers by providing a set of
reusable components and services for the implementation
and deployment of agents. Most of them are compliant
with standards. In Europe, JADE can be considered as
the reference FIPA compliant platform. Other platforms
are more focused to support agent coordination, such as
TuCSoN and Islander.

JADE (Java Agent DEvelopment Framework) [6]
originates as a collaboration between the research labs of
Telecom Italia (TILAB) and Univ. Parma, and currently
is distributed as open source software under the terms of
the LGPL (Lesser General Public License Version 2).
JADE illustrates well the implementation of FIPA
management architecture components: the Agent
Communication Channel, the Agent Management
System, and the Directory Facilitator. Agent
communication is performed through message passing,
where FIPA ACL is the language to represent messages,
and with libraries that implement FIPA protocols, which
can be used as reusable components when building
agent-based applications. This facilitates the task of
developers who can rely on agent lifecycle management
by JADE and have some guarantee of interoperability
with other FIPA compliant agent systems. JADE
supports both reactive and deliberative agents by
defining a structure for agent behaviours, which can be
Java classes implementing state machines or rule
systems, by an integration of JESS (Java Expert System
Shell, available at http://herzberg.ca.sandia.gov/jess/) in
the platform. Furthermore, JADE provides some tools for
agent debugging (sniffer agents) and monitoring, and
other common services such as naming and yellow
pages. As a result of the EU IST project LEAP
(Lightweight Extensible Agent Platform), JADE

incorporated facilities for agent mobility and can be
deployed on mobile lightweight Java environments down
to J2ME-CLDC. Currently, LEAP libraries are
distributed as an add-on of JADE distribution from
version 3.0 onwards. A board has been constituted
recently with the purpose of driving its evolution and
consolidating JADE as a de-facto standard middleware
for agent-based applications.

Another approach for agent communication, instead
of message passing, is the use of a tuple spaces, a classic
mechanism for coordination. This is illustrated by
TuCSoN (Tuple Centres Spread over the Networks), by
the Univ. Bologna [88]. An interesting feature of this
kind of systems is the ability to define coordination laws
(something that is not common for tuple space
approaches in general). Islander+AMELI [40] also
provides a coordination middleware, by exploiting the
concept of electronic institutions to implement complex
negotiation processes.

5.2 Transformation from Design to
Implementation

As a modelling paradigm agents contribute to the use of
abstract concepts that are close to those used when
reasoning about human behaviours and organizations.
This can facilitate analysis and design activities but the
gap to implementation is greater than with other
paradigms, which are closer to current computational
frameworks. In this sense, although there are well-
established agent platforms, such as JADE, it is common
to see agent systems that are implemented on more
conventional platforms, usually depending on the
application environment and constraints (for instance, a
robotic system or a J2EE server). In order to solve this
kind of situations, some integrated development
environments (IDEs) provide tools for modelling with
agent concepts and a process for transforming agent
specifications into code for the target platforms.

Finally, when considering multiple target platforms,
the trend is to follow the OMG Model Driven
Architecture (MDA) approach [73]. Basically, the idea is
to specify the meta-model of a MAS modelling language,
which is platform independent, and those of the target
platforms. Mappings define rules or algorithms that
determine how instances of types in the MAS meta-
model result in the generation of instances of types in the
meta-model specifying a target platform. This approach
has been discussed in [1] and is used by the INGENIAS
Development Kit (IDK) to generate code on JADE,
Servlets, Robocode tanks, and other systems [51]. It is
also proposed by MetaDIMA [52] and Agent Factory
[30].

5.3 Agent-Oriented Programming
Languages

The use of agent-oriented programming languages
facilitates the understanding of agent features. There is
an extensive review of this in an accompanying paper of
this special issue [13], which considers imperative,
declarative and hybrid approaches. Basically, the
different proposals consider an agent model that makes

386 Informatica 29 (2005) 379–390 C. Bernon et al.

emphasis either on mobility issues, or on an intentional
behaviour model, or on a communication model. CLAIM
[39] is probably the most complete in considering all
these issues and being applied to real applications. Many
provide support for a BDI model, such as dMARS,
3APL, or Coo-BDI.

6 Verification and Testing
Verification and testing techniques for MAS usually
apply known results from concurrent and distributed
computing.

Verification is normally based on formal theories,
that allow the analysis of a system in order to determine
whether certain properties hold. These can be liveness
(whether the system will progress) or safety properties
(whether the system will do right things), thus answering
to the question is the system being built right? When the
property consists on whether the application fulfils the
requirements, we usually refer to it as validation.
Testing, on the other hand, is usually defined as the
activity of looking for errors in the final implementation.

What is interesting to note in the case of MAS when
discussing verification and testing is whether
organizational, cognitive, development, evolution, and
motivational concepts are considered, because the
consequences of having concurrent and distributed
processes are already a subject extensively covered in the
literature since the seventies. Winograd & Flores [105]
already criticised that many approaches try to work with
these properties through techniques that were conceived
for other purposes, without taking advantage of specific
agent characteristics. In this context, verification and
testing of MAS have not just imported techniques from
other paradigms, but they have also created new
approaches to solve this problem.

An example of the first formal approaches for
verification in the agent domain is DESIRE [15], a
design and specification framework that describes agents
and the MAS itself as networks of tasks organized in a
hierarchy. The interaction and coordination among
agents is specified as interchanges of pieces of
information and control dependencies. Properties to be
verified are represented with temporal logics: what is a
conflict among goals or how to choose among design
alternatives. Checking properties consists of
demonstrating that these are satisfied in a concrete
problem using the DESIRE representation of the system.
Although this allows proving complex properties of the
system and the domain, it has the limitation of the agent
model as being task-oriented.

Other formal approaches have shown limited scope
because they are assuming a fixed agent model, usually
more as a kind of reactive process rather than intentional,
and demand too detailed specifications, which makes
these techniques work for toy examples but unaffordable
for real cases, apart of the learning curve that they imply
for developers. For these reasons, there are several
approaches that try to mix the goodness of formal
languages with the expressive power of semi-formal
(usually graphical) languages.

An example of this is the use of model checking
techniques to verify the satisfaction of requirements in

Tropos [49]. Specifications with the graphical language
of Tropos are translated into Formal Tropos, adding
temporal logic constructs. This offers the possibility of
verifying the specification with formal methods.

Recently we start to see the application of theories
coming from other fields, such as Sociology. Activity
Theory, for instance, has been applied to the
identification of contradiction patterns (e.g., conflicts
between individual goals and community goals) by
translating concepts for the social science to agent
concepts, in this case for INGENIAS and Tropos [47].
Activity Theory is also being considered for analysing
social coordination in the TuCSoN platform [89].

Concerning testing, apart of debugging tools that
help the developer to follow messages exchange and in
some cases to introspect agents (as in the case of MadKit
[53]) an interesting approach is the use of data mining
tools for analysing and presenting results to the
developer. This is used for the JADE platform in the
ACLAnalyser tool [14]. Another work, specifically
conceived for the JADE platform and including both a
test method (aimed at testing single agent features with a
regression testing approach) and a supporting tool is
presented in [20].

7 Conclusion
The agent-oriented approach, from a software
engineering point of view, is mainly used for analysis
and design of complex systems. Implementation and
deployment of these systems may take a variety of forms,
sometimes following agent related standards (such as
FIPA and MAF) but usually as conventional distributed
objects or component based software. Thus, the main
benefit of agent-orientation at present seems to be at the
level of modelling. The coupling with that diversity of
target platforms is motivating approaches in the AOSE
community which are in line with the OMG Model
Driven Architecture (MDA) approach. Following this,
and considering the state-of-the-art as reported in this
work, we think the agent approach can be profitably used
for modelling the solution at a platform independent
level, and then some tools could provide proper
transformations to specific target platforms.

Acknowledgement
We would like to thank all the members of the
AgentLink AOSE Technical Forum Group for their
active participation during the AL3 Technical Fora and
their contribution in the off-line work.

References
[1] Amor M., Fuentes L. and Vallecillo A. (2005).

Bridging the Gap Between Agent-Oriented Design
and Implementation Using MDA. In: Agent-
Oriented Software Engineering V: 5th International
Workshop, AOSE 2004. Lecture Notes in Computer
Science 3382, Springer Verlag, pp. 93—108.

[2] Bauer, B. (2002). UML Class Diagrams Revisited
in the Context of Agent-Based Systems. In: Agent-
Oriented Software Engineering II: Second
International Workshop, AOSE 2001. Lecture Notes

AN OVERVIEW OF CURRENT TRENDS IN... Informatica 29 (2005) 379–390 387

in Computer Science 2222, Springer-Verlag, pp.
101—118.

[3] Bauer B, Müller J., and Odell J. (2001). Agent
UML: A Formalism for Specifying Multiagent
Interaction. In: Agent-Oriented Software
Engineering: First International Workshop, AOSE
2000. Lecture Notes in Computer Science 1957,
Springer-Verlag, pp. 91—103.

[4] Beck K., et al. Manifesto for Agile Software
Development. http://www.agilemanifesto.org.

[5] Beck K., and Andres C. (2004). Extreme
Programming Explained: Embrace Change , 2nd
Edition. Addison-Wesley.

[6] Bellifemine F., Poggi A., and Rimassa, G. (2001).
Developing multi-agent systems with a FIPA-
compliant agent framework. Software Practice and
Experience 31 (2), pp. 103—128.

[7] Bergenti F., and Huhns M. (2004). On the Use of
Agents as Components of Software Systems, In:
[8], chapter 2, pp. 19—32.

[8] Bergenti F., Gleizes M.-P., and Zambonelli F.,
editors (2004). Methodologies and Software
Engineering for Agent System: The Agent Oriented
Software Engineering Handbook. Kluwer
Academic Publisher, New York.

[9] Bernon C., Camps V., Gleizes M.-P., and Picard G.
(2005). Engineering Adaptive Multi-Agent
Systems: The ADELFE Methodology. In: [55],
chapter VII, pp. 172—202.

[10] Bernon C., Camps V., Gleizes M.-P. and Picard G.
(2004). Tools for Self-Organizing Applications
Engineering. In: Engineering Self-Organising
Systems, Nature-Inspired Approaches to Software
Engineering [revised and extended papers
presented at the Engineering Self-Organising
Applications Workshop, ESOA 2003]. Lecture
Notes in Artificial Intelligence 2977, Springer
Verlag, pp. 283—298.

[11] Bernon C., Cossentino M., Gleizes M-P., Turci P.,
and Zambonelli F. (2005). A Study of some Multi-
agent Meta-models. In: Agent-Oriented Software
Engineering V: 5th International Workshop, AOSE
2004. Lecture Notes in Computer Science 3382,
Springer Verlag, pp. 62—77.

[12] Booch, G. (1994). Object-Oriented Analysis and
Design with Applications. Addison-Wesley,
Reading, MA.

[13] Bordini, R., Braubach, L., El Fallah-Seghrouchni,
A., Dastani, M., Gomez-Sanz, J., Leite, J., O'Hare,
G., Pokahr, A., and Ricci, A. (2005). A Survey on
Languages and Platforms for MAS Implementation.
Informatica 29 (this issue).

[14] Botía J., López-Acosta A., and Gómez-Skarmeta A.
(2004). ACLAnalyser: A Tool for Debugging
Multi-Agent Systems. Proc. 16th European
Conference on Artificial Intelligence, ECAI 2004,
pp. 967—968.

[15] Brazier, F. M. T., Dunin-Keplicz, B. M., Jennings,
N. R., and Treur, J. (1997). DESIRE: Modelling
Multi-Agent Systems in a Compositional Formal
Framework. International Journal of Cooperative
Information Systems 6(1). pp. 67—94.

[16] Bresciani P., Giorgini P., Giunchiglia F.,
Mylopoulos J., and Perini A. (2004). TROPOS: An
Agent-Oriented Software Development Methodolo-
gy. Journal of Autonomous Agents and Multi-Agent
Systems, Kluwer Academic Publishers 8(3), pp.
203—236.

[17] Brinkkemper S., Lyytinen K., and Welke R. (1996).
Method Engineering: Principles of Method
Construction and Tool Support. Chapman &Hall.

[18] Cabri G., Ferrari L., and Zambonelli F. (2004).
Role-based Approaches for Engineering
Interactions in Large-Scale Multiagent Systems. In:
Post-Proceedings of Advances in Software
Engineering for Large-Scale Multiagent Systems
(SELMAS 03), Lecture Notes in Computer Science
2940, Springer-Verlag, pp. 243—263.

[19] Cabri G., Leonardi L., and Zambonelli F. (2003).
Engineering Mobile Agent Applications via
Context-Dependent Coordination. IEEE Transac-
tions on Software Engineering 28(11), pp. 1039-
1055.

[20] Caire G., Cossentino M., Negri A., Poggi A, and
Turci P. (2004). Multi-agent Systems
Implementation and Testing, In: From Agent
Theory to Agent Implementation - Fourth
International Symposium (AT2AI-4), Vienna,
Austria.

[21] Caire G., Evans R. Massonet P., Coulier W., Garijo
F.J., Gomez J., Pavón J., Leal F., Chainho P.,
Kearney P.E., and Stark J. (2002). Agent Oriented
Analysis using MESSAGE/UML. In: The Second
International Workshop on Agent-Oriented
Software Engineering (AOSE 2001), Lecture Notes
in Computer Science 2222, Springer-Verlag, pp.
119-135.

[22] Capera D., Georgé J.P., Gleizes M.P., and Glize P,
(2003). The AMAS Theory for Complex Problem
Solving based on Self-organizing Cooperative
Agents. In: Proc. of the 1st International Workshop
on Theory And Practice of Open Computational
Systems (TAPOCS03@WETICE’03), Linz, Austria,
pp.283—288.

[23] Cernuzzi L., and Rossi G. (2002). On the
Evaluation of Agent Oriented Methodologies. In:
Proc. of the OOPSLA 2002 Workshop on Agent-
Oriented Methodologies, pp. 21-30.

[24] Cernuzzi L., Cossentino M., and Zambonelli F.
(2005). Process Models for Agent-based
Development. Engineering Applications of
Artificial Intelligence 18(2), pp. 205-222.

[25] Trencansky I., Cervenka R.. (2005). Agent
Modeling Language (AML): A Comprehensive
Approach to Modeling MAS, Informatica 29 (this
issue).

[26] Chella A., Cossentino M., Sabatucci L., and Seidita
V. (2004). From PASSI to Agile PASSI: Tailoring
a Design Process to Meet New Needs. In: 2004
IEEE/WIC/ACM International Joint Conference on
Intelligent Agent Technology (IAT’04), Beijing,
China. pp. 471-474.

[27] Ciancarini P. (1996). Coordination Model and
Languages as Software Integrators, ACM
Computing Surveys, 28(2), pp. 300-302.

388 Informatica 29 (2005) 379–390 C. Bernon et al.

[28] Cossentino M. (2002). Different Perspectives in
Designing Multi-agent Systems, AGES'02
workshop at NODe02, Erfurt, Germany. pp. 61-73.

[29] Cossentino M. (2005). From Requirements to Code
with the PASSI Methodology. In: [55], chapter IV,
pp. 79—106.

[30] Cossentino M., Sabatucci L., and Chella A. (2003).
A Possible Approach to the Development of
Robotic Multi-Agent Systems. In: IEEE/WIC
International Conference on Intelligent Agent
Technology (IAT'03), pp. 13-17.

[31] Cossentino M., and Seidita V. (2004). Composition
of a New Process to Meet Agile Needs Using
Method Engineering, In: Software Engineering for
Large Multi-Agent Systems vol. III, Lecture Notes
in Computer Science 3390, Springer-Verlag, pp.
36-51.

[32] Cossentino M., and Zambonelli F. (2004). Agent
Design from the Autonomy Perspective. In: Agents
and Computational Autonomy: Potential, Risks, and
Solutions, Lecture Notes in Computer Science
2969, Springer-Verlag, pp. 140-150.

[33] Dale J., and Ceccaroni L. (2002). Pizza and a
Movie: A Case Study in Advanced Web Services.
In: Agentcities: Challenges in Open Agent
Environments Workshop, AAMAS Conference
2002, Bologna, Italy.

[34] De Giacomo G., Lespérance Y., Levesque H.J., and
Sardina, S. (2004). On the Semantics of
Deliberation in IndiGolog - From Theory to
Implementation. Annals of Mathematics and
Artificial Intelligence 41(2-4), pp. 259-299.

[35] Demazeau Y. (1995). From Cognitive Interactions
to Collective Behaviour in Agent-Based Systems,
1st European Conference on Cognitive Science,
Saint-Malo, France, pp. 117-132.

[36] Di Marzo Serugendo, G., Gleizes, M.-P.,
Karageorgos, A. (2005). Self-Organisation and
Emergence in MAS: An Overview. Informatica 29
(this issue).

[37] Dori, D. (2002). Object-Process Methodology: A
Holistic System Paradigm. Springer.

[38] Drogoul A., and Collinot A. (1998). Applying an
Agent-Oriented Methodology to the Design of
Artificial Organisations: a Case Study in Robotic
Soccer. Journal of Autonomous Agents and Multi-
Agent Systems, 1(1), pp. 113-129.

[39] El Fallah Seghrouchni A. and Sun A. (2003).
Claim: A Computational Language for
Autonomous, Intelligent and Mobile Agents. In:
Proceedings of ProMAS’03, Lecture Notes in
Artificial Intelligence 3067, Springer Verlag, pp.
90–110.

[40] Esteva M., Rosell B., Rodríguez-Aguilar J.A., and
Arcos, J.L. (2004). AMELI: An Agent-based
Middleware for Electronic Institutions. In: Third
International Joint Conference on Autonomous
Agents and Multi-agent Systems (AAMAS'04). pp.
236—243.

[41] Ferber J. (1999). Multi-Agent Systems, Addison-
Wesley: Reading, MA.

[42] Ferber J., and Gutknecht O. (1998). A Meta-model
for the Analysis and Design of Organizations in

Multi-agent Systems. In Proc. of the 3rd
International Conference on Multi-Agent Systems
(ICMAS’98), pp. 128–135.

[43] FIPA. Abstract Architecture Specification.
Document SC00001L. Available online at
http://www.fipa.org/specs/fipa00001/SC00001L.html.

[44] Firesmith D.G., and Henderson-Sellers B. (2002).
The OPEN Process Framework. Addison-Wesley.

[45] Fortino G., Garro A., and Russo W. (2004). From
Modeling to Simulation of Multi-Agent Systems:
an Integrated Approach and a Case Study. In:
Proceedings of the Second German Conference on
Multiagent System Technologies (MATES'04),
Lecture Notes in Artificial Intelligence 3187,
Springer-Verlag, pp. 213-227.

[46] Franklin S, and Graesser A. (1996) Is it an Agent,
or Just a Program?: A Taxonomy for Autonomous
Agents. In: Intelligent Agents III – Proceedings of
the Third International Workshop on Agent
Theories, Architectures, and Languages, Lecture
Notes in Artificial Intelligence, 1193, Springer
Verlag, pp. 21—35.

[47] Fuentes R., Gómez-Sanz J.J., and Pavón, J. (2004).
Social Analysis of Multi-Agent Systems with
Activity Theory. In: Proceedings of CAEPIA 2003,
Lecture Notes in Artificial Intelligence 3040,
Springer-Verlag, pp. 526-535.

[48] Fuggetta A. (2000). Software Process: a Roadmap.
In Proceedings of the Conference on the Future of
Software Engineering, ACM Press, New York
(USA), pp. 25-34

[49] Fuxman A., Pistore M., Mylopoulos J. and Traverso
P. (2001). Model Checking Early Requirements
Specifications in Tropos. In: Proceedings 5th IEEE
International Symposium on Requirements
Engineering (RE 2001), pp. 174-181.

[50] Gervais M. (2003). ODAC: An Agent-Oriented
Methodology based on ODP. Journal of
Autonomous Agents and Multi-Agent Systems 7(3),
pp. 199–228.

[51] Gomez-Sanz J. J., and Pavón, J. (2002). Meta-
modelling in Agent-Oriented Software Engineering.
In: Advances in Artificial Intelligence - IBERAMIA
2002, Lecture Notes in Artificial Intelligence 2527,
Springer-Verlag, 606-615.

[52] Guessoum Z., and Jarraya, T. (2005). Meta-Models
& Model-Driven Architectures, Contribution to the
AOSE TFG AgentLink3 meeting, Ljubljana, 2005.

[53] Gutknecht O., Ferber J., and Michel F. (2001).
Integrating Tools and Infrastructures for Generic
Multi-agent Systems. In: Proceedings of the fifth
international conference on Autonomous agents
(Agents 2001), ACM Press, pp. 441–448.

[54] Henderson-Sellers, B., and Debenham, J. (2003).
Towards Open Methodological Support for Agent
Oriented Systems Development. In: Proceedings of
the First International Conference on Agent-Based
Technologies and Systems. University of Canada,
Canada. pp. 14–24.

[55] Henderson-Sellers, B. and Giorgini, P., editors
(2005). Agent-Oriented Methodologies. Idea Group
Publishing.

AN OVERVIEW OF CURRENT TRENDS IN... Informatica 29 (2005) 379–390 389

[56] Hilaire V., Koukam A., Grue, P., and Muller J.-P.
(2000). Formal Specification and Prototyping of
Multi-agent Systems. In: Engineering Societies in
the Agents’ World (ESAW’00), Lecture Notes in
Artificial Intelligence 1972, Springer Verlag, pp.
114—127.

[57] Huget M.-P., and Odell J. (2005). A Study of some
Multi-agent Meta-models. In: Agent-Oriented
Software Engineering V: 5th International
Workshop, AOSE 2004. Lecture Notes in Computer
Science 3382, Springer Verlag, pp. 16—30.

[58] Hunhns M., and Singh M.P. (1999). A Multiagent
Treatment of Agenthood. Applied Artificial
Intelligence: An International Journal 13(1-2), pp.
3-10.

[59] IEEE Computer Society (2004). SWEBOK. Guide
to the Software Engineering Body of Knowledge.
Online at: http://www.swebok.org/.

[60] Iglesias C., Garijo M., Gonzales J., and Velasco J.
R. (1998). Analysis and Design of Multi-agent
Systems using MAS-CommonKADS. In: Intelligent
Agents IV, Proc. of the Fourth International
Workshop on Agent Theories, Architectures, and
Languages (ATAL‘97), Lecture Notes in Artificial
Intelligence 1365, Springer-Verlag, pp. 313–326.

[61] ISO/IEC X.900 (1995). IS 10746-x ITU-T Rec.
X90x, ODP Reference Model Part x.

[62] Jacobson I. (1992). Object-Oriented Software
Engineering, Addison-Wesley.

[63] Jennings N.R. (2000). On Agent-based Software
Engineering. Artificial Intelligence 117(2), pp.
277—296.

[64] Juan T., Pearce A., and Sterling L. (2002).
ROADMAP: Extending the Gaia Methodology for
Complex Open Systems. In: First International
Joint Conference on Autonomous Agents & Multi-
Agent Systems (AAMAS 2002), ACM Press, pp. 3—
10.

[65] Kendall E. A. (2000). Role Modeling for Agent
System Analysis, Design, and Implementation.
IEEE Concurrency. Volume 8 , Issue 2. pp. 34-41.

[66] Knublauch H. (2002). Extreme Programming of
Multi-Agent Systems. In: First International Joint
Conference on Autonomous Agents & Multi-Agent
Systems (AAMAS 2002), ACM Press, pp. 704—711.

[67] Levesque H. J., Reiter R., Lespérance Y., Lin F.,
and Scherl, R. B. (1997). GOLOG: A Logic
Programming Language for Dynamic Domains.
Journal of Logic Programming 31 (1-3), pp. 59–83.

[68] Lind J. (2001). Iterative Software Engineering for
Multiagent Systems: The MASSIVE Method.
Lecture Notes in Computer Science 1994, Springer-
Verlag.

[69] Luck M., and d’Inverno M. (2001). A Conceptual
Framework for Agent Definition and Development.
The Computer Journal 44(1), pp. 1—20.

[70] Luck, M., Ashri, R., D’Inverno, M. (2004). Agent-
Based Software Development. Artech House
Publishers.

[71] McCarthy J., and Hayes P.J. (1969). Some
Philosophical Problems from the Standpoint of
Artificial Intelligence. In: Machine Intelligence 4,
Edinburgh University Press, pp. 463—502.

[72] McIlraith S., Son T. C., and Zeng, H. (2001).
Semantic Web Services. IEEE Intelligent Systems
16(2), pp. 46-53.

[73] Miller J., and Mukerji, J. (eds) (2003). MDA Guide
Version 1.0.1, omg/2003-06-01.

[74] Molesini, A., Omicini, A., Ricci, A., and Detti, E.
(2005). Zooming Multi-Agent Systems. In: 6th
International Workshop Agent-Oriented Software
Engineering (AOSE 2005), pp. 193-204.

[75] Newell A. (1982) The Knowledge Level, Artificial
Intelligence, 18, pp. 87–127.

[76] Odell J. (2002) Objects and Agents Compared.
Journal of Object Technology 1(1), pp. 41—53.

[77] OMG (2000). Agent Technology – Green paper,
Agent Platform Special Interest Group, OMG
Document agent/00-09-01, version 1.0, 1
September 2000, http://www.objs.com/agent/
index.html.

[78] OMG (2000). Mobile Agent Facility, version 1.0.
OMG Document - formal/00-01-02, online at
http://www.omg.org/cgi-bin/doc?formal/2000-01-
02.

[79] Omicini A. (2001). SODA: Societies and
Infrastructures in the Analysis and Design of
Agent-Based Systems. In: Agent-Oriented Software
Engineering: First International Workshop, AOSE
2000. Lecture Notes in Computer Science 1957,
Springer-Verlag, pp. 185—193.

[80] Omicini A., Papadopoulos, G. A. (2001). Why
Coordination Models and Languages in AI?.
Applied Artificial Intelligence 15(1), pp. 1—10 .

[81] Pavón J., and Gómez-Sanz J. (2003). Agent-
Oriented Software Engineering with INGENIAS. In:
Multi-Agent Systems and Applications III, 3rd
International Central and Eastern European
Conference on Multi-Agent Systems (CEEMAS’03),
Lecture Notes in Computer Science 2691, Springer
Verlag, pp. 394-403.

[82] Pavón J., Gómez-Sanz J. and Fuentes, R. (2005).
The INGENIAS Methodology and Tools. In: [55],
chapter IX, pp. 236—276.

[83] Pena J., and Corchuelo R. (2005). Towards
clarifying the importance of interactions in agent-
oriented software engineering. Inteligencia
Artificial, Revista Iberoamericana de Inteligencia
Artificial 25 (1), pp. 19-28.

[84] Peña J., Corchuelo R., and Arjona J. L. (2003). A
Top Down Approach for MAS Protocol
Descriptions. In: ACM Symposium on Applied
Computing SAC'03, ACM Press, pp. 49-54.

[85] Pressman Roger S. (1982). Software Engineering:
A Practitioner’s Approach, McGraw-Hill Series in
Software Engineering and Technology, McGraw-
Hill, New York, 6th edition.

[86] Ralyte J., and Rolland C. (2001). An Approach for
Method Reengineering. In: Proc. Conceptual
Modeling - ER 2001, 20th International Conference
on Conceptual Modeling, Lecture Notes in
Computer Science 2224, pp. 471—484.

[87] Rao A.S., and Georgeff M. P. (1995). BDI Agents:
from Theory to Practice. In: Proc. of the First
International Conference on Multi-Agent Systems
(ICMAS‘95), The MIT Press, pp. 312-319.

390 Informatica 29 (2005) 379–390 C. Bernon et al.

[88] Ricci A., and Omicini A. (2003). Supporting
Coordination in Open Computational Systems with
TuCSoN. In: 12th IEEE International Workshops
on Enabling Technologies (WETICE 2003),
Infrastructure for Collaborative Enterprises. IEEE
Computer Society, pp. 365—370.

[89] Ricci A., Omicini A. and Denti E. (2003). Activity
Theory as a Framework for MAS Coordination.
Engineering Societies in the Agents World III, 3rd
international Workshop (ESAW'02), Lecture Notes
in Computer Science 2577, Springer-Verlag, pp.
96—210 .

[90] Rumbaugh J., Jacobson I., and Booch, G. (1999).
The Unified Modeling Language Reference Manual.
Addison Wesley. Reading, MA.

[91] Russell S., and Norvig P. (1995). Artificial
Intelligence; A Modern Approach. Englewood
Cliffs, NJ: Prentice Hall.

[92] Schreiber A., Wielinga J., Akkermans J., and de
Velde W. V. (1994). CommonKADS: A
Comprehensive Methodology for KBS
Development. Technical report, Univ. of
Amsterdam, Netherlands Energy Research
Foundation ECN and Free Univ. of Brussels.

[93] Schillo, M., and Fischer, K. Holonic Multiagent
Systems. Zeitschrift für Künstliche Intelligenz, no.
3 (in printing).

[94] Serrano J. M., and Ossowski S., (2004). On the
Impact of Agent Communication Languages on the
Implementation of Agent Systems. In: Cooperative
Information Agents VIII, 8th International
Workshop, CIA 2004, Lecture Notes in Computer
Science 3191, Springer-Verlag, pp. 92—106.

[95] Sierra C., Rodríguez-Aguilar J.A., Noriega P.,
Esteva M., and Arcos J.L. (2004). Engineering
Multi-agent Systems as Electronic Institutions.
Upgrade, The European Journal for the Informatics
Professional, V(4), pp. 33—39.

[96] Singh M. (1997). Formal Methods in DAI: Logic
Based Representation and Reasoning. In:
Multiagent Systems - A Modern Approach to
Distributed Artificial Intelligence, pp. 331–376.

[97] Sommerville I. (2004). Software Engineering 7th
edition. Addison Wesley.

[98] Spivey J. (1992). The Z Notation: A Reference
Manual. Prentice Hall, Hemel Hempstead, 2nd
edition.

[99] Sturm, A., Dori, D., and Shehory, O. (2003).
Single-Model Method for Specifying Multi-Agent
Systems. In: Proceedings of the Second
International Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS 2003), ACM
Press, pp. 121—128.

[100] Sturm A., and Shehory O. (2004) A Framework
for Evaluating Agent-Oriented Methodologies. In:
Agent-Oriented Information Systems, 5th Int. Bi-
Conference Workshop, AOIS 2003. Lecture Notes
in Computer Science 3030, Springer-Verlag, pp.
94—109.

[101] Tavares da Silva J.L., and Demazeau Y. (2002).
Vowels Co-ordination Model. In: First
International Joint Conference on Autonomous

Agents & Multi-Agent Systems (AAMAS 2002),
ACM Press, pp. 1129—1136.

[102] Tolvanen, J.-P., and Lyytinen, K. (1993)
Flexible Method Adaptation in CASE - the
Metamodeling Approach. Scandinavian Journal of
Information Systems, Vol. 5. IRIS Association. pp.
51-77.

[103] van Lamsweerde A. (2001). Goal-Oriented
Requirements Engineering: A Guided Tour. In:
Proceedings of the 5th IEEE International
Symposium on Requirements Engineering (RE
2001), IEEE Computer Society, pp. 249.

[104] Wagner G. (2003). The Agent-Object-
Relationship Metamodel: Towards a Unified View
of State and Behavior, Information Systems 28 (5),
pp. 475—504.

[105] Winograd T., and Flores C.F. (1986).
Understanding Computers and Cognition: A New
Foundation for Design. Norwood, NJ: Ablex.

[106] Wooldridge M., and Ciancarini P. (2001).
Agent-Oriented Software Engineering: The State of
the Art. In: Agent-Oriented Software Engineering:
First International Workshop, AOSE 2000. Lecture
Notes in Computer Science 1957, Springer-Verlag,
pp. 1—28.

[107] Wooldridge, M. (2000). Reasoning about
Agents. The MIT Press, Cambridge, MA.

[108] Wooldridge M., Fisher M., Huget M.-P., and
Parsons S. (2002). Model Checking Multi--agent
Systems with MABLE. In: First International Joint
Conference on Autonomous Agents & Multi-Agent
Systems (AAMAS 2002), ACM Press, pp 952—959.

[109] Wooldridge M., Jennings N. R., and Kinny, D.
(2000). The Gaia Methodology for Agent-Oriented
Analysis and Design. Journal of Autonomous
Agents and Multi-Agent Systems 3(3), pp. 285-312.

[110] Yu E. (1997). Towards Modelling and
Reasoning Support for Early-Phase Requirements
Engineering. In: Proceedings of the 3rd IEEE Int.
Symp. on Requirements Engineering (RE'97), pp.
226—235.

[111] Zambonelli F., Jennings N., and Wooldridge M.
(2003). Developing Multiagent Systems: the Gaia
Methodology. ACM Transactions on Software
Engineering and Methodology 12(3), pp. 417-470.

[112] Zambonelli F. and Jennings N. R., Omicini A.
and Wooldridge M. (2001). Agent-Oriented
Software Engineering for Internet Applications. In:
Coordination of Internet Agents: Models,
Technologies, and Applications, Springer Verlag,
pp. 326-346.

Last access date for web links reported in the paper: 30-

08-2005

Informatica 29 (2005) 391–400 391

Agent Modeling Language (AML): A Comprehensive Approach to Modeling
MAS

Ivan Trencansky and Radovan Cervenka
Whitestein Technologies, Panenska 28, 811 03 Bratislava, Slovakia
Tel +421 (2) 5443-5502, Fax +421 (2) 5443-5512
E-mail: {itr,rce}@whitestein.com

Keywords: agent, multi-agent system, modeling language, agent-oriented software engineering

Received: May 6, 2005

The Agent Modeling Language (AML) is a semi-formal visual modeling language for specifying, mod-
eling and documenting systems that incorporate features drawn from multi-agent systems theory. It is
specified as an extension to UML 2.0 in accordance with major OMG modeling frameworks (MDA, MOF,
UML, and OCL). The ultimate objective of AML is to provide software engineers with a ready-to-use,
complete and highly expressive modeling language suitable for the development of commercial software
solutions based on multi-agent technologies. This paper presents an overview of AML. The scope of the
language, its structure and extensibility mechanisms are discussed, and the core AML modeling constructs
and mechanisms are introduced and demonstrated by examples.

Povzetek: Opisana je vizualizacija agentnega jezika za modeliranje.

1 Introduction
The Agent Modeling Language (AML) [3, 5, 4] is a semi-
formal1 visual modeling language for specifying, modeling
and documenting systems that incorporate concepts drawn
from Multi-Agent Systems (MAS) theory.

The most significant motivation driving the development
of AML was the extant need for a ready-to-use, com-
prehensive, versatile and highly expressive modeling lan-
guage suitable for the development of commercial software
solutions based on multi-agent technologies. To qualify
this more precisely, AML was intended to be a language
that: (1) is built on proved technical foundations, (2) in-
tegrates best practices from agent-oriented software engi-
neering (AOSE) and object-oriented software engineering
(OOSE) domains, (3) is well specified and documented,
(4) is internally consistent from the conceptual, semantic
and syntactic perspectives, (6) is versatile and easy to ex-
tend, (7) is independent of any particular theory, software
development process or implementation environment, and
(8) is supported by Computer-Aided Software Engineering
(CASE) tools.

Given these requirements, AML is designed to address
the most significant deficiencies with current state-of-the-
art and practice in the area of MAS oriented model-
ing languages, which are often: (1) insufficiently docu-
mented and/or specified, or (2) using proprietary and/or
non-intuitive modeling constructs, or (3) aimed at model-
ing only a limited set of MAS aspects, or (4) applicable
only to a specific theory, application domain, MAS archi-

1The term “semi-formal” implies that the language offers the means to
specify systems using a combination of natural language, graphical nota-
tion, and formal language specification.

tecture, or technology, or (5) mutually incompatible, or (6)
insufficiently supported by CASE tools.

The objective of this paper is to present the approach
applied to specification of AML, and a brief overview of
the various modeling constructs AML provides to model
MASs. Due to limitations in paper length, a comprehen-
sive description of AML abstract syntax, semantics, and
notation is not provided.

The rest of the paper is structured as follows: Section 2
presents the approach applied to specification of AML
and the available extensibility mechanisms. Section 3 ex-
plains the AML fundamental entities and their features,
sections 4, 5, 6, 7 and 8 present an overview of AML ap-
proach to modeling different aspects of agents and MASs,
like social aspects, different kinds of interactions, capabil-
ities, mobility, and mental attitudes. In the end the conclu-
sions are drawn.

2 The AML Approach
Toward achieving the stated goals and overcoming the de-
ficiencies associated with many existing approaches, AML
has been designed as a language, which:

– incorporates and unifies the most significant concepts
from the broadest set of existing multi-agent theo-
ries and abstract models (e.g. DAI [24], BDI [17],
SMART [9]), modeling and specification languages
(e.g. AUML [1, 11, 12], TAO [18], OPM/MAS [20],
AOR [23], UML [15], OCL [14], OWL [19], UML-
based ontology modeling [7], methodologies (e.g.
MESSAGE [10], Gaia [25], TROPOS [2], PASSI [6],

392 Informatica 29 (2005) 391–400 I. Trencansky et al.

Prometheus [16], MaSE [8]), agent platforms (e.g.
Jade, FIPA-OS, Jack, Cougaar) and multi-agent driven
applications,

– extends the above with new modeling concepts to ac-
count for aspects of multi-agent systems thus far cov-
ered insufficiently, inappropriately or not at all,

– assembles them into a consistent framework specified
by the AML meta-model (covering abstract syntax
and semantics of the language) and notation (cover-
ing the concrete syntax), and

– is specified as an extension to UML in accordance
with the OMG modeling frameworks (MDA, MOF,
UML, and OCL).

2.1 The Language Definition
AML is built upon the Unified Modeling Language (UML)
2.0 Superstructure [15], augmenting it with several new
modeling concepts appropriate for capturing the typical
features of multi-agent systems (see Fig. 1).

The main advantages of this approach are:

– Reuse of well-defined, well-founded, and commonly
used concepts of UML.

– Use of existing mechanisms for specifying and ex-
tending UML-based languages (metamodel exten-
sions and UML profiles).

– Ease of incorporation into existing UML-based CASE
tools.

The abstract syntax, semantics and notation of the lan-
guage are defined at the AML Metamodel and Notation
level. The AML Metamodel is further structured into two
main packages: AML Kernel and UML Extension for AML.

UML 2.0 Superstructure

UML 2.0 Profile of AMLUML 1.* Profile of AML

UML 1.* Profiles

Extending AML

UML 2.0 Profiles

Extending AML

AML Metamodel AML
NotationAML KernelUML Extension for AML

UML Language

AML Metamodel
and Notation

AML Profiles

A
M
L

AML Profile Extensions

Figure 1: Levels of AML definition

The AML Kernel is a conservative2 extension of UML
2.0, comprising specification of all the AML modeling ele-
ments. It is logically structured into several packages, each
of which contains specification of modeling elements ded-
icated for modeling specific aspect of MAS.

The UML Extension for AML package adds some meta-
properties and structural constraints to the standard UML

2A conservative extension of UML is an extension of UML which re-
tains the standard UML semantics in unaltered form [22].

elements. It is thus a non-conservative extension of UML,
and therefore an optional part of the language. However,
the extensions contained within are simple and can be eas-
ily implemented in most existing UML-based CASE tools.

Upon the AML Metamodel and Notation two UML pro-
files of AML are specified: UML 1.* Profile for AML
(based on UML 1.*) and UML 2.0 Profile for AML (based
on UML 2.0). The primary objective of these profiles is to
enable implementation of AML into existing UML 1.* and
UML 2.0 based CASE tools, respectively.

2.2 Extensibility of AML
AML is designed to encompass a broad set of relevant the-
ories and modeling approaches, it being essentially impos-
sible to cover all inclusively. In those cases where AML is
insufficient, several mechanisms can be used to extend or
customize it as required:

– Metamodel extension offers first-class extensibility (as
defined by MOF [13]) of the AML metamodel and
notation.

– AML profile extension offers the possibility to adapt
AML for a given domain, platform or development
method by means of UML Profiles, without the need
to modify the underlying AML Metamodel and Nota-
tion.

– Concrete model extension allows to employ alterna-
tive MAS modeling approaches as complementary
specifications to the AML model.

3 Modeling MAS Entities
In general, entities are objects that can exist independently
of others. In order to maximize reuse and comprehensi-
bility of the metamodel AML defines several auxiliary ab-
stract metamodeling concepts called semi-entities and their
types. Semi-entity types are specialized UML classes used
to specify coherent set of features, logically grouped ac-
cording to particular aspects of MASs. They are used to
specify features of other types of modeling elements.

3.1 AML Semi-entities
AML defines the following semi-entities:

Behaviored semi-entities represent elements, which can
own capabilities, observe and/or effect their environment
by means of perceptors and effectors, provide and use ser-
vices, and can be (de)composed into behavior fragments.

Socialized semi-entities represent elements, which can
form societies, can participate in social relationships and
can own social properties.

Mental semi-entities represent elements which can be
characterized in terms of their mental attitudes, e.g. which
information they believe in, what are their objectives,

AGENT MODELING LANGUAGE. . . Informatica 29 (2005) 391–400 393

needs, motivations, desires, what goal(s) they are commit-
ted to, when and how a particular goal is to be achieved,
which plan to execute, etc.

3.2 AML Fundamental Entities

The fundamental entities that compose MASs are: agents,
resources, and environments. AML therefore defines three
modeling concepts, which can be used to model the above
mentioned fundamental entities at both type and instance
levels:

Agent type is used to specify the type of agents, i.e. self
contained entities that are capable of interactions, observa-
tions and autonomous behavior within their environment.

Resource type is used to model the type of resources
within the system, i.e. physical or informational en-
tities with which the main concern is their availability
(in terms of its quantity, access rights, conditions of us-
age/consumption, etc.).

Environment type is used to model the type of a system’s
inner environment3, i.e. the logical or physical surround-
ings of entities which provide conditions under which the
entities exist and function.

In AML, all the aforementioned entity types are special-
ized UML classes, and thus can utilize all the features de-
fined for UML classes, i.e. can be instantiated, can own
structural and behavioral features, behaviors, can be struc-
tured into parts and ports, participate in interactions, can
participate in various kinds of relationships (e.g. associa-
tions, generalizations, dependencies), etc. The instances of
the entity types (called entities) can be modeled by means
of UML instance specifications classified according to the
corresponding types.

Furthermore, all the AML fundamental entity types in-
herit features of behaviored semi-entities, and in addition
to these, agent and environment types are also socialized
and mental semi-entities.

Fig. 2 shows an example of a definition of an abstract
class 3DObject that represents spatial objects, charac-
terized by shape and position, existing inside a containing
space. An abstract environment type 3DSpace represents
a three dimensional space. This is a special 3DObject
and as such can contain other spatial objects. 3DSpace
provides a service Motion to the objects contained within
(for details about services see Sect. 5.4). Three con-
crete 3DObjects, an agent type Person, a resource
type Ball and a class Goal are defined as specialized
3DObjects. 3DSpace is further specialized into a con-
crete environment type Pitch representing a soccer pitch
containing two goals and a ball.

3Inner environment is that part of an entity’s environment that is con-
tained within the boundaries of the system.

GoalBallPerson

3DObject

shape

3DObject

3DPlacement

position

space

object

*

*
3DSpace

3DSpace

goal:Goal[2] ball:Ball

Pitch

Motion

Figure 2: Example of entities, their relationships, service
provision and usage

4 Modeling Social Aspects

MASs are commonly perceived as systems comprised of a
number of autonomous agents, situated in a common envi-
ronment, and interacting with each other in order that the
desired functionality and properties of the systems could
emerge. These properties of MAS are not always derivable
or representable solely on the basis of properties and capa-
bilities of individual agents, but are usually given also by
their mutual relationships, interactions, coordination mech-
anisms, social attitudes, etc. Such aspects of MASs are
commonly referred to as social aspects.

From the social perspective the following aspects of
MAS are commonly considered in MAS models (for de-
taisl see [4]):

– Social structure concerning mainly with the identifi-
cation of societies which can evolve within the sys-
tem, specification of their properties, structure, identi-
fication of comprised roles, individual entities that can
participate in such societies, what roles they can play,
their mutual relationships, etc.

– Social behavior covering such phenomena as social
dynamics (i.e. the ability of a society to react to inter-
nal and external events), norms (i.e. rules or standards
of behavior shared by members of a society), social
interactions (how individuals and/or societies interact
with others in order to exchange information, coordi-
nate their activities, etc.), and social activities of in-
dividual entities and societies (e.g. how they change
their attitudes, roles they play, social relationships),
etc.

– Social attitudes addressing the individual and/or com-
mon tendencies (usually expressed in terms of moti-
vations, needs, wishes, intentions, goals, beliefs, com-
mitments, etc.) to anything of a social value.

In this section the focus is on modeling social structure
of multi-agent systems. AML modeling constructs which
can be used to model social behavior and social attitudes
are outlined in the subsequent sections, mainly 5, 6, and 8.

394 Informatica 29 (2005) 391–400 I. Trencansky et al.

In order to accommodate special needs for modeling so-
cial aspects, AML utilizes concepts of: organization units,
social relationships, entity roles, and role properties.

4.1 Organization Units
Organization unit type is a specialized environment type,
and thus inherits features of behaviored, socialized and
mental semi-entity types. They are used to specify the type
of societies that can evolve within the system from both the
external as well as internal perspectives.

From an external perspective, organization units repre-
sent coherent autonomous entities, which can be character-
ized in terms of their mental and social attitudes, can per-
form behavior, participate in different kinds of (social) rela-
tionships, can observe and interact with their environment,
offer and use services, play roles, etc. Their properties and
behavior are both (1) emergent properties and behavior of
all their constituents, their mutual relationships, observa-
tions and interactions, and (2) the features and behavior of
organization units themselves.

For modeling organization units from external perspec-
tives, in addition to features defined for UML classes
(structural and behavioral features, owned behaviors, rela-
tionships, etc.), also all the features of behaviored, social-
ized, and mental semi-entities can be utilized.

From an internal perspective, organization units are
types of environment that specify the social arrangements
of entities in terms of structures, interactions, roles, con-
straints, norms, etc.

For this purpose organization unit types usually utilize
the possibilities inherited from UML structured classifier,
and model their internal structure by contained parts and
connectors, in combination with entity role types used as
types of the parts.

For an example of an organization unit see Fig. 3 (b).

4.2 Social Relationships
Social relationship is a particular type of connection be-
tween social entities related to or having dealings with each
other. For modeling such relationships, AML defines a spe-
cial type of UML property, called social property. The so-
cial property can be used either in the form of an owned
social attribute, or as the end of a social association, and
can specify its social role kind4.

For an example of modeling social relationships see
Fig. 3.

4.3 Roles and Role Properties
Roles are used to define a normative behavioral repertoire
of entities, and thus provide the basic building blocks of
MAS societies. For modeling roles, AML provides entity
role type, a specialized behaviored, socialized and mental

4AML predefines peer, subordinate and superordinate social role
kinds, but this set can be extended as required.

semi-entity type. Entity role types are used to model ab-
stractions of coherent set of features, capabilities, behav-
iors, observations, relationships, participation in interac-
tions, and services offered or required by entities partici-
pating in a particular context. Each entity role type should
be realized by a specific implementation possessed by an
entity that can play that entity role type. An instance of an
entity role type is called entity role and exists only while
some behavioral entity plays it.

For modeling the ability of an entity to play an entity
role type, AML provides role properties. Role property is a
specialized UML property, used to specify that an instance
of its owner (i.e. a behavioral entity) can play one or several
roles of a particular entity role type. The role property can
be used either in the form of a role attribute or as the end of
a play association.

One entity can at each time play several entity roles.
These entity roles can be of the same as well as of dif-
ferent types. The multiplicity defined for a role property
constraints the number of entity roles of given type the par-
ticular entity can play concurrently. Additional constraints
which govern playing of entity roles can be specified by
UML constraints.

To allow explicit manipulation of entity roles in UML
activities and state machines, AML defines a set of actions
for entity role creation and disposal, particularly create role
action and dispose role action.

Fig. 3 (a) contains the diagram depicting an agent of
type Person which can play entity roles of type Player,
Captain, Coach, and Referee. The possibility of
playing entity roles of a particular type is modeled by
play associations. Fig. 3 (b) depicts an organization unit
SoccerMatch, which comprises three referees (of
the Referee entity role type) and two teams (of the
SoccerTeam organization unit type). The SoccerTeam
itself consists of one to three coaches, and eleven to
fifteen players of which one is the captain. The
players are peers to each other (the cooperate con-
nector), and subordinates to the coaches (the manage
connector), and the captain (the lead connector). The
referees are superordinate to the both SoccerTeams
(the control connector).

Fig. 4 shows the instantiation of the previously defined
types in a model of a system’s snapshot, where the agent
Lampard, of type Person, plays the entity role player, and
the agent Terry, also of type Person, plays the entity role
captain and leads Lampard. The agent Mourinho, play-
ing the entity role coach manages both players Lampard
and Terry.

5 Modeling Interactions

To support modeling of interactions in MAS, AML pro-
vides a number of UML extensions, which can be logi-
cally subdivided into: (1) generic extensions to UML in-
teractions, (2) speech act based extensions to UML inter-

AGENT MODELING LANGUAGE. . . Informatica 29 (2005) 391–400 395

team:SoccerTeam[2]

referee:Referee[3]

Captain Coach Referee

active:Boolean

Player

0..1captainplayer coach referee0..1 0..10..1

manage manage

control

(a)

(b)

name:String

Person
{xor}

SoccerMatch

cooperatelead

coach:Coach[1..3]

player:Player[10..15]captain:Captain

Figure 3: Example of social structure modeling

coach

manage manage

lead
playercaptain

:Coach

:Captain :Player

Mourinho:Person

Lampard:PersonTerry:Person

Figure 4: Example of the entity role instantiation and play-
ing

actions, (3) observations and effecting interactions, and (4)
services.

5.1 Generic Extensions to UML Interactions
Generic extensions to UML interactions provide means to
model: (1) interactions between groups of entities (multi-
message and multi-lifeline), (2) dynamic change of object’s
attributes to express changes in internal structure of orga-
nization units, social relationships, or played entity roles,
etc., induced by interactions (attribute change), (3) model-
ing of messages and signals not explicitly associated with
the invocation of corresponding methods and receptions
(decoupled message), (4) mechanisms for modification of
interaction roles of entities (not necessary entity roles) in-
duced by interactions (subset and join dependencies), and
(5) modeling the actions of dispatch and reception of de-
coupled messages in activities (send and decoupled mes-
sage actions, and associated triggers).

Multi-message is a specialized UML message which is
used to model a particular communication between (unlike
UML message) multiple participants, i.e. multiple senders
and/or multiple receivers.

Multi-lifeline is a specialized UML lifeline, used to rep-
resent (unlike UML lifeline) multiple participants in inter-
actions.

Decoupled message is a specialized multi-message used
to model the asynchronous dispatch and reception of a mes-
sage payload without (unlike UML message) explicit spec-

ification of the behavior invoked on the side of the receiver.
The decision of which behavior should be invoked when
the decoupled message is received is up to the receiver what
allows to preserve its autonomy in processing messages.

Attribute change is a specialized UML interaction frag-
ment used to model the change of attribute values (state)
of interacting entities induced by the interaction. Attribute
change thus enables to express addition, removal, or mod-
ification of attribute values, and also to express the added
attribute values by sub-lifelines. The most likely utiliza-
tion of attribute change is in modeling of dynamic change
of entity roles played by behavioral entities represented by
lifelines in interactions, and the modeling of entity inter-
actions with respect to the played entity roles (i.e. each
sub-lifeline representing a played entity role can be used
to model interaction of its player with respect to this entity
role).

Subset is a specialized UML dependency between event
occurrences owned by two distinct (superset and subset)
lifelines used to specify that since the event occurrence on
the superset lifeline, some of the instances it represents
(specified by the corresponding selector) are also repre-
sented by another, the subset lifeline.

Similarly, join dependency is also a specialized UML de-
pendency between two event occurrences on lifelines (sub-
set and union ones), used to specify that a subset of in-
stances, which have been until the subset event occurrence
represented by the subset lifeline, is after the union event
occurrence represented by the ŞunionŤ lifeline. The union
lifeline, thus after the union event occurrence represents the
union of the instances it has been representing before, and
the instances specified by the join dependency.

Send decoupled message action is a specialized UML
send object action used to model the action of dispatch-
ing a decoupled message, and accept decoupled message
action is a specialized UML accept event action used to
model reception of a decoupled message action that meets
the conditions specified by the associated decoupled mes-
sage trigger.

A simplified interaction between entities taking part in
a player substitution is depicted in Fig. 5. Once the main
coach decides which players are to be substituted (p1 to
be substituted and p2 the substitute), he first notifies player
p2 to get ready and then asks the main referee for per-
mission to make the substitution. The main referee in
turn replies by an answer. If the answer is “yes”, the
substitution process waits until the game is interrupted. If
so, the coach instructs player p1 to exit and p2 to enter.
Player p1 then leaves the pitch and joins the group of in-
active players and p2 joins the pitch and thereby the group
of active players.

Fig. 6 shows an example of the communicative inter-
action in which the attribute change elements are used to
model changes of entity roles played by agents. The dia-
gram realizes the scenario of a captain change caused by
the original captain (player2) substitution.

At the beginning of the scenario the agent

396 Informatica 29 (2005) 391–400 I. Trencansky et al.

sd PlayerSubstitution

opt

par

coach[main]
:Coach

referee[main]
:Referee

requestSubstitution(p1, p2)

reply(answer)

exit()

<<join>> [is p1]

enter()

[is p1]

[is p2]

Select
p1 and p2

player[active]
:Player[7..11]

player[not active]
:Player[11..15]

<<join>> [is p2]

prepareForSubstitution() [is p2]

[answer == yes]

{game interrupted}

Figure 5: Example of a communicative interaction

player2 is captain (modeled by its role prop-
erty captain). During the substitution, the main
coach gives the player2 order to hand the cap-
tainship over (handCaptainshipOver() message)
and the player1 the order to become the captain
(becomeCaptain() message). After receiving these
messages, the player2 stops playing the entity role
captain (and starts playing the entity role of ordinary
player) and the player1 changes from ordinary
player to captain.

coach[main]
:Coach

becomeCaptain()

handCaptainshipOver()

player1:Person player2:Person

captainplayer

playercaptain

{has been substituted}

Figure 6: Example of a social interaction with entity role
changes

5.2 Speech Act Specific Extensions to UML
Interactions

Speech act specific extensions to UML interactions com-
prise modeling of speech-acts (communication message),
speech act based interactions (communicative interac-
tions), patterns of interactions (interaction protocols), and
modeling the actions of dispatch and reception of speech-
act based messages in activities (send and accept commu-
nicative message actions, and associated triggers).

Communication message is a specialized decoupled
message used to model communicative acts of speech act
based communication within communicative interactions
(a specialized UML interaction) with the possibility of ex-
plicit specification of the message performative and pay-
load. Both the communication message and communica-
tive interaction can also specify used agent communication
and content languages, ontology and payload encoding.

Interaction protocol is a parametrized communicative
interaction template used to model reusable templates of
communicative interactions.

5.3 Observations and Effecting Interactions

AML provides several mechanisms for modeling observa-
tions and effecting interactions in order to (1) allow model-
ing of the ability of an entity to observe and/or to bring
about an effect on others (perceptors and effectors), (2)
specify what observation and effecting interactions the en-
tity is capable of (perceptor and effector types and perceiv-
ing and effecting acts), (3) specify what entities can ob-
serve and/or effect others (perceives and effects dependen-
cies), and (4) explicitly model the actions of observations
and effecting interactions in activities (percept and effect
actions).

