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The COVID-19 epidemic has been a critical global challenge due to its high mortality rate and rapid spread.
Initial diagnostic methods, such as chest X-rays and reverse transcriptase polymerase chain reaction (RT-
PCR), can be time-consuming and require enhanced efficiency, especially in scenarios where large-scale
testing is necessary. Combining deep learning (DL) and big data analytics tools is crucial for developing
accurate and fast systems to detect COVID-19 infections and prevent further transmission. In this study,
we introduce a distributed Deep Convolutional Neural Network (DCNN) framework designed for the de-
tection of COVID-19, utilizing a comprehensive dataset of chest X-ray images. Our approach leverages the
spark-tensorflow-distributor, which integrates TensorFlow 2.x with Apache Spark 3.x, enabling distributed
training within the Spark framework. The system utilizes Spark’s barrier mode to execute distributed train-
ing tasks, significantly enhancing the speed of both training and testing phases. We classify chest X-ray
images into two categories: COVID-19 and non-COVID-19. The experimental setup involves processing
the large-scale dataset of chest X-ray images in a parallelized manner using the Spark framework. Our
results demonstrate that the proposed DCNN model achieves a classification accuracy of 95.53%, with
a testing time of 0.06 seconds and a training time of 18,909 seconds. Furthermore, when compared to
other state-of-the-art methods for COVID-19 classification, our approach proves to be more efficient and
effective. This study highlights the potential of combining distributed computing frameworks with deep
learning techniques to address largescale medical image analysis challenges, particularly in the context of
COVID-19 detection.

Povzetek: Predlagan je pristop za hitro odkrivanje COVID-19 iz velikih zbirk rentgenskih slik prsnega kosa

z uporabo distribuiranega globokega konvolucijskega nevronskega omrezja (DCNN).

1 Introduction

In December 2019, COVID-19 (coronavirus) was identi-
fied in a group of pneumonia patients [13], [14], leading to
its declaration as a global health emergency by the World
Health Organization (WHO) [15]. The WHO emergency
panel underscored the significance of rapid detection, iso-
lation, early treatment, and the implementation of a robust
contact tracing strategy to control the spread of COVID-19
[16]. One of the primary diagnostic methods for identify-
ing the coronavirus is the examination of sputum samples
through polymerase chain reaction (RT-PCR) [10]. How-
ever, RT-PCR is a time-consuming process, resulting in de-
layed diagnoses for patients [17]. When there is a large
number of patients, the scarcity of RT-PCR tests and spe-
cialized laboratory equipment for COVID-19 detection be-
comes a significant issue [20]. Another diagnostic ap-
proach involves manually analyzing X-ray images by hu-
man specialists or radiologists [20].

Manual diagnosis of COVID-19 through X-ray images
has limitations, such as the need for trained radiologists, po-
tential human error, longer diagnostic times, and a higher
likelihood of false-negative results. As a result, there is
an urgent need for tools that can optimize available re-
sources, improve diagnostic accuracy, and reduce process-
ing time [10], [3]. Deep learning (DL) and Big Data Analyt-
ics (BDA) are such tools [20], [21], [4]. They can expedite
decision-making processes and predict the progression of
COVID-19 cases [22], [4]. Many countries have success-
fully managed the COVID-19 pandemic by leveraging Big
Data and Machine Learning methods, marking a significant
milestone in epidemic control [3]. These countries have
implemented effective safety measures, incorporating big-
data analytics and Artificial Intelligence to address emer-
gencies [3], [39]. They are gathering vast amounts of data
and using it creatively, integrating Deep Learning and Big
Data analytics to confront ongoing crises [3].

X-ray imaging has emerged as a primary method for di-
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agnosing COVID-19 cases [18], [19]. This study focuses
on utilizing X-ray images for COVID-19 detection. In this
paper, we propose a rapid and accurate approach to de-
tect COVID-19 from large-scale X-ray databases by clas-
sifying images as either COVID-19 or non-COVID-19 (see
Fig. 1) using a distributed Deep Convolutional Neural Net-
work (DCNN) model on the Spark-TensorFlow-Distributor
framework !. This framework, built on top of TensorFlow’s
‘tensorflow.distribute.Strategy‘, enables distributed train-
ing on the Spark platform.

The Spark framework is optimized for parallel process-
ing of large datasets [23], [24]. Furthermore, the Hadoop
Distributed File System (HDFS) is utilized for efficient
storage and management of big data, which is especially
critical for COVID-19 data due to its rapid and large-scale
generation [23], [40]. Our key contributions are as follows:

1. Enabling parallel processing of large-scale chest X-
ray COVID-19 images using the Spark-TensorFlow-
Distributor framework.

