
Volume 28 Number 2 July 2004

EDITORIAL BOARDS, PUBLISHING COUNCIL

Informatica is a journal primarily covering the European com-
puter science and informatics community; scientific and educa-
tional as well as technical, commercial and industrial. Its basic
aim is to enhance communications between different European
structures on the basis of equal rights and international referee-
ing. It publishes scientific papers accepted by at least two ref-
erees outside the author’s country. In addition, it contains in-
formation about conferences, opinions, critical examinations of
existing publications and news. Finally, major practical achieve-
ments and innovations in the computer and information industry
are presented through commercial publications as well as through
independent evaluations.

Editing and refereeing are distributed. Each editor from the
Editorial Board can conduct the refereeing process by appointing
two new referees or referees from the Board of Referees or Edi-
torial Board. Referees should not be from the author’s country. If
new referees are appointed, their names will appear in the list of
referees. Each paper bears the name of the editor who appointed
the referees. Each editor can propose new members for the Edi-
torial Board or referees. Editors and referees inactive for a longer
period can be automatically replaced. Changes in the Editorial
Board are confirmed by the Executive Editors.

The coordination necessary is made through the Executive Edi-
tors who examine the reviews, sort the accepted articles and main-
tain appropriate international distribution. The Executive Board
is appointed by the Society Informatika. Informatica is partially
supported by the Slovenian Ministry of Science and Technology.

Each author is guaranteed to receive the reviews of his article.
When accepted, publication in Informatica is guaranteed in less
than one year after the Executive Editors receive the corrected
version of the article.

Executive Editor – Editor in Chief
Anton P. Železnikar
Volaričeva 8, Ljubljana, Slovenia
s51em@lea.hamradio.si
http://www.artifico.org/

Executive Associate Editor (Contact Person)
Matjaž Gams, Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Phone: +386 1 4773 644, Fax: +386 1 4251 038
matjaz.gams@ijs.si
http://ai.ijs.si/mezi/matjaz.html

Executive Associate Editor (Technical Editor)
Drago Torkar, Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Phone: +386 1 4773 764, Fax: +386 1 4251 038
drago.torkar@ijs.si

Publishing Council:
Tomaž Banovec, Ciril Baškovič,
Andrej Jerman-Blažič, Jožko Čuk,
Vladislav Rajkovič

Board of Advisors:
Ivan Bratko, Marko Jagodič,
Tomaž Pisanski, Stanko Strmčnik

Editorial Board
Suad Alagić (Bosnia and Herzegovina)
Vladimir Bajić (Republic of South Africa)
Vladimir Batagelj (Slovenia)
Francesco Bergadano (Italy)
Leon Birnbaum (Romania)
Marco Botta (Italy)
Pavel Brazdil (Portugal)
Andrej Brodnik (Slovenia)
Ivan Bruha (Canada)
Se Woo Cheon (Korea)
Hubert L. Dreyfus (USA)
Jozo Dujmović (USA)
Johann Eder (Austria)
Vladimir Fomichov (Russia)
Georg Gottlob (Austria)
Janez Grad (Slovenia)
Francis Heylighen (Belgium)
Hiroaki Kitano (Japan)
Igor Kononenko (Slovenia)
Miroslav Kubat (USA)
Ante Lauc (Croatia)
Jadran Lenarčič (Slovenia)
Huan Liu (Singapore)
Ramon L. de Mantaras (Spain)
Magoroh Maruyama (Japan)
Nikos Mastorakis (Greece)
Angelo Montanari (Italy)
Igor Mozetič (Austria)
Stephen Muggleton (UK)
Pavol Návrat (Slovakia)
Jerzy R. Nawrocki (Poland)
Roumen Nikolov (Bulgaria)
Franc Novak (Slovenia)
Marcin Paprzycki (USA)
Oliver Popov (Macedonia)
Karl H. Pribram (USA)
Luc De Raedt (Belgium)
Dejan Raković (Yugoslavia)
Jean Ramaekers (Belgium)
Wilhelm Rossak (USA)
Ivan Rozman (Slovenia)
Claude Sammut (Australia)
Sugata Sanyal (India)
Walter Schempp (Germany)
Johannes Schwinn (Germany)
Zhongzhi Shi (China)
Branko Souček (Italy)
Oliviero Stock (Italy)
Petra Stoerig (Germany)
Jiří Šlechta (UK)
Gheorghe Tecuci (USA)
Robert Trappl (Austria)
Terry Winograd (USA)
Stefan Wrobel (Germany)
Xindong Wu (Australia)

 Informatica 28 (2004) 117–128 117

Transformations for Architectural Restructuring
Vincenzo Ambriola
Dipartimento di Informatica, Università di Pisa,
via F. Buonarroti 2, 56127 Pisa, Italy
e-mail: ambriola@di.unipi.it

Alina Kmiecik
Instytut Informatyki, Politechnika Łódzka,
ul. Sterlinga 16/18, 90-217 Łódź, Poland
e-mail: akmiecik@ics.p.lodz.pl

Keywords: software architecture, model transformations, restructuring, software quality improvement

Received: December 1, 2003

Model-driven engineering reaches more and more followers and gradually grows up as an incoming so-
lution to the software-intensive systems production. Architectural modeling (or design) seems to play a
fundamental role in this kind of development not only because of its very nature but also because of its
impact to the final product structure and behavior as well as the user requirements satisfaction. Incre-
mental and iterative character of architectural design sets a special attention to the aspects of architec-
ture model restructuring, where architectural transformations are the key architect’s instrument for in-
troducing quality dedicated changes. Since architectural design constantly grows in complication be-
cause of systems complexity, there is a substantial need to support the architect during model architec-
tural transformations.
This paper presents our efforts in defining model-level architectural transformations. It provides a defi-
nition and a classification of architectural transformations and describes the semantics of three selected
transformations: for component moving, for component splitting and for class splitting. To provide some
view of transformations definition complexity it lists informal description for T_SPLIT_CLASS pre-
conditions and post-conditions and presents their formal OCL documentation in Appendix. An example
of employing the transformations to improve the architecture of an industrial Geographic Information
Web System (WebGIS) is also given.

1 Introduction
Looking at civil engineering we can notice that the major
attention during the development of a product (e.g., a
building or a mechanical machine) is focused to architec-
tural design. The reason for a special treatment of archi-
tectural design comes from the fact that very few things
can be done when a building or a machine is already
built. What is more, any architectural change applied to a
physical construction is expensive, risky and can cause
several side-effects that in turn may lead to a serious
failure or even a damage. Therefore, in civil engineering,
any changes to the product architecture are rather applied
to the abstract model than to the real physical product.

In software engineering we observe a completely dif-
ferent approach. Common fascination in re-engineering
results in a situation where the majority of software ar-
chitecture transformations relate to the code – in fact, an
already developed product. Software architects may gain
the impression that it is better to develop a building first
and then move the walls and bricks, in order to improve
its structure and properties. What is more, this “re-“ ap-
proach boils down architectural transformations to the
refactorings of low-level structures (i.e., implementation
classes) and their interconnections, leaving out the issues

related to component organization and deployment. This,
in turn, limits the extent of such transformations and
makes them incomplete, especially from the perspective
of “4+1” architectural view model [11].

In our research we wish to take advantage from the
lesson learned in civil engineering and to define architec-
tural transformations by means of changes applied to the
software model rather than to its code. Following the
“4+1” view model and the architecture-centric develop-
ment process [8] we adapt UML (Unified Modeling Lan-
guage) based software architecture representation and
identify architectural transformations in terms of UML
model transformations. We use the Object Constraint
Language (OCL) as a formalism for describing transfor-
mations pre-conditions and post-conditions. Although we
are aware that UML is still not commonly considered an
Architectural Description Language (ADL), we claim
that it has some valuable points that none current ADL
has – i.e., it is widely used in industry and has a rich tool
support including model-to-code as well as code-to-
model transformations. Thanks to these we: 1) benefit
from a common development practices, 2) capitalize on
the large amount of research material, 3) do not fall in

118 Informatica 28 (2004) 117–128 V. Ambriola et al.

the trap of imaginary thinking by keeping contact to the
ground and 4) are able to provide a sensible comparison
of our transformations results from the perspective of
running systems.

In this paper we present the outline for model-level
architectural transformations and give a closer look to
three transformations: for component moving, for com-
ponent splitting, and for class splitting, to which we de-
fine set of pre-conditions and post-conditions. We also
present a case study where we apply these transforma-
tions to an industrial Geographic Information Web Sys-
tem (WebGIS). The WebGIS example in a real context
demonstrates the usefulness of model-level transforma-
tions during software architecture improvements. The
case study also shows that in some cases model-level
architectural transformations are the only way to perform
complex software architecture modification.

The rest of the paper is organized as follows: Section
2 discusses underlying UML based software architecture
representation; Section 3 provides the definition and
classification of model-driven architectural transforma-
tions. The semantics for three selected transformations is
given in Section 4. Section 5 introduces the WebGIS
example: it shortly describes a system, presents the archi-
tectural bottleneck, and describes the architectural im-
provements achieved by means of model-level architec-
tural transformations. Section 6 discusses the results of
the WebGIS case study. Section 7 points out related
works. Conclusions and future work close the paper.

2 Subject of transformations
Following the most popular definition proposed by Bass
[2] we consider software architecture as “a structure or
structures of the system which comprise software compo-
nents, the externally visible properties of those compo-
nents and relationships among them”.

The “4+1” view model [11] defines five views,
which together present the overall architectural concept

of the software. They are: a logical view, a process view,
a development view, a physical view and the scenarios.
The UML dedicated Rational Unified Process (RUP) [8]
generally adapts this concept with some minor changes
to the names (the physical view is called deployment
view and the development view is called implementation
view). As a result, in UML driven projects it is possible
to represent particular views of “4+1” architectural
model with a certain set of static and dynamic UML dia-
grams: the logical and process views may require the
class diagrams, the object diagrams and related interac-
tion diagrams, the activity diagrams and the state ma-
chine diagrams; the development view can be described
by component diagrams and related interaction diagrams,
activity diagrams and state machine diagrams; finally,
the physical view description is completed with a set of
deployment diagrams, interaction diagrams, activity dia-
grams and state machine diagrams1.

The adopted “4+1” view model presented in Figure 1
hints at one important property of software model – there
exists strong coherence between architectural views that
does not allow to judge and modify them in separation.
It especially comes obvious when we put together UML
diagrams describing particular views. For example, the
elements from component diagram are located to the
nodes of deployment diagram that define the system to-
pology. At the same time, they are also related to ele-
ments of class diagram, which compose their internal
structure. This architectural graph is additionally compli-
cated by dynamic aspects surrounding particular struc-
tural diagrams and shaping the behavior of modeled
structural elements (see also the simplified UML meta-
model given in Figure 2 and Figure 3 to take a closer
look to UML model elements relationships).

1 We intentionally do not mention use-cases to enhance under-

standability of software architecture representation as well as
transformations classification.

Activity diagrams

Class diagrams
Object diagrams

Statechar t diagrams
Inter action diagrams

PROCESS VIEW

Activity diagrams

Class diagrams
Statechar t
diagrams

Component diagrams
Deployment diagrams

Inter action diagrams

 LOGICAL VIEW

Activity diagrams

Statechar t
diagrams

Inter action diagrams
Activity

diagrams

Statechar t diagrams
Inter action diagrams

 DEVELOPMENT VIEW PHYSICAL VIEW

Activity
diagrams

Use-case diagrams
Statechar t diagrams

Inter action
diagrams

SCENARIOS

Figure 1: The “4+1 view model and its mapping to UML diagrams.

TRANSFORMATIONS FOR ARCHITECTURAL… Informatica 28 (2004) 117–128 119

On the other hand, the only way to perform con-
trolled transformations to such a complex graph is to
identify transformation drivers (that is, a node or an edge
that an overall graph change should start from). We have

noticed that for each view there is exactly one UML ele-
ment (classifier) that is the central point of a given pres-
entation: a node, a component and a class (a stereotyped
class in a case of process view) for the physical, the de-

Class Classifier

Namespace GeneralizableElement
Component

Node

Interface

ModelElement

ElementResidence

Dependency

Generalization

AssociationEnd Association

Feature

Parameter

StructuralFeature BehavioralFeature Attribute Operation

0..*+deploymentLocation

0..*+deployedComponent

0..* +ownedElement

0..1 +namespace

0..*

+container

0..*+resident

0..*

+clientDependency
1..*

+client

1..*
+supplier

0..*
+supplierDependency

1 +child 0..*
+specialization

1

+parent0..* +generalization

0..*
+powertypeRange 0..1 +powertype

0..* +association

1 +participant

0..*
+specifiedEnd

0..1+specification

2..* {ordered}
+connection

0..*+ownedFeature

+owner

0..*

+typedParameter

+type

0..*+parameter

Figure 2: The simplified UML meta-model: structural aspects.

+playedRole

+receiver

Classifier

Instance

Object

ComponentInstance

NodeInstance

AttributeLinkAttribute

Stimulus

Action

CallAction

CreateAction

SignalAction

Operation

Signal

Link LinkEnd

AssociationEnd Association

AssociationRole AssociationEndRole

Message ClassifierRole

Collaboration

Interaction

Transition

State
StateMachine

Event

SignalEvent

CallEvent

1..*+classifier

*

2..* {ordered}

+connection

*
+association

1

+associationEnd
*

12..* {ordered}

+connection
*

+linkEnd

+instance

+signal

*

+operation
*

0..*

+instantiation

0..1 +base

*

0..1+base
*

*

+dispatchAction

+sender

*

*

*
+attribute

0..*+slot

0..1

*+resident 0..1
* +resident

0..1 +representedOperation

*

* +occurence

+operation
*
+occurence

+signal

0..1

+trigger

*

0..1

+top

0..1

*
+transitions

+0..1

0..1 +entry/exit/doActivity

0..1

0..1

+effect

*

*
+conformingLink 0..1 +communicationLink *

0..1
+representedClassifier

*

1
+interaction 1..* +message *

+context

1..*
+ownedElement

*
+ownedElement

+action

*

1..* +base

*
+receiver *
+sender *

0..1 +communicationConnection
2..*

+connection

*+playedRole

*
+conformingStimulus

0..*

0..1

+context

Figure 3: The simplified UML meta-model: behavioural aspects.

120 Informatica 28 (2004) 117–128 V. Ambriola et al.

velopment and the logical/process view respectively.
Since these three classifiers are closely related to <<real-
ize>> and <<deploy>> relationships, they all together
compose the nesting hierarchy (similar to a Russian doll)
with the high level dedicated to deployment issues, the
middle level concerning components and the low level
for logical organization and processes. We found out
valuable to classify our transformations with respect to
such a hierarchy.

3 Architectural transformations
In [1] we identified some key architectural transforma-
tions and proposed their classification to the high level,
the middle level and the low level transformations, ac-
cording to the three levels of UML elements nesting hi-
erarchy. We also found out that these transformations are
the core of architectural design and a good mechanism
for software characteristics management i.e., for software
quality improvement and non-functional requirements
(NFRs) satisfaction.
In this paper we continue on this line defining architec-
tural transformations by means of UML 1.4 meta-model
[16] elements modification. Since we found out that the
great majority of software inadequacies (that is, the un-
feasibility of the software to meet the user needs) take
their roots from non-functional requirements absence and
bad quality rather than from lack in functionality or
wrong modeling practices, we take for grant that the in-
put UML models for architectural transformations are
consistent (i.e. no element in a model exists without rela-
tionships to other model elements) and have all func-
tional requirements well modeled. Therefore we set up
model consistency and system functionality preserving
constraints on architectural transformations.
The last decision restricts the set of previously defined
transformations to those that do not influence the system
functioning (that is, its externally observable behavior).
Moreover, in order to guarantee software functionality
invariance we also assume that only the elements of

Classifier kind may be the direct subject of architectural
transformations. Of course, this does not mean that other
model elements like relationships, state machines or col-
laborations and, what follows – the internal behavior of
the system - do not change. In truth, these elements are
highly influenced when transformations are executed to
acceptable model elements. As a consequence, the role of
architectural transformations discussed in this paper
comes down to architectural modification for quality
improvement and non-functional requirements satisfac-
tion. Nevertheless, the requests for quality enhancement
and non-functional requirements fulfillment are not a
condition set on the transformations themselves, which
are considered here only the instruments used to gain
certain quality goals. Instead, we propose to fit each ar-
chitectural transformation with the likely values of its
impact to particular quality attributes and use these val-
ues as indicators, in the process of composing suitable
sequence of transformations with respect to their optimal
influence to the software quality. We define architectural
transformation as:

a transformation applied to the software architecture
model that results in a new software model offering the
same functionality.

The proposed definition reminds a definition of refactor-
ing [7]. In truth, each model-level architectural transfor-
mation can be identified as a specific refactoring dedi-
cated to the software abstraction higher than a code struc-
ture. Nevertheless, it is important to notice that the soft-
ware architecture model transformations are not any kind
of UML model refactorings [15] at all. First of all they
differ in a goal that for architectural transformations is
focused to the software architecture change and indi-
rectly – the general product quality improvement rather
than to the code readability or system maintainability
enhancement. Secondly, they differ in the extent of their
influence. The refactoring methods take their roots from
re-engineering concept and thus they apply only to the
low level of software representation (i.e. classes, their
relationships and behavior). They do not take care of

 ArchitecturalTransformations

Split Move Merge

T_SPLIT_CLASS

T_SPLIT_COMPONENT

T_SPLIT_NODE

T_SPLIT_INTERFACE

T_MOVE_COMPONENT

T_MOVE_RESIDENT

T_MOVE_FEATURE

T_MERGE_NODES

T_MERGE_COMPONENTS

T_MERGE_CLASSES

T_MERGE_INTERFACES

high level
transformations

middle level
transformations

low level
transformations

 Figure 4: The catalogue of architectural transformations.

TRANSFORMATIONS FOR ARCHITECTURAL… Informatica 28 (2004) 117–128 121

deployment and implementation issues, which make up,
among others, the architectural core. However, this ap-
proach is unacceptable for the software architecture
modification, which needs to encompass design, imple-
mentation, deployment as well as processing issues to be
considered as a whole. What is more, since no model
element exists without relationships to elements from
neighboring upper and lower levels of software architec-
ture representation, the architectural transformations
need to take a focus on a fact that even minor changes at
one level may invoke a cascade of changes to the remain-
ing levels of the software representation.
The definition given above characterizes architectural
transformations in general and indicates the constraints
that must hold for each transformation. These constraints
are further encoded in pre- and post-conditions of par-
ticular transformation. Figure 4 shows the catalogue of
proposed architectural transformations. The elements in
italics are not the transformations at all and represent
groupings, which collect the transformations with similar
functioning, constraints, or rules.

4 Concretizing architectural trans-
formations

Since we present a UML-driven viewpoint to the soft-
ware architecture, it seems to be a natural consequence
that we define architectural transformations by means of
UML meta-model (a simplified UML meta-model is
shown on Figure 2 and Figure 3) and use UML built-in
Object Constraint Language [16] to specify their pre- and
post-conditions. By using OCL we entirely integrate our
approach with UML-line and can consider transforma-
tions as a UML meta-level operational extension.
Because of the paper length restrictions, we cannot pre-
sent the whole set of architectural transformations and
we only discuss in short the transformations that we fur-
ther use in Section 5 for the case study. However, to give
the reader some view of architectural transformations
definition complexity we provide in Figure 5 an informal
description of the T_SPLIT CLASS pre-conditions and
post-conditions (see the Appendix for formal OCL defi-
nition of this transformation). For a complete set of ar-
chitectural transformations, their definition, the pre-

 preconditions:
1. F set is not empty and does not cover the whole set of Features owned by C
2. no Feature from F set is not used outside C
3. any Operation from F set can be related only to the self-message
4. no Operation from F set can be related to the CallAction of a State or Transition

of a StateMachine aggregated to the Class other than C or the Operation owned by a
Class other than C

5. C does not own other Classes as a Namespace
6. C does not realize Interfaces

postconditions:

1. C2 is of C stereotype and has the same values for its attributes as C has but the
name

2. C and C2 are participants of a binary association
3. an AssociationEnd corresponding to C2 Class in a binary Association established

between C and C2 Classes has an attribute isNavigable set to true if C is a base
of any ClassifierRole which is sending a message with a CallAction whose Operation
belongs to C2

4. the AssociationEnd of binary association established between C and C2 and
corresponding to C has an attribute isNavigable set to true if C is a base of any
ClassifierRole which is sending a message with a CallAction whose Operation
belongs to C

5. C is a client only to these classes, to which it sends messages
6. C2 is a client only to these classes, to which it sends messages
7. C2 participates to Associations which reflect the Associations to which C Class is

participant of
8. C2 is a resident of all Components to which C is a resident of
9. for each Object that origins from C there exists an Object that origins from C2

and that is linked to it according to an Association between C and C2
10. if an Object O that origins from C is a resident of ComponentInstance(s) then an

Object that origins from C2 and has a link to O is also a resident of that
11. if C is a base for any ClassifierRole R in a collaboration then C2 is a base for

any ClassifierRole R2 in this collaboration and R and R2 are related to the
AssociationEndRoles contained in an AssociationRole corresponding to Association
between C and C2

12. each Message with a CallAction related to Operation from C2 has its receiver set
to ClassifierRole based on C2

13. each Stimulus with a CallAction related to an Operation from C2 Class has a
receiver set to if C aggregates StateMachine S then C2 aggregates StateMachine

14. a StateMachine aggregated in C has no transition which has an event trigger
handled by C2

15. a StateMachine aggregated in C2 has no transition which has an event trigger
handled by C

16. a StateMachine aggregated in C contains a stateVertex of a StateMachineState type,
which references to StateMachine of C2

17. a StateMachine aggregated in C contains a stateVertex of a StateMachineState
type, which references to StateMachine of C2

Figure 5: The natural language (informal) description of the T_SPLIT_CLASS transformation.

122 Informatica 28 (2004) 117–128 V. Ambriola et al.

conditions, the post-conditions and an explanation we
refer to [9].

4.1 Transformation for class splitting
First we present a low level transformation for class split-
ting (T_SPLIT_CLASS). It relies on partitioning a C
Class given to the input of transformation to C and C2
Classes with respect to the certain subset of Features
owned by C Class. The splitting line (that means, the
subset of Features to be moved from C Class to a new
C2 Class) can be recognized with some behavior knowl-
edge (i.e., the collaborations related to C Class). How-
ever, the selection of Features to be moved from C Class
is not a subject of the T_SPLIT_CLASS transformation.
We shift this responsibility onto a higher-level algorithm
that is in charge to adjust the Feature set with respect to
the particular quality requirements.
At first glance, T_SPLIT_CLASS has a direct impact on
the software structure only. However, this impression
turns out to be false, when we take a closer look. The
transformation for class splitting significantly influences
several dynamic issues. For instance, all Objects originat-
ing from a C Class have to be split with regard to a set of
slots corresponding to the Attributes listed in a splitting
line; if C aggregates a StateMachine, then it must be
modified and a new StateMachine for C2 Class must be
created in order to meet a new software system organiza-
tion and preserve overall model consistency; the collabo-
rations, to which C Class participates need to be changed
with regard to the ClassifierRoles and the Interactions
and the set of Instances and Stimuli as well. The low
level transformations usually highly influence other lev-
els of software architecture representation in order to
ensure overall model consistency. In this case only the
middle level is affected by the insertion of a new <<re-
side>> Dependency between C2 Class and the Compo-
nents to which C is resident of as well as establishing
connections between the Instances originating from these
Classifiers. However, for the other low level transforma-
tions it is common that they modify dependencies even at
a high level of software architecture representation (see
T_MOVE_FEATURE in [9]).

4.2 Transformation for component split-
ting

T_SPLIT_COMPONENT is a representative of middle
level transformations. It is used to crumble the scope of a
given component implementation. Since we are working
on a model, this transformation boils down to the Com-
ponent classifier splitting with respect to the set of its
residents. The arguments of the transformation are a C
Component being split and a subset of C residents which
are to be moved from it.
As in the case of class splitting,
T_SPLIT_COMPONENT forces many changes to the
dynamic model elements. From the meta-model point of
view this transformation:
1. creates a new C2 Component, destroys aggregations

between Component C and a certain subset of its resi-

dents and sets up new aggregations between these
residents and a C2 Component;

2. modifies some Relationships by substituting their par-
ticipants from C to C2 Component, if necessary;

3. creates the ComponentInstances of C2 Component by
splitting the ComponentInstances originating from C
Component according to the set of the Instances origi-
nating from the residents moved from C to C2;

4. alters all Collaborations to which C is participant of
(i.e., to which C is a base for a ClassifierRole owned
in a given Collaboration) by adding the new Classifi-
erRoles based on C2 Component, changing the types
of some AssociationEndRoles, changing the sender or
the receiver of particular Messages, changing the par-
ticipants of some Links with respect to the changes
done to their corresponding Associations, and modify-
ing Stimuli related to the modified Messages;

5. creates a new StateMachine and relates it to C2 Com-
ponent (this change is done only in a case when C ag-
gregates at least one state machine). It moves certain
Transitions and StateVertexes from the StateMachine
of C to the SateMachine of C2 following the premises
based on transitions triggers. For both StateMachines
it also creates SubmachineStates reflecting the oppo-
site StateMachines for symmetry and functionality
preserving purposes;

Transformation for component splitting not only affects
components, but also a higher level organization. For
instance, for the system model consistency it adds a new
<<deploy>> Dependency between C2 and a Node classi-
fier, to which C is applied.

4.3 Transformation for component moving
In a group of high level architectural transformations we
can find, among others, the T_MOVE_COMPONENT
transformation, that is used to change the deployment of
a given component. It has given a source Node classifier
N, a target Node classifier N2 and a Component classifier
C as arguments. When we look at deployment diagram
after execution of this transformation, we will write
down the change in a client of <<deploy>> dependency
to which C is a supplier or the change in the nesting of N
and N2, dependently of the adopted form of presentation.
The side-effect of transformation may be also a change in
dependencies and associations between the Nodes. Addi-
tionally, the StateCharts diagrams presenting the state
machines of N and N2 Nodes may be updated as well as
some collaborations, to which N and N2 provide the
roles or instances may be altered. These modifications
rely mainly on changing a base classifier of some roles,
which previously were based on N Node and currently
come down from N2 Node. Nevertheless, no instance
originating from N or N2 Node is modified, even it may
participate in quite different links.
T_MOVE_COMPONENT transformation concerns high
level representation of software architecture and does not
need to influence other levels to keep the model consis-
tency.

TRANSFORMATIONS FOR ARCHITECTURAL… Informatica 28 (2004) 117–128 123

5 An example
One of the reasons we decided to move towards UML-
based software architecture representation and define
architectural transformations by means of UML model
transformations was the opportunity of empirically prov-
ing that model-level architectural transformations can be
successfully used in a real context. In this section we take
advantage from this approach and present an industrial
case study where we use our transformations to remove
an architectural bottleneck.

5.1 Architectural bottleneck
In our case study we used an industrial WebGIS system
based on a client-server architecture with a fat client. The
role of the server is to provide Web services which are
exploited by the client applications to serve the basic GIS
functionality. A client communicates to the server using

SOAP protocol and sends an XML query each time it
needs to use a service. The query is further forwarded by
XMLQueryService component to the server services. As
a reply the client gets the XML answer generated by a
suitable service. This architecture has been successfully
implemented and works very well for desktop and
WWW clients. Since the WebGIS system consists of 14
services, for the sake of brevity we limit this paper dis-
cussion to MapGenerator service.
The role of MapGenerator service is to provide images
of some cartographic map according to the client pa-
rameters sent as an XML query (e.g., dpi, screen size,
cartographic projection type, and so on). For the clients
that already connect to WebGIS the MapGenerator ser-
vice reaches very good speed, by generating up to 25
images per second (at a 400x400 pixels resolution).
The company in charge of WebGIS decided to extend the
kind of WebGIS clients in order to provide a carto-
graphic map viewer able to work on GPRS cellular

 MidletDisplayable
«Event» onDraw()
«Event» onKeyDown()
«Event» onInit()

MapController
currentMapProjection
currentImage
zoomIn()
zoomOut()
pan()
storeImage()
getNewImageStream(action)
getCurrentImage()
initialize(dpi, screenSizeX, screenSizeY)
initializeProjection(dpi, sizeX, sizeY)
buildProjectionXMLQuery(action)
buildMapXMLQuery(projection)

«Interface»
XMLQueryService

ExecuteQuery(xmlQuery)

«Interface»
MapGenerator

GenerateMap()

controller

: User

: MidletDisplayable : MapController

: XMLQueryService: MapGenerator +onKeyDown()
+zoomIn()

ExecuteQuery(projectionXMLQuery)

newProjection

ExecuteQuery(mapXMLQuery)
mapGeneratorHTTP

GenerateMap()
imageBinaryStream

storeImage(imageBinaryStream)

getNewImageStream(action)

buildProjectionXMLQuery(action)

buildMapXMLQuery(newProjection)

CellPhone GISServer
«communicates»

«Middlet»
WebGISClient

Assigned Classes:
MidletDisplayable
MapController

«Web Service»
XMLQueryService

«Web Service»
MapGenerator

+XMLQueryService

+MapGenerator

«deploy»

«deploy»

«deploy»

«uses»

«uses»

 Figure 6: The simplified architecture of the WebGIS system.

6.a

6.b

6.c

124 Informatica 28 (2004) 117–128 V. Ambriola et al.

phones. Developers took advantage from the work done
so far and reused the existing system architecture. The
very simplified UML model of this architecture recon-
structed from the code and completed with the develop-
ers knowledge is shown in Figure 6. It composes of three
diagrams: 6.a - a class diagram with architecturally sig-
nificant classes and interfaces, 6.b – a sequence diagram
describing the essential interactions between the classes
and interfaces from a class diagram, 6.c – a deployment
diagram with the client and the server nodes, components
deployed to them and some residents nested in the com-
ponents as well.
As we can see from the figure, the CellPhone node has
only one component deployed – the WebGISClient mid-
dlet written in Java that has two resident classes: Mid-
dletDisplayable and MapController. MiddletDisplayable
is a user interface class responsible for both map display
and handling of user-generated events. MapController
holds the current map state and provides the logic for
map navigation. It also uses two interfaces exposed by
the server services: XMLQueryService and MapGenera-
tor, which provide the operations for map projection and
map generation.
However, although this architecture has been empirically
proven and works very well for other client types, it
turned out to be unsuitable for cellular phones: a new
map loading takes about 10 seconds, which is not an ac-
ceptable response time for the user. For almost a month
developers have been searching for the system bottleneck
until they realized that the problem was rooted in a
GPRS functionality. The GSM cellular phone system
provider informed them that GPRS waits approximately
3 seconds each time it initializes an HTTP connection
and just after that time it allows any data transfer. As we
can see from Figure 6, WebGISClient component owning
MapController class connects three times to the server
(to which the components exposing XMLQueryService
and MapGenerator interfaces are deployed) in order to
get a map. Since each connection takes at least 3 sec-
onds, the total time explains the critical delay that slows
down the client application.

5.2 Using model-level architectural trans-
formations

It became obvious that the existing architecture is no
longer suitable for cellular phones. Since the bottleneck
was found in the number of calls between the client and
the server, the way to significantly improve the system
performance was to minimize the number of connections
between these nodes during the map transfer. The intui-
tive solution for the problem was to move the part of
WebGISClient component responsibilities to WebGIS-
Server node.
The first step toward the improved WebGIS architecture
was to separate the responsibilities of MapController
class. We chose the suitable subset of features to be
moved from MapController, by following the sequence
diagram presented on Figure 5. In general it composed of
all these operations which use the interfaces exposed by
the server components. Having a splitting line for Map-

Controller class we were able to execute
T_SPLIT_CLASS transformation. We obtained Map-
Controller and MapControllerB classes (see Figure 7.a).
Then we applied the T_SPLIT_COMPONENT transfor-
mation to the WebGISClient component. It resulted in
WebGISClient and WebGISClientB components Mid-
dletDisplayable and MapController classes were left on
WebGISClient component, and MapControllerB class
became a resident of a newly created MapControllerB
component. It is important to notice that MapGISClientB
component was forced to expose an interface IMapCon-
trolerB that was realized by MapControllerB class in
order to allow MapController class to use operations
from MapControllerB. The resulted component diagram
is shown on Figure 7.c.
Finally we moved WebGISClientB component from
CellPhone to WebGISServer node using
T_MOVE_COMPONENT transformation (see Figure
7.d). Thanks to these architectural modifications the cel-
lular phone client has to communicate only once in order
to get a new map. A suitable sequence diagram describ-
ing the interactions within the modified architecture is
shown on Figure 7.b.
The application of three architectural transformations
significantly enhanced the system performance. After the
implementation of the improved architecture the cellular
phone user has to wait only 3 seconds for a map.

6 Discussion
The WebGIS bottleneck concerned the bad component
organization and their physical deployment in a case of
cellular phone client. It could be detected only when all
the three levels of architectural representation were ana-
lyzed at the same time. Although the critical point of
software behavior was explicitly shown on a sequence
diagram (Figure 6.b), it was not considered as such be-
fore the classes participating in this interaction had been
deployed to certain components.
The proposed architectural modification influenced all
three levels of software architecture representation: the
classes, because of the need for MapController responsi-
bility separation; the components, because of the need for
WebGISClient splitting; and the nodes - because of the
need for changing the component deployment location.
For this reason it was difficult to think about the architec-
tural improvement from the code viewpoint, where the
implementation and not the architectural aspects are in
the area of interests and no information about the com-
ponents deployment is available.
What is more, from a code level perspective there was no
premises that the components organization decreases the
system performance. The fact that the client and the
server components are written in different languages
(Java and C# respectively) additionally complicated the
code-level acting. For example, simple code transforma-
tions would not have been able to perform the operation
of moving Java component from cellular phone to the C#
based server, where the library supporting middlets is not
available. On the other hand, refactoring methods could
have done the good work at a class level but would have

TRANSFORMATIONS FOR ARCHITECTURAL… Informatica 28 (2004) 117–128 125

completely missed the higher-level modifications. Thus,
in a case of WebGIS system only the model-level ap-
proach provided us the appropriate point of view and the
flexibility needed to perform necessary architectural im-
provements.

Finally, the architectural improvements could be success-
fully performed during forward engineering which would
avoid project stopping and thus – speed up the time-to-
market.

MiddletDisplayable

<<Event>> onDraw()
<<Event>> onKeyDown()
<<Event>> onInit()

MapController
currentImage

zoomIn()
zoomOut()
pan()
storeImage()
getCurrentImage()
initialize(dpi, screenSizeX, screenSizeY)

+controller

MapGenerator

generateMap()

<<Interface>>

MapControllerB
currentMapProjection

getNewImageStream()
initializeProjection()
buildProjectionXMLQuery()
buildMapXMLQuery()

+projection
XMLQueryService

executeQuery()

<<Interface>>

: User
: MidletDisplayable

: XMLQueryService : MapGenerator

: MapControllerA : MapControllerB

onKeyDown()
zoomIn()

getNewImageStream(action)

imageBinaryStream

storeImage(imageBinaryStream)

ExecuteQuery(projectionXMLQuery)

newProjection

ExecuteQuery(mapXMLQuery)
mapGeneratorHTTP

GenerateMap()

imageBinaryStream

buildProjectionXMLQuery(action)

buildMapXMLQuery(projection)

W ebGISClientA W ebGISClientB

M apController
currentIm age
zoom In()
zoom Out()
pan()
storeIm age()
getCurrentIm age()
in itialize(dpi, screenSizeX, screenSizeY)

M apControllerB
currentMapProjection
getNewIm ageStream (action)
in itializeProjection(dpi, sizeX, sizeY)
buildProjectionXMLQuery(action)
buildMapXMLQuery(projection)

+IMapControllerB

«reside» «reside»

CellPhone GISServer«Communicates

WebGISClient
A

WebGISClientB

XMLQueryServic

MapGenerato

+IMapControllerB
+XMLQueryServic

+MapGenerator

«deploy»

«deploy

«deploy

«deploy

Figure 7: Software architecture after the architectural improvement.

7.a

7.b

7.c

7.d

126 Informatica 28 (2004) 117–128 V. Ambriola et al.

7 Related works
The software architecture is the subject of intensive re-
search for more than a decade and several approaches to
architectural modification have been presented for that
time. However it seems that the main research effort has
been spent on inventing a general framework for soft-
ware architecture improvement rather than a definition of
a concrete architectural transformations for this goal sat-
isfaction. For instance, Bosch in [3] presents the six step
architectural design method. The architectural transfor-
mations are considered as one of the steps toward an im-
proved software architecture. Similarly to us, Bosch de-
fines “architectural transformation” as “a transformation
that leads to a new version of architecture that has the
same functionality but different values for its properties”
[4]. He also proposes five group-based classification for
architectural transformations which may be considered to
support one of the following refinement actions: impos-
ing architectural style, imposing architectural pattern,
applying design pattern, converting non-functional re-
quirements to functionality and distributing require-
ments. However he does not define any concrete trans-
formation nor present a mechanics for imposing architec-
tural styles or patterns leaving these issues to the soft-
ware architect competence.
Krikhaar [10] proposes two-phase process for the soft-
ware architecture improvement: the first phase “extracts”
an architecture from the software, calculates quality met-
rics and analyses the impact of potential changes to the
architecture; the second phase transforms the system im-
plementation according to the set of recipes correspond-
ing to the architectural changes. He follows the re-
engineering line and defines architectural transformations
as code-level transformations. Considering Krikhaar two-
phase process we can relate our model-level transforma-
tions to the impact analysis phase rather than to his trans-
formations.
Carriere, Woods and Kazman [5] also discuss architec-
tural transformations from the architectural re-
engineering perspective. They “extract” software struc-
ture from a code and describe architectural elements by
means of their static and dynamic features. Then they
define transformations in terms of these features modifi-
cation and map them to a code transformations.
Our understanding of architectural transformations is
close to the one proposed by Fahmy and Holt [6] who
define architectural transformations as graph rewriting
operations applied to the software structure. However, in
their research they focus rather on the comprehension of
the software structure and its compatibility with the ar-
chitect’s mental model than on the architectural change
for requirements satisfaction and the quality properties
improvement.
The UML-model approach to the software architecture
representation ties us also to the area of model engineer-
ing, which is full with proposals for model-level trans-
formations. Nevertheless, the majority of work concerns
meta-model level conversions (e.g. from UML model to
a code) [12][13] or the transformation-aided transition of
UML models between the phases of development process

[14]. The work sharing our viewpoint to model-level
transformations is presented in [15], where the authors
define UML level counterparts of Opdyke’s refactorings
as behavior-preserving transformations and use OCL to
formalize their preconditions and post-conditions. Some
interesting proposals for model transformations specifi-
cation are also given in the latest OMG
Query/View/Transformation RFP [17].

8 Conclusion
The case study presented in Section 5 demonstrates the
usefulness of model-level architectural transformations in
a real context. It shows also that in some cases only a
model-level approach can ensure the appropriate point of
view and the flexibility needed to perform necessary ar-
chitectural improvements. Additionally, it indicates that
model-level architectural transformations cannot only be
considered as a support during forward engineering but
also can be successfully applied to re-engineering line.
Our ongoing work is focused on the implementation of a
tool for transforming UML software architecture models.
Such a tool will allow us to empirically check the appro-
priateness of our transformation and experiment with
their influence to software quality values. We also find
out necessary to formally prove that the transformations
defined in [9] do not influence software functionality and
can be safely used during re-engineering.
Our future work will concern the following issues: 1)
investigating the transformations impact to particular
software quality attributes, 2) definition of the rules for
building a minimization function for particular software
quality goals and employing the model-level architec-
tural transformations to this function calculation, 3) ar-
chitectural transformations automation. We also intend to
integrate our tool with the existing design environments
and this way provide a computer-aided support for soft-
ware architecture improvement.

References
[1] Ambriola V., Kmiecik A., Architectural Trans-

formations, Proc. of the 14th Int. Conference on
Software Engineering and Knowledge Engineer-
ing, ACM Press, 2002, pp. 275-278.

[2] Bass L., Clements P., Kazman R., Software Archi-
tecture in Practice, Addison-Wesley, 1997.

[3] Bosch J., Design and Use of Software Architec-
tures, Addison-Wesley, 2000.

[4] Bosch J., Molin P., Software Architecture Design:
Evaluation and Transformation, Proc. of the En-
gineering of Computer Based Systems Confer-
ence, IEEE Press, 1999, pp.4-11.

[5] Carrière S.J., Woods S., Kazman R., Software
Architecture Transformation, Proc. of the Int.
Conference on Reverse Engineering, 1999, pp.
13-23.

[6] Fahmy H., Holt R.C., Using Graph Rewriting to
Specify Software Architectural Transformations,
Proc. of Automated Software Engineering, IEEE
Press, 2000, pp. 187-187.

TRANSFORMATIONS FOR ARCHITECTURAL… Informatica 28 (2004) 117–128 127

[7] Fowler M., Refactoring. Improving the Design of
Existing Code, Addison-Wesley, 1999.

[8] Jacobson I., Booch G., Rumbaugh J., The Unified
Software Development Process, Addison-Wesley,
1998.

[9] Kmiecik A., Ambriola V., Transformations for
Architectural Model Restructuring, Technical Re-
port, University of Pisa, 2004 (to appear).

[10] Krikhaar R., Postma A., Sellink A., Stroucken M.,
Verhoef C., A Two-Phase Process for Software
Architecture Improvement, Proc. of the Int. Con-
ference on Software Maintenance, IEEE Press,
1999, pp.371-380.

[11] Kruchten P., Architectural Blueprints – the “4
+1” View Model of Software Architecture, IEEE
Software, 12, 6, November 1995, pp.42-50.

[12] Oldevik J., Solberg A., Elvesæter B., Berre A.,
Framework for model transformation and code
generation, Proc. of the 6th Int. Enterprise Dis-
tributed Object Computing Conference, IEEE
Press, 2002, pp.181-191.

[13] Peltier M., Bezivin J., Guillaume G., MTRANS:
A General Framework, based on XSLT, for
Model Transformations, Proc. of the Workshop on

Transformations in UML, 2001.
[14] Schönberger S., Keller R., Khriss I., Algorithmic

Support for Model Transformation in Object-
Oriented Software Development, Concurrency
and Computation: Practice and Experience, vol.
13, 5, April 2001, pp. 351-383.

[15] Sunye G., Pollet D., Traon Y., Jezequel J., Refac-
toring UML Models, Proc. of UML 2001, LNCS
2185, Springer Verlag, 2001, pp. 134-148.

[16] OMG Unified Modeling Language Specification,
version 1.4, OMG document formal/01-09-67,
http://www.uml.org, 2001.

[17] OMG MOF 2.0 Query/View/Transformation RFP
revised submission, http://qvtp.org, 2003.

APPENDIX: Formal transformation
definition
Below we present the formal definition of the
T_SPLIT_CLASS transformation written in OCL and
verified manually using OCL specification [16]. Since
we do not have enough space for introducing to OCL
language notation, we refer directly to OMG specifica-
tion [16].

T_SPLIT_CLASS(C: Class, F: Set(Feature))

let top = C->namespaces()->select(n | n.stereotype.name = “systemModel”)
let collaborations: Set(Collaboration) = C.namespace.ownedElement->
 select(c | c.oclIsKindOf(Collaboration))
let state_machines: Set(StateMachine) = top->allStateMachines()->
 select(sm | sm.context.oclIsKindOf(Class) or sm.context.oclIsKindOf(Operation))
let messages: Set(Message) = collaborations->forAll(collab | collab.interaction->
 collect(self.message))
let collaborations: Set(Collaboration) = C.namespace.ownedElement->
 select(c | c.oclIsKindOf(Collaboration))
let association_end_C: AssociationEnd = C2.association->
 select(ae | ae.association.connection.participant->includes(C))
let association_end_C2: AssociationEnd = C.association->
 select(ae | ae.association.connection.participant->includes(C2))
let objects: Set(Object) = top->allObjects()->select(oe | oe.classifier =C)
let component_instances: Set(ComponentInstance) = top-> allComponentInstances()->
 select(ci | ci.resident->exists(o | o.classifier = C)

pre:
 C.feature->size()>F->size()
 and F->size() > 0
 and F->forAll(f | f.supplierDependency.client->forAll(cl | (if cl.oclIsKindOf(Class) then
 cl = C) or (if cl.oclIsKindOf(Feature) then cl.owner = C)))
 and F->forAll(f | messages->exists(m | m.action.operation = f implies
 message.sender = message.receiver))
 and F->forAll(f | state_machines->exists(s | s.allStates()->
 exists(state | state.entry.operation = f or state.exit.operation = f or

state.doActivity.operation = f) or s.transitions->exists(t | t.effect.operation = f)
 implies (if s.context.oclIsKindOf(Class) then s.context = C) or

(if s.context.oclIsKindOf(Operation) then s.context.owner = C)))
 and C.ownedElement->excludes(c | c.oclIsKindOf(Class))
 and not C.clientDependency->exists(d | d.oclIsKindOf(Abstraction) and
 d.stereotype.name = “realize” and d.supplier->exists(s | s.oclIsKindOf(Interface)))

post:
 C2.stereotype = C.stereotype
 and C2.isActive = C.isActive and C2.isAbstract = C.isAbstract and
 C2.isLeaf = C.isLeaf and C2.isRoot = C.isRoot
 and C.association.association->exists(a | a.connection->size() = 2 and
 a.connection->exists(ae | ae.participant = C2))
 and collaborations->exists(c | c.ownedElement->exists(oe | oe.base =C2 and c.interaction->
 exists(in |in.message->exists(m | F->includes(m.action.operation) and m.sender = oe))

 implies association_end_C.isNavigable = true

128 Informatica 28 (2004) 117–128 V. Ambriola et al.

 and collaborations->exists(c | c.ownedElement->exists(oe | oe.base = C and c.interaction->
 exists(in | in.message->exists(m | F->includes(m.action.operation) and m.sender=oe))

 implies association_end_C2.isNavigable = true
 and collaborations->forAll(c | c.ownedElement->forAll(oe | oe.base = C and c.interaction->
 forAll(in | n.message->forAll(m | m.sender <> oe implies C.clientDependency->
 forAll(cd | cd.supplier->excludes(m.receiver.base)))))
 and collaborations->forAll(c | c.ownedElement->forAll(oe | oe.base =C2 and c.interaction->

forAll(in | n.message->forAll(m | m.sender <> oe implies C2.clientDependency->
 forAll(cd | cd.supplier->excludes(m.receiver.base)))))
 and C2.oppositeAssociationEnds->forAll(ae | ae.participant = C or

ae.participant.oppositeAssociationEnds->exists(ae2 |ae2.participant = C)) and
C2.oppositeAssociationEnds->forAll(ae | ae.participant = C or

 C.oppositeAssociationEnds->exists(ae2 | ae2.participant = ae.participant and
ae.isSimilarTo(ae2))) and C2.association->forAll(ae | ae.association.connection->

 exists(ae2 | ae2.participant = C) or C.association->exists(ae2 | ae2.isSimilarTo(ae)))
 and C2.implementationLocation->forAll(r | r.resident->includes(C)) and
 C.implementationLocation->forAll(r | r.resident->includes(C2))
 and objects->forAll(o | o.linkEnd->exists(le | le.link.connection->
 includes(o2 | o2.classifier = C2)))
and component_instances->forAll(ci | ci.resident->forAll(r | r.isKindOf(Object) and

r.classifier = C implies ci.resident->exists(r2 | r2.oclIsKindOf(Object) and
r2.classifier = C2 and r2.linkEnd.link.connection->includes(r))))

 and collaborations->forAll(c | c.ownedElement->forAll(oe | oe.oclIsKindOf(ClassifierRole)
 and oe.base = C implies c.ownedElement->exists(oe2 | oe2.oclIsKindOf(ClassifierRole)

and oe2.base = C2 and c.ownedElement->exists(ar | ar.oclIsKindOf(AssociationRole) and
ar.connection->exists(c1 | c1.type = oe) and ar.connection->exists(c2 | c2.type=oe2)
and ar.base = C.association.association->select(a | a.connection->size() = 2 and
a.connection->includes(C2))))))

and collaborations->forAll(c | c.interaction->forAll(in | in.messages->
 forAll(m | m.action.operation.owner = C2 implies m.receiver.base = C2 and

m.communicationConnection.connection->includes(m.sender)and
m.communicationConnection.connection->includes(m.receiver))))

and collaborations->forAll(c | c.interaction->forAll(in | in.messages->
forAll(m | m.conformingStimulus->forAll(s | s.action.operation.owner = C2
implies s.receiver.classifier = C2 and s.receiver.linkEnd->
includes(le | le.link.connection->includes(s.sender))))))

 and C.behavior->size() = C2.behavior->size()
 and not C.behavior->exists(sm | sm.transitions->exists(t | t.trigger.operation.owner = C2
 or t.trigger.signal.reception->exists(r | r.owner = C2))
and not C2.behavior->exists(sm | sm.transitions->exists(t | t.trigger.operation.owner = C
 or t.trigger.signal.reception->exists(r | r.owner = C))
and C.behavior->forAll(sm | sm.allStates()->exists(s | s.oclIsKindOf(SubmachineState) and

C2.behavior->includes(s.submachine)))
 and C2.behavior->forAll(sm | sm.allStates()->exists(s | s.oclIsKindOf(SubmachineState) and

C.behavior->includes(s.submachine)))union(self.transitions->collect(self.target))

context Namespace :: namespaces(): Set(Namespace)
post: result = self.namespace->union(self.namespace.namespaces())

context Namespace :: allStateMachines() : Set(StateMachine)
post: result = self.ownedElement->select(oe| oclIsKindOf(StateMachine))->
 union(self.ownedElement->select(ns | ns.oclIsKindOf(Namespace))->allStateMachines())

context StateMachine:: allStates(): Bag(State)
post: result =self.transitions->collect(self.source)->
 union(self.transitions->collect(self.target))

context Namespace :: allObjects() : Set(Object)
post: result =self.ownedElement->select(oe| oe.oclIsKindOf(Object))->
 union(self.ownedElement->select(ns | ns.oclIsKindOf(Namespace))->allObjects())

context Namespace :: allComponentInstances() : Set(ComponentInstance)
post: result = self.ownedElement->select(oe | oe.oclIsKindOf(ComponentInstance))->
 union(self.ownedElement->select(ns| ns.oclIsKindOf(Namespace))->allComponentInstances())

context Classifier :: collaborations(): Set(Collaboration)
post: result = self.namespace.ownedElement->select(c | c.oclIsKindOf(Collaboration))

context Collaboration :: messages(): Set(Message)
post: result = self.interaction->collect(self.message)

context AssociationEnd :: isSimilarTo(ae: AssociationEnd)
post: result = ((self.aggregation = ae.aggregation) and (self.name = ae.name) and

(self.changeability = ae.changeability) and (self.ordering = ae.ordering) and
(self.isNavigable = ae.isNavigable) and (self.multiplicity = ae.multiplicity) and
(self.targetScope = ae.targetscope) and (self.visibility = ae.visibility))

Informatica 28 (2004) 129–137 129

Software Engineering: The Trend

Ayaz Isazadeh
Department of Computer Science, Tabriz University, Tabriz, Iran
Phone: +98 411 334 4015, Fax: +98 411 334 2102
E-mail: isazadeh@tabrizu.ac.ir

Keywords: software engineering, requirements engineering, formal methods

Received: October 27, 2003

This paper presents the author’s view of the current trend in the world of software engineering. Software
engineering has already taken the responsibility of providing the necessary tools for organizing, structuring,
and making efficient use of the huge volume of information currently floating around. The responsibility
of software engineering will increase dramatically by the exponential increases expected in the volume of
information. The volume of information, in every branch of science and technology, is getting so high that
without a software engineering tool cannot be of any use. This is an extreme power, and responsibility, for
software engineering.
The paper provides an analysis of the increasing power and responsibilities associated with software engi-
neering as an engineering discipline, points out the catastrophic results of failures, as well as significance
of accuracy and correctness in this discipline, and concludes that software engineering cannot afford to go
wrong. The paper then investigates the significance of mathematical foundations and formal approaches
to software engineering, specially in the area of software requirements specification. Finally, the paper
recommends using a visual formalism, designed based on a representationistic approach, as a sound and
simple foundation, for a sound and successful software engineering practice. An example of such a for-
malism concludes the paper.

