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Sign language recognition has become increasingly important as the number of hearing-impaired people 

increases. This paper optimized the you only look once version 5 (YOLOv5) algorithm from perspectives 

of attention mechanism and loss function. The convolutional block attention module (CBAM) was added 

to the network, and the original intersection over union (IoU) loss function was improved to focal complete 

IoU (CIoU). Experimental analyses were performed on the American Sign Language (ASL) dataset in the 

Windows 10 environment. Moreover, the ten-fold cross-validation was used. The experiments found that 

adding the CBAM to the neck part of YOLOv5 showed the most effective sign language recognition results. 

The improved algorithm showed improvements of 0.95% in P value, 4.19% in R value, and 2.66% in mean 

average precision (mAP) compared to the baseline algorithm. When comparing different loss functions, 

the focal CIoU performed the best. Compared with other recognition algorithms, the improved YOLOv5 

algorithm performed better in sign language recognition, achieving P value, R value, and mAP of 93.26%, 

96.77%, and 98.12%, respectively. These results verify the reliability of the improved YOLOv5 algorithm 

in sign language recognition for hearing-impaired people. It can be applied in practice. 

Povzetek: Članek raziskuje prepoznavanje znakovnega jezika za naglušne osebe z izboljšanim algoritmom 

YOLOv5, ki združuje CBAM z Focal CioU. Avtorji so optimizirali algoritem YOLOv5 z dodajanjem 

pozornostnega mehanizma CBAM in izboljšanjem funkcije izgube IoU na Focal CIoU. 

 

1 Introduction 
Sign language is a main communication tool for hearing-

impaired people [1]. The study of sign language has 

gained more attention as the number of people with 

hearing impairments continues to increase. Sign language, 

a type of body language, conveys complex meanings 

through gestures, which can be understood after 

specialized learning. However, the general population has 

limited exposure to sign language, posing significant 

challenges for hearing-impaired individuals in 

communicating with the outside world. With the 

continuous advancement of computer technology, using 

computers to achieve sign language recognition can 

provide reliable assistance for communication among the 

hearing-impaired population [2]. Sign language 

recognition can be categorized into the recognition of 

static sign language images and the recognition of 

dynamic sign language videos, which have been 

extensively investigated [3]. FAl Rafi et al. [4] studied the 

identification of Bengali sign language using pre-trained 

MobileNetV2 and a conditional deep convolutional 

generative adversarial network, achieving a test accuracy 

of 94.74%. Takahashi et al. [5] proposed a network that 

combined a 3D convolutional neural network (CNN) with 

a Transformer for isolated sign language identification. 

They demonstrated its effectiveness through experiments 

on LSA64. Yu et al. [6] explored Chinese sign language 

identification based on wearable sensors and used a deep 

belief network to recognize captured electromyography, 

accelerometer, and gyroscope signals, achieving favorable 

recognition accuracy. Joshi et al. [7] studied dynamic 

Gujarati sign language recognition. They extracted 

features based on the Mediapipe algorithm, established a 

deep learning model with six layers based on long short-

term memory, and found high accuracy through 

experiments. Wang et al. [8] developed a gesture 

recognition method based on the Transformer model and 

trained it on a large corpus. Through experiments, it was 

found that the average word error rate of this method was 

21.6%. Sharma et al. [9] proposed an attention-based real-

time embedded long short-term memory (LSTM) for 

dynamic sign language identification and achieved a real-

time recognition rate of 99.7%. Kourbane et al. [10] put 

forward a new deep learning-based framework to achieve 

hand pose estimation. Through extensive experiments on 

two datasets, they found that this method was superior to 

the existing methods. This paper primarily focused on the 

recognition of static sign language images. To address 

challenges such as feature extraction difficulties and poor 

recognition performance of sign language images and to 

further enhance the recognition performance of sign 

language images, an optimized you only look once version 

5 (YOLOv5) model was developed based on deep learning. 

The effectiveness of this model in sign language 

recognition was verified through experiments, offering a 

more accurate approach for recognizing static sign 

language images. Moreover, the method enhanced 
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communication efficiency between hearing-impaired 

people and the outside world. The results also provide 

theoretical support for further utilization of deep learning 

methods. 