Observations are in AML modeled as the ability of an
entity to perceive the state of (or to receive a signal from)
an observed object by means of perceptors, which are spe-
cialized UML ports. Perceptor types are used to specify
(by means of owned perceiving acts) the observations an
owner of a perceptor of that type can make.

Perceiving acts are specialized UML operations which
can be owned by perceptor types and thus used to specify
what perceptions their owners, or perceptors of given type,
can perform.

The specification of which entities can observe others, is
modeled by a perceives dependency. For modeling behav-
ioral aspects of observations, AML provides a specialized
percept action.

Different aspects of effecting interactions are modeled
analogously, by means of effectors, effector types, effecting
acts, effects dependencies, and effect actions.

An example is depicted in Fig. 8 (a) which shows an
entity role type Player with two eyes–perceptors called
eye of type Eye, and two legs–effectors called leg of
type Leg. Eyes are used to see other players, the pitch and
the ball, and to provide localization information to the in-
ternal parts of a player. Legs are used to change the player’s
position within the pitch (modeled by changing of internal
state implying that no effects dependency need be placed
in the diagram), and to manipulate the ball.

5.4 Services

The AML support for modeling services comprises (1) the
means for the specification of the functionality of a service
and the way a service can be accessed (service specification
and service protocol), (2) the means for the specification of
what entities provide/use services (service provision, ser-
vice usage, and serviced property), and (if applicable) by
what means (serviced port).

A service is a coherent block of functionality provided
by a behaviored semi-entity, called service provider, that
can be accessed by other behaviored semi-entities (which

AGENT MODELING LANGUAGE. . . Informatica 29 (2005) 391–400 397

can be either external or internal parts of the service
provider), called service clients.

Service specification is used to specify a service by
means of owned service protocols, i.e. specialized inter-
action protocols extended with the ability to specify two
mandatory, disjoint and nonempty sets of (not bound) pa-
rameters, particularly: provider and client template param-
eters.

The provider template parameters of all contained ser-
vice protocols specify the set of the template parame-
ters that must be bound by the service providers, and the
client template parameters of all contained service proto-
cols specify the set of template parameters that must be
bound by the service clients. Binding of these complemen-
tary template parameters specifies the features of the par-
ticular service provision/usage which are dependent on its
providers and clients.

Service provision/usage are specialized dependencies
used to model provision/use of a service by particular enti-
ties, together with the binding of template parameters that
are declared to be bound by service providers/clients.

Fig. 7 shows a specification of the Motion service
defined as a collection of three service protocols. The
CanMove service protocol is based on the standard FIPA
protocol FIPA-Query-Protocol5 [21] and binds the
proposition parameter (the content of a query-if
message) to the capability canMove(what, to) of
a service provider. The participant parameter of
the FIPA-Query-Protocol is mapped to a service
provider and the initiator parameter to a service
client. The CanMove service protocol is used by the ser-
vice client to ask if an object referred by the what parame-
ter can be moved to the position referred by the to param-
eter. The remaining service protocols Move and Turn are
based on the FIPA-Request-Protocol [21] and are
used to change the position or direction of a spatial object.

Binding of the Motion service specification to the
provider 3DSpace and the client 3DObject is depicted
in Fig. 2.

Motion

sd CanMove:FIPA-Query-Protocol <proposition->canMove(what, to)>

participant

initiator

sd Move:FIPA-Request-Protocol <action_spec->move(what, to)>

participant

initiator

sd Turn:FIPA-Request-Protocol <action_spec->turn(what, angle)>

participant

initiator

Figure 7: Example of service specification

5The AML specification of the interaction protocol can be found in [3].

6 Modeling Capabilities and
Behavior

AML extends the capacity of UML to abstract and decom-
pose behavior by another two modeling elements: capabil-
ity and behavior fragment.

Capability is an abstract specification of a behavior
which allows reasoning about and operations on that spec-
ification. Technically, a capability represents a unification
of the common specification properties of UML’s behav-
ioral features and behaviors expressed in terms of their in-
puts, outputs, pre- and post-conditions.

Behavior fragment is a specialized behaviored semi-
entity type used to model a coherent re-usable fragment of
behavior and related structural and behavioral features. It
enables the (possibly recursive) decomposition of a com-
plex behavior into simpler and (possibly) concurrently ex-
ecutable fragments, as well as the dynamic modification of
an entities behavior in run-time. The decomposition of a
behavior of an entity is modeled by owned aggregate at-
tributes of the corresponding behavior fragment type.

Fig. 8 (a) shows the decomposition of the Player
entity role type’s behavior into a structure of behavior
fragments. In part (b) two fragments, Mobility and
BallHandling, are described in terms of their owned
capabilities (turn, walk, catch, etc.).

Player(a)

(b)

Ball

lo:Localization

mo:Mobilitypr:PlayerReasoning

bh:BallHandling

eye:Eye[2]

leg:Leg[2]

<<effects>>

<<perceives>>

<<perceives>>

<<perceives>>

Pitch

BallHandling

catch(ball)
receive(ball, from)
lead(ball)
pass(ball, to)
shoot(ball,position)

Mobility

turn(angle)
walk(to)
run(to)
stop()

Figure 8: Example of behavior fragments, observations and
effecting interactions

7 Modeling MAS Deployment and
Mobility

The means provided by AML to support modeling of MAS
deployment and agent mobility comprise: (1) the support
for modeling the physical infrastructure onto which MAS
entities are deployed (agent execution environment), (2)
what entities can occur on which nodes of the physical in-
frastructure and what is the relationship of deployed enti-
ties to those nodes (hosting property), (3) how entities can
get to a particular node of the physical infrastructure (move
and clone dependencies), and (4) what can cause the en-

398 Informatica 29 (2005) 391–400 I. Trencansky et al.

tity’s movement or cloning throughout the physical infras-
tructure (move and clone actions).

Agent execution environment type is a specialized UML
execution environment used to model types of execution
environments within which MAS entities can run. While it
is a behaviored semi-entity type, it can explicitly, for exam-
ple, also specify a set of services that the deployed entities
can use or should provide at run time.

Agent execution environment can also own hosting prop-
erties, which are used to classify the entities which can be
hosted by the owning agent execution environment. The
hosting property’s hosting kind specifies the relation of the
referred entity type to its owning agent execution environ-
ment (i.e. either resident of visitor).

Hosting association is a specialized UML association
used to specify hosting property in the form of an asso-
ciation end.

Move is a specialized UML dependency between two
hosting properties used to specify that the entities repre-
sented by the source hosting property can be moved to the
instances of the agent execution environments owning the
destination hosting property. Likewise the clone depen-
dency is used.

Move and clone actions are specialized UML add struc-
tural feature actions used to model actions that cause move-
ment or cloning of an entity from one agent execution envi-
ronment to another one. Both the actions thus specify: (1)
which entity is being moved or cloned, (2) the destination
agent execution environment instance where the entity is
being moved or cloned, and (3) the hosting property where
the moved or cloned entity is being placed.

8 Modeling Mental Aspects

Mental semi-entities can be characterized in terms of their
mental attitudes, i.e. motivations, needs, wishes, inten-
tions, goals, beliefs, commitments, etc. To allow modeling
all the above, AML provides: goals, beliefs, plans, con-
tribution relationships, mental properties and associations,
mental constraints, and commit/cancel goal actions.

Goal is a specialized UML class used to model goals, i.e.
conditions or states of affairs with which the main concern
is their achievement or maintenance. Goals can thus be
used to represent objectives, needs, motivations, desires,
etc.

Belief is a specialized UML class used to model a state
of affairs, proposition or other information relevant to the
system and its mental model.

The attitude of a mental semi-entity to a belief or com-
mitment to a goal is modeled by the belief or the goal
instance being held in a slot of the corresponding mental
property (owned by the mental semi-entity, or a mental as-
sociation relating the belief or the goal to the mental semi-
entity).

Plan is a specialized UML activity used to model: prede-
fined plans, or fragments of behavior from which the plans

can be composed.
Mental constraint is a specialized UML constraint used

to specify properties of owning beliefs, goals and plans
which can be used within reasoning processes of mental
semi-entities. Supported kinds of mental constraints are
pre- and post-conditions, commit conditions, cancel condi-
tions and invariants.

Contribution is a specialized UML relationship used to
model logical relationships between goals, beliefs, plans
and their mental constraints. The manner in which the
specified mental constraint (e.g. post-condition) of the con-
tributor influences the specified mental constraint kind of
the beneficiary (e.g. pre-condition) as well as the degree of
the contribution can also be specified.

Actions to model commitments to and de-commitments
from goals within activities are also provided.

<<mental>>

ScoringChance

SoccerTeam Player

{match.isOver and
team.scoredGoals > team.concededGoals}

WinMatch ScoreGoal

<<mental>>

1 0..1
+0.5

<<mental>>

0..1
++

++

Figure 9: Example of a mental model

Fig. 9 shows an example of a snapshot of the mental
model of a soccer team (represented by the SoccerTeam
organization unit type) and its players (Player entity
role type). The soccer team has the goal to win a
match (modeled by the WinMatch goal). The goal
WinMatch is accomplished, when the soccer match is
over and the team has scored more goals than conceded.
This is expressed by the sufficient contribution of the be-
lief {match.isOver and team.scoredGoals >
team.concededGoals} to the postcondition of the
goal WinMatch. The soccer team players may have
goals to score a goal (ScoreGoal) which it is feasi-
ble to commit to, when they are in a scoring chance.
This is expressed by the necessary contribution of the be-
lief ScoringChance to the precondition of the goal
ScoreGoal.

9 Conclusion
The limitation in paper length has not allowed to present
all the modeling elements and mechanisms AML provides
(e.g. support for ontologies, contexts, etc.). Nevertheless,
we believe that from what has been presented in this pa-
per, it is evident that AML provides a rich set of mod-
eling constructs for modeling applications that embody
and/or exhibit characteristics of multi-agent systems. It
integrates best modeling practices and concepts from ex-
isting agent oriented modeling and specification languages

AGENT MODELING LANGUAGE. . . Informatica 29 (2005) 391–400 399

into a unique framework built on foundations of UML 2.0
and OCL 2.0. The structure of the language definition to-
gether with the MDA/MOF/UML “metamodeling technol-
ogy” (UML profiles, first-class metamodel extension, etc.,
gives AML the advantage of natural extensibility and cus-
tomization. AML is also supported by CASE tools.

We feel confident that AML is sufficiently detailed, com-
prehensive and tangible to be a useful tool for software ar-
chitects building systems based on, or exhibiting character-
istics of, multi-agent technologies. In this respect we antic-
ipate that AML may form a significant contribution to the
effort of bringing about widespread adoption of intelligent
agents across varied commercial marketplaces.

Acknowledgement
The authors are indebted to Stefan Brantschen, Monique
Calisti, and Dominic Greenwood, for their support and
fruitful comments which have inspired many ideas and thus
substantially influenced the current version of AML.

References
[1] B. Bauer, J.P. Muller, and J. Odell. Agent UML:

A Formalism for Specifying Multiagent Interac-
tion. In P. Ciancarini and M. Wooldridge, editors,
Agent-Oriented Software Engineering, pages 91–103.
Springer-Verlag, Berlin, 2001.

[2] P. Bresciani, P. Giorgini, F. Giunchiglia, J. My-
lopoulos, and A. Perini. TROPOS: An Agent-
Oriented Software Development Methodology. Au-
tonomous Agents and Multi-Agent Systems, 2(3):203–
236, 2004.

[3] R. Cervenka and I. Trencansky. Agent Modeling Lan-
guage: Language Specification. Version 0.9. Techni-
cal report, Whitestein Technologies, 2004.

[4] R. Cervenka, I. Trencansky, and Calisti. Modeling
Social Aspects of Multiagent Systems: The AML
Approach. In J.P. Muller and F. Zambonelli, edi-
tors, The Fourth International Joint Conference on
Autonomous Agents & Multi Agent Systems (AAMAS
05). Workshop 7: Agent-Oriented Software Engineer-
ing (AOSE), pages 85–96, Universiteit Utrecht, The
Netherlands, 2005.

[5] R. Cervenka, I. Trencansky, M. Calisti, and D. Green-
wood. AML: Agent Modeling Language. Toward
Industry-Grade Agent-Based Modeling. In J. Odell,
P. Giorgini, and J.P. Muller, editors, Agent-Oriented
Software Engineering V: 5th International Workshop,
AOSE 2004, pages 31–46. Springer-Verlag, Berlin,
2005.

[6] M. Cossentino, L. Sabatucci, and A. Chella. A Possi-
ble Approach to the Development of Robotic Multi-

Agent Systems. In IEEE/WIC Conference on Intelli-
gent Agent Technology (IAT’03), pages 539–544, Hal-
ifax, Canada, 2003.

[7] S. Cranefield, S. Haustein, and M. Purvis. UML-
Based Ontology Modelling for Software Agents.
In IProceedings of the Workshop on Ontologies in
Agent Systems, 5th International Conference on Au-
tonomous Agents, 2001.

[8] S.A. DeLoach. Multiagent Systems Engineering:
A Methodology and Language for Designing Agent
Systems. In Agent-Oriented Information Systems ’99
(AOIS’99), Seattle, WA, 1999.

[9] M. d’Inverno and M. Luck. Understanding Agent Sys-
tems. Springer-Verlag, Berlin, 2001.

[10] R. Evans, P. Kearny, J. Stark, G. Caire, F. Garijo, J.J.
Gomez-Sanz, F. Leal, P. Chainho, and P. Massonet.
MESSAGE: Methodology for Engineering Systems
of Software Agents. Technical Report P907, EU-
RESCOM, 2001.

[11] J. Odell, H.V.D. Parunak, and B. Bauer. Extend-
ing UML for Agents. In G. Wagner, Y. Lesper-
ance, and E. Yu, editors, Proceedings of the Agent-
Oriented Information Systems Workshop at the 17th
National conference on Artificial Intelligence, pages
3–17, Austin, Texas, 2000.

[12] J. Odell, H.V.D. Parunak, M. Fleischer, and
S. Brueckner. Modeling Agents and their Environ-
ment. In F. Giunchiglia, J. Odell, and G. Weiss, edi-
tors, Agent-Oriented Software Engineering III: Third
International Workshop, AOSE 2002, pages 16–31.
Springer-Verlag, Berlin, 2002.

[13] OMG. Meta Object Facility (MOF) Specification.
Version 1.4, formal/2002-04-03, april 2002.

[14] OMG. UML 2.0 OCL Specification. ptc/03-10-14,
October 2003.

[15] OMG. Unified Modeling Language: Superstructure
version 2.0. ptc/03-08-02, 2003.

[16] L. Padgham and M. Winikoff. Prometheus: A
Methodology for Developing Intelligent Agents. In
F. Giunchiglia, J. Odell, and G. Weiss, editors,
Agent-Oriented Software Engineering III: Third In-
ternational Workshop, AOSE 2002, pages 174–185.
Springer-Verlag, Berlin, 2002.

[17] A.S. Rao and M.P. Georgeff. Modeling Rational
Agents within a BDI-Architecture. In J.F. Allen,
R. Fikes, and E. Sandewall, editors, Knowledge Rep-
resentation and Reasonning (KR&R-91): Principles
of Knowledge Representation and Reasoning, pages
473–484. Morgan Kaufmann Publishers, San Mateo,
California, 1991.

400 Informatica 29 (2005) 391–400 I. Trencansky et al.

[18] V. Silva, A. Garcia, A. Brandao, C. Chavez, C. Lu-
cena, and P. Alencar. Taming Agents and Objects
in Software Engineering. In A. Garcia, C. Lucena,
J. Castro, A. Omicini, and F. Zambonelli, editors,
Software Engineering for Large-Scale Multi-Agent
Systems: Research Issues and Practical Applications,
volume LNCS 2603, pages 1–25. Springer-Verlag,
Berlin, 2003.

[19] M.K. Smith, D. McGuinness, R. Volz, and
C. Welty. Web Ontology Language (OWL),
Guide Version 1.0, W3C Working Draft. URL:
http://www.w3.org/TR/2002/WD-owl-guide-
20021104, 2002.

[20] A. Sturm, D. Dori, and O. Shehory. Single-Model
Method for Specifying Multi-Agent Systems. In Pro-
ceedings of the second international joint conference
on Autonomous agents and multiagent systems, pages
121–128. ACM Press, New York, NY, 2003.

[21] The Foundation for Intelligent Physical
Agents. FIPA Specifications Repository. URL:
http://www.fipa.org/repository/index.html, 2004.

[22] W.M. Turski and T.S.E. Maibaum. The Specification
of Computer Programs. Addison-Wesley, London,
1987.

[23] G. Wagner. The Agent-Object-Relationship Meta-
model: Towards a Unified View of State and Behav-
ior. Information Systems, 28(5):475–504, 2003.

[24] G. Weiss. Multiagent Systems–A Modern Approach to
Distributed Artificial Intelligence. MIT Press, Cam-
bridge, MA, 3rd edition, 2001.

[25] F. Zambonelli, N.R. Jennings, and M. Wooldridge.
Developing multiagent systems: the Gaia Methodol-
ogy. ACM Transactions on Software Engineering and
Methodology, 12(3):317–370, 2003.

Informatica 29 (2005) 401–408 401

The Tropos Metamodel and its Use

Angelo Susi, Anna Perini and John Mylopoulos
ITC-irst, Via Sommarive, 18, I-38050 Trento-Povo, Italy
E-mail: susi@itc.it, perini@itc.it, jm@cs.toronto.edu

Paolo Giorgini
Department of Information and Communication Technology
University of Trento, via Sommarive 14, I-38050 Trento-Povo, Italy
E-mail: paolo.giorgini@dit.unitn.it

Keywords: Agent Oriented Software Engineering Methodology, Metamodel

Received: May 9, 2005

Tropos is a software development methodology founded on the key concepts of agent-oriented software
development. Specifically, Tropos emphasizes concepts for modelling and analysis during the early re-
quirements phase. This phase precedes the prescriptive requirements specification of the system-to-be. In
this paper, we present the Tropos metamodel starting from the basic concepts of actor, goal, plan, resource
and social dependency and then we illustrate its use by introducing an extension intended to introduce
concepts for modelling security concerns. We also sketch the Tropos modelling environment and compare
with the metamodels of other software development methodologies.

Povzetek: Podana je programska metodologija Tropos, temelječa na agentnih pristopih.

1 Introduction

Software development paradigms have exploited a wealth
of models to capture requirements and design information
about a software system (the “system-to-be”) throughout
its development process. Structured software development
used SADT and Data Flow Diagrams. Object-oriented
software development has used a range of modelling lan-
guages which have been integrated into UML. Not surpris-
ingly, agent-oriented software development is following on
the same footsteps.

To formally analyze software models, we need a means
to define their syntax and semantics. Metamodels have
been used for the former task. Metamodels define a set of
possible instantiations, which are all and only the syntacti-
cally correct models in some modelling language. As such,
metamodels have been used for more than two decades as
a basis for defining the syntax of (usually graph-theoretic)
modelling languages, such as UML as well as Tropos.

The objective of this paper is to introduce the Tropos
metamodel, discuss some of its uses, and compare it to
other metamodels of agent/goal-oriented software develop-
ment methodologies. Section 4 of the paper sketches the
Tropos methodology, while Section 3 presents the meta-
model and explains its features. Section 4 presents one
extension of the metamodel to include security-related con-
cepts. In Section 5 we sketch the Tropos development envi-
ronment, which uses the metamodel in its basic core. Sec-
tion 6 relates the proposed metamodel to others in the same
family of modelling languages, while Section 7 concludes

the paper.

2 Models and Methodology

Tropos is founded on the idea of using the agent paradigm
and related mentalistic notions during all phases of the de-
velopment software process. The methodology [6] adopts
the i* [26] modelling framework, which proposes the con-
cepts of (social) actor, goal, task, resource and social de-
pendency to model both the system-to-be and its organiza-
tional operating environment. The i* framework includes
the strategic dependency model (actor diagrams in Tropos)
for describing the network of inter-dependencies among ac-
tors, as well as the strategic rationale model (goal diagrams
in Tropos) for describing and supporting the means-ends
analysis conducted by each actor as it attempts to ensure
that – through delegations to other actors – its goals will
eventually be fulfilled.

An actor diagram is a graph whose nodes represent ac-
tors (agents, positions, or roles), while edges represent
dependencies among them. A dependency represents an
agreement between two actors where one actor (the depen-
der) depends on another (the dependee) to fulfill a goal, per-
form a task or deliver a resource (the dependum). Depen-
dencies may also involve softgoals (such as “having a good
quality meeting”) which represent vaguely-defined goals,
with no clear-cut criteria for their fulfillment.

A goal diagram is also a graph where nodes represent

402 Informatica 29 (2005) 401–408 A. Susi et al.

goals or plans1, while edges represent goal/plan relation-
ships, such as AND/OR-decomposition (i.e., a goal/plan
can be decomposed into a set of other goals/plans.
Goals/plans can also be related to softgoals through quali-
tative relationships (labelled “+” or “-”) to indicate that the
goal/plan contributes positively or negatively to the fulfill-
ment of the softgoal. Goal diagrams appear inside a bal-
loon associated with a single actor. This is the actor whose
goals/plans are being analyzed to determine how they can
be fulfilled/executed.

The Tropos methodology supports four phases of soft-
ware development: Early Requirements Analysis, Late Re-
quirements Analysis, Architectural Design, and Detailed
Design. Early requirements is concerned with understand-
ing the organizational context within which the system-
to-be will eventually function. During early requirements
analysis, the requirements engineer identifies the domain
stakeholders (who have a stake in the system-to-be) and
models them as social actors, who have goals and depend
on each other for goals to be fulfilled, plans to be per-
formed, and resources to be furnished. Late requirements,
on the other hand, is concerned with a definition of the
functional and non- functional requirements of the system-
to-be. This is accomplished by treating the system as an-
other actor (or a small number of actors) who are depen-
ders/dependees in dependencies that relate them to exter-
nal actors. The shift from early to late requirements occurs
when the system actor is introduced and it participates in
delegations from/to other actors.

Architectural design is concerned with the global struc-
ture of the system-to-be. Unsurprisingly, subsystems and
system components are represented as actors too, and their
dependencies to other system components are social, rather
than procedural/structural. This means that system compo-
nents need to have the ability to monitor dependencies to
other actors to make sure they will be fulfilled. As well,
system components need to be able to cancel dependen-
cies that seem ineffective and replace them with new ones
through planning, negotiation, etc. As with conventional
software architectures, architectural styles constitute crit-
ical support for the software developer. Since the funda-
mental concepts of Tropos architectures are intentional and
social, we have turned to theories which study social struc-
tures to define architectural styles: namely Organization
Theory and Strategic Alliances.

Detailed design focuses on the specification of actor
communication and behavior. To support this phase,
we have adopted existing agent communication languages
such as FIPA-ACL [20] or KQML [11]; also message trans-
portation mechanisms and other related concepts and tools.
We have also proposed and defined a set of stereotypes,
tagged values, and constraints to accommodate Tropos con-
cepts within UML [5].

Through the models constructed during these phases,
one can answer “why” questions, in addition to “what” and
“how” ones, regarding system functionality. For example,

1Plans in Tropos correspond to tasks in i*.

one can ask “Why does this component of the system need
to notify library users when a book becomes available”.
Answers to why questions ultimately link system function-
ality to stakeholder needs, preferences and objectives. Such
answers serve as ultimate justifications for all elements of
a proposed design.

3 The Metamodel

review
papers

Reviewer

PC
Chair

review
form

PC
Member

review
the

papers

assigned
papersactor goal

resource

KEY

dependum
depender dependee

be fair
in reviews

assignment

papers

conflicts conflicts

softgoal

review
form

plan

Figure 2: The Tropos actor diagram describing a sketch of
the conference review process.

Figure 1 shows the portion of the Tropos metamodel,
where agent, role and position are specialization of the con-
cept of actor. A position can cover 1 . . . n roles, whereas
an agent can play 0 . . . n roles and can occupy 0 . . . n posi-
tions. An actor can have 0 . . . n goals, which can be both
hard and softgoals and are wanted by 1 actor.

An actor dependency is a quaternary relationship and
relates respectively a depender, dependee, and dependum
(i.e. goal, plan, resource). It is possible to specify also a
reason for the dependency (labeled as why).

A model is an instance of the metamodel and can have
a graphical representation in terms of actor and goal dia-
grams.

Figure 2 depicts an example of an actor diagram for
the domain of the Conference Review Process and repre-
sents a model that can be obtained instantiating the meta-
model discussed so far. Three actors are involved: the Pro-
gram Committee Chair (PC Chair), the Program Com-
mittee Member (PC Member) and the Reviewer. De-
pendencies take place between them; in particular the
goal review papers is delegated by the PC Chair
to the PC Member, moreover the PC Chair also ex-
pects to have the information of the possible conflicts
(a resource dependency) between the PC Member and
the authors of the papers. On the other hand, the
PC Member depends on the PC Chair to obtain the
papers to distribute and the review form. Many crit-
ical goal and resource dependencies occur between the
PC Member and the Reviewer. In particular, the PC

THE TROPOS METAMODEL AND ITS USE Informatica 29 (2005) 401–408 403

 Actor Dependency

Goal

Plan

Resource

SoftGoalHardGoal

depender

dependee

1

0..n

0..n

wants 0..n

wantedBy
1

dependum

dependum

dependum

1

1

1

0..1 0..1 0..1
1

executedBy

execute 0..n

why

why

why

0..1

0..1

0..1

0..n
1

{XOR}

0..n

0..n

{XOR}

RoleAgentPosition

playoccupy
1..n

cover

0..n
0..n

0..n
0..n

Figure 1: The UML class diagram specifying the actor concept and the dependency relationship in the Tropos metamodel.
UML notation is compliant with the OMG MOF 1.4.

Member depends on the Reviewer for review the
papers and to obtain the information about the possible
conflicts on assigned papers. The Reviewer
depends on the PC Member in order to obtain a set
of assigned papers as well as the review form.
Finally, the PC Member wants to be fair in the
review assignment, and this is represented as a soft-
goal wanted by the PC Member.

review
papers

collect
the

reviews

PC
Member

assign
papers to
reviewers

AND decomposition

contribution (positive)

+KEY

++

be fair
in reviews

assignment

Reviewer

conflictsreview
the

papers

select
reviewers

send
the papers

verify
conflicts

verify
competences

send
papers by

e-mail

Means-end analysis

Figure 4: The Tropos goal diagram related to the actor PC
Member.

The concepts related to the Tropos goal diagram are de-
picted in Figure 3. The central concept of goal is repre-
sented by the class Goal. Goals can be analyzed, from the
point of view of an actor, by Means-end analysis, Con-
tribution analysis and Boolean decomposition. Means-
end Analysis is a ternary relationship defined among an
Actor, whose point of view is represented in the analy-

sis, a goal (the end), and a Plan, Resource or Goal (the
means). Contribution Analysis is a ternary relationship be-
tween an actor, whose point of view is represented, and
two goals. Contribution analysis strives to identify goals
that can contribute positively or negatively towards the ful-
fillment of other goals (see association relationship labeled
contribute in Figure 3). A contribution can be annotated
with a qualitative metric, as proposed in [8], denoted by
+,++,−,−−. In particular, if the goal g1 contributes pos-
itively to the goal g2, with metric ++ then if g1 is satisfied,
so is g2. Analogously, if the plan p contributes positively
to the goal g, with metric ++, this says that p fulfills g. A
+ label for a goal or plan contribution represents a partial,
positive contribution to the goal being analyzed. With la-
bels −−, and − we have the dual situation representing a
sufficient or partial negative contribution towards the ful-
fillment of a goal. Decomposition, whose metamodel is
described in Figure 3, is also a ternary relationship which
defines a generic boolean decomposition of a root goal
into subgoals, that can be in particular an AND- or an OR-
decomposition specified via the attribute Type in the class
Boolean Decomposition specialization of the class Decom-
position.

The concept of plan in Tropos is specified in Figure 2
and 3. Means-end analysis and AND/OR decomposition,
defined above for goals, can be applied to plans also. In
particular, AND/OR decomposition allows for modelling
the plan structure.

Figure 4 gives a sketchy view of goal diagram
for the actor PC Member and for the goal review
papers and for the softgoal be fair in the
review assignment.

The goal review papers has been AND-
decomposed in two sub goals: assign papers
to reviewers and collect the reviews. This
latter represents the “Why” for the dependency review

404 Informatica 29 (2005) 401–408 A. Susi et al.

Actor Decomposition

Goal

Plan

Resource

Boolean Decomposition
+Type: String

Contribution
+Metric: String

Means-End Analysis

0..n

1

1

1

pointOfView

pointOfView

pointOfView
1

1

1

contributeTo

contributeTo

contributeTo

contributedBy
1

0..n

0..n

0..n

0..n 0..n

1

0..n

end

means
0..n 1 1

end1

0..n means 0..n

1

1

root

root

0..n 0..n0..n 0..n
{XOR}

{XOR}

Figure 3: The UML class diagram specifying the concepts related to the goal diagram in the Tropos metamodel.

the papers between PC Member and Reviewer,
as shown in Figure 1. The goal assign papers
to reviewers is decomposed in two subgoals:
send the papers, that is operationalized as send
papers by e-mail, and select reviewers
decomposed in verify the competences and
verify conflicts. This latter represents the “Why”
for the resource dependency conflicts between the PC
Member and the reviewer. Moreover, the fulfillment
of these two sub-goals can contribute positively to the
fulfillment of the softgoal be fair in the review
assignment as described by the positive contribution
relationships in the diagram.

4 Metamodel Extension
Secure Tropos has been proposed in [16] as a formal frame-
work for modelling and analyzing security. It enhances
Tropos introducing four new concepts and relationships
behind Tropos dependency: trust, delegation, provision-
ing, and ownership. The basic idea of ownership is that
the owner of a resource (goal or plan) has full authority
concerning access and disposition of his resource (goal or
plan). The distinction between owning a resource makes
it clear how to model situations in which, for example, a
client is the legitimate owner of his/her personal data and a
Web Service provider that stores customers’ personal data,
provides the access to her/his data. We use the relation for
delegation when in the domain of analysis there is a formal
passage of authority (e.g. a signed piece of paper, a dig-
ital credential is sent, etc.). The trust relations have their
intuitive meaning among agents, namely the believe of an
agent that the actor does not misuse some resources.

Figure 5 shows the the new part of the Tropos metamodel
concerning trust and ownership. An actor (the truster)
trusts another actor (the trustee) about the achievement

of a goal, the fulfillment of a plan or the delivering of a
resource. The content of the trust relationship is called
trustum. An actor can be the owner of a resource, a plan
and goal and he/she has authority concerning the use of the
resource, the execution of the plan and achievement of the
goal, respectively.

Actor Trust

Goal Plan Resource

truster

trustee

1

0..n

0..n

trustum

0..1 0..1 0..1

1

{XOR}

trustum1 1 1 trustum

0..n 0..n 0..n

1 ownedBy

owns owns owns

Figure 5: The Tropos metamodel related to the concept of
Trust.

The metamodel describing delegation relationships is
basically identical to the metamodel for the dependency re-
lationship as presented in Figure 1. The delegater delegates
the delegatee for the achievement of a goal, the execution
of a plan or the delivering of a resource. As for the depen-
dency relationship, it is also possible here to specify the
reason (why) of a delegation.

We have shown in [17] how the original concept of Tro-
pos dependency can be expressed in terms of trust and del-
egation. Roughly, when an actor depends on another actor
to achieve a goal (to fulfill a task or to deliver a resource),
it is implicitly intended that the actor trusts the other actor
and delegates it for such activities. A precise formalization
of dependency refinement in terms of trust and delegation
has been presented in [17].

Figure 6 presents an example of application the ex-

THE TROPOS METAMODEL AND ITS USE Informatica 29 (2005) 401–408 405

tended metamodel. The Author trusts the PC Chair to
implement a fair review process and he/she
is the owner of the paper sent to the PC Member and
reviewed by the Reviewer. The PC Chair trusts and
delegates PC Member to review a certain number of pa-
pers, and in turn the PC Member trusts and delegates
the Reviewer to review the papers. The PC member
(Reviewer) depends on the PC Chair (PC Member)
to receive the paper to review.

review
papers

Reviewer

PC
Chair

PC
Member

review
the

papers

assigned
papers

papers

Author

implement
a fair review

process

T

T

(T,Del) (T,Del)

O
O

(T,Del)

(T,Del)

Figure 6: The Tropos actor diagram with the trust concepts.

5 A Modelling Environment
In order to support the specific analysis techniques adopted
in Tropos, different tools have been developed, such as
a tool for the verification of requirements specification
through model-checking technique (T-Tool) [13], a tool
which supports forward and backward reasoning on the
goal analysis structures (GR-Tool) [15]. In this section,
we will give details of a modelling environment, called
TAOM4e (Tool for Agent-Oriented Modelling for Eclipse),
which is based on an implementation of the metamodel
described in the previous sections. The metamodel has
been specified following the OMG’s MDA [21] standard
for metamodel interoperability, that is the Meta Object Fa-
cility (MOF)2 which offers a mechanism for automatically
deriving a concrete syntax based on XML DTDs and/or
schemas known as XML Model Interchange (XMI). This
is a preliminary step towards the adoption of the model-to-
model transformation approach proposed by MDA.

Among the main requirements we considered in devel-
oping this tool are the following [23]:

– Visual Modelling. The modelling environment should
support the user during the specification of an AO
model (e.g., according to the Tropos visual notation).
Moreover, the environment should allow us to repre-
sent new entities that will be included in the Tropos
metamodel, language variants, such as those presented
in Section 4, as well as to restrict its use to a subset of
entities of the modelling language.

2http://www.omg.org/technology/documents/
modeling_spec_catalog.htm#MOF

– Specification of model entities properties. The mod-
elling environment should allow us to easily annotate
the visual model with model properties like invari-
ants, creation or fulfillment conditions that are typi-
cally used in Formal Tropos specification.

– Automatic Model Translation. The modelling envi-
ronment should allow us to save a model in a standard
format (e.g., XML and XMI), and provide automatic
transformation into a different specification language.
The model-to-model transformation approach should
be also compliant with Query/View/Transformation
(QVT) requirements [14], as discussed in [24].

– Extensibility. The modelling environment should be
extensible and allow for different configurations by
easily integrating other tools at will.

ECLIPSE

EMF GEF

TAOM4e

TAOM4e model

TAOM4e platform

Figure 7: The architecture of TAOM4e.

An effective solution to the requirement of a flexible ar-
chitecture and to the component integration issue is offered
by the Eclipse Platform.

New tools are integrated into the platform through plug-
ins that provide the environment with new functionalities.
A plug-in is the smallest unit of function in Eclipse and the
Eclipse Platform itself is organized as a set of subsystems,
implemented in one or more plug-ins, built on the top of
a small runtime engine. The TAOM4e architecture is de-
picted in Figure 7. It follows the Model View Controller
pattern and has been devised as an extension of two exist-
ing plug-ins. First, the EMF plug-in3 offers a modelling
framework and code generation facilities for building tools
and other applications based on a structured data model.
Given an XMI model specification, EMF provides func-
tions and runtime support to produce a set of Java classes
for the model. Most importantly, EMF provides the foun-
dation for interoperability with other EMF-based tools and
applications. The resulting plug-in, called TAOM4e model
implements the Tropos metamodel. It represents the Model
component of the MVC architecture. Second, the Graph-
ical Editing Framework (GEF) plug-in4 allows developers
to create a rich graphical editor around an existing meta-
model. The functionality of the GEF plug-in helps to cover
the essential requirement of the tool, that is supporting a
visual development of Tropos models by providing some
standard functions like drag & drop, undo-redo, copy &
paste and others. The resulting plug-in, called TAOM4e

3http://www.eclipse.org/emf/
4http://www.eclipse.org/gef/

406 Informatica 29 (2005) 401–408 A. Susi et al.

platform represents both the Controller and the Viewer
components of the tool. In Figure 8 a snapshot of the mod-

Figure 8: The Graphic User Interface of TAOM4e.

eler: the diagram editor window on the right, the project
and model browsers on the left, the entity properties win-
dow at the bottom.

6 Related Work

Many Agent-Oriented Software Engineering methodolo-
gies have been proposed and compared over the last few
years [18, 25]. An analysis of the metamodels of three
methodologies, ADELFE [4], GAIA [27] and PASSI [7]
has been presented in [3]. The aim of this work was to face
interoperability issues between different methodologies.

In this section we extend this analysis including Tropos.
We will focus on four dimensions: Agent Structure, Agent
Interaction, Agent Organization and Agent Development
(e.g., CASE tools at support of the development process).
Table 1 summarizes the comparison. In ADELFE the con-
cept of agent (Cooperative Agent) is defined as the
composition of aptitudes, skills, characteristic, communi-
cation and representation. Not explicit concept of role is
given, the concept of goal is implicitly used to identify
agent skills, but it is not representable as well as the con-
cept of plan, since a plan is an entity that will be built at
run time and which is not representable at design time. In
GAIA, an agent (Agent Type) is specified as a compo-
sition of roles. Each role is responsible of a specific set of
activities associated with the role. Goals cannot be explic-
itly modeled, but they are implicitly used to characterize a
role. In PASSI, an agent (Agent) is defined as the compo-
sition of roles and each role is defined as the manifestation
of the agent activity in some scenario. Goals are implicitly
considered when specifying non-functional requirements
attached to agent duties. In Tropos, the concept of Actor
generalizes the concepts of agent and role (or set of roles),
an actor can have individual goals and it can be able to ex-
ecute plans to satisfy goals. Goal analysis in Tropos drives
the modelling process, as discussed in Section 4 and allows

us to represent goal decomposition, means to satisfy a goal
or contribution towards goal satisfaction through different
goal relationships.

The concepts used to specify the interactions of an agent
with another agent or with the environment are similar in
ADELFE, GAIA and PASSI. Basically, they use the con-
cept of communication, role, and protocols. Tropos adopts
the Agent Unified modelling Language (AUML) Agent In-
teraction Diagram, described in [2, 22] (proposed by the
FIPA –Foundation for Physical Intelligent Agents– [12]
and the OMG Agent Work group) where agent communica-
tive acts are represented as messages in a UML sequence
diagram.

In GAIA, the concept of organization is a primary con-
cept, organization rules specify constraints that the orga-
nization should observe. In PASSI, agent organization as-
pects are modeled implicitly in terms of services that can
be accessed by agents in a given scenario. In ADELFE,
agent organization and society emerges from the evolving
interactions between the agents which are compliant with
cooperation rules.

In Tropos the strategic dependencies between actors in
a domain makes explicit the organizational dimension and
provide basic entities to model organizational patterns [19].
Moreover, the Tropos metamodel has been extended to in-
clude concepts of business processes and security.

Both ADELFE and PASSI provide CASE tools at
support of modelling and for ad-hoc analysis on part
of the resulting specification. Tropos provides mod-
elling and analysis tools (details can be found in
http://www.troposproject.org) as well as code generation
tools [10].

This comparison shows that different metamodels
(methodologies) may allow us to model different proper-
ties of a system (e.g., organizational aspects, communica-
tions and protocols). On the other hand, it shows that even
if metamodels share a comparable set of concepts, they can
be used in a different way by the different methodologies.
This can be found also considering requirements engineer-
ing methodologies based on metamodels. For instance, in
KAOS [9], the concept of agent is used to assign leaf goals
resulting from goal analysis.

Finally, other related work on i* and Tropos metamod-
els are worth to be mentioned. The i* metamodel [26]
represents the basis for the Tropos metamodel. Other ex-
tensions of the i* metamodel have been proposed. For in-
stance, in [1] where a methodology for COTS selection is
proposed.

7 Conclusion

We have presented an overview of the Tropos metamodel.
Like other software development methodologies, Tropos
supports a variety of models that need to be analyzed for
syntactic and semantic consistency. The metamodel serves
as a basis for checking for syntactic consistency. Making

THE TROPOS METAMODEL AND ITS USE Informatica 29 (2005) 401–408 407

Agent Structure ADELFE GAIA PASSI Tropos
Agent Cooperative Agent Agent Type Agent Actor
Role Not explicit Role in a organization Role in a scenario Specialization of Actor
Goal Not explicit Not explicit Not explicit Goal and goal relationships
Plan Not explicit Activity of a Role Ontology of Action Plan and plan relationships
Agent Interaction
Comm. & Protocol Agent Communication Communication associated Communication associated Not in the current metamodel.

Agent Interaction to a role and protocols to a role and AUML interaction diagram
Protocols associated Messages as UML sequence diagram
associated to a communication components messages
to communication of communication for communication acts

A. Organization
Structure & Rules Cooperation rules OrganizationStructure, Not explicit Strategic Dependency,

Organization, Ownership, Delegation
OrganizationalRule and Trust

Organizational patterns
A. Development
Modeler Open-Tool — PASSI Toolkit TAOM, OME, DW-Tool, ST-Tool
Analysis tooos Open-Tool — PASSI Toolkit GR-Tool, DW-Tool, ST-Tool,T-Tool
Code Generation — — PASSI Toolkit SKwyRL

Table 1: Comparison of the meta-models of four Agent-Oriented methodologies.

it richer, could also help in supporting some forms of se-
mantic consistency currently conducted through a series of
tools offered within the Tropos software development envi-
ronment.

References
[1] C. Ayala, C. Cares, J. P. Carvallo, G. Grau, M. Haya,

X. Franch G. Salazar, E. Mayol, and C. Quer. A Com-
parative Analysis of i*-Based Agent-Oriented Model-
ing Language. In Proceedings of 17th International
Conference on Software Engineering and Knowledge
Engineering (SEKE’05), pages 43–50, Taipei, Tai-
wan, 2005. KSI Press.

[2] B. Bauer, J.P. Muller, and J. Odell. Agent UML: A
formalism for specifying multiagent interaction. In
P. Ciancarini and M. Wooldridge, editors, Proc. of the
1st Int. Workshop on Agent-Oriented Software Engi-
neering (AOSE’00), volume 1957 of LNCS, pages 91–
104, Limerick, Ireland, 2001. Springer.

[3] C. Bernon, M. Cossentino, M. P. Gleizes, P. Turci, and
F. Zambonelli. A Study of Some Multi-agent Meta-
models. In J. P. Muller J. Odell, P. Giorgini, editor,
Agent-Oriented Software Engineering V: 5th Interna-
tional Workshop, AOSE 2004, volume 3382 of LNCS,
pages 62–77, New York, USA, NY, 2004. Springer.

[4] C. Bernon, M.P. Gleizes, S. Peyruqueou, and G. Pi-
card. ADELFE, a Methodology for Adaptive Multi-
Agent Systems Engineering. In P. Petta, R. Tolksdorf,
and F. Zambonelli, editors, Third International Work-
shop on Engineering Societies in the Agents World
(ESAW-2002), volume 2577 of LNCS, pages 156–169,
Madrid, Spain, 2003. Springer.

[5] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified
Modeling Language: User Guide. Addison-Wesley,
1999.

[6] P. Bresciani, P. Giorgini, F. Giunchiglia, J. My-
lopoulos, and A. Perini. Tropos: An Agent-
Oriented Software Development Methodology. Au-

tonomous Agents and Multi-Agent Systems, 8(3):203–
236, 2004. Kluwer Academic Publishers.

[7] A. Chella, M. Cossentino, and L. Sabatucci. Tools
and patterns in designing multi-agent systems with
PASSI. WSEAS Transactions on Communications,
3(1):352–358, 2004.

[8] L.K. Chung, B. Nixon, E. Yu, and J. Mylopoulos.
Non-Functional Requirements in Software Engineer-
ing. Kluwer Publishing, 2000.

[9] A. Dardenne, A. van Lamsweerde, and S. Fickas.
Goal-directed requirements acquisition. Science of
Computer Programming, 20(1–2):3–50, 1993. Else-
vier.

[10] T. T. Do, M. Kolp, and S. Faulkner. Agent Oriented
Design Patterns: The SKwyRL Perspective. In Proc.
of the 6th International Conference on Enterprise In-
formation Systems (ICEIS 2004), pages 48–53, Porto,
Portugal, 2004.

[11] T. Finin, Y. Labrou, and J. Mayfield. KQML as an
agent communication language. In J.M. Bradshaw,
editor, Software Agents, pages 291–316. MIT Press,
Menlo Park, CA, 1997.

[12] FIPA. The Foundation for Intelligent Physical
Agents. At http://www.fipa.org, 2001.

[13] A. Fuxman, M. Pistore, J. Mylopoulos, and
P. Traverso. Model checking early requirements spec-
ifications in Tropos. In Int. Symposium on Require-
ments Engineering, pages 174–181, Toronto, CA,
2001. IEEE Computer Society.

[14] T. Gardner, C. Griffin, J. Koehler, and R. Hauser. A
review of omg mof 2.0 query / views / transforma-
tions submissions and recommendations towards the
final standard. In MetaModelling for MDA Workshop,
pages 178–197, York, UK, England, 2003.

[15] P. Giorgini, J. Mylopoulous, and R. Sebastiani. Goal-
Oriented Requirements Analysis and Reasoning in
the Tropos Methodology. Engineering Applications
of Artificial Intelligence, 18(2):159–171, 2005.

408 Informatica 29 (2005) 401–408 A. Susi et al.

[16] P. Giorgini, F. Massacci, J. Mylopoulous, and N. Zan-
none. Requirements Engineering meets Trust Man-
agement: Model, Methodology, and Reasoning. In
Proc. of iTrust’04, volume 2995 of LNCS, pages 176–
190. Springer-Verlag, 2004.

[17] P. Giorgini, F. Massacci, J. Mylopoulous, and N. Zan-
none. Modeling Security Requirements Through
Ownership, Permission and Delegation. In Proc. of
the The 13th IEEE Requirements Engineering Con-
ference (RE’05), Paris, France, 2005. IEEE Computer
Society.

[18] B. Henderson-Sellers and P. Giorgini, editors. Agent-
Oriented Methodologies. Idea Group Inc., Hershey,
PA, USA, 2005.

[19] M. Kolp, P. Giorgini, and J. Mylopoulos. A goal-
based organizational perspective on multi-agents ar-
chitectures. In Proc. of the 8th Int. Workshop on In-
telligent Agents: Agent Theories, Architectures, and
Languages, ATAL’01, volume 2333 of LNCS, pages
128–140, Seattle, USA, 2002. Springer.

[20] Y. Labrou, T. Finin, and Y. Peng. Agent communica-
tion languages: The current landscape. IEEE Intelli-
gent Systems, 14(2):45–52, 1999. IEEE.

[21] Stephen J. Mellor, Kendall Scott, Axel Uhl, and Dirk
Weise. MDA Distilled. Addison-Wesley, 2004.

[22] J. Odell, H. Van Dyke Parunak, and B. Bauer. Ex-
tending UML for agents. In Proc. of the 2nd Int. Bi-
Conference Workshop on Agent-Oriented Information
Systems, AOIS’00, pages 3–17, Austin, USA, 2000.

[23] A. Perini and A. Susi. Developing Tools for Agent-
Oriented Visual Modeling. In G. Lindemann, J. Den-
zinger, I.J. Timm, and R. Unland, editors, Multiagent
System Technologies, Proc. of the Second German
Conference, MATES 2004, volume 3187 of LNAI,
pages 169–182, Erfurt, Germany, 2004. Springer.

[24] A. Perini and A. Susi. Automating Model Trans-
formations in Agent-Oriented modelling. In Agent-
Oriented Software Engineering VI: AOSE 2005,
LNCS, Utrecht, The Netherlands, 2005. Springer.

[25] A. Sturm and O. Shehory. A Framework for Evaluat-
ing Agent-Oriented Methodologies. In M. Winikoff
P. Giorgini, B. Henderson-Sellers, editor, Proc. of
the Int. Bi-Conference Workshop on Agent-Oriented
Information Systems, AOIS 2003, volume 3030 of
LNCS, pages 94–109. Springer, 2003.

[26] E. Yu. Modelling Strategic Relationships for Process
Reengineering. PhD thesis, University of Toronto,
Department of Computer Science, 1995.

[27] F. Zambonelli, N. R. Jennings, and M. Wooldridge.
Developing Multiagent Systems: The Gaia Method-
ology. ACM Transactions on Software Engineering
and Methodology, 12(3):317–370, 2003. ACM.

Informatica 29 (2005) 409–421 409

On the Role of Environments in Multiagent Systems

Danny Weyns and Tom Holvoet
AgentWise, DistriNet, Katholieke Universiteit Leuven
Celestijnenlaan 200 A, B-3001 Leuven, Belgium
E-mail: {danny.weyns, tom.holvoet}@cs.kuleuven.be

Keywords: multiagent systems, environment, engineering environments

Received: June 30, 2005

For a long time, the role of the environment has been underestimated in multiagent systems research.
Originating from research on behavior-based agents and situated multiagent systems, the importance of
the environment is now gradually being accepted in the multiagent system community in general. In this
paper, we elaborate on the role of environments in multiagent systems. We present a model for multiagent
systems that puts forward agents and the environment as first-order abstractions. Starting from this model,
we elaborate on the logical functionalities of the environment. Competence in engineering environments
is a prerequisite to apply environments in practical multiagent system applications. We briefly discuss how
current agent-oriented methodologies deal with the environment, and we discuss an approach for engineer-
ing environments that puts forward artifacts as building blocks for environments. After that we present
the concern-based approach for engineering environments developed in our research group. This approach
models the environment as a set of modules that represent different functional concerns of the environment.
We illustrate how we have applied this approach in a real-world multiagent system application. The paper
concludes with a number of research challenges that are important for the further exploration of environ-
ments for multiagent systems.

Povzetek: Opisuje vlogo okolij v multiagentnih sistemih.

1 Introduction

Multiagent systems are an approach to build complex dis-
tributed applications. A multiagent system consists of a
population of autonomous entities (agents) situated in a
shared structured entity (the environment). One classic def-
inition of an autonomous agent is: an agent is a computer
system that is situated in some environment, and that is ca-
pable of autonomous action in this environment in order to
meet its design objectives [56]. This definition stresses the
importance of the environment, an agent is not an isolated
entity but exists in an environment in which it senses and
acts. In spite of the fundamental role of the environment in
agent systems, most researchers neglect to integrate the en-
vironment as a primary abstraction in models and tools for
multiagent systems, or minimize its responsibilities [49].
Typically, the responsibilities of the environment are re-
duced to a message transport system or broker infrastruc-
ture. Restricting interaction to inter-agent communication
neglects a rich potential of possibilities for the paradigm of
multiagent systems.

Opportunities that environments offer have been demon-
strated in the domain of behavior-based agents and sit-
uated multiagent systems. In behavior-based agent sys-
tems, interaction in the environment has been considered
as an essential feature for intelligent behavior for a long
time [9, 25, 1]. Originally, the main focus of this research
community was on systems where agents interact in a phys-

ical environment, such as robots. Gradually, this work
has influenced the software agent community. Today, re-
searchers working in the domain of what is known as sit-
uated multiagent systems consider logical environments as
essential parts of their multiagent systems [29, 10, 26, 47].
These researchers have shown that the environment can
serve as a robust, self-revising shared memory, and an ex-
cellent medium for indirect coordination of agents [49].
Several practical applications have shown how indirect in-
teraction trough the environment increases the power and
expressiveness of multiagent systems, enabling solutions
that would otherwise be impossible or at least impracti-
cally complex. There are examples in domains such as sup-
ply chain systems [41], network support [6], peer-to-peer
(P2P) systems [2], manufacturing control [37], and support
for automatic logistic services [55].

Originating from research on behavior-based agents and
situated multiagent systems, the importance of the envi-
ronment in multiagent systems is now gradually being ac-
cepted in the multiagent system community in general.
For example, [8] argues that the multiagent research com-
munity should not only focus attention on making agents
smarter but also on making the environment more capable
of managing and protecting the conditions in which agents
have to operate. Recently, the environment has begun to
emerge as the focus of research in its own right [14, 48, 34].

This paper is structured as follows. In Sect. 2, we present
a model for multiagent systems that puts forward agents

410 Informatica 29 (2005) 409–421 D. Weyns et al.

and the environment as first-order abstractions. Starting
from this model, we discuss logical functionalities of the
environment in Sect. 3. Section 4 discusses engineering
issues of environments and in Sect. 5 we illustrate a real-
world application in which the environment plays a cen-
tral role. Finally, in Sect. 7 we draw conclusions and list
a number of research challenges for the further exploration
of environments for multiagent systems.

2 The Environment Abstraction
In line with [49], we put forward agents and the envi-
ronment as first-order abstractions in multiagent systems.
This allows to clearly define the environment responsibili-
ties that differ from the agent responsibilities. A first-class
module can be defined as a program building block, an in-
dependent piece of software which [...] provides an ab-
straction or information hiding mechanism so that a mod-
ule’s implementation can be changed without requiring any
change to other modules1. Just as the agents, the envi-
ronment should therefore be an independent building block
that encapsulates its own clear-cut responsibilities in a mul-
tiagent system. Motivations to put forward the environment
as first-order abstraction include the following:

1. Several aspects of multiagent systems that conceptu-
ally do not belong to agents themselves should not be
assigned to, or hosted inside agents. Examples are in-
frastructure for communication and coordination, the
topology of a spatial domain, or support for the action
model.

2. The above (and other) aspects should be explicitly
considered. The environment is the natural candidate
to encapsulate these aspects.

3. The environment can be a creative part of a designed
solution of a multiagent system, helping to manage the
huge complexity of engineering complex real-world
applications.

One problem with the specification of environments is
the confusion between the logical entity of an environment
in the application and the underlying infrastructure of the
multiagent system. To unravel this confusion, we discuss a
model for multiagent-based applications that describes the
position of agents and the environment at three levels [54],
see figure 1:

– the multiagent system (MAS) application layer at the
top (i.e., the application logic);

– the execution platform (i.e., middleware infrastructure
and the operating system);

– and the physical infrastructure at the bottom (i.e., pro-
cessors, network, etc.).

1The Free Online Dictionary of Computing,
http://foldoc.doc.ic.ac.uk/foldoc/, 8/2005

Below we elaborate on each layer and illustrate that the
abstraction of the environment as well as the agents, cross-
cut the three layers in the model. Before that we intro-
duce a simple file searching system in a P2P network that
we use as a running example to illustrate the three-layer
model [53]. The idea of this application is to let mobile
agents act on behalf of users and browse a shared dis-
tributed file system to find requested files. Each user is
situated in a particular node (its base). Users can offer files
at their base and can send out agents to find files for them.
Agents can observe the environment, however, to avoid net-
work overload, agents can perceive the environment only to
a limited extent, e.g. two hops from the agent’s current po-
sition. An agent can perceive nodes and connecting links,
bases on nodes, and files available on nodes. Agents can
also sense signals. Each base emits such a signal. The
intensity of the signal decreases with every hop. Sensing
the signal of its base enables an agent to “climb up” the
gradient, i.e. move towards its base or alternatively “climb
down”, i.e. move away from it. Finally, agents can sense
pheromones. An agent can drop a file-specific pheromone
in the environment when it returns back to its base with
a copy of a file. Such a pheromone trail can not only
help the agent later on when it needs a new copy of the
file, it can also help other agents to find their way to that
file. Pheromones evaporate, thereby limiting their influ-
ence over time. This is an important property to avoid
that agents are misled when a file disappears from a cer-
tain node.

2.1 Multiagent System Application Layer

The Multiagent System Application layer contains the Ap-
plication Specific Logic, i.e. Application Agents (AAs) and
the Application Environment (AE) of the multiagent sys-
tem. The AAs are the autonomous entities in the multia-
gent system, the AE offers a domain specific abstraction to
AAs, hiding the complexity of resource access, interaction
handling, and consistency management. The AE imposes
the rules that regulate domain dynamics. Section 3 elabo-
rates on responsibilities of the AE.