1 Introduction

Living in an age of information, we have collected and
stored a huge volume of information in different media, all
around the world. And yet, we are just starting to realize the
vast dimensions of the universe, the huge volume of infor-
mation out there, and the astronomical world of unknowns.
Considering what we do not yet know of the universe, the
huge volume of information currently floating around will
be increasing dramatically! The volume of information we
will be dealing with, will be beyond our wildest imagina-
tion.

All scientists are in search of information. The search
for information is structured as different sciences. In every
branch of science the key objective is information. Who
can deal with all the information in all sciences? The an-
swer is software engineering. Software engineering has
already taken the responsibility of providing the neces-
sary tools for organizing, structuring, and making efficient
use of the huge volume of information currently floating
around. The responsibility of software engineering will in-
crease dramatically by the exponential increases expected
in the volume of information. The volume of information,
in every branch of science and technology, is getting so
high that without a software engineering tool cannot be
of any use. Software Engineering is, indeed, heavily in-
volved in all sciences. It appears that no science can live
without software engineering tools. This is an extreme

power, and responsibility, for software engineering. More
research, than currently underway, is required to assure that
this powerful too is put to proper work. In this paper, as an
small step in this research direction, I investigate the signif-
icance of formal approaches and mathematical foundations
for software engineering.

2 An Engineering Discipline

A hot debate has started years ago and still going on:
Is software engineering a science or an engineering dis-
cipline? The debate in some prestigious universities is
still going on whether software engineering belongs to the
school of engineering or faculty of science. Software en-
gineering is, in fact, an interdisciplinary field; it requires
mathematics for analysis and proof of correctness, engi-
neering for costs, risks, and tradeoffs, and management for
personnel, facilities, and progress.

Software engineering provides the most powerful tools
of all sciences. Software engineering is now, and will be
more so in the future, providing the very infrastructure of
every science. That is, indeed, an extreme power for soft-
ware engineering. Extreme power, however, requires ex-
treme care. That is why software engineering, today, must
be considered as an engineering discipline with all the as-
sociated responsibilities.

130 Informatica 28 (2004) 129–137 A. Isazadeh

2.1 Problems
The major problem with software engineering practice,
currently, is inaccuracy and ambiguity in system require-
ment specifications. The Ariane 5 Flight 501 Failure was
caused by a poor software engineering practice. The causes
of the failure were faults in the capture of the overall Ar-
iane 5 application/environment requirements, and faults in
the design and the dimensioning of the Ariane 5 on-board
computing system [36, 34].

Verrazano Narrows Bridge in New York City, the largest
suspension bridge ever built, completed within budget, just
on target date. IBM OS project, involving over 5000 man-
years of work, completed, finally, well beyond the target
date [54]. Why software engineering cannot be planned
and completed like any other engineering project? Be-
cause, software engineering is more complex, and software
engineers are not as experienced. Specifically, software en-
gineering is a young discipline and, therefore, the corre-
sponding professional do not yet have adequate education
and training, compared to the other engineering profession-
als. A closer look at the formal approaches to software
engineering may lead to the solution.

3 Formal Approaches
Research on improving the quality of software systems in-
cludes using formal methods (e.g., ESTEREL [2], VDM
[32], Z [9, 53], Statecharts [18, 19, 23]) for specifying soft-
ware behaviors and possibly refining the specifications to
design and implementation. Despite the controversial is-
sues concerning the practicality of formal methods, there
are some undeniable facts:

1. Most of the defects in software systems can be traced
back to the requirements phase. Specifically, studies
in Bell Labs and IBM have shown that 80% of all
defects in software systems are rooted in the require-
ments phase [50].

2. Accurate requirements specification of software sys-
tems, therefore, will improve quality and increase reli-
ability of the software. Accuracy in software systems
definition and requirements specification, in turn, de-
mands using formal methods. Formality and mathe-
matics are, generally, becoming more and more use-
ful in all phases of software engineering. Manfred
Broy, for example, describes how mathematics can
provide a scientific foundation for the modeling as-
pects, description techniques, and development meth-
ods of software engineering, leading to a deeper un-
derstanding of the development process [6].

3. For over 20 years, IBM received failure reports on
CICS [9]; it was developed without using a formal
method. Finally CICS was formally specified using Z
[53]. An overall objective was to reduce the total num-
ber of errors, detected both in the development cycle

and by customers, and thereby produce a better qual-
ity product. Some 2000 pages of specifications were
produced. This experience proved that formal meth-
ods can be helpful; it became a considerable source of
education and discussion in the software engineering
community [42].

4. Formal methods have not been practical for large-
scale complex systems. The IBM CICS experience
proved that formal methods can be helpful, but not
necessarily practical. Based on experience with the
A-7 project [25], John Guttag and others [17] con-
clude that one problem with formal methods is size.
The difficulties of managing a large volume of formal
specifications have made formal methods impractical
for large-scale systems.

5. Using formal methods is, indeed, difficult. Part of this
difficulty is due to the way in which formal specifi-
cations are presented. Large volumes of specifica-
tions presented textually, many pages of mathemati-
cal/logical statements, are indeed difficult to produce,
read, understand, and verify, specially for the user
side. We may accept that the specifiers are techni-
cal people and are supposed to be experts in produc-
ing formal specifications. However, the users who are
supposed to at least read, understand, and verify the
specifications are not normally too enthusiastic to get
involved with such formal texts. The presentation of
formal specifications, therefore, is an important factor
for practicality of formal methods. This is one factor
that the software industry has been resisting against
using formal approaches in software engineering prac-
tices. Visual formalism are introduced as a attempt to
simplify presentations of formal specification.

Visual formalisms have the advantage of specifying soft-
ware systems, formally, using graphical notations. The
specification then is accurate, because it is formal, and sim-
ple to understand, because it is visual. Visual formal meth-
ods, therefore, are already getting popular in software re-
quirements engineering and will be more so in the future.

The State Transition Diagrams (STD) of Finite State Ma-
chines (FSM) [28] has a sound mathematical foundation
and, therefore, are the best formal technique for systems
definitions and requirements specifications. However, in
these machines the number of states grows exponentially
as the scale of the system grows linearly. This growth leads
to a problem known as blow-up in the number states for
large-scale systems. There has been some relatively suc-
cessful attempts made, by defining Extended Finite State
Machines (EFSM), to solve this problem. The most popu-
lar of these attempts is made by Harel, introducing State-
charts.

3.1 Statecharts
Introduced by David Harel [18, 19, 22, 23], Statecharts is
an extension of Finite State Machines (FSM) designed as a

SOFTWARE ENGINEERING: THE TREND Informatica 28 (2004) 129–137 131

formal method for behavior specification of complex sys-
tems. Harel and others [21] have also developed a set of
tools called STATEMATE for the specification, design, anal-
ysis, and documentation of large and complex reactive sys-
tems. STATEMATE uses Statecharts for behavior specifica-
tion of a system under development. In addition, STATE-
MATE provides module-charts and activity-charts for spec-
ifying the structural and functional view of the system, re-
spectively.

Harel describes Statecharts as:

state diagrams + depth + orthogonality +
broadcast communication.

Depth refers to a clustering of some states into a super-
state and thus forming a hierarchy of states.

Orthogonality refers to a composition of two or more
states into a superstate called an AND-state. If a system
enters into an AND-state, it must enter in all the AND com-
ponents (i.e., immediate substates) of the AND-state. Simi-
larly, if a system exits from an AND-state, it must exit from
all the AND components of the AND-state.

In contrast to AND-states, there are also OR-states in
Statecharts. If a system enters into an OR-state, it must en-
ter in only one of the immediate substates of the OR-state.

A transition label, in Statecharts, can have three compo-
nents: event, condition, and action. In Figure 1, for exam-
ple, if the system is in the state S1 and the event e occurs,
while the condition expression c evaluates to true, then the
transition from S1 to S2 takes place and the action a is gen-
erated. An action generated by a transition can be used as
an event in another transition. The action, therefore, must
be communicated between the components. The communi-
cation mechanism used in Statecharts is broadcasting. For
example, when an event occurs or an action is generated, in
a statechart, it is sensed throughout the statechart.

The problem with Statecharts is the complexity of scale.
In conventional finite state machines, as mentioned above,
the number of states grows exponentially as the scale of the
system grows linearly. This growth leads to a blow-up in
the number states for large-scale systems. Drusinsky and
Harel [11, 12] prove that Statecharts is exponentially more
succinct than finite state machines. The proof is based on
the cooperative concurrency mechanism (i.e., orthogonal-
ity) of Statecharts and applies for any model that uses this
mechanism, such as Petri Nets [41] or CSP [10, 26]. If
we assume that an increase in the scale of a system results
in additional orthogonal components in the corresponding
statechart, then the number of states in the statechart has a
linear relationship with the scale of the system; in Harel’s
words “Statecharts represents the scale of the system” [20].
Orthogonality is, indeed, a powerful feature in Statecharts.
However, it is not clear that any increase in the scale of
a system does result in additional orthogonal components.
For example, if an increase in the scale of a system, corre-
sponds to additional complexities in the existing orthogo-
nal components, then the increase in the number of states
would still be exponential.

Another problem with Statecharts is the global name
space. There is no “visibility” control mechanism in State-
charts. (The term visibility is defined in terms of declara-
tion, scope, and binding; a visibility control mechanism,
essentially, refers to a mechanism that controls scope [52].)
When an event occurs, it is sensed throughout the system
and, therefore, it must have a unique name. Managing the
name space in the global environment of Statecharts, for
large-scale software systems, can be difficult. Name man-
agement, in general, is one of the fundamental issues in
software engineering [33].

3.2 Other Extensions of State Machines

The following is a list of some other extensions of state
machines or variations of Statecharts. Leveson’s RSML
and Selic’s ROOMcharts, as described below, provide
some mechanisms for reducing the complexity of manag-
ing name space. Besides that, none of these machines pro-
vide any solutions for the complexity of scale.

– David Carr introduces an executable graphical nota-
tion, called Interaction Object Graphs (IOGs) [7], for
specification of user interface. This notation com-
bines the data flow and constraint specification of In-
terface Representation Graphs (IRG) [43] and State-
charts. IOGs, therefore, extends Statecharts to show
data relationships as well as control flow.

– Jahanian and Mok introduce another specification lan-
guage, called Modechart [31], for real-time systems.
They also define the semantics of Modechart in terms
of Real Time Logic (RTL) [30]. Modechart is origi-
nated based on the mode concept of Parnas [25, 48]
and Statecharts of Harel; its emphasis, however, is on
the specification of absolute timing properties.

– Alan Shaw [46] describes an executable notation,
based on communicating real-time state machines
(CRSM’s), for specifying concurrent real-time sys-
tems. CRSM’s are state machines that communicate
with each other using a CSP-like synchronous scheme
[26, 27]. Shaw also provides an algorithm for simulat-
ing CRSM’s and some techniques for reasoning about
the system behavior.

– Charles Hendricksen [24] describes another extension
of finite state machines, called the Augmented State
Transition Diagram (ASTD), and an associated CASE
tool called State-Graph. ASTD has been used in the
definition, design, and implementation of some appli-
cations including a PBX phone system and some com-
plex user interface programs.

– Nancy Leveson and others [35] describe their ap-
proach to behavior specification of a real aircraft Traf-
fic Alert and Collision Avoidance System (TCAS). The

132 Informatica 28 (2004) 129–137 A. Isazadeh

�
�

�
�

�

�

�

�
�

�
�

�
�

S

S1 S2e[c]/a
�

Figure 1: An OR-state.

specification language used for this system is a vari-
ation of Statecharts called Requirements State Ma-
chine Language (RSML). In RSML, physically dis-
tinct components are modeled as separate communi-
cating statecharts. The overall system requirement
specification can be viewed as a directed graph (not a
statechart), where each node represents a component
and each edge represents an intercomponent com-
munication channel. The broadcast communication
mechanism of Statecharts is used within each com-
ponent. Intercomponent communication is provided
as directed messages transmitted between components
over unidirectional channels. An event, therefore, is
local to the component in which it occurs. The event
does not affect any other component, unless directly
transmitted to another one. Therefore, RSML pro-
vides a visibility control mechanism that reduces the
complexity of name management. The mechanism,
however, has a negative consequence: the direct com-
munication method used for intercomponent commu-
nications complicates the specifications.

– ROOM [45] is a specialized high-level modeling lan-
guage, designed for distributed real-time systems and
supported by a modeling environment, the Object-
Time toolset. Software behavior in ObjectTime is ex-
pressed by ROOMcharts, which is an extension of
Statecharts. ROOMcharts replaces the AND-states
of Statecharts by encapsulated entities called actors
(similar to RSML). It also replaces the broadcast com-
munication of statecharts by a port-to-port message-
passing mechanism for communications between the
actors. As a result, it reduces the complexity of man-
aging name space.

ROOM starts with the high level design of soft-
ware components and leads to their implementations.
ROOM is not designed for software requirement spec-
ification; it is basically a design notation. However it
can be used for requirements analysis at a very high
level design phase by prototyping and trying out alter-
native designs.

3.3 OOAD Methods
Some object-oriented analysis and design (OOAD) meth-
ods describe the behavior of objects and classes using vari-

ations of extended finite state machines. This includes a
considerable amount of work in the area of inheritance and
refinement of software behavior. Some of this work is out-
lined below:

– James Rumbaugh and others [44] use an extension
of state diagram, based on Harel’s Statecharts, to de-
scribe the dynamic model of Object Modeling Tech-
nique (OMT).

– Neal Walters [49] expands on Rumbaugh’s work by
providing mechanisms for object collaborations: the
invocation of object services and interchange of data
between objects. Emphasizing the importance of pre-
dicting system behavior for validating completeness
and analyzing performance, he describes a method for
building dynamic models of object-oriented systems
using STATEMATE.

– Derek Coleman and others [8] introduce an extension
of Statecharts called Objectcharts for object-oriented
design. They use Objectcharts to specify the behavior
of objects and expect that the future work will provide
firm semantics for Objectcharts, enabling the behav-
ior of object-oriented systems to be deduced from the
specifications of the corresponding objects.

– Finally, the most widely publicized object-oriented
method, the Unified Modeling Language (UML) [39,
37, 38], in spite of all its success stories, has not been
able to gain the trust of software engineering commu-
nity for not having a sound mathematical foundation.

In general, a software engineering methodology, spe-
cially in the area of software system definition and re-
quirements specification, cannot succeed unless it has
a sound mathematical foundation. The idea of infor-
mation hiding, first proposed by Parnas [40] gave birth
to the object oriented methodologies. By mid 90’s,
these methodologies were going out of momentum for
what believed to be their diversity of standards. Intro-
duction of UML, as the standard object-oriented no-
tation, was the last attempt made by Object Modeling
Group (OMG), to unify the diverse OO methodolo-
gies and thereby save the object-oriented approach to
software engineering. However, in spite of all the ad-
vantages that the unified standard notation could offer,
the notation went under attack for not having a sound
mathematical foundation.

SOFTWARE ENGINEERING: THE TREND Informatica 28 (2004) 129–137 133

There is currently a body of work underway on the
importance of, and the need to provide, a sound math-
ematical foundation for UML. Some of this work is as
follows:

– Martin Glinz investigate the suitability of UML
as a semiformal requirements specification lan-
guage and, using a case study, identify and
demonstrate various problems and deficiencies
of UML, particularly concerning use case mod-
els and system decomposition [15].

– Robert France [14] describes the role that formal
specification techniques can play in the devel-
opment of well-defined standard modeling lan-
guages.

– Breu and others [4, 5] are investigating the pos-
sibility of integrating different UML description
techniques on a sound mathematical foundation
by using a common semantic basis for all no-
tions used by UML.

– Fernandez and others [13] use algebraic spec-
ification formal theory to formalized the UML
Statechart diagrams and thereby verify the spec-
ifications.

– Grosu and others [16] are investigating the for-
mal foundation of UML for Real-Time systems
(UML-RT).

– Morgan Björkander describes a two-language
merger, combining UML’s expressive power and
SDL’s semantics strengths, to provide a mod-
eling paradigm for visual software engineering
that is supposed to be more effective than either
language alone [3].

Each of the methods described above has strong features.
They provide the accuracy of formality and simplicity of
visualism. They simplify the presentation of formal spec-
ifications using their graphic notations, solving the prob-
lem of presentation. None of these methods, however, pro-
vide any solution for the problem of blow-up in the number
states. This problem, therefore, makes visual formal meth-
ods impractical for large-scale systems. That is, of course,
if we try to specify the system as a whole. But, how practi-
cal is it to accurately and fully describe a system while we
can only work with the “representations” of the system?
Next section is devoted to this question.

4 Representations
Generally speaking, one can only describe one’s “view” of
the world. A user’s attempt to specify a system, at best, can
only result in the specification of his or her “view” of the
system. Intuitively, A view is a description of the behavior
of the system observable from a specific point of view. For
a formal definition of view see [29]. We also refer to a view

of a system as a representation of the system. “Represen-
tation”, however, is a much more general term and applies
for all entities. Therefore, it deserves a formal definition
here.

Formally, r is the (ρ, t)-representation of e, if there ex-
ists a function ρ and a point in time t, such that ρ(e, t) = r.
Notice that different functions may produce different rep-
resentations of a given entity; and a function may produce
different representations of a given entity at different times.
Using a convention that r refers to the current value of
the function, we can eliminate t, simplifying the definition.
Thus, we can say r is the ρ-representation of e, if there ex-
ists a function ρ, such that ρ(e) = r. In this case, we can
also simply refer to r as a representation of e.

With this introduction, therefore, the notion of represen-
tation is defined by

ρ(e, t) = r, where (1)
ρ is the representation function,
t is the representation time,
e is the representandum, and
r is the representation.

Having defined the notion of representation, we can now
define “information” by stating, r is information about e or
r provides some information about e, if r is a representation
of e. Any representation of an entity, therefore, provides
some information about the entity.

Similarly, any representation of a system provides a par-
tial specification of the system.

Furthermore, any representation of a system specifies a
view of the system.

If the inverse of ρ is also a function, then ρ−1(ρ(e)) = e
and given r we can reproduce e (ρ−1(r) = e), in which case
r is a perfect representation of e. A perfect representation
of e provides all the information about e. For example, on
the set of positive integers, if ρ(e) = e2, then ρ(5) = 25
and ρ−1(25) = 5 and, therefore, 25 is a perfect representa-
tion of 5. As another example, in the Theory of Algorithms
and Data Structures, a graph G is routinely represented by
its adjacency matrix M [1]. If we define ρ as ρ(G) = M,
then ρ−1(M) = G and, therefore, M is a perfect represen-
tation of G.

Most representations, however, are not perfect. For ex-
ample, let us consider the function ρ defined on positive
integers as

ρ(e) =
{

odd , if e is an odd number
even , otherwise

The inverse of this function is not a function and, there-
fore, the corresponding representations are not perfect. By
this definition, all odd numbers are represented as “odd”.
The representation “odd” is not enough to reproduce the
representandum. However, there are cases, where it can be
useful just to know whether the number is odd or even. In

134 Informatica 28 (2004) 129–137 A. Isazadeh

general, there are cases, where we want only as much in-
formation about an entity as we need and not more. This
is because, it serves no purpose to collect and carry around
more information about the entity than we need; besides,
not all the information on the entity is necessarily available.
In other words, for many entities, imperfect representations
of the entity are all that we have to work with. In addition,
a representation of a representandum can be further repre-
sented, creating a hierarchy of representations. In fact, each
layer of the communication protocols is described by one
level of the corresponding hierarchical representations.

Our notion of representation and the consequent defini-
tion of information and specification are consistent with,
and describe, most of the familiar concepts. For example:

– Out-of-date and Up-to-date Information: If the value
of t, in the Equation (1), is equal to an old time, then
the corresponding information is said to be out-of-
date. For the up-to-date information t must specify
the current time.

– Volume of Information: In data communication, a
message m is represented as ρ(m), transmitted to the
destination, where the original message m is repro-
duced by m = ρ−1(ρ(m)). The volume of informa-
tion contained in the message is log2(n) bits, where
n is the size of domain of ρ. That is, the number of
bits required to code a message out of n possible mes-
sages is log2(n) [47]. The logarithmic base 2 is for our
choice of “bit” as the unit of measuring information,
considering that a bit consists of 2 states. If we choose
a another mechanism, consisting of b states, then the
logarithmic base will be b.

– Misinformation (Error) or Inconsistent Specification:
A representation may not reflect the true state of the
world, in which case it is misrepresentation, misinfor-
mation, or error.

Formally, r = ρ(e) is misinformation if ρ−1(r) is in-
consistent with e. In particular, where perfect repre-
sentations are required, r = ρ(e) is misinformation if
ρ−1(r) �= e.

In addition, our notion of representation provides a new
view of the world. I call this view of the world representa-
tionism, which is the way in which we deal with entities, in
representing, manipulating, transferring, and reproducing
them. The representationistic approach to study an entity,
in general, is to extract representations of the entity, study
them, and compose the results to construct knowledge of
the entity. Notice that this is different from the well known
reductionistic, (in contrast to holistic) approach in the phi-
losophy of science. In reductionism, a whole is dissected
into pieces, each piece is studied and analyzed separately,
and then the results are synthesized and integrated. There
are similarities, but also major differences: The pieces in
reductionism are smaller parts of the whole, while the rep-
resentations in representationism are simple and mostly im-
perfect representations of the entire whole. There we have

a picture of a section, while here we have a picture of the
whole, but from a specific point of view.

Critics of science have portrayed reductionism as an ob-
sessional disorder, declining toward a terminal stage, as
one writer recently dubbed “reductive megalomania” [51].
This criticism does not apply for representationism. Be-
cause, the representationistic approach to study an entity,
reduces the problem by describing it in terms of simple
representations, but unlike reductionism, keeps the entity
intact.

An example of a representationistic approach to system
specification is a formalism called Viewcharts.

4.1 Example
The Viewcharts formalism [29], designed based on a rep-
resentationistic approach, is the most recent attempt to re-
solve the complexity of scale. In Viewcharts, the behavior
of a system is specified, formally and visually, as a compo-
sition of “views”. Intuitively, as discussed above, A view
(or behavioral view) is a complete description of the behav-
ior of the system observable from a specific point of view.
Using this notion of view, the formalism is designed to
specify the behavioral requirements of large-scale complex
systems on a need-to-specify basis. In Viewcharts, one does
not have to specify the full behavior of a system and, there-
fore, is not concerned with the complexity or scale of the
system. A complex system may consist of many different
sub-systems and components, distributed worldwide, and
it may exhibit a combination of many different and iden-
tical behavioral views. Current research and industrial ad-
vances in networking and distributed systems indicate that
software systems will continue to get larger and more com-
plex. One cannot envision producing an integrated behav-
ioral requirements specification for an arbitrarily large and
complex system. However, if we define the behavior of a
system in terms of behavioral views, then all we need to
do is to specify the views of our interest. The Viewcharts
formalism allows these views to be specified independent
of each other.

Furthermore, views in Viewcharts limit the scope of
broadcast communication, solving the problem of global
name space.

It is, therefore, expected that the Viewcharts formalism
will be practical in large-scale systems behavioral specifi-
cations.

5 Conclusion
Software engineering is involved, deeply, in every science
and technology. Software engineering provides the very in-
frastructure of every science and technology. With all these
responsibilities, software engineering cannot afford to go
wrong. Software engineering, therefore, has no choice but
to go formal. Software engineering requires professionals,
educated and trained in working on a sound foundation.
A software engineer, before writing down the first line of

SOFTWARE ENGINEERING: THE TREND Informatica 28 (2004) 129–137 135

code, must be able to do different kinds of mathematical
analysis on his/her design and prove that the system-to-
be-developed is specified correctly, consistently, without
ambiguity, and once it is developed, is going to work as
specified. The universities, professional schools, and edu-
cation centers, in this field, are responsible for training the
software engineers, prepared to face the challenging tasks
ahead. And, that is the trend.

In addition to an analysis of the responsibilities asso-
ciated with software engineering and the corresponding
trend, the contribution of this paper can be summarized
as an approach to the way in which information, in gen-
eral, and software systems, in particular, can be defined and
specified. The paper has proposed a representationistic ap-
proach to software definition and specification. In this ap-
proach we do not deal with a system as a whole, we deal
with different representations of the system and, thereby,
simplify the system definition, specification, and analysis.

Acknowledgements
I would like to thank the Research Counsel and the Office
of Research Affair at Tabriz University for their financial
support.

References
[1] Aho A. V., Hopcroft J. E., and Ullman J. D. (1975).

The Design and Analysis of Computer Algorithms.
Addison Wesley, Reading, MA.

[2] Berry G. and Cosserat L. (1984). The ESTEREL syn-
chronous programming language and its mathemati-
cal semantics. In Seminar on Concurrency, Springer-
Verlag, Vol. 197 of Lecture Notes in Computer Sci-
ence, pp. 389–448.

[3] Björkander M. (2000). Graphical programming using
UML and SDL. IEEE Computer, 33(12):30–35.

[4] Breu R., Grosu R., Huber F., Rumpe B., and Schw-
erin W. (1998). Systems, views and models of UML.
In Schader M. and Korthaus A., editors, The Unified
Modeling Language, Technical Aspects and Applica-
tions, Physica Verlag, Heidelberg, pp. 93–109.

[5] Breu R., Hinkel U., Hofmann C., Klein C., Paech
B., Rumpe B., and Thurner V. (1997). Towards a
formalization of the unified modeling language. In
Proceedings of ECOOP’97, Springer Verlag, LNCS,
pp. 344–366.

[6] Broy M. (2001). Toward a mathematical foundation
of software engineering methods. IEEE Transactions
on Software Engineering, 27(1):42–57.

[7] Carr D. A. (1997). Interaction object graphs: An ex-
ecutable graphical notation for specifying user inter-
face. In Palanque P. and Pterno F., editors, Formal

Method for Computer Human Interaction. Springer-
Verlag, pp. 141–156.

[8] Coleman D., Hayes F., and Bear S. (1992). Introduc-
ing Objectcharts or how to use Statecharts in object
oriented design. IEEE Transactions on Software En-
gineering, 18(1):9–18.

[9] Collins B. P., Nicholls J. E., and Sorensen I. H.
(1987). Introducing formal methods: The CICS ex-
perience with Z. Technical Report TR12.260, IBM
Hursley Park.

[10] Davies J. (1993). Specification and Proof in Real-
Time CSP. Distinguished Dissertations in Computer
Science. University of Cambridge Press, Cambridge.

[11] Drusinsky D. and Harel D. (1988). On the power
of cooperative concurrency. In Proceedings of In-
ternational Conference on Concurrency (CONCUR-
RENCY’88), Springer-Verlag, Vol. 335 of Lecture
Notes in Computer Science, pp. 74–103.

[12] Drusinsky D. and Harel D. (1994). On the power
of bounded concurrency I: Finite automata. Journal
of the Association for Computing Machine (ACM),
41(3):517–539.

[13] Fernández J. and Toval A. (2000). Can intuition be-
come rigorous? foundations for UML model verifica-
tion tools. In Titsworth F. M., editor, Proceedings of
the International Symposium on Software Reliability
Engineering, IEEE Press, pp. 344–355.

[14] France R. (1999). A problem-oriented analysis of
basic UML static requirements modeling concepts.
In Proceedings of the 1999 ACM SIGPLAN confer-
ence on Object-oriented programming, systems, lan-
guages, and applications, ACM Press, pp. 57–69.

[15] Glinz M. (2000). Problems and deficiencies of UML
as a requirements specification language. In Proceed-
ings of Tenth International Workshop on Software
Specification and Design (IWSSD’00), pp. 11–22.

[16] Grosu R., Broy M., Selic B., and Stefanescu G.
(1998). Towards a calculus for UML-RT specifica-
tions. In Kilov H., Rumpe B., and Simmonds I., ed-
itors, Proceedings of the Seventh OOPSLA Workshop
on Behavioral Semantics of OO Business and System
Specifications, pp. 135–152.

[17] Guttag J., Horning J., and Wing J. (1982). Some
notes on putting formal specifications to productive
use. Science of Computer Programming, 2(1):53–68.

[18] Harel D. (1987). Statecharts: A visual formalism
for complex systems. Science of Computer Program-
ming, 8:231–274.

[19] Harel D. (1988). On visual formalisms. Communica-
tions of ACM, 31(5):514–530.

136 Informatica 28 (2004) 129–137 A. Isazadeh

[20] Harel D. (1995). Private communication. Weizmann
Institute of Science, Rehovot, Israel.

[21] Harel D., Lachover H., Naamad A., Pnueli A., Politi
M., Sherman R., Shtull-Trauring A., and Trakhten-
brot M. (1990). STATEMATE: A working environ-
ment for the development of complex reactive sys-
tems. IEEE Transactions on Software Engineering,
16(4):403–414.

[22] Harel D. and Naamad A. (1995). The STATEMATE
semantics of Statecharts. Technical report, i-Logix,
Inc., 22 Third Avenue, Burlington, Mass.

[23] Harel D. and Pnueli A. (1985). On the development
of reactive systems. In Apt K. R., editor, Logics and
Models of Concurrent Systems. Springer-Verlag, New
York, pp. 477–498.

[24] Hendricksen C. S. (1989). Augmented state-transition
diagrams for reactive software. ACM SIGSOFT Soft-
ware Engineering Notes, 14(6):61–67.

[25] Heninger K. L., Kallander J. W., Shore J. E., and Par-
nas D. L. (1978). Requirements for the A-7E aircraft.
Technical Report NRL 3876, Naval Research Labora-
tory, Washington, DC.

[26] Hoare C. (1978). Communicating sequential pro-
cesses. Communications of ACM, 8(21):666–677.

[27] Hoare C. (1985). Communicating Sequential Pro-
cesses. Prentice Hall, Englewood Cliffs, NJ.

[28] Hopcroft J. E., Motwani R., and Ullman J. D. (2001).
Introduction to Automata Theory, Languages and
Computation. Addison Wesley, Boston, MA.

[29] Isazadeh A., Lamb D. A., and Shepard T. (1999). Be-
havioural views for software requirements engineer-
ing. Requirements Engineering Journal, 4(1):19–37.

[30] Jahanian F. and Mok A. K. (1986). Safety analysis of
timing properties in real-time systems. IEEE Trans-
actions on Software Engineering, 12(9):890–904.

[31] Jahanian F. and Mok A. K. (1994). Modechart: A
specification language for real-time systems. IEEE
Transactions on Software Engineering, 20(12):933–
947.

[32] Jones C. B. (1990). Systematic Software Develop-
ment using VDM. Prentice Hall International Series
in Computer Science. Prentice Hall.

[33] Kaplan A. and Wileden J. C. (1995). Formaliza-
tion and application of a unifying model for name
management. In Proceedings of ACM SIGSOFT’95,
pp. 161–172.

[34] Lann G. L. (1997). An analysis of the Ariane 5 Flight
501 failure - a system engineering perspective. In
Proceedings of the IEEE Workshop on Engineering
of Computer-Based Systems (ECBS’97), IEEE Com-
puter Society Press, pp. 339–346.

[35] Leveson N. G., Heimdahl M. P. E., Hildreth H., and
Reese J. D. (1994). Requirements specification for
process control systems. IEEE Transactions on Soft-
ware Engineering, 20(9):684–707.

[36] Lions J. L. (1996). ARIANE 5; Flight 501 Fail-
ure. Report by the Inquiry Board available online
at: http://www.esrin.esa.it/htdocs/tidc/Press/Press96/
ariane5rep.html.

[37] OMG (1999). UML Notation Guide, Version 1.3.
Object Management Group, available online at http://
www.rational.com/uml.

[38] OMG (1999). UML Semantics, Version 1.3. Ob-
ject Management Group, available online at http://
www.rational.com/uml.

[39] OMG (1999). Unified Modeling Language, Version
1.3. Object Management Group, available online at
http://www.omg.org.

[40] Parnas D. (1972). On the criteria to be used in de-
composing systems into modules. Communications
of ACM, 15(2):1053–1058.

[41] Peterson J. L. (1977). Petri Net. Computing Surveys,
9(3):223–252.

[42] Phillips M. (1989). CICS/ESA 3.1 experiences. In
Nicholls J. E., editor, Z User Workshop, pp. 179–185.

[43] Rouff C. and Horowitz E. (1991). A system for spec-
ifying and rapidly prototyping user interfaces. In
Karat J., editor, Taking Software Design Seriously.
Academic Press, pp. 257–272.

[44] Rumbaugh J., Blaha M., Premerlani W., Eddy F., and
Lorensen W. (1991). Object-Oriented Modeling and
Design. Prentice Hall, Englewood Cliffs, NJ.

[45] Selic B., Gullekson G., and Ward P. T. (1994). Real-
Time Object-Oriented Modeling. Wiley, New York.

[46] Shaw A. C. (1992). Communicating real-time state
machines. IEEE Transactions on Software Engineer-
ing, 18(9):805–816.

[47] Tague-Sutcliffe J. (1995). Measuring Information:
An Information Services Perspective. Academic
Press, San Diego.

[48] van Schouwen A. J. (1990). The A-7 requirements
model: Re-examination for real-time systems and an
application to monitoring systems. Technical Re-
port 90-276, Telecommunications Research Institute

SOFTWARE ENGINEERING: THE TREND Informatica 28 (2004) 129–137 137

of Ontario (TRIO), Department of Computing and
Information Science, Queen’s University, Kingston,
Canada.

[49] Walters N. (1992). Using Harel’s Statecharts to model
object-oriented behavior. ACM SIGSOFT Software
Engineering Notes, 17(4):28–31.

[50] White M. S. (1994). Requirements: A quick
and inexpensive way to improve testing. Test-
ing Techniques Newsletter (TTN), On-Line Edi-
tion, ttn@soft.com, http://www.cs.ucl.ac.uk/research/
renoir/newsletter/backissues/renl34.

[51] Wilson E. O. (1999). Consilience: The Unity of
Knowledge. Random House, New York.

[52] Wolf A. L., Clarke L. A., and Wileden J. C. (1988).
A model of visibility control. IEEE Transactions on
Software Engineering, 14(4):512–520.

[53] Wordsworth J. B. (1992). Software Development with
Z. International Computer Science Series. Addison-
Wesley.

[54] Zelkowits M. V., Shaw A. C., and Gannon J. D.
(1979). Principles of Software Engineering. Prentice-
Hall, Englewood Cliffs, NJ.

138 Informatica 28 (2004) 129–137 A. Isazadeh

 Informatica 28 (2004) 139–145 139

Computer-Aided Reuse Tool (CART)

Zina Houhamdi
Department of Computer Science, University of Biskra, BP 145, Biskra, 07000, Algeria.
E-mail: z_houhamdi@yahoo.fr

Belkacem Athamena
Department of Automatics, University of Biskra, BP 145, Biskra RP, 07000, Algeria.
E-mail: b.athamena@caramail.com

Keywords: Software reuse, facet classification, object-oriented library, thesaurus, CASE tools.

Received: April 17, 2004

Software reuse has been claimed to be one of the most promising approaches to enhance programmer
productivity and software quality. One of the problems to be addresses to achieve high software reuse
is organizing databases of software experience, in which information on software products and
processes is stored and organized to enhance reuse.
Object-oriented software libraries expand in size more rapidly than other type of software library.
This paper presents a simple approach for aiding reuse in software development using object-oriented
library. Our approach improves the effectiveness of code searching by reorganizing the library with
facet classification scheme and thesaurus. Information in specification models, such as Data Flow
Diagrams (DFDs), is extracted through object abstraction and then used as a query input. We are
currently implementing a Computer-Aided Reuse Tool (CART) based on the approach.

1 Introduction
Improving software productivity and quality is one of
primary emphasis of research in software engineering
[12, 2]. Many studies have shown that software reuse can
improve software productivity and quality significantly.
Research on software reuse can be divided into at least
three categories: some researchers study how to construct
reusable software components [4,6,11,13], some study
system frameworks for reusable software asset libraries
[8,9,16], other study classification and retrieval strategies
for reusable software libraries to achieve effective reuse
[3,5,7].

Computer-Aided Software Engineering (CASE) tools
usually come with a repository for specification in
different development phases. The repository is designed
as a browser-like or query-reply tool for search and
retrieval of specification contents (elements). These
kinds of tools, however, provide less help in reuse than
those booting direct search on a real software library. On
the other hand, object-oriented libraries probably grow
more quickly than any other type of software libraries.
Traditional ways of searching for components, such as
consulting a user's manual, using a browser or examining
the source code, not only waste time in searching, but
provide little help in understanding particular
components. This problem is even more serious when
searching through a large object-oriented library, which
may comprise millions lines of code or thousands of
classes.

In this paper, we present an approach that integrates
reuse techniques with an actual object-oriented library to
promote reuse in CASE. Our approach boots an
automatic mechanism on both classification and retrieval

processes of software components. The classification
scheme is basically the facet scheme from [10, 16, 17],
and the retrieval mechanism is a query-reply. The
classification is performed using the keywords of a
thesaurus. The query inputs are generated by extracting
information from the entities in specification models,
such as a data flow diagram (DFD). A query is
instantiated by a user, and its content can be selected by
the users or generated automatically. Replies to queries
improve reuse by helping users compare entities and
components en the library more precisely. We are
currently implementing a Computer-Aided Reuse Tool
(CART) based on our approach.

Section 2 gives a brief review of the facet scheme.
Section 3 discusses the classification process in detail
and presents some interesting results of queries. Section
4 presents a design for an automatic code extractor, and
section 5 describes the structure of our CART. Section 6
is the conclusion of the paper.

2 The facet scheme
The facet classification scheme was first proposed by
Prieto-Diaz in [17]. The facet scheme has many
advantages. In particular, it is suitable for collections of
similar reusable components that are large, contain
groups, and are growing continuously. A typical example
is GTE Data Service’s AMP (Asset Management
Program), whish was introduced in 1991 [16].

A facet is a viewpoint toward software components.
Viewpoints may include the functions the components
perform, the objects they manipulate, the system types to
whish they belong, and so on. The value for a facet of a
component is called facet value. The set of facet values

140 Informatica 28 (2004) 139–145 Z. Hauhamdi et al.

for a component is called facet descriptor. The
characteristics of a component may be described using its
facet descriptor and a component may be understood
through its facet descriptor.

In designing classification scheme, there are at least two
factors that must be considered. First, the scheme needs a
set of proper facets to represent essential features of a
component. This set may be determined by referring to
system requirements after classifying all components.
Unnecessary or insufficient facets may cause some
trouble in the classification process. Unnecessary facets
may make the facet values hard to assign or make it
impossible to index a component by facet descriptor.
Insufficient facets may map many components to the
same facet descriptor, so hat ambiguities present when
locating and retrieving components. Second, each facet
needs a set of proper facet values to represent all possible
(distinguished) features, or indices, of components.
Usually, the definition of facet values relies on domain
analysis and expert knowledge. When the collection of
components is large, it is difficult to predefine all
possible facet values for further indexing. Thus, the facet
scheme must be simplified for a large object-oriented
library.

3 A facet scheme for large object-

oriented library

3.1 The use of keywords
A word may have more than one meaning and two
different words may have the same meaning. A thesaurus
is used in vocabulary control. It helps to clarify concepts.
Table 1 shows several examples. In the table, the words
consume, feed, partake, and chew have the same
meaning, eat. On the other hand, the word consume has
two different meaning, eat and waste.

Keywords Synonyms
Eat Eat, consume, feed, partake, chew
Waste Consume, expend, exhaust, reduce, eat
Taste Relish, enjoy, eat, try, sample
Fewness Diminish, reduce, lessen, lack, need

Table 1: Partial Thesaurus

Using keywords in a thesaurus as the universe of facet
values to simplify classification has the following
advantages. First, it saves time in determining the
universe of facet values, and thus simplifies the
classification domains. When a domain is changed, the
universe remains unchanged. A facet value is described
with a set of keywords, of which each represents one
distinct meaning. A facet descriptor described in this way
is space-less, but easier to implement.

From the viewpoint of specification, usually more than
one word is needed to describe the features of
components on each facet. For example, the information
on the function facet may be (copy, from), (copy, replace,
all) or (copy, replace, from). Although the primitive

function is copy, these three components are all distinct.
As another example, the object type facet of components
may have the information (linked, list) or (double, linked,
list), indicating that they manipulate lists of different
kinds. These cases occur frequently, especially when
processing a large collection.

The facet scheme in our approach is centered an
automated thesaurus developed from [14]. Our facet
scheme consists of three facets:

♦ Function refers to the function performed. Function
names such as store, changeRequest, and
updateString are used to generate facet values.

♦ Object type refers to the template of objects to which
the method belongs. Therefore, type names such as
set, bag, and textItemEditor are used to represent this
facet.

♦ System type refers to domains, which are
functionally identifiable, application-independent,
and usually include more than one component. The
name of a domain, for example, collection-text or
graphics-interface, may be used for the value.

Each component of the software (code) library is given
(defined) a set of keywords as a facet value. These
keywords are generated from information extracted from
the above names. One example is the information
(linked, list), where linked belongs to the three keywords
relations, junction and combination, and list belongs to
four keywords numeration, class, list and record. If
(linked, list) is used to define a specific facet of a
component, the internal representation of the facet is
(relations, junction, combination, numeration, class, list,
record). The next section describes how to proceed with
classification. Section 3.3 describes a retrieval example
to illustrate the capabilities of the facet scheme.

3.2 The classification process
Based on the previous discussion, we designed a Library
Automation Classification System (LACS) to classify a
large object-oriented library. Figure 1 is the overall data
flow of our LACS.

In the LACS, each facet has an automatic classification
procedure. Each classification procedure is designed
according to the properties of components and the needs
of each facet. The strategies for generating facet values
from a sample object-oriented library, Smalltalk-80, are
the following:

♦ Function facet: The method name can represent the
rough meaning of a method, for example, copy,
changeRequest, storeone, doesNotUnderstand,
storeString and so on. Method names are quite useful
in helping users to understand the methods. Thus,
our procedure in the LACS first splits the method
name and then passes each word through the
thesaurus to get the corresponding keywords. For
example, the name of the method changeRequest can
be split into two words, change and request. The

COMPUTER-AIDED REUSE... Informatica 28 (2004) 139–145 141

Descriptor

System type
 facet Values

Object facet
Values Function

facet Values

Thesaurus Oriented-Object

Function
Facet

Analysis

System
type Facet
Analysis

Object
Facet

Analysi

Assemble facet

Values

Classification
Catalog

value of the function facet of this method is
(variance, money, improvement, change, command,
request, worship, inquiry).

♦ Object type facet: This facet refers to the template of
objects to which methods belong. An object type is a
class name in the library. The class name of the
sample library can describe the features of a class.
Therefore, the procedure for function facet can be
modified slightly to get the values of this facet.

System type facet: The domain that methods belong to
are defined in the user manual of Smalltalk-80. The
domain names in the user manual are also passed through
the thesaurus to get facet values.

Figure 1: Data Flow Diagram of LACS

The classification process in the LACS is centered on a
thesaurus and consists of the following sequence of tasks.
First, the necessary information is collected (method
name, class name and system type name). Second, each
name is decomposed into words, which are passed
through the thesaurus to get corresponding keywords
(facet values). These facet values for each component
form the facet descriptor. Third, the facet descriptors
generated by the LACS are stored in the classification
catalog.

In the prototype system, the thesaurus consists of 886
keywords and up to 34837 words. The classification
catalog contains 349 classes and 3722 methods. The
number of actual keywords (facet values) used for
function, object type, and system type facets is 723, 356,
and 70 respectively. The average number of repetitions
of keywords, the number of facet values a keyword
appears, for function, object type, and system type facets
is 35.39, 5.37, and 3.83 respectively. The average
number of keywords contained in a facet value for each
method, class name, and system type name is 6.87, 5.47,
and 5.47 respectively. Note that the function facet has
much higher the average number of facet values a
keyword appears (35.39). Perhaps this is why libraries
based on functions offer a lower degree of reusability.

The LACS doesn’t record inheritance directly. A class in
an object-oriented library may inherit method(s) from
other classes. The LACS builds the structure of class
hierarchies additionally.

3.3 A retrieval example
The service functions provided by the classification
catalog are query-reply functions: A user can query to
find software component(s) from the classification
catalog. The query form is similar to the form of facet
descriptor: [(function), (object type), (system type)]. The
following examples show what the queries and replies
are.

1. Query: A user wants to find possible methods of
displaying characters. The query is [(display,
character), (), ()], where the empty cell “()” means
“don’t care”.

Reply: The reply displays possible methods in classes.
There are 42 possible tuples retrieved. However, some
tuples seem irrelevant to the user requirement. This is
caused by insufficient strictness in the query constraints.
A small amount of extra information (constraints) can
reduce the size of reply. The next two queries will
illustrate the outcome of using a more narrowly
constrained query.

Class Name Method Name
ArihmeticValue Sign
Behavior ShowVariableMenu
Browser ShowHierarchy
ChangerScanner ScanClassExpression

ScanExpression
CharacterScanner StopConditionFor
CompiledCode SignExtend
ComposedText DisplayFromCharacter

RightMarginForDisplay
ComposedTextView DisplaFromCharacter

ShowSelectionBoxOn
………. ……….
GraphicsContext DisplayCharacterOfIndex

RoundedDisplayCharacterOf
Ind

IOAccessor OpenFileWriteOnly
LoopNode Condition
MenuTracker DisplaExtraInformation

DisplayExtraInformationFor
Parser BlockExpression

Expression
PrimaryExpression
TypeExpression

………. ……….
TextCollector Show
TextLines RightMarginForDisplay

2. Query: The user has the same requirements as above,
and he guesses the system type to be graphics. So, the
query becomes [(display, character), (), (graphics)].

142 Informatica 28 (2004) 139–145 Z. Hauhamdi et al.

Warning message

Patient
data

Unpack
signs

Produce
warning
message

Blood pressure

Pulse

Temperature

Vital signs bound

Blood pressure
temp and pulse

Data time

Formatted patient data

Patient bounds

Evaluation
bounds

violation

Format
patient

data

Clock

Reply: There are seven tuples, which satisfy the query
constraints. The additional information on the system
type facet reduces the size of the reply from 42 to seven
tuples.

Class Name Method Name
CharacterScanner StopConditionFor
ComposedText DisplayFromCharacter

RightMarginForDisplay
DeviceFont DisplayCharacter
GraphicsContext DisplayCharacterOfIndex

RoundedDisplayCharacterOfInde
TextLines RightMarginForDisplay

3. Query: If the user guesses that the object type should
be graphics, the query may become [(display,
character), (graphics), (graphics)].

Reply: there are two tuples, which satisfy the query
constraints. The additional information on the object type
facet reduces the reply from seven to two tuples.

Class Name Method Name
GraphicsContext DisplayCharacterOfIndex

RoundedDisplayCharacterOfIndex

Obviously, the replies to queries are determined mainly
by the input information (constraints) of each facet. The
more precise a user wants a result to be, the more useful
information he must provide. This query-reply tool is not
complicated, but it still requires that the user type in the
details of the query.

4 Object abstraction during

specification

4.1 Object abstraction
DFDs have been used widely for system specifications.
During requirements analysis, an analyst may not know
exactly whether a process in a DFD requires further
decomposition. There were some rules to help make such
decisions. For example, a process need not be
decomposed if its specification can be completely
described on a piece of paper or if it has only one input
and output. Without enough information, system analysts
always decompose processes by experience. This way
may cause some processes to be decomposed too much
and others too little. Both are undesirable.

Object abstraction of DFDs may provide one kind of help
for the above problems. Intuitively, data flows in a DFD
can be mapped to objects, data stores to objects,
processes to the methods of objects, and external entities
to the objects containing original functions as their
methods [1]. The specification of an entity, such as a data
flow, data store, or external entity, may come from other
modeling tools, such as the Entity-Relationship Diagrams
(ERD) used in structured analysis (SA) or the object
diagrams of Object-Oriented Analysis (OOA). With
these object abstractions (mapping), users can query the

system whether there exist(s) certain components in the
library. For example, they can ask whether there are
classes or objects in the library that correspond to a
specific data flow or data store in the DFD, or a method
corresponds to a specific process, and so forth.

The query information may come directly from the
specification, instead of being entered by the user as in
section 3.3. An automated tool for processing these
queries can help users, when they are working on system
analysis, system design, or programming. For example, if
the reply indicates that the entity being worked has a
matched (or say, qualifies) component in the library, the
user may wish to stop decomposition. Therefore,
referencing the replied information can speed up the
design of the both logical and physical models. In
addition, reusing qualified code naturally reduces
implementation time.

Figure 2 is a sample DFD from [15]. The process
Evaluation bounds violation has the target object blood,
pressure temp and pulse. If the system type facet
information is Monitoring System, a query [(Evaluation,
bounds, violation), (blood, pressure temp and pulse),
(Monitoring, System)] will be extracted to see whether
the process Evaluation bounds violation has
corresponding codes in the library. This query-reply can
help an analyst decide whether to decompose the process
or not.

Figure 2: Partial Data Flow Diagram of SA

Another example, shown in figure 3, is an object diagram
in Rambaugh’s OOA [18]. The diagram is designed for a
diagram editor. Let diagram editor be set as the system
type facet information. A query [(box), (), (diagram,
editor)] Will be extracted to check the existence of code
for box. Another example, shown in figure 3, is an object
diagram in Rambaugh’s OOA [18]. The diagram is
designed for a diagram editor. Let diagram editor be set
as the system type facet information. A query [(box), (),
(diagram, editor)] Will be extracted to check the
existence of code for box.