2 Related works 
The improved YOLOv5 algorithm developed in this paper 

was compared with some existing target recognition 

methods, and the following results were obtained. 

 

Table 1: Comparison of related works. 

 P/% R/% mAP@0.5/

% 

Faster 

region-CNN 

[11] 

80.12 ± 

1.87 

67.89 ± 

1.65 

79.84 ± 1.77 

YOLOv3 

[12] 

87.77 ± 

2.01 

80.12 ± 

1.77 

90.31 ± 2.01 

YOLOv4 

[13] 

88.05 ± 

1.97 

83.25 ± 

1.56 

92.56 ± 2.33 

YOLOv5 88.12 ± 

2.07 

90.33 ± 

1.64 

94.21 ± 2.14 

MobileNetV

2 [14] 

91.12 ± 

2.56 

81.94 ± 

1.82 

91.27 ± 2.05 

ShuffleNetV

2 [15] 

91.08 ± 

2.33 

82.11 ± 

2.01 

91.26 ± 2.17 

Improved 

YOLOv5 

93.26 ± 

2.77 

96.77 ± 

2.68 

98.12 ± 2.32 

 

The results in Table 1 verified the reliability of the 

improved YOLOv5 algorithm in recognition of static sign 

language images. Compared with the existing target 

detection methods, in this paper, based on the traditional 

model, the improvement of the detection performance was 

achieved through the introduction of the attention 

mechanism and the optimization of the loss function, 

enabling the model to pay more attention to the samples 

that are difficult to classify. 

 

3 Improved YOLOv5 algorithm 

3.1 Sign language and deep learning 

Hearing impairment is a global health issue [16]. Based on 

the data published by the China Disabled Persons’ 

Federation, the number of hearing-impaired people in 

China reached 20.54 million in 2010, accounting for the 

most significant proportion of disabilities (24.16%). 

Among them, children have a relatively high prevalence 

of Grade 1 and Grade 2 hearing disabilities. Moreover, at 

least 20,000 newborns are affected by hearing impairment 

annually, with a prevalence rate of 0.1%-0.3% for 

congenital hearing impairment in newborns and 0.27% for 

children under five years old. 

The hearing-impaired people usually use sign 

language for communication. However, sign language 

interpreters are often necessary for effective 

communication between the general population and 

people who rely on sign language. Unfortunately, the 

severe shortage of such interpreters cannot meet the 

communication needs of these people. As technology 

develops, artificial intelligence-based sign language 

recognition has emerged as a prominent solution to 

address hearing-impaired people’s communication 

requirements. 

As a non-verbal communication, sign language does 

not rely on auditory language but utilizes a unique 

grammatical structure. It is the visual language for 

individuals with hearing impairments and plays a crucial 

role in communication [17]. Sign language recognition 

can aid hearing-impaired people in communicating with 

the society. It can be categorized into static and dynamic 

sign language recognition. The former involves 

identifying gestures in images and has wide applications 

in hospitals and banks. The latter refers to a series of 

movements within a short time. Hand trajectory is 

combined with position for accurate recognition; therefore, 

it is more complex than static gestures. 

In recognizing static sign language images, rich 

gesture features are extracted from them, and a classifier 

is used for accurate recognition. There are two main 

approaches to feature extraction. The first approach 

involves extracting visual features from sign language 

images pre-processed by denoising and segmentation [18]. 

Sign language recognition can be achieved using methods 

like support vector machines (SVM) or extreme gradient 

boosting (XGBoost), which learn a limited number of 

features. The second approach is based on deep learning, 

which can learn advanced features from images and 

achieve faster training. It has shown excellent 

performance in tasks like image identification and target 

detection [19], making it increasingly popular in sign 

language recognition [20]. 