2. Combining deep learning with the Spark-TensorFlow-
Distributor framework for the rapid and efficient clas-
sification of large volumes of chest X-ray images.
Our approach achieves outstanding training and test-
ing times through the barrier mode of Spark, optimiz-
ing distributed training tasks.

3. Presenting the findings from the proposed fine-tuning
approach for the DCNN classifier.

4. Comparing the performance of our classifier with
other models, such as ANN and AlexNet, in terms of
accuracy and processing time.

5. Evaluating our approach against recent state-of-the-art
methods regarding classification accuracy and execu-
tion time.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews related works in COVID-19 detection and
classification. Section 3 provides the background and tools
used in this study. Section 4 details the proposed method.
Section 5 presents the classification performance. Exper-
imental results in Section 6. Finally, the conclusions are
drawn in Section 7.

2 Related works

Recently, the application of Deep Learning techniques has
become widespread in predicting and identifying COVID-
19 due to its high accuracy [1]. Hemdan et al. [32] intro-
duced a system for the recognition of COVID-19 based on
chest X-ray images. This system incorporates seven image
classifiers, collectively known as COVIDX-Net, achieving

I'spark-tensorflow-distributor:
https://docs.databricks.com/en/machine-
model/distributed-training/spark-tf-distributor.html
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notable performance, with DenseNet201 and VGG19 clas-
sifiers achieving an accuracy of 90%. Basu et al. [31] pro-
posed an advanced method for COVID-19 detection that
employs transfer learning with a pre-trained deep convolu-
tional neural network (DCNN) using chest X-ray images.
The authors achieved an overall accuracy of 90.1%. How-
ever, this system requires a limited number of chest X-
ray images for COVID-19 identification. Similarly, for
COVID-19 detection from chest X-ray images, the au-
thors in [25] proposed an advanced DCNN model utilizing
pre-trained transfer architectures such as ResNet50, Incep-
tionV3, and Inception-ResNetV2. Their approach demon-
strated exceptional predictive performance in terms of time
and accuracy, tested on a limited set of X-ray images. To
address limited training data and processing time, they em-
ployed transfer learning using the ImageNet dataset [25].
The results validated the superior accuracy of the ResNet50
model across both training and testing evaluations.

In another study [12], the authors proposed a model us-
ing Explainable Artificial Intelligence (XAI) techniques to
detect COVID-19 from chest X-ray (CXR) images. They
employed transfer learning, data augmentation, and lung
segmentation for faster model training and improved per-
formance. By using the ResNet model, they achieved the
highest classification performance (F1-Score: 98%). The
authors in [11] developed an efficient method for classify-
ing images as either COVID-19 or non-COVID-19 using
a CNN for feature extraction and SVM for classification.
By incorporating image augmentation, segmentation, and
cropping techniques, they achieved optimal results, with a
training accuracy of 99.8% and a testing accuracy of 99.1%
on a dataset of 3000 images.

The rapid spread of COVID-19 has generated vast
amounts of data, which continues to grow exponentially [8].
This data can be effectively utilized by applying big data an-
alytics techniques for COVID-19 detection. Several studies
have used big data analytics and artificial intelligence (AI)
methods to enhance COVID-19 detection performance [8].
For instance, the authors in [30] explores the integration of
Al, big data tools, and nature-inspired computing (NIC) to
improve the performance of COVID-19 detection. More-
over, the authors of reference [6] utilized a Hive-based dis-
tributed system operating on a Hadoop cluster to query and
analyze large COVID-19 datasets, aiming to extract valu-
able insights. Hadoop serves as a parallel computing sys-
tem for processing vast volumes of data, while Hive func-
tions as a data warehouse for the Hadoop cluster. Their pro-
posed approach facilitates queries and predictive analytics
on massive COVID-19 datasets.

In [30], the authors proposed a model to distinguish
COVID-19 from four other viral chest diseases by utiliz-
ing various body sensors, which gather data on parameters
such as temperature, blood pressure, heart rate, respiratory
patterns, glucose levels, and more. The data is stored in
a cloud database and analyzed by Al-enabled expert sys-
tems to identify infected or suspected COVID-19 patients.
Similarly, Gupta et al. [28] identified COVID-19 cases in
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Figure 1: Sample X-ray images of normal (non-covid-19 cases) and (covid-19 positive cases)

India using models such as random forests, linear models,
support vector machines, decision trees, and neural net-
works. The random forest model was selected for its su-
perior performance, and K-fold cross-validation was em-
ployed to assess model consistency. They also introduced
a novel federated learning (FL) approach to improve the
global GAN model’s ability to generate realistic COVID-
19 images without sharing sensitive data.