COMPUTER-AIDED REUSE... Informatica 28 (2004) 139–145 143

Figure 3: Partial Object Diagram in Rambaugh’s OOA

4.2 An Automatic Code Extractor
An automatic Code Extractor (ACE) is an automated tool
containing the functions discussed previously. An ACE
simplifies the generating action of queries and makes
replies more precise by integrating these actions with
CASE tools. The more useful the information extracted
from the repository is, the more precise the reply derived
by an ACE will be. However, each CASE tool may
follow a different methodology, such as SA/SD or
OOA/OOD. The information extracted different
methodologies will be different.

For a SA methodology, DFD is the kernel of SA. The
function facet information can be extracted from the
name string of a process. The object type facet
information is extracted from the data flow name, data
store name, or external entity name (which will be
specified in the ERD). The system type facet information
cannot be extracted from the repository directly. One
way to handle this problem is to use an additional tool,
like a customizer [19] in Excelerator/IS. To add an
additional field to let users input the necessary
information. For OOA methodology, the function facet
information can be extracted from the service name. The
object type facet information can be extracted from the
class name or object name. The system type facet
information also requires an additional field to let users
enter the information.

The role of an ACE within the waterfall model is shown
in figure 4. Our current prototype system uses a simple
searching strategy, which contains the following steps:

1. Obtain the relevant data from the repository
according to the user request and assemble the data
into a query.

2. Replace the words in the query by keywords in the
thesaurus to produce the real query.

3. Enter the query into classification catalog to get the
reply and return it to the user.

If too many components satisfy the query constraints, the
system acquires more information from the user
interactively. If there is no hit, i.e., no component
matches the query (constraints), the user has three
choices. One is the user to accept the fact, another is to
enter other information for the next query, and the other
is to search through the class hierarchy for inherited
methods.

Figure 4: ACE supports for Waterfall Model

Consider the example in figure 2 again. After the step 1,
the query [(Evaluation, bounds, violation), (blood,
pressure temp and pulse), (Monitoring, System)] is
extracted. After step 2, the keywords of the words in the
above query are as shown in the following table and the
real query is [((judgment, measurement), (limit, leap,
promise, circumscription), (undueness, …, impiety)),
((nobility), (rarity, …, impulse), (measurement, heat),
(regularity, oscillation)), ((inquiry), (unity, …,
arrangement))].

The searching process of step 3 is through a union
operation of the keywords of each word and then an
intersection operation of the result of each word in the
query. It is the same as [[((judgment ∪ measurement) ∩
(limit ∪ leap ∪ promise ∪ circumscription) ∩
(undueness ∪ …∪ impiety)) ∩ ((nobility) ∩ (rarity ∪
…∪ impulse) ∩ (measurement ∪ heat) ∩ (regularity ∪
oscillation)) ∩ ((inquiry) ∩ (unity ∪ …∪
arrangement))].

Words Keywords
Evaluation
Bounds
Violation

Judgment, measurement
Limit, leap, promise, circumscription
Undueness, illegality, misuse, non-
observation, overstepping, disobedience,
impurity, impiety

Blood
Pressure

Temp
Pulse

Nobility
Rarity, measurement, adversity, weight,
influence, compulsion, propulsion,
power, impulse
Measurement, heat
Regularity, oscillation

Monitor
System

Inquiry
Unity, order, rule, crossing, arrangement

After step 3, there are no hits. The user chooses to accept
this fact. This means that the process Evaluation bounds
violation needs to be decomposed further.

The above searching process can narrow the range of
possible components. The components in the reply
should include at least one component the user needs if

Text Box Collection Link

Buffer SheetSelection

Potential components

Potential
components

Potential components

Analysis
(SA, OOA)

Code
(SP, OOP)

Design
(SD, OOD)

Automatic
code

Extractor

Oriented-object library

144 Informatica 28 (2004) 139–145 Z. Hauhamdi et al.

Word

Software
components

Replaced Query

Related
InformationFormated Query

Word

KeyWord
Component

Descriptor

KeyWord

Descriptor

Software
components

Request

LACS

CASE
repository

Thesaurus User

Classification
Catalog

Object-oriented
Library

Request
Formate query

Replace query

Extract Code

ACE

The extraction catches his idea and the repository
contains the desired component(s). Sometimes, a query
may retrieve too many potential components. Combining
different searching processes or extracting more useful
information may make a reply more precise.

5 The framework of CART
As described in section 1, CART is designed to facilitate
software reuse in Case tools. Figure 5 shows an overall
data flow diagram of CART. CART mainly consists of
five parts: the CASE repository, thesaurus, classification
catalog, LACS, and ACE. The CASE repository provides
information related to user requests. The thesaurus is
used for vocabulary control. The classification catalog is
the result of code abstraction with enhanced facet
scheme. The LACS described in section 3 is used while
constructing the classification catalog. In CART, the role
of the LACS is the maintenance of the classification
catalog, such as the addition or deletion of software
components. The dashed-square in figure 5 is the ACE; it
is responsible for locating and retrieving components for
users.

Figure 5: Data Flow Diagram of CART

With these parts, CART can provide the closest related
components in the library once the user (a system
analyst, system designer, or programmer) makes a
request. For example, when the user is specifying his
requirements (or design) with DFD, he can ask the ACE
to extract his previous specification as the raw query
information. Through the help of automated thesaurus,
the information is transformed into the query to search
for possible components. We are still in the process of
implementing CART. Our sample library is Smalltalk-80
and our CASE tool is Excelerator/IS.

6 Conclusion
This paper presents an approach to facilitate software
reuse in case that is based on an object-oriented library.
This approach boots the facet scheme, which automates

the classification process from a (large) object-oriented
library. The reuse process is automated with CASE tools
to provide more assistance to the user in each phase of
the software development cycle. We are still in the
process of implementing CART. The next step in our
research will be toward “knowledge-based CART”,
where the knowledge may come from use habit. The
system may improve the query by acquiring the
knowledge while the user is working on the system.
References
[1]. Aliabiso, B “Transformation of Data Flow

Analysis Models to Object-Oriented Design”.
OOPSLA’99, pp. 335-353.

[2]. Anderson, K.J. “State-of-art in software Reuse
Technologies”. COMPSAC’99 Panel on software
reuses.

[3]. Burton, B. A., Aragon, R. W., Bailey, S. A. and
Mayes, L. A. “The reusable Software Library”.
IEEE Software Engineering, July 1998, pp. 25-33.

[4]. Caldiera G. and Basili V. R. “Identifying and
qualifying Reusable Software Components”. IEEE
Computer, Feb. 1997, pp. 61-70.

[5]. Helm, R. and Maarek, Y. S. “Integrating
Information retrieval and Domain Specific
Approaches for Browing and retrieval in Object-
oriented Class Libraries”. OOPSLA’99, pp. 47-
91.

[6]. Houhamdi, Z. and Ghoul, S. “A Reuse Description
Formalism”. ACS/IEEE International Conference
on Computer Systems and Applications,
AICCSA’2001, Lebanese American University,
Beirut, Lebanon. 2001.

[7]. Houhamdi, Z. and Ghoul, S. “A Classification
System for software reuse”. Fifth International
Symposium on Programming System, ISPS2001,
USTHB Computer science Institute, Algiers,
Algeria, 2001.

[8]. Houhamdi, Z. “A Specification language for
software reuse”. CSS/IEEE Alexandria Chapter.
11th International Conference On computers:

COMPUTER-AIDED REUSE... Informatica 28 (2004) 139–145 145

Theory and Application, ICCTA2001, Head of
Electrical Control, Alexandria, Egypt, 2001.

[9]. Houhamdi, Z. “Developing a Reuse Library”.
CSS/IEEE Alexandria Chapter. 11th International
Conference On computers: Theory and
Application, ICCTA2001, Head of Electrical
Control, Alexandria, Egypt, 2001.

[10]. Houhamdi, Z. “An adaptative approach to reuse
software”. SCS/IEEE 2001. The third Middle East
Symposium on Simulation and Modeling,
MESM’2001, Amman University, Amman,
Jordan, 2001.

[11]. Houhamdi, Z. “Software Reuse: a new
classification approach”. The International
Symposium on Innovation in Information and
Communication Technology, ISIICT’2001,
Philadelphia University, Amman, Jordan, 2002.

[12]. Jones, T.C. “Reusability in Programming: A
survey of state of the art”. IEEE Transaction on
Software Engineering, Vol. 10, No 5, Sep. 1999,
pp. 488-493.

[13]. Lenz M., Schmid H. A. and Wolf P. W. “Software
Reuse through Building Blocks”. IEEE Software
Engineering, July 1999, pp. 34-42.

[14]. Manser, M. H. “Pocket Thesaurus of English
Words”. The Hamlyn Publishing Group Limited,
1988.

[15]. Pressman, R. S. “Software Engineering: A
Practitioner’s Approach”. McGraw-Hill, Inc., 2nd
Edition, 1995, pp. 171.

[16]. Prieto-Diaz, R. “Implementation Faceted
Classification for Software Reuse”.
Communication of ACM, Vol. 34, No 5, May
1991, pp. 89-97.

[17]. Prieto-Diaz, R. and Freeman, P. “Classifying
Software for Reusability”. IEEE Software
Engineering, Jan. 1997, pp. 6-16.

[18]. Rambaugh, J. and Addy, F. “Object-Oriented
Modeling and Design”. Prentice-Hall
International, Inc., 1998, pp. 191

[19]. “The customizer Reference Guide”. Preface,
Intersolv Technology, Excelerator Series.

146 Informatica 28 (2004) 139–145 Z. Hauhamdi et al.

 Informatica 28 (2004) 147–152 147

Public-Key Inter-Block Dependence Fragile Watermarking
for Image Authentication Using Continued Fraction
Chin-Chen Chang and Wen-Chuan Wu
Department of Computer Science and Information Engineering,
National Chung Cheng University, Chiayi 621, Taiwan, R.O.C.
E-mail:{ccc, wenn}@cs.ccu.edu.tw
Http://www.cs.ccu.edu.tw/~ccc

Yu-Chen Hu
Department of Computer Science and Information Management,
Providence University, Taichung 433, Taiwan, R.O.C.
E-mail: ychu@pu.edu.tw
Http://www1.pu.edu.tw/~ychu

Keywords: fragile watermark, public key encryption, and continued fraction

Received: March 1, 2003

In this paper, a novel fragile watermarking scheme based on the continued fraction technique is
proposed. The goal of this scheme is to verify the integrity of a watermarked image. The feature value of
the image is generated from the calculation of the continued fraction. The feature value is regarded as
the important information to be hidden in the image. If the watermarked image is suspected of being
tempered with, the watermark extraction procedure could be used for verification. We do not to use
another image as the watermark image in our scheme. The proposed scheme can solve the weaknesses
in the public key blockwise-independent watermarking scheme proposed by Wong in 1998. This is
because the proposed scheme uses the continued fraction technique to achieve inter-block dependence
for image authentication. According to experimental results, the image quality of each watermarked
image is good, and the visual quality of the watermarked image is not affected when the proposed
watermark insertion procedure is carried out.

1 Introduction
Because of the rapid growth of electronic commerce

over the Internet, there is an urgent need for effective and
efficient copyright protection techniques and security
verification methods against unauthorized data
duplication, especially the illegal distribution of images
and video data [7,8,9]. Under such circumstances, digital
watermarking has become a critical and imperative
subject. In general, from the viewpoint of visual
imperceptibility, watermarking techniques can be
classified into two categories: visible watermarking
techniques and invisible watermarking techniques.
Invisible watermarking techniques are mainly adopted
because images with visible watermarks can be easily
targeted and simply removed [3,15,16].

In addition to visual imperceptibility, digital
watermarking techniques can also be classified into two
kinds in terms of their robustness: “robust” and “fragile.”
Robust watermarking techniques are usually used for
copyright and ownership verification. Their major focus
is on whether or not the watermark is robust enough to
prevent removal. Recently, Wang et al. proposed a
scheme based on wavelet transformation [14] to augment
the robustness.

In contrast, fragile watermarking techniques
[1,6,11,12,13] are generally used to detect alterations in
watermarked data. When signed data have been tampered
with, fragile watermarking techniques are responsible for
notifying the user about authentication and integrity.
Recently, some watermarking schemes [11,12,13] have
been introduced for image integrity and ownership
verification. Among them, a public key watermarking
scheme for image verification and authentication [12],
proposed in 1998, is worthy of special attention. It uses a
cryptographic hashing function, such as the MD5, and a
public-key cipher to judge if a watermarked image has
undergone tampering.

However, as Barreto et al. pointed out in [1], Wong’s
scheme [12] has some flaws. In this scheme, attackers
can forge a watermarked image to pass verification by
launching the cut-and-paste attack, the birthday attack, or
other counterfeiting attacks. Moreover, Holliman and
Memon [4] have also concluded that the use of
contextual information can mend some of the weaknesses
of watermarking schemes with dependent image blocks.
For this reason, they adopted the strategy of hash block
chaining (HBC1 and HBC2) to solve the problem of
tampering in [1].

148 Informatica 28 (2004) 147–152 C.-C. Chang et al.

In this paper, the continued fraction technique is
employed to make image blocks interdependent. We use
the image features themselves to calculate, block-by-
block, the values used in the continued fraction. Then the
continued fraction is hidden in the image by using the
proposed image insertion procedure. In other words, we
do not need another image as the watermark. By virtue of
the use of contextual information, as previously
mentioned and indicated by Holliman and Memon [4],
the proposed scheme can also resist some attacks, such as
the cut-and-paste attack, the birthday attack, and other
counterfeiting attacks (the transplantation attack, for

example). The experiment provides a clear demonstration
that authentication and integrity can be achieved.

The rest of this paper is organized as follows. In
Section 2, we will review Wong’s scheme and Barreto et
al.’s scheme. The drawbacks of Wong’s scheme and the
improvement suggested by Barreto et al. will also be
included. After that, in Section 3, we will propose our
scheme that uses the continued fraction technique to
achieve inter-block dependence for fragile watermarking.
Then the experimental results will be given in Section 4.
Finally, the conclusions will be discussed in Section 5.

2 Previous works
To begin with, let us briefly review the public key

watermarking scheme proposed by Wong [12] and show
its insecurity. After that, we shall also introduce the
secure public key block-wise fragile authentication
watermarking scheme proposed by Barreto et al. [1].

2.1 Wong’s scheme
In 1998, Wong proposed a public key watermarking

scheme for image verification and authentication [12].
There are two procedures in this scheme: the insertion
procedure and the extraction procedure. The insertion
procedure hides the representative watermark in an
image. The main goal of this scheme is to ensure the
image’s ownership and integrity. When a watermarked
image is received, we can use the extraction procedure to
judge if the watermarked image has undergone altering.
The detailed practice is as follows.

2.1.1 The insertion procedure
Suppose X is a gray-scale image of M×N pixels to be

watermarked with a binary image B. The binary image B
is formed by tiling the watermark image A until it
becomes the same size as X. First, X is partitioned into a
set of non-overlapping blocks of 8×8 pixels, and each
block

rX (denoting the thr block of X) is watermarked
separately. The binary image B is partitioned off into
blocks of the same size, too. Here,

rB denotes the thr
block of the binary image B.

Then a cryptographic hash function is used to
compute the hash value),,(*

rr XNMHH ≅ , where M and
N are the image width and height, respectively, and the
block *

rX is where the least significant bit of each
element in

rX is set to be zero, because a pixel in the
image processing is composed of a byte, that is to say,
eight bits. For this reason, the least significant bit (LSB)
is generally denoted the first bit of the byte. Then the
exclusive-or operation is used to compute the value

rrr BHH ⊕=ˆ . Finally,
rĤ is encrypted with the private

key to generate a digital signature
rS . Now,

rS can be
inserted into the LSB of the block *

rX to form a

watermarked block. This way, the image X can be
successfully watermarked with the binary image B by
putting all the

rB values into their corresponding
rX

blocks.

2.1.2 The extraction procedure
The corresponding watermark extraction procedure

is as follows. Let X ′ be the watermarked image of M×N
pixels. First, X ′ is partitioned into non-overlapping
blocks of 8×8 pixels, and each block is denoted by

rX ′ .
Then the block *

rX is formed by clearing the LSB of
each element in

rX ′ . After that, the LSB of
rX ′ is

extracted and decrypted with the public key to get the
decrypted block

rD . Using the hashing function
operation, we can get the block),,(*

rr XNMHH ≅ , which
we then put through the exclusive-or operation with the
help of

rD to get
rrr DHB ⊕=′ . Finally, we compare

rB′
with rB . If they are equal, the watermark is verified.
Otherwise, the thr block of the watermarked image X ′
has been modified.

2.2 Barreto et al.’s scheme ─ hash block
chaining (HBC)

As we have just mentioned, Wong’s scheme is
subject to the counterfeiting problem. An attacker can
produce a fake yet correctly watermarked image by
launching the cut-and-paste attack, the birthday attack or
other counterfeiting attacks. Wong’s scheme can be
easily circumvented by the cut-and-paste attack and the
birthday attack.

To improve the security of Wong’s scheme, Barreto
et al. adopted the strategy of hash block chaining (HBC1
and HBC2) [1] to solve the problem of tampering.
Barreto et al. brought in contextual information to make
the watermarking scheme achieve inter-block
dependency in contrast to the inter-block independency
in Wong’s scheme.

In HBC1, the calculation for each block is not only
for that block but also for the next block. Which block is
considered the next block depends on the scan type, for
example, the zig-zag-scan [2] or raster-scan. Thus, the
hash process is),,,,(*

mod)1(
* rXXNMHH nrrr −= , where n is

PUBLIC-KEY INTER-BLOCK... Informatica 28 (2004) 147–152 149

the number of blocks in the image X. The other steps in
the insertion procedure are the same as those in Wong’s
scheme. If a block

rX ′ is changed, the signature
verification will fail for all the blocks that depend on

rX ′ .
However, Barreto et al. have also come to the

conclusion that HBC1 cannot resist the transplantation
attack and, therefore, have offered the so-called hash
block chaining version 2, HBC2 for short. In the
improved version, the signature of the current block gets
hashed. In other words, the hash formula now becomes

),,,,,(1
*

mod)1(
*

−−= rnrrr SrXXNMHH . The main idea is that
even the signatures of two identical images will be
different when non-deterministic signatures are used (for
example, DSA and Schnorr’s scheme [10]). Unlike
HBC1, HBC2 can withstand the transplantation attack.

3 The proposed scheme
In this section, we shall introduce our inter-block

dependent public-key watermarking scheme for image
authentication that is built upon the concept of continued
fractions. This scheme is composed of two procedures:
the watermark insertion procedure and the extraction
procedure. Before presenting the detailed steps in the
procedures, we will first look at the definition of the
continued fraction.

3.1 The definition of continued fraction
In general, we usually use decimal expansion to

express a real or rational number. However, there is
another way to represent a real number that expresses
certain geometric properties in an exceptional way. This
other method is the simple continued fraction extension
of a real number [5]. Equation 1.1 below is the
expression of the continued fraction.

(1.1).

A simple continued fraction exists if all the bi’s are 1

and all the ai’s are integers satisfying ai ≥ 1, where
ni ≤≤1 . We denote the simple continued fraction of a

real number
B
A as [a0, a1, a2,…, an]. For example, if we

have two real numbers, 137 and 112, then []12,2,4,1
112
137

= .

In the case of the steps in the computation of
112
137 , we

use the Euclidean algorithm, shown as follows.
 137 = 1 × 112 + 25
 112 = 4 × 25 + 12
 25 = 2 × 12 + 1
We can rewrite the above as fractions, which as

follows.

By combining the above fractions, we can write

112
137

in terms of the successive quotients, as follows, where
we have replaced

112
25 with

25
124

1

+

 and
25
12 with

12
12

1

+

.

This representation of
112
137 is known as a simple

continued fraction, and the terms are the successive
quotients in the Euclidean algorithm.

3.2 The insertion procedure
The goal of the insertion procedure is to calculate the

feature value of a meaningful gray-scale image and to
embed the feature value into the image. Here, the
mentioned feature value is represented by a continued
fraction, and any rational number can be expressed as a
simple continued fraction. In order to make use of the
block-by-block clue, we apply the continued fraction to
the design of our watermarking scheme.

],,,[00
1

0
0 iaaa

B
A

K=

],,,[11
1

1
0 jaaa

C
B

K=

],,,[22
1

2
0 kaaa

D
C

K=

],,,[33
1

3
0 laaa

A
D

K=

(a) A gray-
level image of
16×16 pixels

(b) The continued fractions for the
blocks, where, in the expression
“ y

xa ,” y denotes the block number and
x denotes the continued fraction
number

Figure 1: Continued fractions for a gray-level image.

We use the mean values of the blocks adjacent to

each other as the parameters in the continued fraction
expression of a real number. Suppose that Figure 1 is a
gray-level image of 16×16 pixels and that A, B, C, and D
are the mean values of blocks 0, 1, 2, and 3 of 8×8 pixels,
respectively. In order to take care of the inter-block
dependence problem, the continued fractions to be

112
251

112
137

+=

12
12

12
25

+=

25
124

25
112

+=

150 Informatica 28 (2004) 147–152 C.-C. Chang et al.

calculated are
B
A ,

C
B ,

D
C , and

A
D . In our scheme, these

continued fractions will serve as secret keys for blocks 0,
1, 2, and 3, respectively. In other words, they separately
represent the watermark of those blocks.

The structural insertion procedure of the proposed
scheme is as follows. X is a M×N gray-scale image and M
and N are the image width and height, respectively.
Step 1: Partition X into n blocks Xr)10(−≤≤ nr of 8×8
pixels.
Step 2: For each block Xr, set the LSB of all pixels to
zero to obtain the block *

rX .
Step 3: Calculate the mean value Mr for each block *

rX .
Step 4: Calculate the continued fraction

1+

=
r

r
r M

MF ,

)10(−≤≤ nr . If r=n-1,
0

1
1 M

M
F n

n
−

− = . The calculation of Fr

follows the zig-zag scan type.
Step 5: Use a cryptographically secure hash function H
(in our experiment, we chose MD5 as our hash function)
to compute the feature)||||||||(1−≅ rrr SrFNMHH .
Step 6: Encrypt Hr with the owner’s private key to
generate a digital signature Sr.
Step 7: Insert Sr into the LSB of the block *

rX to form a
watermarked block

rX ′ .
Step 8: Repeat steps 4 through 7 above again and again
until all the blocks in the image X have been processed.

After the manipulation above, we will get a
watermarked image X ′ . X ′ can then be safely
transmitted and received over the Internet without the
danger of being falsified or counterfeited.

3.3 The extraction procedure
The main purpose of the extraction procedure is to

verify whether an image has been tempered with. When a
legal user receives a watermarked image X ′ , he/she has
to take the following steps. X is a M×N gray-scale image,
and M and N are the image width and height,
respectively. The detailed algorithm of the extraction
procedure is as follows:
Step 1: Divide X ′ into n blocks

rX ′)10(−≤≤ nr of 8×8
pixels.
Step 2: Extract the LSB of each block

rX ′ to get
rS ′ , and

decrypt it by using the public key to obtain the decrypted
block

rD′ .
Step 3: Let *

rX be the block obtained from
rX ′ by

clearing the LSB of all the pixels. Calculate the mean
value

rM ′ for each block *
rX .

Step 4: Calculate the continued fraction
1+′
′

=′
r

r
r M

MF ,

)10(−≤≤ nr . If r=n-1,
0

1
1 M

M
F n

n ′
′

=′ −
−

. The calculation of
rF ′

follows the zig-zag scan type.

Step 5: Use the same hash function H chosen in the
insertion procedure and compute the fingerprint

),,,,(1−′≅′ rrr SrFNMHH .
Step 6: If

rH ′ and
rD′ are equal, the r-th block passes

verification. Otherwise, the watermarked image X ′ must
have been modified.
Step 7: Repeat steps 4 through 6 above again and again
until all the blocks in the image X ′ have been verified.

From the insertion and extraction procedures above,
we see that there is no need for another image to be used
as a watermark. This is different than the scheme
proposed by Barreto et al. Here, we consider that the
usage of a watermark image is unnecessary. We think of
the feature

rH as a watermark to be hidden for the block
r. Consequently, the proposed scheme will not use
another image as the watermark, and verification can be
achieved. In addition, because the continued fraction
belongs to the category of contextual information, the
cut-and-paste attack will cause no harm.

4 Experimental results
In our experiment, a number of standard images,

including Lena, Jet, Baboon, Peppers, House, and Boat,
were used, as shown in Figure 2. These are gray-scale
images of 512×512 pixels. In this paper, due to the
limited space of a printed page, we will just include three
of the images as examples.

(a) Baboon (b) Boat (c) House

(d) Jet (e) Lena (f) Pepper

Figure 2: Six test images of 512×512 pixels.

In the process of our experiment, we assumed that

some images were modified when transmitted over a
network. The possible outputs by the extraction
procedure are presented in Figure 3. If an image
encountered one of several situations, for example, if it
was unmarked, scaled, or cropped, or if a wrong public
key was used to decrypt it, the extraction procedure
resulted in an output that resembled random noise, as
shown in Figure 3(a). Succinctly stated, this would mean
that the watermarked image was tampered with. On the
other hand, Figure 3(b) shows that there was no
possibility of the watermarked image being altered and
could, therefore, be trusted.

PUBLIC-KEY INTER-BLOCK... Informatica 28 (2004) 147–152 151

(a) Incorrect (b) Correct

Figure 3: Possible outputs by the extraction procedure.

Figure 4 shows the corresponding watermarked

images of the original images shown in Figure 2. The
three images are representative. We present the
experimental results in Figure 5, Figure 6, and Figure 7.
As for the image House, Figure 5(a) and Figure 5(c)
show the modified image, with the left window deleted
or modified, and Figure 5(b) and Figure 5(d) show the
extracted version of House from Figure 5(a) and Figure
5(c), respectively. Because Figures 5(a) and 5(c) are the
modified images, the extracted images from them,
namely Figures 5(b) and 5(d), have random dots on them.

(a) House (b) Jet (c) Lena

Figure 4: The watermarked images.

(a) (b)

(c) (d)

Figure 5: The House image processed by the proposed
scheme.

The others images, Jet and Lena, used for testing are

shown in Figure 6 and Figure 7, respectively. In Figure
6(a), the empennage of the jet aircraft is shown to have
been pruned away. The serial number ‘01568’ of the jet
aircraft and the hallmark of the American air force are
shown to have been pruned away in Figure 6(c), too.
Therefore, they generated, by way of the extraction
procedure, the noisy outputs shown in Figures 6(b) and
6(d).

Figures 7(a) and 7(c) simulate the image Lena, of
512×512 pixels, that has undergone tampering over the

Internet, and Figures 7(b) and 7(d) show the extracted
versions of Lena from Figures 7(a) and 7(c),
respectively. In Figure 7(a), there is a tattoo on her arm.
Consequently, the corresponding image shown in Figure
7(c) has random dots. As shown in Figure 7(c), there is a
modification of the brim of the hat. The hat ribbon has
extra ornaments. For this reason, the extraction procedure
resulted in an output that resembles random noise, as
shown in Figure 7(d).

(a) (b)

(c) (d)

Figure 6: The Jet image processed by the proposed
scheme.

(a) (b)

(c) (d)

Figure 7: The Lena image processed by the proposed
scheme.

Table 1. The PSNR values of the watermarked images of
the proposed scheme.

Image Baboon House Jet

PSNR (db) 51.13 51.14 51.14

Image Lena Peppers Sailboat

PSNR (db) 51.15 51.14 51.14

In the experiments above, we used MD5 as our hash

function. The RSA scheme was then used as the
signature algorithm. With regards to the time consumed,
our scheme took only about 10 seconds to finish all the
procedures from signing to verifying on a Pentium 450
with 256MB RAM for the 512×512 gray-scale images. In

152 Informatica 28 (2004) 147–152 C.-C. Chang et al.

addition, Table 1 shows the PSNR values of the six
watermarked images shown in Figure 3. Because of the
adoption of embedding image’s feature in the least signal
bit, that is, that bit was the only bit affected, the peak
signal to noise ratio (PSNR) values were all higher than
51 dB. If continued fraction could be used for hiding
information, we can get better quality of the watermarked
image and be hard to be aware of the information hiding
in the image. This is worth studying in the future.

5 Conclusion
This paper presented a novel solution of using

contextual information, namely using the continued
fractions, which is usually perceived as merely a
mathematical theory, to the problem of inter-block
dependent fragile watermarking. As we have just
illustrated, the continued fraction can actually be quite
helpful to achieve interdependence among blocks. It also
achieves the objective of allowing one to become aware
of an alteration to the image.

According to our experimental results, the
performance of our scheme in both verification accuracy
and efficiency is satisfactory. Even though we tempered
the position in the watermarked image, the possible
modified place can be straightforwardly pointed out by
using the extraction procedure. Due to the use of
contextual information, our scheme can also resist the
cut-and-paste attack, the birthday attack, and other
counterfeiting attacks. Of special note, our scheme does
not use another image as the watermark. Hence, images
can be processed and verified in a short time.

In addition, we found that the usage of continued
fraction could be used for data hiding. The main idea is
that the quality of a watermarked image is excellent over
51 dB, and the calculation is speedy and simple.

References
 [1] Barreto, P.S.L.M., Kim, H.Y., and Rijmen, V.,
“Toward Secure Public−Key Blockwise Fragile
Authentication Watermarking,” IEE Proceedings-Vision,
Image and Signal Processing, Vol. 149, No. 2, April
2002, pp. 57-62.
[2] Chang, H., “The Scan Sequence of Image
Compression and Its Optimization,” Proceedings of
International Conference on Communication
Technology, Beijing, China, Vol. 2, May 1996, pp. 679-
682.
[3] Craver, S., Memon, N., Yeo, B.L. and Yeung, M.M.,
“Resolving Rightful Ownerships with Invisible
Watermarking Techniques � Limitations, Attacks, and
Implications,” IEEE Journal on Selected Areas in
Communications, Vol. 16, No. 4, May 1998, pp. 573-
586.
[4] Holliman, M. and Memon, N., “Counterfeiting
Attacks on Oblivious Block-wise Independent Invisible
Watermarking Schemes,” IEEE Transactions on Image
Processing, Vol. 9, No. 3, March 2000, pp. 432-441.

[5] Kumanduri, R. and Romero C., “Number Theory
with Computer Applications,” Prentice Hall, Upper
Saddle River, New Jersey, 1998, pp. 243-284.
[6] Li, C.T., Lou, D.C. and Chen, T.H., “Image
Authentication and Integrity Verification via
Content−Based Watermarks and a Public Key
Cryptosystem,” Proceedings of IEEE International
Conference on Image Processing, Vancouver, Canada,
Vol. 3, September 2000, pp. 694-697.
[7] Mintzer, F., Braudaway, G.W. and Yeung, M.M.,
“Effective and Ineffective Digital Watermarks,”
Proceedings of IEEE International Conference on Image
Processing, Santa Barbara, CA, Vol. 3, October 1997,
pp. 9-12.
[8] Memon, N. and Wong, P.W., “Protecting Digital
Media Content,” Communications of the ACM, Vol. 41,
No. 7, July 1998, pp. 35-43.
[9] Podilchuk, C.I. and Delp, E.J., “Digital
Watermarking � Algorithms and Applications,” IEEE
Signal Processing Magazine, Vol. 18, No. 4, July 2001,
pp. 33-46.
[10] Schnorr, C.P., “Efficient Signature Generation by
Smart Cards,” Journal of Cryptology, Vol. 4, No. 3,
1991, pp. 161-174.
[11] Wong, P.W., “A Watermark for Image Integrity and
Ownership Verification,” Proceedings of Image Science
and Technology PIC Conference, Savannah, Georgia,
April 1999, pp. 374-379.
[12] Wong, P.W., “A Public Key Watermark for Image
Verification and Authentication,” Proceedings of IEEE
International Conference on Image Processing, Chicago,
Illinois, Vol. 1, October 1998, pp. 455-459.
[13] Wong, P.W. and Memon, N., “Secret and Public
Key Image Watermarking Schemes for Image
Authentication and Ownership Verification,” IEEE
Transactions on Image Processing, Vol. 10, No. 10,
October 2001, pp. 1593-1601.
[14] Wang, Y., Doherty, J.F. and Van Dyck, R.E., “A
Wavelet−Based Watermarking Algorithm for Ownership
Verification of Digital Images,” IEEE Transactions on
Image Processing, Vol. 11, No. 2, February 2002, pp.
77-88.
[15] Yeung, M.M. and Mintzer, F., “An Invisible
Watermarking Technique for Image Verification,”
Proceedings of IEEE International Conference on Image
Processing, Santa Barbara, CA, Vol. 2, October 1997,
pp. 680-683.
[16] Zeng, W. and Liu, B., “On Resolving Rightful
Ownerships of Digital Images by Invisible Watermarks,”
Proceedings of IEEE International Conference on Image
Processing, Santa Barbara, CA, Vol. 1, October 1997,
pp. 552-555.

 Informatica 28 (2004) 153–157 153

A New Efficient Group Signature With Forward Security
Jianhong Zhang, Qianhong Wu and Yumin Wang
State key Lab. of Integrated Service Networks, Xidian Univ, Xi’an
Shannxi 710071, China
jhzhs@hotmail.com, woochanhoma@hotmail.com
ymwang@xidian.edu.cn
Keywords: group signature, forward security, revocation, anonymity, unlikability

Received: April 29, 2003

A group signature scheme allows a group member to sign a message anonymously on behalf of the
group. In case of a dispute, the group manager can reveal the actual identity of signer. In this paper, we
propose a novel group signature satisfying the regular requirements. Furthermore, it also achieves the
following advantages: (1) the size of signature is independent of the number of group members; (2) the
group public key is constant; (3) Addition and Revocation of group members are convenient; (4) it
enjoys forward security; (5) The total computation cost of signature and verification requires only 8
modular exponentiations. Hence, our scheme is very practical in many applications, especially for the
dynamic large group applications.

1 Introduction
Digital signatures play an important role in our modern
electronic society because they have the properties of
integrity and authentication. The integrity property
ensures that the received messages are not modified, and
the authentication property ensures that the sender is not
impersonated. In well-known conventional digital
signatures, such as RSA and DSA, a single signer is
sufficient to produce a valid signature, and anyone can
verify the validity of any given signature. Because of its
importance, many variations of digital signature scheme
were proposed, such as blind signature, group signature,
undeniable signature etc, which can be used in different
application situations.
A group signature was introduced by Chaum and van
Heyst [1]. It allows any member of a group to
anonymously sign a document on behalf of the group. A
user can verify a signature with the group public key that
is usually constant and unique for the whole group.
However, he/she cannot know which individual of the
group signs the document. Many group signature
schemes have been proposed [1,2,3,5,6,7,8]. All of them
are much less efficient than regular signature schemes.
Designing an efficient group signature scheme is still an
open problem. The recent scheme proposed by Ateniese
et al. is particularly efficient and provably secure [2].
Unfortunately, several limitations still render all previous
solution unsatisfactory in practice. Giuseppe Ateniese
pointed out two important problems of group signature in
[3]. One is how to deal with exposure of group signing
keys; the other is how to allow efficient revocation.
In this paper, we propose a novel and efficient group
signature scheme with forward security to solve the
above two important problems. The concept of forward
security was proposed by Ross Anderson [4] for
traditional signature. Several schemes have recently been
proposed for traditional signatures and threshold
signatures that satisfy the efficiency properties. Previous

group signature schemes don’t provide forward security.
Forward secure group signature schemes allows
individual group member to join or leave a group or
update their private signing keys without affecting the
public group key. By dividing the lifetime of all
individual private signing keys into discrete time
intervals, and by tying all signatures to the time interval
when they are produced, group members who are
revoked in time interval i have their signing capability
effectively stripped away in time interval i+1, while all
their signature produced in time interval i or before
remain verifiable and anonymous. In 2001, Song [5]
firstly presented a practical forward security group
signature scheme. Our proposed scheme is a little more
efficient than Song’s scheme.
The rest of this paper is organized as follows. In section
2, we overview the informal model of a secure group
signature scheme and security requirements. After our
group signature scheme is proposed in section 3, we give
the corresponding security analysis to the scheme in
section 4. in section 5, we analyze the efficiency of our
proposed scheme and compares the cost with the Song’s
scheme. Finally, we conclude this paper.

2 Group Signature Model and
Security Requirements

The concept of group signature was introduced by
Chaum and van Heyst [1]. It allows a group member to
sign anonymously a message on behalf of the group. Any
one can verify group signature with the group public key.
In case of a dispute, the group manager can open the
signature to identify the signer.
Participants: A group signature scheme involves a
group manager (responsible for admitting/deleting
members and for revoking anonymity of group signature,
e.g., in case of dispute or fraud), a set of group members,

154 Informatica 28 (2004) 153–157 J. Zhang et al.

 154

and a set of signature verifiers, all participants are
modeled as probabilistic polynomial-time interactive
Turing machines. A group signature scheme is comprised
of the following procedure.

Communication: All communication channels are
assumed asynchronous, The communication channel
between a signer and a receiver is assumed to be
anonymous.
A group signature scheme is comprised of the following
procedure:

Setup: On inputting a security parameter l, this
probabilistic algorithm outputs the initial group PK and
the secret key SK for the group manager.

Join: An interactive protocol between the group manager
and a user that results in the user becoming a valid group
member.

Sign: An interactive protocol between a group member
and a user whereby a group signature on a message
supplied by a user is computed by the group member.

Verify: A deterministic algorithm for verifying the
validity of a group signature given a group public key
and a signed message.

Open: A deterministic algorithm that, given a signed
message and a group secret key, determines the identity
of the signer.
A secure group signature should meet the following
requirements:

Correctness: Signature produced by a group member
using Sign must be accepted by Verifying.

Unforgeability: Only group members are able to sign
messages on behalf of the group

Anonymity: Given a signature, identifying the actual
signer is computationally hard for any one except the
group manager.

Unlinkability: Deciding whether two different signatures
were generated by the same group member is
computationally hard.

Exculpability: Even if the group manager and some of
the group member collude, they cannot sign behalf of
non-involved group members.

Traceability: The group manager can always establish
the identity of the member who issued a valid signature.

Coalition-resistance: a colluding subset of group
members cannot generate a valid group signature that
cannot be traced.
To achieving practicability, in this paper, we propose a
group signature scheme supporting the above properties
and another two attributes, revocation and forward
security, as well.

Revocability: the group manager can revoke
membership of a group member so that this group
member cannot produce a valid group signature after
being revoked.

Forward security: When a group signing key is
exposed, previously generated group signatures remain
valid and do not need to be re-sign.

3 Preliminaries
The building block presented in this subsection is an
protocols for proving the knowledge of a discrete
logarithm to the setting with a group of unknown order.

Definition 1. Let ε > 1 be a security parameter. A pair
(c,s) ∈{0,1}k ×{-2l+k,…,2ε(k+l)} satisfying c=h(g|| y|| gs yc
||m) is a signature of a message m∈{0,1}* with respect to
y and is denotes SPK{α: y=gα}(m).
An entity knowing the secret key x∈{0,1}l such that x =
log g y can compute such a signature (c, s)�SPK{α:
y=gα}(m) of a message m ∈{0,1}* by
 • choosing r ∈{0,1}ε(l+k) and computing t = gr
• c =h(g || y ||t ||m) and
• s=r−cx (in Z)
SPK{α: y=gα}(“”) denotes Signature of Knowledge on
space message.
The security of all these building blocks has been proven
in the random oracle model under the strong RSA
assumption.

Our Proposed Group Signature parameter
GM: group manager,

GMID :Identity of group manager,

BID : Identity of group member Bob
n : a RSA modular number.

(.)h : a one-way hash function {0,1}*→{0,1}k
:SPK signature of knowledge.

3.1 System Parameters
The group manager (GM) randomly chooses two large
primes 1 2,p p of the same size such

that 1 12 1p p′= + and 2 22 1p p′= + , where

both 1p′ and 2p′ are also primes. Let 1 2n p p= and G=< g

> a cyclic subgroup of *
nZ . GM randomly chooses an

integer x as his secret key and computes the
corresponding public key (mod)xy g n= . GM selects
a random integer e (e.g., 3e =) which
satisfies gcd(, ()) 1e nϕ = and computes d satisfying

1mod ()de nϕ= where ()nϕ is the Euler Totient
function. ()h ⋅ is a coalition-resistant hash function (e.g.,
SHA-1, MD5). The time period is divided
into T intervals and the intervals are publicly known.
(,) { : }('')c s SPK y gγγ= = denotes the signature of

knowledge of logg y in G (See [2,6] for details).
Finally, the group manager publishes the public key
(, , , , (), ,)GMy n g e h ID T⋅ , where GMID is the identity
of the group manager.

A NEW EFFICIENT GROUP... Informatica 28 (2004) 153–157 155

3.2 Join Procedure
If a user, say Bob, wants to join to the group, Bob
executes an interactive protocol with GM. Firstly, Bob
chooses a random number *

nk Z∈ as his secret key and

computes his identity (mod)k
BID g n= and the

signatures of knowledge (,) { : }('')Bc s SPK ID gγγ= = ,
which shows that he knows a secret value to
meet (mod)k

BID g n= . Finally, Bob secretly

preserves k and sends (, (,))BID c s to the group
manager.
After the group manager receives (, (,))BID c s , he
firstly verifies the signatures (c, s) of knowledge
by (, (,))BID c s . If the verification holds, GM

stores (, (,))BID c s in his group member database and
then generates membership certificate for Bob. Thereby,
GM randomly chooses a number *

nZα ∈ and computes
as follows.

modBr g nα= , B Bs a r x= +

0
() mod

Td
B GM B Bw ID r ID n−=

GM sends
0

(, ,)B B Bs r w to Bob via a private channel.

GM stores
0

(, ,)B B Bs r w together with (, (,))BID c s in
his local database.
After Bob receives

0
(, ,)B B Bs r w , he verifies the

following relations
 modB Bs r

Bg r y n=

0
(mod)

Te
GM B B BID ID r w n−=

If both the above equations hold, Bob stores

0
(, ,)B B Bs r w as his resulting initial membership
certificate.

3.3 Evolving Procedure
Assume that Bob has the group membership
certificate (, ,)

jB B Bs r w at time period j. Then at time

period j+1, he can compute new group membership
certificate via Evolving function () (mod)ef x x n=
and then his new group membership certificate becomes

1
(, ,)

jB B Bs r w
+

 where
1

() mod
j j

e
B Bw w n

+
= .(Note

that () mod
T j

B

j

s d
B GM Bw g ID ID n

−−=).

3.4 Sign Procedure
Suppose that Bob has the group membership
certificate (, ,)

jB B Bs r w at time period j. To sign a

message m at time period j, Bob randomly chooses three
numbers *

1 2 3, , nq q q Z∈ and computes

1 2
1 3 mod

T jq q ez g y q n
−

= ,

1(,)u h z m=

2 3 mod
j

u
Br q w n= ,

1 1 ()Br q s k u= + +

3 2 Br q r u= − ,
The resulting group signature on m is

1 2 3(, , , , ,)u r r r m j .

3.5 Verify Procedure
Given a group signature 1 2 3(, , , , ,)u r r r m j , a verifier
validates whether the group signature is valid or not. He
computes as follows

1) 31 2()
1 2 mod

T j rr h r eu
GMz ID g r y n

−

′ =
31

1 2

1 2

1 2

()
3

3

3

3

mod

()

()

T j T j
B

j

T j T j T j
B B

T j
B B

T j

rq k s uu e ue
GM B

q s u q r uu e ku e d u
GM B GM B

q s u r u qu e u u
GM B B GM B

q q e

ID g q w y n

ID g g q g r ID ID y

ID g q g ID r ID ID y y

g y q

− −

− − −

−

−

+ +

−−

−−

=

=

=

=

 (1)

2) checks 1(,)u h z m′ ′=

and checks whether the equation
?

u u′= holds or not. If it
holds, the verifier is convinced that (u,r1,r2,r3,m,j)is a
valid group signature on m from a legal group member.

3.6 Open Procedure
In case of a dispute, GM can open signature to reveal the
actual identity of the signer who produced the signature.
Given a signature(u,r1,r2,r3,m,j), GM firstly checks the
validity of the signature via the VERIFY procedure.
Secondly, GM computes the following steps:

Step 1: computes 1/ mod ()u nη φ= .

Step2: computes 31
1 2 mod

T j rru e
GMz ID g r y n

−

′ = .

Step 3: checks 31
2 1/ (/) mod

T jrr d
Br w z g y nη −

′= .

If there is the corresponding Bw with (,)B Br ID satisfying

the above Step3, it is concluded that BID is the actual
identity of the signer.

3.7 Revoking Procedure
Suppose the membership certificate of the group member
Bob need to be revoked at time period j, the group
manager computes the following quantification:

()
T jd

j B B BR w r ID
−

= mod n

and publishes duple (,)jR j in the CRL(the Certificate
Revocation List). Given a signature (,u,r1,r2,r3,m,j), when
a verifier identifies whether the signature is produced by

156 Informatica 28 (2004) 153–157 J. Zhang et al.

 156

a revoked group member or not, he computes the
following quantification

Step 1: 31
1 2 mod

T j rru e
GMz ID g r y n

−

′ =

Step 2: 311
1 2() mod

T j rru e
jz r R g y n

−−′ = (2)

For the signature 1 2 3(, , , , ,)u r r r m j , if the signature
satisfies the above equation (2). We can conclude that the
signature is revoked.

4 Security Analysis
In this subsection we show that our proposed group
signature scheme is a secure group signature scheme and
satisfies forward security.

Correct: we can conclude that a produced group
signature by a group member can be identified from
equation (1) of the above Verifying Procedure.

Anonymity: Given a group signature(u,r1,r2,r3,m,j), 1z is

enerated through two random numbers 1q and 2q which

are used once only and 1(,)u h z m= , so that we can
infer that u is also a random number generated by
random seed 1z . Any one (except for a group manager)
cannot obtain any information about the identity of this
signer from the group signature(u,r1,r2,r3,m,j).

Unlinkability: Given time period j, two different group
signatures(u,r1,r2,r3,m,j)and (u′,r′1,r′2,r′3,m′, j), we can
know that u (or u′) is a random number generated by
random seed 1z , and u is different in each signing
procedure and used once only, and u or random
number 1q and 2q are included in 1r and 2r . However, an
adversary cannot get the relation between the signature
(u,r1,r2,r3,m,j)and the signature(,u′,r′1,r′2,r′3,m′, j).

Unforgeability: In this group signature scheme, the
group manager is the most powerful forger in the sense.
If the group manager wants to forge a signature at time
period j, he chooses (z1, r2, r3, j) (or (z1, r2, r1, j)) and
computes u=h(z1, m). According to the equation (1), for
solving r1, he needs solve the discrete logarithm so that
he cannot forge a group signature.
Furthermore, as an adversary, because an adversary
hasn’t a valid membership certificate, he cannot forge a
group signature satisfying the verification procedure.
And in view of the group manager, he cannot forge a
valid group signature without knowing private k of
group member.

Forward Security: Assume an attacker breaks into a
group member’s system in time period j and obtains the
member’s membership certificate. Because of the one-
way property of ()f x , the attacker cannot compute this
member’s membership certificate corresponding to
previous time period. Hence the attacker cannot generate
the group signature corresponding to the previous time.

Assume that the group member Bob is revoked at time
period j, the group manager only revokes the group
membership certificate of the time period j. then any
valid signature with corresponding time period before j is
still accepted. Because of the obtained signature
(u,r1,r2,r3,m,t),t<j. the signature (u, r1,r2,r3,m,j) is still a
valid signature on m and Bob would not need to produce
a new signature on m .

Revocation: When a user, say Bob, is expelled from the
group starting from the time period i, iR and i will be
published in CRL. Assume a verifier has a signature for
period j, where j ≥ i . To check whether the membership
certificate of the group member has been expelled, the

verifier simply computes ()
j ie

j iR R
−

= and checks

whether the equation 311
1 2() mod

T j rru e
jz r R g y n

−−′ =
holds or not. If it holds, it means that the signature has
been revoked.

Collision-resistant: Assume that two group members
collude to forge a signature. Because they don’t know
factorization of n and membership certificate of Bob,
Furthermore, in Join phase, though the identification for
each group member is computed by themselves
according to number k , for two conspiracy group
members, it is equivalent to forge group manager
Schnorr signature to produce a new membership
certificate for them. So that they cannot produce a valid
membership certificate. Suppose that the group manager
and a group member collude to produce the signature of
a group member Bob. because they don’t know the
private key k or (,)

iB B Br s w of group member Bob

respectively, they cannot forge Bob ’s signature.
Efficiency: for the whole signature phase and verification
phase, our scheme only needs 7 modular exponentiations,
however, Song’s scheme needs more than 20 modular
exponentiations. This implies that our scheme is very
practical in large group applications.

5 Efficiency Analysis
In this section we show the efficiency of our scheme over
that of Song scheme. In a signature scheme, the
computational cost of signature is mainly determined by
modular exponentiation operator. Let E, M and H
respectively denote the computational load for
exponentiation, multiplication and hash. Then the
following table shows the comparison of computational
load of our scheme vs. Song scheme.

Table1: our scheme vs. Song scheme

Scheme Signing phase
computation

Verifying
phase

computation

Total
computation

Song’s 22E+1H+6M 14E+1H+6M 36E+2H+12

A NEW EFFICIENT GROUP... Informatica 28 (2004) 153–157 157

Scheme M
Proposed
Scheme

4E+3H+5M 4E+3M+1H 8E+8M+4H

Signing phase and verifying phase in our scheme have
less computation against Song’s scheme. Modular
exponentiation is a complicated operator and plays a
determinate role in a signature scheme. From the above
data, we conclude that our scheme has computational
advantage over that of Song. To the best of our
knowledge, it takes the much least computation in group
signature schemes. Hence, Our proposed scheme is
suitable to large group.

6 CONCLUSION
In this paper, we propose a new group signature scheme
with forward-security. Our scheme satisfies not only the
traditional security properties of the previous group
signature schemes, but also forward security. Our scheme
is efficient in the sense in that it is independent of the
number of the group members and the size of group
signature and the size of group key are independent of
the number of time periods and the number of revoked
members. Our scheme is a practical group signature
scheme.

7 REFERENCE
[1] D. Chaum, F. Heyst. (1992) Group Signature.

Proceeding EUROCRYPT’91. Springer-verlag, pp.
257-265.

[2] G.Ateniese,J. Camenish, M. Joye, and G. Tsudik.
(2000) A Practical and Provably Secure Coalition-
Resistant Group signature Scheme. In M.Bellare,
editor, Crypto’2000, vol(1880) of LNCS, Springer–
Verlag, pp. 255-270.

[3] G. Ateniese and G. Tsudik.(1999)Some Open Issues
and New Direction in Group Signature. In Financial
Cryptograph’99,

[4] Ross Anderson. (1997) Invited Lecture, 4th ACM
Computer and Communications Security.