A convolutional neural network (CNN) is a basic deep 

learning approach [21]. Image features are extracted by 

convolution. The convolution operation is conducted on 

the input feature maps to get new feature maps. The 

formula for convolution operation is: 

 

𝑌𝑘
𝑚 = 𝑓(∑ 𝑊𝑗𝑘

𝑚 ∗ 𝑌𝑗
𝑚−1 + 𝑏𝑘

𝑚
𝑗∈𝑇 ), 

 

where 𝑇 is the set of feature 𝑦𝑗
𝑚−1  in 𝑚 − 1, 𝑊𝑗𝑘

𝑚  is the 

weight of the convolution kernel, 𝑏𝑘
𝑚 is the bias, and ∗ is 

the convolution operation. 

The pooling layer reduces dimensionality through 

feature selection, which reduces the computation amount 

and avoids overfitting. Generally, there are two operations: 

maximum pooling and average pooling (Figure 1). 
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Figure 1: An example of pooling operations. 

 

For the features that are learned by convolution and 

pooling, the CNN converts them into classification results 

in the output layer through a fully connected layer. A 
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Dropout layer is usually added to the network to avoid 

overfitting: 

�̃�(𝑙) = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝) × 𝑦(𝑙), 

𝑧𝑖
(𝑙+1)

= 𝑤𝑖
(𝑙+1)

�̃�(𝑙) + 𝑏𝑖
(𝑙+1)

, 

𝑦𝑖
(𝑙+1)

= 𝑓(𝑧𝑖
(𝑙+1)

), 

where 𝑦(𝑙)  stands for the output vector of the 𝑙  layer, 

𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝) is the Bernoulli function, 𝑤𝑖
(𝑙+1)

 and 𝑏𝑖
(𝑙+1)

 

are the weight and bias of the 𝑙 + 1 layer, and 𝑧𝑖
(𝑙+1)

 is the 

input vector of the 𝑙 + 1 layer. 

In CNN, nonlinear factors are introduced through 

activation functions to enhance the fitting ability of the 

network. Commonly used activation functions are: 

(1) sigmoid function: 𝑦 =
1

1+𝑒−𝑥, 

(2) Tanh function: 𝑦 =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥, 

(3) rectified linear unit (ReLU) function: 𝑦 =

𝑚𝑎𝑥{0, 𝑥} = {
𝑥, 𝑥 ≥ 0
0, 𝑥 < 0

. 

 

3.2 YOLOv5 algorithm 

Based on a CNN, the YOLO algorithm has various 

versions, such as YOLOv2 and YOLOv3. Among these 

versions, the most widely used is the YOLOv5 algorithm 

[22], which has a more lightweight structure and provides 

outstanding advantages in detection speed and accuracy. 

The YOLOv5 algorithm has five versions, namely n, s, m, 

l, and x, which differ in width and depth. The YOLOv5s 

algorithm is the lightest version and is particularly suitable 

for mobile deployment. Thus, this paper presents a sign 

language recognition method for hearing-impaired people 

based on the YOLOv5s algorithm. 

The YOLOv5 network can be segmented into the 

following parts. 

(1) Input end 

Mosaic data augmentation is employed to expand the 

dataset and increase the diversity of the data. Moreover, 

the scaling of the input image is adaptively adjusted to 

enhance recognition accuracy and efficiency. 

(2) Backbone network 

① Focus module: The input image is sliced to get 

multiple low-resolution sub-images to reduce the amount 

of computation. 

② Cross stage partial (CSP) network module: 

Convolution operation is combined with residual 

components to enhance the feature extraction capability of 

the model. 

(3) Neck network 

① Spatial pyramid pooling (SPP) structure: The 

feature maps of different sizes are divided into four blocks, 

which are subjected to maximum pooling of 1×1, 5×5, 9×9, 

and 13×13, and then the resulting feature maps are spliced 

and input to the next layer. 

② Feature pyramid network (FPN) and path 

aggregation network (PAN) structures: They have 

multiple bottom-up and top-down paths to acquire more 

information. 