The AAs in the P2P file searching system are the logical
entities that are created by the users to search for files in
the network. The AE is the logical entity that represents the
space in which the AAs perform their job. The AE offers
a representation to the AAs of the neighboring nodes and
connecting links of the network. The AE also represents
the available files, the gradient fields emitted by the bases,
and the file-specific pheromones dropped by the agents.

The application logic is typically deployed on top of
a Multiagent System Framework. The multiagent sys-
tem framework supports predefined multiagent systems ab-
stractions, such as a particular engine for agent’s decision
making, support for communication, a model for action,
etc. These abstractions can be reused over different appli-
cations. In the P2P file searching system, the multiagent
system framework layer should provide a pheromone in-

ON THE ROLE OF ENVIRONMENTS IN. . . Informatica 29 (2005) 409–421 411

���������
����

����������

��
 ���
�����

�
��

��
���

�
�
��
���

�

�
�

�
��

���
��
��
�

�
��

��
��

��
��
��
��
��
��
��
�

�����

�����������

������� ����������������

�����

�� ����
���

�����������

����������

!�
�����
"����������� ����

�����������
�����

�����

�������� #����

$�%
�&'�����

�����

������

(������

!�����������
�&���������

�����������
�����

�����������
�� ����
���

Figure 1: Three-Layer Model for Multiagent Systems.

frastructure and infrastructure for gradient fields. Another
example is support for mobility of the agents.

2.2 Execution Platform
The Execution Platform is composed by a Middleware on
top of an Operating System. Middleware serves as the
glue between (distributed) components. It provides support
for remote procedure calls, threading, transactions, persis-
tence, load balancing, generative communication, etc. In
general, middleware offers a software platform on which
distributed applications can be executed. The operating
system enables the execution of the application on the
physical hardware, it offers basic functionality to applica-
tions, hiding low-level details of the underlying physical
platform. The operating system manages memory usage
and offers transparent access to lower level resources such
as files, it provides network facilities, it handles the inter-
vention of the users, it provides basic support for timing,
etc.

An example of middleware support in the P2P file
searching system is a distributed tuple-space infrastructure
that provides a basic substrate for the pheromone and gra-
dient field infrastructure. The operating system provides
many basic functions, one example is the file system.

2.3 Physical Infrastructure

The Execution Platform runs on top of the Physical Infras-
tructure, which is composed of the Computer Hardware
with hosts and a network, and the Physical World, if present
in the application. In the P2P file sharing system, the phys-
ical infrastructure consists of a computer machine on each
node and a connecting network. Each machine is an access
point to the system for a user.

We refer the interested reader to [54] in which the three-
layer model for multiagent systems is applied to several
other practical applications.

412 Informatica 29 (2005) 409–421 D. Weyns et al.

2.4 Related Models

To our best knowledge, no deployment models for multia-
gent systems were previously proposed that explicitly dis-
cusses the position of agents and the environment. How-
ever, several layered models for multiagent system infras-
tructure are discussed in literature, prominent examples
are Retsina [44] and JADE [4]. Here we look at two other
examples, the spatial computing stack model applied to
TOTA [26], and a model with multiple environments for
multiagent systems proposed in [23].

TOTA. In [26], Mamei and Zambonelli introduce the no-
tion of “spatial computing stack” and apply it to the TOTA
middleware (Tuples On The Air). The spatial computing
stack defines a framework for spatial computing mecha-
nisms at four levels: the physical level at the bottom, the
structure level above it, then follows the navigation level,
and finally the application level at the top. The “physical
level” deals with how components find each other and start
communication with each other. In the case of TOTA, a
node detects in-range nodes via one-hop message broad-
cast. The “structure level” is the level at which a spa-
tial structure is built and maintained by components in the
physical network. In TOTA, a tuple can be injected from
a node. A TOTA tuple is defined in terms of a content
and a propagation rule. The content represents the infor-
mation carried on by the tuple and the propagation rule de-
termines how the tuple should be propagated across the net-
work. Once a tuple is injected it propagates and creates a
centered spatial structure in the network representing some
spatial feature relative to the source. At the “navigation
level” components exploit basic mechanisms to orient their
activities in the spatial structure and to sense and affect the
local properties of space. TOTA defines an API to allow
application components to sense TOTA tuples in their one-
hop neighborhood and to locally perceive the space defined
by them. Navigation in the space consists of agents acting
on the basis of the local shape of specific tuples. At the “ap-
plication level”, navigation mechanisms are exploited by
application components to interact and organize their ac-
tivities. TOTA enables complex coordination tasks in a ro-
bust and flexible way. An example is a group of agents that
coordinate their respective movements by following locally
perceived tuples downhill or uphill resulting in specific for-
mations.

The spatial computing stack model extends over the
three layers of the model presented in this paper. The phys-
ical level is situated in the Physical infrastructure, the struc-
ture and navigation level are situated in the Middleware
layer, and the application level finally is situated in the mul-
tiagent system Application layer.

Multiple Environments. In [23], Gouaich and Michel
make a statement to model different “aspects” of the en-
vironment with different environments. Essentially, the au-
thors consider different instances of an environment within

a single multiagent system. As an illustrative example they
refer to the three-layer model described in this paper and
associate with each layer in this model a separate envi-
ronment. The authors state that considering different en-
vironments for different aspects improves modularity and
extensibility of multiagent systems. Another example dis-
cussed in the paper is the AGRE [18] model. AGRE con-
siders a spatial, a temporal, and an organizational aspect
in one environment abstraction. Gouaich and Michel state
that when a new aspect is identified and must be integrated
in the AGRE model, the entire model must be revised.

Unfortunately, the authors do not explain what the added
value is of considering different environments for different
aspects instead of dealing with different aspects in an disci-
plined manner in one environment abstraction. The authors
also keep silence on crosscutting issues related to different
aspects, and how the approach with multiple environments
deals with this problem.

Explicitly dealing with different concerns of a software
system is good software engineering practice. However, it
is unclear whether it is useful to associate separate envi-
ronments with different environmental concerns in a mul-
tiagent system. One way to match the approach of differ-
ent environments with the three-layer model is to consider
the environment as a multidimensional entity with differ-
ent dimensions for different aspects/concerns, rather than a
separate environment for each aspect/concern.

3 The Role of Environments in
Multiagent Systems

Having clarified how the agents and the environment are
first-order abstractions that span the application logic, the
execution platform and the physical infrastructure, we now
elaborate on the logical functionalities of the environment.

The functionalities of the environment we discuss in this
section are located in the multiagent system Application
layer, i.e. the top layer in Fig. 1. Several functionalities
may seem quite natural responsibilities of environments.
We want to stress, however, that in practice the functional-
ities we put forward are often dealt with in an implicit or
ad hoc way. Our goal is to make the logical functionali-
ties explicit, i.e. as concerns of environments as first-order
abstractions. Not every functionality we discuss is rele-
vant for every possible environment. In practice, it is up to
the designer to decide which functionalities should be in-
tegrated in the environment model for the domain at hand.
Finally, we want to underline that the proposed list of func-
tionalities is not intended to be complete but rather serves
as a start to explore the many-sided role of environments in
multiagent systems.

3.1 Structuring
The environment is first of all a shared “space” for the
agents, resources and services, which structures the whole

ON THE ROLE OF ENVIRONMENTS IN. . . Informatica 29 (2005) 409–421 413

system. Resources are objects with a specific state. Ser-
vices are considered as reactive entities that encapsulate
functionality. The agents as well as resources and ser-
vices are dynamically interrelated to each other. It is the
role of the environment to define the rules which these re-
lationships have to comply to. As such the environment
acts as a structuring entity for the multiagent system. This
structuring can take different forms: it can be spatial, see
e.g. [10][3], but also organizational, e.g. [17][57], or the en-
vironment can be structured as a mediating entity as e.g. in
[20][24]. Specific properties can be defined separately for
each space, such as positions, locality, groups or roles.
Structuring is a fundamental functionality of the environ-
ment. The structure of the environment is a design choice
that depends upon the requirements of the domain at hand,
and the designer should deal with it explicitly.

3.2 Managing Resources and Services

Besides structuring, the environment is also in charge of
enabling and controlling the access to resources and ser-
vices. In general, resources can be read/perceived, writ-
ten/modified or consumed by agents. Services on the other
hand provide functionality to the agents on their request.

The extent to which agents are able to access a particu-
lar resource or service may depend on several factors such
as the nature of the resource or service, the capabilities
of the agent, the (current) interrelationships with other re-
sources, services or agents, etc. In general, the access to
the resources and services can be described by a set of laws
defined by the domain at hand, see e.g. [19][47].

3.3 Providing Observability

Contrary to agents, the environment must be observable,
i.e. agents must be able to inspect their neighborhood. Be-
sides the observation of resources and services, agents may
even be able to observe the actions of other agents [45]. In
general, agents should be able to inspect the environment
according to their current preferences. Examples of selec-
tive perception are [53] where “foci” are proposed to enable
agents to perceive their environment related to their current
tasks, and [24, 42] where “views” are proposed as selec-
tor for perception. Perception is constrained not only by
agents’ capabilities, but also by environmental properties
(which in fact reflect properties of the problem domain). In
[53] the environmental constraints are made explicit in the
form of “perceptual laws”.

Related to observability is the semantic description of
the domain. This can be done by defining an environment
ontology, see e.g. [12]. The ontology must cover the struc-
ture of the environment as well as the observable charac-
teristics of resources, services and agents, their interrela-
tionships, and possibly the regulating laws. In an open sys-
tem, it would be useful for agents to be able to understand
at run-time a new environment they are discovering. For
symbolically-oriented agents, an explicit ontology should

be available to the agents to enable them to interpret their
environment and reason about it. For reactive/behavior-
based/stigmergic agents, the designer/developer applies the
ontology to encode the agents’ internal structures. As such,
these kinds of agents have an implicit ontology that enables
them to make decisions.

3.4 Enabling Communication

Communication is inextricably bound up with multiagent
systems. The environment defines concrete means for
agents to communicate. Communication can take differ-
ent forms. The most used scheme is a message-passing
style from one agent to the other. In generative or indirect
communication, agents produce communication objects in
the environment and consume them to read them. Well-
known properties of generative communication are name,
space and time decoupling. [22] extends this list of prop-
erties with locality and non-intentionality. An important
other approach of communication is based on stigmergy
[36]. Each of these types of communication has its own
pros and cons. Designers should be aware of the potency
as well as the impact of each type of communication for
their solution. Selecting a particular type of communica-
tion should be an architectural choice, determined by the
requirements of the problem domain at hand.

3.5 Maintaining Environmental Processes

Besides the activity of the agents, the environment can as-
sign particular activities to resources as well. A digital
pheromone, for example, is a dynamic structure as it ag-
gregates with additional pheromone that is dropped, it dif-
fuses in space and it evaporates over time. Other examples
are a rolling ball that moves on, or the local temperature
that evolves over time. Maintaining such dynamics is an
important functionality of the environment, it is useful for
self-organization, see e.g. [10, 43].

3.6 Ruling the Multiagent System

The environment can define different types of rules or laws
on all entities in the multiagent system. Environment rules
are a powerful tool to express the capabilities an environ-
ment needs to ensure consistency in the system. Rules may
restrict access to specific resources or services to particular
types of agents, or determine the outcome of agents’ inter-
actions.

Dealing with interactions in multiagent systems in gen-
eral is a very complex matter. In [27], Minsky and Un-
gureanu point out the difficulties to control the activities
of agents operating in distributed systems and propose co-
ordination policies to deal with control. According to the
authors, coordination policies need to be formulated explic-
itly rather than being implicit in the code of the agents in-
volved and they should be enforced by means of a generic,

414 Informatica 29 (2005) 409–421 D. Weyns et al.

broad spectrum mechanism. The environment is the natural
candidate to embed such control mechanism.

In electronic institutions [28], agents interact through
agent group meetings that are called scenes. Interactions in
a scene have to follow a well-defined communication pro-
tocol. Scenes can be composed in a performative structure.
The specification of a performative structure contains a de-
scription of how the different roles can legally move from
scene to scene. Agents within a performative structure may
participate in different scenes at the same time with differ-
ent roles. Agent actions in the context of an institution may
have consequences that either limit or enlarge its subse-
quent acting possibilities. Such consequences will impose
obligations to the agents and affect its possible paths within
the performative structure. The environment can define and
enforce the rules imposed on the movements and interac-
tions of agents in an electronic institution.

A particular problem is the regulation of simultaneous
actions. If we allow multiple agents to act in the envi-
ronment in parallel, we need explicit models to deal with
actions that range far beyond the scope of state changes
based on simple individual manipulation of objects. [19]
and [47] discuss models for simultaneous actions. Central
to these models are (1) the distinction between the products
of the agents’ behavior on the one hand and the reaction of
the environment on the other hand, and (2) a set of explic-
itly defined laws that govern the effects of the actions of
the agents. These models resolve a number of fundamental
issues with respect to actions in multiagent systems, how-
ever, dealing with actions in multiagent systems needs ex-
tensive further research to grow into full maturity.

4 Engineering Environments

An important condition to apply environments in practical
multiagent system applications is competence in the en-
gineering environments. Disciplined design practices for
agents in general are in their infancy, and extending these
techniques to environments greatly increases the scope of
work to be done [49]. In this section, we first give a brief
overview how current agent oriented methodologies deal
with the environment. After that we discuss two proposals
for engineering environments.

4.1 Environments in Agent-Oriented
Software Methodologies

Popular methodologies such as Prometheus [35], Tropos
[21] or Adelfe [11] offer support for some basic elements
of the environment, however, they do not consider the en-
vironment as a first-order abstraction. Two methodologies
that explicitly cope with the environment are SODA [30]
and GAIA v.2. [57].

4.1.1 SODA

SODA takes the environment into account and provides
specific abstractions and procedures for the design of agent
infrastructures. In SODA, the environment is the space in
which agents operate and interact. SODA provides a re-
source model that models the application environment in
terms of the available services, associated with abstract re-
sources. The environmental model maps resources onto in-
frastructure classes. An infrastructure class is characterized
by the services, the access modes, the permissions granted
to roles and groups, and the interaction protocols associ-
ated to its resources. Infrastructure classes can be further
characterized in terms of other features: their cardinality
(the number of infrastructure components belonging to that
class), their location (with respect to topological abstrac-
tions), and their owner (which may be or not the same as
the one of the agent system, given the assumption of de-
centralized control).

4.1.2 GAIA v.2.

According to GAIA v.2. (hereafter GAIA), “modelling the
environment involves determining all the entities and re-
sources that the multiagent system can exploit, control or
consume when it is working towards the achievement of
the organizational goal” [57] pp. 12.

In GAIA, the identification of the environmental model
is part of the analysis phase and is intended to yield an
abstract, computational representation of the environment
in which the multiagent system will be situated. Dur-
ing the subsequent architectural design phases, the output
of the environmental model (together with a primary role
model, a preliminary interactions model, and a set of or-
ganizational rules) is integrated in the system’s organiza-
tional structure that includes the real-world organization
(if any) in which the multiagent system is situated. The
organizational structure is then used to complete the pre-
liminary role and interaction models. During the detailed
(and final) design phase, the definition of the agent model
and services model are derived from the completed role
and interaction models. GAIA does not commit itself to
specific techniques for modelling roles, environment and
interactions, etc. The outcome of the GAIA process is a
technology-neutral specification that should be easily im-
plemented using an appropriate agent-programming frame-
work or an object or a component-based framework. With
respect to the development of the environmental model,
[57] pp.23 states “it is difficult to provide general mod-
elling abstractions and general techniques because the en-
vironments for different applications can be very different
in nature and also because they are somehow related to the
underlying technology.” Therefore a “reasonable general
approach is proposed (without the ambition to be univer-
sal), that describes the environment in terms of abstract
computational resources, such as variables or tuples, made
available to the agents for sensing (e.g. reading their val-
ues), for affecting (e.g. changing their values) and for con-

ON THE ROLE OF ENVIRONMENTS IN. . . Informatica 29 (2005) 409–421 415

suming (e.g. extracting them from the environment).” As
such the environmental model is represented as a list of
resources, each associated with a symbolic name, charac-
terized by the type of actions that the agent can perform
on it and possibly associated with additional textual com-
ments and descriptions. The authors of [57] confirm that in
realistic development scenarios, the analyst would choose
to provide a more detailed and structured view of environ-
mental resources.

4.2 Summary
Although SODA and GAIA explicitly put forward the envi-
ronment as a first-order abstraction in the methodological
process, the interpretation of what the environment com-
prises is meagre. Design support is limited to the repre-
sentation of resources and simple access control to the re-
sources.

4.3 Engineering Approaches for
Environments

In this section, we zoom in on two approaches to engineer
environments. The first approach is inspired by social sci-
ence, and models the environment as a set of mediating
artifacts that agents can use. The second approach models
the environment as a composition of modules that repre-
sent different functional concerns of the environment, such
as communication, perception, actions and interaction.

4.3.1 Artifacts as Building Blocks for Engineering
Environments

Inspired by Activity Theory [33], and building upon the
work on coordination artifacts [32, 39], the notion of ar-
tifact has been proposed as an abstract building block for
modeling and engineering environments [34, 46]. Contrary
to an agent that is basically an autonomous, goal-oriented
entity with social abilities, an artifact is a software entity
designed to provide some kind of function or service that
agents can use to achieve their goals. This characterization
fits the basic distinction made in Distributed Artificial Intel-
ligence [13] between goal-oriented entities (agents) which
pro-actively interact, and function-oriented entities (arti-
facts) designed with a clear interface and working modal-
ities to be used by goal-oriented entities to achieve their
objectives. An artifact can be specified by: (1) its func-
tion, i.e. what services the artifact provides; (2) its usage
interface, i.e. the set of the operations which agents can in-
voke to use the artifact and exploit its function; and (3) a
set of operating instructions, i.e. descriptions that explain
how the artifact can be used to exploit its functionality.

Artifacts can be useful from two different perspectives:
(1) analytical, i.e. as a way to describe, discuss, compare
existing environment models and approaches keeping a cer-
tain level of abstraction and uniformity; and (2) from an en-
gineering perspective, i.e. as a concrete way to design and

build multiagent systems. As a first rough classification, ar-
tifacts can be classified in three categories. A first class are
resource artifacts. A resource artifact mediates the access
to a specific resource, or directly represents a resource in
the multiagent environment. Resource artifacts provide a
representation of computational or physical entities (from
objects to services, such as a web service) at the abstrac-
tion level of the agents. A second class are coordination
artifacts. A coordination artifact provides a coordinating
function or service, it can be used by agents as a tool for
communication, coordination and, more generally, it sup-
port social activities in the multiagent system [33, 32]. Fi-
nally, a third class of artifacts are organization artifacts,
which have an organizational or security function. An ex-
ample of an organization artifact is a boundary artifact. A
boundary artifact can be used to characterize and control
the presence of an agent in an organization context, reify-
ing and enacting a contract between the agent and the or-
ganization. E.g., boundary artifacts can be used as “filters”,
allowing only agent actions that satisfy the contract for the
specific role(s) the agent plays in an organization.

Concrete examples of artifacts in the context of the gen-
eral purpose coordination infrastructure TuCSoN [26] are a
Tuple Centre [21] and a Agent Coordination Context [40].
A tuple centre is an example of a coordination artifact
which coordinating behavior can be specified dynamically
in a language called ReSpecT. An agent coordination con-
text is an example of a boundary artifact. An agent co-
ordination context enables (and filters) agent actions (and
patterns of actions) according to (1) the role(s) the agent
plays, and (2) the organizational rules of the organization
context where the agent is situated.

4.3.2 Concern-Based Engineering of Environments

The second approach models the environment as a set of
modules that represent different functional concerns of the
environment [47, 50]. Fig. 2 depicts a high-level module
view of the environment architecture.

The PerceptGenerator module is responsible for percep-
tion [53]. When an agenti is interested in perceiving its
neighborhood, it invokes a sensei command on the environ-
ment. Such a sense command contains one or more foci that
expresses the agent’s current interests of perception. The
PerceptGenerator then composes a representationi based
on the foci, the current state of the environment and a set
of perceptual laws. A perceptual law constrains the compo-
sition of a representation according to the requirements of
the modelled domain. An example is a perceptual law that
specifies how an area behind an obstacle is out of scope of
a perceiving agent.

The MessageDelivering module is responsible for mes-
sage transfer. When a message arrives, the MessageDeliv-
ering module passes the message to the list of addressees
indicated in the message. It is possible to provide com-
munication laws that are applied when messages are trans-
ferred. An examples is a communication law that specifies

416 Informatica 29 (2005) 409–421 D. Weyns et al.

������� ����	��
������� ����	��
�������
����	�
���

�

����

����� ��������

�����

��	�
������

��������������

�		�
�

�������

����� ��	
���
�

��	
���
�
�����

��	
���
��

�����

�����

�����

�

�
�

�

������� ����	��

�

��
����
����
���

�����

�

�

���

������

�		�
��

�����

Figure 2: Concern-based modularization of the environment.

the maximal distance that messages can be delivered. Com-
munication laws are interesting for simulation purposes,
but can also be a useful instrument for designers, e.g. to
regulate the message transfer.

The Collector–Reactor–Effector modules take care of
action handling. The action model is based on the
influence–reaction model of J. Ferber and J.P. Müller [19].
According to this model, agents produce influences into the
environment and subsequently the environment reacts by
combining the influences to deduce a new state of the world
from them. The reification of actions as influences enables
the environment to combine simultaneously performed ac-
tivity in the system. The Collector module collects the
influences of all simultaneously performed activity in the
multi-agent system and passes them to the Reactor module.
The simultaneity of activity can be based on transactional
semantics, or it can be determined by a synchronization
mechanism [16, 47]. The collector passed the influences
to the Reactor module that calculates, according to a set
of domain specific interaction laws, the reaction, i.e. state
changes in the environment and effects for the agents. An
example of an effect is an agent that receives a packet that
it has picked up. An example of an interaction law is a law
that determines the effects of two RoboCup football players
that kick the ball simultaneously. The reactor finally passes
the effects to the Effector module that applies the outcome
of the interaction, i.e. it updates the state of the environment
and passes the effects to the applicable agents.

Ongoing Activities correspond to environmental pro-
cesses as discussed in Sect. 3. An ongoing activity is
defined by an Operation that produces influences in the
environment according to the state of the world. Exam-

ples of ongoing activities are a moving ball, an evaporating
pheromone, a self-managing gradient field, or an automatic
garbage collector for objects.

It is important to notice that the module view of the en-
vironment architecture as depicted in Fig. 2 abstracts from
distribution. For a practical application, the state of the en-
vironment, the delivering of messages, ongoing activities,
etc. will be implemented according to the domain at hand,
i.e. centralized or distributed. Another important remark is
that the presented model also abstracts from real-word re-
sources, external to the multiagent system. The state of the
environment may represent external resources. Support to
keep the state of the representation consistent with exter-
nal resources is not covered by the presented model. In the
next section, we discuss an example where the state of the
environment represents resources in the physical world.

5 Applying the Environment in a
Real-World Application

In this section, we illustrate how we have applied the ap-
proach of concern-based engineering of environments to
an automated transportation system for warehouse logis-
tics. This real-world application is developed in a joint
R&D project between the AgentWise research group and
Egemin, a manufacturer of automating logistics services in
warehouses and manufactories [15, 52].

The automated transportation system uses automatic
guided vehicles (AGVs) to transport loads through a ware-
house. Typical applications are distributing incoming
goods to various branches, or distributing manufactured

ON THE ROLE OF ENVIRONMENTS IN. . . Informatica 29 (2005) 409–421 417

���

��������
�	
����	

������	�
 ��
�
�

����
��
��
�����

�����	
��
���

���
���	���
���	�
��

�����
���

����
��
��
�����

�����	
��
���

�����
���

������	�
 ���

�	��� ���
��� �����	��
�
 �	��� ���
���
�����	��
�

���
���
�����	��
�

��� ��
�

���

����
��
��
�����

�����	
��
���

���
���	���
���	�
��

�����
���

�	��� ���
��� �����	��
�

��� ��
�

Figure 3: High-level model of the AGV transportation system.

products to storage locations. An AGV is provided with
a battery as its energy source. AGVs can move through a
warehouse, following fixed paths on the factory floor, typ-
ically guided by a laser navigation system, or by magnets
or cables that are fixed in the floor. The low-level con-
trol of the AGVs in terms of sensors and actuators (such as
staying on track on a path, turning, and determining the cur-
rent position, etc.), is handled by the AGV control software.
Fig. 3 depicts a high-level model of the situated multiagent
system. The situated multiagent system consists of two
kinds of agents, transport agents and AGV agents. Trans-
port agents are located at transport bases. AGV agents are
located in AGVs that are situated on the factory floor. The
communication infrastructure provides a wireless network
that enables mobile AGVs to communicate with each other
and with transport agents on transport bases.

A transport agent represents a transport that needs to be
handled by an AGV. AGV agents are responsible for ex-
ecuting the assigned transports. AGVs are situated in a
physical environment, however, this environment is very
constrained: AGVs cannot manipulate the environment,
except by picking and dropping loads. This restricts how
AGV agents can exploit their environment. Therefore, a
virtual environment was introduced for agents to live in.
This virtual environment offers a medium that agents can
use to exchange information and coordinate their behav-
ior. Besides, the virtual environment serves as a suitable
abstraction that shields the AGV agents form low-level is-
sues, such as the physical control of the AGV. The AGV
control software that deals with the low-level control of the
AGVs is fully reused. As such, the AGV agents control the
movement and actions of AGVs on a fairly high level.

In the AGV application, the only physical infrastructure
available to the AGVs is a wireless network for communi-
cation. In other words, the virtual environment is necessar-
ily distributed over the AGVs and transport bases. In effect,
each AGV and each transport base maintains a local vir-

tual environment, which is a local manifestation of the vir-
tual environment. Local virtual environments are merged
with other local virtual environments opportunistically, as
the need arises. In other words, the virtual environment as
a software entity does not exist; rather, there are as many
local virtual environments as there are AGVs and transport
bases. Some of these local virtual environments may have
been synchronized recently with each other, while others
may not. From the agent perspective, the virtual environ-
ment appears as one entity. The synchronization of the state
of neighboring local virtual environments is supported by
the ObjectPlaces middleware [42].

We now illustrate the use of the virtual environment with
a couple of examples.

Routing. For routing purposes, the virtual environment
has a static map of the paths through the warehouse. This
graph-like map corresponds to the layout used by low-level
AGV control software. To allow agents to find their way
through the warehouse efficiently, the virtual environment
provides signs on the map that the agents use to find their
way to a given destination. These signs can be compared to
traffic signs by the road that provide directions to drivers.
At each node in the map, a sign in the virtual environment
represents the cost to a given destination for each outgoing
segment. The cost of the path is the sum of the static costs
of the segments in the path. The cost per segment is based
on the average time it takes for an AGV to drive over the
segment. The agent perceives the signs in its environment,
and uses them to determine which segment it will take next.

Traffic Information. Besides the static routing cost as-
sociated with each segment, the cost is also dependent on
dynamic factors, such as congestion of a segment. To warn
other agents that certain paths are blocked or have a long
waiting time, agents mark segments with a dynamic cost on
a traffic map in the virtual environment. Agents mark the

418 Informatica 29 (2005) 409–421 D. Weyns et al.

traffic map by dropping pheromones on the applicable seg-
ments. When AGVs come in each others neighborhood, the
information of the traffic maps is exchanged and merged to
provide up-to-date information to the AGV agents. Since
pheromones evaporate over time, outdated information au-
tomatically vanishes over time. AGV agents take the in-
formation on the traffic map into account when they decide
how to drive through the warehouse.

Collision Avoidance. AGV agents avoid collisions by
coordinating with other agents through the virtual environ-
ment. AGV agents mark the path they are going to drive
in their environment using hulls. The hull of an AGV is
the physical area the AGV occupies. A series of hulls then
describes the physical area an AGV occupies along a cer-
tain path. If the area is not marked by other hulls (the
AGV’s own hulls do not intersect with others), the AGV
can move along and actually drive over the reserved path.
Afterwards, the AGV removes the markings in the virtual
environment. [51] discusses collision avoidance through
the virtual environment in detail.

In summary, the virtual environment serves as a flexible
coordination medium, which hides much of the distribution
of the system from the agents: agents coordinate by putting
marks in the environment, and observing marks from other
agents. The virtual environment creates opportunities be-
yond a physical environment that situated AGV agents can
exploit.

6 Conclusions and Challenges
There is a growing awareness in the multiagent research
community that the environment plays a crucial role in
multiagent systems. In this paper, we discussed the role
of environments in multiagent systems. Important respon-
sibilities of the environment are: (1) the environment struc-
tures the multiagent system as a whole; (2) the environment
is in charge to managing resources and services; (3) con-
trary to agents, the environment must be observable; (4) the
environment must define concrete means for the agents to
communicate; (5) the environment is responsible to main-
tain ongoing processes in the system; and finally (6) the
environment can define different types of rules on all the
entities in the multiagent system.

The research track on environments is still young and
many issues are open for future research, we have just
started to explore the possible responsibilities of environ-
ments in multiagent systems. The term “environment” is
vague and ill-defined in relation to multiagent systems. An
ongoing research challenge will be developing a clearer un-
derstanding of what we mean by an “environment.” In this
paper we have discussed an initial model for multiagent
systems that considers agents and the environment as first-
order abstractions. These abstractions span the application
logic, the execution platform and the physical infrastruc-
ture of the mutiagent system. However, the exact nature of

the relationship between the agent software, the environ-
ment software, and the software and hardware that make up
the computational substrate needs further clarification. Re-
cent initiatives tackle these and related research questions,
see [14, 34].

The engineering of environments is still in its infancy.
In this paper, we discussed two initial models for engi-
neering environments: artifacts and concern-based modu-
larization. Study of agent-oriented methodologies shows
that current methodologies offer little support for design-
ing environments, a whole domain of work is waiting to be
tackled. From a methodological point of view, the environ-
ment should be considered as a first-order abstraction in de-
sign models and description languages. Initial work in that
direction has been conducted, e.g. [5]. Agent-oriented pro-
gramming has led to the proliferation of frameworks and
development platforms for agents. Recognition of the im-
portance of environments will stimulate extensions to these
tools, or even the development of new tools that can support
environments within which agents from different platforms
can interact. Exploring work in that direction is on its way,
see e.g. [7].

Besides the research work, we have to apply environ-
ments in real-world multiagent system applications. In this
paper, we discussed a practical application and showed how
a virtual environment creates opportunities for agents to ex-
change information and coordinate their behavior in a way
that would be impossible in the physical environment. En-
countering the complexity of real applications will urge us
to invent new ways to exploit environments.

Acknowledgement
We would like to express our appreciation to the attendees
of the workshops on Environments for Multiagent Systems
in New York, 2004 and Utrecht 2005, and the AgentLink
III Technical Forum in Ljubljana, 2005 for the inspiring
discussions that have considerably contributed to the work
presented in this paper. A word of appreciation also goes
to the anonymous reviewers for their usefully comments to
improve this paper.

References
[1] R.C. Arkin. Behavior-based robotics. Massachusetts

Institute of Technology, MIT Press, Cambridge, MA,
USA, 1998.

[2] O. Babaoglu, H. Meling, and A. Montresor. Anthill:
A framework for the development of agent-based
Peer-to-Peer systems. In Proceedings of the 22nd
International Conference on Distributed Computing
Systems, pages 15–22, Vienna, Austria, 2002. IEEE
Computer Society, Digital Library.

[3] S. Bandini, S. Manzoni, and G. Vizzari. A spatially
dependent communication model for ubiquitous sys-
tems. In Weyns et al. [48], pages 74–90.

ON THE ROLE OF ENVIRONMENTS IN. . . Informatica 29 (2005) 409–421 419

[4] F. Bellifemine, A. Poggi, and G. Rimassa. Develop-
ing multi-agent systems with a FIPA-compliant agent
framework. Software - Practice and Experience,
31(2):103–128, 2001.

[5] C. Bernon, M. Cossentino, and J. Pavón. An
Overview of Current Trends in European AOSE Re-
search. In this volume.

[6] E. Bonabeau, F. Henaux, S. Guérin, D. Snyers,
P. Kuntz, and G. Theraulaz. Routing in telecommu-
nications networks with ant-like agents. In Proceed-
ings of the 2nd International Workshop on Intelligent
Agents for Telecommunication a Applications, pages
60–71, Paris, France, 1998. Springer, London, UK.

[7] R. Bordini, L. Braubach, A. El Fallah-Seghrouchni,
M. Dastani, J. Gomez-Sanz, J. Leite, G. O’Hare,
A. Pokahr, and A. Ricci. A survey on languages and
platforms for MAS implementation. In this volume.

[8] J. M. Bradshaw, N. Suri, A. Ca nas, R. Davis,
K. Ford, R. Hoffman, R. Jeffers, and T. Reichherzer.
Terraforming Cyberspace. Computer, 34(7):48–56,
2001.

[9] R. Brooks. Intelligence without representation. Arti-
ficial Intelligence, 47:139Ű–159, 1991.

[10] S. Brueckner. Return from the ant, Synthetic ecosys-
tems for manufacturing control. Ph.D Dissertation,
Humboldt University, Berlin, Germany, 2000.

[11] S. Peyruqueou G. Picard C. Bernon, M. P. Gleizes.
ADELFE: A methodology for adaptive multiagent
systems engineering. In P. Petta, R. Tolksdorf, and
F. Zambonelli, editors, Engineering Societies in the
Agents World III, volume 2577 of Lecture Notes in
Computer Science, pages 156–169, Madrid, Spain,
2003. Springer, Berlin, Heidelberg, Germany.

[12] P. Chang, K. Chen, Y. Chien, E. Kao, and V. Soo.
From reality to mind: A cognitive middle layer of en-
vironment concepts for believable agents. In Weyns
et al. [48], pages 57–73.

[13] R. Conte and C. Castelfranchi, editors. Cognitive and
social action. UCL Press, University College, Lon-
don, UK, 1995.

[14] E4MAS. International workshop series
on Environments for Multiagent Systems.
http://www.cs.kuleuven.ac.be/∼distrinet/
events/e4mas/, 8/2005.

[15] Egemin Modular Controls Concept. EMC 2 project,
Flemish Institute for the Advancement of Scientific-
Technological Research in the Industry, IWT, Bel-
gium. http://emc2.egemin.com/, 8/2005.

[16] J. Ferber. An introduction to distributed artificial in-
telligence. Addison-Wesley, London, UK, 1999.

[17] J. Ferber, O. Gutknecht, and F. Michel. From agents
to organizations: An organizational view of multi-
agent systems. In P. Giorgini, J. P. Müller, and
J. Odell, editors, Agent-Oriented Software Engineer-
ing IV, volume 2935 of Lecture Notes in Computer
Science, pages 214–230, Melbourne, Australia, 2003.
Springer, Berlin, Heidelberg, Germany.

[18] J. Ferber, F. Michel, and J. Baez. AGRE: Integrating
environments with organizations. In Weyns et al. [48],
pages 48–56.

[19] J. Ferber and J. P. Müller. Influences and reac-
tion: A model of situated multiagent systems. In
M. Tokoro, editor, Proceedings of the 2th Interna-
tional Conference on Multi-agent Systems, pages 72–
80, Kyoto, Japan, 1996. American Association for
Artificial Intelligence, AAAI Press, Menlo Park, Cal-
ifornia, USA.

[20] D. Gelernter and D. Carrierro. Coordination lan-
guages and their significance. Communications of the
ACM, 35(2), 1992.

[21] F. Giunchiglia, J. Mylopoulos, and A. Perini. The
TROPOS software development methodology: Pro-
cesses, models and diagrams. In C. Castelfranchi and
W. L. Johnson, editors, Proceedings of the 1st Joint
Conference on Autonomous Agents and Multiagent
Systems, pages 35–36, Bologna, Italy, 2002. ACM
Press, New York, NY, USA.

[22] D. Goldin and D. Keil. Toward domain-independent
formalization of indirect interaction. In Proceedings
of the 13th IEEE International Workshops on En-
abling Technologies: Infrastructure for Collaborative
Enterprises, pages 393–394, Modena, Italy, 2004.
IEEE Computer Society, Digital Library.

[23] A. Gouaich and F. Michel. Towards a unified view
of environment(s) within multiagent systems. In this
volume.

[24] C. Julien and G. C. Roman. Egocentric context-aware
programming in ad hoc mobile environments. In
Proceedings of the 10th Symposium on Foundations
of Software Engineering, pages 21–30, Charleston,
South Carolina, USA, 2002. ACM Press, New York,
NY, USA.

[25] P. Maes. Modeling adaptive autonomous agents. Ar-
tificial Life, 1(1-2):135–162, 1994.

[26] M. Mamei and F. Zambonelli. Programming per-
vasive and mobile computing applications with the
TOTA middleware. In Proceedings of the 2nd In-
ternational Conference on Pervasive Computing and
Communications, pages 263–276, Orlando, Florida,
2004. IEEE Computer Society, Washington, DC,
USA.

420 Informatica 29 (2005) 409–421 D. Weyns et al.

[27] N. Minsky and V. Ungureanu. Law-governed interac-
tion: a coordination and control mechanism for het-
erogeneous distributed systems. ACM Transactions
on Software Engineering Methodologies, 9(3):273–
305, 2000.

[28] P. Noriega and C. Sierra. Electronic institutions: Fu-
ture trends and challenges. In Proceedings of the 6th
International Workshop on Cooperative Information
Agents, volume 2446 of Lecture Notes in Computer
Science, pages 14–17. Springer-Verlag, London, UK,
2002.

[29] J. Odell, V. Parunak, M. Fleischer, and S. Breuck-
ner. Modeling agents and their environment. In
F. Giunchiglia, J. Odell, and G. Weiß, editors, Agent-
Oriented Software Engineering III, volume 2585 of
Lecture Notes in Computer Science, pages 16–31,
Bologna, Italy, 2003. Springer, Berlin, Heidelberg,
Germany.

[30] A. Omicini. SODA: Societies and infrastructures
in the analysis and design of agent-based systems.
In P. Ciancarini and M. Wooldridge, editors, Agent-
Oriented Software Engineering, volume 1957 of Lec-
ture Notes in Computer Science, pages 185–193,
Limerick, Ireland, 2001. Springer, Berlin, Heidel-
berg, Germany.

[31] A. Omicini and E. Denti. From tuple spaces to
tuple centres. Science of Computer Programming,
41(3):277–294, 2001.

[32] A. Omicini, A. Ricci, M. Viroli, C. Cristiano, and
L. Tummolini. Coordination artifacts: Environment-
based coordination for intelligent agents. In N. Jen-
nings, M. Tambe, C. Sierra, L. Sonenberg, S. Par-
sons, and E. Sklar, editors, 3rd Joint Conference on
Autonomous Agents and Multiagent Systems, pages
286–293, New York, NY, USA, 2004. IEEE Com-
puter Society, USA.

[33] A. Omicini and F. Zambonelli. Coordination for In-
ternet application development. Autonomous Agents
and multiagent systems, 2(3):251–269, 1999.

[34] AgentLink Technical Forum Group on En-
vironments for Multiagent Systems.
http://www.cs.kuleuven.ac.be/∼distrinet/
events/e4mas/tfg2005/, 8/2005.

[35] L. Padgham and M. Winikoff. Prometheus: A
methodology for developing intelligent agents. In
F. Giunchiglia, J. Odell, and G. Weiß, editors, Agent-
Oriented Software Engineering III, volume 2585 of
Lecture Notes in Computer Science, Bologna, Italy,
2003. Springer, Berlin, Heidelberg, Germany.

[36] V. Parunak. Go to the ant: Engineering principles
from natural agent systems. Annals of Operations Re-
search, 75:69–101, 1997.

[37] V. Parunak. The AARIA Agent architecture: From
manufacturing requirements to agent-based system
design. Integrated Computer-Aided Engineering,
8(1), 2001.

[38] A. Ricci, A. Omicini, and E. Denti. Activity theory
as a framework for MAS coordination. In P. Petta,
R. Tolksdorf, and F. Zambonelli, editors, Engineer-
ing Societies in the Agents World III, volume 2577 of
Lecture Notes in Computer Science, pages 96–110,
Madrid, Spain, 2003. Springer, Berlin, Heidelberg,
Germany.

[39] A. Ricci and M. Viroli. Coordination artifacts: A
unifying abstraction for engineering environment-
mediated coordination in MAS. In this volume.

[40] A. Ricci, M. Viroli, and A. Omicini. Agent coordi-
nation context: From theory to practice. Cybernetics
and Systems, 2:618–623, 2004.

[41] J. Sauter and V. Parunak. ANTS in the supply chain.
In Proceedings of the Workshop on Agent-Based De-
cision Support Managing Internet-Enabled Supply
Chain, pages 1–9, Seattle, WA, USA, 1999.

[42] K. Schelfthout and T. Holvoet. Views: Customiz-
able abstractions for context-aware applications in
MANETSs. In A. Garcia, R. Choren, C. Lucena,
A. Romanovsky, T. Holvoet, and P. Giorgini, ed-
itors, Software Engineering in Large-Scale Multi-
agent Systems, St. Louis, USA, 2005. ACM Press,
Digital Library.

[43] G. Di Marzo Serugendo, M. P. Gleizes, and A. Kara-
georgos. Self-organisation and emergence in MAS:
An overview. In this volume.

[44] K. Sycara, M. Paolucci, M van Velsen, and J. Gi-
ampapa. The Retsina MAS infrastructure. Au-
tonomous Agents and Multi-Agent Systems, 7(1-
2):29–48, 2003.

[45] L. Tummolini, C. Castelfranchi, A. Omicini, A. Ricci,
and M. Viroli. “Exhibitionists” and “Voyeurs” do it
better: A shared environment for flexible coordina-
tion with tacit messages. In Weyns et al. [48], pages
215–231.

[46] M. Viroli, A. Ricci, and A. Omicini. Engineer-
ing MAS environment with artifacts. In D. Weyns,
V. Parunak, and F. Michel, editors, Proceedings
of 2nd International Workshop on Environments
for Multiagent Systems, pages 1–16, Utrecht, The
Netherlands, 2005.

[47] D. Weyns and T. Holvoet. Formal model for situated
multiagent systems. Fundamenta Informaticae, 63(2-
3):125–158, 2004.

ON THE ROLE OF ENVIRONMENTS IN. . . Informatica 29 (2005) 409–421 421

[48] D. Weyns, V. Parunak, and F. Michel, editors. Pro-
ceedings of the 1st International Workshop on Envi-
ronments for Multi-Agent Systems, volume 3374 of
Lecture Notes in Computer Science, Berlin, Heidel-
berg, Germany, 2005. Springer.

[49] D. Weyns, V. Parunak, F. Michel, T. Holvoet, and
J. Ferber. Environments for multiagent systems,
State-of-the-art and research challenges. In Weyns
et al. [48], pages 1–47.

[50] D. Weyns, K. Schelfthout, and T. Holvoet. Archi-
tectural design of a distributed application with auto-
nomic quality requirements. In D. Garlan, M. Litoiu,
H. M’́ller, J. Mylopoulos, D. Smith, and K. Wong, ed-
itors, Design and Evolution of Autonomic Computing
Software, St. Louis, USA, 2005. ACM Press, Digital
Library.

[51] D. Weyns, K. Schelfthout, and T. Holvoet. Exploit-
ing a virtual environment in a real-world application.
In D. Weyns, V. Parunak, and F. Michel, editors, Pro-
ceedings of 2nd International Workshop on Environ-
ments for Multiagent Systems, pages 1–18, Utrecht,
The Netherlands, 2005.

[52] D. Weyns, K. Schelfthout, T. Holvoet, and T. Lefever.
Decentralized control of E’GV transportation sys-
tems. In M. Pechoucek, D. Steiner, and S. Thompson,
editors, 4th Joint Conference on Autonomous Agents
and Multiagent Systems, Industry Track, pages 67–
75, Utrecht, The Netherlands, 2005. ACM Press, New
York, NY, USA.

[53] D. Weyns, E. Steegmans, and T. Holvoet. Towards
active perception in situated multiagent systems. Ap-
plied Artificial Intelligence, 18(9-10):867–883, 2004.

[54] D. Weyns, G.. Vizzari, and T. Holvoet. "Environ-
ments for multiagent systems: Beyond infrastructure.
In D. Weyns, V. Parunak, and F. Michel, editors, Pro-
ceedings of 2nd International Workshop on Environ-
ments for Multiagent Systems, pages 1–17, Utrecht,
The Netherlands, 2005.

[55] Whitestein Technologies, Living Systems.
http://www.whitestein.com/pages/index.html, 8/2005.

[56] M. Wooldridge and N. Jennings. Intelligent agents:
Theory and practice. The Knowledge Engineering Re-
view, 10(2):115–152, 1995.

[57] F. Zambonelli, N. Jennings, and M. Wooldridge. De-
veloping multiagent systems: The GAIA method-
ology. Transactions on Software Engineering and
Methodology, 12(3):317–370, 2003.

422 Informatica 29 (2005) 409–421 D. Weyns et al.

Informatica 29 (2005) 423–432 423

Towards a Unified View of the Environment(s) within Multi-Agent Systems

Abdelkader Gouaïch
Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
LIRMM, 161 rue Ada, 34392 Montpellier Cedex 5, France
gouaich@lirmm.fr and www.lirmm.fr/∼gouaich

Fabien Michel
Laboratoire d’Etudes et de Recherches Informatiques
LERI, Rue des Crayères, B.P. 1035, 51687 REIMS Cedex 2, France
fmichel@leri.univ-reims.fr and www.univ-reims.fr/Labos/LERI/membre/fmichel

Keywords: MASs, environment, multi-environments

Received: May 6, 2005

Within the Multi-agent systems (MASs) paradigm, the concept of the environment plays a central role.
In fact, the autonomous agents do only exist when they are deployed on an environment. Still, there is
an implicit hypothesis in current trends of the MASs considering that the agents are related to only one
environment that captures all the different aspects of the application domain. In this paper we challenge this
implicit hypothesis by enabling multiple occurrences of the agent-environment relationship. This brings
clarity and modularity for the design and implementation of complex MASs since each environment targets
a specific aspect of the application. Thanks to the proposed characterization of the agent-environment
relationship, the agents are still offered a unified view about all the environments.

Povzetek: Analizira povezave MAS z okoljem in pokaže, da jih je bolje imeti več.

1 Introduction

The paradigm of Multi-agent systems (MASs) naturally
implies the idea that the agents are embedded in an envi-
ronment. Indeed, as J. Odell and colleagues have pointed
out: "without an environment, an agent is effectively use-
less" [11]. In fact, even if designers do not always consider
the environment as a primary abstraction when engineering
MAS applications, the main agency definitions do always
mention that an agent is an entity that is operating in an
environment using perception and action means, see e.g.
[15, 3, 21, 20]. As highlighted in [19], this is even more
obvious when considering situated MASs where the agents
are placed within an environment that may comprise pro-
cesses that do modify the state of the world independently
from the actions of the agents. Consequently, such pro-
cesses are modeled as parts of the environment which is
thus considered as a first-class entity. Recent works have
shown that the environment has clearly a rich potential not
only for situated MASs but for the paradigm of MASs as a
whole [18].

In this paper, we clearly embrace the idea that the envi-
ronment has to be considered as a first order abstraction.
However, the implicit hypothesis stating that all the agents
of a MAS share a common environment has to be re-
vised. Indeed, the agency definitions implicitly propose a
vision where the agents only belong to one and unique en-
vironment that captures all the different aspects of the ap-

plication domain.
Complex MASs often need to define different environ-

ments to capture different aspects of the application do-
main. However, due to the usual single environment view,
this is generally done in an ad hoc manner. This has con-
tributed to the confusion related with the notion of envi-
ronment within MASs. The main goal of this of paper is
to promote the idea that several environments can coexist
within a single MAS application. To achieve this, we pro-
pose to characterize the relationship that maps an agent to
an environment by the following features: (i) ontology of
the environment, (ii) perceptions means, (iii) action means,
(iv) interaction functions and (v) localization function in
case of situated environments.

Once the relationship that links an agent to an environ-
ment has been characterized, it is then possible to consider
multiple occurrences of this relationship between an agent
and several environments. The agents are still offered a
unified view of what is an environment, but each specific
environment has its own way to implement the features of
the agent-environment relationship.

2 Background
In [11], J. Odell and colleagues identify different types of
environments that have been used within MASs applica-
tions. This work clearly identifies that MASs applications,
depending on their application domain, need different kind

424 Informatica 29 (2005) 423–432 A. Gouaïch et al.

of environments. However, J. Odell and colleagues have
studied the characteristics of the environments rather than
studying the characteristics of the relationship that maps
agents to environments. Furthermore, the different classes
of environments were studied and analyzed separately and
the coexistence of several environments within the same
MAS has not been considered.

In [19], D. Weyns and colleagues present the 3-Layer
model which is a first step towards a better understanding
of the different concerns which have to be considered when
studying the environments of MASs. Figure 1 presents
the 3-Layer model that distinguishes between three dif-
ferent classes of environments that exist at three different
layers: (i) the environment of the MAS application layer,
namely the application environment, (ii) the environment
defined by the execution platform (a generic middleware)
and (iii) the environment defined by the physical infrastruc-
ture. This decomposition identifies that there are several
kinds of environments within a single MAS application.
Still it implicitly considers that the agents, at the MAS ap-
plication layer, are in relation with only one single environ-
ment. Furthermore, the relationship between the agents and
their different environments is not studied. In this paper,
we try to characterize this relationship independently from
the layer where the environment is defined. For instance,
the agent-environment relationship is the same for the envi-
ronments that are defined within the application layer and
those defined within the execution platform.

J. Ferber and colleagues were facing a domain of ap-
plication, social simulations, where the autonomous agents
are both situated in a spatial environment and in an orga-
nizational environment. They have developed a model that
includes both the spatial and the organizational aspects in a
single environment, namely the AGRE model [5] (cf. fig-
ure 2). The AGRE model merges the concepts of two as-
pects of the application domain: the organizational aspects
and the spatial and temporal aspects to represent the agents
within a virtual space. But this approach is limited since if
another aspect of the application domain is identified, then
the entire AGRE model has to be revised in order to include
new concepts.

S. Bandini and colleagues propose the Multilayered
Multi-Agent Situated Systems (MMASS) model for the def-
inition of structured environments for situated MASs. The
MMASS model relies on decomposing the environment in
several different layers that represent physical or concep-
tual abstractions, specifying different aspects of the whole
system [1]. Such an approach also highlights the fact that
the environment may be defined according to many differ-
ent aspects. Indeed, MASs may be composed by heteroge-
neous agents that may need different action and perception
means achieving their goals. The MMASS model thus pro-
vides an interesting framework that allows to explicitly take
into account different aspects of the application. Still the
MMASS model focuses on situated MASs aiming to pro-
vide an explicit representation of agent environments and
interaction mechanisms that are strongly dependant on the

position of agents and on the spatial structure of the envi-
ronment.

3 Revising some Assumptions on
Environments

This section presents in an informal manner how some im-
plicit assumptions on environments are revised. The idea
is to start from a well established diagram that shows the
agent-environment relationship. This diagram is then mod-
ified to obtain the vision of the agent-environment pro-
posed in this paper.

Figure 3: The original agent-environment diagram pre-
sented in [15].

Figure 3 shows the original diagram which has been pre-
sented in S. Russell and P. Norvig book [15]. This diagram
gives an idea of what is the relationship between an agent
and an environment. Still, many implicit hypotheses and
assumptions are found in this diagram. The first point con-
cerns where the agent’s actuators and sensors are defined.
Figure 3 situates the actuators and sensors on the side of
the agent. This means that the actuators and sensors are
defined by the ontology of the agent which makes the en-
vironment dependent on the ontology of the agents. This
is not suitable since the environment has to be independent
from the specific model of an agent. In fact, an environment
can hold heterogeneous agents that use different ontologies
and reasoning models.

Figure 4: Defining the action and perception means of the
agent on the environment side.

By contrast to figure 3, figure 4 places the actuators and
sensors of the agent on the environment side. This also in-
troduces the need for the ontology of the environment. In

TOWARDS A UNIFIED VIEW OF THE ENVIRONMENT(S). . . Informatica 29 (2005) 423–432 425

���������
����

����������

��
 ���
�����

�
��

��
���

�
�
��
���

�

�
�

�
��

���
��
��
�

�
��

��
��

��
��
��
��
��
��
��
�

�����

�����������

������� ����������������

�����

�� ����
���

�����������

����������

������� �������������� !�
�����
"����������� ����

�����������
�����

�����

�������� #����

�����������

����������

Figure 1: 3-Layer model for MASs [19].

fact, the actuators and sensors have to be explicitly defined
by the ontology of the environment as means offered to the
agents in order to perceive and act on the environment. The
environment also defines the interaction functions that de-
scribe the relationship between the action means and per-
ception means. In other words, the environment describes
what is the result of the interaction between the actuators
and sensors. It is important to notice that the interaction
has been shifted from the agents to the action and inter-
action means. So, the agents do not directly interact, but
their action and perception means interact within the envi-
ronment.

Figure 5 presents a first step towards a general vision
of the agent-environment relationship. In fact, an agent
can be related to more than one environment. Each envi-
ronment defines its specific ontology, perception and ac-
tion means and interaction functions. If the perception
and action means were not extracted from the agent and
then placed in the environment, as it is the case in figure
3, the multiple instantiation of the agent-environment rela-
tionship would have been more difficult since every envi-
ronment would have to follow the ontology of each agent.

The agent-environment relationship has to be distin-
guished from the means which are offered to the agent
in one of its environment. In fact, any communication
medium that enables the communication between the agent
and the environment can be used. Particularly, some envi-
ronments can be used as communication media. Figure 6
shows this case, where the agent is related to two environ-
ments ’environment 1’ and ’environment 2’. This agent
directly accesses ’environment 1’. However, the access to

Figure 5: Multiple occurrences of the agent-environment
relationship.

’environment 2’ is done through ’environment 1’ which is
considered, in this case, as a communication medium. It
is important to notice that ’environment 2’ is also related
to ’environment 1’ in order to act and retrieve the percep-
tion results. This schema is similar to the 3-Layer model,
where the agents use the ’execution platform’ environment
in order to implement their relation with the ’application
environment’.

426 Informatica 29 (2005) 423–432 A. Gouaïch et al.

Figure 2: The UML meta-model of the AGRE model [5].

Figure 6: Using an environment as a communication
medium to access another environment.

4 Generalizing the
Agent-Environment Relationship

In the previous section, we have seen that there is an im-
plicit hypothesis that considers that the autonomous agents
do exist in a single environment. Consequently, this en-
vironment is supposed to contain all the different aspects
and logics of the MAS application. Still, both from a con-
ceptual point of view and from an engineering point of
view, this hypothesis is inappropriate when dealing with
complex software systems. Moreover, such an approach
does not help to understand the role played by the environ-
ment within the MAS framework. In fact, each application
domain has its own view of what is an environment and
what are the functionalities implemented by an environ-
ment. Current approaches that have faced the problem of
designing a MAS application where the autonomous agents
exist in an environment that captures more than one aspect
of the application domain have suggested to merge these
aspects in a single environment. These approaches are lim-
ited since each time a different aspect of the application do-
main is identified then this aspect is appended to the envi-
ronment in an ad hoc manner. As a result, the environment

centralizes all the different aspects of the targeted applica-
tion. Such an environment contradicts the modularity and
separation of concerns principles which have been proved
to be useful when designing complex software systems.

We suggest an approach that: (i) challenges the implicit
hypothesis that considers only one environment which is
commonly shared by the autonomous agents; (ii) gener-
alizes current approaches that have identified that several
environments are required to capture all the aspects of the
application domain.