[5] Dawn Xiaodong Song,(2000) Practical forward
secure group signature schemes. Proceedings of the
8th ACM conference on Computer and
Communications Security, Pennsylvania, USA,
November, pp. 225-234.

[6] J. Camenish and M. Michels. (1999) A Group
Signature with Improved Efficiency. K. Ohta and.
Pei, editors, Asiacrypt’98.Vol 1514 of LNCS,
Springer-Verlag, pp. 160-174.

[7] W. R. LEE, C. C. CHANG. (1998)Efficient Group
Signature Scheme Based on the Discrete Logarithm.
IEE Proc. Computer Digital Technology, vol.145 (1),
pp.15-18.

[8] Constantin Popescu. (20001)An Efficient Group
Signature Scheme for Large Groups. STUDIES
ININFORMATICS AND CONTROL With
Emphasis on Useful Applications of Advanced
Technology, Vol.10 (1), pp. 3-9.

[9] Emmanuel Bresson and Jacques
Stern.(2001)Efficient Revocation in Group
Signature.PKC’2001, LNCS 1992, Springer-verlag,
Berlin Heidelberg pp. 190-206, 2001.

[10] Michel Abdalla and Leonid Reyzin.(2000) A
new forward secure digital signature scheme. In
ASIACRYPT, Springer-Verlag, pp. 116-129.

[11] Y. Tseng, J. Jan. (1998) A novel ID-based group
signature, In T.L Hwang and A.K.Lenstra, editors,
international Computer Symposium, Workshop on
Cryptology and Information Security, Tainan, 1998,
pp. 159-164.

[12] C. Popescu. (2000)Group signature schemes
based on the difficulty of computation of approxi-
mate e-th roots, Proceedings of Protocols for
Multimedia Systems (PROMS2000), Poland, pp.
325-331,

[13] S.Kim, S.Park, D.Won, (1998) Group signatures
for hierarchical multi-groups, Information Security
Workshop, Lecture Notes in Computer Sciences
1396, Springer-Verlag, pp. 273-281.

[14] M.Stadler,(1996)Publicly verifiable secret
sharing, Advances in Cryptology, EUROCRYPT’96
lecture Notes in Computer Sciences 1070, Springer-
Verlag, 1996, pp. 190-199.

[15] A. Fiat and A. Shamir.(1986) How to prove
yourself: practical solutions to identification and
signature problems. In Advances in Cryptology-
CRYPTO’86, vol. 263 of LNCS, pp.186–194,
Springer -Verlag,

[16] S. Goldwasser, S. Micali,and R.Rivest.(1988) A
digital signature scheme secure against adaptive
chosen-message attacks. SIAM Journal on
Computing, 17(2): 281–308,

[17] J. Kilian and E. Petrank.(1998) Identity escrow.
In Advances in Cryptology —CRYPTO’98,
vol.1642 of LNCS, pp. 169–185, Springer-Verlag,

[18] A. Lysyanskaya and Z. Ramzan. (1998)Group
blind digital signatures: A scalable solution to
electronic cash. In Financial Cryptography (FC’98),
vol. 1465 of LNCS, pp. 184–197, Springer-Verlag

[19] R.Gennaro, H.Krawczyk,and T.Rabin (2000)
RSA-based Undeniable Signature. J. Cryptology,
Volume (13)4, pp 397-416

[20] Giuseppe Ateniese, B. de Medeiros,Efficient
Group Signatures without Trapdoors, In
ASIACRYPT 200

158 Informatica 28 (2004) 153–157 J. Zhang et al.

 158

 Informatica 28 (2004) 159–165 159

Using Finite-State Transducer Theory for Representation of Very
Large Scale Lexicons

Matej Rojc, Zdravko Kačič
Faculty of Electrical Engineering and Computer Science, University of Maribor, Smetanova 17, Maribor, Slovenia
Phone: +386 2 220 7223, Fax: +386 2 2511 178
matej.rojc@uni-mb.si, kacic@uni-mb.si

Keywords: finite-state transducers, natural language resources, multilingual text-to-speech synthesis, morphology,
lexicons

Received: September 17, 2002

In multilingual text-to-speech synthesis systems, many external extensive natural language resources
are used, especially in the text processing part. Therefore it is very important that representation of
these resources is time and space efficient. It is also very important that language resources for new
languages can be easily incorporated into the system, without modifying the common algorithms
developed for multiple languages. In this regard the use of large external language resources represents
an important problem because of the needed space and slow lookup-time. In the paper a method and
results of compiling large lexicons, with an example of compiling German phonetic and morphology
lexicons (CISLEX), into corresponding finite-state transducers (FSTs) are presented. Each lexicon
consisted of about 300.000 words. Representation of large lexicons using finite-state transducers is
mainly motivated by considerations of space and time efficiency. For both lexicons a great reduction in
size and optimal access time was achieved. The starting size for German phonetic lexicon was 12.53 MB
and 18.49 MB for morphology lexicon. The final size of the corresponding FST was only 2.78 MB for
the phonetic lexicon and 6.33 MB for the morphology lexicon. At the same time the look-up time is
optimal, since it depends only on the length of the input word and not on the size of the lexicon. Using
such representation, the integration of lexicons for new languages into the multilingual TTS system is
easy and does not require any changes of algorithms that use such lexicons.

1 Motivation
Finite-state machines are already used in many areas of
natural language processing. From the computational
point of view, their use is mainly motivated by conside-
rations of space and time efficiency. Linguistically, the
finite-state machines [6][8][10][11] allow one to describe
easily most of the relevant local phenomena in the lan-
guage. They provide also compact representation of ex-
ternal language specific resources needed for knowledge
representation in the automatic text-to-speech synthesis
systems. These features of finite-state machines are of
major importance especially when we are dealing with
multilingual text processing in text-to-speech synthesis
systems (TTS systems).

In multilingual text-processing module for the multilin-
gual TTS system, external natural language resources
(e.g., phonetic, morphology lexicons etc.) represent an
important problem, regarding the memory usage and
time needed for lookup process.

In the following sections we are presenting an approach
for compiling such lexicons into finite-state transducers
that represent their time and space optimal representa-
tion. The effect of using finite-state transducers for repre-
sentation of external natural language resources is great
reduction of the memory usage required by the lexicons

and the optimal access time (required for obtaining in-
formation) that is independent from the size of the lexi-
cons. The whole compilation process into finite-state
transducers will be presented and at the end results
obtained for the German lexicons described.

2 Finite-state automata and
finite-state transducers

2.1 Finite-state automata (FSA)
Finite-state automata (FSA) [6] can be seen simply as an
oriented graph with labels on each arc. Fundamental
theoretical properties make FSAs very flexible, powerful
and efficient. FSAs can be seen as defining a class of
graphs and also as defining languages.

Definition
A finite-state automaton A is a 5-tuple (EFiQ ,,,,Σ)
where Σ is a finite set called the alphabet, Q is a finite
set of states, Qi∈ is the initial state, QF ⊆ is the set
of final states and { } xQQxE)(∈∪Σ⊆ is the set of
edges.

160 Informatica 28 (2004) 159–165 M. Rojc et al.

FSAs have been shown to be closed under union, Kleen
star, concatenation, intersection and complementation,
thus allowing for natural and flexible descriptions. In
addition to their flexibility due to their closure properties,
FSAs can also be turned into canonical forms that allow
for optimal time and space efficiency.

2.2 Finite-state transducer (FST)
FSTs [9] can be interpreted as defining a class of graphs,
a class of relations on strings, or a class of transductions
on strings. On the first interpretation, an FST can be seen
as an FSA, in which each arc is labelled by a pair of
symbols rather than by a single symbol.

Definition
A finite-state transducer T is a 6-tuple
(EFiQ ,,,, ,21 ΣΣ) such that:

• 1Σ is a finite alphabet, namely the input alphabet,
• 2Σ is a finite alphabet, namely the output alphabet,
• Q is a finite set of states,
• Qi∈ is the initial state,
• QF ⊆ is the set of final states,

• xQxQxE *
2

*
1 ΣΣ⊆ is the set of edges.

As with FSAs, FSTs are also powerful because of the
various closure and algorithmic properties. In the paper
we adhere to the following conventions when describing
an FST: final states are depicted by bold circle; ε repre-
sents the empty string; the initial state (labelled 0) is the
leftmost state appearing in the figure.

2.3 Use of FSMs for time and space opti-
mal Lexicon representation

When representing lexicons by automata, in general,
many entries share the same codes (strings, representing
some piece of information). The number of codes is then
small compared to the number of entries. Newly develo-
ped lexicons are more and more accurate and the number
of codes can increase considerably. The increase in
number of codes also increases the smallest possible size
of such lexicons. During the construction of the
automaton one needs to distinguish different codes,
therefore space required for an efficient hashing of the
codes can also become costly.

Available lexicons that were used in this experiment
suggest that the representation by automata would be
less appropriate. Since morphological and phonetic lexi-
cons can be viewed as a list of pairs of strings, their rep-
resentation using finite-state transducers [10] seems to
be very appropriate. The results given at the end of this
paper also confirm this assumption. Representation of
lexicons using finite-state transducers on the other hand
also provides reverse look-up capability.

In the multilingual TTS system morphological and pho-
netic lexicons represent part of the external natural lan-

guage dependent resources used by multilingual text-
processing engine. It is desired that language indepen-
dent modules for morphology analysis and grapheme-to-
phoneme conversion inside the multilingual text-proce-
ssing engine use common algorithms for multiple lan-
guages. This is possible when external natural language
dependent resources are represented as finite-state trans-
ducers. Integration of new lexicons for new languages in
the whole TTS system is then very easy, since only
compilation procedure (off-line) has to be performed.

3 Compilation process of large scale
lexicons into finite-state transdu-
cers

3.1 Lexicons preparation
The methods used in the compilation of large scale lexi-
cons into finite-state transducers (FST) assume that the
lexicons are given as large lists of strings and not as a set
of rules as considered by Mehryar Mohri [3] for in-
stance. Obviously morphological and phonetic lexicons
can be viewed as a list of pairs of strings and their repre-
sentation using finite-state transducers seems to be very
appropriate. In Fig. 1 some items from German phonetic
and morphology lexicons are shown.

As with automata, direct construction of the sequential
transducer representing a large-scale lexicon, is not
possible because the construction leads to a blow up for
a large number of entries. To avoid this, splitting the
lexicon into several parts is performed. Then the
construction of the corresponding sequential transducers
including minimization operation follows. Using union,
determinization, and minimization operations, only one
transducer representing the whole lexicon is obtained at
the end (Fig.2).

3.2 Determinization of finite-state trans-
ducers

The algorithm used is close to the powerset construction
used for determinizing automata [3]. The main diffe-
rence is that here one needs to provide states of the sets
with strings. These strings correspond to a delay in the
emission that is due to the fact that outputs correspond-
ing to a given input can be different. Therefore only the
longest common prefix of outputs can be kept and sub-
sets represent actually pairs (state, string). The pseudo-
code for the algorithm to determinize a transducer T1 is
given in Fig. 3.

"Abte
"E p - t @
"Abten
"E p - t @ n
"Abtissin
E p - t "I - s I n
"Abtissinnen
E p - t "I - s I - n @ n

USING FINITE-STATE TRANSDUCER THEORY... Informatica 28 (2004) 159–165 161

"Ackern
"E - k 6 n
"Aderchen
"E: - d 6 - C @ n
"Aderchens
"E: - d 6 - C @ n s
.......

a)
"Abte
abt.mask(NS1,NP12)#0:amM:gmM:nmM
"Abten
abt.mask(NS1,NP12)#0:dmM
"Abtissin
"Abtissin.fem(NS0,NP5)#0:aeF:deF:geF:neF
"Abtissinnen
"Abtissin.fem(NS0,NP5)#0:amF:dmF:gmF:nmF
"Acker
acker.mask(NS2,NP11)#0:amM:gmM:nmM
"Aderchen
"Aderchen.neut(NS2,NP0)#0:aeN:amN:deN:dmN:gm
N:neN:nmN
"Aderchens
"Aderchen.neut(NS2,NP0)#0:geN
.........

b)
Figure 1: German phonetic (a) and morphology lexicons
(b). German morphology lexicon is coded according to

CISLEX specification [5].

German
phonetic
lexicon

German
morphologic

lexicon
300.000 items

300300

1.step

3030

2.step

33

3.step

FST
(lexicon)

FST
(lexicon)

number of sub-lexicons

Figure 2: Lexicons preparation.

At each step a new state q2 is considered as can be seen
in line 5. State q2 is a final state only if it contains a pair
(q,w), where q is final in T1. String w is the final output
at the state q2. In line 10, each input label a of the
transitions leaving the states of the subset q2 is
considered. A transition is constructed from state q2 to
state δ2(q2,a) with output σ2(q2,a). Output σ2(q2,a)
represents the longest common prefix of the output
labels of all the transitions leaving the states q of q2 with
input label a, when left concatenated with their delayed
string w. State δ2(q2,a) is the subset made of pairs
(q’,w’). Here q’ is a state reached by one of the
transitions with input label a in T1 and w’ = [σ2(q2,a)]-

1wσ1(q,a,q’) is the delayed string that could not be out-
puted earlier in the algorithm. String [σ2(q2,a)]-

1wσ1(q,a,q’) is a well defined string since [σ2(q2,a)] is a
prefix of all wσ1(q,a,q’) as can be seen from line 10.

In Fig. 5 we can see the result of using the determiniza-
tion algorithm on transducer from Fig. 4 (obtained using
union operation). In this example the number of states of
the determinized transducer T2 is already less than in T1.
Experiments showed that this method is very efficient in
constructing transducers for representation of large lexi-
cons. The disadvantage of this algorithm is that the out-
puts are pushed toward final states, which creates a long
delay in emission. But fortunately sequential transducers
can be minimized as we will show in the next section. An
important characteristic of the minimization algorithm is
that it pushes back outputs as much as possible toward
the initial state. In such a way we can eliminate the
problem just mentioned.

Determinize_transducer(T1,T2)
1 F2 ← Ø
2 i2 ← { }U

1Ii

)(i,
∈

ε

3 Q2 ← { i2}
4 while Q ≠ Ø
5 do q2 ← head[Q]
6) F qsuch that q w)(q, exists (there if 12 ∈∈
7 { }2 22 q F Fthen ∪←
8 w)(q2 2 ←φ
9 for each a such that (q,w) ∈ q2 and δ1(q,a) de-

fined do

10
⎥⎦
⎤

⎢⎣
⎡ ′⋅←

∈∈
),,(ΛΛ

 a),(q

1w)(q,q')(Ja)(q,

22

11

qaqw
a

σ

σ

δ

11 []{ }U
)(J)qw,(q,

1
1

22

22

2

)),,(),(,(

 a),(q

a

qaqwaqq
∈′

− ′⋅′← σσ

δ

12 state) new a is a),(q(δ if 22
13)),(Enqueue(Q,then 22 aqδ
14 Dequeue(Q)

Figure 3: Pseudocode for determinization algorithm [3].

0

43

“A/”E

1

2

8

5 6

9 10 11 12 14

7

13

ε/ε

ε/ε

ε/ε

“A/”E

“A/”E

b/p

b/p

t/-

t/-

e/t

e/t

ε/@

n/@ ε/n

Figure 4: Union operation done on a few word items in the

German phonetic lexicon (T1).

162 Informatica 28 (2004) 159–165 M. Rojc et al.

0 1 2 3 4

7

5
“A/”E b/p t/- e/t

6

ε/@

n/@
ε/n

0 1 2 3 4

7

5“A/”E b/p-t@ t/ε e/ε

6

ε/ε

n/n
ε/ε

Figure 5: Finite-state transducers T2 (above) and T3
(below) obtained after performing determinization and

prefixation algorithms on finite-state transducer showed
in Fig. 4.

3.3 Minimization of finite-state transdu-
cers

Sequential transducers allow very fast look-up. But
transducers can also be minimized. Minimization algo-
rithms help to make them also space efficient
[1][2][4][7]. The whole minimization procedure for se-
quential transducers consists actually of two different
algorithms. One is algorithm for computation of the pre-
fix of a non-deterministic automaton [4] and the other is
classical algorithm for minimization of automata [1][2].
In this section we will present the algorithm for compu-
tation of the prefix, as it is independent of the concept of
sequential transducers and will describe the entire algo-
rithm that allows derivation of minimal sequential trans-
ducers.

In the algorithm described, we use the following nota-
tion:

• GT the transpose of G (the automaton obtained from

G by reversing each transition);
• Trans[u] the set of transitions leaving u ∈ V;
• TransT[u] the set of transitions entering u ∈ V;
• t.v the vertex reached by t and t.l its label, for any

transition t in Trans[u] (resp. in TransT[u]), u ∈ V;
• out-degree[u] the number of edges leaving u ∈ V;
• in-degree[u] the number of edges entering u ∈ V;
• E the set of edges of G.

1. First we compute πu, the greatest common prefixes

of all its leaving transitions:

 [] []

else;

F, u if).()X .(

u

uTrans t.vuTrans t
scc .scc .

επ

π

←

∉Λ∧Λ←
∉∈

∈∈
ltlt

vtvt
tu

2. Then if πu ≠ ε, we can make a change of variables:

Yu ← πuXu. This second step is equivalent to storing
the value πu and solving the system modified by the
following operations:

[]
[] . t.l t.l,uTrans t

 t.l, t.l,uTrans t

u
T

-1
u

π

π

←∈∀

←∈∀

The number of times these two operations are performed
can be limited by storing in array N the number of empty
labels leaving each state u of the strongly connected
component scc. While N[u] ≠ 0, there is no use to
perform these operations as the value of πu is ε. Also in
the case that N[u] = 0 right after the computation of πu,
the πu will remain equal to ε, as changes of variables will
only affect suffixes of the transitions leaving u. This in-
formation can be stored using an array F, in order to
avoid performing step 1 in such situations or when u is a
final state. In the algorithm we use a queue Q containing
the set of states u with N[u] = F[u] = 0 for which the
two operations above need to be performed, and an array
INQ indicating for each state u whether it is in queue Q.

The above operations are started by initializing N and F
to 0 for all states in scc, and by enqueuing in queue Q an
arbitrarily chosen state u of the strongly connected com-
ponent scc. Each time the transition of a state v of
TransT[u] is modified, v is added to Q if N[v] = F[u] =
0. The property of SCC’s (strongly connected compo-
nent) and the initialization of N and F assure that each
state of scc will be enqued at least once. Steps 1 and 2
are operated until queue Q = ∅. This must happen as,
except for the first time, step 1 is performed for a state u
if N[u] = 0. After the computation of the greatest co-
mmon prefix we can have N[u] = 0 and then u will
never be enqueued again, or N[u] ≠ 0 and then a new
non empty factor πu of P(u) has been identified. It is ob-
viously then, that each state u is enqueued at most
(|P(u)|+2) times in Q, and after at most (|Pmax|+2)
steps we have Q = ∅.

Prefix_Computation(G)
1 for each u ∈ V(GSCC)
2 do for each v ∈ SCC[u]
3 do N[v] ← INQ[v] ← F[v] ← 0
4 Q ← v
5 INQ[v] ← 1
6 while Q ≠ 0/
7 do v ← head[Q]
8 Dequeue(Q)
9 INQ[v] ← 0
10 p ← GCP(G,v)
11 for each t ∈ TransT[v]
12 do if(p ≠ ε)
13 then if(t.v ∈ SCC[v] and N[t.v] > 0
 and t.l = ε and F[t.v] = 0)
14 then N[t.v] ← N[t.v] – 1
15 t.l ← t.l p
16 if(N[t.v] = 0 and INQ[t.v] = 0 and
 F[t.v] = 0)
17 then Enqueue(Q,t.v)
18 INQ[t.v] = 1

Figure 6: Pseudocode for the prefixation algorithm on

finite-state transducers [4].

USING FINITE-STATE TRANSDUCER THEORY... Informatica 28 (2004) 159–165 163

Once Q = ∅, it is easy to see that the system of equa-
tions has a trivial solution: ∀u ∈ scc, Xu = ε. It has a
unique solution. Therefore, the system is resolved. Con-
catenating the factors πu involved in the changes of vari-
ables corresponding to the state u gives the value of
P(u). The set of operations (2) are obviously equivalent
to multiplying the label of each transition joining the
states u and v, (v ∈ scc), at right by P(v) and at left by
[P(u)]-1 if u is in scc. Thus the transformations described
above do modify the transitions leaving or entering
states of scc as desired. The above pseudocode gives an
algorithm that computes p(G) from G. In the algorithm,
V(GSCC) represents the set of states of the component
graph of G. For each u in V(GSCC), SCC[u] stands for the
strongly connected component corresponding to u. The
function GCP(G,u) called in the algorithm is such that it
returns p, which is the greatest common prefix of all
transitions leaving u (p = ε if u ∈ F). It replaces each of
these transitions by dividing them at left by p and counts
and stores in N[u] the number of empty transitions. If
N[u] = 0 after the computation of the greatest common
prefix or if u is a final state, the F[u] becomes the value
1.

The computation of the greatest common prefix of n
(n>1) words requires at most (|p|+1).(n-1) comparisons,
where p is the result of this computation [4]. This opera-
tion consists of comparing the letters of the first word to
those of the (n-1) others until a mismatch or end of a
word occurs. The same comparisons allow to obtain the
division at left by p and the number of empty transitions.
In case only one transition leaves v, the computation of
the greatest common prefix can be assumed to be in
O(1). Therefore, the cost of a call of the function GCP
for a state v (∈ V - F) is O((|p|+1)(out-degree(v)-1)+1).
Here p is the greatest common prefix of the transitions
leaving v.

0 1 2 3 4
“A/”E b/p-t@ t/ε e/ε n/n

5

Figure 7: Finite-state transducer T4 obtained using

minimization algorithm in the sense of automata from T3.

Given a sequential transducer T, the application of the
prefix computation algorithm [4] to the output automaton
of T has no effect on the states of T or on its transition
function. Only the output function σ of T is changed. A
minimal ST, that computes the same function as T, can be
obtained by applying the prefix computation algorithm to
the output automaton of T, and also the minimization
algorithm in the sense of automata, to the resulting trans-
ducer [1][2]. Fig. 5 (transducer T3) shows the result ob-
tained after performing prefix computation algorithm on
sequential transducer T2 in particular case. The applica-
tion of the prefix computation algorithm on T2 leads to
the transducer T3, which computes the same function.
Only outputs differ from those of T2. In Fig. 7 the final
obtained transducer is presented using minimization al-
gorithm in the sense of automata.

4 Results
For the lexicons compilation the German large scale
phonetic and morphology lexicons (CISLEX) [5] were
used. In compilation process a large set of proprietary
programs written in C++ that perform efficiently many
operations on finite-state transducers and finite-state
automata including determinization, minimization, union,
intersection, compaction, prefixation, local extension and
others were used.

1

3

5

7

9

S1

S4

0

5000

10000

15000

20000

DETERMINIZATION

UNION

PREFIX

MINIMIZATION

ALGORITHMS

FINITE-STATE TRANSDUCERS

NUMBER OF
STATES

a)

1

3

5

7

9S1 S2 S
3

S4

0

1000

2000

3000

4000

5000

6000

UNION

DETERMINIZATION

PREFIX

MINIMIZATION

FINITE-STATE TRANSDUCERS

ALGORITHMS

NUMBER OF
STATES

b)

Figure 8: Achieved reduction of the number of states

obtained in the first step of compilation process – 10 ran-
domly chosen transducers (a: phonetic lexicon. b:

morphology lexicon.)

During construction of corresponding finite-state trans-
ducers, the following algorithms were used: union, deter-
minization, prefix computation and classical minimiza-
tion algorithms of finite-state automaton (Aho, Sethi, and
Ullman; Hopcroft; Watson) [1][2][12]. Prefix computa-
tion algorithm was used before minimization algorithms.
It pushes the output labels towards the initial state as
much as possible.

All lexicons represent part of the language dependent
external knowledge for morphology and grapheme-to-
phoneme modules in the multilingual text-to-speech
processing system. The starting sizes of phonetic lexicon
and morphology lexicon were 12.52 MB and 18.49 MB.
Both lexicons contained 300.000 items. Final size of
corresponding finite-state transducer was 2.78 MB
(120.386 states) for the first one and 6.33 MB (183.123
states) for the second.

In the first step of compilation, the great reduction of the
number of states was achieved, what is evident from Fig.
8. This is also the reason, why we follow the procedure
described under subsection 2.2 (Fig. 2). The number of

164 Informatica 28 (2004) 159–165 M. Rojc et al.

states decreased already after determinization algorithm
as expected. The number of states obviously does not
change after performing prefix computation algorithm.
This algorithm works only on the output automaton of
the corresponding transducer. It pushes back outputs as
much as possible toward the initial state. The effect of
prefix computation algorithm can be noticed only at the
end of the compilation process, when much smaller fi-
nite-state transducers are obtained than in the case when
only classical minimization algorithm after determiniza-
tion would be performed. The answer for that can be
found from the Fig. 5 (transducers T2 and T3). In the
transducer T3 we have after performing prefix computa-
tion algorithm newly created ε/ε transition labels. This
empty transition labels are result of pushing back outputs
toward the initial state. That’s why after performing
minimization algorithm in the sense of automata much
smaller transducers are obtained.

In the Fig.9 we see that the number of output codes has
increased after determinization and prefix computation
algorithm were performed. In case that the prefix com-
putation would not be performed, final number of codes
would be significantly smaller, but the final transducer
would also be much bigger (more states and transitions).
According to the experiments it only makes sense to have
more codes and much smaller transducer.

It is also interesting that in compilation of morphology
lexicon, much more output codes is generated as in the
case of phonetic lexicon (Fig. 9). The reason is that the
morphology lexicon comprises much more information
than the phonetic lexicon.

In the second step of the compilation process, the same
situation regarding the state reduction can be observed as
in the first step (Fig. 10). Only reduction of the number
of states is smaller and there is no significant increase of
the number of output codes (Fig. 11).

In Table 5 the final results for the obtained finite-state
transducers for German phonetic and morphology
lexicons are given. The number of input codes is the
same for both lexicons and the number of output codes is
two-times bigger in case of morphology lexicon. The
reason is that the information field in the morphology
lexicon is substantial longer (Fig. 1).

1 2 3 4 5 6 7 8 9 10
S1

S40

100

200

300

400

500

600

MINIMIZATION

PREFIX

FINITE-STATE TRANSDUCERS

ALGORITHMS

DETERMINIZATION

UNION

NUMBER OF
OUTPUT CODES

a)

1 2 3 4 5 6 7 8 9 10
S1

S40

20

40

60

80

100

120

MINIMIZATION

PREFIX

DETERMINIZATION

UNION

FINITE-STATE TRANSDUCERS

ALGORITHMS

NUMBER OF
OUTPUT CODES

b)

Figure 9: Increasing number of output codes in the first
step of compilation process – 10 randomly chosen trans-

ducers (a: phonetic lexicon. b: morphology lexicon.)

1

3

5

7

9S
1

S
2

S
3

S
4

0

2000

4000

6000

8000

10000

12000

NUMBER OF
STATES

FINITE-STATE TRANSDUCERS

ALGORITHMS

DETERMINIZATION

UNION

PREFIX

MINIMIZATION

a)

1
3

5
7

9
S1

S3

0

5000

10000

15000

20000

NUMBER OF
STATES

FINITE-STATE TRANSDUCERS

UNION

DETERMINIZATION

PREFIX

MINIMIZATION

ALGORITHMS

b)

Figure 10: Achieved reduction of the number of states
obtained in the second step of compilation process – 10
randomly chosen transducers (a: phonetic lexicon. b:

morphology lexicon.)

 FST1 FST2
Number of input codes 61 61
Number of output codes 34.879 87.204
Size of output vocabulary 343 KB 3.6 MB
Number of states 112.498 169.613
Number of transitions 200.801 325.839
Size of ASCII file 6.6 MB 11.53 MB
Size of bin file 2.78 MB 6.33 MB

Table 5: The final finite-state transducers
representing German phonetic (FST1) and

German morphology lexicon (FST2).

USING FINITE-STATE TRANSDUCER THEORY... Informatica 28 (2004) 159–165 165

1 2 3 4 5 6 7 8 9 10
S1

S40
500

1000
1500

2000

2500

3000

3500

4000

NUMBER OF
OUTPUT CODES

FINITE-STATE TRANSDUCERS

ALGORITHMS

MINIMIZATION

PREFIX

DETERMINIZATION

UNION

a)

1 2 3 4 5 6 7 8 9 10
S1

S40

1000

2000

3000

4000

5000

6000

FINITE-STATE TRANSDUCERS

NUMBER OF
OUTPUT CODES

MINIMIZATION

PREFIX

DETERMINIZATION

UNION

ALGORITHMS

b)

Figure 11: Increasing number of output codes in the
second step of compilation process – 10 randomly cho-

sen transducers (a: phonetic lexicon. b: morphology
lexicon.)

5 Conclusion
Performing determinization of finite-state transducer
obviously results in significant decrease in number of
states. One disadvantage of the determinization algo-
rithm is that the outputs are pushed toward final states
that create a long delay in emission. But using prefix
calculation algorithm before classical minimization al-
gorithms for automata, the problem can be efficiently
resolved. An important characteristic of this algorithm is
that it pushes back outputs as much as possible toward
the initial state. As expected, the number of states re-
mains unchanged after performing prefix calculation
algorithm. The efficiency of this algorithm can be seen
only after performing classical minimization algorithm,
when much smaller number of states is obtained than in
case if only determinization and minimization algo-
rithms would be performed. From table 5 it can be seen
that finite-state transducers can efficiently represent
large lexicons. They provide fast look-up time, double
side look-up, and compactness.

6 References
[1] Bruce William Watson, Taxonomies and Toolkits of

Regular Language Algorithms, PhD Thesis, Eindho-
ven University of Technology and Computing Sci-
ence, 1995.

[2] Watson, B.W., A taxonomy of finite automata mini-
mization algorithms, Computing Science Report
93/44, Eindhoven University of Technology, The
Nederlands, 1993.

[3] Mehryar Mohri, On Some Applications of Finite-
State Automata Theory to Natural Language Proce-
ssing, Natural Language Engineering 1, Cambridge
University Press, 1996.

[4] Mehryar Mohri, Minimization Algorithms for Se-
quential Transducers, Theoretical Computer Sci-
ence, 234:177-201, March 2000.

[5] Guenthner, F.&P. Maier, Das CISLEX Woerterbuch
system, CIS-Bericht-94-76.

[6] Aho, Alfred V., John E. Hopcroft, and Jeffrey D.
Ullman, The design and analysis of computer algo-
rithms. Addison Wesley: Reading, MA 1974.

[7] Bauer, W, On minimizing finite automata, EATCS
Bulletin, 35 1988.

[8] Berstel, Jean and Cristophe Reutenauer, Rational
Series and Their Languages, Springer-Verlag: Ber-
lin-New York 1988.

[9] Crochemore, Maxime, Transducers and repetitions,
Theoretical Computer Science, 45 1986.

[10] Hopcroft, John E. and Jeffrey D. Ullman, Intoduc-
tion to Automata Theory, Languages, and Computa-
tion. Addison Wesley: Reading MA 1979.

[11] Kuich, Werner and Arto Salomaa, Semirings, Auto-
mata, Languages, Number 5 in EATCS Monographs
on Theoretical Computer Science. Springer Verlag,
Berlin, Germany 1986.

[12] Mehryar Mohri, Language Processing with
Weighted Transducers, In Proceedings of the 8th
annual Traitement Automatique des Langues
Naturelles (TALN 2001). Tours, France, July 2001.

166 Informatica 28 (2004) 159–165 M. Rojc et al.

 Informatica 28 (2004) 167–172 167

The Parameters Tuning for Evolutionary Synthesis Algorithm
Gregor Papa and Jurij Šilc
Computer Systems Department
Jožef Stefan Institute
Jamova c. 39
SI-1000 Ljubljana
Slovenia
gregor.papa@ijs.si, jurij.silc@ijs.si, http://csd.ijs.si

Keywords: evolutionary, scheduling, allocation, genetic operators, tuning

Received: January 29, 2003

This paper covers the evaluation and fine-tuning of different values of genetic operator’s parameters in
the process of optimizing the designs of the integrated circuits. We investigated the interdependence of
various values of these parameters in the use over the set of test-bench circuits, as well as their
influence on the quality of the final solution and the convergence speed. Due to the increasing usage of
the evolutionary optimization in the area of the integrated circuit design, there is a need to find a proper
combination of genetic operators parameters’ value to make optimal solutions. Therefore, it is
important to perform this kind of evaluation for each new problem to be solved.

1 Introduction
The area of evolutionary computation is very popular but
there is always a problem of defining a proper value of
parameters of genetic operators. A standard genetic
algorithm uses four different parameters that have to be
defined in advance, before the algorithm is actually used.
These are: the number of generations, the size of the
population, the probability of crossover, and the
probability of mutation [1].
 There are some proposals for setting of these
parameters according to the problem size and according
to the area of the problem. But these proposals are not
always applicable or are not suitable for all problems.
Also, there are no proposals for any additional operators,
used in some optimizations, which improve the
performance of the algorithm.
 To find some dependencies between the parameters
and the problem that has to be solved, we made the
evaluation, similar to that in [7]. We study an
evolutionary approach that automatically generates
circuit designs. We managed to point to some interesting
dependencies between parameters themselves and to
determine what values should be used in our
optimizations when working with evolutionary-oriented
algorithms.

2 ECSA algorithm
The facts presented in the introduction paragraphs

and promising results of different evaluations [4, 9, 10]
took us to the Evolutionary Concurrent Scheduling and
Allocation (ECSA) design approach [8]. This approach
considers scheduling and allocation constraints, allows
short design time and can find globally optimal solutions.

The input description of the integrated circuit (IC) is
transformed into two basic (initial) schedules, obtained
by As-Soon-As-Possible and As-Late-As-Possible
algorithms. Functional units (FUs) used in first case are
those fastest for each operation and in second case those
slowest for each operation. These two schedules present
some kind of boundary solutions, since all other solutions
are executed in-between the time limits defined by these
two schedules. Namely, no other solution can be faster or
slower, considering different combinations of used units.

Each solution has to be properly encoded (into the
chromosome), i.e., each operation’s start time and FU
have to exist in the chromosome. Initial population is
built upon the two initial solutions, which are multiplied
to form the population with so-called boundary solutions.
The optimal solution has to be somewhere in-between
the boundaries, therefore genetic operators (crossover,
mutation, variation) transform those encoded solutions.
With transformations their start times and allocated FUs
are changed. The final solution obtained by genetic
operators is also influenced by simulated annealing
algorithm [6], which improves the solution if it stopped
somewhere near the globally optimal point.

2.1 Encoding
The chromosome string consists of the numbers that

represent the starting time of each operation and the
allocated unit for each operation, where the position in
the string depends on the order of the operations in the
input IC description. This means that the chromosome
consists of pairs of time/space information for each
operation. And the genetic operators can influence both
parts of that information, either together or separately.

168 Informatica 28 (2004) 167–172 Gregor Papa et al.

The selected encoding type is chosen because of its
convenience. When strings have to be further
transformed, checked and analyzed, there is no need for
any additional conversion of their values. In addition, the
used implementation of genetic operators can check the
changed values (their feasibility) instantly, without any
transformation. The correctness of the transformation can
therefore be checked within the function itself.

2.2 Cost function
One of the most important parts of the algorithm is

its cost function. To obtain the cost (Eq. 1) of a certain
circuit, the algorithm has to evaluate the required number
of resources. In contrast to the other multi-objective
functions that give more than one final solution, this one
already includes the decision making part, which chooses
one solution form all the solutions on the Pareto front.

Twcost
nwcost
nwcost

Fwcost

costcostcostcostCost

tt

bbb

rrr

iff

tbr

N

i
f

ii

i

=
=
=

=

+++= ∑
=

222

1

2)(

 (1)

The elements of the function above are calculated as
follows.

The number nfi is the highest number of the i-th
functional unit needed in a separate control step.

The number nr is the highest number of variables
needed in a separate control step. We consider variables
that are needed by the functional unit as input data,
variables that are returned as output data, and variables
that are not used at the moment but will be used in some
of the later control steps or must be available until the
end of the execution of all operations.

The number nb is the highest number of data
transmissions (into or from the functional units) in a
separate moment.

The execution time, T, is the time needed to execute
all the operations of the schedule.

The weights wfi, wr, wb, and wt are the weights of
functional units, registers, buses and time, respectively,
to be considered in the IC quality-evaluation cost
function. The first three weights are proportional to their
silicon area in the IC, while wt reflects our IC speed
constraints.

According to the different approaches of multi-
objective functions [3] and their efficiency we chose the
presented distance function with the variable weight of
separate criteria. With this approach it is possible to
simplify the conditions or to expose some criteria. As
mentioned before, the solution that is closest to the origin
of the search space can be found.

2.3 Genetic operators and parameters
In each iteration, e.g., generation, of the algorithm

there are four genetic operators that transform the
chromosome. They consider data dependencies and the

given library of available FUs. Each time after genetic
operators transform the chromosome, the chromosome is
checked to meet all constraints, considering data
dependencies and unit types.

2.3.1 Selection
Upon the cost function values the worse solutions are

aborted in the selection step and to ensure equally large
population, these solutions are replaced with the best
solutions. This ensures best solutions of the given
generation to be surely involved in the next generation
creation (elitism).

2.3.2 Crossover
In crossover task two approaches are used, each

expressing the dominancy of the characteristics. After
two crossover points are determined, in the first case the
unit information is changed between the two
chromosomes and start times are adapted, and in the
second case the start times are changed and suitable unit
is allocated. So the dominancy is expressed either in FUs
or operations start times.

2.3.3 Mutation
Here, we also have two similar approaches to

transform the chromosome. In both cases the starting
time is changed. Either it is moved to later control steps
with the use of faster FUs or it is moved to earlier control
steps, if data dependencies allow that, with slower units.

2.3.4 Variation
After two operations are selected and when they are

of the same type (e.g., additions), their FUs are switched.
If needed also their start times are updated.

3 Test-bench circuits

3.1 Differential equation
Relatively small circuit of differential equation [11]

has only 11 operations, but 4 different operation types (6
multiplications, 2 additions, 2 subtractions, 1
comparison), see Figure 1. This circuit is useful when
testing libraries with different implementations of the
same operation types.

+

+–

–

× ×

××

×

×

<

1 2

7 10

118

6

5 3 9

4

u

u

y

a

y

5

3

xdx

dx

dx

dx x u

Figure 1: Differential equation

THE PARAMETERS TUNING ... Informatica 28 (2004) 167–172 169

3.2 Elliptic filter
This filter [5] consists of 34 operations, but only two

operation types: 26 additions and 8 multiplications
(Figure 2). The circuit is suitable for comparison due to
its size and operation dependencies, since they form two
independent similar critical paths both influencing the
circuit delay.

+

+

+ +

+++

+

+

+ +

+ +

++

+ +

++

+ +

+

+

+

+

+

×

×

× ×

××

×

×

1 2

7

8

6

10

5

3

9

4

a ec

g h

b d f

11 12

13 14 15

16 17

18 19 20 21

22 23 24 25

26 27 28 29

30 31 32

33 34

Figure 2: Fifth-order elliptic filter

+

+ +

+

+

+

+

++

+

×

×

×

×

×

×

×

×

×

×

× -

-

-

-

-

-

-

-

14

18

6

11

23

2726

2

5

12

15

17

10

22

3

h

al

g

cc

e

i

o

p q

r s b

b

b

d

n

m

f

j

f f

ff

f

28 29

8

20

24

1

13

4

9

21

25

7

16

19

d

k

Figure 3: Bandpass filter

3.3 Bandpass filter
One of the implementations of the bandpass filter [5]

is the circuit used for our evaluation. It consists of 29
operations; 11 multiplications, 10 additions and 8
subtractions (Figure 3). Due to data dependencies almost
all operations influence the circuit delay.

3.4 Least mean square filter
This filter for signal adaptation (noise reduction) is

based upon least mean square method [2]. It consists of
47 operations; 24 multiplications and 23 additions
(Figure 4). This test-bench circuit is useful due to its size
and unique data dependencies.

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

++

+

+ +

+

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

××

×

× ×

15

19

7

23

6

26

11

3

k k

a

a

a

a

a

a

a

a

a

a

aa

q

q

gg

x

x

o

o

e e

v

v

m

m

c c

s

s

i i

u

u

l

l

b b

r

r

hh

w

w

n

n

d

t

t

jj

y y

pp

f f

27

31

40

44

36

32

28

24

20

16

84

12

1

35

41

45

37

33

29

25

21

17

95

13

2

39

43

10

30

18

38

14

34

22

42

47

46

d

Figure 4: Least mean square filter

4 Evaluation
Considering 18750 different schedules of each

circuit and different combinations of parameters, we
statistically compared the results according to their cost
function (Eq. 1). For each of described four test-bench
circuits we made a set of 3125 different combinations of
parameters (generations, populations, crossover,
mutation and variation). We repeated the optimization
process with each combination five times to reduce the
influence of statistical error and to get the average fitness
of solutions obtained by each combination of parameters.

The solutions with fitnesses of top 20% of all
fitnesses for a certain circuit were defined as high quality
solutions and solutions with bottom 20% of fitnesses
were defined as low quality solutions

To ensure most solutions being time-constrained
(executed in shortest possible time) the weight wt was set
to extremely high value.

170 Informatica 28 (2004) 167–172 Gregor Papa et al.

a)

0%

5%

10%

15%

20%

25%

30%

20 30 40 50 60

high

low

number of
generations

% of solutions

solution
quality

b)

0%
10%
20%
30%
40%
50%
60%
70%
80%

30 40 50 60 70

high

low

population
size

% of solutions

solution
quality

c)

0%
5%

10%
15%
20%
25%
30%
35%
40%

0,6 0,7 0,8 0,9 1

high

low

crossover
probability

% of solutions

solution
quality

d)

0%

10%

20%

30%

40%

50%

0,01 0,02 0,03 0,04 0,05

high

low

mutation
probability

% of solutions

solution
quality

e)

0%

5%

10%

15%

20%

25%

30%

35%

0,01 0,02 0,03 0,04 0,05

high

low

variation
probability

% of solutions

solution
quality

 Figure 5: Differential equation

a)

0%

5%

10%

15%

20%

25%

30%

35%

60 70 80 90 100

high

low

number of
generations

% of solutions

solution
quality

b)

0%

5%

10%

15%

20%

25%

30%

80 90 100 110 120

high

low

population
size

% of solutions

solution
quality

c)

0%

5%

10%

15%

20%

25%

0,6 0,7 0,8 0,9 1

high

low

crossover
probability

% of solutions

solution
quality

d)

0%

10%

20%

30%

40%

50%

0,01 0,02 0,03 0,04 0,05

high

low

mutation
probability

% of solutions

solution
quality

e)

0%

10%

20%

30%

40%

50%

60%

70%

0,01 0,02 0,03 0,04 0,05

high

low

variation
probability

% of solutions

solution
quality

 Figure 6: Fifth-order elliptic filter

THE PARAMETERS TUNING ... Informatica 28 (2004) 167–172 171

a)

0%

5%

10%

15%

20%

25%

30%

60 70 80 90 100

high

low

number of
generations

% of solutions

solution
quality

b)

0%

5%

10%

15%

20%

25%

30%

35%

80 90 100 110 120

high

low

population
size

% of solutions

solution
quality

c)

0%

5%

10%

15%

20%

25%

0,6 0,7 0,8 0,9 1

high

low

crossover
probability

% of solutions

solution
quality

d)

0%

10%

20%

30%

40%

50%

0,01 0,02 0,03 0,04 0,05

high

low

mutation
probability

% of solutions

solution
quality

e)

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%

0,01 0,02 0,03 0,04 0,05

high

low

variation
probability

% of solutions

solution
quality

 Figure 7: Bandpass filter

a)

0%

10%

20%

30%

40%

50%

60%

100 110 120 130 140

high

low

number of
generations

% of solutions

solution
quality

b)

0%

5%

10%

15%

20%

25%

130 140 150 160 170

high

low

population
size

% of solutions

solution
quality

c)

0%

5%

10%

15%

20%

25%

30%

35%

0,6 0,7 0,8 0,9 1

high

low

crossover
probability

% of solutions

solution
quality

d)

0%

10%

20%

30%

40%

50%

60%

70%

0,01 0,02 0,03 0,04 0,05

high

low

mutation
probability

% of solutions

solution
quality

e)

0%

5%

10%

15%

20%

25%

30%

35%

0,01 0,02 0,03 0,04 0,05

high

low

variation
probability

% of solutions

solution
quality

 Figure 8: Least mean square filter

172 Informatica 28 (2004) 167–172 Gregor Papa et al.

As presented in Figures 5, 6, 7, and 8, solutions with
high quality are mostly obtained by the following values
of parameters: probability of crossover is 0.7, probability
of mutation is 0.04, and probability of variation is 0.03.
Besides, considering the circuits sizes the number of
generations and population size should be set to 3 times
and 4 times of a circuit size, respectively.

The values of parameters in this combination are
named as optimal values. These optimal values are
determined upon the percentage of solutions with certain
parameters among high quality solutions. The parameter
value, to be considered as optimal, should have at least
25% share among high quality solutions, while it should
have less than 10% share among low quality solutions.
Of course, there are some minor deviations but in general
we can define some average values of genetic operator’s
parameters when working with high-level IC design.

5 Conclusion
As presented there is a lot of work to fine-tune the

proper values of the genetic operators. To achieve
compatible results in optimization of the used circuits it
is appropriate to use the values obtained by our
investigation.

Generally, the quality of solution is always
influenced by parameters and the problem itself.
Therefore, it is important to perform this kind of
evaluation each time we are in search of the optimal
values of the genetic operators for some new problem to
be solved.

References
[1] T. Bäck, Evolutionary Algorithms in Theory and
Practice: evolution strategies, evolutionary programming,
genetic algorithms, Oxford University Press, 1996.
[2] J. Benesty, P. Duhamel, A Fast Exact Least Suare
Adaptive Algorithm, IEEE Transactions on Signal
Processing 40, 1992, pp. 2904-2920.
[3] C. A. Coello Coello, A Comprehensive Survey of
Evolutionary-Based Multiobjective Optimization
Techniques, Knowledge and Information Systems 1,
1999, pp. 269-308.
[4] B. Filipič, J. Štrancar, Tuning EPR spectral
parameters with a genetic algorithm. Applied soft
computing 1, 2001, pp. 83-90.
[5] G. W. Grewal, T. C. Wilson, An Enhanced Genetic
Algorithm for Solving the High-Level Synthesis
Problems of Scheduling, Allocation, and Binding, Intl.
Journal of Computational Intelligence and Applications,
1, 2001, pp. 91-110.
[6] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi,
Optimization by simulated annealing, Science 220, 1983,
pp. 671–680.
[7] F. G. Lobo, The parameter-less genetic algorithm:
Rational and automated parameter selection for
simplified genetic algorithm operation, Ph.D. thesis,
University of Lisbon, Portugal, 2000.
[8] G. Papa, Concurrent operation scheduling and unit
allocation with an evolutionary technique in the process

of integrated-circuit design, Ph.D. thesis, Faculty of
Electrical Engineering, University of Ljubljana,
Slovenia, 2002.
[9] G. Papa, B. Koroušić-Seljak, B. Benedičič, T. Kmecl,
Universal Motor Efficiency Improvement using
Evolutionary Optimization, IEEE Transactions on
Industrial Electronics 50, 2003, pp. 602-611.
[10] G. Papa, J. Šilc, Automatic Large-Scale Integrated
Circuit Synthesis Using Allocation-Based Scheduling
Algorithm, Microprocessors and Microsystems 26, 2002,
pp. 139-147.
[11] P. G. Paulin, J. P. Knight, E. F. Girczyc, HAL: A
Multiparadigm Approach to Automatic Data Path
Synthesis, Proc. 23rd ACM/IEEE Design Automation
Conference, Las Vegas, USA, June 1986, pp. 263-270.

 Informatica 28 (2004) 173–180 173

Extending CC4 Neural Networks to Classify Real Life Documents
Enhong Chen and Zhenya Zhang
Department of Computer Science and Technology
University of Science and Technology of China
Hefei, Anhui, 230027, P.R. China
Phone: +86 551 3602824,
Fax: +86 551 3603388
Cheneh@ustc.edu.cn, zzychm@mail.ustc.edu.cn

Hans-Dieter Burkhard and Gabriela Lindemann
Institut für Informatik, Humboldt Universität Berlin
D-10099 Berlin, Unter den Linden 6, Germany
hdb, lindeman@informatik.hu-berlin.de

Keywords: CC4 neural network, document classification, dimensionality reduction

Received: March 26, 2002

The CC4 neural network is a kind of fast pattern-learning techniques that can be used for document
classification. In essence, the underlying classification mechanism of CC4 neural networks is equivalent
to the use of the Hamming distance measure for classification in which the radius of generalization r of
CC4 neural network plays an important role in defining the sphere of influence for each training
sample. If we rely only on the titles and summaries returned from standard search engines, it could be
appropriate to represent the Web documents as binary vectors. However, when classifying real life
documents, binary representation of documents may not be an effective one and may reduce the
classification precision. The paper presents a method to classify documents with their term frequency
(TF) vector. In this method a way to transform the real value of each element to a binary number that
required by CC4 is put forward. Usually, the dimensionality of the TF vector representation is very
large. Therefore, before transforming the real value of each element to a binary number a step called
dimensionality reduction, i.e., construction of indexes of much lower dimensionality called the k-index
of documents will be performed. Then each k-index of documents is transformed to a 0/1 sequence. This
kind of sequences should keep as much the original distance information of documents when measured
within the Hamming distance space. Experimental results show that the CC4 performs better when CC4
uses our proposed method to classify news documents than it does when only depending on binary
representation of documents.

1 Introduction
In recent years, we have seen an enormous growing
number of text documents available on the Internet,
digital libraries, and news sources. However, effective
use of the documents requires fairly sophisticated tools
for locating, classifying, and retrieving only those of
interest to an individual. This problem is known as
document classification or document categorization.

Over the years there are many algorithms developed for
document classification [1, 2, 4, 5, 9]. Unfortunately,
most rule based statistical methods are slow in pattern
learning process The Corner-Classification (CC) as a
classification technique has an instantaneous nature and
has been used to solve some problems, such as data-
compression, time-series prediction and intelligent Web
meta-search engine design [6, 7, 10]. Unlike most other
artificial networks, the CC neural networks do not need
repeated training or weight adjustments; the training
sample needs to be shown to the network just once. CC4
as the fourth version of the CC-method is an effective

implementation technique, which learns instantaneously
and can be used as a classification method to classify the
results returned by standard search engines [6, 10]. These
returned documents include the titles and summaries
alone rather than the complete contents of the Web pages.
The neural network is built using keywords from the Web
pages. Each keyword maps into a 0 or 1, so the length of
the input vector is equal to the number of the keywords
chosen. The neural network can assign all the Web pages
to either one of the predefined classes or assign a
relevancy value to the page that is a fraction between 0
and 1.