(4) Head network 

The feature maps output from the backbone and neck 

networks are post-processed to obtain the final recognition 

results. The binary cross entropy loss (BCELoss) is used 

as the classification loss function: 

𝐵𝐶𝐸𝐿𝑜𝑠𝑠 = −
1

𝑛
∑[𝑦𝑛 ln 𝑥𝑛 + (1 − 𝑦𝑛) ln(1 − 𝑥𝑛)], 

where 𝑥𝑛 is the first probability of the 𝑛-th sample and 𝑦𝑛 

is the binary label value (0 or 1). 

The complete intersection over union (CIoU) loss is 

used as the bounding box loss function: 

𝐿𝐶𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈 +
𝜌2(𝑏,𝑏𝑔𝑡)

𝑐2 + 𝛼𝑣, 

𝛼 =
𝑣

(1−𝐼𝑜𝑈)+𝑣
, 

𝑣 =
4

𝜋2 (arctan
𝑤𝑔𝑡

ℎ𝑔𝑡 − arctan
𝑤

ℎ
)

2

, 

where 𝐼𝑜𝑈 is the IoU between the predictive box and true 

box, 𝜌2(𝑏, 𝑏𝑔𝑡)  is the Euclidean distance between 

predictive box 𝑏 and true box 𝑏𝑔𝑡, 𝑐 is the diagonal length 

of the minimum outer rectangle of the predictive box and 

true box, 𝛼 is the weighting function, 𝑣 is the width-to-

height ratio similarity, 𝑤𝑔𝑡  and ℎ𝑔𝑡  are the width and 

height of the predictive box, 𝑤 and ℎ are the width and 

height of the predictive box. 

The YOLOv5 algorithm also employs non-maximum 

suppression (NMS) as a post-processing technique to 

eliminate duplicate recognition results and filter out the 

best detection box: 

𝑠𝑖 = {
𝑠𝑖 , 𝑖𝑜𝑢(𝑀, 𝑏𝑖) < 𝑁

0, 𝑖𝑜𝑢(𝑀, 𝑏𝑖) ≥ 𝑁
, 

where 𝑠𝑖 is the confidence level of the 𝑖-th predictive box, 

𝑀  is the current predictive box with the highest 

confidence level, 𝑏𝑖 is the 𝑖-th predictive box, and 𝑁 is the 

IoU threshold. 

 

3.3 Improved YOLOv5 algorithm 

This paper optimized the YOLOv5 algorithm in terms of 

both the attention mechanism and the loss function to 

further improve its performance in sign language 

recognition. 

Adding the attention mechanism can make the model 

allocate greater focus towards essential parts and thus 

improve the recognition performance, which has 

promising applications in machine vision, natural 

language processing, and other fields [23]. This paper 

adds the convolutional block attention module (CBAM) 

[24] to the YOLOv5 algorithm to enhance the network’s 

generalization ability.  

The CBAM module has been well applied in image 

recognition tasks, such as remote sensing images [25] and 

radar images [26]. The structure of CBAM is presented in 

Figure 2. 

Input feature

Channel

attention

module

Spatial

attention

module
Refined feature

Figure 2: CBAM structure. 

 

For feature map 𝐹 ∈ 𝑅𝐶×𝐻×𝑊 , 𝐶  is the number of 

channels, and 𝐻 and 𝑊 are length and width. The formula 

for channel attention is: 

𝑀𝐶(𝐹) = 𝜎 (𝑊1 (𝑊2(𝐹𝑎𝑣𝑔
𝐶 )) + 𝑊1(𝑊2(𝐹𝑚𝑎𝑥

𝐶 ))), 
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where 𝐹𝑎𝑣𝑔
𝐶  and 𝐹𝑚𝑎𝑥

𝐶  are feature maps after mean pooling 

and maximum pooling, 𝜎  is the sigmoid activation 

function, 𝑊1 and 𝑊2 are weights. 

The input of spatial attention is the multiplication 

result of 𝑀𝐶 and original feature map 𝐹. The calculation 

formula is: 

𝑀𝑆(𝐹𝑆) = 𝜎 (𝑓7×7([𝐹𝑎𝑣𝑔
𝑆 ; 𝐹𝑚𝑎𝑥

𝑆 ])), 

𝐹𝑆 = 𝑀𝐶⨂𝐹. 