Such an approach may seem to contrast with the 3-layer
approach proposed in this volume by D. Weyns and T.
Holvoet, where only one environment crosscuts the three
layers (cf. figure 1) [17]. In fact, such a contrast comes
from the fact that the two approaches do not have the same
objectives: the 3-layer model aims to highlight that sev-
eral concerns have to be taken into account when engineer-
ing environments for MASs. Rather than that, our goal is
to characterize the agent-environment relationship and our
claim is that this relation has to be instantiated as many
times as required. Further study is necessary to clarify the
distinction between the two models.

The problem now is to have a more precise idea of what
is meant by the existence of agents in an environment. Ini-
tially, the term existence was used in [15] by S. Russell and
P. Norvig in order to highlight the central role played by
the environment within the MASs paradigm. However, up
until now there is not a consensual definition of this ex-
istence relationship that links the autonomous agents and
their environments.

4.1 Characterizing the Agent-Environment
Relationship

In order to offer a general approach, we study the rela-
tionship between an agent and an environment rather than
defining a specific model of an environment. Once this re-
lationship has been characterized, then different environ-
ments implement it differently according to the aspect of

TOWARDS A UNIFIED VIEW OF THE ENVIRONMENT(S). . . Informatica 29 (2005) 423–432 427

the application domain which is captured. Thus, the agent
is offered a unified view of the existence relationship that
links the agent to the different environments.

Starting from the state of the art proposed by D. Weyns
and colleagues in [19] and from previous works on the de-
velopment of environments for autonomous agents [8], the
following elements are suggested as a characterization of
the agent-environment relationship:

– the ontology of the environment has to be distin-
guished from the ontology of the agents. In fact, the
environment defines its own concepts and their log-
ics. To operate in an environment, the agents need to
understand some parts of the ontology of the environ-
ment. When the agents use an internal ontology that
differs from the ontology of the environment, it is their
responsibility to map the concepts of their own ontol-
ogy to the ontology of the environment. For instance,
we can conceive the use of cognitive agents, such as
BDI agents, in a spatial grid environment. The ontol-
ogy of the spatial grid environment defines concepts
such as: pheromones, cells, movement, position and
so on. This ontology does not have any concept of
mental states which are present in the BDI model for
instance. So, it is the responsibility of the cognitive
agent to translate the concepts of the spatial grid en-
vironment into some logical predicates which are in-
cluded in its mental states. Obviously, it is not always
easy to translate the concepts defined by the ontology
of the environment into the agent’s ontology. For in-
stance, even if it is theoretically possible to imagine
BDI agents deployed on a spatial grid environment
where they can move and drop pheromones, this is
very hard to achieve in practice as the ontology of the
BDI agents and the ontology of the spatial grid envi-
ronment are dissimilar.

– the perception means are the concepts defined by
the ontology of the environment and that enable the
agents to perceive their surroundings.

– the action means are the concepts expressed by the
ontology of the environment and that enable agents to
influence their surroundings.

– the interaction functions define the relationship be-
tween the action means and perception means. It is
important to notice that the interaction is not defined
between the agents, but between the action and inter-
action means that are defined by the ontology of the
environment.

Besides, for a situated environment, an additional ele-
ment characterizes this agent-environment relationship:

– the localization function is specifically provided by
situated environment. In a situated environment, one
can define the location of an agent in terms of coor-
dinates within the environment. The location of an

agent is also defined as a concept of the ontology of
the environment.

This characterization of the agent-environment relation-
ship offers a unified view of the environments which
are considered either as: (i) an infrastructure or (ii) an
application-level environment.

4.2 Illustrating some Agent-Environment
Relationships

To illustrate the suggested characterization of the agent-
environment relationship, let us consider the review of
some existing environments.

4.2.1 Tuple Spaces

Tuple Spaces (TSs) have been introduced by researchers at
the Yale University where Linda [6] –the first tuple space-
based system– has been developed. A TS system is com-
posed by the following elements:

– a tuple is basically a list of typed fields. Fields may be
actual when they hold a value or formal otherwise.

– a tuple space is an abstract storage location where tu-
ples are deposited and retrieved by the software enti-
ties which are called processes.

– the processes store and retrieve the tuples using the
following primitives:

– out: this primitive inserts a tuple into a tuple
space which becomes visible to all the processes
that have access to that tuple space.

– in: this primitive extracts a tuple from a tuple
space, with its argument acting as the template,
anti-tuple, against which to match. When all the
corresponding fields of a tuple match the tem-
plate the tuple is withdrawn from the tuple space.

– read: this primitive is equivalent to the ’in’, ex-
cept that a matched tuple is not withdrawn from
the tuple space and remains visible to the other
processes.

– eval: this is similar to the ’out’, except that it
creates an independent process yielding the tuple
which is inserted in the tuple space.

The Tuple Space as an Environment

– the ontology of the tuple space defines the concepts
that follow: tuple, anti-tuple, tuple space, out, in, read
and eval. So, in order to exist in a tuple space, an
agent has to understand these concepts and to be able
to translate them into the concepts of its own ontology.

– the action means offered by a tuple space are repre-
sented by the out primitive. In fact, an agent can influ-
ence other agents by putting a tuple within the tuple
space using the out primitive.

428 Informatica 29 (2005) 423–432 A. Gouaïch et al.

– the perception means offered by a tuple space are rep-
resented by the concept of anti-tuple and by the in and
read primitives. So, an agent can perceive within a tu-
ple space by using a template represented by the anti-
tuple as argument for the in or read primitives.

– the interaction functions defined by the tuple space
are the rules that make an anti-tuple matching a tu-
ple. These rules make the link between the action
means and perception means of the agents. Some tu-
ple space architectures such as TuCSoN [12] change
the interaction functions of the tuple spaces and add
some reaction rules in order to dynamically change
the interactions that take place between the tuples and
anti-tuples.

4.2.2 MIC∗

Figure 7: The MIC∗ structure.

MIC∗ is an algebraic model of a MAS infrastructure
holding autonomous and interacting agents [8]. The MIC∗

structure (cf. figure 7) is composed of two matrices where
rows represent the agents i ∈ A and the columns represent
interaction spaces j ∈ S. The elements of both matrices
are called interaction objects. Interaction objects represent
information carriers but also model the interaction means
(i.e. actuators and sensors) of the agents within the system.
Moreover, interaction objects are formally defined so that
their structure is a commutative group (O, +): a composi-
tion of interaction objects is also an interaction object (see
[7] for a complete mathematical description of the MIC∗

model). The outbox matrix and the inbox matrix can be
described as follows:

1. The outbox matrix: each element of the outbox ma-
trix o(i,j) ∈ O is an interaction object that models the
actuators and sensors of the agent i in the interaction
space j. In other words, the elements of the outbox
matrix model the means that enable an agent to per-
ceive and influence the universe in a particular inter-
action space. So, having an interaction object in the
outbox matrix is the only way for an agent to exist and
operate in the MAS. Particularly, when o(i,j) = 0, the
agent i neither influences nor perceives the universe
in the interaction space j: agent i does not exist in j.

Moreover, the means used to perceive the universe are
distinguished from the result of the perceptions. The
perception results are placed in the inbox matrix.

2. The inbox matrix: each element of the inbox matrix
o(i,j) ∈ O represents the result of the perceptions of
the agent i in the interaction space j.

MIC∗ as an Environment

– the ontology of the MIC∗ environment defines the fol-
lowing concepts: interaction object, interaction space,
inbox matrix, outbox matrix, and the operators of
movement, interaction and computation.

– the actions means offered by MIC∗ are represented by
the interaction objects, interaction space, outbox ma-
trix and the computation operator.

– the perception means offered by MIC∗ are represented
by the interaction objects, interaction space, inbox
matrix and the interaction operator.

– interaction functions: MIC∗ defines interaction oper-
ators within the scope of an interaction space to cal-
culate the result of the interaction of an actuator on a
sensor. Both the actuator and the sensor are uniformly
represented as interaction objects. The actuator and
the sensor are located in the outbox matrix and the re-
sult of the interaction is stored in the row correspond-
ing to the sensor in the inbox matrix. Hence, an agent
can retrieve its perception whenever he wants in order
to deliberate and emit other interaction objects.

– localization function: MIC∗ is a situated environment
since each agent owns an identifiable location. This
location is defined by the rows which are occupied
by the agent within the inbox and outbox matrices of
MIC∗.

4.2.3 Spatial Grid Environment

Spatial grid environments have always been considered as
a very useful tool for the modeling of physical environ-
ments within MAS applications, see e.g. [13]. A spatial
grid environment defines a two-dimensional world which
is spatially discretized into cells (or patches) which define
the agents’ location and that contain local environmental
properties such as a pheromone concentration for instance.
MAS platforms such as STARLOGO [14], NETLOGO [16]
or TURTLEKIT [10] are some examples which are explic-
itly based on this kind of environment. Within such envi-
ronments, the agents have the ability to perceive and act on
the environment according to the perception/action means
which are afforded by the cell on which they are: the agents
can move to another cell, perceive the pheromone concen-
tration of the cell and drop some pheromones on the cell.
Additionally, the environment owns some processes that
define the pheromone propagation and evaporation phe-
nomena. It is these processes that define the interaction

TOWARDS A UNIFIED VIEW OF THE ENVIRONMENT(S). . . Informatica 29 (2005) 423–432 429

functions since they enable the agents to coordinate their
behaviours through the environment.

Spatial Grid as an Environment

– the ontology of a spatial grid environment defines
the following concepts: cell, pheromone, propagation
function, evaporation function and movement.

– the action means offered by a spatial grid environment
are represented by the movement actions and the drop
of pheromones.

– the perception means offered by a spatial grid envi-
ronment are afforded by the cell that represents the
current location of an agent.

– the interaction functions defined by a spatial grid en-
vironment maps the intensity of the pheromones to the
locations of the agents. The spatial grid environment
computes the intensity of the pheromones according
to the evaporation and propagation functions.

– localization function: within the spatial grid environ-
ment, each agent is located by the coordinates of the
current inhabited cell.

4.2.4 AGR Organizational Environment

In [4], J. Ferber and O. Gutknecht have proposed the
Agent/Group/Role (AGR) model. The main organizational
concepts of AGR are described as follows:

– agent: an agent represents the active entity that tries
to achieve its design goals by interacting with other
agents.

– group: the organization of the MAS is structured by
groups. A group is defined as a set of agents that play
specific roles. It is important to notice that the agents
can interact by sending messages only when they be-
long to the same group.

– role: the role represents an abstraction of the function
of an agent within a group.

The MadKit platform [9] was then developed as an infras-
tructure that implements the AGR concepts.

AGR as an Environment

– the ontology of the AGR environment defines the con-
cepts of group, role and message.

– the actions means offered by the AGR environment
are represented by the action of acquiring/leaving a
role within a group and by the action of sending a mes-
sage.

– the AGR environment considers the roles played by
the agent as its perception means.

– the AGR environment defines the interaction func-
tions as message routing and delivery. Hence, mes-
sages are delivered to the agents by using the so-
cial position of an agent, namely the role of an agent
within a group.

– localization function: within the AGR environment,
each agent is located by the roles played within
groups.

5 Experiment
This section presents an experiment of a MAS that has been
entirely built using the multi-environments approach. This
MAS is concerned with a social simulation derived from
the SugarScape system [2]. The simulated agents are lo-
cated in a spatial 2D grid that contains some resources. The
resources are consumed by the agents and regenerated after
a period of time. The agents can either move between the
cells of the grid or consume the available resources to aug-
ment their energy. When the energy of the agents reaches
zero these agents die.

Obviously, the simulation of such a system requires the
intervention of other meta-agents that manage the simula-
tion process and dynamically collect the information from
the simulated system at the runtime. Even if these agents
are considered at the meta-level for the SugarScape sys-
tem, they have to be considered as being part of the MAS
since they can change the dynamics of the whole system.
Among the meta-agents that are required for the simula-
tion, we have identified the following:

– the scheduler implements the dynamics of the simula-
tion process. For that, this entity delivers events to the
agents to steer the simulation process.

– the observer collects some information from the spa-
tial grid environment and displays it to the end user.

Figure 8: Agents and their environments in the application.

As presented in figure 8, several environments have been
identified in order to capture the different aspects of the
system. These environments are: (i) the AGR organiza-
tional environment,(ii) the MIC∗ environment, (iii) and the
SugarScape grid environment.

430 Informatica 29 (2005) 423–432 A. Gouaïch et al.

The AGR organizational environment has been pre-
sented in section 4.2.4. This environment holds the sim-
ulated agents and the scheduler. In fact, a special group
named sugarscape is created: the scheduler plays the role
of scheduler within this group and the agents play the role
of simulation_agent.

The MIC∗ environment has been presented in section
4.2.2. This environment is used as an infrastructure and
holds all the agents and other environments. It is impor-
tant to notice that a specific interaction space is associated
to each aspect of the application domain. For instance, a
first interaction space is created to allow the observer to
communicate with the SugarScape spatial environment, a
second interaction space is created between the simulated
agents and the AGR organizational environment and a third
interaction space is created between the scheduler and the
AGR organizational environment.

Finally, the characterization of the SugarScape grid en-
vironment is given as follows:

– the ontology of this environment defines the follow-
ing concepts: location, cell, resource, consumption of
resource, and movement.

– the action means offered by this environment are rep-
resented by the movement actions and the consump-
tion of resources.

– the perception means offered by this environment are
represented by the location of the agents. In fact, ac-
cording to their location the agents can perceive the
available resources within their vicinity.

– the interaction functions defined by this environment
maps the resources to the locations of the agents.
The SugarScape grid environment calculates for each
agent what resources are available within its vicinity.

– localization function: each agent is located within this
environment by the cell that it occupies.

This system has been implemented and the outputs of
the observer agent are presented in figure 9. The process of
building such a MAS that merges several aspects such as:
the management of the dynamics of the simulated system,
the management of the simulation process and the visu-
alization and interpretation of simulation outputs, is made
clearer at both the design and implementation levels. This
is due to the separation of concerns and the modularity
brought by the multi-environments approach. Moreover,
each environment is concerned only with a specific aspect
and can be developed independently from other environ-
ments. To include an additional environment that models
another aspect of the application, one has only to describe
how this environment implements the agent-environment
relationship and to define the set of the deployed agents.
Existing environments have not to be redefined or modi-
fied.

6 Conclusion

In this paper we have challenged an implicit hypothesis of
MASs stating that the agents exist in a single, common and
shared environment.

In fact, an agent can be associated with several environ-
ments. Each environment captures a specific aspect of the
application domain. To reach this point, we have charac-
terized the agent-environment relationship by the follow-
ing: (i) ontology of the environment, (ii) perception means,
(iii) action means and (iv) interaction functions. Besides,
situated environments define another feature which is the
localization function.

Once, the agent-environment relationship has been char-
acterized, it becomes conceivable to allow its multiple in-
stantiation. So, the agents can exist in several and inde-
pendent environments. We have also seen that the agent-
environment relationship has to be distinguished from the
means which are used by an agent to access its environ-
ments. In fact, an agent can exist in an environment A and
use an environment B as a communication medium to ac-
cess A. This is typically the schema that is generally used to
access an application level environment using an infrastruc-
ture environment. Still, all these types of environments are
captured uniformly using the proposed characterization.

From an engineering point of view, the multi-
environments approach brings the necessary modularity
and separation of concerns to build MASs that address
multi-aspects problems and domains. This has been shown
for instance by the SugarScape simulation where several
aspects of the application have to be considered. If the de-
sign models and the implementation of such a system do
not explicitly reflect all these aspects then some parts of the
system would have been implemented in an ad hoc man-
ner. Consequently, it would be impossible to capture the
dynamics of the whole MAS. For instance, if the infras-
tructure was ignored in the presented system, then some
behaviors of the global MAS would be neither explained
nor understood. For instance, the infrastructure, as an en-
vironment, acts actively and influences the dynamics of
the entire MAS. As illustrated by the example, the multi-
environment approach to build MASs can bring an appre-
ciable flexibility within MASs to address complex domains
of applications that are not reducible to only one aspect.

As highlighted by D. Weyns and T. Holvoet in this vol-
ume [17], the engineering of environments for MASs is still
in its infancy and further investigations have to be done
considering the environment as a first order abstraction.
Concerning the multi-environments approach proposed in
this paper, an important research track will be to establish
a classification of agent-environment relationships with re-
spect to the five points which have been identified, enabling
reusability of agent-environment relationship classes both
at the conceptual level and implementation level. For in-
stance, environments that exploit pheromone infrastruc-
tures may be considered as a particular instance of the
physical environment class. So, one of the primary objec-

TOWARDS A UNIFIED VIEW OF THE ENVIRONMENT(S). . . Informatica 29 (2005) 423–432 431

Figure 9: The outputs of the observer during the simulation process.

tives of our future work is to establish a hierarchy of classes
for each part of the agent-environment relationship. Such a
taxonomy is necessary developing a clearer understanding
of what is really beyond the notion of “environments for
MASs”.

References
[1] S. Bandini, S. Manzoni, and G. Vizzari. A Spa-

tially Dependant Communication Model for Ubiqui-
tous Systems. In Weyns et al. [18], pages 74–90.

[2] J. M. Epstein and R. L. Axtell. Growing Artificial
Societies. Brookings Institution Press, Washington
D.C., 1996.

[3] J. Ferber. Multi-Agent Systems: An Introduction to
Distributed Artificial Intelligence. Addison-Wesley
Longman Publishing Co., Inc., 1999.

[4] J. Ferber and O. Gutknecht. A meta-model for the
analysis and design of organizations in multi-agent
systems. In Y. Demazeau, editor, Proceedings of the
1998 International Conference on Multi-Agent Sys-
tems ICMAS98, Cité des Sciences - La Villette, Paris,
France, July 4-7, pages 128–135. IEEE Computer So-
ciety Press, Los Alamitos, CA, 1998.

[5] J. Ferber, F. Michel, and J.-A. Báez-Barranco. AGRE:
Integrating Environments with Organizations. In
Weyns et al. [18], pages 48–56.

[6] D. Gelernter. Generative communication in Linda.
ACM Transactions on Programming Languages and
Systems, 7(1):80–112, 1985.

[7] A. Gouaïch. Movement, Interaction, Calculation as
Primitives for Everywhere and Anytime Computing.
PhD thesis, Université Montpellier II, Montpellier,
France, 2005.

[8] A. Gouaïch, F. Michel, and Y. Guiraud. MIC∗: A
deployment environment for autonomous agents. In
Weyns et al. [18], pages 109–126.

[9] O. Gutknecht, J. Ferber, and F. Michel. Integrat-
ing tools and infrastructures for generic multi-agent
systems. In E. André, S. Sen, C. Frasson, and J. P.
Müller, editors, Proceedings of the fifth international
conference on Autonomous agents, AA 2001, Mon-
treal, Quebec, Canada, May 28-June 1, pages 441–
448. ACM Press, New York, NY, USA, 2001.

[10] F. Michel. An Introduction to TurtleKit : a Plat-
form for Building Logo Based Multi-Agent Simula-
tions with MadKit. Technical Report RR LIRMM
002215, Laboratoire d’Informatique de Robotique
et de Microélectronique de Montpellier, LIRMM,
CNRS, Montpellier, 2002.

[11] J. Odell, H. V. D. Parunak, M. Fleischer, and
S. Brueckner. Modeling agents and their environ-
ment. In F. Giunchiglia, J. Odell, and G. Weiss, edi-
tors, Agent-Oriented Software Engineering III: Third
International Workshop, AOSE 2002, Bologna, Italy,
July 15, 2002. Revised Papers and Invited Contribu-
tions, volume 2585 of Lecture Notes in Computer Sci-
ence LNCS, pages 16–31. Springer, Berlin, 2003.

[12] A. Omicini and F. Zambonelli. TuCSoN: a coordina-
tion model for mobile information agents. In D. G.
Schwartz, M. Divitini, and T. Brasethvik, editors, 1st

432 Informatica 29 (2005) 423–432 A. Gouaïch et al.

International Workshop on Innovative Internet Infor-
mation Systems (IIIS’98), Pisa, Italy, June 8–9, pages
177–187. IDI – NTNU, Trondheim (Norway), 1998.

[13] M. Pollack and M. Ringuette. Introducing the Tile-
world: experimentally evaluating agent architectures.
In T. Dietterich and W. Swartout, editors, Proceedings
of the Eighth National Conference on Artificial Intel-
ligence, Boston, MA, July 29–August 3, 1990, pages
183–189. AAAI Press, Menlo Park, CA, 1990.

[14] M. Resnick. Turtles, termites, and traffic jams: ex-
plorations in massively parallel microworlds. MIT
Press, Cambridge, MA, 1994.

[15] S. J. Russell and P. Norvig. Artificial Intelligence: A
Modern Approach. Prentice-Hall, Englewood Cliffs,
NJ, 2nd edition, 2003.

[16] The NetLogo system.
http://ccl.northwestern.edu/netlogo/ (date of last ac-
cess: 2005/08/25).

[17] D. Weyns and T. Holvoet. On the Role of Environ-
ments in Multiagent Systems. In this volume.

[18] D. Weyns, H. V. D. Parunak, and F. Michel, edi-
tors. Environments for Multi-Agent Systems, First In-
ternational Workshop, E4MAS 2004, July 19, 2004,
New York, NY, USA, Revised Selected Papers, volume
3374 of Lecture Notes in Computer Science LNCS.
Springer, Berlin, 2005.

[19] D. Weyns, H. V. D. Parunak, F. Michel, T. Holvoet,
and J. Ferber. Environments for Multiagent Systems:
State-of-the-Art and Research Challenges. In Weyns
et al. [18], pages 1–47.

[20] M. Wooldridge and P. Ciancarini. Agent-Oriented
Software Engineering: The State of the Art. In
P. Ciancarini and M. Wooldridge, editors, Agent-
Oriented Software Engineering: First International
Workshop, AOSE 2000, Limerick, Ireland, June 10,
2000. Revised Papers, volume 1957 of Lecture Notes
in Computer Science LNCS, pages 1–28. Springer,
Berlin, 2001.

[21] M. Wooldridge and N. R. Jennings. Intelligent agents:
Theory and practice. The Knowledge Engineering Re-
view, 10(2):115–152, 1995.

Informatica 29 (2005) 433–443 433

Coordination Artifacts: A Unifying Abstraction for Engineering
Environment-Mediated Coordination in MAS

Alessandro Ricci and Mirko Viroli
DEIS, Alma Mater Studiorum–Università di Bologna
47023 Cesena (FC), Italy
E-mail: {a.ricci,mirko.viroli}@unibo.it

Keywords: Multi-Agent System Coordination, Multi-Agent System Environment, Multi-Agent System Engineering,
Coordination Artifacts

Received: May 10, 2005

Similarly to human organizations, where the environment plays a fundamental role in supporting social
activities, the environment of a multi-agent system (MAS) is the natural place where understanding and
designing agent coordination. Accordingly, we propose the notion of coordination artifact as a unifying
abstraction for engineering environment-based coordination of agents. This is meant to capture at the MAS
level abstractions and concepts like services, tools, and artifacts, which are typically shared and exploited
by the collectivity of individuals for achieving individual as well as global objectives. In this work we
describe this framework, by defining a model for the coordination artifact abstraction, and discussing the
infrastructures and technologies currently available for engineering MAS applications with coordination
artifacts.

Povzetek: Zajema enotno abstrakcijo inženirskega okolja v MAS z namenom koordinacije.

1 Introduction
Direct interaction and explicit communication are not al-
ways the best approaches to achieve coherent systemic
behaviour in the context of MAS and agent societies.
This is quite evident when taking into account the main
approaches dealing with environment-based coordination
such as stigmergy and, more generally, mediated interac-
tion frameworks and infrastructures based on forms of co-
ordination / cooperation without direct communication (see
[43] for a recent survey).

Mediated interaction and environment-based coordina-
tion are highly debated also in other research fields outside
MAS and CS, where collaborative and cooperative activi-
ties are studied in complex social contexts: notable exam-
ples are CSCW (Computer Supported Cooperative Work)
and HCI Ê(Human Computer Interaction) [36], recently fo-
cussing on cognitive and social theories which explicitly
take into account the role of environment in coordination,
such as Distributed Cognition [15] and Activity Theory
[19]. There, a relevant issue is to understand what makes
an environment a good place for actors to work together: Ê

How to design the agent environment to suitably support
the social activities of a possibly open agent society?

This question can be considered of primary impor-
tance also in MAS, and it involves issues that are not
fully considered by current approaches dealing with
coordination through the environment. In particular:

“Not only ants” | Approaches dealing with environment-

based coordination typically consider reactive agents,
either embedding all the intelligence into the envi-
ronment or obtaining it as emergent phenomenon
(well known examples are stigmergy coordination
and swarm intelligence [28, 38, 3]). Here instead
we are interested on the one side devising an envi-
ronmental support that can be useful to amplify the
intelligence of individual agents, possibly exploiting
their cognitive capabilities. On the other side, we are
interested in considering intelligence not only as an
emergent phenomenon, but promoting the engineer-
ing of intelligence by designing and building suitable
environmental abstractions.

“Not only special-purpose coordination” | Existing
environment-based approaches to coordination —
such as stigmergy — typically provide solutions only
to specific coordination problems, without the ab-
straction required to use and systematise coordination
in the wide range of social activities. Here instead we
are interested in conceiving general purpose environ-
ment abstractions that could be suitably specialised
and dynamically configured / tuned for addressing
specific and heterogeneous coordination activities.

“Toward engineering” | Frequently, investigations in lit-
erature only concern simulation and abstract models
(a notable exception can be found in [13], where a
model for situated MAS is provided for the engineer-
ing of systems). Here we are interested instead in
methodologies and infrastructures, i.e. in identify-
ing models, languages, architectures and middleware

434 Informatica 29 (2005) 433–443 A. Ricci et al.

technologies to be exploited at the design stage in
agent oriented software engineering, as well as for de-
velopment and online management of MAS.

In this paper we describe the conceptual and engineering
framework based on the notion of coordination artifact,
which aims at addressing the above issues. The framework
provides a systematic view of environment-based coordi-
nation for general coordination problems, and extends the
scope of applicability to heterogeneous, cognitive / intel-
ligent agents. Coordination artifacts are runtime abstrac-
tions encapsulating and providing coordination services, to
be exploited by agents within a given social context. They
can be exploited then as basic building blocks for designing
and developing suitable working environments for hetero-
geneous multi-agent systems, supporting their coordination
for collaboration or competition. Accordingly, coordina-
tion artifacts can be considered a kind of first-order envi-
ronmental abstractions or modules as defined in the paper
[42], part of this special issue.

We here gather the main results of our previous investi-
gations [43, 24, 40], and provide a self-contained descrip-
tion of the role of coordination artifacts in the engineer-
ing of MAS environments. In particular, the remainder of
the paper is organised as follows. Sect. 2 recalls the con-
ceptual framework inspired by Activity Theory, as a back-
ground for the approach described in the paper, focussing
on the importance of the environment in supporting social
activities. Sect. 3 presents in detail the coordination arti-
fact abstraction, along with its main properties and Sect. 4
remarks the impact of the framework on MAS engineering.
Then, Sect. 5 discusses the framework as a unifying tool
for understanding environment-based approaches in gen-
eral, and in particular focuses on TuCSoN as a model /
infrastructure / technology supporting the main features of
the coordination artifact approach. Finally, related works
are discussed in Sect. 6 and conclusions in Sect. 7.

2 Environment and Activity Theory
The environment support for both the analysis and the de-
velopment of activities in complex systems — such as hu-
man society — is among the main issues studied by socio-
psychological approaches such as Activity Theory (AT)
and Distributed Cognition.

Activity Theory, defined also Cultural-Historical Activ-
ity Theory, is a social psychological theory initiated with
the work of Lev Vygotsky (1926–62) in the context of
Soviet Psychology (SP) [41]. From its origins, AT was
furthered in the Soviet Union by Vygotsky’s students —
Alexey Leontiev in particular — in the first half of the 20th
century. It then spread also outside the Soviet Union, first
to Scandinavia and Germany and finally — at the end of the
1990s — to the United States. Nowadays it has been ap-
plied also in the context of computer science related fields,
such as Computer Supported Cooperative Work (CSCW)
and Human Computer Interaction (HCI) (see [19] for a sur-

vey).

AT is a very general framework for conceptualising hu-
man activities — how people learn and society evolves —
based on the concept of human activity as the fundamen-
tal unit of analysis. The approach was developed in con-
trast to purely cognitive approaches which were dominat-
ing the first years of the 20th century: according to them,
human individual and social activities could be analysed
and understood focussing only on the internal (mentalis-
tic) representation of the individuals, in other words on the
individual information-processing capabilities. On the con-
trary, the basic inspiration principle of AT is the principle
of unity and inseparability of consciousness (human mind)
and activity: human mind comes to exist, develops, and
can only be understood within the context of a meaning-
ful, goal-oriented, and socially determined interaction be-
tween human beings and their material environment. From
the beginning, a fundamental aspect for AT was the inter-
action between the individuals and the environment where
they live, in other words their context. After an initial fo-
cus on the activity of the individuals, the AT research has
evolved toward the study of human collective work and so-
cial activities, then facing issues such as the coordination
and organisation of activities in human society.

Here the investigation of AT is of particular relevance be-
cause it remarks the fundamental role of the environment in
the development of complex systems. According to AT any
activity carried on by one or more components of a systems
— individually or cooperatively — cannot be conceived or
understood without considering the tools or artifacts medi-
ating the actions and interactions of the components. Ar-
tifacts on the one side mediate the interaction between in-
dividual components and their environment (including the
other components), on the other side embody the part of the
environment that can be designed and controlled to support
components’ activities. Moreover, as an observable part of
the environment, artifacts can be monitored along the de-
velopment of the activities to evaluate overall system per-
formance and keep track of system history. In other words,
mediating artifacts become first-class entities for both the
analysis and synthesis of individual as well as cooperative
working activities inside complex systems.

The complexity of the activities of the social systems fo-
cussed by AT can be found nowadays in MAS and agent so-
cieties. With analogous consideration, we consider it fun-
damental to frame the role of the environment for the anal-
ysis and synthesis of social activities inside MAS, and in
particular of the artifacts mediating such activities. In this
work we describe the framework of coordination artifacts
as an approach to systematise this vision and make it effec-
tive for the engineering of systems as MASs — from de-
sign to development and runtime, including their dynamic
observation and management.

COORDINATION ARTIFACTS: A UNIFYING. . . Informatica 29 (2005) 433–443 435

3 The Coordination Artifact
Abstraction

Coordination artifacts can be conceived as persistent en-
tities specialised in providing a coordination service in a
MAS [33, 24]. The term coordination should be here un-
derstood in its most general sense, as the management of
dependencies among separate activities [16], shaping and
constraining the (agent) interaction space [5]. Coordina-
tion artifacts are infrastructural abstractions meant to im-
prove coordination activities automation; they can be con-
sidered then as basic building blocks for creating effective
shared collaborative working environments, alleviating the
coordination burden for the involved agents. Human soci-
ety is full of entities like coordination artifacts, engineered
by humans in order to support and automate coordination
activities: examples range from blackboards, maps, sched-
ulers and paper trays, to traffic lights, clocks, and so on.
These and other kinds of computerised artifacts are cur-
rently under investigation in the context of CSCW and cog-
nitive sciences, where their importance in supporting hu-
man individual and cooperative activities is being recog-
nised [37, 32].

Basically, a coordination artifact (i) entails a form of me-
diation among the agents using it, and (ii) effectively em-
beds and enact some coordination policy. Accordingly, two
basic aims can be identified: (i) constructive, as an abstrac-
tion essential for creating and composing social activities,
(ii) normative, as an abstraction essential for ruling social
activities.

3.1 A First Model
Also taking inspiration from our society, a basic abstract
model can be devised, where a coordination artifact fea-
tures:

– a usage interface, defined in terms of a set of opera-
tions. Agents use coordination artifacts by executing
operations provided by the artifact, and by eventually
perceiving information about the operation comple-
tion. Notice that due to the nature of coordination ar-
tifacts and their interaction schema, agent actions ex-
ecuting operations are more similar to practical acts
rather than communicative acts — which makes our
approach sensibly different from direct, ACL-based
interaction;

– a set of operating instructions. This information de-
scribes (formally) how to use the artifact in order to
exploit its coordination service. For instance, oper-
ating instructions might specify the protocol of inter-
actions to be used, and the mentalistic semantics of
actions and perceptions [40];

– a coordinating behaviour specification. This informa-
tion describes (formally) the coordinating behaviour
of the artifact, in terms of coordination rules required
for enacting the coordination service.

In particular, taking the agent viewpoint, to exploit a co-
ordination artifact simply means to follow its operating in-
structions, on a step-by-step basis. It is worth noting that,
since a considerable coordination burden can be charged
upon the artifact and be hidden from the agents, operating
instructions are generally quite simple when compared to
the interactive behaviour required in the case of direct com-
munication (protocols). Hence, our approach to interaction
can be fruitfully leveraged by intelligent agents, which can
exploit an artifact through its operating instructions so as to
take part to complex coordination scenarios.

A simple but effective example of coordination artifact
is a task scheduler in cooperative working environments,
which can be found in concurrent systems as well as in hu-
man society. The coordination problem concerns ruling the
order of execution of a dynamic set of tasks taken in charge
by some agents, according to some scheduling policy. A
coordination artifact can be designed to provide one such
scheduling service. A possible usage interface would con-
sist — for instance — in two basic operations1:

– taskStart(-Token), to manifest agent intent to start ex-
ecuting the task. The completion of the operation
means that the agent can start the task according to
the scheduling policy of the artifact. A token is re-
turned to the agent for identifying its activity;

– taskCompleted(+Token), to signal the completion of
the task.

Operating instructions simply consist in: first, invoking
the taskStart operation to manifest the intention to start a
task; then, invoking taskCompleted to signal the comple-
tion of the task. The coordinating behaviour of the artifact
concerns the enactment of the scheduling policy, queueing
requests and serving them according their position in the
queue — for instance using a FIFO policy.

We conclude this section remarking both the philosophi-
cal / conceptual and engineering difference between agents
and coordination artifacts. Agents are goal-governed /
goal-oriented entities, and accordingly agent models / lan-
guages / architectures are suitable for defining pro-active
and autonomous behaviour of agents. Coordination arti-
facts are function-oriented entities, i.e. entities designed to
provide some kind of functionality or service. From this
point of view, coordination artifacts are much more similar
to objects as found in the object-oriented paradigm: dif-
ferently from agents, they have a well-defined interface,
providing operations that can be invoked by agents. On
the contrary, agents do not provide interfaces with opera-
tions that can be invoked from external entities. More on
this point can be found in [35, 39], where a generalisation
of the notion of coordination artifact is introduced — the
artifact abstraction —, representing any device populating
agent working environments and that can provide function-
alities other than coordination.

1The basic Prolog notation is adopted for describing argument of op-
erations: + means an output argument, - an input argument, ? an input /
output argument.

436 Informatica 29 (2005) 433–443 A. Ricci et al.

3.2 Basic Properties

Generally speaking, as devices exploited by agents to
support their coordination activities, coordination artifacts
have some basic properties which are indeed different
from autonomy, pro-activeness, reactivity, and social abil-
ity which characterise instead the agent abstraction [44]:

Focus on interaction management | Coordination artifacts
are specialised in automating coordination activities.
For this purpose, they typically adopt a computa-
tional model suitable for effective and efficient inter-
action management, whose semantics can be easily
expressed with concurrency frameworks such as pro-
cess algebras [2] or Petri nets [31], see e.g. the work
in [40].

Encapsulating coordination | Coordination artifacts en-
capsulate a coordination service, allowing user agents
to abstract from how the service is implemented. As
such, a coordination artifact is perceived as an indi-
vidual entity, but actually it can be distributed on dif-
ferent nodes of the MAS infrastructure, depending on
its specific model and implementation. Encapsulation
is the key to achieve reuse of coordination. Agent
society engineers can create and exploit handbooks
or catalogs of coordination artifacts, embodying the
solutions to general coordination problems in organi-
sations, analogously to an handbook of handbook of
organisation/coordination processes [17]. Also, a co-
ordination artifact provides a certain quality of coor-
dination, in particular in terms of the scalability with
respect to the dimensions identified by Durfee in [11],
which are related to performance, robustness, reliabil-
ity, and so on. The description of such dimensions is
important to identify the range of applicability of the
artifact in the engineering of agent societies.

Malleability | Coordination artifacts are meant to support
coordination in open agent systems, characterised by
unpredictable events and dynamism. For this purp-
sose, their coordinating behaviour can be adapted
and changed dynamically, either (i) by engineers (hu-
mans) willing to sustain the MAS behaviour, or (ii)
by agents responsible for managing the coordination
artifact, with the goal of flexibly facing possible co-
ordination breakdowns or improving the coordination
service provided.

Inspectability and controllability | A coordination artifact
typically supports different levels of inspectability:
(i) inspectability of its operating instructions and co-
ordinating behaviour specification, in order to let user
agents to be aware of how to use it or what coordi-
nation service it provides; (ii) inspectability of its dy-
namic state and coordinating behaviour, in order to
support testing and diagnosing (debugging) stages for
the engineers and agents responsible of its manage-
ment. Controllability is also fundamental for runtime
management of a coordination artifact, by making it

possible to freeze its behaviour, to trace it, support-
ing step-by-step execution while watching its state, to
restart it, and so on. So, from an operational point
of view, a coordination artifact can be understood
as a sort of virtual machine of coordination, execut-
ing some form of coordination specification, fully in-
spectable and controllable by coordination artifact ad-
ministrators [21].

Linkability | This term is borrowed from coordinative ar-
tifacts studied in the context of CSCW [36]. It refers
to the capability of linking artifacts together, in or-
der to support a dynamic form of composition useful
to scale with coordination activity complexity. This
property is fundamental for supporting also the sce-
narios depicted in the paper [14] in this special issue,
where multiple environments are considered and an
environment can act as a medium for agents to inter-
act with an other environment. Analogously, a coor-
dination artifact can be used by an agent as a (coordi-
nation) medium to interact with other artifacts, which
are linked to the first one.

Spatial extension | Differently from agents, coordination
artifacts can have a spatial / topological extension,
meaning that — in a MAS model with some topolog-
ical structure — the same artifact can be present (si-
multaneously) in different nodes of the topology. In
other words, while typically in a MAS a single agent
cannot be distributed (it is located on a specific node
of the MAS), on the contrary a single artifact can be
distributed among different nodes of a MAS.

Summing up, coordination artifacts are conceived to be
engineering abstractions used for designing, building and
supporting at runtime coordination in agent societies, suit-
ably instrumenting their dynamic working environment.
Also, they can be useful to support forms of scientific in-
vestigation of collective behaviours. As mediating enti-
ties, coordination artifacts typically reify and manage agent
communication events; accordingly, they can be used to
trace and log the overall interaction behaviour of the agent
societies exploiting them. Thus, they can act as kinds of
social memory, which can then be inspected for possible
scientific analysis about global behaviours.

4 Engineering Social Activities

The introduction of coordination artifacts impacts the
methodology adopted for engineering social activities in
agent societies. Taking inspiration from Activity Theory,
we can identify three different stages characterising any so-
cial activities supported by coordination artifacts (see Fig.
1):

Co-construction | In this stage, engineers and scientists
understand and reason about the social objectives of
the society, and define a model of the social tasks

COORDINATION ARTIFACTS: A UNIFYING. . . Informatica 29 (2005) 433–443 437

co-construction

co-operation

co-ordination

Identifying the social

objectives and tasks

Designing and building the

coordination artifacts for

social task achievement

Using the

coordination artifacts

Figure 1: Levels of a social activities

required to achieve them. This implies understand-
ing the shape of the agent interaction space, by pos-
sibly identifying also the dependencies that need to
be managed (dependency detection is a fundamental
aspect of coordination, according to the theory of co-
ordination [16] and to cognitive theories of agent so-
cieties [6]).

Co-operation | In this stage, society engineers — and pos-
sibly intelligent agents — design and build the co-
ordination artifacts according to the objective identi-
fied in the previous stage (co-construction). This im-
plies understanding how to manage the dependencies
previously identified, and defining a coordinating be-
haviour useful for that purpose. A model of coordi-
nation artifact must be chosen, according to its ability
of embedding and enacting the required coordinating
behaviour.

Co-ordination | In this stage, coordination artifacts are ex-
ploited, supporting the execution of the social activ-
ity. Here, the focus is on the efficient execution and
automation of the coordination activities.

As in the case of AT, the three levels are distinct analyti-
cal moments that can be applied continuously, since a so-
cial activity is considered to be always under development,
given the intrinsic openness of the environment and the dy-
namism of organisations.

4.1 Activity Levels as Engineering Stages
Activity Theory is primarily used as an analytical tool
for understanding collaborative work in complex organi-
sational contexts, and as a design tool to improve them. In
such contexts, AT makes it possible to face the social com-
plexity first by separating individual and collective activi-
ties, then by identifying and designing the artifacts required
to support both of them.

Along this line, we can devise a correspondence between
the three collaborative stages in Fig. 1, and the engineering
stages as typically found in (agent-oriented) software engi-
neering methodologies, i.e., analysis, design, development

and deployment / runtime. Generally speaking, individual
and social tasks are identified and described in the analysis
and design stages of such methodologies. Each individual
task is typically associated with one specific competence
of the system. Each agent in the system is assigned to one
or more individual tasks, and assumes full responsibility
for their correct and timely completion. From an organisa-
tional perspective, this corresponds to assigning each agent
a specific role in the organisation. Conversely, social tasks
represent the global responsibilities of the agent system.
In order to carry out such tasks, several possibly heteroge-
neous competences usually need to be combined. The de-
sign of social tasks leads to the identification of global so-
cial laws that have to be respected / enforced by the society
of agents, to enable the society itself to function properly
and in accordance with the expected global behaviour.

Given this picture, it is possible to identify a correspon-
dence between the analysis stage (where individual and
social tasks are identified) and the co-construction level,
where the social objectives of the activities are shaped.
Then, the identification of the social laws required to
achieve the social tasks can be seen as a first step in the
co-operation level. This level roughly corresponds to the
design and development stages of the engineering process:
coordination artifacts are the abstractions which make it
possible to design and develop social tasks. At the co-
operation level such artifacts are designed and developed to
embody and enact — as governing abstractions provided by
the infrastructure — the social laws and norms previously
identified. Finally, the deployment and runtime stages cor-
respond to the co-ordination level, when the coordination
artifacts are instantiated and exploited.

The dynamism among the levels, that are compared here
to the engineering stages of a system, promote then a new
approach in the engineering of MASs that we can call
here online engineering: coordination artifacts can be re-
designed, manipulated, tested, debugged, analysed dynam-
ically, at runtime. In order to support the online engineer-
ing methodology two aspects are essential: first, working
with abstractions featuring suitable properties such as in-
spectability, controllability and malleability, which are nec-
essary for their online analysis and synthesis; second, de-
signing and building infrastructures that support services
enabling, access and exploitation (co-ordination stage), and
tools for their inspection, control, adaptation (co-operation
stage) — see Sect. 4.3.

4.2 The Organisation Perspective:
Structuring the Working Environment

Coordination artifacts can be suitably used in a structured
and ruled organisation. Coordination artifacts become the
entities around which the social activities are built, induc-
ing a natural form of organisation structuring and mod-
elling. By abstracting from details, several independent
collaborative and cooperative activities are carried over in-
side an organisation, each one charged upon a group of

438 Informatica 29 (2005) 433–443 A. Ricci et al.

agents and a suitable coordination artifact. The same co-
ordination artifact can be used in different ways according
to the roles of the agents: moreover, operating instructions
can be in principle partitioned according to the role of the
agent using the artifact.

Following the organisation perspective, coordination ar-
tifacts are the key to shape agent working environment, as
(i) tools for pure coordination, and (ii) interfaces mediat-
ing and coordinating agent access to the resources and the
services provided by the environment itself. As mediating
interfaces, coordination artifacts can encapsulate the poli-
cies for resource management, involving the coordination
of both the users and the resources or the providers of the
services.

The two issues above point out the fundamental role
of artifacts in the design and construction of an effective
working environment, supporting agent activity toward the
achievement of their individual and social tasks. This is
particularly relevant in the context of cognitive theories ap-
plied for CSCW, such as Distributed Cognition [15]. In
the design and construction of a good working environ-
ment for the organisation, the tension between subjective
and objective approaches emerges again in terms of the di-
chotomy between flexibility — the capability of individu-
als to adapt to contingent situations — and automation —
the capability of making the execution of activities fluid.
On the one side, given the complexity and the openness of
agent organisations, a working environment keeps evolv-
ing and requires flexibility in order to allow for supporting
changes and adaptations. The lack of flexibility dramati-
cally impacts on all system activities. On the other side, a
good working environment should assist workers as much
as possible in their coordination, providing services to alle-
viate their coordination burden and let them focus on their
individual work. The lack of system coordination typically
makes organisations unable to govern the complexity of the
activities: the final result is typically a weak control of ac-
tivities, and poor performances in their execution.

4.3 Toward Infrastructures for
Coordination Artifacts

Coordination artifact infrastructures (or middlewares) pro-
vide services for their access and use, effectively support-
ing the co-operation and co-ordination levels, and the re-
flection / reification transitions. Services range from ar-
tifacts creation and discovery to inspection and dynamic
adaptation of their state and coordinating behaviour. Re-
ferring to the 3-Layer Model defined in [42], a coordina-
tion artifact infrastructure is part of the Execution Platform
layer — at the Middleware level — while coordination ar-
tifacts themselves are specialised and used at the MAS Ap-
plication Layer, programmed according to the application
specific logic.

In the overall, coordination artifacts can be seen then as a
fundamental abstraction for governing infrastructures [22],
i.e. infrastructures providing flexible and robust abstrac-

tions to model and shape the agent interaction space, ac-
cording to the social and normative objectives of systems.

Infrastructures also represent an effective approach to
the general problem of formalisability of complex systems,
which may come either for pragmatical or theoretical is-
sues. By their very nature, infrastructures intrinsically en-
capsulate key portions of systems — often in charge of
the critical system behaviour. In this case, governing in-
frastructures encapsulate agent interaction and coordina-
tion through coordination artifacts. As a result, providing
well-specified infrastructures, and in particular formally-
defined coordination artifacts promotes the discovery and
proof of critical system properties. Most notably, a system
property can be assessed at design-time through the formal
definition of some design abstraction. Then, by ensuring
compliance of the corresponding run-time abstraction pro-
vided by the infrastructure, such a property can be enforced
at execution time and be automatically verified for any sys-
tem based on the infrastructure.

5 A Unifying Abstraction for MAS
Environment-based Coordination

The notion of coordination artifact can be considered as
a unifying abstraction from different point of views. On
the one side, one of the main roles of coordination arti-
facts is as engineering tools for directly designing and de-
veloping building blocks, specialised to provide coordina-
tion functionalities (the glue) — general-purpose enough
to be suitably programmed and configured according to the
specific coordination problems to be solved. On the other
side, as the agent abstraction is meant to unify all the spe-
cific approaches dealing with autonomous, pro-active and
goal-governed / oriented behaviour, the coordination arti-
fact abstraction can be used to represent any first-class de-
vice supporting interaction through agents. Accordingly,
any device could be described in terms of a coordination
artifact with a specific usage interface, a coordinating be-
haviour and possibly some operating instructions.

Among the main example, the pheromone infrastructure
in stigmergy-based coordination approaches ([29] for in-
stance) can be described as a coordination artifact, provid-
ing as a usage interaface operations for deposit and sens-
ing pheromones, and with a coordinating behaviour de-
fined by the diffusion / aggregation / evaporation law of
pheromones. The notion of coordination artifact can be
used as a theoretical foundation to these approaches, iden-
tifying and generalising environmental entities which are
not described as agents.

Another example is given by e-Institutions [12], that are
middlewares where agent interaction is governed and ruled
by norms imposed by the Institution, as an entity external
to the agents. The institution can be modelled as a coor-
dination artifact, with the coordinating behaviour specified
by the norms ruling agent communication.

Coordination media introduced in the context of coordi-

COORDINATION ARTIFACTS: A UNIFYING. . . Informatica 29 (2005) 433–443 439

Internet

Node

Internet

Node

Internet

Node
...

Tuple

centre

X

Tuple

centre

Y

Tuple

centre

Z

TuCSoN Middleware

...

Coordination Infrastructure

layer

Virtual environment layer,

composed by tuple centres

as coordination artifacts

Network layer

Figure 2: A logical view of TuCSoN infrastructure. The
view is analogous to the 3-Layer model defined in [42]

nation models and languages (examples are tuple spaces,
channels, etc. see [27] for a survey) can be described at the
agent level as coordination artifacts: coordination primi-
tives define the usage interface and the coordinating be-
haviour is defined by the coordination law defining the se-
mantics of coordination media.

It is worth noting that these examples do not provide any
explicit idea of operating instructions, which is instead a
main property of coordination artifacts and fundamental for
supporting intelligent agent coordination in open environ-
ment. This reveals an intrinsic inadequacy of existing ap-
proaches in filling the gap between agent rationality and
environment-based coordination — see [40].

5.1 A concrete example: TuCSoN

As a concrete example of a model / infrastructure bringing
some of the main principles that characterise the coordi-
nation artifact framework, here we consider the TuCSoN
coordination infrastructure for MASs [26] 2.

The infrastructure enables agent interaction and coordi-
nation by means of tuple centres, which can be consid-
ered as a kind of coordination artifact. Technically, tuple
centres are programmable tuple spaces — reactive, logic-
based blackboards that agents associatively access by writ-
ing, reading, and consuming tuples (ordered collections
of heterogeneous information chunks represented as first-
order logic terms) via simple communication operations
(out, rd, in, inp, rdp) [21]. While the behaviour of a tu-
ple space in response to communication events is fixed, the
behaviour of a tuple centre can be tailored to the application
needs by defining a set of specification tuples expressed in
the ReSpecT language, which define how a tuple centre
should react to incoming / outgoing communication events.
So, unlike tuple spaces, tuple centres can be programmed
with reactions so as to encapsulate coordination laws di-
rectly in the coordination media. From the topology point
of view, tuple centres are collected in infrastructure nodes,
distributed over the network, organised into articulated do-
mains (see Fig. 2 for a logical view).

So, tuple centres can be conceived as general-purpose

2The TuCSoN technology is available as an open source project at the
TuCSoN web site http://tucson.sourceforge.net

coordination artifacts, which can be customised (pro-
grammed, tuned) dynamically to entail a specific coordi-
nating behaviour. Generally speaking, tuple centres exhibit
the properties that characterise coordination artifacts. First,
they provide different levels of inspectability, since both
the communication and the coordination state can be in-
spected at runtime. Second, different levels of malleabil-
ity and controllability can be provided — both by allowing
to dynamically change the artifact coordinating behaviour,
and to control its execution by means of proper infrastruc-
ture tools [10]. The linkability property is supported by a
primitive (out_tc) of the ReSpecT language, which makes
it possible to directly insert a tuple from a tuple centre to
another [34]. Also, we can identify the basic elements that
characterise the abstract model of coordination artifacts:
the usage interface is composed by the basic coordination
primitives plus the primitives to inspect and change tuple
centre behaviour (set_spec and get_spec). The coordinat-
ing behaviour specification is given by the ReSpecT speci-
fication. The notion of operating instructions is not directly
supported in tuple centres, even if the ReSpecT specifica-
tion tuples implicitly contain a description of how to exploit
the tuple centre in order to obtain the coordinating service.

5.2 Coordination Artifacts in TuCSoN

Coordination artifacts can be considered as units of reuse
for engineering cooperative working environments: as
agents encapsulate skills and competences concerning the
execution of some task, the achievement of some goal or
the solution of some problem, coordination artifacts encap-
sulate strategies for constructing and ruling coordination
activities. Tuple centre can be then suitably programmed
to realise coordination artifacts with different coordinating
purposes, such as flexible communication, knowledge me-
diation, resource sharing, and so on.

As a specific and representative example, here we con-
sider workflow management, which is characterised by dif-
ferent kinds of coordination issues. Distributed workflow
management concerns the automated integration and co-
ordination of heterogeneous and independent distributed
activities involved in the same global business process.
Among the others, it includes activity scheduling and syn-
chronisation, information and control flow management,
exception management, and so on. In the context of
service-oriented architectures — in particular Web Ser-
vices — the workflow management idea is applied to the
so-called orchestration [30].

Typically, special purpose languages — examples are
XPDL and BPEL — can be used to define the workflow
specification; their specification is executed by the work-
flow engine, the core component of a Workflow Manage-
ment System. A workflow engine — also called orches-
tration engine — can be framed here as a general purpose
coordination artifact, which is dynamically programmed to
enact a coordinating behaviour according to the workflow
specification.

440 Informatica 29 (2005) 433–443 A. Ricci et al.

scheduler

task_result(taskA,X)

task_result(taskB,Y)

AGENTs A

(in charge of

task A)

AGENTs B

(in charge of

task B)

AGENTs C

(in charge of

task C)

task_todo(taskC,

 args(X,Y))

reaction(out(task_result(taskA,X),...)

reaction(out(task_result(taskB,Y),...)

out

out

in

reaction(out(task_result(taskA,X)),(
in_r(task_result(taskA,X)),in_r(task_result(taskB,Y)),
out_r(task_todo(taskC,args(X,Y))))).

reaction(out(task_result(taskB,Y)),(
in_r(task_result(taskB,Y)),in_r(task_result(taskA,X)),
out_r(task_todo(taskC,args(X,Y))))).

Figure 3: Scheduler tuple centre (top) with its coordinating
behaviour expressed in ReSpecT (bottom)

In the context of MASs, a tuple centre then can be pro-
grammed to provide the services from a simple task sched-
uler up to a full-fledged general purpose workflow engine.
As an example, here we consider the realisation of a simple
scheduler of three activities — A, B and C — coordinated
according to a join pattern: task C can only start when both
tasks A and B have been completed. Tasks are executed by
independent agents, typically unaware of the global work-
flow and focussed on the achievement of their specific job.
The tuple centre scheduler shown in Fig. 3 is an exam-
ple of a coordination artifact providing such a scheduling
service. The operation of the usage interface can be:

– in(task_todo(+TaskName,-TaskInfo)),
for taking in charge the execution of a task. The
presence of a tuple task_todo manifests the fact
that a specific task has to be done, according to
current workflow.

– out(task_result(TaskName,TaskResult)),
for communicating the result of the execution of a
task, signaling its completion.

In the example, TaskName can be taskA, taskB or
taskC. The operating instructions of this coordination ar-
tifact, to be followed by agents in charge of task execu-
tion, would consist first in getting information about the
task, then in providing the result. Fig. 3 shows also the
ReSpecT specification realising the scheduling behaviour:
basically, a suitable task_todo tuple is automatically
generated in the tuple set as soon as the results of the exe-
cution of both tasks A and B are available.

6 Related Work

The coordination artifact abstraction brings in MAS ideas
and concepts that have played a central role in other
(un)related fields. From concurrent and distributed sys-
tems, coordination artifacts can be considered the gener-
alisation of traditional coordination abstractions, from low
level ones such as semaphores, monitors, to high-level
ones, such as tuple spaces and, more generally, coordina-
tion media as found in coordination models and languages
[27].