In essence, the underlying classification mechanism of
CC4 neural networks is to use the Hamming distance
measure for classification in which the radius of
generalization r of CC4 neural network plays an
important role in defining the sphere of influence for
each training sample. If we rely only on the titles and
summaries returned from standard search engines, it

174 Informatica 28 (2004) 173–180 E. Chen et al.

could be appropriate to represent the Web documents as
binary vectors. However, when classifying real life
documents, binary representation of documents may not
be an effective one and may reduce the classification
precision. As a more effective term weighting method for
document representation, documents are represented as
an L-dimensional vector whose elements are indicated by
the occurrence frequency of the corresponding terms,
where L is the number of the size of the dictionary used.
By this representation method any document is
represented to be a normalized vector tf =(tf[1], tf[2], ...,
tf[L]) called TF vector, where 0 ≤ tf[i] ≤ 1 is the
normalized occurrence frequency of the term
corresponding to i, 1 ≤ i ≤ L, and L is the size of the
dictionary used.

Now let’s give two examples to analyze the reason why
CC4 can not work well on real life documents if the
documents are simply represented with binary vectors
and then classified with CC4 neural networks, because
the underlying Hamming Distance criterion could reduce
the classification accuracy. In the first example, suppose
that we have two documents represented as TF vectors tf1
and tf2, and there exists an i0 such that tf1[i0] = tf2[i0] =
0.90, and for other j, 1 ≤ j ≤ L, j ≠ i0, tf1[j] × tf2[j] = 0 and
tf1[j] + tf2[j] ≠ 0. The Hamming Distance of tf1 and tf2 is
L-1 and they will be classified into two different classes
by the CC4 neural network. If we use similarity criterion
of cosine similarity, however, the distance of the two
vectors is 1 - 0.902 = 0.19. The two documents may
therefore be judged to be of the same class. In the second
example, suppose that tf1[i0] = 0.98, tf1[i1]= 0.02, tf2[i0] =
0.02, tf1[i1]= 0.98, and tf1[j] = tf1[j] = 0, where 1 ≤ j ≤ L, j
≠ i0, i1. The two documents will be classified to be of the
same class by the CC4 neural network. However, they
should be in different classes when measured with cosine
similarity criterion.

This paper proposes a method to use CC4 neural
networks to classify real life documents. We choose the
TF vector representation of documents. Because CC4
neural network require its input to be binary vectors, we
should look for a way to transform the real value of each
element to a binary number. Considering that the
dimensionality of the TF vector is too large, the paper
proposes an approach for constructing much lower
dimensional indexes called k-index of the original
vectors of documents. Then each k-index of documents
is transformed to a 0/1 sequence. To avoid the problems
mentioned in the above two examples, such sequences
should keep as much as possible the original distance
information of documents when measured within the
Hamming distance space.

In the following section, we will first briefly introduce
CC4 neural networks. Then the MDSNN based data
indexing method will be presented in Section 3. Section
4 describes the method of the construction of binary
sequences used as the input of the CC4 neural network.
In Section 5 theoretical analysis of classification

behavior of CC4 neural networks is given. Our
experimental results and analysis are shown in Section 6.
Section 7 comprises our concluding remarks and future
research directions.

2 The CC4 Neural Network
The CC4 algorithm is a new type of corner classification
training algorithm for three-layered feed forward neural
networks [6, 11]. For clarity, we call the neural network
trained with CC4 algorithm CC4 neural network. It has
three layers that are Input Layer, Hidden Layer, and
Output Layer. The neurons between the three layers are
fully connected. The weight of the link between any two
neurons connected is assigned to be +1 when the input to
the neuron is a 1, and is assigned to be –1 otherwise. The
number of the input layer neurons is one more than the
size of an input vector. The additional neuron is the bias
neuron. The weight from this neuron to any neurons in
the hidden layer is always r-s+1, where s is the number
of 1’s in the input vector and r is the generalization
radius for the CC4 neural network. The hidden layer
consists of n neurons, where n is the number of input
training samples or vectors. Each training vector is
memorized by one hidden neuron. The number of output
layer neurons depends on the number of different classes.
In our work on document classification, the number of
output neurons equals to the number of bits used to
encode classes. Thus, the CC4 neural network maps an
input binary vector X to an output binary vector Y.

As mentioned before, an important feature of the CC4
neural networks is the radius of generalization r. After a
test signal has been processed by input layer and hidden
layer neurons, output layer neurons receive their inputs
and calculate the output vector. The output vector is the
same with the vector that is outputted by the CC4 neural
network for a training vector whose Hamming distance is
not greater than the generalization radius r. This shows
that when the Hamming distance of the test vector and a
training sample is not greater than r, then the test sample
will be judged to be of the same class with that of the
training sample by the CC4 neural network. The
computation of the CC4 neural networks can be
described as following in three steps:

 • Construct the input vector input of the CC4
 network:
 the frontmost N elements are directly from a
 sample and the last element is 1;
 • for (j = 0; j < H; j++) //H is the number of
 //hidden neurons
 { hidden[j] = 0; // hidden is a vector used to
 //memorize the hidden neuron states
 for(i = 0; i < N; i++) hidden[j] = hidden[j] +
 W[i*H][j] * input[i];
 // W is the matrix representing the
 // connection weights from neurons
 // of the input layer to the hidden
 // layer ones
 if (hidden[j] > 0) hidden[j] = 1 else hidden[j] = 0;

EXTENDING CC4 NEURAL NETWORKS… Informatica 28 (2004) 173–180 175

 }
 • for (j = 0; j < M; j++)// M is the number of
 //output neurons
 { output[j] = 0; // output is used to save the output
 // neuron states
 for (i = 0; i < H; i++) output[j] = output[j] +
 U[i*M][j]*temp[i];
 // U is the connection weight matrix
 // from hidden layer to output layer
 if (output[j] > 0) output[j] = 1 else output[j] = 0;
 }

Now let’s briefly analyze the way that Hamming distance
is employed in computation of CC4 algorithm. We first
give a function calculating the Hamming distance
between two n-dimensional binary vectors

X = (x1, x2, …, xn), Y = (y1, y2…, yN). Let fx = ∑
=

n

i
ix

1
, and

X’=(x1
’, x2

’…xn
’) be the vector corresponding to X,

where xi
’ = 1 if xi =1, otherwise xi

’ = -1. Then the function
g(X, Y) = fx – X’·Y can be used to calculate the Hamming
distance between vectors X and Y, where X’·Y is the inner
product of vectors X’ and Y.

Suppose that T1, T2…TH are all sample binary vectors
used for training the CC4 network. After the training of
the CC4 neural network, the connection matrix between
input and hidden layer is as follows:

1 2

1 2

1 1 1
H

H

T T T

W W W
r f r f r f
⎛ ⎞
⎜ ⎟⎜ ⎟− + − + − +⎝ ⎠

L

L
.

where Wi is the transpose of vector '
iT . For any vector X

to be classified, the input signal for the ith neuron in
hidden layer is Wi ⋅X+r-

iTf +1= r+1-(
iTf - '

iT ⋅X) = r+1-
g(Ti, X), where i = 1, 2, …, H, and r is generalization
radius for the network. If the Hamming distance g(Ti, X)
between vector X and a training sample binary vector Ti
for CC4 network is within generalization radius r, that is
g(Ti, X) ≤ r, then r+1- g(Ti, X) ≥ 1>0. According to the
computation of the CC4 neural network the output of the
ith neuron in hidden layer should be 1. So X will be
judged to be of the same class with that of the training
sample Ti by the CC4 neural network. Otherwise we have
g(Ti, X) ≥ r+1, so r+1- g(Ti, X) ≤0 and X will be judged
to be of a different class with that of the training sample
Ti by the CC4 neural network.

3 Low Dimensional Index Genera-
tion for Documents

Mapping n-dimensional data objects into lower
dimensional space while preserving distances between
original data before performing indexing, mining and
visualizing operations to the data is a typical useful
method for textual and multi-media documents[3]. Multi-
Dimensional Scaling (MDS) is a readily used method to
index original data in low dimensional space when
knowing the distances of pairs of data objects. However,

MDS is inefficient when new data objects need to be
indexed with respect to the old data and they have to be
indexed again with new data. To overcome this problem,
we have proposed a BP neural network where the
incremental data indexing approach - named MDSNN -
is based on. In this method a small data set used as
sample data set is first indexed with MDS. In the case if
the size of the sample data set is very small, the time
spent on this step is very low. Then indexing results are
provided as training samples and supervisor signals to
train the neural network. The trained neural network is
used to construct indexes of new documents. Such index
is denoted as k-index, where k is the expected
dimensionality of the resulting index space. The quality
of indexing is measured by the so-called Stress [8]
function:

 Stress =
∑

∑ −

ji
ij

ji
ijij

d

dd

,

2
,

2)'(

where dij
’ is a distance between Pi and Pj, dij is a distance

between the two objects Oi and Oj, and Pi = (xi1, xi2, …,
xik) is a k-dimensional point called k-index of Oi and it
denotes the image of the original object Oi.

Definition 3.1

K-index: Suppose that there exists a mapping that maps
any n-dimensional original data d into a point p in a
k-dimensional space, where n > k, then point p is called
the k-index of d.

To index all objects in k-dimensional space means that
all distances among objects should be kept as much as
possible in the lower dimensional space. For this
purpose, Stress is used to find a good index in the
k-dimensional space for each original object. When
finishing the indexing operation Stress reaches a
minimum value. Suppose that we have all distance
information for n objects Oi, where i = 1, 2, …, n. The
following steps show a typical implementation of the
MDS method: 1) Randomly assign each object Oi to a k-
dimensional point Pi=(Pi1, Pi2, …, Pik), i.e. the
coordinate vector representation of a k-dimensional
point; 2) For each point Pi, compute its distances from
the all other points Pj, where i ≠ j. Then update the
coordinate vector of Pj to decrease the Stress function
value with the method of non-linear least squares; 3)
Iteratively perform step 2 until the Stress value becomes
stable.

Based on MDS our proposed MDSNN method is as
follows:
1) Build the k-dimensional indexes of training sample
 data using the MDS method;
2) Construct the sample data set and supervisor signal set
 for the BP neural network with the results obtained in
 step 1;
3) Train the neural network with the data from step 2;

176 Informatica 28 (2004) 173–180 E. Chen et al.

4) Build the index of newly incoming data with the
 trained neural network.

4 Binary Sequence Construction
from Indexes

Through MDSNN all documents are mapped to points in
the k-dimensional space while their distance information
is kept as much as possible. In the following, we will
extend the CC4 neural network so that it can accept k-
dimensional indexes of documents as its input.

Because the CC4 can only receive binary numbers to be
its input, every k-index of documents must be
transformed to a 0/1 sequence and the sequence should
keep as much the original distance information of k-
indexes of documents in the Hamming distance space.

 In the following, we will define the notion of L-binary
sequences of real values first, and then L-binary
sequences for k-indexes.

Definition 4.1

L-binary sequence: Let x be a real value such that x ∈
[a, b], where [a, b] is the domain for all possible real
values considered to be transformed. S is an L-binary
sequence for x when all first k elements of S are ones and
the rest L - k elements are all zeroes, where L is the
length of the sequence S.

Let m =
L

ab −
, then k = [

m
ax −

].

For example, let x = 0.72, x ∈ [0, 1], L = 10, then m =
0.1, k = 7. We get an L-binary sequence 1111111000 for
x = 0.72 at interval [0, 1].

Definition 4.2

L-binary sequence for k-indexes: Suppose that the
k-index of a document is (x1, x2,…, xk) ∈ [a, b]k, L is a
given positive integer and Si is the L-binary sequence for
xi, then S = < S11, S12, …, S1L , S21 , S22, …, S2L, …, Sk1,
Sk2 ,…, SkL> is the L-binary sequence for the k-index of
data d, where i = 1, 2, …, k, j = 1, 2, …, L. Sij is the j-th
element of the L-binary sequence for the k-index of xi.

Because we use a normalized term frequency vector
method to represent documents, every element of a
vector is assumed to be in the interval [0, 1], which
means that a = 0 and b = 1. To a given k-index of a
document its L-binary sequence can be constructed as
follows:

1) Assign a value to L to fix the length of the L-binary
sequence for k-indexes;
2) Initialize S to be an empty sequence;
3) For each element ei of the k-index of a document d do
 3.1) Step= [1/L];

 3.2) Length = [ei/Step];
 3.3) Assign <S i1, S i 2, …, S i L> to be the L-binary
 sequence for the k-index of element ei, where
 Sij = 1 for j = 1, 2, ..., Length, and Sij = 0 for
 j = Length +1, ..., L;
 3.4) Append <S i1, S i 2, …, S i L> to the tail of the
 sequence S.

When training a CC4 neural network to classify
documents, each training document is firstly indexed
with MDSNN and then the corresponding L-binary
sequence for its k-index is constructed to be the input of
the CC4 neural network. The topic or target class of the
document is used to generate the supervisor signal of the
CC4 neural network. For new text documents MDSNN is
called to construct the L-binary sequences for their
k-indexes and then these new documents are classified
with the CC4 neural network.

5 Theoretical Analysis of Classifi-
cation Behavior of CC4 Neural
Networks

In the following, we will theoretically analyze the
classification behavior of CC4 neural networks. For the
ease of description a neuron is said to be in active state if
its output is 1, otherwise to be in blocked state. As stated
previously, in our work on document classification the
number of output neurons is equal to the number of bits
used to encode classes. Suppose that there are six classes,
they are encoded from 0 to 5, respectively. In binary
encoding form 3 bits are needed to encode them, i.e.
from 000 to 100.

Definition 5.1

Binary Matrix: An m×n matrix A = (aij) is called a
binary matrix if ∀aij∈{0, 1}.

Definition 5.2

B-composed and Fully B-composed Matrix: Let A be
an m×n binary matrix, where 1 ≤ m ≤ 2n. Denote the i-th
row of A to be ai, then ai = (ai1, a i2, …, ain). If

(ai1, a i2, …, ain) is regarded as a binary integer, where

the leftmost digit is ai1 and the rightmost digit is ain and

ai1 × 2n-1 + ai2 × 2n-2 + … + ain × 20 = i-1holds for all 1 ≤

i ≤ m, then we call A B-composed. Specifically, A is
called to be fully B-composed if m = 2n.

Definition 5.3

Binary Extension: Let A be a B-composed m×n binary
matrix, where 1 ≤ m ≤ 2n. Let ai = (ai1, ai2, …, ain) to

be the i-th row of A. Suppose that B is a B-composed
m×(n+1) binary matrix. Let bi = (bi1, bi2, …, bin) to be

the i-th row of B. B is called an Binary extension of A if:

EXTENDING CC4 NEURAL NETWORKS… Informatica 28 (2004) 173–180 177

 (bi1, bi2, …, bi(n+1)) =

⎩
⎨
⎧

122for),...,,1(
2for),...,,0(

21

21
+≤<

≤
nn

iii

n
iii

iaaa
iaaa

n

n

Lemma 5.1

Suppose that A is a B-composed m×n binary matrix, then
the number of the ones is not greater than the number of
the zeros in each column of A.

Proof:

 When n = 1, A is ()0 or ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1
0

, the conclusion

obviously holds.

As an induction hypothesis, we assume that the
conclusion holds for n = k. Now let n be k+1. Suppose
that B is a sub-matrix obtained by deleting the last
column of A. B is B-composed when m ≤ 2k and the
number of the ones is not greater than the number of the
zeros in each column of B. If m > 2k, then let B1 be the
sub-matrix consisting of the uppermost 2k rows of B, and
B2 be the sub-matrix consisting of the rest rows of B.
Apparently, B1 is fully B-composed and B2 is B-
composed. Thus the number of the ones is not greater
than the number of the zeros in each column of B1 and
B2. Hence the number of the ones is not greater than the
number of the zeros in each column of B. Obviously,
matrix A can be obtained through a Binary-extension
operation on B. When m ≤ 2k, all elements of the first
column of A are zeros. When m > 2k, the number of the
ones in the first column is m - 2k. Let c be the difference
of the number of the zeros to that of the ones in the first
column, then c = 2k - (m - 2k) = 2k+1 – m. For m ≤ 2k+1
follows that c ≥ 0. We conclude that the conclusion holds
when n = k+1. This completes the proof for this theorem.

Theorem 5.2

Every supervisor signal for training CC4 neural networks
can be supposed as a row vector. All these vectors can be
arranged in form of a matrix U where every row
corresponds to the output of the network training with a
special training set. If we substitute all zero elements
with -1, then the obtained matrix V is the matrix of the
weights of connections from the hidden to output layer.

Proof:
It is obvious by observing the training process of CC4
neural networks.

Theorem 5.3

All inputs that cannot be recognized by the CC4 neural
network will be classified into Class 0.

Proof:
From the calculation process of CC4 neural networks,
any input vector whose Hamming Distances to all

learning vectors are greater than the radius of
generalization will bring all the hidden neurons in
blocked statuses. Apparently, when these states are
propagated to the output layer, all the output layer
neurons will come also in blocked states. According to
the encoding method Class 0 corresponds to the situation
that all output layer neurons are in blocked states.

Theorem 5.4:

When the generalization radius of the CC4 neural
network is great enough all input vectors will be
classified into Class 0.

Proof:
When the generalization radius of the CC4 neural
network is great enough any input vector will bring all
the hidden neurons in active states. By Lemma 5.1 and
Theorem 5.2 all the input signals of output layer neurons
are not greater than 0. Thus all output layer neurons
come in blocked states. According to the encoding
method Class 0 corresponds to the situation that all
output neurons are in blocked states.

In the following, the notion of δ-neighbourhood of a k
dimensional point X is given first, and a theorem from
which the classification nature of CC4 can be explained
will thereafter be presented.

Definition 5.4

δ-neighborhood: Given two vectors X = (x1, x2, …, xk) ∈
[0, 1]k and Y = (y1, y2, …, yk) ∈ [0, 1]k. X’ and Y’ are the
L-binary sequences for X and Y, respectively. If the
Hamming distance | xi’ - yi’| ≤ δ/k, where xi’ and yi’ are
the L-binary sequences for xi and yi, respectively, and δ
is a positive integer, then Y’ is said to belong to the δ-
neighborhood of X’ and this is denoted as Y’ ∈ Nδ(X’).

Theorem 5.5

Suppose that the k-index of X = (x1, x2, …, xk) ∈ [0, 1]k is
the center of the training document set for class C. Given
δ, let r = δ /k. If for any document Y = (y1, y2, …, yk) ∈
[0, 1]k the Hamming distance of the L-binary sequences
for xi and yi is n, i.e. | xi’ - yi’| = n, then n ≤ r iff Y’ ∈
Nδ(X’).

Proof:
First, we know that r = δ /k, hence rk = δ. For n ≤ r and
k>0 follows that nk ≤ rk = δ. Hence the Hamming
distance of the L-binary sequences of the k-indexes of X
and Y is no more than δ, i.e., | X’ – Y’ | = ∑|xi’ - yi’| ≤ nk
≤ δ. Thus Y’ ∈ Nδ(X’).

Conversely, given that Y’ ∈ Nδ(X’), we have | X’ – Y’ | ≤
δ. Thus |xi’ - yi’|k = nk ≤ δ, hence nk ≤ δ, and n ≤ δ/k
Thus we can get n ≤ r, and this completes the proof of the
theorem.

178 Informatica 28 (2004) 173–180 E. Chen et al.

Obviously, the distribution of points in k-dimensional
space corresponding to the k-indexes of documents is
completely determined once all documents are mapped
into the k-dimensional space. Because documents come
from several different classes, these points are thus
expected to be partitioned into several different
subspaces and each subspace corresponds to a different
class. What CC4 does is to decide which subspace every
document should belong to based on its L-binary
sequence for its k-index. For the ease of clarity, the class
that the first center used to train CC4 belongs to is called
the first class, and so on. By Theorem 5.5 we know that
more and more points will be covered by the
δ-neighborhood of every training data center with the
increase of the radius of generalization when training
CC4 and thus improve the classification precision of the
trained CC4. The precision will reach its highest value at
a certain generalization radius. Afterwards, with the
increase of the radius of generalization, more and more
points will be covered by the δ-neighborhoods of other
class centers. Hence the classification precision will
decrease till the generalization radius reaches a threshold
value r0. Then the δ-neighborhood of the first class center
will cover all points and the classification precision thus
stays at a fixed level, i.e. around the percentage of test
samples of the first class as stated in Theorem 5.4. This
classification behavior of CC4 will be demonstrated in
the following experiments.

6 Experimental Results and Analysis
In the following, we will perform some experiments to
compare the classification performance of CC4 that uses
binary vectors and L-binary sequences for k-indexes of
documents. For the sake of clarity, the CC4 neural
networks using L-binary sequences for k-indexes is
called LKCC4, where LK stands for an L-binary
sequence for a k-index. The CC4 neural network directly
using binary representation of documents as its input is
called InitialCC4. The binary input of InitialCC4
constructed for each document is an L-dimensional
binary vector t =(t[1], t[2], ..., t[L]), where L is the
number of the size of the dictionary used, and element
t[i] = 1 if the i-th keyword in the dictionary occurs at
least one time in the document, t[i] = 1 otherwise.

Our experiments are performed on documents
downloaded from UCI KDD Archive site
http://kdd.ics.uci.edu. We randomly select 10 groups of
downloaded news data and pick up randomly 50 news in
each group as our experimental data. We set k to be 3.
Thus all documents are mapped into points in a
3-dimensional space. To test the performance of our
MDSNN indexing model we select different numbers of
documents to train the neural network. Fig. 1 shows
Stress values obtained with the different number of
documents as training samples. The detailed
experimental setup is given below:

1) Build a dictionary based on the terms obtained from
each news group and use it to construct the TF vectors
of all documents.
 2) In each news group determine the number of training
documents by assigning a value to ratio such that the size
of the training set SampleNum is identical to the size of
whole entire document set * ratio.
3) Calculate the center vector of the training document
set in each group.
4) Take the center vectors as the training data set of
MDSNN, and the news in each group as the test data set.
So we can generate the k-indexes of the test data using
MDSNN.
5) Construct the L-binary sequences for the k-indexes of
the test data as inputs to LKCC4 for classification.

Given different ratios of training documents Figs 2-5
show the influences of the radius of generalization on the
classification precision of LKCC4 and InitialCC4. It can
be observed, that when given the same ratio value the
highest classification precision of LKCC4 will be much
greater than that of InitialCC4. From Figs 2 – 5 we can
also observe, that when the radius of generalization is
greater than a certain threshold value, the classification
precision of LKCC4 and InitialCC4 will both stay at a
fixed value which is around the percentage of test
samples belonging to the first class. To confirm our
observation, we also perform further experiments by
picking up 10, 20, 30, 40 and 50 documents,
respectively, from the first news group and 50 documents
from all other nine groups. The documents used to
generate the center used as the training sample for each
group are 10 percent of all documents that each group
contains. Therefore, the respectively 9, 18, 27, 36 and 45
documents in the first news group could be used as test
documents. Table 1 shows the results obtained when the
classification precision of LKCC4 converges.

Fig. 1 The Stress value for different ratio of documents used
as training samples of MDS-NN

EXTENDING CC4 NEURAL NETWORKS… Informatica 28 (2004) 173–180 179

Fig. 2 The influence of radius of generalization on
classification precision of LKCC4 (ratio = 0.1)

Fig. 3 The influence of radius of generalization on
classification precision of InitialCC4 (ratio = 0.1)

Fig. 4 The influence of radius of generalization on
classification precision of LKCC4 (ratio = 0.5)

Fig. 5 The influence of radius of generalization on
classification precision of InitialCC4 (ratio = 0.5)

Table 1. The expected and practical classification
precision of LKCC4 network when the
radius of generalization reaches the
threshold value

No. of
documents
from the first
news group

No. of
documents
of all other
news group

Threshold of
generalization
radius

Classification
Precision
of LKCC4

9 414 157 0.022
18 423 159 0.043
27 432 159 0.063
36 441 159 0.083
45 450 159 0.1

7 Conclusion
In this paper we present a method to use CC4 neural
networks to classify documents with their term frequency
vectors. Firstly, we construct much lower dimensional
indexes of the original document vectors to reach the
goal of dimension reduction. Then each index of
documents is transformed to a binary valued sequence.
This kind of sequences should keep as much the original
distance information of documents when measured with
the Hamming distance. Experimental results show that
the CC4 performs better when CC4 uses our proposed
method to classify news documents than it does when
only depending on binary representation of documents.
 In the future the integration of CC4 and incremental
indexing methods is one of our research topic. Because
in our approach continuously valued data indexes can be
discretized as the CC4 neural network input, extending
the method to other textual and non-textual data
classification applications is a further future effort of our
group.

Acknowledgements
The work in this paper was funded by National Nature
Science Foundation of China research grant 60005004 ,
Nature Science Foundation of Anhui Province research
grant 01042302 and DAAD.

8 References
[1] D. Boley, M. Gini, R. Gross, S. Han, K. Hastings, G.
Kary pis, V. Kumar, B. Mobasher and J. Moore,
Partitioning-based clustering for web document
categorization. Decision Support Systems, 27(3),pp329-
341, 1999.

[2] M. Craven, S. Slattery, Relational learning with
statistical predicate invention: Better models for
hypertext. Machine Learning, 43(1/2), pp 97-119.

[3] C. Faloutsos, FastMap: A fast algorithm for indexing,
data-Mining and visualization of traditional and
multimedia datasets. in Proc. of ACM SIGMOD Conf ,
1995,pp163-174

180 Informatica 28 (2004) 173–180 E. Chen et al.

[4] E.H. Han and G. Karypis. Centroid-based document
classification algorithms: Analysis & experimental
results. Technical Report TR-00-017, Department of
Computer Science, University of Minnesota,
Minneapolis, 2000.

[5] T. Joachims, Text categorization with support vector
machines: learning with many relevant features. In
Proceedings of the 10th European Conference on
Machine Learning, pages 137-142. Springer Verlag,
Heidelberg, 1998.

[6] S. Kak. Better web searches and faster prediction
using instantaneously trained neural networks. IEEE
Intelligent Systems. 14(6):78-81, 1999.

[7] S. Kak, V. R. Admal. Text compression using
instantaneously trained neural networks, 2001.
http://www.ece.lsu.edu/kak/recent.html

[8] J. B. Kruskal and M. Wish, Multidimensional scaling.
SAGE publications, Beverly Hills, CA. 1978

[9] David D. Lewis, Robert E. Schapire, James P. Callan
and Ron Papka, Training algorithms for linear text
classifiers. In Proceedings of SIGIR-96, pages 298-306.
ACM Press, New York, 1996.

[10] B. Shu and S. Kak. A neural network-based
intelligent metasearch engine. Information Sciences, vol.
120, pages 1-11, 1999

[11] K.-W. Tang and S. Kak, A new corner classification
approach to neural network training, Circuits, Systems,
and Signal Processing, vol.17, pages 459-469, 1998.

Informatica 28 (2004) 181–188 181

A Pattern Mapping Based Digital Image Watermarking

Chwei-Shyong Tsai
Department of Information Management National Taichung Institute of Technology,
Taichung, Taiwan 404, R.O.C.
E-mail: tsaics@ntit.edu.tw

Chin-Chen Chang
Department of Computer Science and Information Engineering National Chung Cheng University,
Chiayi, Taiwan, 621, R.O.C.
ccc @cs.ccu.edu.tw

Keywords: Discrete wavelet transformation, digital watermarking technique, intellectual property right

Received: February 6, 2002

This paper proposes a digital watermarking technique based on discrete wavelet transformation (DWT) to
effectively protect the intellectual property rights of digital images. Basically, the proposed technique uses
the DWT frequency coefficients of a digital image to preserve important image features and to embed a
meaningful digital watermark into the image. In the proposed watermark embedding process, the protected
digital image is first transformed into the DWT frequency domain and then each digital watermark bit
is effectively embedded into four DWT coefficients using the proposed pattern mapping method. From
the experimental results, we see that a digital watermark of acceptable quality can be extracted from an
attacked watermarked image that has undergone the processes of image cropping, JPEG lossy compression,
destructive signal, and even mixed attacks; that is, the proposed digital watermarking technique has an
excellent robust property.

1 Introduction

With growing popularity of Internet, and the improvements
in digital multimedia technology, users can easily copy vast
amounts of multimedia data causing the copyrights of this
multimedia data to be significantly threatened. Protecting
the intellectual property rights of multimedia data as well
as avoiding the invasion of the digital media by unautho-
rized persons has recently become an important research
issue. As for the protection of the intellectual property
rights of this multimedia data, these days many researchers
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] are putting a
great amount of time into research related to watermarking
techniques.

Digital image watermarking is a type of protection tech-
nique performed by embedding a special digital watermark
into a protected image to protect the copyrights of the prop-
erty of the image creator. The quality of the image is af-
fected to the minimum degree. The protected target image
is called a host image, the host image embedded with the
watermark is called a watermarked image, and the image
used as the digital watermark is a watermark image.

Most image watermarking algorithms transform a water-
mark image into data represented in a binary string pattern,
which is called a watermark binary string. Some of these
directly change the color intensity of pixels in the host im-
age represented in the spatial domain in order to embed
the watermark binary string. The advantages of this kind

of algorithm are simplicity and quick processing. Gener-
ally, the watermark image embedded in the watermarked
image will be destroyed by lossy image processing opera-
tions such as JPEG lossy image compression. These algo-
rithms also have weak robustness.

Another kind of watermarking algorithms with stronger
robustness than the previously mentioned ones convert the
host image into the frequency domain. Then the watermark
binary string is embedded into the frequency coefficients in
the high or middle frequency bands of the frequency do-
main host image. In the transformed image, the frequency
coefficients in the low frequency band describe the subjec-
tion of color allocation within the whole image. Thus when
the coefficient in the low frequency band is changed, the
pixel colors in the matching spatial domain image will be
obviously influenced. However, the damage to the water-
mark image data resulting from the image processing oper-
ations will be eliminated if the watermark data is embedded
into frequency coefficients in the low frequency. The pat-
tern mapping-based image watermarking method proposed
in this paper embeds the watermark image into a combina-
tion of frequency coefficients in the low frequency bands
and the high frequency bands of the transformed host im-
age.

According to the proposed pattern mapping based im-
age watermarking method, the spatial domain host im-
age is transformed into the discrete wavelet transforma-
tion (DWT) frequency domain. Then four frequency coeffi-

182 Informatica 28 (2004) 181–188 C.-S. Tsai et al.

cients, three selected from the low frequency band and one
selected from the other high frequency bands of DWT fre-
quency domain image, are chosen to contain one bit of the
watermark binary string. The four frequency coefficients
are transformed to the matching pattern based on the em-
bedded watermark bit. In other words, the proposed digital
image watermarking method randomly chooses four fre-
quency coefficients from the frequency band to contain a
bit of data and to reduce the effects on the watermark image
caused by lossy image processing operations performed on
the watermarked image.

2 Pattern Mapping Watermarking
Method

Discrete wavelet transformation is a technique that trans-
lates an image in the spatial domain into the frequency do-
main. In the process of DWT, the host image is first divided
into four sub-bands LL1, HL1, LH1, and HH1 (as shown in
Figure 1). Then, the low frequency sub-band LL1 is further
decomposed by repeatedly performing the same process
until the application purpose is reached. In the proposed
scheme, the repeated decomposition process continues on
the lower frequency sub-bands containing LL3, HL3, LH3,
HH3, HL2, LH2, and HH2.

HL1

HH1

LH1

HL2

LH2

HH2

HL3 LL3

HH3 LH3

Figure 1: The sub-bands of a DWT frequency domain.

After the image is transformed from the spatial domain
to the frequency domain, the original energy is focused on
the upper left corner. This range represents the lower fre-
quency of the transformed image, and the corresponding
coefficients in this range are more significant. Moving to
the lower right corner the range represents the high fre-
quency of the transformed image, and the corresponding
coefficients are less significant. Moreover, in the image of
the DWT frequency domain, the frequency coefficients in
the lower frequency sub-band are not easily affected by the

general image processing operation. Therefore, the pro-
posed watermarking method suggests embedding one wa-
termark bit with the cooperation of three coefficients in the
low DWT frequency sub-bands LL3, HL3, LH3, HH3, HL2,
LH2, and HH2, and one coefficient in HL1, LH1, HH1.

2.1 Watermark Embedding

Figure 2 shows the block diagram of the proposed water-
mark embedding process. The first step of data embedding
of the pattern mapping based watermarking method is to
perform discrete wavelet transformation to transform the
host image I in spatial domain to DWT frequency domain
H. Next, derive a bit bi continuously from watermark im-
age S and embed the message of each bi into four DWT
coefficients. Finally, apply inverse DWT (IDWT) to the
modified H to form the watermarked image I′.

Derivingeach watermark

bit

Host image

I

DWT

SeedK1

Changingthe values 1,iC , 2,iC , 3,iC , and 4,iC to

1,iC , 2,iC , 3,iC , and 4,iC to the corresponding

pattern by Equations (2) and (3)

IDWT

Watermarked imageI

Watermark image

S

H

PRNG

SeedK2

PRNG

Figure 2: Block diagram of the proposed watermark em-
bedding process.

During the process of watermark embedding, K1 and K2

are the two predefined private keys to be used as the seeds
of the pseudorandom number generator (PRNG). When
embedding the bit bi, use PRNG(K1) to pick up three un-
selected DWT frequency coefficients Ci,1, Ci,2, Ci,3 from
the sub-bands LL3, HL3, LH3, HH3, HL2, LH2, and HH2

of DWT frequency domain of H, and to pick up one unse-
lected DWT frequency coefficient Ci,4 from the sub-bands
HL1, LH1, HH1. If the value of bi is 0, then change the val-
ues Ci,1, Ci,2, Ci,3, and Ci,4 to correspond to the 0-pattern.
Otherwise, make them to correspond to the 1-pattern.

During pattern mapping, we define a DWT frequency
coefficient α as being located within the 0-range or the 1-
range area by Equation (1). If β = 0, we define α as being
located within the 0-range area; otherwise, it is within the
1-range area.

A PATTERN MAPPING BASED DIGITAL. . . Informatica 28 (2004) 181–188 183

Here β is defined as below:

β = bα/Rc mod 2. (1)

In Equation (1), R is a given threshold and is set to be
RL or RH depending on the sub-band of α. If α belongs to
the sub-band LL3, HL3, LH3, HH3, HL2, LH2, or HH2, R
is set to be RL. On the other hand, R is set to be RH when α
belongs to the sub-band HL1, LH1 or HH1.

During pattern mapping, Equation (2) is used to change
Ci,j to C′i,2 and it makes the areas of Ci,j and C′i,j different.
That is, if Ci,j is located within the 0-range area, Equation
(2) makes the corresponding C′i,j to be located within the
1-range area and vice versa.

C′i,j = (bCi,j/Rc − 1)× R + bR/2c+ (−1)r+1Q. (2)

In Equation (2), Q is an integer between 0 and R/4, and
its value depends on PRNG(K2). Moreover, Equation (3)
is used to change Ci,j to C′i,j and it makes the areas of Ci,j

and C′i,j the same.

C′i,j = (bCi,j/Rc)× R + bR/2c+ (−1)Q+1Q. (3)

The pattern mapping based watermarking method mod-
ifies the values of Ci,j’s, j = 1, 2, 3, 4, according to the
value of bit bi to cause the corresponding C′i,j’s to be lo-
cated within the 0-range or the 1-range area when embed-
ding data. We define Ci,1, Ci,2, Ci,3, and Ci,4 to corre-
spond to the 0-pattern if the corresponding C′i,1, C′i,2, C′i,3,
and C′i,4 are located within the 0-range, 1-range, 1-range,
and 0-range, respectively. Conversely, Ci,1, Ci,2, Ci,3, and
Ci,4 correspond to the 1-pattern if the corresponding C′i,1,
C′i,2, C′i,3, and C′i,4 are located within the 1-range, 0-range,
0-range, and 1-range, respectively. When the embedded
watermark bit bi is 0, the pattern matching based water-
marking method changes the values of Ci,1, Ci,2, Ci,3, and
Ci,4 so as to make C′i,1, C′i,2, C′i,3, and C′i,4 to locate within
0-range, 1-range, 1-range, and 0-range, respectively; oth-
erwise, the values of Ci,1, Ci,2, Ci,3, and Ci,4 are altered
to make C′i,1, C′i,2, C′i,3, and C′i,4 to be located within the
1-range, 0-range, 0-range, and 1-range, respectively; that
is, make the values of Ci,1, Ci,2, Ci,3, and Ci,4 correspond
to the 1-pattern. Figure 3 demonstrates the condition of
location for the corresponding C′i,1, C′i,2, C′i,3, and C′i,4
when Ci,1, Ci,2, Ci,3, and Ci,4 correspond to 0-pattern or 1-
pattern. In Figure 3, 0 and 1 represent the 0-range and the
1-range, respectively. During the embedding process, if the
areas of Ci,j and C′i,j are different, Equation (2) is applied
to change Ci,j to C′i,j; otherwise, Equation (3) is utilized.

2.2 Watermark Extraction
Figure 4 shows the proposed watermark extraction process.
The steps of the watermark extraction in the pattern map-
ping based watermarking method are mainly based on the
converse processing steps of watermark embedding. First,

1,iC , 2,iC , 3,iC , 4,iC (0110)

(a)0-pattern

1,iC , 2,iC , 3,iC , 4,iC (1001)

(b)1-pattern

(())

Figure 3: The related ranges of Ci,1, Ci,2, Ci,3, and Ci,4

patterns of C′i,1, C′i,2, C′i,3, and C′i,4
.

from the DWT frequency domain of the watermarked im-
age I′, the extraction process utilizes PRNG(K1) to pick up
four unselected coefficients C′i,1, C′i,2, C′i,3, and C′i,4, such
that C′i,1, C′i,2, C′i,3 come from the sub-bands LL3, HL3,
LH3, HH3, HL2, LH2, and HH2, and C′i,4 comes from HL1,
LH1, HH1, each time by continuously using PRNG(K2).
When ((C′i,j− (−1)Q+1Q)/R) mod 2 = 0, for j = 1, 2, 3, 4,
C′i,j is defined to be located within the 0-range; otherwise,
it is located within the 1-range. Similar to the watermark
embedding process, R is a given threshold and is set to be
RL or RH depending on the sub-band of Ci,j, and the value
of Q is determined by PRNG(K1). In the watermark em-
bedding process, the location of each C′i,1, C′i,2, C′i,3, and
C′i,4 is located either within the 0-range, 1-range, 1-range,
and 0-range, respectively, or within the 1-range, 0-range, 0-
range, and 1-range, respectively. In other words, Ci,1, Ci,2,
Ci,3, and Ci,4 correspond to either the 0-pattern or the 1-
pattern. But the content of the watermarked image is possi-
bly changed on purpose or unintentionally, for example, by
using lossy image compression, so that the range to which
corresponds is changed as well. Thus, Ci,1, Ci,2, Ci,3, and
Ci,4 possibly no longer correspond to the two patterns of
the 0-pattern or the 1-pattern. The column of possible pat-
terns in Figure 5 lists all 16 possible changed patterns.

In the lower frequency band, every DWT frequency co-
efficient corresponds to a group of adjacent pixels in im-
age I. That is, the DWT frequency coefficient is the final
average result derived from calculating the color value of
the adjacent pixels many times. Therefore, it is only when
the color value from the pixels of image I changes greatly
that the value of C′i,j changes so as to locate it within an-
other scope of range. The possibility of changing the range
into which C′i,j is located to another is not high. The wa-
termark extraction process of the pattern mapping based
watermarking method performs the following cases:

1. When C′i,1 and C′i,4 are both located within the 0-
range, or C′i,2 and C′i,3 within the 1-range, regard Ci,1,
Ci,2, Ci,3, and Ci,4 as corresponding to the 0-pattern,
and the extracted bit bi is 0.

2. When C′i,1 and C′i,4 are both located within the 1-
range, or C′i,2 and C′i,3 within the 0-range, regard Ci,1,
Ci,2, Ci,3, and Ci,4 as corresponding to the 1-pattern,
and the extracted bit bi is 1.

3. If the range of each C′i,1, C′i,2, C′i,3, and C′i,4 is 1, 1, 0,
0, respectively, or 0, 0, 1, 1, respectively, regard Ci,1,
Ci,2, Ci,3, and Ci,4 as corresponding to the 0-pattern,
and the extracted bit bi is 0. If the range of each C′i,1,

184 Informatica 28 (2004) 181–188 C.-S. Tsai et al.

Determining 1,iC , 2,iC , 3,iC ,

and 4,iC

I
-

-

Watermarked image

I

Defining the location range of
each 1,iC , 2,��iC , 3,iC , and 4,iC

Extracted watermark

image

S

PRNG

SeedK2

Recoveringeach watermark

bitbi

PRNGSeedK1

Selectedcoefficients

1,iC , 2,iC , 3,iC , and 4,iC

DWT

Figure 4: Block diagram of the proposed watermark ex-
traction process.

C′i,2, C′i,3, and C′i,4 is 1, 0, 1, 0, respectively, or 0, 1,
0, 1, respectively, regard Ci,1, Ci,2, Ci,3, and Ci,4 as
corresponding to the 1-pattern, and the extracted bit bi

is 1.

The above cases of watermark extraction can ensure that
the value of bi can be guessed even if the range in which
the location of any one of four C′i,j’s is altered.

3 Security Analysis
The proposed pattern mapping watermarking method uses
K1 as the seed of the pseudorandom number generator to
determine four DWT frequency coefficients Ci,1, Ci,2, Ci,3,
and Ci,4 which are used to embed the bit bi. Thus only the
person who has K1 can obtain the watermark image em-
bedded in I′. Furthermore, the value Q is randomly added
to or subtracted from every value of C′i,j’s. The value Q is
assigned by the pseudorandom number generator with the
seed K2. It can avoid the condition that all the values of
C′i,j’s are added R/2. Therefore, only the one who has both
private keys K1 and K2 can extract the embedded water-
mark image in the watermarked image.

After the operation of some type of image processing
(like lossy image compressing, blurring, sharpening, etc.)
is performed on the watermarked image I′, some DWT fre-
quency coefficient values of the frequency domain image

Possible

patterns

Original

pattern

Guessing

pattern

Related

coefficients

Probability

0000 1-pattern 0-pattern (C1, C4) (1-p)2×p2

1000 0-pattern 1-pattern (C1, C2, C3) (1-p)×p3

0100 1-pattern 0-pattern (C1, C2, C4) (1-p)×p3

0010 1-pattern 0-pattern (C1, C3, C4) (1-p)×p3

0001 0-pattern 1-pattern (C2, C3, C4) (1-p)×p3

1100 1-pattern 0-pattern (C2, C4) (1-p)2×p2

1010 0-pattern 1-pattern (C1, C2) (1-p)2×p2

1001 0-pattern 1-pattern (C1, C2, C3, C4) p4

0110 1-pattern 0-pattern (C1, C2, C3, C4) p4

0101 0-pattern 1-pattern (C3, C4) (1-p)2×p2

0011 1-pattern 0-pattern (C1, C3) (1-p)2×p2

1110 1-pattern 0-pattern (C2, C3, C4) (1-p)×p3

1101 0-pattern 1-pattern (C1, C3, C4) (1-p)×p3

1011 0-pattern 1-pattern (C1, C2, C4) (1-p)×p3

0111 1-pattern 0-pattern (C1, C2, C3) (1-p)×p3

1111 0-pattern 1-pattern (C1, C4) (1-p)2×p2

Figure 5: All possible error guesses.

may be changed so that the scope of the range in which
the C′i,j is initially located is also altered. In Figure 5, the
column Possible patterns shows all possible conditions
of C′i,1, C′i,2, C′i,3, and C′i,4 after modification. The col-
umn Original patterns assumes the original correct corre-
sponding pattern. The column Guessing patterns shows
the incorrect guessing results based on the column Pos-
sible patterns and taking the watermark extraction step.
The column Related coefficients lists C′i,j’s which lead to
incorrect guesses, that is, the guess is incorrect because the
scope of the range in which the location of these C′i,j’s is
changed. The column Probability is the possibility of in-
correct guessing for such pattern. Suppose p is the average
possibility of the change to the range in which every C′i,j is
located. So the average possibility that a pattern is guessed
incorrectly is 6p2 − 12p3. Consequently, the possibility of
incorrect guessing when taking the watermark extraction
step to calculate the value of bit bi is 6p2 − 12p3. For ex-
ample, when p is 0.1, the possibility of incorrect guessing
is 0.056. In the previous section, we concluded that the
possibility of change to the range in which C′i,j is located is
small, so the possibility of incorrect guessing when calcu-
lating the value of bi is small as well.

4 Experimental Results
With simple calculation, the proposed watermarking tech-
nique can effectively complete the tasks of watermark em-
bedding and extraction. The effectiveness of the proposed
watermark embedding and extraction processes can be ex-
amined from the following experimental results. As for the
platform of the experiment, we used Pentium III 500 CPU,
64MB RAM, Windows 2000 Professional operating sys-
tem, and Java programming language.

In these experiments, the extracted watermark from the

A PATTERN MAPPING BASED DIGITAL. . . Informatica 28 (2004) 181–188 185

watermarked images that have undergone various kinds of
attacks such as cropping, JPEG lossy compression, blur-
ring and sharpening operations is visually acceptable. To
judge the extracted accuracy, a quantitative measurement
is required. Here, the watermarked image quality and the
extracted watermark are evaluated based on two kinds of
ratios that have been popular in related studies. One is Peak
Signal to Noise Ratio (PSNR), and the other is Normalized
Correlation (NC) ratio, a similarity measurement between
the referenced watermark image S and the extracted water-
mark image S′.

The following equation shows the definition of PSNR:

PSNR = 10 log10(
2552

MSE
)dB. (4)

In Equation (4), MSE represents the mean-square error.
For a gray-level image with N1 × N2 pixels, its MSE is
defined as

MSE =
1

N1 × N2

N1−1∑
i=0

N2−1∑
j=0

(I(i, j)− I′(i, j))2, (5)

where I(i, j) and I′(i, j) denote the (i, j)-th pixel value in
the original image and that in watermarked image, respec-
tively.

Equation (6) defines the other ratio NC

NC =

∑M1−1
i=0

∑M2−1
j=0 S(i, j)S′(i, j)

∑M1−1
i=0

∑M2−1
j=0 (S(i, j))2

(6)

In this equation, for an M1×M2 watermark image, S(i, j)
and S′(i, j) denote the (i, j)-th pixel values in the watermark
image and the extracted watermark, respectively. NC is the
cross-correlation normalized by the referenced watermark
energy that gives unity as the peak correlation.

In our experiments, the original image, 512× 512 gray-
level "Lena", corresponds to another 32× 32 binary water-
mark, as shown in Figure 6(a) and Figure 6(b). On the other
hand, we set the thresholds of the low frequency sub-band
and high frequency sub-band to be 4 and 7 in the experi-
ment. That is, RL = 4 and RH = 7. After the proposed wa-
termark embedding process, the PSNR value of the water-
marked image becomes 39.65 dB (as shown in Fig. 6(c)),
which indicates better quality of a watermarked image for
the human eye. In other words, this proposed scheme sat-
isfies the watermarking requirements. Besides processing
good image quality, the extracted watermark is the same as
the original one (as shown in Fig 6(d)). Its NC value is 1,
and the bit correct rate (BCR) is 100%.

In the following subsections, we will discuss some ex-
periments with analyses of the robustness of a watermarked
image that subsequence undergoes various attacks such as
cropping, JPEG lossy compression, and destructive signal
processing. We organize different experimental results, and
NC and BCR values from the extracted digital watermark
of the image to create Table 1. The values of PSNR in
Table 1 come from comparing the destroyed digital water-
marked image to the original host image. The bit correct

 (a) 512x512 original image “Lena” (b) 32x32 original watermark

(c) The watermarked image, PSNR =39.65dB (d) the extracted watermark image,

NC=1.0, BCR=100%

Figure 6: The original image and the watermark image.

rate is obtained by comparing the extracted watermark to
the original one.

Table 1: PSNR, NC and BCR values under various image
processing attacks.

 Test results

Attacks

PSNR NC BCR

1/4 cropping 11.39 0.9998 0.9873

Half cropping 8.5679 0.9976 0.9496

3/4 cropping(top-left quarter leaving) 6.087 0.9928 0.8843

3/4 cropping(image boundary leaving) 2.9554 0.9976 0.8887

JPEG compression with rate 8.9 36.6906 0.9976 0.9844

JPEG compression with rate 9.8 36.3994 0.9952 0.9756

JPEG compression with rate 10.7 36.1892 0.9904 0.9824

JPEG compression with rate 13.3 35.4638 0.9796 0.9434

JPEG compression with rate18.3 34.4659 0.9026 0.832

Blurring 38.6222 0.9904 0.9764

Sharpening 32.8791 0.9183 0.8447

first-sharpening last-blurring 38.2217 0.9997 0.9987

first-blurring last-sharpening 38.0953 0.9978 0.9981

first JPEG compression last-blurring 36.7352 0.9255 0.8652

first JPEG compression-sharpening

last-blurring

36.5627 0.9997 0.9932

4.1 Effects of a Cropping Attack

In the image cropping experiment, we apply three kinds of
conditions:(1) Cropping 1/4 of the watermarked image, as
shown in Figure 7(a), (2) Cropping half of the watermarked
image, as shown in Figure 7(b), (3) Cropping 3/4 of the
watermarked image, as shown in Figures 7(c)-(d).

From Figures 7(a)-(d), we discover that the accuracy of
restoring the digital watermark is in inverse proportion to

186 Informatica 28 (2004) 181–188 C.-S. Tsai et al.

the size of the cropped image embedded with the water-
mark. The larger the removed part of an image is, the less
accurate the restored digital watermark will be. Experi-
mental results indicate that the digital watermark can still
be restored to a certain degree even if 3/4 of the image is
removed.

NC=0.9998, BCR=98.73% NC=0.9976, BCR=94.96%

(a) 1/4 cropped (b) One-half cropped

 NC=0.9928, BCR=88.43% NC=0.9976, BCR=88.87%

(c) 3/4 cropped (top-left quarter left) (d) 3/4 cropped (image boundary left)

Figure 7: Watermarks extracted from the various cropped,
watermarked image “Lena”.

4.2 Experiment and Analysis of the Impact
of Lossy Image Compression on the
Watermark

This subsection discusses the experiment of extracting the
digital watermark after the watermarked image “Lena” un-
dergoes JPEG lossy compression process. We adopted the
image optimizing function of ULEAD Photo impact to pro-
cess the watermarked image with different compression
rates and quality rates, and then extracted the digital water-
mark, as shown in Figure 8. Comparing the experimental
data in Table 1 to that of previous research in Table 2 [9],
we discover that the proposed method has a better ability
of resisting ordinary lossy compression.

Table 2: Changes of NC values under various JPEG lossy
compression rates of Hsu and Wu’s method [9].