The computation formula of the output feature map is: 

𝑀𝐹(𝐹) = 𝑚𝑎𝑥(0, ( 𝑀𝑆⨂𝐹𝑆)⨁𝐹). 

In sign language recognition, CIoU loss may not fully 

take into account the diversity of sign language in shape. 

In order to better focus on the difficult-to-recognize 

gestures, this paper introduces focal loss [27] as a loss 

function. Focal loss can assign higher weights to samples 

that are difficult to classify. The combination of focal loss 

with CIoU enables it to pay better attention to difficult 

samples, reduce missed detections, and improve detection 

performance. 

𝐿𝐹𝑜𝑐𝑎𝑙𝐶𝐼𝑜𝑈 = (1 − 𝐼𝑜𝑈 +
𝜌2(𝑏,𝑏𝑔𝑡)

𝑐2 + 𝛼𝑣)
𝛾

, 

where IoU refers to the intersection over union between 

the prediction box and the true box, 𝜌2(𝑏, 𝑏𝑔𝑡)  is the 

Euclidean distance between prediction box 𝑏 and true box 

𝑏𝑔𝑡 , 𝑐 is the diagonal length of the minimum enclosing 

rectangle of the prediction box and the true box, 𝛼 is the 

weight function, 𝑣 refers to the aspect ratio similarity, and 

𝛾 is an adjustment factor to mitigate the effect of sample 

imbalance on identification, 1.5 here. 

 

4 Results and analysis 

4.1 Experimental setup 

The experiment was conducted in a Windows 10 

environment, and the specific configuration is displayed 

in Table 2. 

Table 2: Experimental environment. 

 Configuration 

Operating system Windows 10 

Compute unified device 

architecture 

11.0 

Programming language Python 3.7 

Deep learning 

framework 

PyTorch 1.7.0 

Central processing unit Intel(R) Xeon(R) Gold 

5218 

Graphic processing unit Tesla T4 

YOLOv5 version YOLOv5 v6.1 

Image processing 

library 

OpenCV 4.1.2; Pillow 

8.2.0 

 

Table 3 presents the parameter settings in the 

improved YOLOv5 algorithm. 

 

Table 3: The training parameters of the improved 

YOLOv5 algorithm. 
 Numerical value 

IoU threshold 0.5 

Epochs 200 

Batch size 16 

Optimizer Stochastic gradient descent 

Initial learning rate 0.01 

Weight decay factor 0.0005 

The following indicators were used to evaluate the 

effectiveness of sign language recognition: 

(1) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
, 

(2) 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
, 

(3) 𝑚𝐴𝑃 =
∑ 𝑃(𝐾)∆𝑅(𝐾)𝑁

𝐾=1

𝐶
. 

In the above equations, 𝑇𝑃  denotes the quantity of 

positive samples identified as positive, 𝐹𝑃 is the quantity 

of negative samples identified as positive, 𝐹𝑁  is the 

quantity of positive samples identified as negative, 𝑁 is 

the sample size of the test set, 𝐶  is the number of 

categories, 𝑃(𝐾)  is the 𝑃  value when simultaneously 

identifying 𝐾 samples, and ∆𝑅(𝐾) is the change of the 𝑅 

value when the number of samples to be identified 

changes from 𝐾 − 1 to 𝐾. 

The mean average precision (mAP) when the IoU 

threshold was 0.5 was used. 

Static sign language recognition has significant social 

significance in practice and can provide convenience for 

hearing-impaired people. Therefore, this paper mainly 

studied static sign language identification. The static sign 

language images used were from the American Sign 

Language (ASL) dataset [28]. This dataset contains 26 

English letters and has been widely applied in the current 

research of static sign language recognition. Moreover, it 

involved 36 sign languages: space, del, nothing, and the 

letters A-Z, and included 87,000 images in a size of 

200×200. Thirty thousand images were randomly selected 

for the experiments. Ten-fold cross-validations were used, 

and the results were expressed as mean ± standard 

deviation. Moreover, statistical tests and analyses were 

conducted in the SPSS26.0 software. 
 