In particular, the notion of coordination artifact is strictly
related to the programmable coordination medium abstrac-
tion defined in [9], on which the tuple centre model is
based. According to the frequently adopted meta-model
described in [4], a coordination model can be described by
identifying the coordinables — the entities participating to
coordination activities —, and the coordination media —
the entities enabling and managing agent communication
according to some coordination laws defining the seman-
tics of the coordination activities. Programmable coordina-
tion media extend the basic notion of coordination medium
with the idea of programming the internal behaviour with
some specific language, so as to flexibly specify the co-
ordination rules according to the application needs. So,
programmable coordination media share some properties
which characterise coordination artifacts, such as encap-
sulation of coordination and malleability of the behaviour.
Instead, differently from programmable coordination me-
dia and coordination media in general, coordination arti-
facts do not necessarily manage communications among
agents, but — more generally — interactions, caused by
the execution of operations provided by the usage inter-
face. Also, the coordination artifact framework introduces
some structural properties — such as operating instructions
— which are new with respect to the classic coordination
meta-model, and which are indeed important in the context
of open agent societies.

Blackboards as defined in Distributed Artificial Intelli-
gence context can be framed and modelled in MAS as co-
ordination artifacts, toward the integration of the two differ-
ent points of view (traditional multi-agent and blackboard
systems) in designing collaborating-software engineering
space [7].

Actually, coordination artifacts can be exploited as an
analytical tool for describing existing approaches based on
some form of mediated / environment-based interaction.
For instance, the environment provided by the pheromone
infrastructure in [29] supporting stigmergy coordination
can be interpreted as a coordination artifact exploited by
ants to coordinate with each other: as such, it provides
operations for depositing and sensing pheromones, and
the coordinating behaviour is given by the environmental
laws ruling the diffusion, aggregation and evaporation of
pheromones. Analogously, the field abstraction in the co-
field approach [18] — a recent approach for engineering of
swarm intelligent systems — can be seen as a coordination

COORDINATION ARTIFACTS: A UNIFYING. . . Informatica 29 (2005) 433–443 441

artifact, mediating mobile agents interaction and support-
ing their coordinated navigation inside some kind of space.

Also some coordination and organisation approaches de-
veloped in the context of intelligent / cognitive agents can
be framed in terms of artifacts. A main example is is given
by electronic institutions ([12] is an example), where agent
societies live upon an infrastructure (middleware) which
governs agent interaction according to the norms estab-
lished for the specific organisation, representing both or-
ganisation and coordination rules. The institution then can
be framed as a kind of shared coordination artifact, char-
acterised by an interface with operations that agents use to
communicate, and providing a normative function on the
overall set of agents.

7 Conclusions

In the context of human activities and CSCW, Activity The-
ory and Distributed Cognition remark the importance of the
environment — and in particular of the tools available in
the environment — for governing the complexity of co-
operative / social work, in particular for its analysis and
construction. Analogously, the framework of coordination
artifacts aims at providing an engineering key for instru-
menting a MAS working environment with first-class ab-
stractions which could help agents of a MAS to cooperate
and coordinate. Such first-class abstractions are meant to
be exploited in the various stages of the MAS engineering
process: at the design stage, as modelling entities for de-
signing social activities; at development and runtime stage,
as runtime abstractions — supported by suitable infrastruc-
tures — to be used by agents to execute the social activities;
and at runtime stage also for online engineering of systems,
as inspectable, malleable abstractions which can be dynam-
ically observed, controlled, adapted — by human as well
as by intelligent agents — to support online debugging and
evolution of the activities.

Recently, the coordination artifact concept has been gen-
eralised toward the notion of artifact, as first-class abstrac-
tion representing tools or objects (devices) that agents can
either individually or collectively use to support their ac-
tivities, and that can be designed to encapsulate and pro-
vide different kind of functionalities [35, 39, 23]: coor-
dination artifacts can be framed then as artifacts designed
to specifically provide coordination services. Artifacts are
currently investigated as basic building blocks for program-
ming MAS [35], engineering MAS environment [39], and
— more generally — to re-frame the notion of intelligent
agents as goal-oriented / driven users of artifacts [23]: as
happen in the human case [20], artifacts can act not only as
amplifiers of agent (human) capabilities, but as entities that
can significantly change the nature of the tasks to be done,
enhancing the overall performances.

In conclusion, the notion of (coordination) artifact and
related conceptual / modelling / engineering frameworks
seem to be one promising way to put the environment in-

the-loop when modelling and engineering agent-based sys-
tems. Indeed, the work can be still considered in its infancy
and many aspects need to be further explored and devel-
oped: from (formal) theories including artifacts in agent
cognition and reasoning models, to models and languages
for designing and developing artifacts, to full-fledged in-
frastructures supporting artifacts and related services at
runtime (such as creation, discovery, management, etc.),
possibly integrated with existing agent-based platforms.
First investigations about the integration between artifacts
and existing agent models / platforms can be found in [25]
and in [35], which discuss the use of TuCSoN tuple cen-
tres in the context of JADE FIPA-compliant platform [1]
and of 3APL agents [8], respectively.

References
[1] F. Bellifemine, A. Poggi, and G. Rimassa. JADE:

a FIPA 2000 compliant agent development environ-
ment. In AGENTS ’01: Proceedings of the fifth in-
ternational conference on Autonomous agents, pages
216–217, New York, NY, USA, 2001. ACM Press.

[2] J. A. Bergstra, A. Ponse, and S. A. Smolka, editors.
Handbook of Process Algebra. North-Holland, Ams-
terdam, The Netherlands, 2001.

[3] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm
Intelligence: From Natural to Artificial Systems. Ox-
ford University Press, New York, NY, 1999.

[4] P. Ciancarini. Coordination models and languages
as software integrators. ACM Computing Surveys,
28(2):300–302, June 1996.

[5] P. Ciancarini, A. Omicini, and F. Zambonelli. Mul-
tiagent system engineering: The coordination view-
point. In N. R. Jennings and Y. Lespérance, editors,
Intelligent Agents VI. Agent Theories, Architectures,
and Languages, volume 1757 of LNAI, pages 250–
259. Springer-Verlag, 2000.

[6] R. Conte and C. Castelfranchi. Cognitive and So-
cial Action. University College London, London, UK,
1995.

[7] D. D. Corkill. Collaborating software: Blackboard
and multi-agent systems & the future. In Proceedings
of the International Lisp Conference, New York, NY,
USA, 2003.

[8] M. Dastani, F. de Boer, F. Dignum, and J.-J. Meyer.
Programming agent deliberation: an approach illus-
trated using the 3APL language. In J. S. Rosenschein,
T. Sndholm, M. Wooldridge, and M. Yokoo, editors,
2nd international Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2003), pages
97–104, New York, USA, 14–18 July 2003. ACM
Press.

[9] E. Denti, A. Natali, and A. Omicini. Programmable
coordination media. In D. Garlan and D. Le Mé-

442 Informatica 29 (2005) 433–443 A. Ricci et al.

tayer, editors, Coordination Languages and Mod-
els – Proceedings of the 2nd International Confer-
ence (COORDINATION’97), volume 1282 of LNCS,
pages 274–288, Berlin (D), 1–3 Sept. 1997. Springer-
Verlag.

[10] E. Denti, A. Omicini, and A. Ricci. Coordination
tools for MAS development and deployment. Applied
Artificial Intelligence, 16(9/10):721–752, Oct./Dec.
2002.

[11] E. H. Durfee. Scaling up agent coordination strate-
gies. IEEE Computer, 34(7), July 2001.

[12] M. Esteva, B. Rosell, J. A. Rodríguez-Aguilar, and
J. L. Arcos. Ameli: An agent-based middleware for
electronic institutions. In N. R. Jennings, C. Sierra,
L. Sonenberg, and M. Tambe, editors, 3rd interna-
tional Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2004), volume 1, pages
236–243, New York, USA, 19–23 July 2004. ACM.

[13] J. Ferber and J.-P. Müller. Influences and reaction:
a model of situated multiagent systems. In 2nd In-
ternational Conference on Multi-Agent Systems (IC-
MAS’96), Kyoto, Japan, 1996.

[14] A. Gouaich and F. Michel. Towards a unified view
of the environment(s) within multi-agent systems. In
this issue.

[15] D. Kirsh. Distributed cognition, coordination and en-
vironment design. In Proceedings of the European
Conference on Cognitive Science (ECCS ’99), pages
1–11, 1999.

[16] T. Malone and K. Crowston. The interdisciplinary
study of coordination. ACM Computing Surveys,
26(1):87–119, 1994.

[17] T. W. Malone, K. Crowston, J. Lee, B. Pentland,
C. Dellarocas, G. Wyner, J. Quimby, C. S. Os-
born, A. Bernstein, G. Herman, M. Klein, and
E. O’Donnell. Tools for inventing organizations: To-
ward a handbook of organizational processes. Man-
agement Science, 45(3):425–443, 1999.

[18] M. Mamei, F. Zambonelli, and L. Leonardi. Co-
fields: Towards a unifying approach to the engineer-
ing of swarm intelligent systems. In P. Petta, R. Tolks-
dorf, and F. Zambonelli, editors, Engineering Soci-
eties in the Agents World III, volume 2577 of LNCS,
pages 68–81. Springer-Verlag, Apr. 2003.

[19] B. A. Nardi. Context and Consciousness: Activ-
ity Theory and Human-Computer Interaction. MIT
Press, 1996.

[20] D. A. Norman. Cognitive artifacts. In J. Carroll, edi-
tor, Designing Interaction: psychology at the human-
computer interface, pages 17–38. Cambridge Univer-
sity Press, New York, NY, USA, 1991.

[21] A. Omicini and E. Denti. From tuple spaces to
tuple centres. Science of Computer Programming,
41(3):277–294, Nov. 2001.

[22] A. Omicini and S. Ossowski. Objective versus sub-
jective coordination in the engineering of agent sys-
tems. In M. Klusch, S. Bergamaschi, P. Edwards, and
P. Petta, editors, Intelligent Information Agents: An
AgentLink Perspective, volume 2586 of LNAI: State-
of-the-Art Survey, pages 179–202. Springer-Verlag,
Mar. 2003.

[23] A. Omicini, A. Ricci, and M. Viroli. Agens Faber:
Toward a theory of artefacts for MAS. Electronic
Notes in Theoretical Computer Sciences, 2005. 1st
International Workshop “Coordination and Organi-
zation” (CoOrg 2005), COORDINATION 2005, Na-
mur, Belgium, 22 Apr. 2005. Post-proceedings.

[24] A. Omicini, A. Ricci, M. Viroli, C. Castelfranchi, and
L. Tummolini. Coordination artifacts: Environment-
based coordination for intelligent agents. In N. R.
Jennings, C. Sierra, L. Sonenberg, and M. Tambe,
editors, 3rd International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS
2004), volume 1, pages 286–293, New York, USA,
19–23 July 2004. ACM.

[25] A. Omicini, A. Ricci, M. Viroli, M. Cioffi, and G. Ri-
massa. Multi-agent infrastructures for objective and
subjective coordination. Applied Artificial Intelli-
gence, 18(9/10):815–831, Oct./Dec. 2004.

[26] A. Omicini and F. Zambonelli. Coordination for In-
ternet application development. Autonomous Agents
and Multi-Agent Systems, 2(3):251–269, Sept. 1999.

[27] G. A. Papadopoulos and F. Arbab. Coordination mod-
els and languages. Advances in Computers, 46:329–
400, 1998.

[28] H. V. D. Parunak, S. Brueckner, M. Fleischer, and
J. Odell. A preliminary taxonomy of multi-agent
interactions. In J. S. Rosenschein, T. Sndholm,
M. Wooldridge, and M. Yokoo, editors, 2nd In-
ternational Joint conference on Autonomous Agents
and Multiagent Systems (AAMAS 2002), pages 1090–
1091. ACM Press, 2003.

[29] H. V. D. Parunak, S. Brueckner, and J. Sauter. Dig-
ital pheromone mechanisms for coordination of un-
manned vehicles. In C. Castelfranchi and W. L.
Johnson, editors, 1st International Joint Conference
on Autonomous Agents and Multiagent Systems AA-
MAS’02, pages 449–450. ACM Press, 2002.

[30] C. Peltz. Web services orchestration and choreogra-
phy. IEEE Computer, 36(10):46–52, Oct. 2003.

[31] J. L. Peterson. Petri nets. ACM Computer Surveys,
9(3):223–252, 1977.

[32] J. Rambusch, T. Susi, and T. Ziemke. Artefacts as me-
diators of distributed social cognition. In Proceedings
of the 26th Annual Meeting of the Cognitive Science
Society, Mahwah, NJ, 2004. Erlbaum.

[33] A. Ricci, A. Omicini, and E. Denti. Activity Theory
as a framework for MAS coordination. In P. Petta,

COORDINATION ARTIFACTS: A UNIFYING. . . Informatica 29 (2005) 433–443 443

R. Tolksdorf, and F. Zambonelli, editors, Engineer-
ing Societies in the Agents World III, volume 2577 of
LNCS, pages 96–110. Springer-Verlag, Apr. 2003.

[34] A. Ricci, A. Omicini, and M. Viroli. Extending
ReSpecT for multiple communication flows. In
The 2002 International Conference on Parallel and
Distributed Processing Techniques and Applications
(PDPTA’02), Las Vegas, USA, 24–27,June 2002.

[35] A. Ricci, M. Viroli, and A. Omicini. Program-
ming MAS with artifacts. In Workshop on Pro-
gramming Languages for Multi-Agent Systems (PRO-
MAS), 4th International Joint Conference on Au-
tonomous Agents and Multi-Agent Systems (AA-
MAS’05), Utrecht, The Netherlands, 2005.

[36] K. Schmidt and C. Simone. Coordination mecha-
nisms: Towards a conceptual foundation of CSCW
systems design. International Journal of Computer
Supported Cooperative Work (CSCW), 5(2–3):155–
200, 1996.

[37] K. Schmidt and I. Wagner. Ordering systems: Co-
ordinative practices and artifacts in architectural de-
sign and planning. International Journal of Computer
Supported Cooperative Work (CSCW), 13(5–6):349–
408, 2004.

[38] L. Steels. The artificial life roots of Artificial Intelli-
gence. Artificial Life Journal, 1(1):89–125, 1994.

[39] M. Viroli, A. Omicini, and A. Ricci. Engineer-
ing MAS environment with artifacts. In D. Weyns,
H. V. D. Parunak, and F. Michel, editors, 2nd Interna-
tional Workshop “Environments for Multi-Agent Sys-
tems” (E4MAS 2005), AAMAS 2005, Utrecht, The
Netherlands, 26 July 2005.

[40] M. Viroli and A. Ricci. Instructions-based seman-
tics of agent mediated interaction. In N. R. Jennings,
C. Sierra, L. Sonenberg, and M. Tambe, editors,
3rd International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2004), vol-
ume 1, pages 286–293, New York, USA, 19–23 July
2004. ACM.

[41] L. S. Vygotsky. Mind and Society. Harvard Univer-
sity Press, 1978.

[42] D. Weyns and T. Holvoet. On the role of the environ-
ment in multiagent systems. In this issue.

[43] D. Weyns, H. V. D. Parunak, and F. Michel, edi-
tors. Environments for MultiAgent Systems, volume
3374 of LNAI. Springer-Verlag, Feb. 2005. 1st Inter-
national Workshop (E4MAS 2004), New York, NY,
USA, 19 July 2004. Revised Selected Papers.

[44] M. J. Wooldridge and N. R. Jennings. Intelligent
agents: Theory and practice. The Knowledge Engi-
neering Review, 10(2):115–152, 1995.

444 Informatica 29 (2005) 433–443 A. Ricci et al.

 Informatica 29 (2005) 445–451 445

Modeling Link Qualities in a Sensor Network

Jure Leskovec
Center for Automated Learning and Discovery, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA, USA, and
Department of Knowledge Technologies,
Jožef Stefan Institute, Ljubljana, Slovenia
E-mail: jure@cs.cmu.edu, http://www.cs.cmu.edu/~jure/

Purnamrita Sarkar and Carlos Guestrin
Center for Automated Learning and Discovery, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA, USA
E-mail: {psarkar, guestrin}@cs.cmu.edu

Keywords: Sensor Networks, Machine Learning

Received: June 5, 2005

Sensor networks are ad-hoc wireless networks of small, low-cost sensors, which can measure

characteristics of their environment. Autonomous low-cost sensors often have limited battery life, and

are prone to failures and communication losses. It is thus important to devise efficient power usage,

communication and message routing schemes. In this work, we concentrate on estimating the link

qualities between pairs of sensors in a natural environment. The estimation is a basic component of

algorithms that optimize the power of radio transmission signal, communication schedules, and a

routing scheme. Our results show that simple regression models give estimates with only 6% error. We

also show the dimensionality reduction techniques help us understand the topology of the

communication network and identify potential bottlenecks in the network.

Povzetek: Z uporabo metod za zmanjšanje dimenzije podatkov in nelinearnih modelov v omrežju

senzorjev je možno doseči zmanjšanje napake za 6%.

1 Introduction
A sensor network node is a small autonomous unit, often
running on batteries, with hardware to sense
environmental characteristics, such as temperature,
vibrations and humidity. Such nodes usually
communicate using a wireless network. A sensor
network is composed of a large number of sensors
deployed in a natural environment. The sensors gather
environmental data and transfer the information to the
central base station with external power supply [11].

Owing to the limited battery power of these sensors a
very common strategy to maximize the expected lifetime
is to use a better communication strategy. For this
strategy to be globally optimized, we must model link
qualities (LQs) between pairs of sensors. More precisely,
the probability that sensor j will receive a message
transmitted by node i.

Figure 1: Sensors in the Intel Berkeley Research lab

Precise models of link qualitites are the basis of many
optimization and networking algorithms. For example,
these models can be used to refine the communication
protocols, or to decrease the number of packet collisions
by tuning radio power appropriately. A proper model for
link quality can also be used to select the density and
positions of the sensors to ensure efficient
communication. These models can also help us ensure
robustness of the underlying network by finding the most
unstable parts of the network, and the sensors which are
critical for communication.

446 Informatica 29 (2005) 445–451 J. Leskovec et al.

2 The Dataset
The data comes from a deployment of 54 sensors
positioned inside the Intel lab in Berkeley [3]. We have
33 days worth of data. For every 30 seconds we have a
reading of binary link qualities between all pairs of
sensors. There are more than 2.3 million readings in total
(1 GB of data). During the data collection period some
nodes died and there are about 1% of readings with
missing values. The readings from sensors are highly
noisy and skewed due to power failures, crashes of base
station, sensor failures and rapid changes in the
environmental conditions.
Figure 1 shows the map and the positions of 54 sensors
inside the Intel Berkeley lab. The lab has a ring structure.
The two ‘holes’ on the map correspond to the kitchen
and the elevators. Near to the upper right corner of the
map there was a cell phone base station. For this reason
link qualities in the upper right part of the building are
lower and decay faster with the distance than the link
qualities for other parts of the building.

Figure 2: Variance of link quality over time of sensor 34
to all other sensors. Notice the small variance.

3 Analysis of Link Quality
There are two obvious variables influencing the link
quality: one is time and the other is location. Figure 2
shows the variance of link qualities over time of sensor
34 to all other sensors. We can observe that the variance
is very low on the average. For sensors between 30 and
35, which are closest to sensor 34, we observe that the
variance of link quality is higher. As sensors get farther
apart the variance of link quality also gets smaller. From
figure 2, other experiments and measurements, we
concluded that link qualities do not change significantly
over time.

We mainly concentrate on spatial link qualities. In
this paper we try to relate physical position of the 2

sensors with the link quality. Given the (x,y) positions of
the sensors we model the decay of link quality with the
distance and build a link quality map.

Figure 3: Link quality of node 38 to all other nodes,
sorted by the distance.

3.1 Link Quality as a Function of Distance

Theoretically the strength of radio signal should drop
with the square of the distance, so we expected link
quality to follow the same law.

We analyzed a typical situation and tried to fit a
function to the link qualities. In figure 3 we took sensor
number 38 and plotted the link qualities to other sensors
versus their Euclidean distance (LQ=f(d), where d is the
distance). A quadratic function had a very poor quality fit
(square of the correlation coefficient between the
independent and dependent variables, R2=0.55), a power
function (LQ(d)=d-c), with c around 2 performed even
worse with R2=0.19. On the average the quadratic
regression was the best, with the average R2 around 60%.
The fits for power function were not at all very
satisfying, having an average R2 of 20%.

Figure 4: For all possible pairs of nodes we plot link
quality versus the distance between the sensors.

MODELING LINK QUALITIES IN... Informatica 29 (2005) 445–451 447

Investigating even further we tried to fit a second degree
polynomial to the link quality vs. distance between each
pair of sensors. Figure 4 shows the amount of noise in
the data. We plot the link quality versus the distance.
Each point on the plot is a pair of sensors at some
distance having some link quality. Observe the high
noise in the data. The distance itself is not a good
predictor of the link quality between a pair of sensors in
the environment.

Figure 6: Comparison of predictive accuracy using the 3
distance metrics: distance in 3 dimensional PCA space
(top), graph with each node have degree 4 (middle), and
graph in which all sensors within a constant radius of a
node are connected (bottom).

We also used distance metrics other than Eucledian
distance. We connected the sensors into a graph similar
to one shown of Figure 1. We explored few different
techniques to connect the nodes into a graph based on
sensor positions and link qualities. We then measured the
shortest path distance between the nodes in the graph.

Figure 6 shows the comparison between various
distance metrics. We compare 3 different distance
metrics: distance in 3 dimensional space obtained from
Principal Component Analysis (PCA) [2].(top), graph

where each node has degree 4 (middle), and graph in
which all sensors within a constant radius of a node are
connected (bottom). The results show that the 3 different
approaches are pretty much the same, though the
threshold distance metric is in most of the cases equal or
better than the others.

Our reasoning was that two nodes can be really close
together but if there is a wall in between they won’t be
able to hear each other. Using a graph distance we would
prevent this kind of problem. Unfortunately this did not
improve the results.

3.2 Dimensionality Reduction

So far we have been working with full 54 by 54 who-
talks-to-whom link quality matrix. One way to reduce the
amount of noise in the data is by using dimensionality
reduction techniques.

Figure 7: The projection of link quality data on first 3
principal components. Notice the two rings very similar
to actual map of the lab.

We perform PCA on 54 by 54 link quality matrix. We
essentially do a metric multidimensional scaling [1] on
the data to learn the underlying coordinates in a 3-

Positions of pairs
of sensors in the

environment

3 dimensional
latent space

locations

Link qualities of each
sensor to 53 other

sensors

Reconstruct the
original link quality

vector using the
principal components

Regression

Figure 5: The 2 level model. We learn 3 regression models to map from (X,Y) positions to latent

space positions. We then use principal components to map from the latent space to the link qualities.

448 Informatica 29 (2005) 445–451 J. Leskovec et al.

dimensional Euclidean space, namely the latent space.
The first 3 eigenvectors explain around 70% of the
variance of the data. Increasing the latent space to 4
dimensions it covers additional 5% more variance so we
decided to continue experimenting with 3 dimensional
latent space.

Figure 7 shows the latent coordinates of the sensors
in a 3-dimensional space. We can clearly observe the two
rings we had seen on the map of the lab (Figure 1). This
means we are able to reconstruct the map of the lab using
only the link quality data. This also implies that the
sensor locations should be good attributes for modeling
the link qualities. Notice also the big gaps in the rings.
This shows two “holes” mentioned in Section 2 and
suggests deploying more sensors in that part of the lab to
avoid a potential bottle neck in the communication
network.

A close inspection of Figure 8 reveals a set of nodes
outlining a big hole in the graph. If any two of these
nodes die, the communication between two halves of the
network might be seriously ruptured. For example nodes
5, 52 and 14 connect the left and right halves of the
sensor network. These nodes are critical for the
communication of the network. This suggests that one
needs to deploy more sensors in this part of the lab to
increase the robustness of the network. Thus we see that
the multidimensional scaling approach reveals some very
important and interesting patterns in the data, besides
matching the true map of the sensor locations.

Figure 8: This is same as Figure 7, with the only
difference that we have connected nodes if they are
within a certain distance from one another in the 3-
dimensional latent space. This distance was chosen
empirically so that the graph is fairly connected, midway
between dense and sparse.

3.3 Link Qualities via Dimensionality

Reduction

Now we use the notion of latent space to construct a 2
level model for link quality prediction. We will first learn
a regression model to map from lab coordinates(x, y) of a
sensor to the 3 dimensional latent space position. We
then use the principal components to map from 3
dimensional latent space to the original 53 dimensional

vector of link qualities. Figure 5 more clearly depicts the
idea.

Note that we learn 3 separate regression models,
each from mapping from (x,y) lab location to of the
sensors to a particular latent space dimension. We use
linear, quadratic and cubic regression. Also note that we
have only 54 training instances. We performed leave one
out cross validation and report the mean absolute error.
Table 1 shows results on test and training set for the 3
models. Notice that the quadratic model performs best
and the cubic model overfits the data. Quadratic model
gains from 15% to 2% on test accuracy in comparison to
the linear one.

Regression type
Training Set

Mean Error
Test Set

Mean Error

Linear

 LS dimension 1 0.073 0.078

 LS dimension 2 0.229 0.244

 LS dimension 3 0.124 0.131

Quadratic

 LS dimension 1 0.045 0.051

 LS dimension 2 0.078 0.090

 LS dimension 3 0.071 0.083

Cubic

 LS dimension 1 0.038 0.050

 LS dimension 2 0.077 0.098

 LS dimension 3 0.062 0.099

Table 1: Performance of the regression mapping from
XY lap sensor positions to the latent space positions.
Quadratic regression performs best, cubic overfits.

Figure 9 shows the scatter plot of predicted latent
space position and true latent space position of a
particular sensor for a quadratic model. We observe
similar plots also for other latent space dimensions. We
observe that the residuals are well distributed, and
concluded that the quadratic model is suitable.

So far we build the model to map from physical
sensor positions to 3 dimensional latent space positions.
The last step of the procedure shown on figure 5 is to use
principal components to map from 3 dimensional latent
space to original 53 dimensional vectors of link qualities.
Using quadratic regression model and 3 dimensional
latent space the final mean square error of link qualities
is 0.14. If we increase the number of dimensions in the
latent space to 4, the error increases to 0.145. Increasing
the number of dimensions further to 10, gives the
average mean error of 0.20.

Notice we are observing an interesting interplay
between the two stages of our model. As we pick more
latent space dimensions the mapping from latent space to
the link quality gets more accurate. On the other hand the
mapping from (x,y) positions gets less accurate and the
combination of both results in worse performance. The
problem with learning mapping to higher latent space
dimensions is that they contain more noise, so the

MODELING LINK QUALITIES IN... Informatica 29 (2005) 445–451 449

regression gets unstable with large errors. Using cross
validation we get the best results when using 3
dimensional latent space.

Figure 10 shows the performance of predicting the
2nd, 3rd, and 4th principal component (dimension of latent
space). Notice that we can very well fit 2nd and 3rd
dimension, while accuracy on 4th latent dimension drops
significantly.

Figure 9: Scatter plot of true and predicted latent space
positions for the quadratic model and the 3rd latent space
dimension.

Figure 10: Fit of the regression to the data for the 2nd,
3rd, and 4th best principal component. Figure plots the fit
of regression versus sensor id. Notice that we can very
well fit 2nd and 3rd dimension, while accuracy on 4th
latent dimension is much worse.

3.4 Direct Approach

We also considered a more direct approach. Instead of
using Principal Component Analysis to reduce
dimensionality of the class and reduce the noise we learn
the link quality between a pair of sensors given the lab
coordinates of them, using a regression model. In this
case we have 2862 (54 squared) training examples each
having 4 real attributes (locations of the two sensors).

We perform 10 fold cross validation and report average
mean error on training and test set.

We compared 3 classes of algorithms: normal least
squares polynomial regression, a variant of logit
transform and regression Support vector machines
(SVM) [4] using polynomial and radial kernels. For the
logit transformation our idea was to transform the link
qualities (which are probabilities and thus reside on
interval (0,1)) to the whole real space. Our hypothesis
was that it may be easier to learn the link qualities spread
out over the whole real space. In this case we
transformed the link quality LQ with the equation LQ’ =

log(LQ/(1-LQ)). We then learned the regression model,
performed the inverse logit transform and measured the
mean error.

Regression type
Training set

Mean Error
Test set

Mean Error

Normal

 Linear 0.108 0.108

 Quadratic 0.087 0.088

 Cubic 0.086 0.088

Logit transform

 Linear 0.409 0.409

 Quadratic 0.412 0.412

 Cubic 0.411 0.411

SVM

 Linear 0.119 0.119

 Quadratic 0.093 0.093

 Cubic 0.090 0.090

 6 deg polynomial 0.082 0.083

 Radial 0.061 0.062

Table 2: The performance of various regression
techniques.

Table 2 shows the results for the 3 classes of regression
algorithms we tested. Our first observation is that even
simple linear regression outperforms our 2 level model
by 4%. We observe a 2% improvement of quadratic and
cubic model over the linear model. Next observation is
that logit transform performs far the worse. It performs a
bit better than random guessing which has the mean error
of 0.5. The SVM with polynomial kernels have similar
performance as normal least squares regression using the
same degree polynomial as in SVM kernel. We observe
that even very high degree polynomial kernel of degree 6
does not help to fit the data very well.

The radial kernel outperforms all other techniques
with a mean error of around 6% on both training and test
set. Radial kernel is especially appropriate for this task,
since it has a bell shape, which means that a link quality
basically decays in a bell shape with the distance.

3.5 Link Quality Map

Having built the model we can now look at the link
quality map for a particular sensor. We fix the location of

450 Informatica 29 (2005) 445–451 J. Leskovec et al.

the first sensor and then for every position of the second
sensor we use the model to obtain the link quality. We
call this the link quality map.

Figures 11 and 12 show the two examples of link
quality maps generated using the SVM radial kernel.
Figure 11 shows the case when we positioned the sensor
in the center of the lab. We observe a bell shape decay of
link qualities. Notice how the link qualities are very low
on the left middle part of the figure. Notice also that on
the left side in the top corner link quality is better than
left middle and left bottom corner. This is because left
bottom part is further away and better hidden behind the
wall. There is also a cell-phone base station on the left
part of the map, which further decreases link qualities.

Figure 11: Link quality map for a sensor in the center of
the Intel lab.

Figure 12: Link quality map for a sensor in the corner of
the lab.

One would falsely expect that link qualities in the holes
of the two rings (kitchen and the elevator) should be
close to zero. This is not the case since we have no
training or test data points inside those rings and the link
quality just gets interpolated over that empty space.

Figure 12 shows the case when the sensor is
positioned into a corner of the lab. We observe a similar
bell like decay of link quality away from the sensor.
Notice faster decrease in link quality towards the left part
of the lab where the mobile phone base station was
located.

4 Related Work
Power efficiency plays a central role in sensor networks.
A lot of work has been done on estimating link quality,
most of which focus on modeling reception rate over
time. In [12] the authors derived analytical expressions
for expected link lifetimes, rate of new link arrivals, and
probability distributions for the above quantities, both
of which are crucial for the understanding the underlying
communication structure. Authors in [13] discuss
different experiments to measure packet delivery
performance. This work also models the spatial
correlation between packet loss among individual
receivers. A generic nonparametric statistical procedure
for establishing a mapping between two characteristic
properties of a sensor network is discussed in [14]. For
example in this paper the authors model a probability
density function of the reception rate and the distance
between the two sensors, demonstrating the spatial
correlation aspect of link qualities.

People also have investigated scalable and power-
efficient protocols [5], power management [6], efficient
routing [7] and querying in sensor networks [8]. The
ones most related to our work are [9] and [10]. Our
findings are in accordance to conclusions in [9] that the
link characteristics are far from the theoretical models.
However, most of these works survey the detailed link
stability but not its effect on positioning, while our work
concentrates in modeling link qualities in a natural
environment and how they change with positions of the
sensors.

The question we have not addressed here is obtaining
the XY positions of the sensors. If sensors are deployed
inside a building or some other controlled environment
then obtaining coordinates of each sensor is realistic. On
the other hand if sensors are scattered (electronic dust)
then obtaining their positions is a nontrivial problem.

5 Conclusion
In this work, we showed exploratory results on the
modeling of link qualities in a sensor network. Since link
qualities are often invariant with respect to the time, we
focused on the spatial aspect.

In our experiments simple regression techniques
were quite effective. However, in our comparisons,
support vector regression with radial kernel was the best
performing approach. Intuitively, link qualities decay
with distance, a property captured effectively by this
model.
We also showed how dimensionality reduction
techniques can be used to analyze link qualities,
identifying critical nodes and sparsely connected parts of
the sensor network.

MODELING LINK QUALITIES IN... Informatica 29 (2005) 445–451 451

References
[1] R. Sibson. Studies in the robustness of

multidimensional scaling: Perturbational analysis

of classical scaling. J. Royal Stat. Soc. B,
Methodological, 41:217, 1979.

[2] G. H. Golub and C.F. Van Loan. Matrix

Computations. The John Hopkins University Press,
1996

[3] http://db.lcs.mit.edu/labdata/labdata.html
[4] N. Cristianini and J. Shawe-Taylor. Support Vector

Machines. Cambridge University Press, 2000.
[5] E. Shih, S. Cho, N. Ickes, R. Min, A. Sinha, A.

Wang, and A. Chandrakasan. Physical layer driven

protocol and algorithm design for energy efficient

wireless sensor networks. In Mobile computing and
networking, 2001.

[6] M. Bhardwaj, A. Chandrakasan, and T. Garnett.
Upper bounds on the life time of sensor networks.
In IEEE International Conference on
Communications, 2001.

[7] W. Heinzelman, J. Kulik, and H. Balakrishnan.
Adaptive protocols for information dissemination in

wireless sensor networks. In Mobicom, 1999.
[8] A. Deshpande, C. Guestrin, S. Madden, J.

Hellerstein, and W. Hong. Model-Driven Data

Acquisition in Sensor Networks. In VLDB 2004.

[9] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler,
D. Estrin, and S. Wicker. Complex Behavior at

Scale: An Experimental Study of Low-Power

Wireless Sensor Networks. Technical Report
UCLA/CSD-TR 02-0013, 2002.

[10] D. Son, B. Krishnamachari, and J. Heidemann.
Experimental study of the effects of transmission

power control and blacklisting in wireless sensor

networks. In Sensor and Adhoc Communication and
Networks, 2004.

[11] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler,
and J. Anderson. Wireless sensor networks for

habitat monitoring. Tech. R. IRB-TR-02-006, Intel
Research, 2002.

[12] Prince Samar, Stephen B. Wicker. On the behavior

of communication links of a node in a multi-hop

mobile environment. In Proceedings of the 5th
ACM international symposium on Mobile ad hoc
networking and computing, 2004, Tokyo, Japan.

[13] J. Zhao and R. Govindan. Understanding Packet

Delivery Performance in Dense Wireless Sensor

Networks. In ACM Sensys 2003.
[14] A. Cerpa, J. L. Wong, et al. Satistical Model of

Lossy Links in Wireless Sensor Networks. In the
Fourth International Symposium on Information
Processing in Sensor Networks.

452 Informatica 29 (2005) 445–451 J. Leskovec et al.

 Informatica 29 (2005) 453–459 453

Improving Study Planning with an Agent-based System

Aki Vainio and Kimmo Salmenjoki
Department of Computer Sciences
Faculty of Technology, University of Vaasa
Box 700, Vaasa, Finland
E-mail: aki.vainio@uwasa.fi, ksa@uwasa.fi

Keywords: autonomous agents, personalized study plans, collaborative planning

Received: May 8, 2005

This paper presents a system for designing and updating a personalized study plan in a collaborative

environment. Unlike existing systems, which are mainly interested in storing the study plan, this system

based on learning agents is able to suggest a study plan and if needed, identify potentially problematic

choices in the future, thus bringing dynamics in to the system. By collaborating with other agents in a

multi-agent environment, the chances of finding a mutually beneficial result is improved. A prototype of

the system for creating study plans is available. Initial empirical results show that after a short learning

period, the system is able to form a study plan which requires minimal attention from the students.

Povzetek: Predlagan je sistem učenja s pomočjo agentnega sistema.

1 Introduction
The Bologna process imposes many changes to the
system of higher education in Europe [12]. In Finland,
one of the more recent changes is the new limit to the
amount of years a student can study. Currently, it is
common to study for six or more years to obtain a
master's degree. In the future, five years should be the
norm. Since the students, university personnel or the
ministry of education are willing to relinquish any of the
requirements for a master level degree, better planning is
needed.

According to [1], one tool for achieving this
planning is the personalized study plan, which is a
requirement for all students in Finland in the future.
Since a first year student does not have enough
knowledge to make decisions for the whole span of his
studies, creating and keeping the personalized study plan
up to date is important as the student becomes more
knowledgeable. [1]

Current systems are not using the full potential of
advanced information systems. The approaches OVI [2]
and Oodi [3] are attempts at simplifying the process, but
neither seems able to address the personal study planning
as all they do is simply store the study plan. OVI even
requires the student to make all the course choices, even
though the mandatory courses could easily be selected
beforehand. Oodi will include such functions and
according to the current design, it can also check the
study plan for correctness, but the timetables for the Oodi
project are such that a usable version will not be
available for at least a few years.

The new system proposed here will be a part of
Wompat-system [4], which is designed as a tool for
students to use when planning their schedules. Wompat
has been used in University of Vaasa for two years with
good feedback from both administration and students.

Also, the consortium behind the Oodi system has
expressed interest in it.

The student view of the web based Wompat system
is shown in figure 1 with course options on the left,
schedule organized by weeks, days and hours in the
center and courses chosen by the student in the right.
Using Wompat, the student obtains a weekly schedule for
all the courses that he or she intends to study.

Figure 1. Screenshot of the current Wompat-system

2 Automated Approaches for Study

Plan Formulation

2.1 Agents

According to [7] a rational agent is described by its
PAGE-description. The PAGE-description consists of
percepts, actions, goal and environment. The creation of
the study plan can be clearly divided into two parts:
selection of courses and timing of the studies taken by
the student. According to this, our system will consist of

454 Informatica 29 (2005) 453–459 A. Vainio et al.

two agents, where the first one controls the selection of
courses, storing the selection in a database and the
second agent uses these selections in order to automate
the preferred annual schedule of the selected courses.
Communication between the agents is handled by
changing the environment, which in this case means
changes in the database. The core software of the
personalized Wompat system is a combination of the two
agents and their automated communication via the
information content of the database. The details of the
database will be given in section 3.

Figure 2: PAGE-description of the agents in Wompat

With this agent approach the use of study plans can

be enhanced. One specific problem in small departments
is the lack of resources for arranging courses annually.
Often many courses, which are not popular, are only
arranged every other year or even less frequently. In
order to optimize the use of resources, the departments
can use the information gained from the personalized
curricula to arrange only the courses with enough
interest.

The proposed system could also use this same
information to examine beforehand which courses are
likely to be arranged in a given year. If the system finds
that a student has chosen a course with low common
interest, it could make the student aware of the problem.
The system could also try to find another course which
might be of interest to the student, based on the student's
earlier choices and the choices made in other curricula.

The system needs decision making when suggesting
courses for a study plan and when finding the correct
timing for a course. In many cases, the latter is not a real
problem, but it is in some instances, where some courses
might be suitable for two or more years.

Finding the courses, which are probably not
arranged, is simple. The system can find them by simply
checking how many people have chosen a course on a
given year. The system can either be equipped with the
knowledge of how many students are usually required for
a course to be held. It can also be equipped with the
knowledge of how many of the courses will be arranged
in a given year and make an estimation based on that
information.

The decision making in the agents of the system is
based on knowing the prerequisite courses required for
more advanced courses, the interests of the student and
further learning of these issues. Through these methods,

the system can find better suggestions to be presented to
the student.

2.2 Prerequisite Sourse Utilization for

Decision Making

The relationships of prerequisite courses and advanced
courses form a directed acyclic graph (DAG). This graph
can be used to find appropriate courses based on what the
student has already taken or on the other hand, if the
student or system sees fit to choose an advanced course,
the system can easily find the prerequisite studies needed
for that course and suggest them to the student. By using
the DAG, the courses can be easily found by moving
through the DAG recursively. On the other hand, if the
student has not completed all the needed prerequisites
and doesn’t have enough time to complete them all, the
system can suggest that the student stay away from those
courses.

Figure 3: Example of sub-DAG of courses

2.3 Students Selection of Courses

As a student can focus his or her studies in a number of
ways, certain prepared areas of orientation can be used to
help the decision making. After these areas are defined,
each course can be given a weighted relationship with
these areas by an expert, for example a teacher.

To give the system information on which to base the
decision making on, the student can give his or her
interests in the orientation in a manner reminiscent of
fuzziness, where the student can choose from
descriptions acting as variables:

Figure 4: Form for gathering data on student’s
interests. See [5] for more details.

Programming
basics

Object-oriented

programming

Object modeling

Software Testing

Software

engineering

Data structures

 Sensors

Agent
- goal is to form

a personal

study plan

 Actuators

E
n
v

iro
n

m
e
n

t

C
u

rric
u

la
 a

n
d
 c

o
u
rs

e
s

Percepts

- student input

- curriculum

from database

Actions

- recommend

- store

IMPROVING STUDY PLANNING WITH... Informatica 29 (2005) 453–459 455

The agents receive the user’s selections via the
database. The database also contains the decisions made
by the other students. All this information is used by the
agents in the automated selection process.

2.4 Learning in the Agent System

Machine learning is change in the system which results
in better performance [10]. Better performance in an
agent means that the frequency of right or good decisions
grows over time [10]. In this system, the agents can be
said to learn if they choose the right courses more often
and are able to time courses with better accuracy over
time.

Since the system should be able to function as
autonomously as possible, learning is required to give
them some freedom from the subjective or uninformed
views of the people who give the agent the preliminary
information on the relationships between the orientations
and the courses. Since the system has access to full
feedback from all the decisions it has made, in the form
of whether or not the students follow the agent’s advice,
learning can be very fast. This is called active and
supervised learning [7].

Learning can be based on simple decision theoretical
analysis using frequency as a basis for decision.
However, with small group sizes, this isn’t always
possible or the data is not accurate enough. For this
reason, a set of values based on the preset relationships
can be used to give the system some basis to work on
when there is not enough gathered data to draw
conclusions from. This also stops the system from
learning too much from the first few students. By using
this method, the system does not work on probabilities,
but rather on approximations of probabilities.

If needed, the system can be taught in a supervised
manner. By giving the system some sample personalized
curricula, it can use those as cases to learn from.

After the system has been in use for a long period of
time, it might not be able to learn as quickly as before.
The need to learn is still there as the curricula, tastes of
the students and other matters change over time. This
problem can be overcome by simply introducing limits
on the number of students used in the learning phase.

Learning has another important function: Often the
courses have no set year for completion. Even if the
window is usually only years in these instances, this
information might make a difference in the decision
making process. This information can be learned from
averages, with some tolerance for error. This learning
also removes the need for telling the system when
courses should be completed by the student. The system
can make those decision based on the prerequisite
courses as described in 2.2 and through learning.

2.5 The Process of Making the Study Plan

Automatically

The process of making the study plan requires actions
from both the student and the agent. The role of the
student is mostly as a control measure to see that the

study plan is to the students liking. The student has the
power to change as many of the decisions made by the
agents, but if the agents work correctly, not many
changes should be needed.

Figure 5 presents the process and the messaging
between the participants. The process is started by the
student, who requires a study plan. Upon logging into the
system, the student can be identified and the right
curriculum can be chosen. Based on the curriculum, a
simple form with the possible choices on orientation is
presented to the student. The student than communicates
his or her interests to the agent through the form.

Figure 5: The process of the agent driven personal
study plan

Based on that information, the agent queries the

database for the information needed for choosing the
courses. The courses chosen are then presented to the
student, who can make changes as needed. The agent
records the changes and learns from them. The agent also
notes choices that were not changed so that it can base its
future decisions on those.

After this, the agent stores the choices into the
database and informs the scheduling agent so that it can
begin its work. The scheduling agent queries the courses
chosen by the student and also the learned information on
which point of the students studies they fit best. Based on
that information, the agent forms a full schedule on the
courses, completing the study plan. The student can

Student

requests study

plan

supplies

orientation

information

makes changes to

choices, if needed

changes the

scheduling, if

needed

Course selection

agent

queries student

information

asks for

orientations

queries modules

chooses optional

courses (see

figure 5) and

returns full

selection

notes the changes

and learns

Scheduling agent

queries the course

selections

schedules courses

according to year

notes the changes

and learns

Database

supplies student

curricula

supplies courses

and prioritizations

stores the course

selections

supplies the

course selections

stores the final

study plan

456 Informatica 29 (2005) 453–459 A. Vainio et al.

change any timing within the schedule. The agent will
note those changes and learn accordingly. Finally, the
study plan is stored in the database for further use.

2.6 Decision Making in the Agent System

The system has full information of the structure of the
curriculum and from this information it can find the last
modules which have optional courses in them. This is
important as the approach used is that the student has a
clear goal in his or her studies and the study plan is used
to reach that goal.

Based on this approach, the choices on orientations
made by the student are used to find the most suitable
courses for the student based on learned suitability or
values given by the expert.

After the courses have been chosen, the system uses
the information on prerequisite studies and automatically
adds them to its suggestion. After this, it moves down the
curriculum to the next module with optional courses. At
this point, the system may have already filled this
module, if there were many prerequisites for the more
advanced courses. If there is still a need for new courses,
enough are chosen and the system checks for
prerequisites again. This is repeated until the whole
curriculum has been handled. In the end, all the
mandatory courses are added.

With all the courses selected and after having given
the student a chance to have his or her input on the
choices by selecting or removing courses, the system can
move onto arranging the courses by year.

A basic layout can be formed by using a topological
sort. Many courses find their natural timing this way, but
not all. The process continues by using the learned data
on correct timings. The topological sort also gives the
agent enough information to find a timing to suggest for
new courses.

3 Data Storing Requirements for the

Study Plan Environment
All of the information needed for the decision making
and the study plans can be stored in a relational database.
Figure 7 represents a possible structure for such database.
This structure is used in the prototype version [5, 6].

The design is built around the student and the
curricula. Curricula are divided into modules (basic
studies, major, minor and so forth), which can have
several different variants; although in many cases they
don’t have any. Modules are made up of courses and the
student’s study plan comprises of these with timing
information.

As described in 2.4, the system requires some
information on which courses are more advanced than
others. This information is presented by forming a tree.
The root is the curriculum itself and it usually has two
children: bachelor level studies and master level studies.
These are again divided into two or more sections and so
forth. If a module has both mandatory and optional
courses, these have been divided into different sections.

Figure 6. Algorithm for choosing the optional courses

yes

yes

no

no

Start

Query the modules with

optional courses

Choose the last module

which has not yet been

handled

Query the courses of the

module and prioritize

them and order them

accordingly

Select the unselected

course with the highest

weight

Add the number of course

units to the course unit

total

Course unit

total < the

total course

unit

requirement

Query the prerequisite

courses of the chosen

courses recursively

Are there

unhandled

modules?

Add the selected courses

into the study plan as

recommended courses

End

Reinitialize the course

unit total as 0

Move to the next

module to be handled

Add the course units of

possible premade

decisions (courses

which are prerequisites

for another courses)

IMPROVING STUDY PLANNING WITH... Informatica 29 (2005) 453–459 457

The tree is represented in the database by giving
each module the values ‘left’ and ‘right’. Beginning with
the root, each vertex is given the values depth first. On
the first visit, the ‘left’ value is assigned and on the final
visit, the ‘right’ value is assigned. Thus root will have
values of left is 1 and right is double the total number of
vertices. The children of each vertex can be identified by
using these numbers as both of the values of all the
children will be between ‘left’ and ‘right’ of the given
vertex. The main advantage of this method is the ease of
depth first searches. The whole tree and thus the
curriculum can be easily represented by ordering it based
on ‘left’ values and using indentation [8].

Prerequisite courses are represented by a table with
two separate foreign keys linking it to the courses. This
table functions as the basis for forming the DAG [11]
(see 2.2). An example of the data contained in a DAG is
given in figure 6.

The orientation options are in their own table, with
another table connecting them to the courses and the
choices made on them by the students. The table
connecting the orientations and courses holds the key
information for the system to base its decisions on
selecting courses. The table holds the weight proposed by
the expert, who is working on the orientation, as well as
the learned weight from previous choices by the students.
Also, the number of students, from whom the weight was
learned, is presented. This figure does not have to be
accurate. It can be used to control the learning process
somewhat. In the prototype, each course has a default 2
on this value and it can never go higher than 10, except
momentarily.

Figure 7: Structure of the database

The learned information on correct timing for
courses is situated in the table ‘module_courses’ which
represents which courses belong to which module.

The database structure is slightly redundant, as the
information used for learning could be derived from the
other tables, but the redundancy can be used for the
aforementioned control and the structure can also make
the system more efficient. The latter depends on how
people use the system. If the study plan is constantly
changed and not only looked over, the redundancy
should probably be removed.

As the agent and decision approach proposed in
section 2 is used, the classical Wompat-system of figure
1 is enhanced with an automated functionality on the
personalized curriculum content selection.

4 Using Personal and Universal

Information in Decisions of Agents
To keep the study plans up to date without the need for
the student to check it regularly, the checking should be
automated. This work can be done by an agent or several
agents [9],

When the agent encounters a problematic choice, it
notifies the student and begins to look for another course
or courses which to suggest to the student. It can also
leave a notification to a central message station that if
others agents are having problems finding a suitable
course they could perhaps make a common decision.
This approach has the benefit of gathering a number of
students to participate on a course so that the chance of
that course being arranged is higher.

At this point, the agent must make a decision. Will it
suggest another course, which is more interesting, but
might not be arranged, if there aren’t enough students, or
will it suggest a course which is probably arranged, but is
not as interesting to the student as the other possibilities?

The agent could also make an attempt to make a deal
with the other agents. If the problematic course is a key
course in the students study plan, the agent could offer to
change another course in its study plan if other agents are
willing to change a course in their study plans to the key
course. Student input is crucial at many of the stages,
since the student has to actually carry out the plan.

Figure 8 represents one case where two agents might
be able to guide their students into mutually beneficial
agreement. Since neither can make decisions without
receiving input from the students, the process is slow.
Also, the process might result in nothing, if there still
aren’t enough students who plan to take the course. The
risk failure is increased by the fact that the students
might get bored with the process.

In this case, the most important thing is to keep the
student aware of the situation, so that the student can take
action too if necessary or the agent can stop the
negotiation if the course suggested is not to his or her
liking.

Technically the decision making can be done with in
the same way as before. The environment could be a
ticket-like system built on the same database structure as

module_variants

- id

- module_id

- name

- cus

- mandatory

courses

- id

- code

- name

- cus

student

- id

- name

- curricula_id

- years

prerequisites

- earlier

- latter

orientation_choices

- orientation_id

- student_id

- weight

orientations

- id

- curricula_id

- name

module_courses

- id

- module_variant_id

- course_id

- mandatory

- learned_time

- learning_no

modules

- id

- curricula_id

- name

- left

- right

- minor

curricula

- id

- name

- degree

- year

orientations_courses

- orientation_id

- course_id

- weight

- learned_weight

- learning_no

choices

- student_id

- course_id

- year

458 Informatica 29 (2005) 453–459 A. Vainio et al.

the rest of the system. The agent can leave or read tickets
from the database and use them for evaluation of its
situation.

Figure 8: Example of a negotiation between agents

Currently the problem of how to weight the risk of

not being able to attend a course is unsolved. Perhaps this
should be left to the student to decide or the system could
learn to find the best way to go from experience. This
learning might take years before it could reach a
reasonable level of functionality and there isn’t
necessarily that much time.

5 Testing the Forming of the Study

Plan
In the following tests the emphasis was on the learning
capabilities of the system. As noted in section 2.4,
learning is change in the system which results in better
performance. Based on this, the test environment keeps
records of changes made by the students. All changes can
be regarded as wrong decisions by the system. If the
number of those wrong decisions lowers over time, the
system is able to learn. The tests were conducted with the
software engineering students of University of Vaasa.
First of the 20 cases was done by beforehand to give the
system something to base its scheduling on. The other 19
were students ranging from first year to sixth year
students.

In the beginning of the tests, it became obvious that
the students were too willing to accept what the system
chose as their courses. Only two of the students made
any changes to the course selection and both only added
courses to their selection. The small number of changes
can probably be explained with the fact that the
curriculum of these particular students has gone through
very radical changes in the recent years. Because of this,
the curriculum used for the tests might not have been the
optimal choice.

s t u d e n t

c o u r s e

c h a n g e s

s c h e d u le

c h a n g e s

1 0 3 9

2 0 2 1

3 0 2 1

4 4 0

5 0 0

6 0 0

7 0 0

8 0 0

9 0 2 6

1 0 0 1 4

1 1 0 1 5

1 2 0 8

1 3 2 7

1 4 0 8

1 5 0 1 1

1 6 0 9

1 7 0 9

1 8 0 4

1 9 0 7

2 0 0 5

Figure 9: Learning of the scheduling agent

The first two students both made 21 changes to their

schedules. After that the system had adopted much of the
information and next five students made no changes.
Student number 9 chose a different amount of years for
his study plan, which resulted in a need for 26 changes,
which is the maximum of the series.

Because of student number 9, many of the learned
values were radically changed, but the system seemed to
be able to recuperate, although every student after that
made changes. After long use, such radical changes
should not happen. The progress of the learning can be
seen in Figure 10:

0

5

10

15

20

25

30

35

40

45

1 3 5 7 9 11 13 15 17 19

Student

C
h
a
n
g
e
s

Number of changes Regression

Figure 10: Learning of the scheduling agent
represented as a graph

Agent 1

- course A, 0.91

- course B, 0.74

- course C, 0.75

- course D, 0.45

- course E, 0.44

- course F, 0.31

- course G, 0.22

- course H, 0.11

Agent 2

- course A, 0.45

- course B, 0.78

- course C, 0.75

- course D, 0.44

- course E, 0.94

- course F, 0.46

- course G, 0.24

- course H, 0.31

Agent 1

- course A, 0.91

- course B, 0.74

- course C, 0.75

- course D, 0.45

- course E, 0.44

- course F, 0.31

- course G, 0.22

- course H, 0.11

Agent 2

- course A, 0.45

- course B, 0.78

- course C, 0.75

- course D, 0.34

- course E, 0.94

- course F, 0.46

- course G, 0.24

- course H, 0.31

Agent 1 is looking at a study plan

with four courses selected (bold)

and four other possibilities. It also

has access to the perceived

suitability to the student in

question (between 0 and 1).

Agent 1 sees that not enough

students have chosen course A,

which is according to the figures

very central in the study plan.

Agent 2 is in a similar situation

with course E.

Agent 1 finds that the next most

suitable course would be E and

agent 2 finds the course A

(underlined). Just both making the

change would help neither party.

Also, if only one of the two makes

a change, one is left without a key

course. So, Agent 1 makes a

suggestion. It is ready to give up

course D in favor of E, if Agent 2

changes course F to A.

Agent 1

- course A, 0.91

- course B, 0.74

- course C, 0.75

- course D, 0.45

- course E, 0.44

- course F, 0.31

- course G, 0.22

- course H, 0.11

Agent 2

- course A, 0.45

- course B, 0.78

- course C, 0.75

- course D, 0.34

- course E, 0.94

- course F, 0.46

- course G, 0.24

- course H, 0.31

Since neither party has a strong

bias between D and E or A and F,

both might benefit if a change is

made. The agents might need to

persuade others to change their

study plans too, but they have

moved closer to their goal

IMPROVING STUDY PLANNING WITH... Informatica 29 (2005) 453–459 459

6 Conclusions
Finnish and EU students are going to need more
guidance in the future. Obvious solution would be to hire
more counselors, but as we have shown above, this is not
the only option. In fact, our system could go beyond the
capabilities of the counselor, if the whole system is used
for decision making by the departments.

In this case, the system could be a usable tool for all
parties: it can help the students plan their studies better
which is also the goal of the public administration, and
the departments can base their teaching plans on concrete
and practical improvements.