NC=0.9976, NC=0.9952, NC=0.9904,

BCR=98.44% BCR=97.56% BCR=98.24%

(a) The original watermark (b) Compression (c) Compression (d) Compression

rate=8.9 rate=9.8 rate=10.7

NC=0.9796, NC=0.9026,

BCR=94.34% BCR=83.20%

 (e) Compression (f) Compression

rate=13.3 rate=18.3

Figure 8: Watermarks extracted from the watermarked im-
age “Lena” that has been processed by JPEG lossy com-
pression with various compression rates.

4.3 Experiment and Analysis of the Impact
of the Destructive Signal Process on the
Watermark

This subsection discusses the experiment of extracting the
digital watermark after the watermarked image undergoes
the destructive signal process. In this experiment, we
adopted the filter function of Photoimpact respectively con-
duct blurring and sharpening processes, and then extracted
the embedded digital watermark.

Figure 9 is the experimental results from extracting the
watermark after the blurring process. The proposed tech-
nique can still extract the embedded digital watermark un-
der an acceptable blurring process. Figure 10 is the experi-
mental results for the extracted watermark after sharpening
process. According to the experimental results, the pro-
posed technique can still effectively extract the embedded
digital watermark after sharpening attacks.

(a) Blurred one time (b) NC=0.9904, BCR=97.64%

Figure 9: Blurred image “Lena” and the recovered water-
mark.

The following experiment explores the effect of restoring
the watermark from the digital watermarked image which
has undergone mixed image processing. In this experiment,
the mixed image processing includes the first-sharpening
last-blurring operation, first-blurring last-sharpening oper-

A PATTERN MAPPING BASED DIGITAL. . . Informatica 28 (2004) 181–188 187

(a) Sharpened one time (b) NC=0.9183, BCR=84.47%

Figure 10: Sharpened image “Lena” and the recovered wa-
termark.

ation, first JPEG compression last-blurring operation, and
first JPEG compression-sharpening last-blurring operation.
The experimental results are shown in Figures 11-15. Table
1 shows that the NC’s are greater than 0.91 and the correct
rate is greater than 0.84. The extracted watermarks are still
visually recognizable and are highly similar to the original
watermark.

(a) First-blurred last-sharpened (b) NC=0.9997, BCR=99.87%

Figure 11: First-sharpened last-blurred image “Lena” and
the recovered watermark.

(a) First-sharpened last-blurred (b) NC=0.9978, BCR=99.81%

Figure 12: First-blurred last-sharpened image “Lena” and
the recovered watermark.

5 Conclusions
This paper proposes a scheme that combines discrete
wavelet transformation and pattern mapping and success-
fully applied them to the digital image watermarking tech-
nique. This scheme meets the requirements of current dig-

(a) First JPEG compression last-blurred (b) NC= 0.9255, BCR=86.52%

Figure 13: First JPEG compression last-blurred image
“Lena” and the recovered watermark.

(a) First JPEG compression-sharpened last-blurred (b) NC=0.9997, BCR=99.32%

Figure 14: First JPEG compression-sharpened last blurred
image “Lena” and the recovered watermark.

ital image watermarking techniques. In the proposed wa-
termark embedding process, the pattern mapping method
can be used to effectively embed each digital watermark bit
into the four DWT frequency coefficients of the digital host
image, and retains an acceptable quality of watermarked
image. On the other hand, with simple calculation, the pro-
posed watermark extraction process can effectively extract
the embedded watermark from the watermarked image to
complete the verification of image ownership. From the ex-
perimental results, a digital watermark of acceptable qual-
ity can be extracted from an attacked watermarked image
that undergone processes image cropping, lossy compres-
sion, destructive signal processing, and even mixed image
processing attacks.

Figure 15: Noised image “Lena” and the recovered water-
mark,NC=0.9976, BCR=99.32%.

188 Informatica 28 (2004) 181–188 C.-S. Tsai et al.

References
[1] W. Bender, D. Gruhl, N. Morimoto, and A. Lu (1996)

Techniques for Data Hiding, IBM System Journal,
Vol. 35, No. 3, pp. 313–336.

[2] A. G. Bors and I. Pitas (1996) Image Watermarking
Using DCT Domain Constraint, IEEE International
Conference on Image Processing (ICIP’96), Vol. 3,
pp. 231–234.

[3] C. C. Chang and C. S. Tsai (2000) A Technique for
Computing Watermark from Digital Images, Interna-
tional Journal of Computing and Informatica, Vol.
24, pp. 391-396.

[4] C. C. Chang and K. F. Hwang (2000) A Digital Wa-
termark Scheme Using Human Visual Effects, Inter-
national Journal of Computing and Informatica, Vol.
24, No. 4,pp. 505-511.

[5] C. C. Chang, and H. C. Wu (2001) A Copyright Pro-
tection Scheme of Images Based on Visual Cryptog-
raphy, The Imaging Science Journal, Vol. 14, pp. 141-
150.

[6] I. J. Cox, J. Kilian, T. leighton, and T. Shamoon
(1997) Secure Spread Spectrum Watermarking for
Multimedia, IEEE Transactions on Image Process-
ing, Vol. 6, No. 12, pp. 1073–1687.

[7] I. J. Cox and J. P. M. G. Linnartz (1998) Some Gen-
eral Methods for Tampering with Watermarks, IEEE
Journal on Selected Areas in Communications, Vol.
16, No. 4, pp. 587-593.

[8] S. Craver, N. Memon, B. L. Yeo, and M. M. Yeung
(1998) Resolving Ownerships with Invisible Water-
marking Technique: Limitations, Attacks, and Impli-
cation, IEEE Journal on Selected Areas in Communi-
cations, Vol. 16, No. 4, pp. 573–586.

[9] C. T. Hsu and J. L. Wu (1999) Hidden Digital Water-
marks in Images, IEEE Transactions on Image Pro-
cessing, Vol. 8, No. 1, pp. 58–68.

[10] C. T. Hsu and J. L. Wu (1998) Multiresolution Wa-
termarking for Digital Images, IEEE Transactions on
Consumer Electronics, Vol. 45, pp. 97-110.

[11] M. Kutter, F. Jordan, and F. Bossen (1998) Digi-
tal Watermarking of Color Images Using Amplitude
Modulation, Journal of Electronic Imaging, Vol. 7,
No. 2, pp. 326–332.

[12] R. Ohbuvhi, H. Masuda, and M. Aono (1998)
Watermarking Three-Dimensional Polygonal Models
Through Geometric and Topological Modifications,
IEEE Journal on Selected Areas in Communications,
Vol. 16, No, 4, pp. 551–560.

[13] G. Voyatzis and I. Pitas (1999) Protection Digital
Image Copyrights: A Framework, IEEE Computer
Graphics and Applications, Vol. 1, pp.18-24.

[14] M. D. Swason, M. Kobayashi, and A. H. Tewfik
(1998) Multimedia Data Embedding and Watermark-
ing Techniques, Proceedings of IEEE, Vol. 86, No. 6,
pp. 1064–1087.

[15] R. B. Wolfgang and E. J. Delp (1996) A Ownership
for Digital Image, Proceedings of the 1996 Interna-
tional Conference on Image Processing, Lausanne,
Switzerland, Vol. 3, pp. 219–222.

 Informatica 28 (2004) 189–196 189

Development of Diabetes Mellitus Mathematical Models From
Patient's Clinical Database
A.Karim El-Jabali
Assistant Professor,
Department of Electrical Engineering, Al-Isra University,
Amman, Jordan
akjab873@hotmail.com

Keywords: Diabetes Modeling; Identification; Time Series; Nonlinear Regression

Received: May 5, 2003

The need for an exact mathematical and computer aided simulation model in physiological research is
increasing. This paper deals with the building and identification of diabetes dynamic models. Real
clinical data was used to demonstrate how to derive mathematical models that govern the dynamics of
diabetes, namely three Multivariable models: Nonlinear Least Squares Regression (NLSR), Auto-
Regressive with Exogenous Input (ARX), and Auto-Regressive Moving Average with Exogenous Input
(ARMAX) are identified in this process. Their quantitative performance is assessed by four statistical
measures which have shown that the ARX is more accurate than the two other models in predicting the
near future values of glucose concentration. The general form of the simulated models can be
recommended for use in computerized drug delivery systems, as well as for developing an interactive
software package for patient and medical staff education

1 Diabetes: The Problem Size
As the number of diabetics grows worldwide, the
diabetes mellitus takes an ever-increasing interest in
national health care policies and budgets. The latest
estimate of World Health Organization of the people
affected by diabetes in 2003 is 370 million and about 9%
of the global total number of deaths [1]. Gross health
care cost of treating diabetes in the USA in 1997 was
US$ 98 billion, apart from other intangible costs (pain,
anxiety, inconvenience and generally lower quality of
life etc). Effective data show that an overall health care
cost of diabetes is about 10% of annual health care
budgets. The above mentioned figures rise annually as
diabetes prevalence increases.

2 Problem Definition
Glucose in blood is controlled mainly by two hormones:
the insulin and the glucagon. Inadequate amount of these
hormones leads to low (hypoglycemia) or high
(hyperglycemia) blood sugar levels. Glucagon and
insulin are produced by alpha and beta cells of the
pancreas respectively. Cortisone, growth hormone, and
catecholamine are other hormones that influence blood
sugar levels.
When blood sugar rises after a meal, the beta cells
release the insulin which helps glucose penetrate the
body cells, thus lowering blood levels of glucose to the
normal range. As blood sugar lowers, the alpha cells
secrete glucagon, a signal that prompts the liver to
release stored glycogen and turn it into glucose, thus
raising blood sugar levels to normal range. The normal

range of blood sugar is about 60 mg/dL to 120 mg/dL,
depending on the last meal a person ate [2].
 Diabetes develops when the body cannot use glucose for
fuel. This is due the inability of the pancreas to produce
enough insulin, or because the available insulin is not
effective. As a result, glucose builds up in the blood
instead of getting into body cells.

The treatment of diabetes aims to keep blood sugar in a
close-to-normal range and to minimize the frequency and
severity of glycemic excursions. To achieve that goal,
diabetics may use multiple injections of insulin every
day, or use insulin pump, make frequent tests of blood
glucose, dieting and perform exercise, and get due
guidance from health care professionals [3]. In this
paper, three algorithms of insulin/glucose interaction that
can be used in the treatment are presented.

3 Mathematical Modeling
As biomedical processes are better established and
available computing power increases, mathematical
models and computer simulations are increasingly
utilized and applied. Biologically realistic mathematical
models serve as the basis for the majority of the methods
used in quantitative physiologic analyses of medical data
[4].These models help to test the mechanisms related
hypotheses that govern these complex systems, reveal
contradictions or incompleteness of data and hypotheses,
and allow prediction of system performance under
untested or presently un-testable conditions. They may
also predict and supply the values of experimentally

190 Informatica 28 (2004) 189–196 A.K. El-Jabali

inaccessible variables. These models should be as
representative and comprehensive as possible, but not
complicated. The first two requirements give good
insight into what is being investigated by providing a
concise summary of the observed behavior. The
complexity of the model may be restricted by the need
for implementation, particularly because applying more
complex models is time-consuming and requires
considerable effort.
The general potential of mathematical models is apparent
when there is sufficient knowledge about the system.
This knowledge allows the formulation of solid
hypotheses [5]. As the ability to acquire data expands
and the sophistication of computing methods increases,
more effective and broader applications of these models
are expected. This includes, but not restricted to,
estimation, prediction, calibration, and optimization [6].
Hence, estimation is made to obtain the value of the
model's parameters (coefficients) for a particular
combination of values of the predictor variables, while
prediction is used to test the model's validity.
However, mathematical models of diabetes are of wide
diversity. The most widely used in literature are the
compartment models that consist from linear and
nonlinear differential equations [7, 8, 9]. One common
model in this category is the so called Automated Insulin
Dosage Advisor model, or simply AIDA model [10]. It
consists of four differential equations along with twelve
auxiliary relations that determine the parameters of the
model. AIDA model was developed for patient and
medical staff education. Other classes of models like
probabilistic [11] and non-compartment [12] were also
used. Recent spectrum of diabetes models is reported in
[13, 14].
 In the last decade, several research groups used, and
continue to use, modern identification techniques that are
based on artificial intelligence, statistical and quantitative
methods. These include time series methods [15], fuzzy
logic [16], neural nets [17,18] and a combination of these
and other methods[19]. An example of artificial neural
networks- based models (ANN) is that developed by
Pender [17] which had shown good performance in
predicting blood glucose levels 2 hours ahead. All these
models of glucose metabolism and insulin kinetics,
including that developed in this paper, are intended to
estimate the time course of glucose concentration and are
expected to be conclusive to a generalized model.

4 Data and Methods
The data used in this study are based on those of the
Artificial Intelligence in Medicine symposium AIM-
94[20] .It consists of a protocol of type I diabetic patient
observations over a period of 75 days. This period of
time is quite sufficient to capture a detailed record of
excursions, and provides ample information about the
patient’s diabetes profile. Meanwhile, the Present blood
Glucose Level (PGL), dosages of insulin injections:
Short-Term acting Insulin (STI), Mid-Term acting (MTI)
and Long-Term acting (LTI) Insulin, and qualitative
indication about the amounts of food intake (Meal) and

physical effort exerted (Exercise) are recorded. The total
number of readings is 560 for each variable. Figure (1)
shows twenty readings of glucose from which it is clear
that blood glucose fluctuates in a wide range. The time
between readings is about three hours. The goal of this
study is to establish effective equations i.e. a
mathematical model of diabetes dynamics that is
consistent with the data. The efficiency of the developed
model is to be tested by its ability to determine the next
glucose level for specified parameter values, and to
perform parameter estimation in which model outputs are
fit to the clinical data. The inputs to the system u(s) in all
developed models include PGL, STI, MTI, LTI, Meal,
and Exercise, while the output is the Next Glucose Level
(NGL). In this study the data is divided into two subsets:

• Estimation Data Set – used to estimate the
parameters of the mathematical models

• Validation Data Set –used to decide whether the
models correctly predict the actual output

Figure 1: The first twenty readings of blood glucose.

5 Prediction Strategies
Model validation is the core of the identification
problem, but there is no absolute procedure for
approaching it [21]. One primary tool is to compare the
results obtained from model structures with different
orders. Another method is to test prediction properties of
the model. Hence, prediction is necessary to evaluate
how well the proposed time series model is capable of
predicting future values of the data. This prediction
method depends on the model structure. The validation
data set is usually different from that used for parameter
estimation.
Figure (2) illustrates the task of one step prediction in
which the previous inputs u(k-i) and outputs y(k-i) of a
process are given and the process output ŷ (k) at the next
sample instant is predicted.
To compute the k-step ahead prediction of the output
y(t), the suggested model uses the information in the
input u(s) up to time s= t, and information in the output
y(t) up to time s = t-k , as input values and the results of
the prediction is compared with the output data y(t)

DEVELOPMENT OF DIABETES MELLITUS... Informatica 28 (2004) 189–196 191

Figure 2: One step prediction of the output.

One method to obtain multi step prediction [21,22] is to
use recursively the model shown in figure (2) i.e. at the
first step the prediction of one step into the future is
accomplished, next the same model is used to predict a
further step ahead by replacing k with k+1 and utilizing
the result ŷ (k) from the previous prediction step as an
input to the second stage of the model. This procedure
can be repeated to predict the required number of future
steps altogether. The drawback of this approach is that
the prediction relies on previous predictions and thus the
prediction errors may accumulate

6 Measures of Prediction Errors
To assess the performance of all models the difference
between the Predicted Next Glucose Level (PNGL) and
Actual Next Glucose Level (ANGL) from the data set is
defined as an Error

Error = ANGL – PNGL (1)

and the following measures of performance were
introduced
Mean Square Error (MSE)

MSE = ∑(Error.^2)/length(ANGL) (2)

Mean Absolute Error (MAE),
MAE = ∑ |Error|/length(ANGL) (3)

Average Error (AE)
AE = ∑ (Error)/length(ANGL) (4)

 Percentage Relative Error
PRE = |((PNGL - ANGL)./ ANGL)|.*100 (5)

Three different multivariable models of glucose/insulin
dynamics are developed, assessed and compared:
Nonlinear Least Square Regression NLSR, Auto-
Regressive with Exogenous Input (ARX) and its Moving
Average version (ARMAX).

7 Nonlinear Least Square
Regression (NLSR)

Since the nature of the dynamics of diabetes, as many
other biomedical phenomena, is nonlinear [12] the
corresponding nonlinear regression is a more realistic
favorite to find a fitting model. A nonlinear model is any
model of the form

Y= f (xi, αi) + ε (6)

in which the functional part of the model f is not linear
with respect to systems variables xi and the unknown
parameters αi , while ε represents random disturbances.

The least squares method is used to estimate unknown
parameters by minimizing the sum of the squared
deviations between the data and the model. These
estimates are actually optimal [22]. Nonlinear least
squares regression extends linear least squares regression
for use with a much larger and more general class of
functions. Almost any function that can be written in a
closed form can be incorporated in a nonlinear regression
model.
 Being a "least squares" procedure, NLSR has some of
the advantages (and disadvantages) that the linear least
squares regression has over other methods. One common
advantage is the efficient use of data. That is, it can
produce good estimates of unknown parameters in the
model with relatively small datasets. The major cost of
moving to nonlinear least squares regression from other
simpler modeling techniques is the need to use iterative
optimization procedures to compute the parameter
estimates. This necessarily requires the user to provide
starting values for the unknown parameters before the
software can begin optimization [23]. Selecting an
appropriate nonlinear model is always an iterative
process. Much of the need to iterate stems from the
difficulty in initially selecting a function that describes
the data well. Details about the data are often not easily
visible as originally observed, especially in the case of
multivariable systems. In reaching the best model the
starting model was the linear model

 y = α1x1 + α 2 x2 + α3 x3 + α 4 x4 + α 5 x5 (7)

where y, x1, x2, x3, x4, and x5 are the NGL, PGL, STI,
MTI, LTI and Meal respectively, while αi are unknown
coefficients to be estimated. This linear model gives a
Percentage Relative Error (PRE) value of 35.712% in
predicting the 5 readings ahead of the next glucose level.
Moreover, the MSE is of 108 orders and MAE is
69.0618.These facts show that the linear model is poor
and is not an adequate candidate to describe the
dynamics of diabetes. The next step in obtaining a more
accurate model is the addition of nonlinear terms to the
previous model. Trying different combinations of
nonlinear formulae lead to the following equation:

 y=x1 + α 1x5 + α 2 [exp (-α 3(x2+x3+x4))α 4 x1] + (α

5x2+α 6x3+α 7x4)x1 (8)

 Model validation is the next and possibly the most
important step in the model building sequence. To get
this task accomplished, another part of data was applied
to test the model’s potential to predict the actual
measured output. The result, i.e. the predicted values of
the output ŷ (k) i.e. PNGL and their actual values y (k)
i.e. ANGL are shown in figure (3). Moreover, the
difference between the actual and predicted values is
obtained in figure (4). The performance of the model is
computed for 5, 10, and 60 steps ahead, using MSE,
MAE, AE, and PRE. The computed values of the

192 Informatica 28 (2004) 189–196 A.K. El-Jabali

performance criteria of NLSR are summarized in Table
(1).

Figure 3: Actual and Predicted Data for Non-Linear
Model.

Figure 4: Errors between Actual and Predicted Data
for Non-Linear Model.

8 Time Series Models
Time series methods aim to explore the main
characteristics of the system through the frequent
measurements of the input and output variables. When
several variables are taken together, the series becomes

multivariate. The model in this case tries to capture the
trends and the various inter-relationships between the
different series. A time series is not usually a very
compact representation of a time evolving phenomenon.
Therefore, it is necessary to condense the information
available and find a parameterization that contains the
most relevant features to the underlying system. The
amount of information that can be recovered from time-
delayed copies of finite sets of noisy measurements is,
however, quite a complicated question that has no
general answer right now [24,25,26].
One formal requirement for almost all time series
methods is stationarity. The most common definition of a
stationary process found in textbooks (often called strong
stationarity) is that all conditional probabilities are
constants with time. If nonstationarity is detected, the
time series is often discarded as unsuitable for a detailed
analysis, or split into segments that fall short to be
regarded as stationary [25,26].There are many methods
to investigate the stationarity of the data [22,25,27].The
application of these methods suggested by Harvey [27]
on data under consideration, approved the further
developing of time series models for diabetics.
Indeed, the application of these methods to explore the
underlying dynamics of biomedical systems is
widespread [28, 29, 30]. Interdisciplinary works which
combine approaches from different disciplines in solving
problems are just one feature of research of the last
decade. It has been manifested in many publications
which use time series and artificial neural networks
concepts to beat the complex problems like diabetes
[30,31]. Among the many forms of time series models
are multivariable Auto-Regressive with Exogenous Input
(ARX) Model and the multivariable Auto-Regressive
Moving Average with Exogenous Input (ARMAX)
Model .Both forms are used in this paper to derive
models of diabetes mellitus.

8.1 ARX model
A common question that justifies the use of ARX models
is whether present and future glucose values can be
predicted from recent blood glucose history. The fact that
there is significant statistical inter-dependence among the
individual successive glycemic measurements indicates

Table 1: NLSR performance evaluation for 5, 10, and 60 steps prediction.

Model

 NLSR model

Performance

MSE(x103)
mg/dL

MAE
mg/dL

AE
mg/dL

PRE
%

5 step ahead

1684.5 38.428 -38.428 -1.9710

10 step ahead

1217 31.475 -17.433 -2.0698

60 step ahead

1905 38.496 -6.0382 14.371

DEVELOPMENT OF DIABETES MELLITUS... Informatica 28 (2004) 189–196 193

the motivation to use the patient’s record to find a model
that at least forecasts the near future values of glucose.
The latter might be helpful for both the patient and
physician in dealing with the complications of the
disease. In this study, the problem is a multidimensional
with five inputs and one output. A multivariable ARX
model is given by

() () () () ()A q y t B q u t nk e t= − + (9)

where u(t),y(t), and e(t) are input, output and random
disturbance vectors respectively. nk
 is the number of delays from input to output and ()A q ,
B(q) are the corresponding polynomials [27] in the
delay operator 1q− . To reach the best polynomial, low
order models were initially used, then the order was
discretely increased. This procedure leads to the
following best model with parameters as shown in Table
(2).
The model uses three past values of glucose history (A-
matrix), and four past values of different types of
insulin(B1, B2, and B3), meal (B4) and exercise (B5) to
model the dynamics. Then, the performance of the
obtained ARX model was assessed by a validation data
set that differs from the estimation data set. The new set
was applied to test the model’s ability to predict the
actual measured glucose level. The predicted model
output and the actual data are shown in figure (5).The
error (residuals) between the predicted and actual data is
shown in figure (6).The performance of the model is
computed for 5, 10, and 60 steps ahead using MSE,
MAE, AE, and PRE. The computed values of the

performance criteria of ARX are given in Table (3).

8.2 ARMAX model
A general multivariable ARMAX model structure is

() () () () () ()A q y t B q u t nk C q e t= − + (10)

Figure 5: Actual and Predicted Data for ARX Model.

Figure 6: Error between Actual and Predicted Data
for ARX Model.

where, ()A q , ()B q , and nk are as for ARX case while
()C q is the polynomial representing the weight of the

disturbance e(t) .The orders of A, B, and C are to be

selected and their coefficients to be estimated by least
square regression algorithm. Starting from low orders
and carrying iterations for each order, the best
performance model is reached. Model coefficients are
given in table (4). Hence the introduction of weighting
error matrix C (q) reduces the required past values of the

Table 2: the coefficients of ARX model.

 q^0 q^-1 q^-2 q^-3 q^-4
A 1 - 0.2787 - 0.1093 0.1125 0
B1 0 0 0.1813 0.3393 - 0.1359
B2 0 0 -2.709 1.813 - 0.195
B3 0 0 -0.8138 2.086 2.087
B4 0 0 0.5189 1.762 1.026
B5 0 0 -4.937 45.88 7.849

Table 3: ARX performance evaluation for 5, 10, and 60 steps prediction.

Model ARX model
Performance MSE(x103)

mg/dL
MAE
mg/dL

AE
mg/dL

PRE %

5 step ahead

0.00375 4.3295 4.3295 0.2405

10 step ahead

1.4140 21.668 -15.262 1.5025

60 step ahead 1434.8 29.739 -1.563 10.26

194 Informatica 28 (2004) 189–196 A.K. El-Jabali

input variables to three. As in the case of ARX, the
obtained ARMAX model was tested by a new data set.
The predicted output by the model and the actual data are
shown in figure (8).The error (residual) between the
predicted and actual data is shown in figure (9). As in the
case of NLSR and ARX, the performance is assessed for
5, 10, and 60 steps ahead. The performance measures of
ARMAX model are summarized in Table (5).

Table 4: the coefficients of ARMAX model.

 q^0 q^-1 q^-2 q^-3
A 1 0.05073 - 0.04447 0.2591
B1 0 0.005721 0.3144 0.4302
B2 0 -0.5042 - 2.41 0.6396
B3 0 0.01116 - 0.3916 2.815
B4 0 1.083 1.123 1.281
B5 0 30.55 21.67 37
C 1 0.3856 0.1649 0.09075

9 Results
Models obtained in this study performed best when using
MSE, MAE, and PRE as a criterion for predicting future
values of blood glucose levels. NLSR model has given
good results in short term prediction. It generates a small
error (see table 1) using all measures of performance in
predicting 5 and 10 readings ahead of the NGL output.
The PRE of prediction, for example was -1.971 % and -
2.0698% respectively. The negative sign of the PRE
indicates that the predicted value is less than the actual
reading. The model’s prediction ability deteriorates for
long term prediction (60 readings ahead) with
corresponding relative percentage error of 14.371%
Using the time series ARX model, with third order input
polynomial and fourth order output polynomial, it was
found that (see table 3)the relative percentage error PRE
is 0.2405% and 1.5025% in predicting the 5 and 10
future values of NGL respectively. Moreover, it was
observed that the developed model's output replicates the
system's output (patient’s glucose levels) for the first four
prediction samples. This fact is shown more clearly in
figure (7). This is equivalent to about ten future hours,
which is a good indication of the model validity. After
that, (for 60 readings ahead), the model becomes less
reliable and its performance tends to go far away from
the actual data. Hence the other performance criteria act
in identity with the PRE.

Figure 7: The first ten actual and predicted data for
ARX model.

The performance of the developed ARMAX model with
third order input polynomial, third order disturbance
polynomial, and third order output polynomial is not any
better than that of the ARX model. It gives a slightly
increased PRE, (see table 5) in the prediction of the near
future values of NGL. In addition, none of the first four
values are in agreement with the original value of the
systems output as it is with the ARX model (see figure
8).

Figure 8: Actual and Predicted Data for ARMAX
Model .

Table 5: ARMAX performance evaluation for 5, 10, and 60 steps prediction.

 Model ARMAX
Performance

MSE(x103)
mg/dL

MAE
mg/dL

AE mg/dL PRE
%

5 step ahead

0.6459164 19.033 14.6018 0.9131

10 step ahead

1.2788 25.828 -8.4937 2.0166

60 step ahead 1387.5 30.461 -1.52 12.34

DEVELOPMENT OF DIABETES MELLITUS... Informatica 28 (2004) 189–196 195

Figure 9: Error between Actual and Predicted Data
ARMAX Model.

10 Argumentation
The developed time series models in this paper focus on
the use of a diabetic record of direct measured variables.
In contrast to many previously developed heuristic rule-
based expert systems and linear models of diabetes
mellitus [17, 32, 33], these models not only can model
diabetes mellitus using relatively simple interpreted
physiological terms, but also can be of good potential in
predicting future values of glucose concentration. The
models account for meal and exercise qualitatively using
a two-levels scale (0 –for the case of going with no food
or when no exercise had been done, and 1- for the case of
eating or having done exercise). In this case, and in
contrast to AIDA model [34], determining the values of
these parameters is not difficult in real life. Moreover,
the developed models are simple and readily
understandable to a health care worker or patient.
Exploring the predictability of future blood glucose
levels, from the time course of the patient's records,
provides a good tool to judge whether the proposed
models have acceptable performance. Although, the
deviation between the observed and predicted blood
glucose values is used in Tresp et al [30], the authors did
not give any quantitative evaluation of the performance.
Furthermore, many ANN- based studies [17, 29] used
only one quantitative measure of the performance,
usually the normalized MSE. The assessment of the
models developed in this study is accomplished through
using four quantitative measures: MSE, MAE, AE, and
PRE. These criteria gave identical indication of the
ability of these models to predict the future values of
blood glucose concentration. Moreover, the accuracy of
prediction is in general better than that provided in other
studies [17, 28]. For example, the PRE of the model
developed in Pender [17] ranges from 3% to 12.4% of
the actual blood glucose level depending on the
validation data set, while the results of the developed
current models (see tables 1,3, and 5) provide less PRE
for the case of 5 and 10 prediction steps. Discrepancy
between the observed and predicted blood glucose values
became systematically worse as time progressed from the
date of the original parameter estimation.

All that said, the three mathematical models are
considered to be of good performance. The NLSR model
is the worst and can be further improved by adding more
components or by adjusting one or more of them. This
problem is not evident in the case of the time series
models. The ARX model showed its power to predict
near future values of the glucose concentration with
acceptable accuracy (see table 3), while ARMAX
model(see table 5) is less accurate in obtaining the
expected value of glucose, though still good. Both
models are of good use for programmed insulin delivery
devices and for educational purposes. However, these
models can not recommend the amount of insulin to be
delivered in response to the elevated glucose
concentration. Developing an appropriate controller to
fulfill this task needs more research.

11 Conclusions and Future Work
Describing complex medical processes like diabetes by a
relatively simple and accurate time series models is
possible. Meanwhile, many computerized systems of
drug delivery and implantable pumps have been
developed and all try to give patient an adequate amount
of insulin in proper time. The presently developed time
series algorithms show that these systems can use the
available data on the patient, current status and history to
predict the next value(s) of glucose level. Likewise they
can be utilized in computerized trial design, and to assist
clinical investigators. Indeed, effective use of models can
significantly reduce the time and costs involved in drug
development and administration. The obtained models
open the way for seeking a general model that can be
used for developing an interactive software package
similar to AIDA. This goal can be achieved by
comparing the similar models derived from data base of
many patients. Furthermore, this software can account
for more factors that affect the patient’s health. The long-
term goal of this research is the development of an
optimal controller that will use blood glucose
measurements, qualitative information about food intake,
physical exercise and past insulin infusion values to
compute the proper insulin dose that compensate the
elevated glucose concentration. Other problems that can
be investigated in future work are the different time
intervals between measurements and the missing data in
the time series.

12 References
[1] World Health Organization; Fact Sheet N° 236;

September 2002.
[2] R.Cotran; Pathological Basis of Disease, 6th edition;

W.B. Saunders Company; Ontario, Canada; 1999.
[3] Jean Venable R, Goode, Pharm D.; New Advances

in the Treatment of Diabetes; Medscape Portals;
New Jersey; 2001

[4] Modeling in Biomedical Research: An
Assessment of Current and Potential Approaches:
Applications to Studies in Cardiovascular/Pulmonary

196 Informatica 28 (2004) 189–196 A.K. El-Jabali

Function and Diabetes; Proceedings of National
Institutes of Health Conference; USA; 1989.

[5] David Foster, Arthur J. Atkinson, Principles of
Pharmacokinetic Data Analysis: Modeling and
Simulation, Philadelphia, Pennsylvania; 2002

[6] NIST/SEMATECH e-Handbook of Statistical
Methods, http://www.itl.nist.gov/div898/handbook/,
2003

[7] Candas B, Radziuk J: An adaptive plasma glucose
controller based on a nonlinear insulin/glucose
model; IEEE TA BME 41:116-124, 1994.

[8] Thomas Briegel, V.Tresp;A Nonlinear State Space
Model for the Blood Glucose Metabolism of
Diabetic; Automatisierungstechnik; vol. 50 No 5;
Oldenbourg Verlag; Germany; 2002.

[9] R.S.Parker, F.J.Doyle , and N.A.Peppas; A Model-
based Algorithm for Blood Glucose Control in Type
1 Diabetic Patients; IEEE TA BME Vol.46,No 2,
1999.

[10] Lehmann ED; Interactive educational simulators
in diabetes care; Medical Informatics; Vol 22;pp 47-
76; USA;1997.

[11] Andreassen S, Benn J, Hovorka R, Olesen K,
Carson E; “A probabilistic approach to glucose
prediction and insulin dose adjustment: description
of a metabolic model and pilot evaluation study”;
Computer Methods and Programs in Biomedicine
Vol 41; pp.153-163, 1994, Elsevier Sc. Publ.
Ireland.

[12] Cobelli C, Toffolo G, Ferrannini E; A model of
glucose kinetics and their control by insulin,
compartmental and noncompartmental approaches.
Mathematical Biosciences, 71:291-316, 1996;
Elsevier Sc Publ. Ireland.

[13] Naylor JS, Hodel AS, Albisser AM, Evers JH,
Strickland JH, Schumacher DA: Comparison of
parameterized models for computer-based estimation
of diabetic patient. glucose response. Medical
Informatics, Vol 22, PP.21-34, 1997.

[14] Brian Hipszer; A type 1 Diabetic Model; MSc.
thesis, Drexel University; 2001.

[15] Riccardo Bellazzi, Paolo Magni, Giuseppe De
Nicolao; Bayesian Analysis of Blood Glucose Time
Series from Diabetes Home Monitoring ; IEEE TA
BME Vol.47,No 7, 2000.

[16] A.Karim El-Jabali A. Kailani, M. Abbas.
"Dynamic simulation of fuzzy controller of glucose
concentration based on patient's clinical database”;
Modeling and Simulation Conference MS'02;
Melbourne, Australia 2002

[17] Pender J; ”Modelling of blood glucose levels
using artificial neural networks”. Phd Dissertation.
University of Strathclyde, 1997. Scotland.

[18] V. Tresp, T. Briegel and J. Moody; Neural
Network Models for Blood Glucose Metabolism of
Diabetic; IEEE TA on Neural Networks, Vol.10,
No.5,pp. 1204--1213, 1999.

[19] R.J.Frank, N.Davey, S.P.Hunt ;Time Series
Prediction and Neural Networks;Department of
Computer Science, University of Hertfordshire,
Hatfield, 1997. UK

[20] M. Kahn; Artificial Intelligence in Medicine
AIM-94; Washington University; 1994

[21] Ljung, L.; System Identification-Theory for the
User; Englewood Cliffs; 1999.

[22] O.Nelles; Nonlinear System Identification;
Springer –Verlag Berlin, Germany, 2001.

[23] Moscinski J., Ogonowski Z; Advanced Control
with Matlab & Simulink; Ellis Horwood; 1995.

[24] Raimondas Ciegis; Some Algorithms in
Mathematical Modeling of Diabetes Mellitus;
International Journal Informatica; Lithuanian
Academy of Sciences; Vol. 6 No 1, 1995, Lithuania.

[25] Thomas Schreiber; Interdisciplinary application
of nonlinear time series methods; Physics Reports;
vol. 308, 1999.

[26] Silipo, R.; Deco, G.; Vergassola, R.; Bartsch, H;
Dynamics extraction in multivariate biomedical time
series; Biological Cybernetics, Vol. 79 Issue 1,
pp.15-27,1998

[27] Andrew C. Harvey; Time Series Models, 2nd
edition; Harvester Wheatsheaf; 1992.

[28] Bremer, Troy; Gough, David A.; Is blood
glucose predictable from previous values? Diabetes,
Vol. 48 Issue 3, 1999.

[29] Prank, Klaus; Jurgens, Clemens; Huhlen A,
Brabant G; Predictive neural networks for learning
the time course of blood glucose levels ; Neural
Computation, Vol. 10 Issue 4., 1998.

[30] Tresp, V., Moody, J., Delong, W ; Neural
network modeling of physiological processes; In
Computational Learning Theory and Natural
Learning Systems, vol. 2, T. Petsche, M. Kearns, S.
Hanson, R. Rivest (editors). Cambridge, MA: MIT
Press, pp. 363--378, 1993.

[31] S. L. Ho, M. Xie and T. N. Goh ; A comparative
study of neural network and Box-Jenkins ARIMA
modeling in time series prediction; Computers &
Industrial Engineering;
Vol. 42, PP. 371-375, 2002.

[32] Deutsch T, Carson E, Harvey F, Lehmann E,
Sonksen P, Tamas G, Whitney G, Williams C;
Computer-assisted diabetic management: a complex
approach. Computer Methods and Programs in
Biomedicine; Vol. 32: PP. 195-214, 1990.

[33] Lehmann E, Deutsch T, Roudsari A, Carson E,
Benn J, Sonksen P; A metabolic prototype to aid in
the management of insulin-treated diabetic patients.
Diabetes Nutrition and Metabolism; Vol.4 (Suppl.
1), PP. 163-167, 1991.

[34] Guyton J, Foster R, Soeldner J, Tan M, Kahn C,
Koncz L, Gleason R. A model of glucose-insulin
homeostasis in man that incorporates the
heterogenous fast pool theory of pancreatic insulin
release; Diabetes; Vol.27,PP.1027-1042, 1978.

 Informatica 28 (2004) 197–205 197

Parallel Modular Exponentiation Using Signed-Digit-Folding Technique
Der-Chyuan Lou and Chia-Long Wu
Department of Electrical Engineering
Chung Cheng Institute of Technology
National Defense University
Tahsi, Taoyuan 33509, Taiwan
E-mail: dclou@ccit.edu.tw
Web Address: http://www.ccit.edu.tw/~elec/teach/t3.htm
Phone: 886-3-3809331; Fax: 886-3-3801407

Keywords: Computer arithmetic, modular exponentiation, public-key cryptography, signed-digit recoding, redundant
number system, Galois fields.

Received: July 1, 2003

Fast modular exponentiation algorithms are often considered of practical significance in RSA
cryptosystem. In this paper, a new modular exponentiation algorithm is proposed which based on the
binary algorithm, signed-digit representation, and the folding-exponent technique. As the “signed-digit
recoding algorithm” has less occurrence probability of the nonzero digit than binary number
representation. Taking this advantage, we can effectively decrease the amount of modular
multiplications. By using the technique of recording the common parts in the folded substrings, the
“folding-exponent algorithm” can improve the efficiency of the binary algorithm, thus can further
decrease the computational complexity of modular exponentiation. As the modular squaring operation
in GF(2n) finite field can be done by a simple shift operation when a normal basis is used, and the
modular multiplications and modular squaring operations in our proposed signed-digit recoding
scheme can be executed in parallel, by using our proposed generalized r-radix signed-digit folding
algorithm, we can decrease the computational complexity to 1

2

4 32 {() } 2 () (2 1)
4(1) 2 2

n n n
n n

r k kk
r

− +
× + + − + −

+

multiplications where k denotes the digit-length of the exponent and n denotes the folding time of the
exponent, respectively. Furthermore, if we have the folding time n=1 to minimize the total multiplication
complexity, we can obtain the optimal overall computational complexity as

2

4 3[] 3
2 2 4(1)
k k r

r
+

+ +
+

multiplications in r-radix signed-digit recoding system.

1 Introduction
The motivation of studying high-speed and space-

efficient algorithms for modular exponentiation (ME)
comes from the applications in cryptography. Taking the
RSA cryptosystem [1] for example, the public and
private keys are functions of a pair of large prime
numbers, and the encryption and decryption operations
are accomplished by modular exponentiation. This
modular exponentiation problem can be described as
follows. Given M (message), E (public key), and N (the
product of two large primes), compute ciphertext C=ME
mod N. For the computation of modular exponentiation
of ME mod N, the very intuitive way is to break the
modular exponentiation operation into a series of
modular multiplications. That is, we first multiply M by
itself (E-1) times, and then the result is obtained right
after executing modulo N operation.

As efficient computation of the modular
exponentiations C=ME mod N is very useful for
cryptosystem, we need fast multiplication designs or
novel exponentiation algorithms such as the
Montgomery reduction method [2], high-radix method
[3], addition chains method [4], binary method [5],

residue number conversion method [6, 7], signed-digit
recoding method [8], exponent-folding method [9], non-
standard arithmetic method [10], and compression-based
method [11]. Moreover, a detailed survey of fast
exponentiation techniques has been described in [12].

The rest of the paper is organized as follows. In
Section 2, we review and introduce some famous works
of the modular exponentiation. The proposed high-radix
signed-digit-folding (HRSDF) algorithm for fast modular
exponentiation is discussed in Section 3. The
computational complexity of the proposed algorithm is
detailed analysed in Section 4. Finally, we conclude our
work in Section 5.

2 The Modular Exponentiation
Most modern cryptosystems are based on modular

exponentiation. Exponentiation of large integers with
large exponent and modulus (longer than 512 bits) is one
of the most important operations in several well known
cryptographic algorithms. In 1976, Diffie and Hellman
[13] had proposed the first public-key algorithm as

198 Informatica 28 (2004) 197–205 D.-C. Lou et al.

“Diffie-Hellman key exchange scheme”. In 1978, RSA
public key cryptosystem was invented by Rivest et al. [1]
and is widely used in secure electronic communication.
The ElGamal scheme can be used for both digital
signatures and encryptions [14].

The modular exponentiation used in the RSA
public-key cryptosystem can be expressed as follows.
Given message M, public-key E, and N, compute
ciphertext C=ME mod N. We focus the fast
exponentiation problem, and this problem is dependent
on the algorithm being used and its implementation. For
examples, a fixed number is raised to different powers in
the ElGamal cryptosystem and Diffie-Hellman key
exchange scheme, so pre-computing some powers can
save time at the expense of more storage.

The modular exponentiation is composed of
repetition of modular multiplications. Therefore, modular
exponentiation can be time consuming, and is often the
dominant part of modern cryptographic algorithms for
key exchange, electronic signatures, and authentication.
Two different approaches are often used to reduce the
execution time of the modular exponentiation operation.
One approach is simply to reduce the number of modular
exponentiation. The other approach is to reduce the
execution time of each modular multiplication. In this
paper, we are concentrate on the first approach to
effectively reduce the number of modular
exponentiation.

2.1 The Binary Method
The binary method is also known as the “square-

and-multiply” method [5]. The basic idea of binary
method is to compute ME using the binary expression of
exponent E. Assume k denotes the bit-length of the
exponent E, the exponent E can be expressed in binary
representation as E = (ek-1ek-2…e1e0)2 and

1

0

2 , where {0,1}
k

i
i i

i

E e e
−

=

= × ∈∑ .

The exponentiation operation is broken into a
series of squaring and multiplication operations [15] by
the use of the binary method. There are two commonly
used algorithms [5][16] in binary method can convert the
modular exponentiation of C = ME (mod N) into a
sequence of modular multiplications, i.e., the LSB
method and the MSB (most significant bit) method. The
LSB (least significant bit) algorithm computes the

exponentiation starting from the least significant bit of
the exponent and proceeding to the left, which is shown
as follows.

If we use the LSB algorithm to calculate C = M37
for example, we can first transfer the decimal
representation 3710 into binary representation
()2
100101 for exponent part. We then can get C=M × M4

× M32 = M (1+4+32) =M 37.
The MSB algorithm computes the exponentiation

starting from the most significant bit of the exponent and
proceeding to the right, which is shown as follows.

If we use the MSB algorithm to calculate C=M57, we
can first transfer decimal representation 5710 into binary
representation ()2

111001 . We then calculate C = ((((M2
× M)2 × M)2)2)2 × M = ((((M 3)2 × M)2)2)2 × M =((((M
7)2)2)2 × M = (M 56)× M = M 57.

As the LSB and MSB algorithms have the same
computations for both multiplication and squaring
operations, therefore they have the same computational
complexity. But there are few differences existing
between these two algorithms, to be specifically, the scan
patterns of these two algorithms are different and
squaring operations are executed in different procedures.
Both LSB and MSB algorithms have two same states.
The first state is to execute the multiplication operation
as the bit “1” being scanned, the second state is to
execute the squaring operation when the bit “0” being
scanned.

Take k-length binary exponent for example, for the
average case, we assume the occurrence probabilities for
both bits “1” and bits “0” are the same. Then, the
expectation hamming weights for bits “1” and “0” are
both k/2.

Therefore, the computational complexities for both
LSB and MSB algorithms are 2×(k/2)+ 1×(k/2) = 1.5k
multiplications to evaluate ME. Notice, those two
algorithms although using different scan manners can
still get the same result to evaluate the modular
exponentiation C = ME (mod N) as we put modulo N
operation after every multiplication process.

Considering the hardware implementation, the
operation in LSB algorithm requires one more storage
register S than in MSB algorithm. Therefore, the MSB
algorithm is more appropriate for hardware design. As
there are two independent variable registers S and C in

LSB (Right-to-Left) Algorithm
Input: Exponent: E = (ek-1ek-2…e1e0)2;

Message: M;
Output: Ciphertext: C = ME;
C = 1; S = M;
begin

for i = 0 to k-1 do /*scan from right to left*/
begin

if (ei = 1) C = C × S mod N; /*multiply*/
S = S × S mod N; /*square*/

end;
end.

MSB (Left-to-Right) Algorithm
Input: Exponent: E = (ek-1ek-2…e1e0)2;

Message: M;
Output: Ciphertext: C = ME;
C = 1;
begin

for i = k-1 to 0 do /*scan from left to right*/
begin

C = C × C mod N; /*square*/
if (ei = 1) C = C × M mod N; /*multiply*/

end;
end.

PARALLEL MODULAR EXPONENTION... Informatica 28 (2004) 197–205 199

Generalized Signed-Digit Recoding Algorithm
Input: (rk-1rk-2…r1r0)2, 0 1 10, { , , }ik i r≥ ≥ ∈
Output:(ekek-1ek-2…e1e0)SDr,

, , , ...0 1 1 2 20, { , , }ik i e≥ ≥ ∈
begin

c0 = 0; ek+1 = 0; ek = 0;
for i = 0 to k do

 begin
 ci+1 =

1 ;() / 2i i ic r r+⎢ ⎥⎣ ⎦+ +

1 2 i i i ie c r c+= + − ;

end;
end.

the LSB algorithm, the value in register S will not
influenced by the value in register C. Therefore, we
choose the LSB algorithm to implement modular
exponentiation operation in our proposed algorithm.

2.2 The Exponent-Folding Algorithm
In 1996, Lou and Chang [9] proposed a fast

exponentiation method using exponent-folding
technique. Let the exponent E have the binary
representation (ek-1ek-2…e1e0)2 i.e.

1

0
2 , where {0,1}

k
i

i i
i

E e e
−

=

= × ∈∑ and k is the bit-length of the

exponent E. Here we depict the Exponent-Folding
algorithm as follows.

In the first phase of the Exponent-Folding
algorithm, by folding the exponent E in half n times, and
E is then divided into 2n equal sized sub-strings. Let each
sub-string of E be denoted as Ei for i= 1, 2, ... , 2n, i.e. E
=

2nE �
2 1nE
−

�
2 2nE
−

…. E2�E1, where “�” is the
concatenation operator. Hence

2 (1)()
2

1

()
n

n i

ki EE

i

M S M
−

=

=∏ , (1)

where S(m)(z) represents performing m squares on the
related value z, and Ei is denoted as

1 2
1 02 2

2(...)n n
k k

i i i ie e e e
− − . In the second phase, we perform

bit-wise AND operation between two bit-strings Ei and
Ei+1 and bit-wise XOR operation between two bit-strings
Ei and Ecom_i, we define the following variables:

Ecom_i = Ecom_i+1 = Ei AND Ei+1 for i = 1, 3,
... ,2

n− 3, 2
n− 1, (2)

Eexcl_i = Ecom_i XOR Ei for i = 1, 2, ... , 2
n
.

(3)
Then, Ei can be represented as:

Ei = Ecom_i + Eexcl_i. (4)

In the third phase, the exponentiation of the
consecutive pairs of 2 2 1 1, ,...,n nE E EM M M− can be
computed as:

_ _ ,com i excl ii E EEM M M= × (5)

and _ _ 11 com i excl ii E EEM M M ++ = × for i = 1, 3,
…,2

n− 3, 2
n− 1. (6)

By the definition of the “Ei AND Ei+1” operation
shown in Eq. (2), it is oblivious that this operation will
directly record the common bits for every segment in Ei
and Ei+1 using logical “AND” operation and put this
result into Ecom_i. Meanwhile, from the definition of the
“Ecom_i XOR Ei” operation shown in Eq. (3), the
difference bits of “comparisons between Ecom_i and Ei”
for every segment are recorded in Eexcl_i.

The Exponent-Folding algorithm [9] proposed by
Lou and Chang uses the definitions shown above to
change the register C into three different registers C1, C2
and C3. Here we use register C3 to store the common part
(Ecom_i), and we use registers C1 and C2 to store the
difference bits for “Ecom_i XOR Ei” and “Ecom_i XOR
Ei+1”, respectively.

The last phase of the Lou-Chang Exponent-Folding
algorithm can be depicted as follows, we need compute

the result of
()

22
1 2 (m od)

kk n

sC C C N
−

≡ × before we
output the results every time. Note that, without
completing this computation procedure, instead
obtaining the correct result, we will only have the results
of Ei and E(i+1) segments stored in registers C1and C2,
respectively.

On average, the hamming weights of Ei, Ecom_i and
Eexcl_i are k/2n+1, k/2n+2 and (k/2n+1− k/2n+2), respectively.
Eq. (2) and Eq. (3) confirm that the three “if…then…”
statements in the Exponent-Folding algorithm will be
true under mutually exclusive situations. Thus, in the
Exponent-Folding algorithm, {S × C1, S × S}, {S × C2, S
× S}, {S × C3, S × S} and {S × S} are all performed k/2n+2

times.
Here we assume

_ _ 1, b b
excl i excl ie e +

and
_

b
com ie are

computed in advance. Let P denotes the required number
of multiplications for evaluating common multiplicand
multiplications of X×Y and X×Z. It is oblivious that the P
is not greater than two. On average, the number of
multiplications needed in the Exponent-Folding
algorithm is:

() (2 1).
2

n
n

kk − + − (7)

Note that, the item 1
2 2

32 {() 1 }
2 2

n
n n

k kP−
+ +× + × in Eq. (7)

1
2 2

3() 2 {() 1 2} (
2 2

n
n n

k kF P P k−
+ += × + × + + −

Exponent-Folding Algorithm
Input: M, Ei, Ei+1
Output: 1,i iE EM M +
C1 = C2 = C3= 1; S = M;
begin

for b = 1 to k/2n do /*scan the folding parts*/
begin

�if _(1)b
excl ie = then C1 = S × C1 mod N;

if _(1)(1)b
excl ie + = then C2 = S × C2 mod N;

if _(1)b
com ie = then C3 = S × C3 mod N;

S = S ×S mod N;�
end;
C1 = C1 × C3; C2 = C2 × C3;

end.