The authors of reference [27] developed a system to de-
tect COVID-19 using chest X-ray images sourced from
Kaggle repositories. Their system is based on pre-trained
Apache Spark big data framework models using Deep
Transfer Learning (DTL) via Convolutional Neural Net-
works (CNNs), specifically InceptionV3 and ResNet50.
Their study showed that both models achieved impressive
results, with InceptionV3 surpassing 99% accuracy and
ResNet50 reaching up to 98%. The proposed model accel-
erates COVID-19 detection and reduces associated costs.
As part of future work, the authors plan to enhance their
system by integrating TensorFlow with Apache Spark to
develop a new model for detecting COVID-19 in chest CT
images. This integration will enable the creation of a model
that can operate on large computing clusters.

The authors in [38] introduced a method called DisCOV,
which involves training a distributed COVID-19 detection
model using a large-scale chest X-ray dataset, in collabora-
tion with edge and cloud computing. To enhance training
efficiency and ensure model accuracy, they implemented
a resource allocation algorithm to minimize time, cost,
and energy consumption during training. Their method
achieved a maximum accuracy of 94%. In another study,

the authors in [29] used the COVID-Net CNN model to de-
tect COVID-19 from a large dataset of 13,975 CXR im-
ages. They applied various data augmentation techniques
such as translation, rotation, horizontal flipping, zooming,
and intensity shifting, achieving a recognition accuracy of
93.38%.

3 Materials and methods

A widely adopted approach for COVID-19 detection in-
volves the use of chest X-rays, which offer a cost-effective
method. However, this method requires further enhance-
ments to improve its efficiency. Most existing studies
have relied on chest X-ray images for COVID-19 detec-
tion using deep learning models, though typically on a lim-
ited set of images [3], [27]. To address these limitations
and facilitate the development of models capable of run-
ning in a distributed manner across clusters, this study pro-
poses a novel approach that combines big data analytics
with Deep Convolutional Neural Networks (DCNNs) for
detecting COVID-19 from a large volume of chest X-ray
images. The primary objective of our research is to en-
hance COVID-19 detection performance, particularly with
respect to training and execution times.

In our approach, we use TensorFlow version 2 on Apache
Spark version 3. 2, 3 enabling deep learning models to ex-

2Blog, M. (2020). Distributed tensorflow on apache spark 3.0.
https://blog.madhukaraphatak.com/tensorflow-on-spark-3.0
3pypi (2021). Spark tensorflow

https://pypi.org/project/spark- tensorflow-distributor/

distributor.
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Table 1: Comparison of COVID-19 detection approaches in related works

Study | Method Dataset Size Accuracy Key Features

[32] COVIDX-Net Not specified 90% DenseNet201, VGG19 classifiers

[31] Transfer learning with DCNN Not specified 90.1% Pre-trained DCNN, transfer learning

[25] ResNet50, InceptionV3, Inception-ResNetV2 Limited dataset | High accuracy Transfer learning, limited images

[12] XAI, Transfer Learning, Data Augmentation Not specified F1-Score: 98% Explainable Al lung segmentation

[11] CNN + SVM 3000 images 99.8% (train), 99.1% (test) Image augmentation, segmentation

[6] Hadoop, Big Data Analytics Large dataset N/A Hive-based system, big data analytics
[28] Random Forests, SVM, Neural Networks Not specified High performance Federated learning, multi-model approach
[27] Apache Spark, DTL with CNNs (InceptionV3, ResNet50) | Kaggle dataset | InceptionV3: 99%, ResNet50: 98% | Deep Transfer Learning, big data

[38] DisCOV (Distributed model) Large dataset 94% Distributed training, edge-cloud collaboration
[29] COVID-Net CNN 13,975 images | 93.38% Data augmentation, large dataset

ecute within the Apache Spark framework in a distributed
fashion. A detailed description of the proposed methodol-
ogy is provided in the following sections.

3.1 Bigdata

Big Data refers to the vast amounts of data generated in
various forms (such as text, data, sound, and video) across
unstructured, structured, and semi-structured formats. This
overwhelming volume of data surpasses the capabilities of
traditional data processing methods. It involves the collec-
tion, storage, and analysis of large datasets to uncover pat-
terns, trends, and valuable insights [24], [41].