The system is currently still under technical
development [6]. The system can already identify the
suitable courses and construct a timetable with good
accuracy [5]. The solution is generic and can be used in a
number of environments.

Acknowledgement

We wish to acknowledge all parties active in the
development and testing of this system, all the people
who have given their feedback on the system, the test
subjects and especially the original developers of
Wompat.

References
[1] Korkeakoulujen opintoaikojen lyhentämisen

toimenpideohjelma (2003). Finnish Ministry of
Education. In Finnish.

[2] OVI – ohjausta virtuaalisesti (2005).
http://ovi.joensuu.fi. University of Joensuu. In
Finnish.

[3] Oodi (2005). http://www.oodi.fi. University of
Helsinki. In Finnish.

[4] Wompat-system. http://wompat.uwasa.fi. In
Finnish.

[5] A. Vainio (2005). Opiskelijan opintojen
suunnittelun avustaminen Wompat-järjestelmällä.
In Finnish.

[6] Necora Systems Oy. http://www.necora.fi.
[7] S. Russell & P. Norvig (2003). Artificial

Intelligence A Modern Approach, 2nd edition.
Prentice Hall.

[8] J. Celko (2004). Trees and Hierarchies in SQL.
Morgan Kaufmann Publishers.

[9] G. Weiss (ed.) (1999). Multiagent Systems A
Modern Approach to Distributed Artificial
Intelligence. The MIT Press.

[10] P. Mars, J.R. Chen & R. Nambiar (1996). Learning
Algorithms – Theory and Applications in Signal
Processing, Control and Communications. CRC
Press.

[11] T. Cormen, C. Leiserson & R. Rivest (1990).
Introduction to Algorithms. The MIT Press.

[12] The Bologna Process – Next stop Bergen.
http://europa.eu.int/comm/education/policies/educ/b
ologna/bologna_en.html. 2005.

460 Informatica 29 (2005) 453–459 A. Vainio et al.

 Informatica 29 (2005) 461–468 461

From Basic Agent Behavior to Strategic Patterns in a Robotic Soccer

Domain

Andraž Bežek and Matjaž Gams
Department of Intelligent Systems
Jožef Stefan Institute, Ljubljana, Slovenia
Andraz.bezek@ijs.si

Keywords: MAS modeling, strategy learning

Received: June 17, 2005

The paper presents an algorithm for multi-agent strategic modeling (MASM). The method applies

domain knowledge and transforms sequences of basic multi-agent actions into a set of strategic action

descriptions in the form of graph paths, agent actions, roles and corresponding rules. The rules,

constructed by machine learning, enrich the graphical strategic patterns, which are presented in the

form of graph paths. The method was evaluated on the RoboCup Soccer Server Internet League data.

Tests showed that the constructed rules successfully captured some decisive offensive moves and some

major defense flaws, although the description itself was a bit awkward and needed interpretation by a

human expert.

Povzetek: Predstavljen je sistem, ki si uči strateških vzorcev obnašanja iz enostavnega opazovanja

gibanja agentov v domeni robotskega nogometa.

1 Introduction
Multi-agent game modeling is related to the following
task: How can external observation of multi-agent
systems be used to analyze, model, and direct agent
behavior? Analysis of such systems must capture
complex world state representation and asynchronous
agent activities. From pure numerical data researchers
tend to construct complex knowledge-level structures,
typically in the form of rules or decision trees. These
high-level structures are useful when characterizing state
space, but lack the ability to clearly represent temporal
state changes occurred by agent actions. Comprehending
simultaneous agent actions and complex changes of state
space represents another problem. To capture such
qualitative information, most often a graphical
representation performs better in terms of human
understanding.

There were two major goals in the research presented
in this paper. One was designing strategic patterns from
basic agent behavior, and the second one was to present
the constructed knowledge in a graphical and symbolic
form. This paper therefore addresses the problem of
graphical and symbolic representation of strategic
patterns, describes an algorithm capable of discovering
strategic agent behavior, and enabling humans to
understand and study the underlying behavioral
principles.

The presented MASM algorithm translates multi-
agent action sequence and observations of a dynamic,
complex and multivariate world state into a graph-based
and rule-based strategic representation. By using
hierarchically ordered domain knowledge the algorithm
is able to generate strategic descriptions and
corresponding rules at different levels of abstraction. The
MASM scheme is presented in Figure 1.

Our approach is applied on a RoboCup Simulated
League domain (Noda et. al 1997, RoboCup 2004), a
multi-agent domain where two teams of 11 agents play
simulated soccer games. The domain accurately
simulates a physical 2D soccer but introduces uncertainty
by adding noise when calculating forces on objects.
Continuous time is approximated with discrete cycles.
All agents can move and act independently as long as
they comply with soccer rules. Agents communicate with
each other, but their visual and hearing perception is
distance-limited. The domain is quite complex and
represents a challenging multi-agent modeling task for
computers, but its soccer-related content makes it
comprehensible by humans familiar with soccer.

Figure 1: Multiagent System Modeling.

This paper is organized as follows. Section 2
thoroughly presents the MASM algorithm for creating
graphical strategic paths. In Section 3, the learning
algorithm is described for constructing symbolic strategic
descriptions. An evaluation of the described method is
presented in Section 4, and conclusion in Section 5.

462 Informatica 29 (2005) 461–468 A. Bezek et al.

2 Multi-Agent Strategic Modeling –

the Graphical Part
Our multi-agent strategic modeling (MASM) algorithm
transforms raw multi-agent action sequence into a set of
discovered strategic action descriptions with
corresponding rules. A strategic action description is a
description of an agent behavior that exhibits some
strategic activity. A strategic activity is a time-limited
multi-agent activity that exhibits some important or
unique domain-dependent characteristics.
Our approach is based on two basic processes:
1. Construction of graphical sequences of actions.
2. Learning symbolic rules.

The process in terms of creating increased higher-
level structures is presented in Figure 2.

1.

Numerical

data

(~3.000.000)

2.

Symbolic

data

(~140.000)

3.

Hierarchical

concepts

(~6.500)

4.

Graph

(~1.000)

5.

Strategic

sequences

(~100)

6.

In
cr

ea
si

n
g

 a
b

st
ra

ct
io

n

Strategic

rules

(~10)

Figure 2: Construction of strategic patterns.

First 5 steps, presented in Figure 2, are going to be

described in detail in this section and rule construction in
the next section.

At the lowest level, RoboCup games are presented as
time frames of agent and ball movements. For further
information see (Cheny at al. 2003, RoboCup 2004).

Figure 3: Raw data in numbers.

In a RoboCup game there are approximately 6000
equidistant time frames and 512 attributes (together
around 3,000,000 values of types integer, Boolean, and
real). An example of data is presented in Figure 3.

Figure 4: Visualization of raw data.

FROM BASIC AGENT BEHAVIOR TO … Informatica 29 (2005) 461–468 463

In Figure 4 there is a graphical presentation, i.e.
visualization of the same data as presented in Figure 3.
All game data was obtained from the Soccer Server
Internet League (Robocup 2004).

 In the next step, basic agent movement is
transformed into basic agent actions using simple
heuristic rules (Nair at al. 2002) such as: “An agent
performs action “dash” if it increases speed.” Each action
lasts one time cycle. From a typical game, around
140.000 basic agent actions are obtained such as:

time player → action

3192 LPlayer1 → catch
4012 LPlayer3 → kick
5400 RPlayer6 → dash
5900 RPlayer11 → turn

Figure 5: Basic agent actions.

In the next step, basic agent actions are transformed

into higher-level actions using domain knowledge
(Kaminka at al. 2002, Nair et al. 2003). The MASM
algorithm exploits taxonomies, i.e. hierarchical
representations of domain concepts. A concept x in a
taxonomy is an ancestor of a concept y, x ← y, if it
exhibits more general concept than the concept y. The
rationale behind using hierarchically ordered domain
knowledge is that this allows the MASM algorithm to
travel up and down in the hierarchy to produce more or
less abstract descriptions. Specifically, the MASM
algorithm makes use of:

� a taxonomy of agent roles
� a taxonomy of agent actions
� taxonomies of binary domain features.

Taxonomies were created from the Internet, using
Dictionary Of Soccer Terms, Concepts & Rules. Parts of

these taxonomies are presented in Figure 6, determining
agent roles and actions.

As agents in MAS can change roles and thus change
their behavior (Nair et al. 2003), agent roles are assigned
dynamically during agent activity. Each agent action is
assigned with its corresponding hierarchical
representation. Domain features are used to identify the
truth of some particular domain feature but only with an
association with another agent. For example, in a
RoboCup domain the feature HasBall is true only for
agent which controls the ball, and is false for all other
agents. Agent's roles and actions are used to describe the
activity of agents, while domain features are used to
describe the domain state space. An example assignment
of soccer role and action concepts is presented in Figure
6, some examples are presented below:

time player_role → action, action_duration

3192 LTeam.Goalkeeper → catch, 1
4012 LTeam. LeftForward → pass_to_player, 10
5400 RTeamRightFullback → speed_dribble, 12
5900 RTeam.LeftMidfielder → intercept, 8

Around 1000 such high-level agent actions are

constructed for a typical game.

Figure 6: High-level agent actions.

After agent-role assignment, an action graph (AG) is

constructed with the goal to create action patterns in a
graphical form of paths. An action graph is a directed
graph, where nodes represent state space at the start of
agent action and connections correspond to agent actions.

Nodes a and b are connected, a → b, if an action,
represented by node a, is followed by an action,
represented by node b. Terminal actions (i.e. the last
action in an action sequence) are connected to a terminal
node. For example, an action sequence {a,b,c} is

represented as an AG: a → b → c → cend. Node positions
are calculated from agent positions in a domain space.
An appropriate hierarchical action and role concepts are
assigned to each node (Bezek 2005). This enables the
MASM algorithm to generate more abstract descriptions
of agent role and actions. Each node also keeps an

464 Informatica 29 (2005) 461–468 A. Bezek et al.

original action instance (i.e. time cycle of an action in a
soccer game) of the represented action. A more detailed
description of action graphs and the construction process
is given in (Bezek 2004). An example action graph,
obtained from actions in a RoboCup game, is presented
in Figure 7.

Figure 7: An action graph.

Complex action graphs with many nodes (see Figure
7) are difficult to present in a transparent manner and are
thus difficult to comprehend by humans. A reasonable
approach to overcome this problem is to reduce the
number of nodes while at the same time preserving
attained action concepts. This can be accomplished with
hierarchical clustering of graph nodes. By merging the
nearest two graph nodes, we generate a new node that
represents common role and action concepts (i.e. first
hierarchically common parent of both concepts). The
rationale behind the merge process is that actions,
frequently occurring near in a domain space, define
strategic concepts. The distance between graph nodes is
defined as a weighted sum of distances between node
positions and conceptual distances between role and
action concepts. The merging process is then iterated. A
more in-depth description of the distance function and
the whole abstraction process is described in (Bezek,
Gams 2005).

The clustering process results in an abstract action

graph (AAG), which is an action graph where graph
nodes represent more than one agent action. It is
expected that abstract action graph describes agent
behavior in a more abstract way than the original action
graph. An abstract action graph, where minimal distance
between nodes is greater than dist, is labeled AAGdist.
Such graph can be achieved with repeated merging of
nearest nodes until the minimal distance between nodes
is grater than dist. An action description of a node in
AAGdist is a combination of a node position,
corresponding action and role concepts, and a parameter
dist. AAGs with greater value dist represent actions in a
more abstract way that AAGs with a lower dist value.
Therefore, the value of a dist parameter can be regarded

as a value of abstraction of an AAG. An example of an
abstract action graph A10 is presented in Figure 8.

In Figure 8 there are several connected arrows of
different length, positions and thickness. One example of
transformation from single actions into an aggregated
one is shown in Figure 9. It represents a common and
successful attack on the right side of the field, resulting
in a successful shoot on a goal. It is an example of a
desired graphical representation of a strategic pattern.

Figure 8: An abstract action graph (AAG10).

Figure 9: Transformation of agent actions into abstract
action sequence as part of action graph (AAG).

FROM BASIC AGENT BEHAVIOR TO … Informatica 29 (2005) 461–468 465

This strategic abstraction of agent actions is based on
clustering (Hirano et al. 2004, Riley at al. 2001), and on
conceptual distance, based on the domain taxonomies. As
a result, around 1000 of such structures are generated
from a typical game:

role → action: {(action_start, duration)+ }

LTeam.Goalkeeper → catch:
{(412, 1), (501, 1), (3192,1)}
LTeam.Forward → pass:
{(1412, 5), (3401,12), (4012,10) , (5573,7)}
RTeam.Defender → speed_dribble:
{(1607,16), (2372,9), (5400,12), (5521,22)}
RTeam.Midfielder → intercept:
{(392, 4), (4509, 9), (5900, 8)}

A list of subsequent actions with corresponding

symbolic description represents a strategy, i.e. a similar
and frequent multi-agent activity that leads to a strategic
situation. In an abstract action graph it is represented as a
path. Path nodes thus represent a sequence of strategic
actions.

What remains is construction of rules, as indicated
by step 6 in Figure 2.

3 Construction of Rules

First it should be noticed that strategies vary in several
parameters, such as number of actions (typical 2 to 4),
abstractness of actions (corresponding to the number of
single actions aggregated into one abstracted action),
location, direction etc. In general, a strategy generated
from AAG with a greater dist value is more abstract that
the one generated from AAG with lower dist value. The
strategy in Figure 9 was created using level of
abstractness 8 (=dist). The strategic action sequence is
presented in Table 1. From Table 1 and Figure 9 the
strategic action sequence can be described as (no. of
positive examples in parentheses):

Forward player passes a ball to a teammate (21 +),
who successfully dribbles (10 +), and
shoots towards a goal (23 +).
As a result, the ball ends in a goal (23 +)."

LTeam.FW:

Pass-to-player

LTeam.FW:

Control-dribble

LTeam.FW:

Successful-

shoot

LTeam.Field-
player:

Successful-

shoot-(end)

Table 1: A strategic action sequence.

The action sequence in Table 1 is graphically
presented as the path consisting of three connected
arrows in Figures 9 and 10. Each action (an arrow)
graphically starts from a circle (Figure 10) which
corresponds to the neighborhood including aggregated
actions. All circles in Figure 10 correspond to all
aggregating neighborhoods.

As each node/circle defines a unique action concept
it can be used to generate rules that describe this specific

agent action. In particular, we generate data for rule
inducing algorithms as follows: Positive examples are
action instances in a target node and negative examples
as instances in nearby nodes (i.e. near misses). For each
instance we generate all pairs of agent role-domain
feature and store the true ones.

We tested several approaches with association rules
(Agrawal et al. 1994, Srikant et al. 1995), but due to
complex representations we found the standard feature-
value approach as not suitable. Namely, agents
dynamically change roles and thus it is very difficult to
generate feature values for all roles. Therefore, instead of
feature-values we applied set-valued attributes that are
attributes whose domains are sets instead of single
values. In this way, each feature corresponds to one set-
valued attribute where the value is a set of agent roles,
whose corresponding agent-feature pair is true.

Figure 10: Strategy as a path in the abstract action graph,
and all potential learning examples as circles.

By using set-valued rule inducer, such as SLIPPER

(Cohen et al. 1999), the MASM algorithm is able to
generate rules that describe actions in a strategy. In a
typical experiment, 10 games of the same team were
taken as input, and SLIPPER was applied on each node
in a strategic path.

For example, a rule describing a node, which
represents an action concept “Successful-shoot”
performed by an agent with a role “left team center
midfielder”, is presented in Table 2.

ball:Penalty-box ∧ ball:Right-half ∧ ball:Fast ∧ LTeam.C-MF:Has-

ball ∧ LTeam.R-FW:Moving-away ∧ LTeam.R-FW:Medium-dist ∧

RTeam.R-FB:Back ∧ RTeam.C-FB:Back ∧ RTeam.L-FB:Back.

Table 2: Symbolic description of a successful shoot by a
left team's center midfielder.

There are several parameters that influence the

learning algorithm, and the influence of distance is
indicated in the following examples. The distance
parameter corresponds to the number of learning
examples. Since it seems reasonable to include all

466 Informatica 29 (2005) 461–468 A. Bezek et al.

positive examples, because there are typically only
around 10 or 20 of them (note that these are strategic
patterns that actually occur in a game), the parameter
varies the number of negative examples.

� All negative examples:
LTeam.FW:Pass-to-player (#+21 #-6987) <=
(LTeam.R-FW:Has-ball = 1) AND (LTeam.L-FB:Incoming-slow = 1) AND
(RTeam.GK:Incoming = 1)
(*there are 21 positive examples and 6987 negative*)
LTeam.FW:Control-dribble (#+10 #-6998) <=
(LTeam.R-MF:Near = 1) AND (LTeam.L-MF:Attacking-third = 1) AND
(LTeam.C-FW:Center-of-the-field = 1)
LTeam.FW:Successful-shoot (#+23 #-6985) <=
(LTeam.LC-FB:Moving-away-slow = 1) AND (RTeam.R-MF:Attacking-third = 1)
AND (LTeam.R-MF:Fast = 1) AND (RTeam.R-FB:Far = 1) AND
(RTeam.GK:Faster = 1) AND (RTeam.L-FW:Moving-away = 1) AND (LTeam.C-
FW:Medium-distance = 1) AND (RTeam.C-MF:Fast = 1)
LTeam.Field-player:Successful-shoot-END (#+23 #-6787) <=
(Ball:Opponent-goal = 1)

� Only negative examples with distance <= 16
LTeam.FW: Pass-to-player (#+21 #-854) <=
(LTeam.C-FW:Incoming-fast = 1) (* no. of negative examples here is 845*)
LTeam.FW:Control-dribble (#+10 #-1425) <=
(LTeam.R-MF:Near = 1)
LTeam.FW:Successful-shoot (#+23 #-1447) <=
(LTeam.R-FB:Moving-away = 1) AND (LTeam.R-FW:Moving-away = 1) AND
(RTeam.R-FB:Far = 1) AND (LTeam.R-MF:Attacking-third = 1) AND
(RTeam.GK:Incoming = 1)
LTeam.Field-player:Successful-shoot-END (#+23 #-213) <=
(RTeam.GK:Right-half = 1) AND (RTeam.GK:Back = 1) AND (LTeam.L-
MF:Center-of-the-field = 1) AND (LTeam.L-FW:Medium-distance = 1)

� Only negative examples with distance <= 8
LTeam.FW: Pass-to-player (#+21 #-265) <=
(LTeam.C-FW:Incoming-fast = 1) (* no. of negative examples here is 845*)
LTeam.FW:Control-dribble (#+10 #-513) <=
(LTeam.RC-FB:Fast = 1)
LTeam.FW:Successful-shoot (#+23 #-573) <=
(RTeam.L-FW:Moving-away = 1)
LTeam.Field-player:Successful-shoot-END (#+23 #-113) <=
(RTeam.GK:Right-half = 1) AND (LTeam.LC-FB:Right = 1)

� Only negative examples with distance <= 4
LTeam.FW: Pass-to-player (#+21 #-105) <=
(RTeam.R-FB:Incoming-fast = 1) (* no. of negative examples here is 105*)
LTeam.FW:Control-dribble (#+10 #-239) <=
(RTeam.GK:Right = 1)
LTeam.FW:Successful-shoot (#+23 #-200) <=
(LTeam.R-FB:Moving-away-slow = 1) AND (LTeam.R-FW:Moving-away = 1)
LTeam.Field-player:Successful-shoot-END (#+23 #-112) <=
(LTeam.R-MF:Right-wing = 1) AND (RTeam.GK:Right = 1) AND (LTeam.L-
MF:Left-half = 1) AND (RTeam.GK:Short-distance = 1)

4 Measurements

We evaluated the MASM approach on 10 RoboCup
games played during SSIL (Robocup 2004). A leave-
one-out strategy was used to generate 10 learning tasks.
A pre-determined strategy, shown in Table 1 and in
Figure 10, was used as a reference and was generated on
all 10 games, for AAG1 to AAG20. For each learning
task, a strategy was generated on 9 games and tested on
the remaining game, again for AAG1 to AAG20. Tests
measured the quality of action descriptions, the quality of
an average rule and the quality of joint use of rules and
action descriptions. Figure 11 presents averaged results
obtained during 10 tests where x-axis presents the value

of a parameter dist. These results indicate that a) the
accuracy of action descriptions is approximately constant
regarding abstraction. However, the accuracy of rules
increases until it peaks at dist=10 and then slowly
decreases. This is expected because for lower
abstractions, nodes represent only a few action instances
consequently prohibiting rule inducer to generate good
rules.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Description

Rules

Both

a) Accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Description

Rules

Both

b) TP rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Description

Rules

Both

c) Precision

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

d) Abstractness

Figure 11: Accuracy a), true-positive rate b) and

precision c) measured in relation to the abstractness level
presented on x-axis. Abstractness of attributes is in d).

FROM BASIC AGENT BEHAVIOR TO … Informatica 29 (2005) 461–468 467

With high dist values, nodes represent different

action concepts, thus producing more abstract and less
accurate rules. But using rules and action descriptions
together gives the best results with higher dist values.

When measuring true-positive rate, i.e. the
percentage of correctly classified true cases, all test
scenarios give similar results as shown in Figure 11 b):
the quality of classifying true cases increases until about
dist=12, and then quickly drops. The similar
phenomenon is observed when measuring precision, that
is the rate of correctly classifying the true cases, shown
in Figure 11, c). This can be explained by generating too
abstract strategies that represent the agent behavior in a
too abstract way.

The last test was performed to verify if the
abstraction process generates more abstract descriptions.
For this test we measured the abstraction of generated
rules, defined as an average feature depth in the feature
taxonomy for features used in rules. The results,
presented in Figure 11 d), clearly show that the average
feature depth is negatively correlated with the parameter
dist. This proves that as dist value increases, the rules
contain more abstract features.

The constructed strategic patterns were also
examined by the research team and a human expert. We
studied the games on the screen in real time and the
constructed strategic patterns. Firstly, we realized that the
direct computer output was unintelligible for a non-
computer specialist. Second, the constructed computer
output had to be studied also by the research team since
quite often the meaning of constructed features had to be
figured out. For example, instead of a meaningful “fast
ball” the actually constructed feature was “distance
between a ball and a player is growing fast”. Another
annoying property of the learning algorithm was that
sometimes quite irrelevant features were constructed, at
least from the point of human understanding. But in our
joint overall opinion, the algorithm finds some
significant features (moves), which is quite a success
since the algorithm has no knowledge whatsoever about
rules of soccer or any predefined knowledge about
strategies, i.e. a list of potential soccer strategies.

5 Conclusion

We have designed and implemented the MASM

algorithm as a general domain-independent framework
for discovering strategic behavior of multi-agent systems.
The only domain-specific knowledge was introduced in
the form of role, action and domain feature taxonomies.
We assume that changing a domain should be a
straightforward task that would require changing specific
domain-knowledge in a similar form. We believe that
there is a wide range of possible domains that can be
exploited by the MASM since its essence is a stepwise
abstraction in the domain-space.

The tests show that the system with 30.000 source
code lines achieves reasonable results in terms of
accuracy, true-positive rate and precision. Our tests also

confirm that the increased abstraction process generates
more abstract descriptions of agent activities.

However, there are some open questions that need to
be addressed. First, the MASM system was evaluated
only on the RoboCup domain with a limited number of
tests. Although authors believe that no major problem
should emerge when introducing another domain, this
should be verified in practice. Second, while the output
of the MASM system seemed promising to the research
team and the soccer coach performing preliminary
evaluation, this should be systematically verified by a
number of unrelated humans and soccer experts. The
third open question is how to objectively specify relevant
strategic situations.

Overall, the MASM algorithm was able to create
human comprehendible strategic descriptions in the form
of graphical arrows and related strategic rules with
reasonable accuracy from basic agent observations in a
RoboCup games. This seems quite promising since the
system had only limited domain knowledge.

References
[1] R. Agrawal, R. Srikant: Fast Algorithms for Mining

Association Rules. Proc. 20th Int. Conf. Very Large
Data Bases, VLDB, 1994.

[2] A. Bezek: Modeling Multiagent Games Using
Action Graphs. Proceedings of Modeling Other
Agents from Observations (MOO 2004), New
York, 2004.

[3] A. Bezek: Discovering Strategic Multi-Agent
Behavior in a Robotic Soccer Domain, Proceedings
of AAMAS 05, Utrecht, 2005.

[4] A. Bezek, and M. Gams: Discovering strategic
multi-agent behavior in a robotic soccer domain.
Proceedings of Information Society 2005,
Ljubljana, 2005

[5] M. Cheny et al.: Users Manual for RoboCup Soccer
Server, 2003.

[6] W. W. Cohen and Y. Singer: A simple, fast, and
effective rule learner. Proceedings of the sixteenth
national conference on Artificial intelligence, pp.:
335 - 342, Orlando, United States, 1999.

[7] Dictionary Of Soccer Terms, Concepts & Rules,
http://www.soccerhelp.com/Soccer_Tips_Dictionar
y_Terms.shtml.

[8] S. Hirano and S. Tsumoto: Finding Interesting Pass
Patterns from Soccer Game Records. The Eighth
European Conference on Principles and Practice of
Knowledge Discovery in Databases (PKDD-2004).

[9] I. Noda et. al: Overview of RoboCup-97. In Hiroaki
Kitano, editor, RoboCup-97: Robot Soccer World
Cup I, pp. 20-41. Springer Verlag, 1997.

[10] G. Kaminka, M. Fidanboylu, A. Chang, and M.
Veloso: Learning the sequential coordinated
behavior of teams from observations. Proceedings
of the RoboCup-2002 Symposium, June, 2002.

[11] R. Nair, M. Tambe, S. Marsella and R. Raines:
Automated assistants for analyzing team team
behaviors Journal of Autonomous Agents and
Multiagent Systems. JAAMAS, 2002.

468 Informatica 29 (2005) 461–468 A. Bezek et al.

[12] R. Nair, M. Tambe, and S. Marsella: Role
allocation and reallocation in multiagent teams:
Towards a practical analysis. Proceedings of the
second International Joint conference on agents and
multiagent systems (AAMAS), 2003.

[13] P. Riley and M. Veloso: Coaching a Simulated
Soccer Team by Opponent Model Recognition.
Proceedings of the Fifth International Conference
on Autonomous Agents, 2001.

[14] RoboCup 2004: RoboCup Simulation League.
RoboCup04 world cup game repository,
http://carol.science.uva.nl/~jellekok/robocup/rc04/,
2004.

[15] R. Srikant and R. Agrawal: Mining Generalized
Association Rules. Future Generation Computer
Systems, 1995.

 Informatica 29 (2005) 469–476 469

A Composite Design-Pattern Identification Technique

Marjan Heričko and Simon Beloglavec
University of Maribor, Institute of Informatics,
Smetanova ulica 17, 2000 Maribor, Slovenia
E-mail: marjan.hericko@uni-mb.si, simon.beloglavec@uni-mb.si

Keywords: Design patterns, design metrics, design patterns identification, composite design patterns

Received: June 17, 2005

This paper introduces a new technique for identifying composite design patterns from existing pattern-

based designs. We propose two pattern metrics: pattern coverage and overlapping that can help detect a

composite pattern. The effective composite patterns reflect quality properties that are considered

desirable in the solution for a given problem domain and selected programming paradigm. To identify

appropriate candidates, we propose an assessment with a set of design metrics in addition to pattern

metrics. The calibration of value intervals for metric scores is proposed with the intention of offering the

designer the possibility of adjusting the technique for each individual type of software. In this paper, we

present the steps required for detecting and identifying the suitable composite pattern candidates

through pattern and design metric assessment.

Povzetek: Prispevek predstavlja nov pristop z novimi metrikami vzorcev k identifikaciji sestavljenih

načrtovalskih vzorcev v obstoječih načrtih informacijskih sistemov.

1 Introduction
The typical software design rarely includes an

independent pattern; increasingly, applied patterns are
interconnected. A design pattern (henceforth "pattern")
can be applied to various structural forms. A set of
applied patterns, in selected forms, can promote in the
existing designs desired quality characteristics. What
qualifies as an appropriate design quality depends on the
type of software that has been developed (e.g. local
component, distributed component, programming library,
etc.). Therefore, in some cases a set of patterns proves to
be an efficient solution while in other cases it results in
unwanted design complexity. The designer's goal in a
pattern-based design is the application of an effective
pattern combination. The proven solutions of pattern
applications can be identified from existing designs.

We propose a composite pattern identification
technique that consists of three main steps. The first step
towards the identification of suitable composite patterns
is the construction of the pattern coverage matrix for the
selected design. The matrix holds information over the
selected pattern instantiation form. The instantiated form
is one of the allowable forms of a pattern that includes all
allowed structural and behavioural variations for the
selected pattern. The information over the instantiated
pattern form captured in the pattern coverage matrix
contains a detailed description over the selected
structural and behavioural variations that are applied in a
design. The constructed matrix is then assessed with the
pattern coverage metric that is defined in this paper. The
goal of the assessment is the identification of design
fragments that are covered with patterns. During the
second step, we construct a pattern overlapping matrix
based on the pattern coverage matrix. In this paper, we
define a pattern overlapping metric that is intended for

detecting various levels of overlapping. This step extracts
the set of composite patterns candidates that is assessed
with design metrics in the final step. The final
assessment uses a set of design metrics that exposes
flaws in the design when considering quality attributes
valid for a given solution domain and the selected
programming paradigm. The result of the final stage is a
small subset of new composite patterns or an individual
composite pattern. A possible outcome is also an empty
acceptable set from the set of extracted pattern
candidates. Identified composite patterns act in future
applications equal as atomic patterns.

The application of the technique is presented in two
design cases where composite patterns are identified. The
paper demonstrates how the proposed technique applied
on the first simplified design detects the well-known
composite pattern (MVC- Model-View-Controller
pattern) from an existing design. The second example
demonstrates the technique’s application through a
complex design where the calibration of value intervals
for metric scores is presented in detail and a new
composite pattern is extracted.

The rest of the paper is structured as follows: In
Section 2, relevant background and related works are
discussed. Section 3 contains the steps of the technique
and defines the proposed pattern metrics for coverage
and overlapping. Section 4 demonstrates the application
of the technique through the identification of the MVC
pattern from a design. An approach to the calibration of
value intervals for design metric scores is discussed in
Section 5. Section 6 gives some conclusions and ends
with a discussion of the research findings.

470 Informatica 29 (2005) 469–476 M. Heričko et al.

2 Background and Related Works
To avoid ambiguity when discussing patterns, it is

important that we define the term composite pattern and
also define the types of patterns that are suitable for the
application of the technique. The composite pattern [19]
refers to a composition of patterns that have a common
solution space and is not to be mistaken for the design
pattern from a fundamental catalogue [1]. Patterns can be
classified in many ways: lifecycle stage (requirement,
analysis and design patterns) and level of abstraction
(idioms, design and architectural patterns). This research
focuses on design patterns and makes a clear distinction
between an atomic and a composite pattern. Atomic
patterns are considered to be the fundamental patterns,
which build a pattern language and cannot be broken
down into a set of sub-patterns. Composite patterns are a
product of pattern integration that go beyond a simple
composition that groups patterns without any synergy
[16]. The existing research defines composite patterns in
various ways. Some researchers consider a composite
pattern to be a set of patterns from various architectural
levels (analysis, design, implementation) [18], others
focus on the dependencies between applied parts of the
patterns in the design [16], [17] or on compositions that
are discussed in a pattern catalogue level without
considering the target design [20]. The fundamental
pattern catalogue [6] also defines a set of relations that
can be treated as connections in a composition. The
presented technique focuses on the patterns applied into a
design and considers the pattern overlapping that can be
present in specific design parts. Overlapping occurs
when an individual design part has a role in two different
patterns. Composite patterns that are identifiable with the
presented techniques all have constituents as overlapped
patterns. The identification technique starts the analysis
from the instantiated pattern variant in a design. The
specific treatment of pattern overlapping distinguishes
the presented approach from other existing attempts at
composite pattern identification.

Some of the early attempts at identifying patterns
from an existing solution were built exclusively from the
structural information that was constructed from a source
code. The fundamental presumption in such research has
been that pattern extraction is possible without additional
information. Many authors ([12], [14], [16] and [22]) use
object-oriented software metrics for the purpose of
identifying structural GoF patterns [6]. In the case of
other pattern types, false positives can occur ([12] and
[16]). False positives must be detected and inspected by
the user alone. Single class metrics are used to reduce the
search space in a structure. In previous research, metrics
such as NOA (Number of Attributes) and NOO (Number
of Operations) have appeared in various configurations.
Metric scores are used for the detection of candidate
classes for structural patterns. The similar usage of
metrics, for detecting the structure of fundamental
patterns, has been tracked by various authors [11], [16].

Patterns can be detected with the help of basic
metrics on the class structure. A question has arisen in
the past: does the application of patterns have an

influence on software quality metric scores? In many
cases, patterns promote weak coupling between classes
and a greater abstraction if the impact is observed on the
level of an individual pattern [7], [21], [9]. A comparison
has to be carefully made while also considering various
influences (other patterns, external non-pattern classes).
The process of detecting composite patterns can return
different results, and should be assessed on adjusted
score intervals, as shown later in the paper. Design
metrics, if applied properly, have proven effective as
indicators of flaws and the inappropriate use of patterns
in existing designs [23].

The domain and language-independent discovery of
patterns is possible with the use of formal specifications,
which serve as an independent meta-layer between a
specific design and conceptual artefacts. A formal
specification language enables the formal definition of
the patterns themselves and their application [1][5]. The
independence from a design paradigm is not pursued in
all research [4]. While in most cases, the analysis of a
source code is the leading source of data, some
researchers also decided to include the data over
behaviour during system run-time [7]. A demanding
construction procedure with such specifications prevents
researchers from utilizing other approaches. The
presented technique does not require such specifications.

3 Proposed Technique
New editions of pattern catalogues have motivated

the quest for discovering new design patterns. The
expression discovery process can be ambiguous. Some
research uses the expression discovery, when actually a
recovery of well-known patterns is done. The
identification of patterns using the proposed technique
results in new composite patterns. In the presented case,
we analysed existing solutions where we presumed that
proven composite patterns are present. The technique is
meant to be applied in cases that have already proven to
be successful in the real world. We use the term
identification instead of discovery, in order to stress the
fact that in presented cases, composite patterns are
already present and only need to be identified. Applying
the technique enables the designer to select candidates
from a design and identify the appropriate ones,
considering the positive properties for the selected
programming paradigm. The pattern-based design
preserves the information on applied patterns
(instantiated pattern variants and their locations in a
design). The goal of the identification process in all cases
is to detect the patterns that can be atomic or composite.
Atomic patterns are not a result of composing existing
patterns. Early research dealt with the discovery of
atomic patterns, which are included in existing
catalogues. Finding a new extracted pattern that can be
used in future designs, like any other pattern, justifies the
invested effort. The application of a composite pattern
increases the pattern’s usage and protects a designer from
the inappropriate application of several patterns. The set
of patterns can be applied in a design with many

A COMPOSITE DESIGN-PATTERN IDENTIFICATION... Informatica 29 (2005) 469–476 471

variations, while the composite pattern consists of a
proven solution for their application.

A single pattern can appear in different designs in
many variations. Pattern catalogues suggest basic forms
of a pattern while possible variations are rarely discussed
in detail. Some parts of a pattern can be omitted without
compromising the mission of a pattern. For example, the
pattern Lightweight [1] can in some cases includes the
classes that represent the unshared concrete flyweight,
while in other cases these classes are omitted. In some
cases, the same building element appears in different
shapes. For example, the Flyweight pattern itself can be
described with an abstract class or with an interface. It is
to be expected that the same patterns will have a different
cardinality and types of elements. This fact does not
directly interfere with the presented technique. This fact
should be considered during the construction of the input
data for the technique. The use of a standardized
template, with fixed elements for each individual pattern,
is not adequate in our approach.

The variety of formats tilts many reengineering and
assessment projects away from specifying patterns in
their design [3], [8], [10], [15]. The information in the
applied patterns is a valuable base for further analysis.
The purpose of the presented method is not to identify
pattern candidates through the structural information that
is constructed from the program's source code. A base
consists of information on a pattern’s variants that are
applied in a design. If existing designs preserve
information over the applied patterns, we can extract the
necessary data to apply the technique. In order to
automate the whole procedure, a mapping facility must
be constructed that translates the pattern information into
the form required by the proposed technique. We avoided
building a meta-level specification (formal or informal)
in this research. Existing designs, known to authors, use
a variety of semi-formal and formal notations for
describing applied patterns. The motivation that drove
this research was establishing the minimal denominator
of the pattern information, where construction is feasible
in all known cases.

Figure 1: Activities for a composite pattern identification

In order to perform the technique presented in Figure 1,
the input data must be prepared in a prescribed manner.
For all the patterns used in an observed design, the
distinct variants of the pattern application should be
identified with all the corresponding parts. We presume
that the existing specifications of an analysed design will

allow us to identify the pattern parts in the design at the
detailed level of methods and attributes. The pattern
coverage matrix needs to be constructed in order to
perform the remaining steps. The matrix values are
calculated as pattern metric scores. The pattern coverage
metric is defined in the following chapter. The values in
the matrix enable the elimination of uncovered design
parts from further analyses. They also constitute the base
for detecting the overlapping of applied patterns, as
calculated and assessed in the overlapping matrix. Only
the parts of the design that are actually covered with
patterns should be considered. Other parts are not
important in the further identification process. The
matrix data on pattern coverage serves for the detection
of pattern overlapping. The reasoning behind treating
overlapping as a key data in the discovery process is
explained in Section 4. In some cases, analyses of the
pattern overlapping matrix produces only one composite
pattern candidate that includes all patterns, which appear
in the design. To avoid the extreme case of accepting a
whole design as a pattern, the strength of overlapping
should also be inspected. Later in the paper, we define
the strength levels for overlapping. Patterns with weak
overlapping can be eliminated from the candidate pool. If
all patterns are connected with the same strength of
overlapping, this combination becomes the only
composite pattern candidate. The type of software that is
being developed dictates the attributes, which can be
expressed through design metric scores. When multiple
candidates are present in a set of detected composite
patterns, the design metric assessment eliminates the
unsuitable candidates. The assessment is also reasonable
in cases when there is only one candidate for a composite
pattern. The purpose of the assessment is to examine the
candidates’ suitability with regard to the quality
characteristics implied by a solution domain. The
technique does not behave as a decision function that
result in one candidate only. The number of final
candidates depends on the calibration of allowed value
intervals for metric scores. The designer’s decision is to
accept all the positive candidates or only the most
appropriate ones considering the metric scores.

Designers try to avoid the realization of the
following statement: "Patterns usually lead to an
increased number of software artefacts, which normally
increases the static complexity of a software system
considerably" [23]. A high level of overlap in a pattern
prevents the undesired increase of artefacts. Upholding
this level forces the designer, with each new pattern
application, to integrate a new pattern well into the
design.

There is no standardized definition for the "glue"
between patterns in a composition. If the connecting glue
is presented by the interaction-dependency between the
pattern parts of various patterns there are as many
candidates to be considered as the composites [16]. If the
analysis encompasses the abstraction level of an interface
(all public patterns are taken into consideration) or an
implementation (all detailed structures are considered),
an excessive amount of interaction is to be expected.
Observing patterns as a whole in a design, it appears that

472 Informatica 29 (2005) 469–476 M. Heričko et al.

all the patterns are connected through some interactions.
An alternative presents the relationships that are defined
by the pattern catalogue. Using these relationships
between patterns, like glue in a composite, significantly
reduces the possible combinations. However, no
standardized set of pattern relations is defined when
considering multiple catalogues. This reduces the space
for pattern detection on an individual pattern language
with the presumption that there is an appropriate set of
relationships available. There is also another downside to
this approach – instantiated pattern variants are not
considered. We followed the idea in the statement:
"Integrated patterns should show synergy that makes the
composition more than just the sum of its parts" [16].
Our interpretation of a pattern synergy concept is as
follows: The individual pattern parts in a composite
should provide more pattern functionality than they
provide when applied separately. The guideline for good
synergy between patterns, in a composition, can be found
in the level of pattern overlapping. The patterns in a
composite can overlap. An individual part of such a
design has various roles in used patterns. Overlapping
can be observed on all the building parts of a pattern that
are suggested in a pattern definition. A high level of
overlapping indicates strong integration between
individual patterns. Henceforth, we will define composite
patterns as a set of patterns that are connected with the
overlapping parts. When overlapping between patterns is
detected, the candidates for composites can be extracted.

The data needed for pattern coverage and pattern
overlapping presentation requires that patterns applied in
a design be conceived as sets of the connected building
elements, which include classes, interfaces, methods and
attributes. The methods and attributes, which are
prescribed by a pattern, present the building parts for
pattern classes and pattern interfaces. Classes and
interfaces are referred to as the main elements of a
pattern or a design, while the methods and attributes of a
class or interface are referred to as sub-elements of a
pattern or a design. The pattern coverage matrix precisely
defines the form of instantiated patterns in individual
design fragments. The matrix can be presented on a
whole pattern, an element or a sub-element level of
detail. For reasons of clarity, we will present only a small
fragment of the sample design on a detailed level.

Let ps = <es1,…,esi > be a pattern ps where esx is an
element of the pattern ps. For each esx there are an array
of sub-elements esx = <s1,…,sj> where esx is a sub-
element of the pattern ps. The design can be presented in
a similar way. Let d=<ed1,…edm> be a design or a design
fragment. For each edx there are an array of design sub-
elements as in the pattern edx=<sd1,…,sdn>. A main
element of a design (class or interface) can be covered
with the multiple pattern elements that belong to various
patterns. In the overlapping matrix, the columns
represent pattern parts, while the rows represent design
parts. The matrix can be presented through various detail
levels, which reveal the pattern coverage on a level that
is appropriate to perform analyses. On a sub-elemental
level, the matrix values can only be presented with the
values of 0 or 1. The value 1 means that a sub-element of

the pattern is instantiated in the sub-element that is
presented in a matrix row. On the main elemental level,
the idea is to determine how many pattern sub-elements
(attributes and methods) cover the main element of a
design. The value is the sum of the coverage. On the
whole pattern level, the values as expected represent the
sum of all main element coverage. The previously
described coverage values are defined by the following
formulas:

(1)

⎭
⎬
⎫

⎩
⎨
⎧ ∈∧∈→

=−
otherwise

psdsss
ss y

d

x

d

xy

y

d

xsubsub
0

;1
),(cov

(2) ∑ −− +=
i

y

d

isubsuby

d

xsubmain ssse),(cov1),(cov

(3) ∑ −− =
i

i

d

xsubmainy

d

xmainmain seee),(cov),(cov

(4) ∑ −− =
i

i

d

xmainmainy

d

xpatternmain eeee),(cov),(cov

Formula 1 is used to determine coverage between the
sub-elements of a particular pattern and the sub-elements
of a design. The value 1 in formula (2) is added because
a class or interface should also be counted as an element.
For representing the matrix in all coverage details, the
following formulas are also necessary:

(5) ∑ −− +=
i

i

d

xsubsuby

d

xmainsub sses),(cov1),(cov

(6) ∑ −− =
i

i

d

xmainsub

d

xpatternsub esps),(cov),(cov

The coverage on the whole design is not important
because it results in the number of all pattern parts in a
pattern. Thus, it is meaningless, since we are interested in
those parts of a design that are strongly related to applied
patterns. Pattern coverage (cov) is the first of the two
pattern-based metrics we proposed in this paper. To
demonstrate the use of the defined coverage metric, we
will use a sample design, presented in Figure 2. As we
can see, the well-known MVC [13] composite pattern has
been applied. The MVC pattern integrates three atomic
patterns: Observer, Strategy and Composite [1].

Figure 2: Sample design (the MVC pattern design)

A COMPOSITE DESIGN-PATTERN IDENTIFICATION... Informatica 29 (2005) 469–476 473

Design / Pattern (cov) Composite Observer Strategy Context Strategy
Concrete
Strategy

Model 2 5 0 0 0 0

ConcreteModel 0 3 0 0 0 0

View 2 2 2 1 0 0

ConcreteView 2 4 0 0 0 0

state 0 1 0 0 0 0

model 0 1 0 0 0 0

update 1 1 0 0 0 0

ConcreteCompositeView 6 4 0 0 0 0

Controller 0 0 1 0 1 0

ConcreteController 0 0 1 0 0 1

Table 1: Pattern coverage for sample design

Table 1 contains pattern coverage values with various
level of details for a sample design (Figure 2). With the
previously defined formulas (1-6) we calculated table-
cell values only. The main design element ConcreteView
is presented on a sub-elemental level of details. The
pattern Strategy is presented on the main-element level.
We propose that the level of detail be adjusted by the
designer, as regards the desired clarity level of the
presentation. The pattern coverage matrix that is
presented in an appropriate level of detail proves useful
when presenting how parts of a pattern are instantiated in
a particular design.
From the main-element level of details for the pattern
Strategy, we can notice that the design class View
represents the context in the Strategy pattern, for which
different strategies can be available. In the sample
design, only one concrete strategy is present and is
instantiated in the design class "ConcreteController". The
basic behavior of the strategy is defined in the pattern
with the class Strategy that is instantiated in the design
class "Controller". The inspection of the sub-elemental
level of detail for the design class ConcreteView shows
that the attributes "state" and "model" have a role in the
pattern Observer, while the update() method appears to
have a role in both the Composite and Observer patterns.

As presented, some design elements are covered with
multiple patterns. We use the term pattern overlapping in
cases where an individual design part is covered with
multiple patterns. Pattern overlapping can be observed, in
a similar way as pattern coverage, in various levels of
detail. Pattern overlapping is meaningful when observed
in different patterns. Let sx, sy be a sub-elements and ex,
ey a main-elements of distinct pattern applications px, py
for a same pattern:

 yxpespesyx
y

yy

x

xx
≠∧∈∧∈∀ ,,;, .

If in a design there are two applications of the same
pattern, these patterns are considered as different and an
overlapping value can be calculated. We applied the
following formulas:

(7)

⎭
⎬
⎫

⎩
⎨
⎧ ∈∃→∧→

=−
otherwise

dsssss
ssovl

dd

y

d

x

yxsubsub
0

;1
),(

(8) ∑ −− +=
i

ixsubsubyxmainsub ssovlesovl),(1),(

(9) ∑ −− =
i

yimainsubyxmainmain esovleeovl),(),(

(10) ∑ −− =
i

yxmainmain

y

xpatternmain
eeovlpeovl),(),(

(11) ∑ −− =
i

y

xpatternmain

yx

patternpattern
peovlppovl),(),(

Formula (7) defines overlapping on its basic sub-
elemental level. In formula (9) we provided a joint
formula for the overlapping of the two main pattern
elements. Overlapping is also assessed on a whole
pattern level in formula (11). The remaining formulas (8)
and (10) enable the calculation of a presentation on
various detail levels.

Pattern (ovl) Composite Observer Strategy

Composite - 10 1

Observer 10 - 1

ObserverPart 2 - 0

ConcreteObservedPart 0 - 0

Observer 2 - 1

ConcreteObserver 6 - 0

Strategy 1 1 -

Table 2: Pattern overlapping matrix for the sample

design

Table 2 lists scores for the overlapping metric. The
pattern Observer is shown on a main-element level of
detail. To express how strong the overlapping is between
two patterns we define a pattern metric, the overlapping
factor. Let npx and npy be the number of all the pattern
parts (main and sub-elements) for the patterns px and py.
The overlapping factor fovl between these patterns can
be expressed as:

(12)

pypx

yx

patternpatternyx

patternpattern
nn

ppovl
ppfovl

+
= −

−

),(
),(

Pattern (fovl) Composition(15) Observer(14) Strategy(4)

Composition - 0,34 0,05

Observer - - 0,06

Strategy - - -

Table 3: Pattern overlapping factors

Table 3 shows values for the factor of overlapping

that is calculated on the base of results from the Table 2.
The scores show that if the pattern px overlaps with the
pattern py it is also true that py overlaps with px. For this
reason, we omit a redundant calculation of these
elements if the table is observed as a matrix. The
numbers of pattern parts are stated in brackets near the
pattern name. The results show that in the MVC pattern
all elements are connected through overlapping. The
overlapped patterns are the appropriate candidates for
new composites.

4 The Overlapping Detection
In the previously presented sample design, the MVC

pattern has been detected. The calculated values for the
overlapping factor show different strengths between used
patterns. These strength levels can serve for the
extraction of smaller pattern candidates that show high
integration, if overlapping factor is considered. The
following example is a design with five applied patterns.
The intention is to demonstrate a possible reduction of a
pattern candidate’s size in the situation where all pattern
parts appear to build a single composite pattern. From the
patterns applied in a design, the designer should identify
the suitable composite pattern candidate that appears to

474 Informatica 29 (2005) 469–476 M. Heričko et al.

have the strongest overlapping between involved
patterns.

Figure 3: Sample design (the MVC pattern design)

Figure 3 shows a design for the bill of material

component (BoF). The following patterns are applied:
Decorator, Command, Composite, Visitor and Flyweight.
The Composite pattern enables the building of a
composite BoF. There are the three possible
compositions that can appear in the BoF:
"GraphicalSubsystem", "ProcessorSubsystem" and
"MainBoard". A final leaf component is represented by
the instances of the class "BuildPart". The client façade is
presented by the class "Client". The Façade pattern is not
explicitly exposed explicitly in the further analysis. The
Flyweight pattern introduces a pool of instances for the
building parts. This prevents the redundancy of objects
that construct a large BoF. The Decorator pattern is
introduced to later enable a dynamic adding of
functionality to the class "ComputerComponent". The
Visitor, in combination with the Command, enables the
execution of individual calculations of the individual
building parts for the BoF. To extract the most suitable
composite pattern it is recommended to isolate parts with
a high level of overlapping.

Overlapping / Patterns Dekorator Command Composite Visitor Flyweight

CommandBilling 0 2 0 2 0

Command 0 2 0 2 0

Client 1 5 2 0 4

ComponentFactory 0 0 0 3 3

ComputerComponent 3 0 4 1 1

BuildPart 0 1 2 3 2

MainBoard 1 1 5 5 4

ProcessorSubsystem 1 1 5 5 4

GraphicSubsystem 1 1 5 5 2

Table 4: Pattern overlapping matrix

Table 4 shows the pattern coverage in the given

component design. A brief analysis of the calculated
values indicates a strong overlapping in some cases. To
distinguish between different overlapping levels, we
propose following value intervals for pattern overlapping
factors that can present a base for the classification. We
have defined three levels of overlapping: weak
{0<fovl<0,3}, medium {0,3<fovl<0,5} and strong
{x>0,5}. The intervals were defined based on our
experiences and an analysis of various designs. The
scores for the detected MVC pattern in the previous

example indicate a weak overlap between the pattern
Strategy and the other two patterns. A medium overlap
exists between the patterns Composition and Observer.
Reduction should be considered in cases where the
candidate pattern appears to be over-specialized. The
trash point should be determined by the designers, based
on their experience.

Pattern (fovl) Dekorator Command Composition Visitor Flyweight

Dekorator - 0,16 0,21 0,26 0,23

Command - - 0,24 0,38 0,43

Composition - - - 0,52 0,79

Visitor - - - - 0,89

Flyweight - - - - -

Table 5: Pattern overlapping factors

Table 5 shows pattern overlapping factors for the

BoF components. In some designs, such a table can
become large and unclear. To achieve a clearer overview
we propose a graphical representation of the overlapping
levels.

Figure 4: Graphical representation of overlapping levels

The lines that connect the patterns show the strength

of the pattern overlap. In Figure 4, weak overlapping is
indicated with a dotted line, medium with a dashed one,
and strong overlap with a solid line. In the presented
case, the Decorator pattern can be omitted from the
composite pattern candidate if weak overlapping is not
considered. To confirm the suitability of the composite
pattern candidate, a design metric assessment should be
performed.

In some cases, multiple existing designs have to be
reviewed and analysed and the designer has to select
suitable composite pattern candidates. If various levels of
strength in overlapping are detected, then only the
patterns connected with a medium or strong overlap
should be considered in the further analysis.

5 Assessment of Candidates
According to the proposed technique, composite

pattern candidates should be validated in the final stage.
Validation is performed in the form of an assessment
with the selected design metrics. The acceptance criteria
should be defined based on the design metric scores that
are specific for the solution space and the targeted type
of software. The metric assessment eliminates unsuitable
candidates in the final stage of the composite pattern
identification procedure. The interval for the individual
metric has to be calibrated to meet the expected property
values for the given solution space and design paradigm.
The sets of metrics are specific for the individual
programming paradigm. Selected metrics in a set vary
regarding the type of software that is developed.

A COMPOSITE DESIGN-PATTERN IDENTIFICATION... Informatica 29 (2005) 469–476 475

The metric assessments used in an appropriate
design stage help detect weaknesses in a design. Their
application in the re-engineering phase helps to analyse
the suitability of the design fragments. Only metrics that
are influenced by the pattern application are stressed.
Patterns, if assessed individually, promote a weak
coupling and higher abstraction levels, which reflects on
metric scores. Expected scores should reflect the desired
qualities for the type of software (for a given problem
domain and/or solution space). We propose a calibration
of the targeted acceptance intervals for the each
particular case. Defined intervals should reflect the
properties that are expected to be met. For example:
patterns that help build individual components should
allow inherent coupling, and promote re-usability of the
whole structure instead of re-usability on an individual
class level. To prevent the influence of non-pattern
elements, the design metric assessment is performed on
isolated design fragments. Those that are influenced by a
pattern application in the design phase of software
development.

6 Conclusions
This paper presented the technique for identifying

composite patterns in existing pattern-designs. The
identification process encompasses various metric
assessments. We have introduced two pattern-based
metrics that enabled us to assess design fragments. While
other existing researchers propose pattern identification
through source code metrics, the presented technique
performs assessments on the pattern level. With a sample
design, we have demonstrated that the technique is also
able to identify well-known composite patterns such as
MVC. The identification of composite patterns, i based
on pattern metrics, can result in multiple pattern
candidates. To confirm if the given candidates are
suitable, an additional assessment with design metrics
was proposed. The goal of this assessment was to
identify the most suitable candidate. A designer specifies
acceptable intervals for selected metric scores that reflect
the properties of a design fragment. The final result of
performing the steps of the technique is composite
candidates with metric scores within acceptable intervals.
We have demonstrated a sample calibration of intervals
for metric scores with the sample design of a component.

Through the application of the presented technique,
new composite patterns can be identified in existing
designs. Identified patterns can enhance the existing
fundamental catalogues and provide good practice for
how to apply a group of atomic patterns in similar
solution spaces. This technique distinguishes itself from
existing approaches of pattern identification through the
use of combined assessment with pattern and design
metrics. The technique can also be modified for the
identification of composite anti-patterns. An additional
repository of anti-patterns could prove useful in forward
engineering, when the composition of patterns is
required.

References
[1] J. Bazan, J. F. Peters, A. Skowron, N. Hung Son,

M. Szczuka, Rough set approach to pattern
extraction from classifiers, Electronic Notes in
Theoretical Computer Science, Volume 82, Issue 4,
March, 2003, p. 1-10.

[2] S. Chidamber, C. Kemerer, A metric suite for
object-oriented design, IEEE Transactions on
Software Engineering 20(6), 1994, p. 476-493.

[3] J. Dong, Adding pattern related information in
structural and behavioral diagrams, Information and
Software Technology, Volume 46, Issue 5, 15 April
2004, p. 293-300.

[4] A. H. Eden, A. Yehudai, J. Y. Gil, Precise
specification and automatic application of design
patterns, Proceedings of the 1997 International
Conference on Automated Software Engineering
ASE'97, 1997.