200 Informatica 28 (2004) 197–205 D.-C. Lou et al.

Generalized LSD (Right-to-Left) Algorithm
Input: Message M;
Exponent: E = (ekek-1…e1e0) SDr

where , , ,...0 1 1 2 2{ , , }ie ∈
Output: Ciphertext: C = ME
begin
C = 1; S = M;
for i = 0 to k-1 do /*scan from right to left*/

begin
if (ei = r) then C = S r × C mod N;
 /* multiply by s r times*/
if (ei = -r) then C = S -r × C mod N;
/*divide by s r times*/
S = S × S mod N; /*square*/

end;
end.

equals to the constant
3 3

3{ 1 }
2 2
k kP× + × , and won’t be

influenced by different n. Meanwhile, the value of the
item 12 {2} () (2 1)

2
n n

n

kk− + − + − in Eq. (7) becomes bigger

as n grows.
Therefore, it can get the optimal case for

exponentiation when n = 1 (i.e. by folding the exponent
exact one time). When n = 1 and P = 2 in Eq. (7) for
evaluating ME, it will only need 1.375k+3
multiplications.

For the worst case, the numbers of multiplication
required in the Exponent-Folding algorithm is:
As n = 1 and P = 2, then the Exponent-Folding algorithm

takes 1.5k+3 multiplications.

3 The Proposed New Algorithm
3.1. Signed-Digit Recoding Algorithm

The signed-digit (SD) (redundant) representations
number system was first proposed by Avizienis [17] to
make it possible to perform carry-free addition. Recently,
many signed-digit number systems have been used to
increase the efficiency of computer arithmetic
[18][19][20][21] [22]. A signed digit representation of an
integer a in radix r is a sequence of digits a = (L , a2, a1,
a0) with ai {0, 1, , (1)}r∈ ± ± −L .

Moreover, redundant representations of this form
have been used successfully in many arithmetic
applications, including the exponentiation problem in a
group.

In 1993, Arno and Wheeler [23] proposed the
signed-digit representations for minimal hamming
weight arithmetic. For simplicity, we abuse the symbol
“r” and refer to Sr as the set of all signed digit radix r
representations of elements of Ζ. The mapping

: rSπ →Ζdefined by:

associates an integer with each element a .rS∈

The hamming weight of an element a rS∈ ,
denoted w(a), is defined to be the number of nonzero
terms in a. The original Booth recoding technique [24]
scans the bits of the multiplier one bit at a time, and adds
or subtracts the multiplicand to or from the partial
product, depending on the current bit and the previous
bit. In 2000, Joye and Yen [8] proposed new methods for
producing optimal binary signed-digit representations.
We generalized this signed-digit recoding arithmetic
algorithm as follows.

As for signed-digit number with radix r (here r is
greater than 0), assume we abuse the symbol “r”, the
symbols { r , 0, r} can be used for the digit set, in which
r and r in digit position k represent +rk and -rk,

respectively. Based on signed-digit recoding arithmetic
algorithm, the signed-digit representation can be shown
as follows.

1 2 3 1 0 2

1 2 2 1 0 2

1 2 3 1 0 0 2

1 2 2 1 0 2

1 2 3 1 0 SD

2 (, , , ..., , , 0)

(, , ..., , ,)

3 (, , , , ..., , ,)

(, , ..., , ,)

2 (, , , , ..., , , 0)

k k k

k k

k k k k

k k

k k k k r

r r r r r r

r r r r r r

r s s s s s s r

r r r r r r

r e e e e e e

− − −

− −

− − −

− −

− − −

=

+ =

=

=

=−

Figure 1. Signed-digit representation.

Take the SD representation with radix 2 (r = 2) for
an example to discuss the digit occurrence probability,
on average, the probability of the digit “0” appearance is
“2/3”, and the total occurrence probability of nonzero
digits “1” and “1” is “1/3” [23]. Notice that, again by
abusing the symbol “r”, in order to obtain signed-digit 1
for our signed-digit representation in Figure 1, the
subtraction operation executed between 3r and r is a “no-
borrow (carry)” subtraction. If we assume that these two
possible nonzero digits (1 and 1) shared equal
occurrence probability, then we can have the occurrence
probability for each element recorded as {Pr(0) = 2/3,
Pr(1) = Pr(1) = 1/6}.

Moreover, Joye and Yen [8] had combined the
techniques of LSB algorithm and the signed-digit
algorithm to produce optimal binary signed-digit
representations as the LSD algorithm. The LSD
algorithm scans the signed-digit recoding exponent E
from the least significant digit position toward the most
significant digit position to break the exponentiation
operation ME into a series of squaring and multiplication
operations. Here we generalized the LSD algorithm as
follows.

However, there exists a main difference between
the LSD algorithm and the LSB algorithm, namely, the
LSD algorithm must deals with signed-digit “-r”

1() 2 [2] () (2 1). (8)
2 2

n n
n n

k kF P P k−= × + + − + −

0

() (9)i
i

i

a a rπ
∞

=

=∑

PARALLEL MODULAR EXPONENTION... Informatica 28 (2004) 197–205 201

element. Note that, there are two different operations
needed to be done when we scanning elements “r” and “-
r” in the generalized LSD algorithm. When we have
scanned the digit element from E as “r”, then the r times
multiplication operation C = S r× C is executed.
Otherwise, if we have scanned the digit element from E
as “-r”, then the r times “division” operation C = S -r × C
is executed.

3.2. Definitions and Lemma
The basic idea of our proposed method is try to

extract the common substring of the signed-digit
recoding exponent E, and then save the number of
required for the computation of common substrings. Let
each substring of E be denoted as Ei for i= 1, 2, ... , 2n.
Using the signed-digit representation with radix r and
Exponent-Folding algorithm, we define the following
variables:

1 2 1 02 2
SD ,(... ...) r

n n
k k

bE e e e e e
− −

= (10)

Ecom_i = Ecom_i+1 = Ei AND Ei+1 for i = 1, 3,
…,2

n− 3, 2
n− 1, (11)

Eexcl_i = Ecom_i XOR Ei for i = 1, 2,.., 2
n
.(12)

As Ei = Ecom_i + Eexcl_i, we can obtain:
_ _ ,com i excl ii EEEM M M= × (13)

_ _ 11 com i excl ii EEEM M M ++ = × for i = 1, 3, …,2
n− 3,

2
n− 1. (14)
Here we detailed describe the calculation processes

for the Signed-Digit-Folding method, we first define two
bits “00”, “0r”, “r0” to represent “0”, “r”, and “-r”
respectively for eb (in Eq. (10)), as we scan the signed-
digit transformed result of E exact two bits per time
during folding procedure, we can therefore guarantee this
transformation for exponent E will not influence the
calculation result for evaluating ME.
The Ecom_i operation will record the common part for
every two consecutive segments Ei and Ei+1. If the bits in
the same position of two consecutive segments shared
the same value, we will put this same bit value in Ecom_i.
However, if the bit values in the same position of every
two consecutive segments Ei and Ei+1 are different, we
will put “00” in Ecom_i to show the bit values in two
consecutive segments are different. Here our signed-digit
representation is defined with radix r and digit set is {-
r+1,…,0,…,r-1} as defined in Section 3.1. Then, we
direct record the differences for “Ei and Ecom_i ” and “Ei+1
and Ecom_i ” in Eexcl_i and Eexcl_i+1, respectively.
Lemma: The relation a-1 ≡ r-1 (mod N) holds as r ≡ a
(mod N).

By using this lemma, we know as the relation “r ≡
a (mod N)” holds we can get the multiplicative inverse
result of a-1 (mod N) form the result of r-1 (mod N).
Hence, as long as the relation a = QN + r holds, we can
have the result of a-1 ≡ r-1 (mod N). Moreover, the bitwise
“AND” operation and “XOR” operation defined in Eq.
(11) and Eq. (12) are depicted as shown in Table 1 and
Table 2, respectively.

Table 1. Truth table for bitwise operator “AND”.
Table 2. Truth table for bitwise operator “XOR”.

AND -(r-1) … -1 0 1 … (r-1)
-(r-1) -(r-1) Θ Θ Θ Θ Θ Θ

… Θ … Θ Θ Θ Θ Θ
-1 Θ Θ -1 Θ Θ Θ Θ
0 Θ Θ Θ 0 Θ Θ Θ
1 Θ Θ Θ Θ 1 Θ Θ
… Θ Θ Θ Θ Θ … Θ

(r-1) Θ Θ Θ Θ Θ Θ (r-1)

High-Radix-Signed-Digit-Folding (HRSDF)
Algorithm
Input: M, Ei, Ei+1
Output: 1,i iE EM M +
C1 = C2 = …= Cr = Cr+1 = 1; 1C′ = ; S = M;
begin

for b = 0 to (/ 2)nk do /*scan the folding
parts*/

begin
if _()b

com ie r= then Cr = S r × mod ;C N′

if _()b
com ie r= − then Cr = S-r × mod ;C N′

if _(b
excl ie r= and _ 1 1)b

excl ir e +− ≤ ≤ −
then{ Cr=S r×Cr mod N;

Cr+1=S -r ×Cr+1 mod N};
if _(b

excl ie r= and _ 1 0)b
excl ie + =

then Cr = S -r ×Cr mod N;
M

if _(0b
excl ie = and _ 1 1)b

excl ir e +− ≤ ≤ −
then Cr+1= S -r ×Cr+1 mod N;

if _(0b
excl ie = and _ 11)b

excl ie r+≤ ≤
then Cr = S r ×Cr mod N;
M
if _(b

excl ie r= − and _ 11)b
excl ie r+≤ ≤

then{ Cr=S r×Cr mod N;
Cr+1=S -r ×Cr+1 mod N};

if _(b
excl ie r= − and _ 1 0)b

excl ie + =
then Cr =S -r×Cr mod N;

S = S ×S;
end;
Cr = Cr × ;C′
Cr+1 = Cr+1 × ;C′

end.

202 Informatica 28 (2004) 197–205 D.-C. Lou et al.

HRSDF Modular Multiplication
(Evaluate for positive folding-exponent part)
Input: M, Ei, Ei+1; Output: 1[] [],i iE r E rM M +
C1 = C2 = …= Cr = Cr+1 =1; 1;C′ = S = M;
begin
for b = 0 to k/2n do /*scan the folding parts*/

begin
if

_(1)b
com ie r≤ ≤ then

C′ = S ×C′mod N;
if

_(1)b
exel ie r≤ ≤ then

Cr = S ×Cr mod N;
if

_ 1(1)b
exel ie r+≤ ≤ then

Cr+1 = S ×Cr+1 mod N;
S = S ×S mod N;

end;
Cr = Cr × ;C′ Cr+1 = Cr+1 × ;C′
end.

3.3. The Proposed HRSDF Algorithm
After we have introduced the definitions and

lemma shown above. By using the signed-digit recoding
technique and the exponent-folding algorithm, we now
introduced a fast high-radix (r-digit recoding) signed-
digit-folding modular exponentiation algorithm as
follows.

This proposed HRSDF algorithm uses both the

signed-digit recoding and the exponent-folding technique
for speeding up the modular exponentiation. By using the
lemma defined in Section 3.2, we can speed up the
proposed HRSDF exponentiation algorithm and have the
original HRSDF algorithm revised as follows.

To speed up the computation of multiplicative
inverse, we use extra r+1 registers (D1~Dr+1) to store the
original S -1 result. By using the revised algorithm, we
can transform the inverse multiplicative operations to
normal multiplicative operations to avoid inverse
operation at every step when we dealing with the
negative number “-r”.

In the improved HRSDF algorithm, we put the
operation results of positive digit in the registers Cr and
Cr+1, and we put the operation results of negative digit in
the registers Dr and Dr+1. Cr and Dr are used to store the
operation results in every Ei segment, respectively.
Meanwhile, Cr+1 and Dr+1 are used to store the operation
results in every Ei+1 segment, respectively.

We define Cr and Cr+1 for HRSDF algorithm when
we dealing with positive digit:

(mod),iE
rC M N≡ (15)

1
1 (mod).iE

rC M N+
+ ≡ (16)

We define Dr and Dr+1 for HRSDF algorithm when we
dealing with positive digit:

(mod),iE
rD M N≡ (17)

1
1 (mod).iE

rD M N+
+ ≡ (18)

Let Cs and Ds store the final results. Since

1|| +ii EEM
()

2 12() (mod),
kk n

i iEEM M N
−

+≡ × (19)
we can define Cs for HRSDF algorithm when we have
positive digits:

()
22

1(mod).
kk n

s r rC C C N
−

+≡ × (20)
We define Ds for HRSDF algorithm when we have
negative digits:

()
22

1(mod).
kk n

s r rD D D N
−

+≡ × (21)

XOR 1-r … -1 0 1 … r-1
-(r-1) Θ … -r 1-r 2-r … 0

… … Θ … … … … …
-1 -r … Θ -1 0 … r-2
0 1-r … -1 Θ 1 … r-1
1 2-r … 0 1 Θ … r
… … … … … … Θ …

(r-1) 0 … r-2 r-1 r … Θ

Improved High-Radix-Signed-Digit-Folding
(HRSDF) Algorithm
Input: M, Ei, Ei+1
Output: 1,i iE EM M +

1C D′ ′= = ; S = M; C1 = C2 = …= Cr = Cr+1 =
1;
D1 = D2 = …= Dr = Dr+1 = 1
begin

for b = 0 to (/ 2)nk do
begin

if _()b
com ie r= then Cr = S r × mod ;C N′

if _()b
com ie r= − then Cr = S-r × mod ;D N′

if _(b
excl ie r= and _ 1 1)b

excl ir e +− ≤ ≤ −
then{ Cr=S r×Cr mod N;

Dr+1=S -r ×Dr+1 mod N};
if _(b

excl ie r= and _ 1 0)b
excl ie + =

then Cr = S -r ×Cr mod N;
M

if _(0b
excl ie = and _ 1 1)b

excl ir e +− ≤ ≤ −
then Dr+1= S -r ×Dr+1 mod N;

if _(0b
excl ie = and _ 11)b

excl ie r+≤ ≤
then Dr = S r ×Dr mod N;
M
if _(b

excl ie r= − and _ 11)b
excl ie r+≤ ≤

then{ Cr=S r×Cr mod N;
Dr+1=S -r ×Dr+1 mod N};

if _(b
excl ie r= − and _ 1 0)b

excl ie + =
then Cr =S -r×Cr mod N;

S = S ×S;
end;
Cr = Cr × ;C′ Cr+1 = Cr+1 × ;C′
Dr = Dr × ;D′ Dr+1 = Dr+1 × ;D′

end.

PARALLEL MODULAR EXPONENTION... Informatica 28 (2004) 197–205 203

HRSDF Modular Multiplication
(Evaluate for negative folding-exponent part)
Input: M, Ei, Ei+1; Output: 1[] [],i iE r E rM M +
D1 = D2 = …= Dr = Dr+1 =1; 1;D′ = S = M;
begin
for b = 0 to k/2n do /*scan the folding parts*/

begin
if

_(1)b
com ir e− ≤ ≤ − then

D′ = S × D′mod N;
if

_(1)b
exel ir e− ≤ ≤ − then

Dr = S ×Dr mod N;
if

_ 1(1)b
exel ir e +− ≤ ≤ − then

Dr+1 = S ×Dr+1 mod N;
S = S ×S mod N;

end;
Dr = Dr × ;D′ Dr+1 = Dr+1 × ;D′
end.

Parallel HRSDF Exponentiation Algorithm
Input: M, Ei, Ei+1;

Output: 1[] [],i iE r E rM M + , 1[] [],i iE r E rM M +
C1 = C2 = …= Cr = Cr+1 =1; D1 = D2 = …= Dr =
Dr+1 =1; 1;C D′ ′= = S = M;
begin
for b = 0 to k/2n do /*scan the folding parts*/

begin
parbegin

{ if
_(1)b

com ie r≤ ≤ then

C′ = S ×C ′mod N;
if

_(1)b
exel ie r≤ ≤ then

Cr = S ×Cr mod N;
if

_ 1(1)b
exel ie r+≤ ≤ then

Cr+1 = S ×Cr+1 mod N;}
{ if

_(1)b
com ir e− ≤ ≤ − then

D′ = S × D′mod N;
if

_(1)b
exel ir e− ≤ ≤ − then

Dr = S ×Dr mod N;
if

_ 1(1)b
exel ir e +− ≤ ≤ − then

Dr+1 = S ×Dr+1 mod N;}
{ S = S ×S mod N;}
parend;

 parbegin
{ Cr = Cr × ;C′
Cr+1 = Cr+1 × ;C′

 Dr = Dr × ;D′
Dr+1 = Dr+1 × ;D′ }

 parend;
end;

end.

We here to specify this replacement will not
influence the final operation result. Let

() (m od)E A BM M N+ −≡
(mod)(mod)(mod)A BM N M N N−≡ ,

(mod) (mod);A
A

s M
MC N r N≡ ≡

and (mod) (mod)B
B

s M
D M N r N≡ ≡ .

By using the lemma shown in Section 3.2, we can have
the following:

� 1 1 (m od)a r N− −≡ ,
� 1 (mod)B

B
M

M r N− −≡ ,
1(mod) () (mod),A B

A B
M M

M M N r r N− −× ≡ ×

� 11() (mod)A B s sM M
r r C D N−−× ≡ × .

By using the formulas shown above, we can
therefore transform the original multiplicative inverse
operation into normal positive (multiplication)
calculation, and use the operation result for our original
multiplicative inverse calculation. Here we can speed the
whole modular exponentiation process as we let the
multiplicative inverse operation performed only once in
the last step before our final output result for the
improved HRSDF algorithm.

To further speed up the improved r-radix recoding
signed-digt-folding algorithm, we can put the
multiplicative inverse operation in the proposed
algorithm over a finite filed (such as GF(2n) when
normal basis is used [25][26]). By using the computation
over Galois Field, the time complexity of multiplicative
inverse operation is equivalence to the bit shift operation
[12]. For example, r times multiplicative inverse
operation is then replaced by r bit shift operation over
Galois Field and therefore the computational complexity
is reduced and the total modular exponentiation
operation performance can be improved.

3.4. The Parallel HRSDF Algorithm

As we can further execute the modular
multiplication (when positive digits of folding-exponent
are being scanned) and the multiplicative inverse (when
negative digits of folding-exponent are being scanned)
operations separately, we can apply the “parallel-
processing” technique on the HRSDF algorithm to speed
up the total exponentiation efficiency. The two separated
modular multiplication and the multiplicative inverse
operations of HRSDF algorithm are detailed depicted as
follows.

As the modular multiplication operation and the
modular squaring operation can be concurrently
executed, we can have the proposed HRSDF algorithm
work more efficient as a parallel version of HRSDF
algorithm as follows.

4 Complexity Analyses
In this section, we will detailed describe the

theoretical analyses for the performance of the proposed

204 Informatica 28 (2004) 197–205 D.-C. Lou et al.

parallel HRSDF algorithm. We use the number of
modular multiplications to express the speed-up
efficiency. Let κr (n) be a random variable on the space
of κ-digit radix r integers denoting the minimal signed
radix r Hamming weight for the signed-digit recoding
folding-exponent.

The occurrence of the digit “0” in our folding-
exponent signed-digit recoding is approximately 2/(r+1),
and the occurrence of the nonzero digits “r” and “-r” is
close to (r-1)2/[r(r+1)] and (r-1)/[r(r+1)], respectively
[15]. Let k denotes the digit-length of the exponent. In
the proposed parallel HRSDF method, the number of

modular squaring is 2n-1{1×
2n

k
}. As we take r-radix

signed-digit recoding for the folding-exponent
representation, there exists total 2(r-1) nonzero digit
numbers.

The average occurrence probability for nonzero

digit is
1()
1

2(1)

r
r
r

−
+
+

, the computational complexity as well as

the multiplication number of nonzero digit is
2

4 3
4(1)

r
r
+
+

.

The computational complexity of the proposed method is
1

2

4 32 { }
4(1) 2

n
n

r k
r

− +
×

+
plus the computational complexity

2 2

4 3 4 3[] 3, i.e., [1] 3.
2 4(1) 2 4(1)
k r k r

r r
+ +

+ + +
+ +

Based on the above analyses, we can easily
conclude that the value in item 12 {1 }

2
n

n

k− × in the number

of modular multiplication will not change (equal to
constant k/2) even as the folding processing number n
grows. While the total number of modular
multiplication

2

4 32 [()] (2 1)
2 4(1)

n n
n

k rk
r
+

+ − + −
+

will grow

larger as n grows.
Therefore, we can get the performance for the

proposed parallel HRSDF algorithm when we fold the
exponent simply one time (i.e., n=1). Since the modular
squaring in finite field GF(2n) is only a simple shift
operation [20], and it does not increase more
complexities for the proposed algorithm. The
computational complexity for the parallel HRSDF
method is then becomes:

1
2 2

4 3 4 32 { } () 1 [] 3.
4(1) 2 2 2 2 4(1)

n
n n

r k k k k rk
r r

− + +
× + − + = + +

+ +

As the folding times increased, the number of modular
multiplication item 1

2

4 32 { }
4(1) 2

n
n

r k
r

− +
×

+
 will not change (this

value equals to constant
2

4 3
8(1)

r
r
+
+

) even as the folding

processing number n grows.
Note, as in finite field GF(2n) when a normal basis

is used, we can get the performance for the proposed
parallel HRSDF algorithm when we fold the exponent
simply one time. Here the computational complexities
based on different radix r are analysed as follows.

If we apply the radix-2 (r=2) recoding the proposed
HRSDF algorithm, as n = 1, we can have:

1
2

4 3 472 {() } 2 () (2 1) 3
4(1) 2 2 72

n n n
n n

r k kk k
r

− +
× + + − + − = +

+
(

0.65277 3k≈ +) multiplications.
If we apply the radix-3 recoding in the proposed

HRSDF algorithm, as n = 1, we can have 79 3
128

k +

(0.6172 3k≈ +) multiplications. If we apply the radix-4
recoding in HRSDF algorithm, as n = 1, we can
have 119 3

200
k + (0.595 3k≈ +) multiplications. Moreover,

if we apply the radix-5 recoding in HRSDF algorithm, as
n = 1, we can have 167 3

288
k + (0.5789 3k≈ +)

multiplications.

5 Conclusions
As we know the modular exponentiation is one of

the most important operations in public-key
cryptography. The modular exponentiation is more
complicated and time-consuming because the modular
exponentiation deals with very large operands as 512-bit
to 1024-bit integers. Public-key cryptosystems often
involve raising elements of some group (e.g. GF(2n) or
elliptic curves) to large powers. Therefore, an efficient
software algorithm or hardware implementation of
modular exponentiation operation is becoming one of the
key factors affecting the best performance of public-key
cryptosystems.

In this paper, a new method (HRSDF) for speeding
up modular exponentiation was proposed based on the
binary method, signed-digit recoding, and folding
technique. When incorporating the parallel processing
technique and employing the parallel implementation, we
can process the squaring and multiplication concurrently.
As the modular squaring operation in GF(2n) finite field
is simply a shift operation when a normal basis is used,
in the proposed generalized r-radix signed-digit recoding
HRSDF algorithm, we can therefore decrease the
computational complexity
to 1

2

4 32 {() } 2 () (2 1)
4(1) 2 2

n n n
n n

r k kk
r

− +
× + + − + −

+

multiplications. Furthermore, if we have the folding time
n=1 to minimize the total multiplication complexity, we
obtain the optimal overall computational complexity as

2

4 3[] 3
2 2 4(1)
k k r

r
+

+ +
+

 multiplications.

6 Acknowledgements
The authors would like to thank the anonymous referees
for their helpful comments.

7 References
[1] L. Rivest, A. Shamir, and L. Adleman (1978) “A

method for obtaining digital signatures and public

PARALLEL MODULAR EXPONENTION... Informatica 28 (2004) 197–205 205

key cryptosystems,” Communications of the ACM,
vol. 21, no. 2, pp. 120-126.

[2] P. L. Montgomery (1985) “Modular multiplication
without trial division,” Mathematics of Computation,
vol. 44, no. 170, pp. 519-521.

[3] T. Blum and C. Parr (2001) “High-radix
Montgomery modular exponentiation on re-
configurable hardware,” IEEE Transactions on
Computers, vol. 50, no. 7, pp. 759-764.

[4] Y. Yacobi (1990) “Exponentiating faster with
addition chains,” Proceedings of EUROCRYPT’ 90,
pp. 222-229.

[5] D. E. Knuth (1997) The Art of Computer
Programming, Vol. II: Seminumerical Algorithms,
3rd edition, MA: Addison-Wesley.

[6] A. B. Premkumar (2002) “A formal framework for
conversion from binary to residue numbers,” IEEE
Transactions on Circuits and Systems II: Analog and
Digital Signal Processing, vol. 49, no. 2, pp. 135-
144.

[7] G Alia and E. Martinelli (2002) “Fast modular
exponentiation of large numbers with large
exponents,” Journal of Systems Architecture, vol. 47,
no. 14, pp. 1079-1088.

[8] Joye and S.-M. Yen (2000) “Optimal left-to-right
binary signed-digit recoding,” IEEE Transactions on
Computers, vol. 49, no. 7, pp. 740-748.

[9] D.-C. Lou and C.-C. Chang (1996) “Fast
exponentiation method obtained by folding the
exponent in half,” Electronics Letters, vol. 32, no.
11, pp. 984-985.

[10] D.-C. Lou and C.-C. Chang (1998) “An
adaptive exponentiation method,” The Journal of
Systems and Software, vol. 42, no. 1, pp. 59-69.

[11] V. S. Dimitrov, G. A Jullien, and W. C. Miller
(2000) “Complexity and fast algorithms for
multiexponentiations,” IEEE Transactions on
Computers, vol. 49, no. 2, pp. 141-147.

[12] D. M. Gordon (1998) “A survey of fast
exponentiation methods,” Journal of Algorithms, vol.
27, no. 1, pp.129-146.

[13] W. Diffie and E. Hellmen (1976) “New
directions in cryptography,” IEEE Transactions on
Information Theory, vol. 22, no. 6, pp. 644-654.

[14] T. ElGamal (1985) “A public key cryptosystem
and a signature scheme based on discrete
logarithms,” IEEE Transactions on Information
Theory, vol. 31, no. 4, pp. 469-472.

[15] Song Y. Yan (2002) Number Theory for
Computing, 2nd edition, Springer-Verlag.

[16] I. Koren (2002) Computer Arithmetic
Algorithms, 2nd edition, A. K. Peters, Natick, MA.

[17] A. Avizienis (1961) “Signed digit number
representation for fast parallel arithmetic,” IRE
Transaction on Electronic Computers, EC-10, no. 3,
pp. 389-400.

[18] W. Shugang, C. Shuangching, and K. Shimizu
(2002) “Fast modular multiplication using booth
recoding based on signed-digit number arithmetic,”
IEEE Asia-Pacific Conference on Circuits and
Systems (APCCAS), vol. 2, pp. 31-36.

[19] N. Besli and R.G. Deshmukh (2002) “A novel
redundant binary signed-digit (RBSD) Booth's
encoding,” Proceedings of the IEEE Conference on
Southeast, pp. 426-431.

[20] W. Shugang and K. Shimizu (2002) “Residue
signed-digit arithmetic circuit with a complement of
modulus and the application to RSA encryption
processor,” Proceedings of the 9th IEEE
International Conference on Electronics, Circuits
and Systems, vol. 2, pp. 591-594.

[21] M. Syuto, E. Satake, K. Tanno, and O. Ishizuka
(2002) “A high-speed binary to residue converter
using a signed-digit number representation,” IEICE
Transactions on Information and Systems, vol. E85-
D, no. 5, pp. 903-905.

[22] G.W. Reitwiesner (1960) “Binary Arithmetic,”
Advances in Computers, vol. 1, Academic Education
Press, New York, pp. 231-308.

[23] S. Arno and F. S. Wheeler (1993) “Signed digit
representations of minimal hamming weight,” IEEE
Transactions on Computers, vol. 42, no. 8, pp. 1007-
1010.

[24] A. D. Booth (1951) “A signed binary
multiplication technique,” Quarterly Journal
Mechanics and Applied Mathematics, vol. 4, pp.
236-240.

[25] M. A. Hasan (2001) “Efficient computation of
multiplicative inverses for cryptographic
applications,” Proceedings of the 15th IEEE
Symposium on Computer Arithmetic, pp. 66-72.

[26] N. Takagi, J. Yoshiki, and K. Takagi (2001) “A
fast algorithm for multiplicative inversion in GF(2n)
using normal basis,” IEEE Transactions on
Computers, vol. 50, no. 5, pp. 394-398.

206 Informatica 28 (2004) 197–205 D.-C. Lou et al.

Informatica 28 (2004) 207–219 207

MIAOw: a Method to Integrate a Process Algebra with Formal Data

Gwen Salaün and Christian Attiogbé
LINA, Université de Nantes
2 rue de la Houssinière, B.P. 92208, 44322 Nantes Cedex 3, France
{salaun,attiogbe}@lina.univ-nantes.fr

Keywords: Integration Method, Process Algebra, Data Description Techniques, Formal Foundations.

Received: October 10, 2002

In this article, we propose a well-defined method to build the formal foundations underlying the design of a
formal language combining a process algebra with a data specification formalism. Our approach is flexible
since several languages are possibly involved in the integrated result even though a combination is only
restricted to two languages. The different steps of our method are precisely enumerated. Afterwards, a
concrete example of a language is formalised following the method. It integrates the CCS process algebra
with the Larch algebraic specification language. Finally, we show how this new formalism can be used to
specify an example of real system.

1 Introduction

All the aspects of complex software systems can neither
be specified nor verified with only one approach. The
joint use of several different formal methods, called multi-
formalism, integrated or mixed specifications, is necessary
for the description of such systems. The main motivation is
that the different parts of software systems have to be spec-
ified with appropriate formalisms and have to be formally
verified with suitable tools. We need to have at our’s dis-
posal adequate formal languages to specify the main parts
of systems which are data (or static) and behavioural (or
dynamic) aspects. These different parts have to be linked
in a formal way. Furthermore, it is interesting to allow the
developer to specify each facet of the system with suitable
formalisms. Then, the specifier has to be free to choose
his/her specification languages. Indeed, (s)he could prefer
a formalism for different reasons: suitability with respect to
the system requirements, existence of development tools,
personal expertise.

In this article, we propose a method to formally com-
bine one process algebra with one formal data language.
Guidelines are precisely given to define the formal foun-
dations underlying the construction of such a new lan-
guage. Our work considers the whole family of process
algebras [6] and some well-known data specification lan-
guages: algebraic specifications [14], state oriented spec-
ifications (like Z [33] and B [1]). Only basic languages
(purely behavioural or purely data oriented) are consid-
ered, i.e. we do not take into account already combined
languages like LOTOS [21]. This is justified because ba-
sic languages are more suitable to specify a precise facet of
a complex system. Moreover, as the authors of [20] said:
"We believe that the best chances for a well-founded com-
bination are with specification techniques that are well re-
searched individually". The main contribution of our ap-

proach is in a first place to allow people to easily define a
new specification language composed of chosen basic lan-
guages, and then to use this formalism for the specification
of real case studies.

Data languages are used to abstract and model data,
whereas process algebras specify dynamic aspects such as
concurrency. We consider process algebras extended with
value passing in order to allow communications of com-
plex data expressed with data terms. The process algebra is
called the main formalism (control oriented approach) be-
cause it gives the behaviour of the full specification. The
syntax of the integration is formalised using a BNF-like
notation, and its semantics is operational.

The material of this article issues from a series of
works concerning formal combinations of basic languages
[29, 31]. We claim that it is essential to have at one’s dis-
posal methods to envisage the formalisation of numerous
integrated languages following an easy and systematic pro-
cess. This proposal is related to Fischer’s paper focusing
on Z and process algebra [16]. Nevertheless, this work was
dedicated to fixed languages. One of our previous works
[30] suggested a similar method, but one strongly bound
to a particular initial outcome (an integrated formal frame-
work). Furthermore, this framework was not as flexible as
the current proposal. Ehrig and Orejas [15] proposed an
integration paradigm for system specification which pro-
vides a unified approach on a conceptual level. The key
idea was to consider four different layers which correspond
to different kinds of integrated views of system specifica-
tion. The difference with our work is that we focus on the
formal foundations and not only move ourselves at a con-
ceptual level. Finally, Astesiano et al. [4] aimed at compos-
ing languages, especially a data description language and a
paradigm-specific language. Their goal was the definition
of languages in a component-based style, focusing on the
data definition component. An example of application of

208 Informatica 28 (2004) 207–219 G. Salaün et al.

their technique is worked out in [28]. Our work is more
comprehensive because we deal equally with dynamic and
static aspects.

The remainder of this article is organized as follows.
Section 2 describes the guidelines to be followed for the de-
signer to formalise a new formalism combining one process
algebra with one data language. Section 3 deals with eval-
uation functions which are useful to interpret data terms
appearing in the dynamic specification. In Section 4, we
illustrate the method with concrete languages namely the
CCS process algebra and the Larch algebraic specification
language. Section 5 shows how the formalised language
can be used in the specification of a real case study. Some
issues about the integration of a process algebra with state
oriented languages are studied in Section 6. Finally, Sec-
tion 7 draws up a conclusion and discusses future work.

2 Guidelines of the Method
An interest of the current work is that it makes it possi-
ble to specify the main aspects of complex systems, and it
favours the flexibility of integrated formalisms. Next, we
accurately detail the guidelines to be followed so that the
foundations for a formal integration can be achieved eas-
ily. Our method is made up of three parts; each part is also
composed of several steps.

1. Study of the process algebra. Above all, the dy-
namic language to be treated has to be studied thoroughly.
This first part in the method is essential for learning or re-
calling precisely its syntax, its semantics and its communi-
cation model. Therefore, the steps are:

a. enumerating all the operators of the language (as an
abstract grammar);

b. enumerating the corresponding operational semantic
rules;

c. recalling the communication model.

In this part, only a basic version of the process algebra
is studied. We stress that only an operational approach
is regarded in this work to formalise the meaning of the
dynamic specification. The language extended with value
passing (existing or to be designed) is emphasized in the
next part. In step b, the designer has also to set the nec-
essary notations and variables which are next used to for-
malise the semantic rules. This task does not explicitly ap-
pear in the method because the semantics can be reminded
without it.

2. Extension of the process algebra to consider data
terms. The second part of the method consists of itemizing
each construct of the process algebra, and possibly extend-
ing the syntax to take into account the data management.
For each operator of the process algebra, the different steps
are:

a. studying the possibility of data management;

b. formalising syntactically the behaviour enhanced with
data;

c. formalising the meaning of the enhanced operator:

1. defining the needed environment;

2. stating the needed notations and variables;

3. enhancing the previous inference rules (intro-
duced in step 1.b) to manage data terms.

This part is more or less simple, depending on the ex-
istence of a value passing version of the process algebra.
If this extension is not yet formalised, the designer needs
to locate the syntactic extension of the operators on his/her
own; otherwise (s)he can recover the existing work.

The environment is a context memorizing different infor-
mations used to define the inference rules. Its construction,
as well as the notations and variables declaration, is done
once and for all, and not performed for each operator of the
process algebra.

There are two kinds of inference rules in the opera-
tional semantics. The first one corresponds to the construc-
tion of the environment from the agent definitions and the
data specification part. The second one gives the mean-
ing for each extended operator. For this second type, the
global specification is seen as a Labelled Transitions Sys-
tem (LTS) whose evolution is described by the inference
rules.

At the end of this part, we have at our disposal a compre-
hensive abstract grammar and the corresponding inference
rules, that are a complete formalisation of the extended pro-
cess algebra.

In this stage, the meaning bound to the data term is ex-
pressed with an evaluation function. The evaluation func-
tion choice is justified since it is suitable to an operational
semantics, and accordingly enables us to remain in a prag-
matic and executable context. The evaluation function is
used to interpret data appearing in dynamic behaviours.
Evaluation functions are computed from data definitions
(especially algebraic axioms, or properties for the state ori-
ented languages). The computation steps are itemized in
the next part.

3. Definition of the evaluation function. This last part
aims at defining the evaluation function used to interpret
the data terms managed by the process algebra. The steps
are:

a. extracting the needed informations from the abstract
declarations;

b. defining the computation of the function;
c. defining the properties of this function.

We have at our disposal two types of evaluation function
depending on the kind of data specification languages: ax-
iomatic oriented or state oriented ones. For algebraic spec-
ifications, the evaluation function corresponds to a term
rewriting function. Concerning state oriented languages,
the evaluation function implies modifications of the state

MIAOW: A METHOD TO INTEGRATE. . . Informatica 28 (2004) 207–219 209

space mainly composed by the properties characterizing
the abstract declarations, that are variables, initialisations
and invariants.

3 Evaluation Functions
Now, we focus on the way the evaluation function is de-
fined. This section deals with the third part of the method
and explains the different ways to compute evaluation func-
tions from data specifications. In Section 4, we rather
look at the dynamic aspects and interactions between be-
haviours and data. Here, explanations are split into two out-
comes. We respectively offer several valuable insights into
the evaluation function formalisation for algebraic specifi-
cations and state oriented languages (Z and B).

Algebraic specifications. Concerning algebraic spec-
ifications, a rewriting system is chosen as the evaluation
function. This choice is justified since it is suitable for an
operational semantics. There are two cases: either the eval-
uation function is already available (formalised by hand or
computed in a tool) and the designer only has to study this
existing work following the guidelines of part 3, or (s)he
has to build the function step by step. The first case is the
most widespread; indeed, languages often come with their
rewriting system. Furthermore, this case is more relevant
because our goal is to deal with real cases and to point the
work towards pragmatic results. For both cases, the eval-
uation function is mainly computed from algebraic axioms
appearing in the datatype declaration (step 3.a). Signa-
tures are used to perform static semantics verification such
as consistent typing. The first solution aims at using the
own ordering mechanisms of the language. We illustrate
this idea on two algebraic languages which are Larch and
CASL.

Larch [18] is a multi-site project exploring methods, lan-
guages and tools for the practical use of formal specifica-
tions. Much of the early work was done at MIT. Larch
has at its disposal a theorem prover LP [17] which is able
to automatically orient equations into rewrite rules with-
out users having to enter explicit ordering commands (step
3.b). LP provides three types of ordering mechanisms for
orienting equations into rewrite rules: two registered order-
ings (the dsmpos and noeq-dsmpos orderings), a polyno-
mial ordering and three "brute-force" ordering procedures.
Here, we detail the registered orderings. These orderings
are chosen because they are sufficient to illustrate the com-
putation of the function. Furthermore, both next kinds of
ordering mechanisms are difficult to use and produce a non-
terminating set of rewrite rules. LP’s registered orderings
use information in a registry to orient equations. When no
commutative or associative-commutative operators are in-
volved, these orderings guarantee that the resulting rewrite
rules terminate (step 3.c). There are two kinds of informa-
tion in a registry: height information (relating pairs of oper-
ators) and status information (assigning relative weights to
the arguments of operators with arity greater than one). The

reader may refer to [17, 13] in order to have supplementary
explanations about the registered ordering mechanism.

CASL [3] (Common Algebraic Specification Language)
is a reasonably expressive algebraic language for speci-
fying requirements and design for conventional software.
From CASL, simpler languages (e.g. for interfacing with
existing tools) are to be obtained by restriction. The main
features of its design are as follows: many-sorted basic
specifications, structured specifications, architectural spec-
ifications and specification libraries. CASL specifications
have loose semantics as described in [11], but the mean-
ing of CASL terms can be given using rewriting too. The
rewriting is performed using a set of rewrite rules de-
duced from the CASL specifications. This can be achieved
following the conceptual steps defined in [23] (step 3.b).
Ringeissen and Kirchner [23] deal with the execution of
CASL equational specifications with the ELAN rewrite en-
gine [9]. Both basic and structured specifications are con-
sidered even though some restrictions are assumed (sub-
sorting and partiality features).

About the second case for describing evaluation func-
tions (by hand), axioms or equations have to be oriented
into rewrite rules to obtain the rewriting system (step 3.b).
There are two ways to compute this set of rewrite rules. It
can be obtained from algebraic axioms by applying general
ordering algorithms like those described in [24]. This com-
putation is not automated and must be performed by hand.
Most of these algorithms ensure termination and conflu-
ence of the computed rewriting system (step 3.c). To apply
these algorithms, we restrict ourselves to the initial seman-
tics of the datatypes because the interpretation of a set of
axioms by a rewriting system has really sense only in the
case of the initial model [8]. For algebraic specification
languages with loose semantics, it is possible to restrict
them to their initial algebra so as to simplify the process.

State oriented languages. In this part, we focus on the
languages Z and B which are viewed through the language
aspect (and not the methodological one). After a brief in-
troduction of each language, the different steps enumerated
in the method are studied.

B. The B method is a collection of mathematically based
techniques for specification, design and implementation of
software modules. Systems are modeled as a collection
of interdependent abstract machines. An abstract machine
is described using the Abstract Machine Notation (AMN).
Now, we discuss the computation of the evaluation function
from state oriented specification techniques, and especially
from B abstract machines. For this issue, we inspire our-
selves from the B-Book [1], and from a more recent work
of Bert and Cave [7]. In the latter, the authors study several
ways to build finite LTS from B abstract systems: enumer-
ation of states, symbolic evaluation and set constraints, ab-
stract interpretation and so on. A LTS is suitable to depict
an evaluation function.

The choice of evaluation function can be based on the
solutions undertaken in [7]. In this section, we define the
evaluation function using the enumeration of states. This is

210 Informatica 28 (2004) 207–219 G. Salaün et al.

the easiest way to define the function, and the underlying
set of states and transitions. Given a B machine, we need
the set of variables, the invariant, the initialisation and the
list of operations (step 3.a). The behaviour of the machine
is viewed as a LTS (step 3.b). Each state denotes a set of
data with values, and more precisely a finite set of vari-
able/value couples. These couples are deduced from the
variables and initialisations of the B machine. Names of
operations are transition labels and symbolize the evolution
from one state to another. The state space of the LTS is the
set of states which satisfy the invariant. From the machine
initialisation clause (depicted here using INIT), the initial
states are deduced. In the formulas below, the symbols 〈〉
and [] are the temporal operators used in the formalisation
of some B dynamic aspects [2].

S0 = {xj 7→ vj | 〈INIT〉(xj = vj)} ∀ j ∈ 1..n

Then, from each state satisfying the invariant and for
each operation enabled in the initial state, the successors
are the states with new values obtained by the application
of the operation body (i.e. the corresponding generalized
substitution).

Sk+1 = {xj 7→ v′j | [Sk]〈OPi〉(xj = v′j)}
∀ i ∈ 1..m ∀ j ∈ 1..n

According to the B-Book, this rule means that if (xj 7→
vj) ∈ Sk then (vj, v′j) ∈ relxj(OPi), where relxj(OPi) is the
binary relation which relates the values of xj before and af-
ter the substitution OPi. In the current case, the function
properties are the well-known ones on transition systems:
deadlock, finite states, reachability and so on (step 3.c).
Here, we are mainly interested in the fact that there are
no deadlocks in the transition system, since the evaluation
function can always be applied (moving from one state to
another applying any operation of the machine). However,
it is possible that the evolution in the LTS has no effect on
the data. Another important property is the finite looping of
the function. The termination is ensured because the evalu-
ation of one operation induces a single step in the transition
system evolution. Last but not least, the transition system is
not finite in most of cases, but this is not really a shortcom-
ing, since the generation of the whole automaton is useless
here.

Z. Z [33] is a mathematical notation based on set the-
ory and first order predicate calculus. It uses the notion of
state schema and operation schema to structure data speci-
fications and operation specifications. A schema S is made
up of a declaration part D (set of variables xi with their
types) and a predicate P on the variables. A schema named
S is written like that: S , [D | P]. The semantics of a
state schema is a set of bindings between the variables xi

appearing in the declaration part and their values defined
with respect to the predicate part P. A state schema defines
a state space. A complete specification has also an initiali-
sation schema which gives the initial values of variables.

Following the step 3.a of our method, from a given data
specification in Z, we need the state schema, the initialisa-
tion schema and the operation schemas. One has to con-
sider a LTS associated to the Z specification (step 3.b).
Since Z follows the model oriented approach, a given Z
specification can be viewed as a LTS. Let Sch be the set of
schema descriptions as mappings from variables xi to cor-
responding values vi, and let Op be the set of all operation
schema names. The Z operation schemas defined on state
schemas can be viewed as labelled transitions between a
current state and a next state. Indeed, each operation via
its predicate part relates the binding (xi, vi) to the binding
(x′i, v′i) of the next state. Then 〈Sch, { op→| op ∈ Op}〉 is
the LTS capturing the meaning of the given Z specifica-
tion. The properties (step 3.c) are as defined above in the
step 3.c for B.

To conclude the model oriented discussion, let us remark
that the different steps followed for both languages could
be gathered in a common approach. Indeed, they have the
same underlying semantic model (LTS) introduced above.

4 Illustration with CCS and Larch
Now, we exploit these guidelines with a concrete example:
the integration of the CCS process algebra with the Larch
algebraic specification language (more precisely, for prag-
matic reasons, we use the input language of the theorem
prover LP [17]). Each of the above key-points is detailed
and formalised to illustrate our systematic process on this
mere example.

4.1 Study of the process algebra
In the first part of our method, we want to be more exhaus-
tive than the guidelines. Thus, we do not restrict ourselves
to the different steps of the first part, but we give more ex-
planations about the treated language to make the under-
standing of the CCS concepts easier.

The CCS language (Calculus of Communicating Sys-
tems) was suggested by Milner [25, 26]. It relies on a very
small, but expressive enough, set of operators. The differ-
ent constructs of the language are gathered in the grammar
of Figure 1 (step 1.a). The symbol 0 denotes an agent which
has finished its behaviour. The symbol τ expresses hidden
action. The prefixing ’.’ indicates the precedence of an ac-
tion on a behaviour. The choice + allows the possible firing
of two different behaviours (nondeterminism). The paral-
lel composition | denotes the execution in parallel of differ-
ent behaviours allowing interleaving and possible synchro-
nizations. The restriction \ enforces the synchronization
between complementary actions (then the evolution is de-
picted with a τ action). The agent call is substituted with
the behaviour of the process. The summation ΣiεI Pi (possi-
bly infinite generalized choice) and the renaming [] are not
considered in the remaining of this formalisation to make
the understanding and readability of this section easier.

MIAOW: A METHOD TO INTEGRATE. . . Informatica 28 (2004) 207–219 211

CCS-SPEC ::= AGENT+

AGENT ::= AGENT-ID
def
= BEHAVIOUR

BEHAVIOUR ::=
0 |
PREFIXING |
BEHAVIOUR+BEHAVIOUR |
BEHAVIOUR|BEHAVIOUR |
BEHAVIOUR\{ACTION+} |
AGENT-CALL

PREFIXING ::= ACTION.BEHAVIOUR |
ACTION.BEHAVIOUR |
τ.BEHAVIOUR

AGENT-CALL ::= AGENT-ID

Figure 1: CCS Grammar

The + and | symbols of the BNF-like notation must not
be confused with those of the CCS notation. Therefore,
the nondeterministic choice and the parallel composition
of CCS are written larger than the others. AGENT-ID and
ACTION are basic lexical entities.

Now, we set the used notations as well as the used vari-
ables. For each grammar rule, inference rules formally
describe the corresponding behaviour. The format used
for their writing is: premises

conclusion . The = symbol indicates the
Boolean equality of two operands. The → symbol de-
notes the transition relation from a behaviour to another.
Informal descriptions of variables appearing in the infer-
ence rules are gathered in Table 1.

Variable Role
F,G Behaviour
α Any action (input, output, or τ)
a Atomical action
L Restriction set

Table 1: Variable description

The semantics of the language is given in an operational
way and is available in [26] (step 1.b). We recall that a
LTS is formally defined thanks to a set of states S, a set of
labels L and a transition relation with type S × L → S. The
semantics of the process algebra is considered following
this common typing, and the next rules respect this abstract
definition of LTS. Now, the inference rules are written and
give the meaning of the CCS operators.

PREFIXING ::= ACTION.BEHAVIOUR

a.F a→ F
(1)

The current behaviour evolves in F by an input action.

PREFIXING ::= ACTION.BEHAVIOUR

a.F a→ F
(2)

The current behaviour evolves in F by an output action.

PREFIXING ::= τ.BEHAVIOUR

τ.F τ→ F
(3)

The current behaviour evolves in F by an internal action.

BEHAVIOUR ::= BEHAVIOUR+BEHAVIOUR

F α→ F′

F+G α→ F′
(4)

If a behaviour F behaves, after the firing of an action α,
as the behaviour F′, then F+G evolves by α in F′. The rule
for the symmetrical case is omitted.

BEHAVIOUR ::= BEHAVIOUR|BEHAVIOUR
F α→ F′

F|G α→ F′|G
(5)

If a behaviour F evolves by α in F′, then the parallel
composition F|G evolves by action α in F′|G. The rule for
the symmetrical case, where the behaviour G evolves and
not the F one, is omitted.

F a→ F′

G a→ G′

F|G τ→ F′|G′
(6)

If a behaviour F becomes F′ after the firing of the input
action a, and a behaviour G becomes G′ after the firing of
the output action a, then F|G evolves in F′|G′ by τ . The
symmetrical rule, where F does an output action and G an
input action, is omitted.

BEHAVIOUR ::= BEHAVIOUR\{ACTION+}

F a→ F′

a 6∈ L

F\L a→ F′\L
(7)

If a behaviour F becomes F′ by the firing of a, and the
action a is not in the set L of unobservable actions, then the
behaviour F becomes F′ by application of a, and the same
restriction set L is preserved.

F a→ F′

a 6∈ L

F\L a→ F′\L
(8)

If a behaviour F becomes F′ by the firing of a, and the
action a is not in the set L of unobservable actions, then
the behaviour F becomes F′ by application of a, and the
same restriction set L is preserved. This rule is necessary
because L only contains non oriented actions.

212 Informatica 28 (2004) 207–219 G. Salaün et al.

F τ→ F′

F\L τ→ F′\L
(9)

If a behaviour F becomes F′ by the firing of τ , then the
behaviour F becomes F′ by application of τ . This rule is
needed since τ is a possible case too. More precisely, when
the rule corresponding to an operator is not written with the
general action α, we should detail all the possible cases, i.e.
for an input action, an output one and the action τ (hidden
communication).

AGENT-CALL ::= AGENT-ID

F α→ F′

AC α→ F′
AC

def
= F (10)

If F evolves in F′ after the firing of α, and an agent AC
is defined as a behaviour F, then the agent AC becomes F′

by α.

The CCS language permits synchronous communication
(step 1.c). The communication is restricted to exchanges
between two agents. Furthermore, the communication is
oriented. CCS allows the specification of open systems.
The concurrency is defined by interleaving (and not a true
concurrency). The time is only logical.

Concerning the available tools for the CCS language, we
refer to CWB1 [27] and CWB-NC2 [10]. These model-
checkers allow the verification of finite state systems (sim-
ulation, temporal formulas properties verification, equiva-
lences and so on).