3.2 Apache spark

Apache Spark is an open-source, distributed computing
system designed to process large volumes of data. It pro-
vides a fast, general-purpose cluster computing framework
and supports several programming languages, including
Scala, Java, Python, and R. Spark offers high-level APIs
for distributed data processing, including batch processing,
streaming, machine learning, and graph processing. Known
for its in-memory processing capabilities, Spark outper-
forms traditional MapReduce-based frameworks in terms
of speed [37], [24], [56].

3.3 Spark-TensorFlow-distributor

The ‘spark-tensorflow-distributor is a Python package that
enables distributed training with TensorFlow on Spark clus-
ters. It builds upon the ‘tensorflow.distribute.Strategy*
API, a key feature of TensorFlow version 2.x that allows
for distributing training across multiple GPUs, machines,
or TPUs 4, 3

Furthermore, the ‘spark-tensorflow-distributor® package
implements the barrier execution mode in Spark to facili-
tate distributed TensorFlow training on Apache Spark ver-
sion 3.x clusters. In contrast to Spark version 2, which
was limited to distributing training using the traditional

4pypi (2021). Spark tensorflow distributor.
https://pypi.org/project/spark- tensorflow-distributor/
3databricks (2020). Distributed training with tensorflow 2.
https://docs.databricks.com/machine-learning/train-model/distributed-

training/spark-tf-distributor.html

MapReduce execution model (where workers operate inde-
pendently without communication), Spark version 3.0 in-
troduces a barrier execution mode. This new mode enables
seamless communication between workers during the train-
ing process, making it more suitable for deep learning ap-
plications. In our study, we leverage ‘spark-tensorflow-
distributor* to implement distributed TensorFlow training
with version 2.x on Spark version 3.x, utilizing a large
dataset of chest X-ray (CXR) images for COVID-19 detec-
tion. This approach enhances training times and improves
the overall speed of the system.

3.4 Deep learning

Deep learning, a subset of machine learning, involves us-
ing neural networks with multiple layers (deep neural net-
works) to model and solve complex problems. By emulat-
ing the human brain, these networks can learn hierarchical
representations of data, enabling the model to perform tasks
such as pattern recognition and decision-making.

3.5 Chest X-ray imaging

Chest X-ray imaging is one of the most commonly used
medical imaging techniques for diagnosing and assessing
the extent of infections, offering several advantages [35].
These advantages include its ease of processing, which re-
duces imaging time and minimizes the risk of spreading
COVID-19 cases [36]. Additionally, chest X-rays are more
economical compared to other imaging modalities and in-
volve lower radiation doses compared to CT scans.

However, despite these benefits, chest X-ray imaging has
limitations. It is less sensitive than other techniques, which
may lead to false predictions, particularly in the early stages
of the disease [32].

4 Methodology

4.1 System architecture

We propose a novel system for large-scale COVID-19 im-
age classification that leverages the Spark-TensorFlow-
Distributor, enabling distributed training across multiple
GPUs or machines (see Fig. 2). The proposed system
utilizes Spark-TensorFlow-Distributor to process the deep
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learning model in a parallel and distributed manner, han-
dling large datasets on the Spark platform. The system per-
forms in-memory computations and adopts a master/slave
architecture, consisting of two primary nodes: the master
node (pilot process) and the slave node (worker process), as
illustrated in Fig. 2. The system’s input consists of a large
volume of COVID-19 images, and the output is classified
as either COVID-19 or non-COVID-19.

Our approach employs a distributed Deep Convolutional
Neural Network (DCNN)-based deep learning model for
large-scale COVID-19 image detection. This model op-
erates with Spark-TensorFlow-Distributor, which is de-
ployed on top of an Apache Spark cluster (version 3) in-
tegrated with TensorFlow (version 2). The YARN cluster
manager is responsible for scheduling and resource allo-
cation across applications, ensuring efficient parallel data
training by balancing the workload and controlling train-
ing costs. A key feature of the proposed system is the
use of Spark-TensorFlow-Distributor, an open-source pack-
age that facilitates distributed training with TensorFlow on
Spark clusters. This package is built on top of ‘tensor-
flow.distribute.Strategy‘, a core feature of TensorFlow 2.
The system requires Spark 3.0.1, Python 3.6+, and Ten-
sorFlow 2.1.0+ to function effectively. After training our
DCNN model, we utilize Spark-TensorFlow-Distributor to
perform distributed training on our Spark clusters.