4.2 Experimental results 

In order to determine the optimal location of the CBAM 

in the YOLOv5 network, the effects of different CBAM 

locations on sign language recognition were compared. 

The YOLOv5 algorithm without CBAM was used as a 

baseline model, and the CBAM was added at the following 

locations: 

(1) after the CSP structure of the backbone network, 

(2) after the SPP structure of the neck network, 

(3) before the convolutional structure of the head 

network. 

It is assumed that if CBAM is added after the SPP 

structure of the neck network, it can pay more attention to 

the easily ignored targets. 

 

Table 4: Effects of different locations of CBAM on sign 

language recognition. 

 
P/% R/% mAP@0.5

% 

Base 88.12 ± 

2.74 

90.33 ± 3.01 94.21 ± 

2.81 

Backbon

e 

88.97 ± 

2.78 

90.59 ± 3.98 94.77 ± 

3.68 
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Neck 89.07 ± 

3.01 

94.52 ± 4.27 96.87 ± 

3.56 

Head 81.17 ± 

2.89 

95.12 ± 3.64 95.07 ± 

3.62 

F value 3.695 3.841 3.261 

P value 0.001** 0.002** 0.004** 

Note: **: p < 0.01 

 

As shown in Table 4, the addition of the CBAM at 

different locations within the YOLOv5 network had an 

impact on sign language recognition results. For instance, 

when the CBAM was added to the head section, the P 

value was the lowest, only 81.17%, but the R value was 

improved to 95.12±3.64%, and the final mAP value was 

95.07±3.62%. Moreover, when the CBAM was added in 

the neck section, the P value was the highest, the R value 

was second only to the head, and the mAP value was also 

the highest, reaching 96.87 ± 3.56%. It was found through 

comparison that different locations of CBAM led to 

significant differences in sign language recognition results 

(p < 0.01). The performance was the best when the CBAM 

module was added to the neck part. 

In order to assess the optimization effectiveness of 

focal CIoU on the YOLOv5 algorithm, the loss function, 

including IoU, generalized IoU (GIoU) [29], distance IoU 

(DIoU) [30], CIoU, and focal CIoU, were respectively 

used in the original YOLOv5 algorithm. 

Table 5 shows that the traditional YOLOv5 algorithm 

(with the IoU loss function) had a low P value, R value, 

and mAP, suggesting a poor performance in sign language 

recognition. However, after improving the loss function, 

the sign language recognition performance of the 

YOLOv5 algorithm showed an improvement. It was found 

through comparison that different loss functions resulted 

in significant differences in sign language recognition 

results (p < 0.01), and the performance was best when 

focal CIoU was used. 

 

Table 5: Effects of loss function on handwriting 

recognition. 

 P R mAP@0.5% 

IoU 88.12  ± 2.74 90.33 ± 3.01 94.21 ± 2.81 

GIoU 89.07 ± 2.68 90.56 ± 2.87 94.33 ± 2.79 

DIoU 90.12 ± 2.77 91.88 ± 2.93 94.95 ± 2.87 

CIoU 90.54 ± 2.76 92.37 ± 2.84 95.12 ± 3.12 

Focal 

CIoU 

91.67  ± 2.61 94.87±  3.21 96.64 ± 3.07 

F value 3.564 3.528 3.425 

P value 0.002** 0.007** 0.009** 

Note: **: p < 0.01 

 

Ablation experiments were performed on the 

improved algorithm to analyze the effect of various 

module improvements on the model’s performance (Table 

6). 

 

 

 

 

 

Table 6: Ablation experiments. 

 P/% R/% mAP@0.5/% 

Base 88.12 ± 

2.74 

90.33 ± 3.01 94.21 ± 2.81 

Base+

CBA

M 

89.07 ± 

2.64 

94.52 ± 2.32 96.87 ± 2.56 

Base+

CBA

M+Fo

cal 

CIoU 

93.26 ± 

2.77 

96.77 ±  2.68 98.12  ± 2.32 

F 

value 

3.784 3.452 3.415 

P 

value 

0.007** 0.005** 0.006** 

Note: **: p < 0.01 

 

It was found that adding the CBAM to the YOLOv5 

algorithm significantly improved the R value. Introducing 

focal CIoU based on CBAM further enhanced the model’s 

recognition performance. It was found through 

comparison that the differences were significant (p < 0.01). 