4.2 Extension of the process algebra with
data terms

In order to take into account data, we interest ourselves in
the extension of CCS with value passing (step 2.a). This
result is well-known and fully formalised in [26]. The links
(at a syntactic level) between dynamic constructs and data
are located at the following levels.

– declaration and call of parameterised agents;
– input and output parameterised actions;
– condition of the if structure.

We highlight that, in the value passing CCS, a new oper-
ator is taken into account that is the if structure. Now, we
enhance the CCS grammar introduced in step 1.a so that the
data can be also considered in the specification (step 2.b).
This leads to the grammar formalised in Figure 2.

The LARCH-SPEC part corresponds to the datatype decla-
ration, that is written respecting the syntax of the used lan-
guage (the reader may consult [18] for the detailed syntax).
One line is added for the nonterminal AGENT so that the pa-
rameterised agent declaration is taken into account. For the
other extended operators, one rule is added for each of them

1http://www.dcs.ed.ac.uk/home/cwb/
2http://www.cs.sunysb.edu/˜cwb/

SPEC ::= LARCH-SPEC CCS-SPEC
LARCH-SPEC ::= see [18]

CCS-SPEC ::= AGENT+

AGENT ::=

AGENT-ID
def
= BEHAVIOUR |

AGENT-ID(VAR-DECL+) def
= BEHAVIOUR

BEHAVIOUR ::=
0 |
PREFIXING |
BEHAVIOUR+BEHAVIOUR |
BEHAVIOUR|BEHAVIOUR |
BEHAVIOUR\{ACTION+} |
AGENT-CALL |
if LARCH-PRED

then BEHAVIOUR else BEHAVIOUR
PREFIXING ::=

ACTION.BEHAVIOUR |
ACTION.BEHAVIOUR |
ACTION(VAR-DECL+).BEHAVIOUR |
ACTION(APPLICATION+).BEHAVIOUR |
τ.BEHAVIOUR

AGENT-CALL ::=
AGENT-ID
AGENT-ID(APPLICATION+)

APPLICATION ::= OP-NAME EXPR* |
VAR

LARCH-PRED ::= PRED-NAME EXPR* |
VAR

EXPR ::= VAR |
APPLICATION

Figure 2: Extended CCS grammar

in the BEHAVIOUR part. The APPLICATION rule denotes ex-
pressions obtained by application of different operations,
or variables. Operation arguments are open to be the re-
sult of another operation application. The next nonterminal
symbols are basic lexical entities: VAR-DECL, VAR, SORT,

OP-NAME, PRED-NAME.

The next step (2.c) consists of defining the meaning of
the extended process algebra. In this part, we particularly
deal with the operators managing data. This step is split
into three sub-steps. The first one (sub-step 2.c.1) aims at
stating the necessary environment used to memorize the in-
formations useful for the inference rules definition. We de-
clare the environment E as a couple composed of an eval-
uation function eval deduced from the data specification,
and of a set of tuples CCSE for CCS agents. The set E is
built from the full specification (i.e. both Larch sorts and
CCS agents).

E , < eval,CCSE >

The computation of the evaluation function is deferred
in the third part of the method. The set CCSE contains in-
formations memorized during the agent declaration. More
precisely, for each agent declaration, we store in this set
a tuple containing the agent name (or agent constant) AC,

MIAOW: A METHOD TO INTEGRATE. . . Informatica 28 (2004) 207–219 213

its whole behaviour H and the list of the agent parameters
(identifiers) AP.

CCSE ,
{< AC1,H1,AP1 >,. . . ,< ACn,Hn,APn >}

These three values, associated with each agent, are use-
ful in presence of agent call. In such a case, the agent con-
stant is substituted by the behaviour corresponding to this
call. Moreover, for a parameterised agent, identifiers mem-
orized during the declaration are substituted in the whole
behaviour by the terms in parameter.

Afterwards, we state additionnal notations and variables
(sub-step 2.c.2); the ones introduced in step 1.b are also
considered here. The , symbol indicates the definitional
equality. Hyp `C is a sequent, and allows to deduce C from
a set of hypotheses Hyp. One may note that the notation
used to write rules and the sequent one have both the same
meaning. However, the first is rather commonly used for
semantic rules. The {. . . }, <. . . > and [. . .] notations refer
respectively to sets, tuples and lists with comas being used
as separator between elements. The computation function
builds an evaluation function from a data specification. In
the current case, the data specification is expressed using
Larch datatypes, and the evaluation function is a rewriting
engine. These issues will be discussed in the last part of the
method. The Exp[T/V] notation depicts the substitution
of a variable V by a term T in an expression Exp. New
variables are declared in Table 2.

Variable Role
Sp Global specification
LarchSp Larch specification
CCSSp Extended CCS specification
eval Evaluation function
CCSE Set for CCS agents
E Global environment
S,Si Set of sorts
Σ Set of signatures
Ax Set of axioms
Agi Agent declaration
ATi Tuple for an agent
ACi Agent constant
xi Variable identifier
ti Larch term
p Larch predicate
AP Agent parameters list

Table 2: Variable description

There are two kinds of inference rules in our operational
semantics (sub-step 2.c.3). The first one corresponds to the
construction of the E environment from the agent defini-
tions and the algebraic specification part. The E environ-
ment, after being completely built, is never modified. The

second one gives the meaning of each extended CCS opera-
tor. For this second type, the global specification is seen as
a LTS whose evolution is described by the inference rules.
Both types of inference rules are distinguished next.

Agent declaration. We start with rules defining agent
declarations.

SPEC ::= LARCH-SPEC CCS-SPEC

Sp , LarchSp CCSSp
LarchSp ` eval
CCSSp ` CCSE

E , < eval, CCSE >

Sp ` E
(11)

If a specification is composed of one part expressed with
Larch, and of another one expressed with CCS using Larch
value passing, and from the Larch specification part we de-
duce an evaluation function, and the CCS part produce a
set CCSE, and the environment E is equal to a couple com-
posed of eval and CCSE, then the global specification pro-
vides the environment E.

LARCH-SPEC ::= see [18]

LarchSp , (S, Σ, Ax)
computation(S, Σ, Ax) ` eval

LarchSp ` eval
(12)

If a Larch specification is made up of a set of sorts S, a
set of signatures Σ, and a set of axioms Ax, and if we apply
the computation function to the set of sorts, the set of sig-
natures, and the set of axioms, then we obtain an evaluation
function, so the eval function is built from the specification
written in Larch.

CCS-SPEC ::= AGENT+

CCSSp , Ag1 . . . Agn

Ag1 ` AT1 . . . Agn ` ATn

CCSE , {AT1, . . . , ATn}
CCSSp ` CCSE

(13)

If the CCS part is composed of a set of agent decla-
rations, and each agent declaration Agi gives a tuple ATi,
and the environment CCSE is made up of tuples ATi, then
the set CCSE is deduced from the declaration of all CCS
agents.

AGENT ::= AGENT-ID
def
= BEHAVIOUR

AC
def
= F ` < AC, F, [] >

(14)

From a non parameterised agent declaration, a tuple con-
taining the agent constant AC, its behaviour F, and an
empty list (no parameters) is built.

AGENT ::=

AGENT-ID(VAR-DECL+)
def
= BEHAVIOUR

214 Informatica 28 (2004) 207–219 G. Salaün et al.

AC(x1 : S1, . . . , xn : Sn)
def
= F `

< AC, F, [x1, . . . , xn] >

(15)

For each new parameterised agent, a tuple containing the
agent constant AC, its behaviour F, and an ordered list AP
composed of the parameter identifiers is built. The parame-
ter sorts are not memorized since our purpose is not to ver-
ify either the well-formedness of expressions or the type
correspondence. We only give a dynamic semantics and
not a static one.

Semantics of the extended operators. Before explain-
ing the inference rules representing the behaviour associ-
ated to each agent, we state some preliminaries. The set E
does not appear in the premises of the next rules because
we assume that it is built once and for all; therefore it could
be used directly in the rule definitions. Each transition from
a state to another within the LTS can include the firing of
several rules. Here, we just report the added inference rules
due to the data extension. All the rules introduced in step
1.b run for this step too.

PREFIXING ::=
ACTION(VAR-DECL+).BEHAVIOUR

a(x1 : S1, . . . , xn : Sn).F
a(x1:S1,...,xn:Sn)−−−−−−−−−→ F

(16)

The current behaviour evolves in F by an input parame-
terised action. Similarly to non parameterised action rules
of step 1.b, the firing of parameterised atomic actions in-
duces the opening of the system with the external environ-
ment. This provides possibilities of modules composition
and structuring. There is no state explosion because no val-
ues are received. If we want to simulate our specification,
the presence of these constructs enforces us to compose the
system with other agents to obtain a closed system.

PREFIXING ::=
ACTION(APPLICATION+).BEHAVIOUR

a(t1, . . . , tn).F
a(t1,...,tn)−−−−−−→ F

(17)

The current behaviour evolves in F by an output action.

BEHAVIOUR ::= BEHAVIOUR|BEHAVIOUR

F
a(x1:S1,...,xn:Sn)−−−−−−−−−→ F′

G
a(t1,...,tn)−−−−−−→ G′

F|G τ→
F′[eval(t1)/x1, . . . , eval(tn)/xn]|G′

(18)

If a behaviour F becomes F′ after the firing of an input
parameterised action, and a behaviour G becomes G′ after
the firing of an output parameterised action, and the envi-
ronment E is composed of R and CCSE, then F|G evolves
in F′|G′ by τ . The input variables xi are substituted in

the behaviour F′ by the terms ti received during the com-
munication. These terms are evaluated thanks to the eval
function. The rule corresponding to the symmetrical case,
where F does the output action and G the input one, is omit-
ted.

AGENT-CALL ::= AGENT-ID(APPLICATION+)

F[eval(t1)/AP[1], . . . , eval(tn)/AP[n]] α→ F′

< AC, F, AP > ∈ CCSE

AC(t1, . . . , tn)
α→ F′

(19)

If a behaviour F, in which the parameters AP[i] are sub-
stituted by the normal forms (obtained after evaluation with
eval) of the real terms ti, becomes F′ by α, and the tuple
< AC, F, AP > is in the set CCSE, then the parameterised
agent AC becomes F′ by α.

BEHAVIOUR ::=
if LARCH-PRED
then BEHAVIOUR else BEHAVIOUR

F α→ F′

eval(p) = true

if p then F else G α→ F′
(20)

If F becomes F′ by the firing of α, and the condition
p (predicate with closed terms) is evaluated to true, then
the conditional expression with the behaviour F joined to
the block then becomes F′ after the firing of α. The sym-
metrical rule, where the condition is evaluated to false, is
omitted.

4.3 Definition of the evaluation function
Now, we focus on the way the eval function, only intro-
duced abstractly up to now, is computed. Here, we re-
call briefly the process already discussed in Section 3. The
evaluation function corresponds to a rewriting system. The
evaluation function is mainly computed from the algebraic
axioms appearing in the datatype declaration (step 3.a).
Here, the own ordering mechanisms of the language are
used (step 3.b). The LP theorem prover is able to automat-
ically orient equations into rewrite rules, especially using
registered orderings. When no commutative or associative-
commutative operators are involved, this ordering guaran-
tees that the resulting rewrite rules terminate (step 3.c).

5 Application on a Case Study: the
Password Manager

In this section, we illustrate the formal foundations intro-
duced previously on a real system: the password manager.
Our single goal is to show in which way the formalised lan-
guage can be practically used for a concrete specification.
This example is chosen for its simplicity, its reduced size
and the inclusion of static and dynamic aspects.

MIAOW: A METHOD TO INTEGRATE. . . Informatica 28 (2004) 207–219 215

Informal requirements. The system to be specified is
made up of several basic users, a privileged user (root) and
a password manager. Basic users may modify their pass-
word. The privileged user may act as a basic user (and
change his/her password), but may create also a user ac-
count (i.e. add a user identifier and a password). The cre-
ation of a user account unfolds as follows: (1) the user iden-
tifier is asked, and either it exists and an error is raised, or
it does not and the password is asked; (2) if no errors occur
the password is asked again and if it is different from the
first one an error is raised, otherwise the account is created.
The modification of a password by a user happens simi-
larly to the creation case with some slight differences: (1)
the user identifier must already exist; (2) the old password
is asked and verified before typing the new password.

Language suitability. Languages involved in the com-
bination (CCS and Larch) are well suited for this case
study. For the static part, Larch is expressive enough for
specifying the data appearing in the case study. Further-
more, Larch has a theorem prover (Larch Prover [17])
which is useful for verifying proofs on this part of the spec-
ification. For the dynamic aspects, the CCS formalism pro-
vides a set of operators sufficiently expressive for the spec-
ification of the current system. Likewise, CCS has several
tools such as the model-checker CWB-NC [10]. Finally,
we emphasize that CCS is the process algebra we have
greater experience with.

Specification. From the analysis of this case study, we
have identified two kinds of algebraic sorts: basic types and
more complex ones obtained by composition of the former.
We have specified datatypes to represent users (User) and
passwords (Pwd). From these basic types, we have defined
a set made up of user and password couple (Spm). This sort
constitutes the static part of the password manager and is
described below. The algebraic specification is straightfor-
wardly written in the LP input language.

set name SPM
declare Sort Spm
declare op
empty: -> Spm
add: Spm, User, Pwd -> Spm
modify: Spm, User, Pwd -> Spm
is declared: Spm, User -> Bool
is correct: Spm, User, Pwd -> Bool

..

assert sort Spm
generated by empty, add;

declare var
s: Spm
u, u1, u2: User
p, p1, p2: Pwd

..

assert
modify(empty,u,p) =
add(empty,u,p);

eq user(u1,u2) =>
modify(add(s,u1,p1),u2,p2) =
add(s,u1,p2);

˜eq user(u1,u2) =>
modify(add(s,u1,p1),u2,p2) =
add(modify(s,u2,p2),u1,p1);

is declared(empty,u) = false;
eq user(u1,u2) =>
is declared(add(s,u1,p1),u2) =
true;

˜eq user(u1,u2) =>
is declared(add(s,u1,p1),u2) =
is declared(s,u2);

is correct(empty,u,p) = false;
eq user(u1,u2) =>
is correct(add(s,u1,p1),u2,p2) =
eq pwd(p1,p2);

˜eq user(u1,u2) =>
is correct(add(s,u1,p1),u2,p2) =
is correct(s,u2,p2);

..

About the dynamic part, we illustrate with the password
manager specification; basic user and root behaviours are
not worth introducing herein. The Dpm agent has two possi-
ble behaviours which are the password creation and modifi-
cation. It has as parameter the set of data memorizing users
and their passwords. A scenario of an account creation is
described in Figure 3.

Dpm(st man:Spm)
def
=

createAccount(u:User).
if is declared(st man,u)
then error.Dpm(st man)
else ok.givePwd(p1:Pwd).
givePwd(p2:Pwd).if eq pwd(p1,p2)
then ok.Dpm(add(st man,u,p1))
else error.Dpm(st man)

+ modifyPwd(u:User).
if ˜ is declared(st man,u)
then error.Dpm(st man)
else ok.giveOldPwd(p:Pwd).
if is correct(st man,u,p)
then ok.givePwd(p1:Pwd).
givePwd(p2:Pwd).if eq pwd(p1,p2)
then ok.Dpm(modify(st man,u,p1))
else error.Dpm(st man)

else error.Dpm(st man)

Dpm(st_man) Root

[eq_pwd("userpwd03","userpwd03")] ok

[is_declared(st_man,user(3))] ok

givePwd("userpwd03")

givePwd("userpwd03")

createAccount(user(3))

Figure 3: Scenario for an account creation

Verification aspects. Some properties have been proved
on this specification, and we give insights into possibilities
of proofs that we perform on the password manager spec-
ification. First of all, the LP interactive theorem proving

216 Informatica 28 (2004) 207–219 G. Salaün et al.

system allows the specifier to load and parse the specifi-
cation to verify the syntactic correctness, to create rewrite
rules using ordering mechanisms and to prove theorems.

The CWB-NC automatic verification tool cannot be used
straightforwardly. We should translate our specification
into the CCS input language of CWB-NC. This implies an
abstraction of our specification by a syntactic and semantic
restriction. Concerning the syntax, this abstraction leads to
removing of the value passing of the extended CCS and the
if conditional structure. Moreover, we have to respect the
precise syntax of the tool detailed in [10]. Concerning the
semantics, we do not take into account the rules with alge-
braic value passing. Then, verification on the CCS spec-
ification part consists of simulation, finding deadlock test
and temporal formula written with the mu-calculus and the
CTL operators (liveness and safety properties) such as:

prop can modifyPwd =

min X = <modifyPwd>tt \/ <->X

This property verifies that the action modifyPwd is per-
formed after a finite number of steps. To complement these
partial proofs, we have developed a tool (ISA [5]) which al-
lows the animation of specifications written in value pass-
ing CCS. This tool makes it possible to manage data poten-
tially written with any considered data language for which
an evaluation function exists. This function is computed
as an external module called by ISA. We have also exper-
imented the encoding of this kind of integrated languages
into the input formats of higher-order logic tools [32]. Our
approach has focused on the formalisation of such lan-
guages into PVS [12] and particularly on process equiva-
lence proofs in this homogeneous context.

Links with the formal foundations. To reinforce the
correspondence between the concrete use of the integrated
language and its formal basis, we show how both are linked
through an actual piece of specification. More precisely, we
instantiate the inference rule giving the semantics of the last
synchronization in Figure 3 (i.e. on the ok action). First of
all, we instantiate the st man parameter with a real value.

st man =

add(add(empty,user(1),"userpwd01"),

user(2),"userpwd02")

The semantic rule for the synchronization (the first one
below) needs the rule for the conditional structure (the
second one below) to give sense to the first premise of
the first rule. Both rules respectively correspond to the
rules (6) and (20) formalised in Section 4. Besides, the
rewriting function substitutes the generic evaluation func-
tion in this last rule using the following instantiation no-
tation: eval ≡ ;∗

R (pages 17–18 of [17]), where R is
the set of rewrite rules. Thus, we stress that in the second
rule, the behaviour eq pwd("userpwd03","userpwd03") is
rewritten as true.

if eq pwd(′′userpwd03′′,′′ userpwd03′′)
then ok.Dpm(add(st man, user(3),′′ userpwd03′′))

else error.Dpm(st man)
ok−→

Dpm(add(st man, user(3),′′ userpwd03′′))
ok.Root

ok−→ Root

if eq pwd(′′userpwd03′′,′′ userpwd03′′)
then ok.Dpm(add(st man, user(3),′′ userpwd03′′))

else error.Dpm(st man) | ok.Root τ→
Dpm(add(st man, user(3),′′ userpwd03′′)) | Root

if eq pwd(′′userpwd03′′,′′ userpwd03′′)
then ok.Dpm(add(st man, user(3),′′ userpwd03′′))

else error.Dpm(st man)
ok−→

Dpm(add(st man, user(3),′′ userpwd03′′))
eq pwd(′′userpwd03′′,′′ userpwd03′′) ;∗

R true
if eq pwd(′′userpwd03′′,′′ userpwd03′′)

then ok.Dpm(add(st man, user(3),′′ userpwd03′′))

else error.Dpm(st man)
ok−→

Dpm(add(st man, user(3),′′ userpwd03′′))

6 Issues with the Model Oriented
Integration

In this section, we discuss issues to integrate a process al-
gebra with a state oriented language. Indeed, Section 4
deals with algebraic specifications as data formalism. Ac-
cordingly, we give hints and ideas to perform such a com-
bination. The topic of interest is interactions between the
process algebra and the data language. Similarly to alge-
braic specifications, the value passing is an easy way to
express these links; as a consequence, we apply the same
approach of formalisation in this section. However, there
are differences between these families of language.

Local data will be defined using the process declaration
parameters. Recursion will make modification of local data
possible (with side effect) or just refer to the unchanged
state space. Care must be taken while dealing with com-
munication since output parameters are not simple terms
but state description (that is a complete set of variables
and value bindings). Then, the output parameters (oper-
ation applications) should express modification of the state
space and emission of data. That behaviour could be also
split into two sequential actions. Input events could receive
data expressed using variables with types declared in the
initial data language. Operation returning a Boolean could
be used to write conditions in guards or conditional struc-
tures. Another case is the use of the data language syntax
to express conditions on local variables.

Now, we illustrate these general ideas on a real com-
bination between Z and CSP [19]. Several proposals of
formal combination between process algebras and Z have
been already suggested [16, 22]. Nevertheless, we just aim
at explaining one way to integrate these languages through
a short piece of specification. The Z schemas model a con-
strained counter using a natural number. Two operations
are defined: the incrementation (IncCounter) and the consul-
tation (ReadCounter).

MIAOW: A METHOD TO INTEGRATE. . . Informatica 28 (2004) 207–219 217

Counter
val : N

val ≤ 100

InitCounter
Counter′

val′ = 0

IncCounter
∆Counter
v? : N

val + v? ≤ 100
val′ = val + v?

ReadCounter
ΞCounter
x! : N

x! = val

Afterwards, we specify two processes using a CSP-like
notation. The first one (Controller) has two possible
behaviours: either it increments the counter with a re-
ceived natural number vv (and consequently updates its lo-
cal data), or it synchronizes itself with the other process
exchanging the current value of the counter. The process
Tester receives the current value of the controller and tests
if the counter is greater or equal to 50. Depending on the
test result, its behaviour stops or continues.

Controller(Counter) ,
receiveVal?vv : N ->

inc(IncCounter[vv/v?]) ->

Controller(θCounter)

¤ read(ReadCounter[x!/y]) -> comm!y ->

Controller(θCounter)

Tester ,
comm?z : N ->

(z ≥ 50 -> stop | z < 50 -> Tester)

Interactions with data are located at different levels: pro-
cess parameters, event parameters and guard condition.
Processes are possibly parameterised with the schema type
(Counter in the Controller process). Recursion is param-
eterised with the current state space which is the current
binding between variables and their values (denoted with
θCounter). The Z input and output variables are expressed
as usual using the ? and ! notations. Conditions are
expressed using Z comparison operators with local or re-
ceived variables. The last interaction between Z data and
CSP undertakes the modification of local data. Opera-
tion calls are defined as a parameter to a CSP event (e.g.
inc(IncCounter[vv/v?])). It encompasses the related modi-
fication of the bound state space. Substitution is used to
perform the links between the input and output variables of
Z operations and the ones appearing in process definitions.

We underscore that the way to write syntactic interac-
tions between both languages is the single difficulty to the
construction of the integrated formalism. Apart from that,
following the guidelines introduced in Section 2 the re-
mainder of the formalisation is pretty straightforward, and
could be achieved without too much effort.

7 Concluding Remarks
We claim that there is a lack of methods for designers to
build their own integrated languages. The need for meth-
ods is really important because with this kind of methods
they can obtain formalisms well suited to a precise system
to be specified. In this article, we propose a method to build
integrated languages constituted of a process algebra and a
formal data oriented language. The method caters for the
initial motivations. Thus, the new language is especially
adapted to model complex systems because it covers the
main aspects (static and dynamic) involved in these sys-
tems. Let us remark that in this work, we suggest a precise
kind of formalisation although we know that other ways
exist to reach this goal. Here, the proposed method and
formalisation approach are strongly bound.

Although we have started studying verification means
on integrated specifications, we should continue our ef-
fort in this direction. For instance, an ongoing work is
the extension of the ISA tool in a modular and generic
way to take into account other dynamic specification lan-
guages and to perform property verification (model check-
ing). Likewise, the encoding approach in PVS has to be
pushed on. We should undertake more general proofs (not
only equivalence ones) on integrated specifications embed-
ded into PVS.

References
[1] Abrial, J. R. 1996, The B-Book, Cambridge Univer-

sity Press.

[2] Abrial, J.-R. Mussat, L. 1998, Introducing Dynamic
Constraints in B, in D. Bert, ed., ‘Proceedings of the
2nd International B Conference (B’1998)’, Vol. 1393
of Lecture Notes in Computer Science, Springer-
Verlag, France, pp. 83–128.

[3] Astesiano, E., Bidoit, M., Kirchner, H., Krieg-
Brückner, B., Mosses, P. D., Sannella, D. Tarlecki,
A. 2002, ‘CASL: The Common Algebraic Speci-
fication Language’, Theoretical Computer Science
286(2), 153–196.

[4] Astesiano, E., Cerioli, M. Reggio, G. 2000, Plug-
ging Data Constructs into Paradigm-Specific Lan-
guages: towards an Application to UML, in T. Rus,
ed., ‘Proceedings of the 8th International Conference
on Algebraic Methodology and Software Technology
(AMAST’00)’, Vol. 1816 of Lecture Notes in Com-
puter Science, Springer-Verlag, USA, pp. 273–292.

[5] Attiogbé, C., Francheteau, A., Limousin,
J. Salaün, G. n.d., ISA, a tool for Inte-
grated Specifications Animation. Available at
http://www.sciences.univ-nantes.fr/

info/perso/permanents/salaun/ISA/

isa.html.

218 Informatica 28 (2004) 207–219 G. Salaün et al.

[6] Bergstra, J., Ponse, A. Smolka, S., eds 2001, Hand-
book of Process Algebra, Elsevier.

[7] Bert, D. Cave, F. 2000, Construction of Finite La-
belled Transition Systems from B Abstract Systems,
in W. Grieskamp, T. Santen B. Stoddart, eds, ‘Pro-
ceedings of the Second International Conference on
Integrated Formal Methods (IFM’00)’, Vol. 1945 of
Lecture Notes in Computer Science, Springer-Verlag,
Germany, pp. 235–254.

[8] Bidoit, M. 1989, Pluss, un langage pour le développe-
ment de spécifications algébriques modulaires, PhD
Thesis, Université de Paris-Sud – Centre d’Orsay.

[9] Borovanský, P., Kirchner, C., Kirchner, H., Moreau,
P.-E. Ringeissen, C. 1998, An Overview of ELAN, in
C. Kirchner H. Kirchner, eds, ‘Proceedings of the In-
ternational Workshop on Rewriting Logic and its Ap-
plications (WRLA’98)’, Vol. 15 of Electronic Notes
in Theoretical Computer Science, Elsevier Science,
France.

[10] Cleaveland, R., Li, T. Sims, S. 2000, The Concur-
rency Workbench of the New Century (Version 1.2),
Department of Computer Science, North Carolina
State University.

[11] CoFI Semantics Task Group 2000, CASL – The CoFI
Algebraic Specification Language – Semantics (ver-
sion 1.0). Note S-9 in [?].

[12] Crow, J., Owre, S., Rushby, J., Shankar, N. Srivas, M.
1995, A Tutorial Introduction to PVS, in ‘Proceedings
of the Workshop on Industrial-Strength Formal Spec-
ification Techniques (WIFT’95)’, Computer Science
Laboratory, SRI International, USA.

[13] Dershowitz, N. 1982, ‘Orderings for Term-Rewriting
Systems’, Theoretical Computer Science 17(3), 279–
301.

[14] Ehrig, H. Mahr, B. 1985, Fundamentals of Alge-
braic Specification 1: Equations and Initial Seman-
tics, Vol. 6 of EATCS Monographs on Theoretical
Computer Science, Springer-Verlag, New-York.

[15] Ehrig, H. Orejas, F. 1998, ‘Integration Paradigm
for Data Type and Process Specification Techniques’,
Bulletin of the European Association for Theoreti-
cal Computer Science 65, 90–97. Columns: Formal
Specification.

[16] Fischer, C. 1998, How to combine Z with a process
algebra, in J. P. Bowen, A. Fett M. G. Hinchey, eds,
‘Proceedings of the 11th International Conference of
Z Users (ZUM’98)’, Vol. 1493 of Lecture Notes in
Computer Science, Springer-Verlag, Germany, pp. 5–
23.

[17] Garland, S. J. Guttag, J. V. 1991, A Guide to LP, the
Larch Prover, Technical report, Palo Alto, California.

[18] Guttag, J. V., Horning, J. J., Garland, S. J., Jones,
K. D., Modet, A. Wing, J. M. 1993, Larch: Lan-
guages and Tools for Formal Specification, Texts and
Monographs in Computer Science, Springer-Verlag.

[19] Hoare, C. A. R. 1985, Communicating Sequential
Processes, Prentice-Hall.

[20] Hoenicke, J. Olderog, E.-R. 2002, Combining Spec-
ification Techniques for Processes, Data and Time, in
M. Butler, L. Petre K. Sere, eds, ‘Proceedings of the
Third International Conference on Integrated Formal
Methods (IFM’02)’, Vol. 2335 of Lecture Notes in
Computer Science, Springer-Verlag, pp. 245–266.

[21] ISO 1989, LOTOS: a Formal Description Technique
based on the Temporal Ordering of Observational Be-
haviour, Technical Report 8807, International Stan-
dards Organisation.

[22] Jones, C. B., Cooke, D. J. Wing, J. M., eds 2002,
Formal Aspects of Computing, Vol. 13(2), Springer.

[23] Kirchner, H. Ringeissen, C. 2000, Executing CASL
Equational Specifications with the ELAN Rewrite
Engine. Note T-9 in [?].

[24] Klop, J. W. 1992, Term Rewriting Systems, in
S. Abramsky, D. M. Gabbay T. S. E. Maibaum, eds,
‘Handbook of Logic in Computer Science’, Vol. 2,
Oxford University Press, Oxford, chapter 1, pp. 1–
117.

[25] Milner, R. 1980, ‘A Calculus of Communicating Sys-
tems’, Lecture Notes in Computer Science 92.

[26] Milner, R. 1989, Communication and Concurrency,
International Series in Computer Science, Prentice
Hall.

[27] Moller, F. Stevens, P. 1999, The Edinburgh Concur-
rency Workbench (Version 7.1), Laboratory for Foun-
dations of Computer Science, University of Edin-
burgh.

[28] Reggio, G. Repetto, L. 2000, Casl-Chart: A
Combination of Statecharts and of the Algebraic
Specification Language Casl, in T. Rus, ed., ‘Pro-
ceedings of the 8th International Conference on
Algebraic Methodology and Software Technology
(AMAST’00)’, Vol. 1816 of Lecture Notes in Com-
puter Science, Springer-Verlag, USA, pp. 243–257.

[29] Salaün, G., Allemand, M. Attiogbé, C. 2001,
Formal Framework for a Generic Combination of
a Process Algebra with an Algebraic Specification
Language: an Overview, in ‘Proceedings of the
8th Asia-Pacific Software Engineering Conference
(APSEC’01)’, IEEE Computer Society Press, China,
pp. 299–302.

MIAOW: A METHOD TO INTEGRATE. . . Informatica 28 (2004) 207–219 219

[30] Salaün, G., Allemand, M. Attiogbé, C. 2002a, A
Method to Combine any Process Algebra with an
Algebraic Specification Language: the π-Calculus
Example, in ‘Proceedings of the 26th Annual Inter-
national Computer Software and Applications Con-
ference (COMPSAC’02)’, IEEE Computer Society
Press, England, pp. 385–390.

[31] Salaün, G., Allemand, M. Attiogbé, C. 2002b, Spec-
ification of an Access Control System with a Formal-
ism Combining CCS and CASL, in ‘Proceedings of
the 7th International Workshop on Formal Methods
for Parallel Programming: Theory and Applications
(FMPPTA’02)’, IEEE Computer Society Press, USA.

[32] Salaün, G. Attiogbé, C. 2003, Formalising an Inte-
grated Language in PVS, in J. S. Dong J. Woodcock,
eds, ‘Proc. of the 5th International Conference on For-
mal Engineering Methods (ICFEM’03)’, Vol. 2885,
Springer-Verlag, Singapore, pp. 187–205.

[33] Spivey, J. M. 1992, The Z Notation: A Reference
Manual, 2nd edn, Prentice Hall International Series
in Computer Science.

220 Informatica 28 (2004) 207–219 G. Salaün et al.

 Informatica 28 (2004) 221–221 221

ERRATA CORRIGE

Upon publication of the following paper:
P.Rocchi – "Unifying the Interpretation of
Redundant Information" Informatica Volume 28,
Number 1 [91-94] (2004)
We discovered that some equations appear unintelligible
due to the involuntary switching of the symbol formats in
the electronic text.
The following are corrections to the affected equations.

ε i γ ε j
 i, j = 1,2,..n (2.1)

{εu} 3 {εz} = ∅ (3.5)

ε u γ ε z (3.6)

R > 0 ω L > Lα Β ƒ 2 (4.3)

RC ƒ 2 (5.1)

{ε} = [{ε z}3{ε zC}] 4 [{ε u}3{ε uC}] (5.3)

 {ε u}3{ε zC}= {εu}
{ε z}3{ε uC}= {εz} (5.4)

{ε u}4{ε z} = {ε } (5.5)

We apologize for the inconvenience.

222 Informatica 28 (2004)

Informatica 28 (2004) 223

JOŽEF STEFAN INSTITUTE

Jožef Stefan (1835-1893) was one of the most prominent
physicists of the 19th century. Born to Slovene parents,
he obtained his Ph.D. at Vienna University, where he was
later Director of the Physics Institute, Vice-President of the
Vienna Academy of Sciences and a member of several sci-
entific institutions in Europe. Stefan explored many areas
in hydrodynamics, optics, acoustics, electricity, magnetism
and the kinetic theory of gases. Among other things, he
originated the law that the total radiation from a black
body is proportional to the 4th power of its absolute tem-
perature, known as the Stefan–Boltzmann law.

The Jožef Stefan Institute (JSI) is the leading indepen-
dent scientific research institution in Slovenia, covering a
broad spectrum of fundamental and applied research in the
fields of physics, chemistry and biochemistry, electronics
and information science, nuclear science technology, en-
ergy research and environmental science.

The Jožef Stefan Institute (JSI) is a research organisation
for pure and applied research in the natural sciences and
technology. Both are closely interconnected in research de-
partments composed of different task teams. Emphasis in
basic research is given to the development and education of
young scientists, while applied research and development
serve for the transfer of advanced knowledge, contributing
to the development of the national economy and society in
general.

At present the Institute, with a total of about 700 staff,
has 500 researchers, about 250 of whom are postgraduates,
over 200 of whom have doctorates (Ph.D.), and around
150 of whom have permanent professorships or temporary
teaching assignments at the Universities.

In view of its activities and status, the JSI plays the role
of a national institute, complementing the role of the uni-
versities and bridging the gap between basic science and
applications.

Research at the JSI includes the following major fields:
physics; chemistry; electronics, informatics and computer
sciences; biochemistry; ecology; reactor technology; ap-
plied mathematics. Most of the activities are more or
less closely connected to information sciences, in particu-
lar computer sciences, artificial intelligence, language and
speech technologies, computer-aided design, computer ar-
chitectures, biocybernetics and robotics, computer automa-
tion and control, professional electronics, digital communi-
cations and networks, and applied mathematics.

The Institute is located in Ljubljana, the capital of the in-
dependent state of Slovenia (or S♥nia). The capital today
is considered a crossroad between East, West and Mediter-

ranean Europe, offering excellent productive capabilities
and solid business opportunities, with strong international
connections. Ljubljana is connected to important centers
such as Prague, Budapest, Vienna, Zagreb, Milan, Rome,
Monaco, Nice, Bern and Munich, all within a radius of 600
km.

In the last year on the site of the Jožef Stefan Institute,
the Technology park “Ljubljana” has been proposed as part
of the national strategy for technological development to
foster synergies between research and industry, to promote
joint ventures between university bodies, research institutes
and innovative industry, to act as an incubator for high-tech
initiatives and to accelerate the development cycle of inno-
vative products.

At the present time, part of the Institute is being reor-
ganized into several high-tech units supported by and con-
nected within the Technology park at the Jožef Stefan In-
stitute, established as the beginning of a regional Technol-
ogy park “Ljubljana”. The project is being developed at
a particularly historical moment, characterized by the pro-
cess of state reorganisation, privatisation and private ini-
tiative. The national Technology Park will take the form
of a shareholding company and will host an independent
venture-capital institution.

The promoters and operational entities of the project are
the Republic of Slovenia, Ministry of Science and Tech-
nology and the Jožef Stefan Institute. The framework of
the operation also includes the University of Ljubljana, the
National Institute of Chemistry, the Institute for Electron-
ics and Vacuum Technology and the Institute for Materials
and Construction Research among others. In addition, the
project is supported by the Ministry of Economic Relations
and Development, the National Chamber of Economy and
the City of Ljubljana.

Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Tel.:+386 1 4773 900, Fax.:+386 1 425 1038
Tlx.:31 296 JOSTIN SI
WWW: http://www.ijs.si
E-mail: matjaz.gams@ijs.si
Public relations: Natalija Polenec

Informatica 28 (2004)

INFORMATICA
AN INTERNATIONAL JOURNAL OF COMPUTING AND INFORMATICS

INVITATION, COOPERATION

Submissions and Refereeing

Please submit three copies of the manuscript with good copies of
the figures and photographs to one of the editors from the Edito-
rial Board or to the Contact Person. At least two referees outside
the author’s country will examine it, and they are invited to make
as many remarks as possible directly on the manuscript, from typ-
ing errors to global philosophical disagreements. The chosen ed-
itor will send the author copies with remarks. If the paper is ac-
cepted, the editor will also send copies to the Contact Person. The
Executive Board will inform the author that the paper has been
accepted, in which case it will be published within one year of
receipt of e-mails with the text in Informatica LATEX format and
figures in .eps format. The original figures can also be sent on
separate sheets. Style and examples of papers can be obtained by
e-mail from the Contact Person or from FTP or WWW (see the
last page of Informatica).

Opinions, news, calls for conferences, calls for papers, etc. should
be sent directly to the Contact Person.

QUESTIONNAIRE
Send Informatica free of charge

Yes, we subscribe

Please, complete the order form and send it to Dr. Drago Torkar,
Informatica, Institut Jožef Stefan, Jamova 39, 1111 Ljubljana,
Slovenia.

ORDER FORM – INFORMATICA

Name: .

Title and Profession (optional): .

. .

Home Address and Telephone (optional): .

. .

Since 1977, Informatica has been a major Slovenian scientific
journal of computing and informatics, including telecommunica-
tions, automation and other related areas. In its 16th year (more
than ten years ago) it became truly international, although it still
remains connected to Central Europe. The basic aim of Infor-
matica is to impose intellectual values (science, engineering) in a
distributed organisation.

Informatica is a journal primarily covering the European com-
puter science and informatics community - scientific and educa-
tional as well as technical, commercial and industrial. Its basic
aim is to enhance communications between different European
structures on the basis of equal rights and international referee-
ing. It publishes scientific papers accepted by at least two ref-
erees outside the author’s country. In addition, it contains in-
formation about conferences, opinions, critical examinations of
existing publications and news. Finally, major practical achieve-
ments and innovations in the computer and information industry
are presented through commercial publications as well as through
independent evaluations.

Editing and refereeing are distributed. Each editor can conduct
the refereeing process by appointing two new referees or referees
from the Board of Referees or Editorial Board. Referees should
not be from the author’s country. If new referees are appointed,
their names will appear in the Refereeing Board.

Informatica is free of charge for major scientific, educational and
governmental institutions. Others should subscribe (see the last
page of Informatica).

Office Address and Telephone (optional): .

. .

E-mail Address (optional): .

Signature and Date: .

Informatica WWW:

http://ai.ijs.si/informatica/

Referees:

Witold Abramowicz, David Abramson, Adel Adi, Kenneth Aizawa, Suad Alagić, Mohamad Alam, Dia Ali, Alan
Aliu, Richard Amoroso, John Anderson, Hans-Jurgen Appelrath, Iván Araujo, Vladimir Bajič, Michel Barbeau,
Grzegorz Bartoszewicz, Catriel Beeri, Daniel Beech, Fevzi Belli, Simon Beloglavec, Sondes Bennasri, Francesco
Bergadano, Istvan Berkeley, Azer Bestavros, Andraž Bežek, Balaji Bharadwaj, Ralph Bisland, Jacek Blazewicz,
Laszlo Boeszoermenyi, Damjan Bojadžijev, Jeff Bone, Ivan Bratko, Pavel Brazdil, Bostjan Brumen, Jerzy
Brzezinski, Marian Bubak, Davide Bugali, Troy Bull, Sabin Corneliu Buraga, Leslie Burkholder, Frada Burstein,
Wojciech Buszkowski, Rajkumar Bvyya, Giacomo Cabri, Netiva Caftori, Particia Carando, Robert Cattral, Jason
Ceddia, Ryszard Choras, Wojciech Cellary, Wojciech Chybowski, Andrzej Ciepielewski, Vic Ciesielski, Mel Ó
Cinnéide, David Cliff, Maria Cobb, Jean-Pierre Corriveau, Travis Craig, Noel Craske, Matthew Crocker, Tadeusz
Czachorski, Milan Češka, Honghua Dai, Bart de Decker, Deborah Dent, Andrej Dobnikar, Sait Dogru, Peter
Dolog, Georg Dorfner, Ludoslaw Drelichowski, Matija Drobnič, Maciej Drozdowski, Marek Druzdzel, Marjan
Družovec, Jozo Dujmović, Pavol Ďuriš, Amnon Eden, Johann Eder, Hesham El-Rewini, Darrell Ferguson, Warren
Fergusson, David Flater, Pierre Flener, Wojciech Fliegner, Vladimir A. Fomichov, Terrence Forgarty, Hans Fraaije,
Stan Franklin, Violetta Galant, Hugo de Garis, Eugeniusz Gatnar, Grant Gayed, James Geller, Michael
Georgiopolus, Michael Gertz, Jan Goliński, Janusz Gorski, Georg Gottlob, David Green, Herbert Groiss, Jozsef
Gyorkos, Marten Haglind, Abdelwahab Hamou-Lhadj, Inman Harvey, Jaak Henno, Marjan Hericko, Henry
Hexmoor, Elke Hochmueller, Jack Hodges, Doug Howe, Rod Howell, Tomáš Hruška, Don Huch, Simone
Fischer-Huebner, Zbigniew Huzar, Alexey Ippa, Hannu Jaakkola, Sushil Jajodia, Ryszard Jakubowski, Piotr
Jedrzejowicz, A. Milton Jenkins, Eric Johnson, Polina Jordanova, Djani Juričič, Marko Juvancic, Sabhash Kak,
Li-Shan Kang, Ivan Kapustøk, Orlando Karam, Roland Kaschek, Jacek Kierzenka, Jan Kniat, Stavros Kokkotos,
Fabio Kon, Kevin Korb, Gilad Koren, Andrej Krajnc, Henryk Krawczyk, Ben Kroese, Zbyszko Krolikowski,
Benjamin Kuipers, Matjaž Kukar, Aarre Laakso, Sofiane Labidi, Les Labuschagne, Ivan Lah, Phil Laplante, Bud
Lawson, Herbert Leitold, Ulrike Leopold-Wildburger, Timothy C. Lethbridge, Joseph Y-T. Leung, Barry Levine,
Xuefeng Li, Alexander Linkevich, Raymond Lister, Doug Locke, Peter Lockeman, Vincenzo Loia, Matija Lokar,
Jason Lowder, Kim Teng Lua, Ann Macintosh, Bernardo Magnini, Andrzej Małachowski, Peter Marcer, Andrzej
Marciniak, Witold Marciszewski, Vladimir Marik, Jacek Martinek, Tomasz Maruszewski, Florian Matthes, Daniel
Memmi, Timothy Menzies, Dieter Merkl, Zbigniew Michalewicz, Armin R. Mikler, Gautam Mitra, Roland
Mittermeir, Madhav Moganti, Reinhard Moller, Tadeusz Morzy, Daniel Mossé, John Mueller, Jari Multisilta, Hari
Narayanan, Jerzy Nawrocki, Rance Necaise, Elzbieta Niedzielska, Marian Niedq’zwiedziński, Jaroslav Nieplocha,
Oscar Nierstrasz, Roumen Nikolov, Mark Nissen, Jerzy Nogieć, Stefano Nolfi, Franc Novak, Antoni Nowakowski,
Adam Nowicki, Tadeusz Nowicki, Daniel Olejar, Hubert Österle, Wojciech Olejniczak, Jerzy Olszewski, Cherry
Owen, Mieczyslaw Owoc, Tadeusz Pankowski, Jens Penberg, William C. Perkins, Warren Persons, Mitja Peruš,
Fred Petry, Stephen Pike, Niki Pissinou, Aleksander Pivk, Ullin Place, Peter Planinšec, Gabika Polčicová, Gustav
Pomberger, James Pomykalski, Tomas E. Potok, Dimithu Prasanna, Gary Preckshot, Dejan Rakovič, Cveta
Razdevšek Pučko, Ke Qiu, Michael Quinn, Gerald Quirchmayer, Vojislav D. Radonjic, Luc de Raedt, Ewaryst
Rafajlowicz, Sita Ramakrishnan, Kai Rannenberg, Wolf Rauch, Peter Rechenberg, Felix Redmill, James Edward
Ries, David Robertson, Marko Robnik, Colette Rolland, Wilhelm Rossak, Ingrid Russel, A.S.M. Sajeev, Kimmo
Salmenjoki, Pierangela Samarati, Bo Sanden, P. G. Sarang, Vivek Sarin, Iztok Savnik, Ichiro Satoh, Walter
Schempp, Wolfgang Schreiner, Guenter Schmidt, Heinz Schmidt, Dennis Sewer, Zhongzhi Shi, Mária Smolárová,
Carine Souveyet, William Spears, Hartmut Stadtler, Stanislaw Stanek, Olivero Stock, Janusz Stokłosa,
Przemysław Stpiczyński, Andrej Stritar, Maciej Stroinski, Leon Strous, Ron Sun, Tomasz Szmuc, Zdzislaw
Szyjewski, Jure Šilc, Metod Škarja, Jiřı Šlechta, Chew Lim Tan, Zahir Tari, Jurij Tasič, Gheorge Tecuci, Piotr
Teczynski, Stephanie Teufel, Ken Tindell, A Min Tjoa, Drago Torkar, Vladimir Tosic, Wieslaw Traczyk, Denis
Trček, Roman Trobec, Marek Tudruj, Andrej Ule, Amjad Umar, Andrzej Urbanski, Marko Uršič, Tadeusz
Usowicz, Romana Vajde Horvat, Elisabeth Valentine, Kanonkluk Vanapipat, Alexander P. Vazhenin, Jan
Verschuren, Zygmunt Vetulani, Olivier de Vel, Didier Vojtisek, Valentino Vranić, Jozef Vyskoc, Eugene
Wallingford, Matthew Warren, John Weckert, Michael Weiss, Tatjana Welzer, Lee White, Gerhard Widmer, Stefan
Wrobel, Stanislaw Wrycza, Tatyana Yakhno, Janusz Zalewski, Damir Zazula, Yanchun Zhang, Ales Zivkovic,
Zonling Zhou, Robert Zorc, Anton P. Železnikar

Informatica
An International Journal of Computing and Informatics

Archive of abstracts may be accessed at USA: http://, Europe: http://ai.ijs.si/informatica, Asia:
http://www.comp.nus.edu.sg/ liuh/Informatica/index.html.

Subscription Information Informatica (ISSN 0350-5596) is published four times a year in Spring, Summer,
Autumn, and Winter (4 issues per year) by the Slovene Society Informatika, Vožarski pot 12, 1000 Ljubljana,
Slovenia.
The subscription rate for 2004 (Volume 28) is
– USD 80 for institutions,
– USD 40 for individuals, and
– USD 20 for students
Claims for missing issues will be honored free of charge within six months after the publication date of the issue.

LATEX Tech. Support: Borut Žnidar, Kranj, Slovenia.
Lectorship: Fergus F. Smith, AMIDAS d.o.o., Cankarjevo nabrežje 11, Ljubljana, Slovenia.
Printed by Biro M, d.o.o., Žibertova 1, 1000 Ljubljana, Slovenia.

Orders for subscription may be placed by telephone or fax using any major credit card. Please call Mr. R. Murn,
Jožef Stefan Institute: Tel (+386) 1 4773 900, Fax (+386) 1 219 385, or send checks or VISA card number or use
the bank account number 900–27620–5159/4 Nova Ljubljanska Banka d.d. Slovenia (LB 50101-678-51841 for
domestic subscribers only).

Informatica is published in cooperation with the following societies (and contact persons):
Robotics Society of Slovenia (Jadran Lenarčič)
Slovene Society for Pattern Recognition (Franjo Pernuš)
Slovenian Artificial Intelligence Society; Cognitive Science Society (Matjaž Gams)
Slovenian Society of Mathematicians, Physicists and Astronomers (Bojan Mohar)
Automatic Control Society of Slovenia (Borut Zupančič)
Slovenian Association of Technical and Natural Sciences / Engineering Academy of Slovenia (Igor Grabec)
ACM Slovenia (Dunja Mladenič)

Informatica is surveyed by: AI and Robotic Abstracts, AI References, ACM Computing Surveys, ACM Digital
Library, Applied Science & Techn. Index, COMPENDEX*PLUS, Computer ASAP, Computer Literature Index,
Cur. Cont. & Comp. & Math. Sear., Current Mathematical Publications, Cybernetica Newsletter, DBLP Computer
Science Bibliography, Engineering Index, INSPEC, Linguistics and Language Behaviour Abstracts, Mathematical
Reviews, MathSci, Sociological Abstracts, Uncover, Zentralblatt für Mathematik

The issuing of the Informatica journal is financially supported by the Ministry of Education, Science and Sport, Trg
OF 13, 1000 Ljubljana, Slovenia.

Volume 28 Number 2 July 2004 ISSN 0350-5596

Transformations for Architectural Restructuring V. Ambriola,
A. Kmiecik

117

Software Engineering: The Trend A. Isazadeh, 129
Computer-Aided Reuse Tool (CART) Z. Houhamdi,

B. Athamena
139

Public-Key Inter-Block Dependence Fragile
Watermarking for Image Authentication Using
Continued Fraction

C.-C. Chang,
W.-C. Wu, Y.-C. Hu

147

A New Efficient Group Signature With Forward
Security

J. Zhang,
Q. Wu, Y. Wang

153

Using Finite-State Transducer Theory for
Representation of Very Large Scale Lexicons

M. Rojc,
Z. Kačič

159

The parameters tuning for evolutionary synthesis
algorithm

G. Papa,
J. Šilc

167

Extending CC4 Neural Networks to Classify Real
Life Documents

E. Chen,
Z. Zhang,
H.-D. Burkhard,
G. Lindemann

173

A Pattern Mapping Based Digital Image
Watermarking

C.-S. Tsai,
C.-C. Chang

181

Development of Diabetes Mellitus Mathematical
Models From Patient’s Clinical Database

A.K. El-Jabali 189

Parallel Modular Exponentiation Using
Signed-Digit-Folding Technique

D.-C. Lou,
C.-L. Wu

197

MIAOw: a Method to Integrate a Process Algebra
with Formal Data

G. Salaün,
C. Attiogbé

207

Errata Corrige 221

Informatica 28 (2004) Number 2, pp. 117–223