[5] J. Fabry, T. Mens, Language-independent detection
of object-oriented design patterns, Computer
Languages, Systems & Structures, Volume 30,
Issues 1-2, April-July 2004, p. 21-33.

[6] E. Gamma, R. Helm, R. Johnson, J. Vlissides,
Design patterns – elements of reusable object-
oriented software, Addison-Wesley, Reading, MA,
1995.

[7] B. Henderson-Sellers, Object-oriented metrics:
Measures of complexity, Prentice-Hall, 1996.

[8] H. Huang, S. Zhang, J. Cao, Y. Duan, A practical
pattern recovery approach based on both structural
and behavioral analysis, Journal of Systems and
Software, Volume 75, Issues 1-2, 15 February
2005, p. 69-87.

[9] B. Huston, The effects of design pattern application
on metric scores, Journal of Systems and Software,
Volume 58, Issue 3, 15 September 2001, p. 261-
269.

[10] D. K. Kim, R. France, S. Ghosh, A UML-based
language for specifying domain-specific patterns,
Journal of Visual Languages & Computing,
Volume 15, Issues 3-4, June-August 2004, p. 265-
289.

[11] H. Kim, C. Boldyre, A method to recover design
patterns using software product metrics, 6th
International Conference, ICSR-6, Austria, Lecture
Notes in Computer Science 1844, 2000, p. 318-335.

[12] K. A. Kontogiannis, R. DeMori, E. Merlo, M.
Galler, M. Bernstein, Pattern matching for clone
and concept detection, Automated Software
Engineering vol. 3, no. 1-2, July 1996, p. 77-108.

[13] G. E. Kramer, S. T. Pope, A cookbook for using the
model-view-controller user interface paradigm in
Smalltalk-80, Journal of Object-Oriented
Programming 1, August/September 1988, p. 26-49.

[14] C. Krämer, L. Prechelt, Design recovery by
automated search for structural design patterns in
object-oriented software, Proceedings of Working
Conference on Reverse Engineering, Monterey,
USA, IEEE CSPress, 1996.

476 Informatica 29 (2005) 469–476 M. Heričko et al.

[15] A. Lauder, S. Kent, Precise visual specification of
design patterns, ECOOP’98, Lecture Notes in
Computer Science 1445, 1998, p. 114-134.

[16] J. Mayrand, C. Leblanc, E. M. Merlo, Experiment
on the automatic detection of function clones in a
software system using metrics, Proceedings of the
1996 International Conference on Software
Maintenance, 1996, p. 244.

[17] W. B. McNatt, J. M. Bieman, Coupling of design
patterns: Common practices and their benefits,
Proceedings of the 25th Annual International
Computer Software and Applications Conference
(COMPSAC'01), 2001.

[18] D. J. Ram, M. Sreekanth, Reusable integrated
components of inter-related patterns for software
development, Proceedings of the Seventh Asia-
Pacific Software Engineering Conference
(APSEC'00), p. 364-371.

[19] D. Riehle, Composite design patterns, Proceedings
of OOPSLA'97, ACM, 1997, p.218-228.

[20] F. Shull, W. L. Melo, V. R. Basili, An inductive
method for discovering design patterns from object-
oriented software systems, Technical report,
University of Maryland, Computer Science
Department, College Park, MD, 20742 USA, 1996.

[21] L. Tahvildari, K. Kontogiannis, J. Mylopoulos ,
Quality-driven software re-engineering, Journal of
Systems and Software, Volume 66, Issue 3, 15 June
2003, p. 225-239.

[22] L. Tahvildari, K. Kontogiannis, On the role of
design patterns in quality-driven re-engineering,
Proceedings of the Sixth European Conference on
Software Maintenance and Reengineering
(CSMR'02).

[23] P. Wendorff, Assessment of design patterns during
software reengineering: Lessons learned from a
large commercial project, Proceedings of the Fifth
European Conference on Software Maintenance and
Reengineering (CSMR'01), 2001.

 Informatica 29 (2005) 477–481 477

Comparative Analysis of Educational Networks

Alenka Žibert
The National Education Institute of the Republic of Slovenia,
Poljanska 28, 1000 Ljubljana, Slovenia.
E-mail: alenka.zibert@zrss.si

Vladimir Batagelj
University of Ljubljana, FMF, dept. of Mathematics,
Jadranska 19, 1000 Ljubljana, Slovenia.
E-mail: vladimir.batagelj@fmf.uni-lj.si

Vladislav Rajkovič
University of Maribor, Faculty of organizational sciences,
Kidričeva 55a, 4000 Kranj, Slovenia.
E-mail: vladislav.rajkovic@fov.uni-mb.si

Keywords: networking, educational networks, portals, comparative analysis

Received: May 30, 2005

Abstract: Educational networks and portals are a formation of thematically gathered data on the web.

Structure of national educational networks and portals depends on environment of their origin. In the paper,

selected educational networks are analysed according to the following criteria: content-services, navigation,

search, user interface, help, credibility, validity and target groups. The criteria were identified by a group of

experts and final users (students and teachers) on the basis of web survey. The importance of criteria was

articulated by using the Analytical Hierarchical Method and program Saaty. For the evaluation was selected

Slovene National Educational Network (SIO) as well as educational networks of Canada, Ireland, United

Kingdom, Europe, Germany, Africa, Australia and America. Based on the results of the comparative analysis a

concept and guidelines for improvements of our national educational network SIO were prepared.

Povzetek: Podana je primerjava izobraževalnih mrež v več državah.

1 Introduction
Recently we decided to evaluate the current status and
position of SIO - the Slovenian Education Network
(http://sio.edus.si/), and to prepare some guidelines for its
improvements and future development. For this purpose
we first made and overview and comparisons of selected
educational networks (EN). In this paper we present the
main results of this analysis.
SIO was founded in 1995 with the aim of providing
access to individual educational servers and the material
they offer. Educational users need a safe online
environment they can trust and we strive to create one.
Its main goals were:
• to connect educational servers in Slovenia;
• to collect and organize the information about

educational resources and events in Slovenia and
world-wide;

• to support collaboration among students, teachers and
parents;

• to facilitate the distribution of educational materials
and products;

• to provide support for solving common problems
(FAQs, recommendations, manuals, dictionaries,
libraries of templates, ...);

• to support distance learning;

• to provide access to official documents on education
(curricula, projects, announcements, ...).

To automatize most of the SIO's functions we developed
our own support system Trubar - a system of programs
for Windows to build, search and maintain the catalogs -
collections of units described by list of properties
(dictionaries, directories, lexicons, catalogues,
inventories, glossaries ...). It is freely available at:
http://www.educa.fmf.uni-lj.si/trubar/. Tools, like
Trubar, support the idea that every user should also
contribute to the growth of a network. At the very heart
of SIO are its catalogues of information – different
collections of data: interesting websites, educational
resources, educational institutions, educational events
and more.
Besides this SIO offers some additional services such as:
Ask the experts - services that help users to solve any
problem related to teaching and learning with ICT;
Bulletin board; Forum; Distance learning support– a
collection of educational materials: articles, online
textbooks and manuals; Electronic journal List SIO.
SIO is a member of EUN Schoolnet (www.eun.org) and
we are collaborating on different projects on national and
international level. Schools and individuals are
encouraged to take part in several actions and projects.

478 Informatica 29 (2005) 477–481 A. Žibert et al.

Figure 1: SIO – Slovenian Educational Network entry page

2 Overview and Comparisons
Educational networks selected for the overview and
comparisons are listed in Table 1:

Table 1: Selected educational networks

Name URL Type

SIO - Slovensko
izobraževalno
omrežje, Slovenia

http://sio.edus.si EN

EUN Schoolnet http://www.eun.org EN

Schoolnet Africa
http://www.schoolnetafrica
.net/

EN

Canada's Schoolnet http://www.schoolnet.ca/ EN

Scoilnet, Irland
http://www.scoilnet.ie/Sco
ilnet/

EN

EDNA Education
Network Australia

http://www.edna.edu.au EN

NGfL - National
Grid of Learning,
UK

http://www.ngfl.gov.uk/ EN

Ask ERIC -
Educational
Resource
Information Center

http://www.askeric.org/ portal

SAN - Schulen ans
Netz, Germany

http://www.schulen-ans-
netz.de/

EN

First we identified their basic characteristics – criteria for
comparison and possible directions of improvements of
SIO. They are presented in Table 2.

Table 2: Basic characteristics

 SIO
EUN

Schoolnet

Canada's

Schoolnet

Schoolnet

Africa
Scoilnet EDNA NGfL Ask ERIC SAN

BASIC DATA I C C C I C C I C

CREDIBILITY
founder

missing
� � � � � � � �

not

up to date
� � � � � � � � VALIDITY

OF LINKS
D –d D d D –d d d l d l d l d d

NAVIGATION �– P �– P � � �– P �+ P �+ P � �– P

USER INTERFACE � � � � � � � � �

SUPPORT ? ? � � NA � � NA NA

SEARCHING BASE BASE BASE BASE BASE BASE+S BASE BASE+S BASE

TARGET GROUPS � no parents � � � � � � �

C – contact addresses; I – user instructions; D – dead links; d – description; l – label; P – personalization support;
NA – not available; BASE – database; BASE+S – database and servers;

According to Table 2 the most complete EN is EDNA,
followed by NGfL, Schoolnet Africa and Canada's
Schoolnet. Our SIO is at the end of the list with several
options to be considered for implementation or
improvement.

3 Criteria
Analysis was performed according to the criteria
presented in Figure 2.

COMPARATIVE ANALYSIS OF EDUCATIONAL NETWORKS Informatica 29 (2005) 477–481 479

Figure 2: Characteristics of educational network

Table 3 summarizes pair wise comparison scores for
selected criteria assigned by a group of experts.
According to Saaty’s AHP method these scores are
integers from 1 to 9 and their inverses. The interpretation
of main values are: 1 –criteria i and j are of equal
importance; 3 – criterion i is weakly more important
than criterion j ; 5 – criterion i is strongly more
important than criterion j ; 7 – … The product of

symmetric entries equals to 1. In ideal case a kind of
‘transitivity’ should hold for the scores: aik . akj = aij - we
say that the scores are consistent. The real life
comparison matrices are usually inconsistent. A special
consistency coefficient K was introduced. It is assumed
that a comparison matrix is consistent enough if K <
0.10.

Table 3: Pairwise comparisons

j
i cont/serv navigation searching user I support credibility validity target G

cont/serv 1 3 3 3 5 5 1/2 4

Navigation 1/3 1 2 1 2 3 1/4 2

Searching 1/3 1/2 1 1 3 3 1/4 2

user I 1/3 1 1 1 3 2 1/3 1

Support 1/5 1/2 1/3 1/3 1 2 1/5 1/2

Credibility 1/5 1/3 1/3 1/2 1/2 1 1/5 1/2

Validity 2 4 4 3 5 5 1 3

target G 1/4 1/2 1/2 1 2 2 1/3 1

From the comparison matrix we get a vector of relative
importance of criteria as the eigen-vector corresponding
to its largest eigen-value. In our case we get λ =

8.30594, K = 0.0311 and from the eigen-vector the
criteria ranking presented in Table 4.

480 Informatica 29 (2005) 477–481 A. Žibert et al.

Table 4: Criteria ranking

CRITERION RANK

EIGEN

VECTOR

validity 1 0.30416494

content/services 2 0.24085495

navigation 3 0.10880157

searching 4 0.09626298

user interface 5 0.09251457

target groups 6 0.07215293

support 7 0.04651902

credibility 8 0.03872904

After we obtained the experts’ opinion about the
importance of criteria we tried to get the users’ opinion.
Therefore, we conducted a survey.

4 Survey
To get an insight to usability of networks and their
comparison from the point of view of final users a web
poll was constructed. In the construction the findings of
J. Spool were considered. In his research about Web
Site Usability he found out that web site users usually
do not make use of it like web designers have planned
for them. The skills and knowledge ob web designer
usually do not ensure a useful web page.
Web poll was planned to be filled in by various groups
of users. Unfortunately only 59 users answered the
questions, 61% of them were teachers. Due to a very
small budget allocated to this research and due to a very
small number of users who took part in the survey, we
got only the teachers’ point of view on usability of web
sites.
Users had to visit 3 foreign education networks and
answered 2 questions about each of them. Then an
opinion about Slovenian Education network had to be
written together with the comparison of chosen
networks.
The chosen education networks are rich on various
learning resources and interactive activities. The
networks had been chosen because of: English

language, a long time of existence (Canadian Network)
and because SIO is a member of EUN Schoolnet.
Majority of activities of both educational networks are
closely linked. NGfL is one of most extensive European
EN.
The users had to visit networks first and using them
answer to very simple questions. The answers were
placed on 1st or 2nd level. The users were very
successful with searching the answers at English
education network - NGfL and the least successful with
EUSchoolnet.
The answers to question about their latest visit on
Network were as follows. Users wished to explore what
was offered (47%), a quarter of them did that because
of poll award, others have been searching for new
learning resources and information for their work at
school, some of them (13%) were not successful. The
last group mostly made a remark like “I was unable to
find anything” or “Not useful”.
This was their profile: almost half (48%) of users
check the SIO portal a few times per year, for a
quarter of them it was their first visit, almost the same
size of group check the SIO portal once a month. They
had five levels to express their opinion (1 – very poor, 2
– poor, 3 - medium 4 - good, 5 – very good) on content
and users experience. The majority (68%) evaluate the
content with 3-medium and the user-experience with 3-
medium too (63%). They express their opinion as
follows: the content has to be changed (44%), the
design has to be changed (29%), name and title has to
be changed (11%). The navigation is simple (58%).
The answers to question “ What should be changed
about SIO in order to achieve the portal to become a
valuable information source for education?” were as
follows: more programs, more teacher education, up to
date and solid information, promotion, better design
and more activities to convince additional teachers to
use SIO.
As you can see in the table below CSF was evaluated as
least useful (4 out of 6 criteria are low), NGfL was
evaluated as most useful (4 out of 6 were marked high),
EUN Schoolnet was evaluated as useful (2 out of 6
were marked high).

Table 5: Percentage answers above level 3

 searching navigation layout content user interface graphics

CSN 77% 67% 72% 81% 56% 53%

NFGL 77% 78% 81% 83% 71% 65%

EU 79% 74% 92% 81% 67% 62%

According to users’ evaluation the NGfL is the best
choice limited to 3 chosen networks. The layout and
user interface are best evaluated for NGfL.
The connection of the type of users and their
efficiency was not explored. In order to carry out such

analysis a larger number of users from all target
groups have to take part in the poll.

COMPARATIVE ANALYSIS OF EDUCATIONAL NETWORKS Informatica 29 (2005) 477–481 481

5 Conclusions - Improvements to

SIO and Future Development
SIO was renewed for the first time in 1999. In the survey,
described in the previous section, the users were satisfied
with the design and content of its pages. SIO has a good
position in the Slovenian web – according to the internet
research study SIO was in 2002 on the 56th place among
all Slovenian web sites (Petrič, 2003) with respect to
betweenness (Freeman, 1979). It contains also a critical
mass of contents. Their downsides are the problems with
maintenance of the content. The main reason for this is
that SIO is not institutionally appropriately integrated
and supported by the Slovenian educational system.
From our overview of ENs and results of the survey we
can conclude that SIO plays an important role in
Slovenian education, but it should be renewed in
technological (new tools), functional (additional
services) and organizational (collection of materials,
maintenance) sense.
In the development of an EN there are two basic options:
to establish a central institution that provides most of
educational web services; or to establish only an ‘index’
to educational services distributed across several
institutions. We believe that the limit situation is the
second option. For this reason the primary function of
SIO is to collect, maintain and provide information about
educational resources and services. As we already
explained in the first section, SIO is based on catalogue
system Trubar in which also different materials (photos,
drawings, texts, maps, programs, data, sounds …) are
collected. Because of SIO’s financial and man-power
limitations these materials are mainly contributed by
users. Systematic approaches have to be developed to
provide ‘complete’ collections of materials.
During the last months we have checked several content
management systems to find an appropriate replacement
for Trubar. We will probably base the new SIO on the
open source Zope connected with Python and MySql on
the Apache server. These tools provide an up-to-date and
platform independent development environment. We do
not expect special problems in transferring the services
from Trubar to the new environment. In the new
solutions we intend to provide several new options:
active link control, access statistics, voting evaluation
system, editing, personalization, … They will support
semantic web (RDF, OWL) and educational (SCORM)
standards.
Since an EN is used by several types of users with
different needs, we decided to develop the new SIO as a
multi-entry site – each entry providing different,
user/goal-oriented view of the content stored in
catalogues: portal (entry dveri), e-journal (entry list),
entertainment (entry zabava), for non-Slovenian guests
(entry english), … For example, the portal entry will
provide fresh information (last contributions in
catalogues, news, surveys, events, …) and information
sources (addresses and basic data about schools and other
educational institutions, manuals, dictionaries, templates,
…).

A special challenge is the kindergarten entry. Here we
will try to produce an environment adapted to the
capabilities of kids – use of picture language, sound
(audio) output …
A big problem on the web is non permanent contents –
they are appearing, changing and disappearing. An
additional service of SIO could be an Archive of selected
educational materials.

6 References
[1] Batagelj V & Brodnik A & Lokar M1996.

Slovensko izobraževalno omrežje, Kongres Ro/2,
Ljubljana, 26. – 27.9.

[2] Batagelj V& Žibert A & Rajkovič V & Čampelj B
1999. Educational Networks Vision and Reality,
IFIP WG 3.1 and 3.5 Open Conference Aulanko –

Hämeenlinna – Finland, 20-23.
[3] Butcher N: Best Practice in Education Portals.

Research document prepared for the
Commonwealth of Learning and School Net
Africa., October 2002.
http://www.col.org/Consultancies/02EducationPort
als_Report.pdf

[4] Commission of the European Communities 2000.
Designing tomorrow's education promoting
innovation with new technologies, Report from the

commission to the council and the european

parliament, Brussels.
[5] Freeman LC 1979. Centrality in social networks:

Conceptual clarification. Social Networks, 215-239.
[6] Petrič G 2003. Družbeno delovanje v omrežju

svetovnega spleta: individualni in strukturni vidik.
Phd thesis, FDV, Ljubljana.

[7] Saaty TL 1980. The Analytic Hierarchy Process.
McGraw Hill, New York

[8] Spool J 1999. Web Site Usability: A Designer's
Guide, M. Kaufmann Publishers, Inc.

[9] Žibert A & Rajkovič V (mentor) 1998. Kritična
analiza šolskih računalniških omrežij: diplomsko

delo univerzitetnega študija, IMPRESUM: Kranj.
[10] Žibert A & Rajkovič V (mentor) & Batagelj V

(komentor) 2004. Critical analysis of usability on
educational networks (in Slovene), Master thesis,
IMPRESUM: Kranj.

[11] "Complete e-learning introduction on the national
scale in Slovenia", project within National Target

Research Program "Slovenian Competitiveness

2001 - 2006", funded by Ministry for Education.

482 Informatica 29 (2005) 477–481 A. Žibert et al.

 Informatica 29 (2005) 483–490 483

Open Source Software Usage Implications in the Context of Software

Development

Gregor Polančič, Marjan Heričko and Romana Vajde Horvat
Institute of Informatics,
University of Maribor,
FERI, Smetanova 17, SI-2000 Maribor,
Slovenia
E-mail: gregor.polancic@uni-mb.si, marjan.hericko@uni-mb.si, romana.vajde@uni-mb.si

Keywords: open source software, open source projects, business process diagrams, risk benefit analysis.

Received: May 6, 2005

Open source software (OSS) is becoming increasingly popular in several aspects of software engineering

activities, ranging from using OSS for development or execution environments to incorporating OSS directly

into developed products. OSS and its development projects differ from proprietary software and closed source

projects in several aspects. Therefore, these aspects should be known and analyzed, before making a decision

for using OSS in a software development project. This paper analyses various OSS usage strategies in the

context of software development projects. Dependent on cases of usage, different open source project

collaboration models, based on business process models, are analyzed from several relevant aspects.

Povzetek: Na osnovi procesov sodelovanja in definiranih atributov so analizirane prednosti in tveganja

različnih modelov uporabe odprtega programja v kontekstu projektov razvoja programske opreme.

1 Introduction
Software development projects are often timely and
financial ineffective, while on the other hand producing
low qualitative and vulnerably artefacts (software). Lack
of quality and productivity in software development
projects has raised several strategies capable of
confronting with this problem.
According to Boehm (Boehm 1999), there are three
major strategies for improving software development
productivity and software quality:
- working faster (usually with better tools),
- working smarter (usually with more optimized

processes) and
- work avoidance (usually with software reuse).
Two strategies presented above (working faster and work
avoidance) are realized with software. Such software can
be developed “in-house”, obtained from another
company (for free or purchased) or open source based.
In this article we analyse implications of incorporating
open source software into software development strategy.
Open source software (OSS), which is becoming
increasingly popular and important (Brown & Booch
2002; Ruffin & Ebert 2004), is computer software that
has its source code made available under an open source
definition (OSD) based license (Open Source Initiative
2005). OSD based license implicates that the source code
of software is released with binary, allowing users and
developers to use and to modify the software and to
distribute any improvements they make. Consequently,
most of OSS is being developed in public accessible
projects where everyone capable of contributing
knowledge, ideas or code is welcome to join in. Such

projects are called open source projects – OSP (see also
Figure 1).

Open source

software

(OSS)

Open source

movement

(OSM)

Open source

license

Open source

definition

(OSD)

Open source

initiative

(OSI)

Is based on

Must be compliant to Is defined by

Is owned by

Free software

guideline

(FSF) - project

Debian

Is related to

Open source

project

(OSP)

Is created in

Open source software

development model

(OSSD)
Is based on

Open source

community
Is supported by

Figure 1: Relations between common open source terms

 According to open source advocates, such development
model leads directly to more robust software and more
diverse business models (Wu & Lin 2001).
Software development companies are looking toward
OSS as a way to provide greater flexibility on their
development practises, jump-start their development
efforts by reusing existing code and provide access to a
much broader market of users (Brown & Booch 2002;
Kasper Edwards 2004).
On the other hand, there are several risks and limitations
concerned with using open source software, which
should be properly addressed. Low code quality, non-

484 Informatica 29 (2005) 483–490 G. Polančič et al.

existing project plan and non-deterministic stability of
the project are some of them (Fitzgerald 2004).
Related to open source software (potential) benefits and
risks, which were mentioned above, the research question
can be stated as “What are the implications of a specific
open source software usage strategy in a software
development project?”
Based on the research question, we identify and analyse
different open source software usage strategies, for the
purpose of determine benefits and risks of each strategy,
with respect to software license, development processes
and software, from the point of view of closed source
software developer and in the context of business process
models.

1.1 Scope of the Paper

Section two of the paper connects this research to the
existing body of knowledge. In the section three, open
source projects, their development model, its common
design and characteristics are introduced. Additionally, a
comparative study is performed, comparing open source
and closed source (proprietary) projects.
Based on open source development model, its unique
characteristics and related work (concerned with open
source software usage in commercial environment),
different usage strategies are presented and evaluated
accordingly to predefined attributes.
The research has the following limitations. Closed source
projects are defined as projects which are based on a well
established development model. In the context of
software collaboration processes between open source
and closed source projects, only technical activities are
analysed. Additionally, because of parsimony, the open
source and closed source software development
processes are presented on a high level view.

2. Related Work
Several descriptive studies exist in the field of using open
source software (OSS) in commercial context.
In the article “Using open source software in product
development: A primer”, Ruffin and Ebert (Ruffin &
Ebert 2004) state, that the use of OSS in industrial
products is growing. They discuss major legal aspects
and risks in using OSS and how to mitigate them in
product development. Additionally, OSS must meet
several criteria, required to reduce risks of technical and
legal exposure during deployment.
Madanmohan and De in the article, titled “Open source
reuse in commercial firms” (Madanmoban & De 2004)
state, that using OSS components raises many issues,
from requirements negotiation to product selection and
integration. They define a model of the stages involved
in locating and using an OSS component. Five critical
issues for reusable OSS components are identified: cost,
customization requirements, component characteristics,
licensing, maintenance and support. They state that if the
OSS component offers the best solution and reliability
for the price, then it is the most appropriate.

In the article titled “Reusing open-source software and
practices: The impact of open-source on commercial
vendors”, authors Brown and Booch (Brown & Booch
2002) find out that as a result of the open-source
movement there is a great deal of reusable software
available in the public domain, which can be used in
commercial projects. Open source movement is
described as a diverse collection of ideas, knowledge,
techniques and solutions. Additionally, the authors state,
that there are several questions concerned with applying
OSS ideas into commercial environment.
The paper, titled: “Towards a Product Model of Open
Source Software in a Commercial Environment”, from
Deng, Seifert and Vogel (Jianjun Deng, Tilman Seifert,
& Sascha Vogel 2003) state that there are many reasons
for commercial organisations to be interested in using
OSS. Aspects of OSS development for commercial use
are analysed in the paper. Second, different categories of
OSP are identified together with typical requirements,
which have to be realized by instances of OSS. Third, an
open source process model, based on the concept of work
products and product networks is defined.
Another type of research has published Edwards in the
article titled “An economic perspective on software
licenses—open source, maintainers and user-developers”
(Kasper Edwards 2004). Based on economic theory, he
defined several models, which illustrate the possible
choices available to users and developers once a program
has been distributed under a specific type of software
license. The basics premise of the research is that users
are prepared to contribute to projects if there is a net
benefit. Based on two different open source (GPL and
BSD) and a proprietary (Microsoft EULA) software
license, three different models are developed by
deducting the behaviour (activities) possible for software
developers and users. Based on developed models, the
incentives for developers and users together with their
relationships are analysed. Individuals and organisations
related to open source software are treated differently,
because of different incentives for contributing to open
source projects.

3. Open Source Projects
Open source projects (OSP) are software projects, which
are based on open source software development model
(OSSD), a recent phenomenon, which became available
with the existence of the global communication
infrastructure – internet. Because of open source license,
OSP have different project structure, compared to
“traditional” software projects.

3.1 Open Source Software Development

Model

Most of commercial or proprietary software projects are
based on closed source software development model
(CSSD) (Vidyasagar Potdar & Elizabeth Chang 2004).
Such development model follows strictly defined
activities and their relationships. Several CSSD models
exist, for example: cascade, spiral, iterative-incremental

OPEN AOURCE SOFTWARE USAGE... Informatica 29 (2005) 483–490 485

(Figure 2), V-model and RUP (Rational Unified
Process).

Figure 2: Spiral software development model

On the other hand, open source project are based on open
source software development model (OSSD) (Vidyasagar
Potdar & Elizabeth Chang 2004). OSSD is an
evolutionary development model (Figure 3), where
software is permanently evolving according to user needs
(Vidyasagar Potdar & Elizabeth Chang 2004). OSS never
reaches its final state, because it keeps evolving as long
as there is an active user community available.
Consequently, such development model emphasizes
frequent minor point releases and as much feedback on
these releases as possible.
Because no strict sequence of phases is defined in OSSD
(Figure 3), OSP cannot be tracked according to phases.
Instead, the progress is usually tracked with file
versioning system, for example CVS (Concurrent
Versioning System).

Figure 3: Evolutionary software development model

(Michael Nash 2003)

3.2 Open Source Community Structure

Open source projects (OSP) are based on virtual
community concepts. Because the available project
resources are proportional to the user community size,
they support open standards and standard development
and collaboration tools. Because OSP usually lack of
finances, they are trying to minimise project costs with
using public available information infrastructure (for
example “Sourceforge.net” repository).
OSS software communities are virtual work groups
consisting of members with skills in software
development. They work in temporary, cultural diverse,
geographically dispersed, electronically communicating
work groups (Wolfgang Maass 2004). Based on user
roles, open source communities, are generally organized
as presented below (Jen-Fang Lee & Tzu-Ying Chan
2004; Richard P.Gabriel & Ron Goldman 2002).
In the centre of the community is a small group of core
developers (see also Figure 4). Core developers have

most rights and also responsibilities in OSP. They have
write access to source code’s baseline. They make
decisions concerned with code merging, quality
assurance and releases.
Beside code developers, there is usually a larger group of
code developers, which are developing new functions
and performing other, less responsible tasks, for
example: improving user interface, fixing bugs and
writing documentation.
The largest group is represented by active and passive
users. Active users participate in OSP in form of
identifying bugs, proposing new features, creating
documentation and offering user support. Passive users
only use OSS and other project artefacts.

Figure 4: High level use case diagram of open source

community

3.3 Open Source Project Characteristics

Open source projects have in common following
characteristics (Gacek & Arief 2004):
a. Adherence to OSD (Open Source Definition), which

acts as an open source accordance guideline.
b. Open source software developers represent a subset

of open source user community (see also Figure 4).
Consequently OSS developers are also OSS users.

Despite of commonalities presented above, OSP differ in
several aspects (Gacek & Arief 2004):
a. Project starting point. OSP can start from scratch or

from existing proprietary or research (closed source)
project.

b. Motivation. A lot of open source research is related
to motivational aspect of willing to freely participate
in OSP (Andrea Bonaccorsi & Cristina Rossi 2005;
Wolfgang Maass 2004). Individuals usually
participate from personal believes or because they
require functions which might be provided by OSS.
Corporations usually get involved to gain market
share, to lower their software infrastructure costs or
to be less dependent from commercial software
vendors.

c. Community. Two basic types of open source
communities exist: centralized and decentralized.
Central organized communities have a strict
hierarchy of active users, which allows a more
centralized power structure. Their opposites are

486 Informatica 29 (2005) 483–490 G. Polančič et al.

decentralized communities, which have looser
organisational structures with most of developers on
the same level. One-level organisational structure
requires more sophisticated decision making
processes.
The basic idea, underlying open source projects, is
that knowledge, shown through contributions,
increases the contributor’s perceived merit, which in
turn leads to power (this is called meritocratic
culture).

d. Software development support. OSP differ in their
modularity (high modularity is prerequisite for
effective remote collaboration), visibility of software
architecture (system architecture might be available
or not), documentation, testing, submission
acceptance (involves choosing the work area,
decision making and disseminating the submission
information), tools and collaboration support.

e. Licensing. Several types of licenses conform to
OSD. From the user point of view the most
important license characteristics are its impact on
derived works and possibility to “close” the licensed
software (Table 1).

Table 1: Implications of main OSD licenses
(Gacek & Arief 2004)

OSD based license Impact

on

derived

works?

Can be

closed?

GPL

(GNU General Public License)

Yes No

LGPL (GNU Lesser GPL) No No

BSD (Berkley Software

Distribution)

No Yes

IBM Public License No Yes

MPL (Mozilla Public License) No Yes

3.4 Open Source Project Compared to

Closed Source Projects

Beside different development models, open source
projects differ from closed source (proprietary) projects
in several other aspects. Some of them are briefly
presented below (Vidyasagar Potdar & Elizabeth Chang
2004):
a. Documentation. Within CSP, the process of writing

documentation is defined in project plan or
requirements. On the other side, OSP participants
usually prefer writing code. Consequently, there is
usually lack of qualitative and updated
documentation.

b. Testing. In OSP software users act as software
testers. This is called “many eyeballs” principle
(Eric S.Raymond 2000). They either try to solve
problems or to notice the community. CSP are tested
by specified number of software testers.

c. Security. In CSP the security of software is achieved
through obscurity, while in the OSP the security is
achieved through openness of the code. Both

strategies have their strengths and risks. However in
highly secure systems, openness is preferred.

d. Release and delivery. In CSP, software might be
released because of market pressures or defined
project milestones. OSS is released when it meets
release criteria. OSP releases are usually frequent
but not scheduled.

e. Development environment. CSP are usually
centralized on a single physical location. OSP
development occurs in virtual communities which
offer decentralized and distributed development.

4. Modelling Open Source Software

Usage Strategies
Despite of differences between open source and closed
source projects a lot of different collaboration
opportunities exist between them (Brown & Booch 2002;
Kasper Edwards 2004). Such OSS usage models depend
on several factors, for example: business strategy,
software license and software type.

4.1 Identification of Usage Strategies

Several OSS usage classifications exist. According to
Gacek and Arief (Gacek & Arief 2004) following OSS
business models are viable:
- using OSS for personal use,
- packaging and selling OSS,
- using OSS as a platform or foundation for

commercial or research software development.
On the other hand, Edwards classifies software use,
according to software licenses (Kasper Edwards 2004)
into:
- commercial or proprietary license,
- BSD based open source license and
- GPL based open source license.
Ruffin and Ebert (Ruffin & Ebert 2004) classify OSS
usage, dependent on the licensee role, into:
- end user OSS and
- OSS that is embedded into in a product that is

further distributed. This is called software reuse.
Based on classifications presented above, their
differences and commonalities, a use case model of
common open source software usage strategies in closed
source projects can be defined (Figure 5):

Figure 5: Use case model of common open source
software usage strategies in proprietary projects

The identified strategies of using OSS in proprietary
software projects are following (Figure 5):

OPEN AOURCE SOFTWARE USAGE... Informatica 29 (2005) 483–490 487

a. Using OSS. OSS is used for project or product
infrastructure, which includes: development tools,
collaboration tools, software testing environment
and software execution environment.

b. Reusing OSS. Reused OSS (for example: software
snippet, software component or software framework)
is embedded into developed product.

c. Redistributing OSS. Added value, based on
additional artefacts (commercial software,
documentation, plug-ins, etc.) and services is
included and distributed with OSS. Distribution can
be proprietary or open source based.

Each of the main strategies presented above, can be
additionally divided accordingly to (Figure 5):
- using OSS as-is or suiting it to specific needs;
- treating modifications as intellectual property or

committing them to the open source community.
Based on use case model presented on Figure 5, twelve
(3x2x2) different OSS usage scenarios might occur, each
with its strengths and risks.

4.2 Notation Used for Modelling Usage

Strategies

Models of OSS usage strategies, resulting from use case
model presented in section 4.1 (Figure 5), are based on
business process modelling notation – BPMN (BPMI
2004). BPMN is developed by business process
management initiative (BPMI). The current specification
of BPMN, which is 1.0, was released to the public in
May, 2004. BPMN defines a business process diagram
(BPD), which is based on a flowcharting technique
tailored for creating graphical models of business process
operations. A business process model is a network of
graphical objects, which are activities and the flow
controls that define their order of performance. Four
basic categories of elements in BPMN are (Stephen
A.White 2004):
- flow objects (events, activities, gateways),
- connecting objects (sequence flows, message flows,

associations),
- swimlanes (pools and lanes) and
- artefacts (data objects, groups and annotations).
We decided to use BPMN because it is easily
understandable, supported by OMG (Object Management
Group) and highly expressive.
We used Microsoft Visio as a software modelling tool.
Additional, an open source based BPMN stencil was
used. The stencil is available on Sourceforge.net
repository (https://sourceforge.net/projects/bpmnpop).

4.3 Analysis of Usage Strategies

Based on resulting business process models, we
performed two types of analyses.
First, we performed a high level risk-benefit analysis for
each resulting model. Risk is the potential harm that may
arise from some present process or from some future
event. Risk-benefit analysis is the comparison of the risk
of a situation to its related benefits. Risk-benefit analysis

was performed on activities and relevant events that
occur in resulting business process models.
Second, we performed a comparative study of all three
usage strategies. Several attributes were defined for
comparative study, ranging from user types, major
benefits and desirable OSS characteristics. These
attributes are presented in section 5.5.

5. Resulting Models
Based on OSS usage strategies, defined in section 4.1 we
modelled and descriptively presented one generic and
three special business models. They are presented and
analysed in following subsections.

5.1 Generic Model

All special OSS usage models are derived from the top
level usage model which is presented on Figure 6.
Therefore the special models include same BPMN
constructs (pools, events, messages, processes) as
presented on generic model.
The generic model consists of two pools (rectangles),
representing independent processes of OSP (Open
Source Project) and CSP (Close Source Project), which
differ in the underlying software development model.
CSP development and OSP development are modelled
with repeatable sub-processes (rounded rectangles with
curved arrow and “+” sign).
The collaboration between projects is modelled with bi-
directional data exchange using BPMN messages
mechanism (dotted arrows) exchanging data objects
(documents).

Figure 6: Generic OSS usage model

Additionally, different events (presented as rules in
circles) initiate, direct flow and finish OSP and CSP.
There is usually a business need for starting a CSP,
requiring sufficient human and financial resources. On

488 Informatica 29 (2005) 483–490 G. Polančič et al.

the other hand, OSP start, because there is a personal
need for some functionality (software).
CSP usually have a predictive end, consisting of
documented list of functional and non-functional
requirements, which have to be fulfilled. OSP usually do
not have a predictive end. Non predictive end might
present a risk to CSP. Because OSP are “organic
projects” they are finished if there is no interest for
software being developed.

5.2 Using of OSS

Based on the business model on Figure 7, using OSS is
comparable to using proprietary software. Because OSS
is (in most cases) used as provided by OSP, modification
activities are not modelled. However, OSS can be suited
to specific needs, if necessary. As a new version of OSS
is released, software developer (if necessary) installs new
release and uses it as infrastructure software
(development, maintenance, execution or collaboration
software). When OSS is used, feedback information can
be sent to OSP, for example: modification proposals,
new feature requests and identified bugs. Using OSS
might end with fulfilled CSP project requirements.

Figure 7: Model of using OSS

a. Benefits. The main objective of using OSS in CSP is

to lower the cost of project infrastructure or decrease
dependency from specific commercial software
vendors. Additional, a benefit of using OSS can be
free support and add-ons which are available from
open source community. Beside, OSS can be
influenced with sending feedback to CSP. In such
way, OSS can be better suited to CSP needs.

b. Risks. There are several risks concerned with using
OSS. First, releases are usually not determined.
Therefore, planning the OSP on some future OSS
releases is risky. Second, there are no legal
guaranties for using OSS. For example, if there is a
bug in OSS or a defined release date was postponed,
nobody is responsible for potential damage. Third,
there is no guarantee that feedback information will

be considered by OSP. Feedback is usually
considered if there is a community size interest for
them.

5.3 Redistributing OSS

Commercial vendor can decide to redistribute OSS.
Based on the model on Figure 8, an OSS redistribution
project is restarted each time new stable version of OSS
is released. Additional, CSP can make some
modifications or additions to OSS, which can be sent
back to community (for example: identified bugs or
functions which can be further developed by user
community) or (if the OSS license allows), treated as
intellectual property of commercial vendor. Finally
commercial vendor releases software (SW) package.
Final users might send feedback information to CSP,
which can further be mediated to OSP.

Figure 8: Model of redistributing OSS

a. Benefits. The main objective of redistributing OSS is

to gain market share or to make profit from selling
software, supporting services or distributions.
Second OSP can be directly influenced by CSP with
sending modified OSS code back to the open source
community. In such way open source community
can further develop or maintain code, which was
primary developed by CSP. Consequently CSP costs
are lowered.

b. Risks. Most of the risks, concerned with
redistributing OSS, are related to non determined
OSS releases and potentially unstable open source
community. Therefore, planning release dated might
be risky. Second there might be legal problems
concerned with viral OSS licenses which prohibit
that OSS changes licensing model. For example we
cannot make binary distributions of GPL based
software. Third, future directions of OSS might
change unpredictably. For example, if CSP is
distributing OSS with a proprietary plug-in,

OPEN AOURCE SOFTWARE USAGE... Informatica 29 (2005) 483–490 489

problems could be caused with changed plug-in
interface.

5.4 Reusing OSS

When reusing OSS in CSP, following activities occur
(Figure 9). First, if a specific OSS component is suitable
for software development, it can be adapted (if
necessary) and afterwards included into developing
software. Modified OSS can be sent back to OSP or it
can be treated as intellectual property of CSP. Finally
software is released together with reused OSS. End users
use released software (SW) and if necessary, send
feedback information to CSP. CSP can react to feedbacks
with direct software changes or mediate feedbacks to
open source community. OSS modification and
integration activities are usually performed, when there is
a new version of OSS available.

Figure 9: Model of reusing OSS

a. Benefits. The main objectives of reusing OSS in

proprietary projects are simultaneously increasing
productivity and software quality through OSP
developed and maintained reusable software
artefacts. Productivity is increased, because parts of
software (reused OSS) are developed and
maintained by OSP. Second software quality is
increased because reused OSS is tested and
improved by open source community.

b. Risks. Several risks are present in such reuse
strategy. First, rarely or delayed OSS releases might
influence (expand) CSP project plan. Second if,
there are to frequent releases and unstable OSS
architecture, a lot of effort is spent for OSS
integration. Third, OSS license might prohibit
reusing OSS in proprietary software (for example
GPL or LGPL license).

5.5 Comparing Three Usage Models

Models, defined in previous section differ in complexity,
benefits and risks. Additional, there are several other
factors that should be considered before making a
decision for a specific usage strategy. Following factors
and sub-factors were considered in the comparative
study:
a. Open source software (suitable software licenses

according to Table 1, desirable software
characteristics and most suitable software types).

b. Open source software user (OSS user roles, closed
source developer activities when using OSS, most
frequent collaboration artefacts between OSP and
CSP).

c. Open source project major desirable characteristics.
d. Closed source project (major benefits, major

investments and major risks).

Results of the comparative study are summarized below
in Table 2.

Table 2: Results of comparing different OSS usage
models

OSS usage

strategy

Using

OSS

Redistribute

OSS

Reusing

OSS
Suitable

software

license

All Non viral

licenses

Non viral

licenses (BSD,

IBM, MPL)

Desirable OSS

characteristics

Quality in-use Quality in-use,

software

quality, process

quality

Software

quality,

process quality,

reusability

Suitable OSS

types

Infrastructure

software

Infrastructure

software and

office tools

Reusable

components and

frameworks

OSS user roles

in CSP

Active user Developer

Closed source

developer

activities

related to OSS

Usage Usage,

modifications,

packaging

Reuse,

modifications,

integration

Collaboration

artefacts

between CSP

and OSP

Identified

bugs, feature

requests

Identified bugs,

feature requests,

code

OSP major

desirable

characteristics

Good support Stable releases Stable

architecture

Major benefits Lower direct

and indirect

cost

Commercial

distributions,

market

penetration

Increased

productivity and

software quality

Major OSS

cost factors

Learning OSS Learning OSS

modifying

OSS,

collaborating

with OSP

Learning OSS

modifying OSS,

integrating OSS,

collaborating

with OSP

Major risk Low OSS

quality, lack

of support

Unsuitable OSS

license,

undetermined

OSP stability

Unsuitable OSS

license,

unstable OSS

architecture,

week OSS

reusability.

490 Informatica 29 (2005) 483–490 G. Polančič et al.

6. Conclusion
In this study we analysed open source projects from the
closed source software development point of view. We
presented open source project structure its characteristics,
and specialities compared to traditional software projects.
Because of increasing interest in using open source
software in commercial projects, following basic open
source software usage strategies were identified: using,
redistributing and reusing open source software. All
strategies were presented in business process models,
based on business process modelling notation - BPMN.
Additionally risk-benefit analysis was performed on
activities and events of each business model. Finally a
comparative study, comparing all three models was
performed, based on predefined attributes.
Future research might be directed into specifying cost
models of specific usage strategies. Additional,
empirically testable success factors should be defined for
OSS that is commonly used in a specific usage strategy.
To summarize, open source software has a huge usage
potential in commercial software development
environment, where open source community acts as a
resource of software developers and testers. Open source
can supply commercial projects with software
infrastructure, reusable components or products, which
can be further commercially redistributed. However
technical, managerial and legal aspects should be
properly studied before deciding for a specific usage
strategy.

References

[1] Andrea Bonaccorsi & Cristina Rossi "Contributing

to OS Projects. A Comparison between Individual
and Firms", in Collaboration, Conflict and Control,
pp. 18-22.

[2] Boehm, B. 1999, "Managing software productivity
and reuse", Computer, vol. 32, no. 9, pp. 111-113.

[3] BPMI. Busines Proces Modelling Notation ver 1.0.
2004. Busines Process Management Initiative
(BPMI).
Ref Type: Generic

[4] Brown, A. W. & Booch, G. 2002, "Reusing open-
source software and practices: The impact of open-
source on commercial vendors", Software Reuse:

Methods, Techniques, and Tools, Proceedings, vol.
2319, pp. 123-136.

[5] Eric S.Raymond 2000, "The cathedral and the
bazaar", Computers & Mathematics with

Applications, vol. 39, no. 3-4, p. 263.
[6] Fitzgerald, B. 2004, "A critical look at open

source", Computer, vol. 37, no. 7, pp. 92-94.
[7] Gacek, C. & Arief, B. 2004, "The many meanings

of open source", IEEE Software, vol. 21, no. 1, p.
34-+.

[8] Jen-Fang Lee & Tzu-Ying Chan 2004,
"Organisational Structure of "User Collaboration
Community": Insights from the Case of an Open

Source Software Project", in 4th Workshop on Open

Source Software Engineering, pp. 105-109.
[9] Jianjun Deng, Tilman Seifert, & Sascha Vogel

"Towards a Product Model of Open Source
Software in a Commercial Environment", in 3rd

Workshop on Open Source Software Engineering,
pp. 31-38.

[10] Kasper Edwards 2004, "An economic perspective
on software licenses—open source, maintainers and
user-developers", Telematics and Informatics.

[11] Madanmoban, T. R. & De, R. 2004, "Open source
reuse in commercial firms", Ieee Software, vol. 21,
no. 6, p. 62-+.

[12] Michael Nash 2003, Java Frameworks and

Components: Accelerate Your Web Application

Development Cambridge University Press.
[13] Open Source Initiative. Open Source Initiative -

OSI - The Open Source Definition. 2005. 20-8-
2005.
Ref Type: Generic

[14] Richard P.Gabriel & Ron Goldman 2002, "Open
Source: beyond the Fairytales", Perspectives on

Business Innovation no. 8.
[15] Ruffin, M. & Ebert, C. 2004, "Using open source

software in product development: A primer", Ieee

Software, vol. 21, no. 1, p. 82-+.
[16] Stephen A.White. Introduction to BPMN. July

2004. 2004. BPTrends.
Ref Type: Unpublished Work

[17] Vidyasagar Potdar & Elizabeth Chang 2004, "Open
Source and Closed Source Development
Methodologies", in 4th Workshop on Open Source

Software Engineering, pp. 105-109.
[18] Wolfgang Maass 2004, "Inside an Open Source

Software Community: Empirical Analysis on
Individual and Group Level", in 4th Workshop on

Open Source Software Engineering, pp. 105-109.
[19] Wu, M. W. & Lin, Y. D. 2001, "Open source

software development: An overview", Computer,
vol. 34, no. 6, p. 33-+.

Informatica 29 (2005) 491–496 491

Model-Based Tuning of Process Parameters for Steady-State Steel Casting

Bogdan Filipič
Department of Intelligent Systems
Jožef Stefan Institute
Jamova 39, SI-1000 Ljubljana, Slovenia
E-mail: bogdan.filipic@ijs.si

Erkki Laitinen
Department of Mathematical Sciences
University of Oulu
P.O. Box 3000, FIN-90014 Oulu, Finland
E-mail: erkki.laitinen@oulu.fi

Keywords: steel production, continuous casting, process parameters, coolant flows, stochastic optimization, evolutionary
algorithm, next descent

Received: October 28, 2005

We present an empirical study of process parameter tuning in industrial continuous casting of steel where
the goal is to assure the highest possible quality of the cast steel through proper parameter setting. The
process is assumed to be under steady-state conditions and the considered optimization task is to set 18
coolant flows in the caster secondary cooling zone to achieve the target surface temperatures along the slab.
A numerical model of the casting process was employed to first investigate the properties of the parameter
search space, and then iteratively improve parameter settings. For this purpose, two stochastic optimization
algorithms were used: a steady-state evolutionary algorithm and next-descent local optimization. The
results indicate the difficulty of the optimization task arises not from a complicated fitness landscape but
rather from high dimensionality of the problem.

Povzetek: V članku predstavljamo uglaševanje procesnih parametrov za industrijsko kontinuirano ulivanje
jekla na osnovi numeričnega modela procesa in z uporabo stohastičnih optimizacijskih metod.

1 Introduction

Manufacturing and processing of materials are nowadays
largely based on numerical analysis and computer support.
Material scientists and engineers rely on computational ap-
proximation both in process design and control. Numerical
simulators enable insight into process evolution, allow for
execution of numerical experiments and facilitate manual
process optimization by trial and error. In addition, reliable
process simulators and efficient optimization techniques al-
low for automated optimization of process parameters and
improvement of material properties. These goals can be
achieved by interconnecting a process simulator with an
optimization algorithm through a cost function which al-
lows for automatic assessment of the simulation results.
This framework has recently been extensively studied and
applied to a number of material processes under the project
COST 526: Automatic Process Optimization in Materials
Technology (APOMAT) [5].

Continuous casting is a predominant technology of steel
production in modern steel plants. It is a complex metal-
lurgical process in which liquid steel is cooled and shaped
into semi-manufactures of desired dimensions. To achieve
proper quality of cast steel, it is essential to control the

metal flow and heat transfer during the casting process.
They depend on numerous parameters, such as the cast-
ing temperature, casting speed and coolant flows. Finding
optimal values of process parameters is difficult since dif-
ferent, often conflicting criteria may be applied, the num-
ber of possible parameter settings is high, and parameter
tuning through real-world experimentation is not feasible
because of costs and safety risk. Over the last years, how-
ever, several computational techniques have been used to
enhance the process performance and product characteris-
tics, including knowledge-based heuristic search [4], ge-
netic algorithms [10, 2], and evolutionary multiobjective
optimization [3].

In this paper we report on preliminary numerical exper-
iments in optimizing secondary coolant flows on a casting
machine of the Rautaruukki steel plant in Finland. Calcu-
lations were done for a selected steel grade under the as-
sumption of steady-state caster operation. Their objective
was to get better insight into the properties of this opti-
mization task and tune the coolant flows with respect to the
given temperature distribution requirements. The paper de-
scribes the optimization problem, the applied mathematical
model of the casting process and the experimental setup,
and reports on numerical experiments and results.

492 Informatica 29 (2005) 491–496 B. Filipič et al.

2 The Optimization Problem

Figure 1 shows a schematic view of a continuous casting
machine. In the continuous casting process molten steel
is poured into a bottomless mold which is cooled with in-
ternal water flow. The cooling in the mold extracts heat
from the molten steel and initiates the formation of the solid
shell. The shell formation is essential for the support of the
slab after mold exit. After the mold the slab enters into
the secondary cooling area in which it is cooled by water
sprays. The secondary cooling region is divided into cool-
ing zones where the amount of the cooling water can be
controlled separately.

The secondary cooling area of the considered casting de-
vice is divided into nine zones. In each zone, cooling water
is dispersed to the slab at the center and corner positions.
Target temperatures are specified for the slab center and
corner in every zone. Water flows should be tuned in such
a way that the resulting slab surface temperatures match the
target temperatures. Formally, a cost function is introduced
to measure the differences between the actual and target
temperatures. It is defined as

c(T) =
1
2
(

NZ∑

i=1

li(T center
i − T center∗

i)2 +

+
NZ∑

i=1

li(T corner
i − T corner∗

i)2), (1)

where Nz denotes the number of zones, li the length of the
i-th zone, T center

i and T corner
i the slab center and corner

temperatures, while T center∗
i and T corner∗

i the respective
target temperatures in zone i. The optimization task is to
minimize the cost function over possible cooling patterns
(water flow settings). Water flows cannot be set arbitrar-
ily, but according to the technological constraints. For each
water flow, minimum and maximum values are prescribed.

Table 1 shows an example of the prescribed target tem-
peratures and water flow intervals for continuous casting
of the steel grade analyzed in this study. The slab cross-
section in this case was 1.70 m × 0.21 m and the casting
speed 1.4 m/min.

3 Mathematical Model of the
Casting Process

The simulation model calculates the temperature field of
the steel slab as a function of the casting parameters. We
consider steady-state casting conditions, i.e. the parameters
are constants in time. We denote the 3D geometry of the
slab by V = Ω × [0, LZ], where Ω = [0, LX] × [0, LY]
is a 2D cross-section of the slab and LZ is the length of
the strand. Moreover, we denote by LM the length of the
mould. We divide the boundary Γ = ∂V into four parts:

Table 1: Target temperatures and water flow intervals for
continuous casting of steel considered in the empirical
study

Zone Target Flow Min. Max.
Position number [◦C] number [m3/h] [m3/h]

1 1050 1 7.1 26.1
C 2 1040 2 22.8 57.5
e 3 980 3 13.3 39.9
n 4 970 4 1.5 7.9
t 5 960 5 2.7 10.0
e 6 950 6 0.8 6.5
r 7 940 7 0.7 5.9

8 930 8 1.0 5.8
9 920 9 1.2 6.2
1 880 10 7.1 26.1

C 2 870 11 22.8 57.5
o 3 810 12 13.3 39.9
r 4 800 13 1.2 3.5
n 5 790 14 2.4 4.4
e 6 780 15 2.4 2.9
r 7 770 16 0.7 5.9

8 760 17 1.0 5.8
9 750 18 1.2 6.2

Γ0 = Ω× {0},
ΓN = {(x, y) ∈ ∂Ω : x = 0 ∨ y = 0} × [LM , LZ],
ΓS = {(x, y) ∈ ∂Ω : x 6= 0 ∧ y 6= 0} × [0, LZ) ∪ Ω× {LZ},
ΓM = {(x, y) ∈ ∂Ω : x = 0 ∨ y = 0} × [0, LM].

(2)
The mathematical model for the temperature field T =

T (x, y, z, t) of the slab can be written as





∂H(T)
∂t + v ∂H(T)

∂z −∆K(T) = 0 in V × (0, tf],

T = T0 on Γ0 × (0, tf],

∂K(T)
∂n + h(T − Tw)+

+σε(T 4 − T 4
ext) = 0 on ΓN × (0, tf],

∂K(T)
∂n = 0 on ΓS × (0, tf],

∂K(T)
∂n = Q on ΓM × (0, tf],

T (x, y, z, 0) = T 0 in V.
(3)

Here n is the unit vector of outward normal on ∂V , h is
the heat transfer coefficient, v is the casting speed, Tw and
Text are known temperatures, σ is the Stefan-Boltzmann
constant and ε is the emissivity. The cooling efficiency Q in
the mould is a known constant and tf is the simulation time.
H(T) and K(T) are the temperature dependent enthalpy
and Kirchoff functions (see [13] for details).

Equations 3 are discretized using the finite element
method (FEM) and the corresponding nonlinear equations
solved with relaxation iterative methods [7]. A more
detailed description of discretization and construction of

MODEL-BASED PARAMETER TUNING. . . Informatica 29 (2005) 491–496 493

Figure 1: Continuous casting machine

FEM matrices is presented in [6]. We note that in our
method it is sufficient to construct only 2D- and 1D-
matrices. Therefore, it is obvious that the model is com-
putationally much more efficient than in the case of using
the ordinary 3D-brick elements.

4 Experimental Setup

Evaluation of cooling patterns and their assessment with
respect to cost function (1) was done using the described
mathematical model implemented in the form of a com-
puter simulator. Its principal task is to dynamically track
the temperature field in the slab as a function of process pa-
rameters. In this study it was applied under the assumption
of steady-state caster operation, and the search for optimal
cooling patterns performed in the off-line manner. A single
simulator run takes about 40 seconds on a 1.8 GHz Pentium
IV computer.

Before the integration of the simulator with the opti-
mization algorithms, a number of simulator runs were per-
formed to get an initial insight into the properties of the fit-
ness landscape associated with the optimization problem.
Specifically, the cost was analyzed as a function of individ-
ual parameters and pairs of parameters, while keeping the
remaining parameters fixed at the values from the middle
of their intervals.