These results validated the effectiveness of the 

improvement made to the YOLOv5 algorithm.  

Moreover, the improved YOLOv5 algorithm was 

compared with other recognition methods (Table 7). 

The Faster region-CNN algorithm was less effective 

in sign language recognition. Among the YOLO series 

algorithms, the YOLOv3 and YOLOv4 algorithms 

achieved mAP values slightly lower than the improved 

YOLOv5 algorithm. The results demonstrated the 

effectiveness of experiments on the improved YOLOv5 

algorithm. Comparing the improved YOLOv5 algorithm 

with MobileNetV2 and ShuffleNetV2, the improved 

YOLOv5 algorithm achieved a higher mAP value. The 

statistical tests also suggested significant differences. 

These findings further validated the effectiveness of the 

proposed approach for sign language recognition. 

Table 7: Comparison with other recognition algorithms. 

 P/% R/% mAP@0.5/% 

Faster region-

CNN 

80.12 ± 1.87 67.89 ± 1.65 79.84 ± 1.77 

YOLOv3 87.77 ± 2.01 80.12 ± 1.77 90.31 ± 2.01 

YOLOv4 88.05 ± 1.97 83.25 ± 1.56 92.56 ± 2.33 

YOLOv5 88.12 ± 2.07 90.33 ± 1.64 94.21 ± 2.14 

MobileNetV2 91.12 ± 2.56 81.94 ± 1.82 91.27 ± 2.05 

ShuffleNetV2 91.08 ± 2.33 82.11 ± 2.01 91.26 ± 2.17 

Improved 

YOLOv5 

93.26 ± 2.77 96.77 ± 2.68 98.12 ± 2.32 

F value 3.427 3.714 3.526 

P value 0.008** 0.007** 0.008** 

Note: **: p < 0.01 
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5 Discussion 
This paper developed a YOLOv5 algorithm combining the 

CBAM attention module and focal CIoU to recognize 

static sign language images. The performance of the 

proposed method in static sign language identification was 

verified through experiments on the ASL dataset. 

The results showed that adding the CBAM attention 

module and focal CIoU improved the detection 

performance of the YOLOv5 algorithm. CBAM can 

adaptively learn which pixels and channels are more 

important, which can not only improve the accuracy but 

also reduce the complexity of the model and alleviate 

overfitting. It has extensive applications in deep neural 

networks. The experimental results on the ASL dataset 

also verified the reliability of embedding the CBAM 

module into the YOLOv5 structure. Focal CIoU improves 

the detection performance by better focusing on the targets 

that may be ignored. Through comparison, it was found 

that compared with other loss functions, the P, R, and 

mAP values of focal CIoU were all higher, and the 

differences were significant (p < 0.01). 

The results verified the performance of the improved 

YOLOv5 algorithm in recognizing static sign language 

images. Therefore, this method can be extended to the 

recognition of other static images, and it can also be 

introduced into the recognition of dynamic sign language 

videos by converting dynamic sign language videos into 

static sign language images. 

However, there are also some limitations in this study. 

For instance, experiments were only conducted on a single 

dataset, and the recognition of continuous sign language 

was not achieved. In future work, further verification will 

be carried out on a broader range of datasets, and the 

recognition issues of dynamic and continuous sign 

language will be considered. 

 

6 Conclusion 
This paper presents an improved YOLOv5 algorithm for 

sign language identification in hearing-impaired people. 

The performance of the proposed algorithm was assessed 

using the ASL dataset. The results demonstrated that 

adding the CBAM enhanced the algorithm’s recognition 

performance. Specifically, introducing the CBAM into the 

neck section yielded the best results. Moreover, focal loss 

further improved the algorithm’s performance in sign 

language recognition. These results highlight the practical 

applicability of the proposed approach in actual sign 

language recognition, ultimately aiding in communication 

for people with hearing impairments. 
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