The resulting plots show simple dependencies between
the parameters and cost function in the form of monotonic
or at most U-shaped curves and surfaces (see examples in
Figures 2 and 3). They are much simpler than usual ar-
tificial test functions for numerical optimization, which is
understandable because of the underlying physical process.
Similar properties were found in the analysis of the fitness
landscapes in parameter tuning for a continuous casting
machine at the Acroni steel plant in Jesenice, Slovenia [11].
However, one should bear in mind that such analyses offer
a very limited view of the problem characteristics. Never-
theless, the real difficulty comes with high dimensionality

of the problem, as there are 18 independent process param-
eters subject to optimization.

Before the application of optimization procedures one
has to decide whether to search for optimal solutions in
continuous or discretized parameter space. In analogy to
previous studies performed on similar task from the Acroni
steel plant [9, 14, 8], the discrete version was considered.
The rationale behind it is in the engineering approach to
coolant flow tuning where it is meaningless to consider
changes below certain amount as they do not reflect in
changing the cost value. For the purpose of numerical ex-
periments three discretizations were defined, a very rough
one for initial tests of the optimization algorithms, another
one with medium step sizes to refine the results, and the one
with the uniform step size of 0.1 m3/h which is the mini-
mum change considered in practice for all coolant flows
(see Table 2).

Given these dicretizations, one can to calculate the num-
ber of possible parameter settings. For a parameter from
the interval [pmin

i , pmax
i] with step size pstep

i , there are
vi = b(pmax

i − pmin
i)/pstep

i c + 1 values possible, and the
total number of settings is v =

∏Np

i=1 vi, where Np is the
number of parameters. This results in 4.6 · 1012 possible
setting for discretization 1, 4.9 · 1023 for discretization 2,
and 4.7 · 1033 for discretization 3.

5 Numerical Experiments and
Results

Two stochastic optimization techniques were applied to the
coolant flow optimization problem, the steady-state evolu-
tionary algorithm [1] and the next-descent local optimiza-
tion algorithm. They were selected as they performed well
in solving similar optimization problems for the Acroni
steel plant [9, 14]. Both methods iteratively improved
candidate solutions represented as real vectors of coolant
flow values. The evolutionary algorithm was run with the

494 Informatica 29 (2005) 491–496 B. Filipič et al.

258000

263000

268000

273000

278000

1 2 3 4 5 6

C
o
s
t

Flow_7 [m3/h]

235000

240000

245000

250000

255000

7 12 17 22 27

C
o
s
t

Flow_10 [m3/h]

260000

262500

265000

267500

270000

1.2 1.6 2 2.4 2.8 3.2 3.6

C
o
s
t

Flow_13 [m3/h]

Figure 2: Examples of cost function dependencies on individual process parameters

7
11

15
19

23 7
11

15
19

23

230000

245000

260000

Flow_1 [m3/h]

Flow_10 [m3/h]

Cost

1
3

5
7 1

2
3

4
5

6
250000

275000

300000

Flow_4 [m3/h]

Flow_8 [m3/h]

Cost

2
4

6
8

10 2

3

4

5
260000

275000

290000

Flow_5 [m3/h]

Flow_14 [m3/h]

Cost

Figure 3: Examples of cost function dependencies on pairs of process parameters

Table 2: Parameter discretizations used in the optimiza-
tion process; #val denotes the number of values possible
for each parameter

Discretization 1 Discretization 2 Discretization 3
Flow Step Step Step
no. [m3/h] #val [m3/h] #val [m3/h] #val

1 4.7 5 1.0 20 0.1 191
2 8.6 5 1.0 35 0.1 348
3 6.6 5 1.0 27 0.1 267
4 1.6 5 0.5 13 0.1 65
5 1.8 5 0.5 15 0.1 74
6 1.4 5 0.2 29 0.1 58
7 1.3 5 0.2 27 0.1 53
8 1.2 5 0.2 25 0.1 49
9 1.2 5 0.2 26 0.1 51

10 4.7 5 1.0 20 0.1 191
11 8.6 5 1.0 35 0.1 348
12 6.6 5 1.0 27 0.1 267
13 0.5 5 0.2 12 0.1 24
14 0.5 5 0.2 11 0.1 21
15 0.1 6 0.1 6 0.1 6
16 1.3 5 0.2 27 0.1 53
17 1.2 5 0.2 25 0.1 49
18 1.2 5 0.2 26 0.1 51

population of 20 solutions, applying arithmetic crossover
and Gaussian mutation adjusted to perform vector varia-
tion with prescribed discretization. The local optimization
algorithm relied on the neigborhod relationship among can-
didate solutions. Two solutions were considered neighbors
if differing in the i-th vector component for ±pstep

i . In this
way each solution, with the exception of those on the edge
of the search space, had 2Np = 36 neighbors. The al-
gorithm started from a randomly selected point and was

restarted after reaching a local minimum.
For each of the three search space discretizations the al-

gorithms were run five times and their results evaluated
statistically. The number of solutions checked (parame-
ter settings evaluated) in each algorithm run was 200 for
discretization 1, 500 for discretization 2, and 2000 for dis-
cretization 3. No other parameter adjusting was involved
as this empirical study was a preliminary one.

The performance of the algorithms under different
search space discretizations is illustrated in Figure 4 and
the results in terms of cost summarized in Table 3. For
discretization 1, the performance of random search is also
shown to provide an empirical upper bound for the results.
In this case, the local optimization algorithm clearly out-
performs the evolutionary algorithm, but the cost values
produced are still high which indicates the discretization
is too rough to allow for detection of the near-optimal solu-
tion. With the refinement of discretization better results
are found by both methods and their performance com-
pares differently. The finer the discretization, the closer
the final results, while in the initial stage of the search the
evolutionary algorithm outperforms the local optimization
algorithm. The solutions found with local optimization
are however not dispersed as with the evolutionary algo-
rithm. It turns out that the more complex the search space
the more obvious the efficiency of the evolutionary algo-
rithm in identifying the promising regions which suggests
an appropriate hybrid of the two algorithms would reduce
the number process simulations needed in the optimization
procedure.

Certainly, the key result for material engineers at the
plant are the optimized coolant flows. Their values will

MODEL-BASED PARAMETER TUNING. . . Informatica 29 (2005) 491–496 495

0

50000

100000

150000

200000

0 50 100 150 200

C
os

t

Process simulations

random search
evolutionary algorithm

next descent

0

50000

100000

150000

200000

0 100 200 300 400 500

C
os

t

Process simulations

evolutionary algorithm
next descent

0

50000

100000

150000

200000

0 500 1000 1500 2000

C
os

t

Process simulations

evolutionary algorithm
next descent

Figure 4: Performance of the optimization algorithms av-
eraged over five runs of each algorithm for parameter dis-
cretizations 1 (top), 2 (center), and 3 (bottom)

Table 3: Summary of the optimized cost values found for
three parameter discretizations; EA denotes the steady-
state evolutionary algorithm, and ND next descent local
optimization

Discr. Method Best Average Worst St. dev.
1 EA 24988.8 28965.9 32842.5 2800.8

ND 13417.9 13794.9 15062.7 716.3
2 EA 10371.3 12466.6 14092.0 1790.4

ND 9592.9 9592.9 9592.9 0.0
3 EA 9078.5 9194.0 9247.2 73.7

ND 9070.4 9070.4 9070.4 0.0

be compared with the empirical settings used in practice,
and checked for possible contribution to the improvement
of steel quality.

6 Conclusion

Optimization of coolant flow settings in continuous casting
of steel is a key to higher product quality. It is nowadays
to a high degree performed through virtual experimenta-
tion involving numerical process simulators and advanced
optimization techniques. In this preliminary study of op-
timizing 18 cooling water flows for a Rautaruukki casting
machine under steady-state conditions, an empirical inves-
tigation of the problem properties was done, two stochastic
algorithm applied and their performance compared.

The results indicate the importance of the applied search
space discretization and suggest the construction of a hy-
brid algorithm to find near-optimal solutions in smaller
number of solution evaluations. With the same objective in
mind, the algorithms will be systematically tuned and en-
hanced with the mechanisms of gradual refinement of the
search focus, such as dynamic parameter encoding [15] or
the multilevel technique [12]. On the practical side, the op-
timized coolant flows will be evaluated with respect to the
settings used on the caster machine and checked for poten-
tial further improvements of the casting process.

Acknowledgement

This work was supported by the Slovenian Research
Agency and the Academy of Finland under the Slovenian-
Finnish project BI-FI/04-05-009 Numerical Optimization
of Continuous Casting of Steel, by the European Sci-
ence Foundation under COST 526: Automatic Process
Optimization in Materials Technology (APOMAT), and by
the Slovenian Research Agency under the Research Pro-
gramme P2-0209-0106 Artificial Intelligence and Intelli-
gent Systems.

References

[1] T. Bäck, D. B. Fogel, Z. Michalewicz (Eds.). Hand-
book of Evolutionary Computing, Institute of Physics
Publishing, Bristol, Philadelphia, and Oxford Univer-
sity Press, New York, Oxford, 1997.

[2] N. Chakraborti, R. Kumar, D. Jain. A study of the
continuous casting mold using a Pareto-converging
genetic algorithm. Applied Mathematical Modelling,
25 (4): 287–297, 2001.

[3] N. Chakraborti, R. S. P. Gupta, T. K. Tiwari. Opti-
misation of continuous casting process using genetic
algorithms: studies of spray and radiation cooling re-
gions. Ironmaking and Steelmaking, 30 (4): 273–278,
2003.

496 Informatica 29 (2005) 491–496 B. Filipič et al.

[4] N. Cheung, A. Garcia. The use of a heuristic search
technique for the optimization of quality of steel bil-
lets produced by continuous casting. Engineering Ap-
plications of Artificial Intelligence, 14 (2): 229–238,
2001.

[5] COST 526, Automatic Process Optimiza-
tion in Materials Technology (APOMAT),
http://www.cost526.de.

[6] R. Dautov, R. Kadyrov, E. Laitinen, A. Lapin, J.
Pieskä, V. Toivonen. On 3D Dynamic Control of
Secondary Cooling in Continuous Casting Process.
Lobachevskii Journal of Mathematics, 13: 3–13,
2003.

[7] C. M. Elliot, J. R. Ockendon. Weak and Variational
Methods for Moving Boundary Problems. Pitman
Publishing, Boston, 1982.

[8] B. Filipič. Efficient simulation-based optimization of
process parameters in continuous casting of steel.
In: D. Büche, N. Hofmann (Eds.), COST 526: Auto-
matic Process Optimization in Materials Technology:
First Invited Conference, pp. 193–198, Morschach,
Switzerland, 2005.

[9] B. Filipič, T. Robič. A comparative study of coolant
flow optimization on a steel casting machine. Pro-
ceedings of the 2004 Congress on Evolutionary Com-
putation, Portland, OR, USA, Vol. 1, pp. 569-573.
IEEE, Piscataway, 2004.

[10] B. Filipič, B. Šarler. Evolving parameter settings for
continuous casting of steel. Proceedings of the 6th
European Conference on Intelligent Techniques and
Soft Computing EUFIT’98, Vol. 1, pp. 444–449. Ver-
lag Mainz, Aachen, Germany, 1998.

[11] B. Filipič, B. Šarler. An empirical investigation into
the Properties of Coolant Flow optimization in the
Steel Production Process. In: B. Zajc, A. Trost (Eds.),
Proceedings of the Fourteenth International Elec-
trotechnical and Computer Science Conference ERK
2005, Portorož, Slovenia, Vol. B, 59–62. Slovenia
Section IEEE, Ljubljana, 2005.

[12] P. Korošec, J. Šilc. The multilevel ant stigmergy algo-
rithm: an industrial case study. Proceedings of the 8th
Joint Confeence on Information Sciences JCIS 2005,
pp. 475–478, Salt Lake City, Utah, USA.

[13] E. Laitinen. Online control of secondary cooling in
steel continuous casting process. In: D. Büche, N.
Hofmann (Eds.), COST 526: Automatic Process Opti-
mization in Materials Technology: First Invited Con-
ference, pp. 174–182, Morschach, Switzerland, 2005.

[14] T. Robič, B. Filipič. In search for an efficient param-
eter tuning method for steel casting. In: B. Filipič,
J. Šilc (Eds.), Bioinspired Optimization Methods and
their Applications, Proceedings of the International
Conference BIOMA 2004, pp. 83-94. Jožef Stefan In-
stitute, Ljubljana, Slovenia, 2004.

[15] N. N. Schraudolph, R. K. Belew. Dynamic parameter
encoding for genetic algorithms. Machine Learning,
9 (1): 9–21, 1992.

 Informatica 29 (2005) 497–502 497

Visualization of Text Document Corpus

Blaž Fortuna, Marko Grobelnik and Dunja Mladenić
Jozef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
E-mail: {blaz.fortuna, marko.grobelnik, dunja.mladenic}@ijs.si

Keywords: text visualization, latent semantic indexing, mutlidimensional scaling

Received: June 2, 2005

Visualization is commonly used in data analysis to help the user in getting an initial idea about the raw

data as well as visual representation of the regularities obtained in the analysis. In similar way, when

we talk about automated text processing and the data consists of text documents, visualization of text

document corpus can be very useful. From the automated text processing point of view, natural

language is very redundant in the sense that many different words share a common or similar meaning.

For computer this can be hard to understand without some background knowledge. We describe an

approach to visualization of text document collection based on methods from linear algebra. We apply

Latent Semantic Indexing (LSI) as a technique that helps in extracting some of the background

knowledge from corpus of text documents. This can be also viewed as extraction of hidden semantic

concepts from text documents. In this way visualization can be very helpful in data analysis, for

instance, for finding main topics that appear in larger sets of documents. Extraction of main concepts

from documents using techniques such as LSI, can make the results of visualizations more useful. For

example, given a set of descriptions of European Research projects (6FP) one can find main areas that

these projects cover including semantic web, e-learning, security, etc. In this paper we describe a

method for visualization of document corpus based on LSI, the system implementing it and give results

of using the system on several datasets.

Povzetek: Predstavljena je vizualizacija korpusa besedil.

1 Introduction
Automated text processing is commonly used when

dealing with text data written in a natural language.
However, when processing the data using computers, we
should be aware of the fact that many words having
different form share a common or similar meaning. For a
computer this can be difficult to handle without some
additional information -- background knowledge. Latent
Semantic Indexing (LSI) is a technique for extracting this
background knowledge from text documents. It employs
a technique from linear algebra called Singular Value
Decomposition (SVD) and the bag-of-words
representation of text documents for extracting words
with similar meanings. This can also be viewed as the
extraction of hidden semantic concepts from text
documents.

Visualization of a document corpus is a very useful

tool for finding the main topics that the documents from
this corpus talk about. Different methods were proposed
for visualizing a large document collection using
different underlying methods. For instance, visualization
of large document collection based on document
clustering [3] , or visualization of news collection based
on visualizing relationships between named entities
extracted from the text [4] . Another example used in our
work is visualization of European research space [5] .

Given a set of descriptions of European research projects
in IT (6th Framework IST), using document visualization
one can find main areas that these projects cover, such as
semantic web, e-learning, security, etc.

In automated text processing document are usually
represented using the bag-of-words document
representation, where each word from the document
vocabulary stands for one dimension of the
multidimensional space of documents. Consequently, in
automated text processing we are dealing with very high
dimensionality of up to hundreds of thousands
dimensions. Dimensionality reduction [6] is important
for different aspects of automated text processing
including document visualization.

We propose to use dimensionality reduction for

document visualization by first extracting main concepts
from documents using LSI and than using this
information to position documents on a two dimensional
plane via multidimensional scaling [1]. The final output
is graphical presentation of a document set that can be
plotted on a computer screen. The proposed approach is
implemented as a part of Text Garden software tools for
text mining [7] 1 in a component providing different
kinds of document corpus visualization based on LSI and
multidimensional scaling.

1 http://www.textmining.net/

498 Informatica 29 (2005) 497–502 B. Fortuna et al.

This paper is organized as follows. Section 2
provides a short description of LSI and multidimensional
scaling, while its application to document visualization is
given in Section 3. Description of the developed system
implementing the method is given in Section 4. Section 5
provides conclusions and discussion.

2 Building Blocks
First step of our approach to visualization of a

document corpus is mapping all the documents into two
dimensional space so we can plot them on a computer
screen. Ideally they would be positioned in such a way
that the distance between two documents would
correspond to the content similarity between them.

We obtain this mapping by sending the document
corpora trough the pipeline for reducing dimensionality,
consisting from building blocks presented in this Section.
The whole pipeline will be outlined in the Section 3.

2.1 Representation of Text Documents

The first step in our approach is to represent text
documents as vectors. We use the standard Bag-of-
Words (BOW) representation together with TFIDF
weighting [9]. In the BOW representation there is a
dimension for each word; a document is encoded as a
feature vector with word frequencies as elements.
Elements of vectors are weighted, in our case using the
standard TFIDF weights as follows. The i-th element of
the vector containing frequency of the i-th word is
multiplied with IDFi = log(N/dfi), where N is total
number of documents and dfi is document frequency of
the i-th word (the number of documents from the whole
corpus in which the i-th word appears).

2.2 Latent Semantic Indexing

A well known and used approach for extracting
latent semantics (or topics) from text documents is Latent
Semantic Indexing [2]. In this approach we first construct
term-document matrix A from a given corpus of text
documents. This is a matrix with vectors of documents
from a given corpus as columns. The term-document
matrix A is then decomposed using singular value
decomposition, so that A = USVT; here matrices U and V
are orthogonal and S is a diagonal matrix with ordered
singular values on the diagonal. Columns of matrix U
form an orthogonal basis of a subspace in the bag-of-
words space where vectors with higher singular values
carry more information -- this follows from the basic
theorem about SVD, which tells that by setting all but the
largest k singular values to 0 we get the best
approximation for matrix A with matrix of rank k).
Vectors that form the basis can be also viewed as
concepts and the space spanned by these vectors is called
the Semantic Space.

Each concept is a vector in the bag-of-words space,

so the elements of this vector are weights assigned to the
words coming from our documents. The words with the

highest positive or negative values form a set of words
that are found most suitable to describe the
corresponding concept.

A related approach (not used here) that also aims at

extracting latent semantics from text documents is
Probabilistic Latent Semantic Analysis (PLSA)
introduced in [8] . Compared to standard Latent Semantic
Analysis which comes from linear algebra and performs
a Singular Value Decomposition of co-occurrence tables,
this method is based on a mixture decomposition derived
from a latent class model. This method assigns each
word a probability to be in a concept, where the number
of concepts is predefined.

2.3 Dimensionality Reduction

We are using a sequential combination of linear subspace
methods and multidimensional scaling for reducing
document space dimensionality. Both methods can be
independently applied to any data set that is represented
as a set of vectors in some higher dimensional space. Our
goal is to lower the number of dimensions to two so that
the whole corpus of documents can be shown on a
computer screen.

Linear subspace methods [10] , like Principal Component
Analysis (PCA) or Latent Semantic Indexing, focus on
finding direction in original vector space, so they capture
the most variance (as is the case for PCA) or are the best
approximation for original document-term matrix (as is
the case for LSI). By projecting data (text documents)
only on the first two directions we can get the points that
live in the two dimensional space. The problem with
linear subspace methods is that only the information
from the first two directions is preserved. In case of LSI
it would mean that all documents are described using
only the two main concepts.

Multidimensional scaling [1] enables dimensionality
reduction by mapping original multidimensional vectors
onto two dimensions. Here the points representing
documents are positioned into two dimensions so they
minimize some energy function. The basic and most
common form of this function is

E = ∑i≠jδij - d(xi, xj))

2,

where xi are two dimensional points and δij represents the
similarity between two vectors (in our case documents i
and j). An intuitive description of this optimization
problem is: the better the distances between points on the
plane approximate real similarity between documents,
the lower the value of the energy function. Function E is
nonnegative and equals zero only when distances
between points match exactly with similarity between
documents.

VISUALIZATION OF TEXT DOCUMENT... Informatica 29 (2005) 497–502 499

3 Visualization Using

Dimensionality Reduction
We propose combining the two methods (linear subspace
and multidimensional scaling) in order to take advantage
of the nice properties they both have. What follows is
description of the proposed algorithm:

Input: Corpus of documents to visualize in form of
TFIDF vectors.
Output: Set of two dimensional points representing
documents.

Procedure:
1. Calculate k dimensional semantic space

generated by input corpus of documents,
2. Project documents into the semantic space,
3. Apply multidimensional scaling using energy

function on documents with Euclidian
distance in semantic space as similarity
measure.

There are two main problems to be solved to make the
above algorithm work efficiently. First problem is how to
determine the value of k. The way we choose is by
checking the singular values. Let Σk = S1

2 + S2
2 + … +

Sk
2, where Si is i-th singular value. We know that .Σn =

Trace(ATA), where n is the number of the documents in
the corpus and A is the term-document matrix. From this
we can guess k by prescribing the ratio Σk / Σn to some
fixed value, eg., 50%.

A more difficult problem is how to perform
multidimensional scaling efficiently. Common way is to
use gradient descent. The problem with this approach is
that the energy function is not convex: it usually has
many local minima which are not that interesting for us.
One could start this method more times with different
initial state and than choose the results with the lowest
energy.

We choose a slightly different way which is based on
reformulation of the energy function. Given a placement
of points, we calculate for each point how to move it so
we minimize energy function. Lets denote the current
positions of points with (xi,yi) and the desired position
with
(xi',yi') = (xi + δxi, yi + δyi). Than we have

dij'
2 - dij

2 = (xi – xj)
2 + (yi - yj)

2 –

 (xi + δxi - xj - δxj)
2 + (yi + δyi - yj - δyj)

2 ≈

Figure 1 Visualization of questions. The dataset is a collection of around 800 most frequent questions asked by Spanish
judges regarding the law and trials. Each question is treated as one document. Dataset is taken from a case study of the

EU SEKT project.

500 Informatica 29 (2005) 497–502 B. Fortuna et al.

≈ (xi - xj) δxi + (xj - xi) δxj + (yi - yj) δyi + (yj - yi) δyj

=

= [(xi - xj), (xj - xi), (yi - yj), (yj - yi)][δxi, δxj, δyi,

δyj]
T.

By writing this for each pair (i,j) and substituting dij’
with the original distance between i-th and j-th document
we get a system of linear equations which has a vector of
moves (δx and δy) for a solutions. This is an iteration
which finds a step towards minimizing energy function
and is more successful at avoiding local minima. Each
iteration involves solving a linear system of equations
with a very sparse matrix. This can be done very
efficiently using Conjugate Gradient (CG) method.
Finally, the points are normalized to lie in the square K

=[0,1]2.

4 Visualization Beyond

Dimensionality Reduction
After the documents from corpus are mapped onto a two
dimensional plane, some other techniques can be used to
make the structure of documents more explicit for the
users:

• Landscape generation: landscape can be
generated by using the density of points. Each
point from square K is assigned height using the
formula
h(x, y) = ∑i exp(-σ ||(x,y) - (xi, yi)||

2).

• Keywords: each point from square K can be
assigned a set of keywords by averaging TFIDF
vectors of documents which appear within a
circle with centre in this point and radius R.

Figure 2 Visualization of European IST projects from 6th framework. Dataset consists of descriptions of EU IST projects
taken from CORDIS web site. One can see in the visualization the main areas covered by the projects. The lower right side
consists of projects about semantic web. In counter-clockwise direction the topics change to multimodal integration, e-
learning, robotics, optics, safety, networking, grid computing, and than back to web related projects. These topics can be
easily read from the map by checking the keywords. We can notice that besids putting similar documents together, the
visualizations also puts similar topics more close on the map. Each document from the dataset corresponds to a description

of one research project.

VISUALIZATION OF TEXT DOCUMENT... Informatica 29 (2005) 497–502 501

We use these features when showing visualizations to
make them more descriptive and to improve the overall
user experience.

In our system, called Text Garden Document Atlas, the
documents are presented as yellow crosses on a map and
the density is shown as a texture in the background of the
map (the lighter the color, the higher the density). The
most common keywords are shown for the areas around
the map. Positions, for which keywords are computed,
are selected randomly. Keywords are displayed using
white color font. When the user moves the mouse around
the map a set of the most common keywords is computed
in real-time for the area around the mouse (the area, from
which these keywords are extracted, is marked darker on
the map and the list of keywords is shown in the semi-
transparent window next to the mouse). The user can also
zoom-in to see specific areas in more details. By clicking
on a document (yellow crosses on the map), more
information about it is shown on the left bottom side side
of the screen.

Two examples of the visualizations can be seen in Figure
1 and 2. Figure 1 shows visualization of a corpus with
questions from Spanish judges [8] . A map of the
European IST projects from 6th framework is shown in
Figure 2 and zoom-in on the part showing projects
related to web and semantic web is shown in Figure 3..

5 Conclusions and Future Work
We have proposed a approach to efficient visualization
of large data collections and describe the developed
system implementing the proposed approach. The system
was successfully used for visualizing different kinds of
document corpora – from project descriptions, scientific
articles to short questions from legal domain and even
clients of an Internet grocery store. We found that the
system is very helpful for data analysis offering quick
insight into the structure of the visualized corpus.
However providing a more systematic evaluation of the
system including users questionnaire remains for the
future work.

We will continue to use the user feedback as a guide for
adding new features, which would make this tool even
more informative and useful. One area not fully explored
yet is the use of background relief in visual
representation of the document corpus. Currently we use
the relief to show the density of documents but it can also
be used for showing some other attributes. Another
direction we are considering for future work is to
improve scalability by making the multi-dimensional
step more scalable with the number of documents.

Acknowledgement

This work was supported by the Slovenian Research
Agency and the IST Programme of the European
Community under SEKT Semantically Enabled

Knowledge Technologies (IST-1-506826-IP) and
PASCAL Network of Excellence (IST-2002-506778).
This publication only reflects the authors' views.

References
[1] Carroll, J.D., Arabie, P. Multidimensional scaling.

In M.R. Rosenzweig and L.W. Porter (Eds.),
Annual Review of Psychology, 1980, 31, 607-649.

[2] Deerwester, S., Dumais, S., Furnas, G., Landuer, T.,
Harshman, R. Indexing by Latent Semantic
Analysis, Journal of the American Society of
Information Science, 1990.

[3] Grobelnik, M., and Mladenic, D.: Efficient
visualization of large text corpora. Proceedings of
the Seventh TELRI seminar. Dubrovnik, Croatia,
2002.

[4] Grobelnik, M., Mladenic, D. Visualization of news
articles. Informatica journal, 2004, vol. 28, no. 4.

[5] Grobelnik, M., Mladenic, D. Analysis of a database
of research projects using text mining and link
analysis. In Data mining and decision support :
integration and collaboration, Kluwer Academic
Publishers, Boston; Dordrecht; London, 2003, pp.
157-166.

[6] Grobelnik, M., Mladenic, D. Text Mining Recipes,

Springer-Verlag, Berlin; Heidelberg; New York (to

appear), 2006, (accompanying software available at

<http://www.textmining.net>.

[7] Mladenic, D. Feature Selection for Dimensionality
Reduction. In Subspace, Latent Structure and
Feature Selection techniques: Statistical and
Optimisation perspectives, Springer Lecture Notes
in Computer Science (to appear), 2006.

[8] Hoffman, T., Probabilistic Latent Semantic
Analysis, Proc. of Uncertainty in Artificial
Intelligence, UAI'99, 1999

Figure 3 Zoom-in to projects related to web such as 6FP
projects SEKT, MUSCLE, ALVIS, etc. Uppercase

orange words are the project names (acronyms).

502 Informatica 29 (2005) 497–502 B. Fortuna et al.

[9] Salton, G. Developments in Automatic Text
Retrieval, Science, Vol 253, pages 974-979, 1991.

[10] Shawe-Taylor, J., Cristianini, N. Kernel Methods
for Pattern Analysis, Cambridge University Press,
2004, 143-150

[11] Vallbe, J.J., Marti, M.A., Fortuna, B., Jakulin, A.,
Mladenic, D., Casanovas, P. Stemming and
lemmatisation, Springer Lecture Notes, (to appear),
2006.

Informatica 29 (2005) 503

CONTENTS OF Informatica Volume 29 (2005) pp. 1–505

Papers
ABONYI, J. & B. FEIL, A. ABRAHAM. 2005. Computational
Intelligence in Data Mining. Informatica 29:3–12.

AHUJA, S.P. & ,
R. EGGEN, A. K. JHA. 2005. A Performance Evaluation of
Distributed Algorithms on Shared Memory and Message Passing
Middleware Platforms. Informatica 29:327–333.

AHVENLAMPI, T. & U. KORTELA. 2005. Clustering Algorithms
in Process Monitoring and Control Application to Continuous
Digesters. Informatica 29:99–107.

AL-HAJ, A.M. & . 2005. An FPGA-Based Parallel Distributed
Arithmetic Implementation of the 1-D Discrete Wavelet Trans-
form. Informatica 29:241–247.

ALLAH, M.M.A. & . 2005. Artificial Neural Networks Based
Fingerprint Authentication With Clusters Algorithm. Informatica
29:303–307.

BANG, K.-S. & H.-W. JIN, C. YOO, J.-Y. CHOI. 2005.
System Resource Utilization Analysis Based on Model Checking
Method. Informatica 29:219–226.

BARTA, A. & I. VAJK. 2005. Document Image Analysis by
Probabilistic Network and Circuit Diagram Extraction. Informat-
ica 29:291–301.

BASKIYAR, S. & N. MEGHANATHAN. 2005. A Survey of
Contemporary Real-time Operating Systems. Informatica
29:233–240.

BEŽEK, A. & , M. GAMS. 2005. From Basic Agent Behavior
to Strategic Patterns in a Robotic Soccer Domain. Informatica
29:461–468.

BERNON, C. & , M. COSSENTINO, J. PAVÓN. 2005. An
Overview of Current Trends in European AOSE Research.
Informatica 29:379–390.

BOURAHLA, M. & M. BENMOHAMED. 2005. Model Checking
Multi-Agent Systems. Informatica 29:189–197.

BRABAZON, A. & A. SILVA, T. FERRA DE SOUSA,
M. O’NEILL, R. MATTHEWS, E. COSTA. 2005. Investigating
Strategic Inertia Using OrgSwarm. Informatica 29:125–141.

BRAUN, P. & J. EISMANN, C. ERFURTH, A. DÖHLER,
W.R. ROSSAK. 2005. A Multi-agent Approach To Manage a
Network of Mobile Agent Servers. Informatica 29:109–119.

CHONG, M. & A. ABRAHAM, M. PAPRZYCKI. 2005. Traffic
Accident Analysis Using Machine Learning Paradigms. Infor-
matica 29:89–98.

CONGYAN, L. & X. DE, Y. XU. 2005. Perception-Oriented
Prominent Region Detection in Video Sequences. Informatica
29:253–260.

DRESSLER, F. & . 2005. Efficient and Scalable Communication
in Autono- mous Networking using Bio-inspired Mechanisms.
Informatica 29:183–188.

FILIPIČ, B. & , E. LAITINEN. 2005. Model-Based Tuning of
Process Parameters for Steady-State Steel Casting. Informatica
29:491–496.

FORTUNA, B. & , M. GROBELNIK, D. MLADENIČ. 2005. Vi-
sualization of Text Document Corpus. Informatica 29:497–502.

GÓRRIZ, J.M. & J.C. SEGURA-LUNA, C.G. PUNTONET,
M. SALMERÓN. 2005. A Survey of Forecasting Preprocessing
Techniques using RNs. Informatica 29:13–32.

GOUAÏCH, A. & , F. MICHEL. 2005. Towards a Unified View
of the Environment(s) within Multi-Agent Systems. Informatica
29:423–432.

HERIČKO, M. & , S. BELOGLAVEC. 2005. A Composite
Design-Pattern Identification Technique. Informatica 29:469–
476.

IVANCSY, R. & I. VAJK. 2005. Fast Discovery of Frequent
Itemsets: a Cubic Structure-Based Approach. Informatica
29:71–78.

KOTSIANTIS, S.B. & P.E. PINTELAS. 2005. Logitboost of
Simple Bayesian Classifier. Informatica 29:53–59.

KWOLEK, B. & . 2005. Action Recognition in Meeting Videos
Using Head Trajectories and Fuzzy Color Histogram. Informatica
29:281–289.

LESKOVEC, J. & , P. SARKAR, C. GUESTRIN . 2005. Modeling
Link Qualities in a Sensor Network. Informatica 29:445–451.

LIN, W.-M. & R. MADHAVARAM, A.-Y. YANG. 2005.
Improving Branch Prediction Performance with a Generalized
Design for Dynamic Branch Predictors. Informatica 29:199–207.

LIU, Y. & T. ÖZYER, R. ALHAJJ, K. BARKER. 2005. Inte-
grating Multi-Objective Genetic Algorithm and Validity Analysis
for Locating and Ranking Alternative Clustering. Informatica
29:33–40.

MÄKINEN, E. & H. SIIRTOLA. 2005. The Barycenter Heuristic
and the Reorderable Matrix. Informatica 29:357–363.

MAHMOOD, A. & . 2005. Object Grouping and Replication
Algorithms for Word Wide Web. Informatica 29:347–356.

504 Informatica 29 (2005)

NEDJAH, N. & L. DE M. MOURELLE. 2005. Multi-Objective
CMOS-Targeted Evolutionary Hardware for Combinational
Digital Circuits. Informatica 29:309–320.

NEDJAH, N. & L. DE M. MOURELLE. 2005. Efficient Pre-
Processing for Large Window-Based Modular Exponentiation
Using Ant Colony. Informatica 29:155–161.

OMRAN, M.G. & A.P. ENGELBRECHT, A. SALMAN. 2005. A
Color Image Quantization Algorithm Based on Particle Swarm
Optimization. Informatica 29:261–269.

ONG, S.L. & W.K. LAI, T.S.Y. TAI, C.H. OOI, K.M. HOE.
2005. Application of Ant-based Template Matching for Web
Documents Categorization. Informatica 29:173–182.

PODGORELEC, V. & . 2005. Complexity-driven Evolution of
Decision Graphs for Classification of Medical Data. Informatica
29:41–51.

POLANČIČ, G. & , M.HERIČKO, R.V. HORVAT. 2005. Open
Source Software Usage Implications in the Context of Software
Development. Informatica 29:483–490.

POTOČNIK, B. & D. HERIC, D. ZAZULA, B. CIGALE,
D. BERNAD, T. TOMAŽIČ. 2005. Construction of Patient
Specific Virtual Models of Medical Phenomena. Informatica
29:209–218.

RICCI, A. & , M. VIROLI. 2005. Coordination Artifacts: A
Unifying Abstraction for Engineering Environment-Mediated
Coordination in MAS. Informatica 29:433–443.

SUSI, A. & , A. PERINI, J. MYLOPOULOS, P. GIORGINI. 2005.
The Tropos Metamodel and its Use. Informatica 29:401–408.

TOSHNIWAL, D. & R.C. JOSHI. 2005. Similarity Search in
Time Series Data Using Time Weighted Slopes. Informatica
29:79–88.

TRENCANSKY, I. & , R. CERVENKA. 2005. Agent Modeling
Language (AML): A Comprehensive Approach to Modeling
MAS. Informatica 29:391–400.

TSENG, H.-W. & C.-C. CHANG. 2005. A Very Low Bit
Rate Image Compressor Using Transformed Classified Vector
Quantization. Informatica 29:335–341.

VAINIO, A. & , K. SALMENJOKI. 2005. Improving Study
Planning with an Agent-based System. Informatica 29:453–459.

VIZINE, A.L. & L.N. DE CASTRO, E.R. HRUSCHKA,
R.R. GUDWIN. 2005. Towards Improving Clustering Ants: An
Adaptive Ant Clustering Algorithm. Informatica 29:143–153.

WANG, D. & X. MA. 2005. A Hybird Image Retrieval
System with User’s Relevance Feedback Using Neurocomputing.
Informatica 29:271–279.

WANG, X.-Y. & J.M. GARIBALDI. 2005. Simulated Annealing
Fuzzy Clustering in Cancer Diagnosis. Informatica 29:61–70.

WEYNS, D. & , T. HOLVOET. 2005. On the Role of Environ-
ments in Multiagent Systems. Informatica 29:409–421.

ZHANG, J. & Q. WU, Y. WANG. 2005. A New Efficient Group
Signature With Forward Security. Informatica 29:321–325.

ZHANG, J. & W. ZOU, D. CHEN, Y. WANG. 2005. On the
Security of a Digital Signature with Message Recovery Using
Self-certified Public Key. Informatica 29:343–346.

ZITAR, R.A. & A. AL-JABALI. 2005. Towards Neural Network
Model for Insulin/Glucose in Diabetics-II. Informatica 29:227–
232.

ŽIBERT, A. & , V. BATAGELJ, V. RAJKOVIČ. 2005. Compara-
tive Analysis of Educational Networks. Informatica 29:477–481.

DE FRANÇA, F.O. & F.J. VON ZUBEN, L.N. DE CASTRO.
2005. Max Min Ant System and Capacitated p-Medians:
Extensions and Improved Solutions. Informatica 29:163–172.

Editorials

ABONYI, J. & A. ABRAHAM. 2005. Introduction. Informatica
29:1–2.

NEDJAH, N. & L. DE M. MOURELLE. 2005. Introduction.
Informatica 29:123–124.

EGIAZARIAN, K. & A.E. HASSANIEN. 2005. Introduction.
Informatica 29:251–252.

OMICINI, A. & , P. PETTA, M. GAMS. 2005. Introduction.
Informatica 29:377–378.

Informatica 29 (2005) 505

JOŽEF STEFAN INSTITUTE

Jožef Stefan (1835-1893) was one of the most prominent physi-
cists of the 19th century. Born to Slovene parents, he obtained
his Ph.D. at Vienna University, where he was later Director of the
Physics Institute, Vice-President of the Vienna Academy of Sci-
ences and a member of several scientific institutions in Europe.
Stefan explored many areas in hydrodynamics, optics, acoustics,
electricity, magnetism and the kinetic theory of gases. Among
other things, he originated the law that the total radiation from a
black body is proportional to the 4th power of its absolute tem-
perature, known as the Stefan–Boltzmann law.

The Jožef Stefan Institute (JSI) is the leading independent sci-
entific research institution in Slovenia, covering a broad spec-
trum of fundamental and applied research in the fields of physics,
chemistry and biochemistry, electronics and information science,
nuclear science technology, energy research and environmental
science.

The Jožef Stefan Institute (JSI) is a research organisation for
pure and applied research in the natural sciences and technology.
Both are closely interconnected in research departments com-
posed of different task teams. Emphasis in basic research is given
to the development and education of young scientists, while ap-
plied research and development serve for the transfer of advanced
knowledge, contributing to the development of the national econ-
omy and society in general.

At present the Institute, with a total of about 700 staff, has 500
researchers, about 250 of whom are postgraduates, over 200 of
whom have doctorates (Ph.D.), and around 150 of whom have
permanent professorships or temporary teaching assignments at
the Universities.

In view of its activities and status, the JSI plays the role of a
national institute, complementing the role of the universities and
bridging the gap between basic science and applications.

Research at the JSI includes the following major fields:
physics; chemistry; electronics, informatics and computer sci-
ences; biochemistry; ecology; reactor technology; applied math-
ematics. Most of the activities are more or less closely connected
to information sciences, in particular computer sciences, artifi-
cial intelligence, language and speech technologies, computer-
aided design, computer architectures, biocybernetics and robotics,
computer automation and control, professional electronics, digital
communications and networks, and applied mathematics.

The Institute is located in Ljubljana, the capital of the indepen-
dent state of Slovenia (or S♥nia). The capital today is considered
a crossroad between East, West and Mediterranean Europe, offer-
ing excellent productive capabilities and solid business opportuni-
ties, with strong international connections. Ljubljana is connected
to important centers such as Prague, Budapest, Vienna, Zagreb,
Milan, Rome, Monaco, Nice, Bern and Munich, all within a ra-
dius of 600 km.

In the last year on the site of the Jožef Stefan Institute, the
Technology park “Ljubljana” has been proposed as part of the na-
tional strategy for technological development to foster synergies

between research and industry, to promote joint ventures between
university bodies, research institutes and innovative industry, to
act as an incubator for high-tech initiatives and to accelerate the
development cycle of innovative products.

At the present time, part of the Institute is being reorganized
into several high-tech units supported by and connected within
the Technology park at the Jožef Stefan Institute, established as
the beginning of a regional Technology park “Ljubljana”. The
project is being developed at a particularly historical moment,
characterized by the process of state reorganisation, privatisation
and private initiative. The national Technology Park will take the
form of a shareholding company and will host an independent
venture-capital institution.

The promoters and operational entities of the project are the
Republic of Slovenia, Ministry of Science and Technology and
the Jožef Stefan Institute. The framework of the operation also
includes the University of Ljubljana, the National Institute of
Chemistry, the Institute for Electronics and Vacuum Technology
and the Institute for Materials and Construction Research among
others. In addition, the project is supported by the Ministry of
Economic Relations and Development, the National Chamber of
Economy and the City of Ljubljana.

Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Tel.:+386 1 4773 900, Fax.:+386 1 219 385
Tlx.:31 296 JOSTIN SI
WWW: http://www.ijs.si
E-mail: matjaz.gams@ijs.si
Contact person for the Park: Iztok Lesjak, M.Sc.
Public relations: Natalija Polenec

Informatica 29 (2005)

INFORMATICA
AN INTERNATIONAL JOURNAL OF COMPUTING AND INFORMATICS

INVITATION, COOPERATION

Submissions and Refereeing

Please submit three copies of the manuscript with good copies of
the figures and photographs to one of the editors from the Edito-
rial Board or to the Contact Person. At least two referees outside
the author’s country will examine it, and they are invited to make
as many remarks as possible directly on the manuscript, from typ-
ing errors to global philosophical disagreements. The chosen ed-
itor will send the author copies with remarks. If the paper is ac-
cepted, the editor will also send copies to the Contact Person. The
Executive Board will inform the author that the paper has been
accepted, in which case it will be published within one year of
receipt of e-mails with the text in Informatica LATEX format and
figures in .eps format. The original figures can also be sent on
separate sheets. Style and examples of papers can be obtained by
e-mail from the Contact Person or from FTP or WWW (see the
last page of Informatica).

Opinions, news, calls for conferences, calls for papers, etc. should
be sent directly to the Contact Person.

QUESTIONNAIRE
Send Informatica free of charge

Yes, we subscribe

Please, complete the order form and send it to Dr. Drago Torkar,
Informatica, Institut Jožef Stefan, Jamova 39, 1111 Ljubljana,
Slovenia.

ORDER FORM – INFORMATICA

Name: .

Title and Profession (optional): .

. .

Home Address and Telephone (optional): .

. .

Since 1977, Informatica has been a major Slovenian scientific
journal of computing and informatics, including telecommunica-
tions, automation and other related areas. In its 16th year (more
than ten years ago) it became truly international, although it still
remains connected to Central Europe. The basic aim of Infor-
matica is to impose intellectual values (science, engineering) in a
distributed organisation.

Informatica is a journal primarily covering the European com-
puter science and informatics community - scientific and educa-
tional as well as technical, commercial and industrial. Its basic
aim is to enhance communications between different European
structures on the basis of equal rights and international referee-
ing. It publishes scientific papers accepted by at least two ref-
erees outside the author’s country. In addition, it contains in-
formation about conferences, opinions, critical examinations of
existing publications and news. Finally, major practical achieve-
ments and innovations in the computer and information industry
are presented through commercial publications as well as through
independent evaluations.

Editing and refereeing are distributed. Each editor can conduct
the refereeing process by appointing two new referees or referees
from the Board of Referees or Editorial Board. Referees should
not be from the author’s country. If new referees are appointed,
their names will appear in the Refereeing Board.

Informatica is free of charge for major scientific, educational and
governmental institutions. Others should subscribe (see the last
page of Informatica).

Office Address and Telephone (optional): .

. .

E-mail Address (optional): .

Signature and Date: .

Informatica WWW:

http://www.informatica.si/

Referees:

Witold Abramowicz, David Abramson, Adel Adi, Kenneth Aizawa, Suad Alagić, Mohamad Alam, Dia Ali, Alan
Aliu, Richard Amoroso, John Anderson, Hans-Jurgen Appelrath, Iván Araujo, Vladimir Bajič, Michel Barbeau,
Grzegorz Bartoszewicz, Catriel Beeri, Daniel Beech, Fevzi Belli, Simon Beloglavec, Sondes Bennasri, Francesco
Bergadano, Istvan Berkeley, Azer Bestavros, Andraž Bežek, Balaji Bharadwaj, Ralph Bisland, Jacek Blazewicz,
Laszlo Boeszoermenyi, Damjan Bojadžijev, Jeff Bone, Ivan Bratko, Pavel Brazdil, Bostjan Brumen, Jerzy
Brzezinski, Marian Bubak, Davide Bugali, Troy Bull, Sabin Corneliu Buraga, Leslie Burkholder, Frada Burstein,
Wojciech Buszkowski, Rajkumar Bvyya, Giacomo Cabri, Netiva Caftori, Particia Carando, Robert Cattral, Jason
Ceddia, Ryszard Choras, Wojciech Cellary, Wojciech Chybowski, Andrzej Ciepielewski, Vic Ciesielski, Mel Ó
Cinnéide, David Cliff, Maria Cobb, Jean-Pierre Corriveau, Travis Craig, Noel Craske, Matthew Crocker, Tadeusz
Czachorski, Milan Češka, Honghua Dai, Bart de Decker, Deborah Dent, Andrej Dobnikar, Sait Dogru, Peter
Dolog, Georg Dorfner, Ludoslaw Drelichowski, Matija Drobnič, Maciej Drozdowski, Marek Druzdzel, Marjan
Družovec, Jozo Dujmović, Pavol Ďuriš, Amnon Eden, Johann Eder, Hesham El-Rewini, Darrell Ferguson, Warren
Fergusson, David Flater, Pierre Flener, Wojciech Fliegner, Vladimir A. Fomichov, Terrence Forgarty, Hans Fraaije,
Stan Franklin, Violetta Galant, Hugo de Garis, Eugeniusz Gatnar, Grant Gayed, James Geller, Michael
Georgiopolus, Michael Gertz, Jan Goliński, Janusz Gorski, Georg Gottlob, David Green, Herbert Groiss, Jozsef
Gyorkos, Marten Haglind, Abdelwahab Hamou-Lhadj, Inman Harvey, Jaak Henno, Marjan Hericko, Henry
Hexmoor, Elke Hochmueller, Jack Hodges, Doug Howe, Rod Howell, Tomáš Hruška, Don Huch, Simone
Fischer-Huebner, Zbigniew Huzar, Alexey Ippa, Hannu Jaakkola, Sushil Jajodia, Ryszard Jakubowski, Piotr
Jedrzejowicz, A. Milton Jenkins, Eric Johnson, Polina Jordanova, Djani Juričič, Marko Juvancic, Sabhash Kak,
Li-Shan Kang, Ivan Kapustøk, Orlando Karam, Roland Kaschek, Jacek Kierzenka, Jan Kniat, Stavros Kokkotos,
Fabio Kon, Kevin Korb, Gilad Koren, Andrej Krajnc, Henryk Krawczyk, Ben Kroese, Zbyszko Krolikowski,
Benjamin Kuipers, Matjaž Kukar, Aarre Laakso, Sofiane Labidi, Les Labuschagne, Ivan Lah, Phil Laplante, Bud
Lawson, Herbert Leitold, Ulrike Leopold-Wildburger, Timothy C. Lethbridge, Joseph Y-T. Leung, Barry Levine,
Xuefeng Li, Alexander Linkevich, Raymond Lister, Doug Locke, Peter Lockeman, Vincenzo Loia, Matija Lokar,
Jason Lowder, Kim Teng Lua, Ann Macintosh, Bernardo Magnini, Andrzej Małachowski, Peter Marcer, Andrzej
Marciniak, Witold Marciszewski, Vladimir Marik, Jacek Martinek, Tomasz Maruszewski, Florian Matthes, Daniel
Memmi, Timothy Menzies, Dieter Merkl, Zbigniew Michalewicz, Armin R. Mikler, Gautam Mitra, Roland
Mittermeir, Madhav Moganti, Reinhard Moller, Tadeusz Morzy, Daniel Mossé, John Mueller, Jari Multisilta, Hari
Narayanan, Jerzy Nawrocki, Rance Necaise, Elzbieta Niedzielska, Marian Niedq’zwiedziński, Jaroslav Nieplocha,
Oscar Nierstrasz, Roumen Nikolov, Mark Nissen, Jerzy Nogieć, Stefano Nolfi, Franc Novak, Antoni Nowakowski,
Adam Nowicki, Tadeusz Nowicki, Daniel Olejar, Hubert Österle, Wojciech Olejniczak, Jerzy Olszewski, Cherry
Owen, Mieczyslaw Owoc, Tadeusz Pankowski, Jens Penberg, William C. Perkins, Warren Persons, Mitja Peruš,
Fred Petry, Stephen Pike, Niki Pissinou, Aleksander Pivk, Ullin Place, Peter Planinšec, Gabika Polčicová, Gustav
Pomberger, James Pomykalski, Tomas E. Potok, Dimithu Prasanna, Gary Preckshot, Dejan Rakovič, Cveta
Razdevšek Pučko, Ke Qiu, Michael Quinn, Gerald Quirchmayer, Vojislav D. Radonjic, Luc de Raedt, Ewaryst
Rafajlowicz, Sita Ramakrishnan, Kai Rannenberg, Wolf Rauch, Peter Rechenberg, Felix Redmill, James Edward
Ries, David Robertson, Marko Robnik, Colette Rolland, Wilhelm Rossak, Ingrid Russel, A.S.M. Sajeev, Kimmo
Salmenjoki, Pierangela Samarati, Bo Sanden, P. G. Sarang, Vivek Sarin, Iztok Savnik, Ichiro Satoh, Walter
Schempp, Wolfgang Schreiner, Guenter Schmidt, Heinz Schmidt, Dennis Sewer, Zhongzhi Shi, Mária Smolárová,
Carine Souveyet, William Spears, Hartmut Stadtler, Stanislaw Stanek, Olivero Stock, Janusz Stokłosa,
Przemysław Stpiczyński, Andrej Stritar, Maciej Stroinski, Leon Strous, Ron Sun, Tomasz Szmuc, Zdzislaw
Szyjewski, Jure Šilc, Metod Škarja, Jiřı Šlechta, Chew Lim Tan, Zahir Tari, Jurij Tasič, Gheorge Tecuci, Piotr
Teczynski, Stephanie Teufel, Ken Tindell, A Min Tjoa, Drago Torkar, Vladimir Tosic, Wieslaw Traczyk, Denis
Trček, Roman Trobec, Marek Tudruj, Andrej Ule, Amjad Umar, Andrzej Urbanski, Marko Uršič, Tadeusz
Usowicz, Romana Vajde Horvat, Elisabeth Valentine, Kanonkluk Vanapipat, Alexander P. Vazhenin, Jan
Verschuren, Zygmunt Vetulani, Olivier de Vel, Didier Vojtisek, Valentino Vranić, Jozef Vyskoc, Eugene
Wallingford, Matthew Warren, John Weckert, Michael Weiss, Tatjana Welzer, Lee White, Gerhard Widmer, Stefan
Wrobel, Stanislaw Wrycza, Tatyana Yakhno, Janusz Zalewski, Damir Zazula, Yanchun Zhang, Ales Zivkovic,
Zonling Zhou, Robert Zorc, Anton P. Železnikar

Informatica
An International Journal of Computing and Informatics

Archive of abstracts may be accessed at America: http://ocean.ocean.cs.siu.edu/informatica/index.html,
Europe: http://www.informatica.si/, Asia: http://www3.it.deakin.edu.au/ hdai/Informatica/.

Subscription Information Informatica (ISSN 0350-5596) is published four times a year in Spring, Summer,
Autumn, and Winter (4 issues per year) by the Slovene Society Informatika, Vožarski pot 12, 1000 Ljubljana,
Slovenia.
The subscription rate for 2005 (Volume 29) is
– 60 EUR (80 USD) for institutions,
– 30 EUR (40 USD) for individuals, and
– 15 EUR (20 USD) for students
Claims for missing issues will be honored free of charge within six months after the publication date of the issue.

Typesetting: Borut Žnidar.
Printed by Dikplast Kregar Ivan s.p., Kotna ulica 5, 3000 Celje.

Orders for subscription may be placed by telephone or fax using any major credit card. Please call Mr. Drago
Torkar, Jožef Stefan Institute: Tel (+386) 1 4773 900, Fax (+386) 1 219 385, or send checks or VISA card number
or use the bank account number 900–27620–5159/4 Nova Ljubljanska Banka d.d. Slovenia (LB 50101-678-51841
for domestic subscribers only).

Informatica is published in cooperation with the following societies (and contact persons):
Robotics Society of Slovenia (Jadran Lenarčič)
Slovene Society for Pattern Recognition (Franjo Pernuš)
Slovenian Artificial Intelligence Society; Cognitive Science Society (Matjaž Gams)
Slovenian Society of Mathematicians, Physicists and Astronomers (Bojan Mohar)
Automatic Control Society of Slovenia (Borut Zupančič)
Slovenian Association of Technical and Natural Sciences / Engineering Academy of Slovenia (Igor Grabec)
ACM Slovenia (Dunja Mladenič)

Informatica is surveyed by: AI and Robotic Abstracts, AI References, ACM Computing Surveys, ACM Digital
Library, Applied Science & Techn. Index, COMPENDEX*PLUS, Computer ASAP, Computer Literature Index,
Cur. Cont. & Comp. & Math. Sear., Current Mathematical Publications, Cybernetica Newsletter, DBLP Computer
Science Bibliography, Engineering Index, INSPEC, Linguistics and Language Behaviour Abstracts, Mathematical
Reviews, MathSci, Sociological Abstracts, Uncover, Zentralblatt für Mathematik

The issuing of the Informatica journal is financially supported by the Ministry of Higher Education, Science and
Technology, Trg OF 13, 1000 Ljubljana, Slovenia.

Volume 29 Number 4 November 2005 ISSN 0350-5596

Introduction A. Omicini, P. Petta,
M. Gams

377

An Overview of Current Trends in European AOSE
Research

C. Bernon,
M. Cossentino,
J. Pavón

379

Agent Modeling Language (AML):
A Comprehensive Approach to Modeling MAS

I. Trencansky,
R. Cervenka

391

The Tropos Metamodel and its Use A. Susi, A. Perini,
J. Mylopoulos,
P. Giorgini

401

On the Role of Environments in Multiagent Systems D. Weyns, T. Holvoet 409
Towards a Unified View of the Environment(s)
within Multi-Agent Systems

A. Gouaïch, F. Michel 423

Coordination Artifacts: A Unifying Abstraction for
Engineering Environment-Mediated Coordination in
MAS

A. Ricci, M. Viroli 433

End of special section / Start of normal papers

Modeling Link Qualities in a Sensor Network J. Leskovec, P. Sarkar,
C. Guestrin

445

Improving Study Planning with an Agent-based
System

A. Vainio,
K. Salmenjoki

453

From Basic Agent Behavior to Strategic Patterns in a
Robotic Soccer Domain

A. Bežek, M. Gams 461

A Composite Design-Pattern Identification
Technique

M. Heričko,
S. Beloglavec

469

Comparative Analysis of Educational Networks A. Žibert, V. Batagelj,
V. Rajkovič

477

Open Source Software Usage Implications in the
Context of Software Development

G. Polančič,
M.Heričko,
R.V. Horvat

483

Model-Based Tuning of Process Parameters for
Steady-State Steel Casting

B. Filipič, E. Laitinen 491

Visualization of Text Document Corpus B. Fortuna,
M. Grobelnik,
D. Mladenič

497

Informatica 29 (2005) Number 4, pp. 377–505