4.1.1 Advantages of Spark 3.x over Spark 2.x

Spark 2.x relies on the traditional Map/Reduce execution
model, where a Spark program typically consists of a se-
quence of map and reduce stages. This model, inspired by
Hadoop, works well for many big data tasks such as ETL
(Extract, Transform, Load), SQL operations, and basic ma-
chine learning tasks. However, Spark 2.x’s scheduling ap-
proach is less efficient when implementing deep learning
frameworks.

To address this limitation, Spark 3.x introduces a new
execution mode known as the ”Mirrored-Strategy Runner”
in barrier execution mode, which is specifically designed
for distributed deep learning tasks. Unlike the traditional
Map/Reduce model, this execution mode operates differ-
ently. In the Map/Reduce model, tasks within a stage are
independent and do not communicate with each other; con-
sequently, if a task fails, only that specific task is retried. In
contrast, the ”Mirrored-Strategy Runner” mode executes all
tasks within a stage simultaneously, and if any task fails, the
entire stage is retried. Moreover, this mode allows for com-
munication among tasks within the same stage. Although
this scheduling model improves efficiency for deep learn-
ing frameworks, it is still less optimal than the barrier ex-
ecution mode. Therefore, Spark 3.x introduces barrier ex-
ecution mode with the Mirrored-Strategy Runner to opti-
mize distributed deep learning, offering an advantage over
the standard Map/Reduce model [8], [9].

The primary steps of the proposed system architecture, as
shown in Fig. 2, include image preparation, preprocessing,
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and large-scale COVID-19 image classification.

4.2 Step 1: Dataset preparation and
preprocessing

The first step involves preparing and processing the dataset
for training. To train the Deep Convolutional Neural Net-
work (DCNN) model, a set of labeled images is required.

4.2.1 Dataset preparation

The process begins by loading a large collection of COVID-
19 chest X-ray images from the Hadoop Distributed File
System (HDFS) [42], [24], which stores a massive number
of images in a distributed computing architecture. These
images are subsequently divided into multiple equal-sized
chunks. Each chunk is duplicated in an HDFS data node
within our master-slave architecture. Once the data is
loaded and partitioned, a set of Spark workers processes
the individual images from each chunk.

4.2.2 Dataset preprocessing

Each Spark worker performs parallel preprocessing on
its assigned chunk of COVID-19 images using the Keras
ImageDataGenerator. This method enables real-time im-
age preprocessing by loading the image dataset into mem-
ory and generating batches of preprocessed data. By utiliz-
ing this approach, image preprocessing occurs dynamically
during the training process, which allows for better mem-
ory management. This dynamic generation of preprocessed
images helps in handling large datasets efficiently.

Several preprocessing techniques are employed in med-
ical imaging applications to enhance the quality of im-
ages. For COVID-19 image analysis, essential preprocess-
ing methods include image resizing, image enhancement,
and image segmentation [35]. In this study, we primarily
use image resizing to standardize the COVID-19 chest X-
ray images. Image resizing is necessary to reduce computa-
tional costs and processing time, as large pixel sizes can sig-
nificantly increase the time required for training [11]. Dur-
ing preprocessing, images are resized to 128x128 pixels and
transformed into a NumPy array compatible with Keras, en-
suring better recognition performance in the DCNN model.

4.3 Step 2: COVID-19 image classification

In this phase, deep learning methods are applied using
Apache Spark to accelerate the training and classifica-
tion processes on a large-scale COVID-19 image dataset.
The Deep Convolutional Neural Network (DCNN) archi-
tecture is employed to train and classify chest X-ray im-
ages, categorizing them into COVID-19 and non-COVID-
19 groups. The DCNN model is constructed and com-
piled using the Spark-TensorFlow-Distributor framework.
The DCNN has achieved significant advancements in var-
ious pattern recognition tasks, including image classifica-
tion [33]. The modern DCNN architecture consists of al-
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Figure 2: Architecture of our proposed system

ternating convolutional layers (CL) and max-pooling (MP)
layers, followed by fully connected layers (FC).

In the first convolutional layer, an activation map of size
128x 12832 is generated after applying 32 filters. The
output of this layer is passed to the max-pooling layer,
where 2 x 2 filters are used to perform down-sampling. The
second convolutional layer takes the output from the first
layer, which has a size of 64 x64 x32, and applies 64 filters,
resulting in an activation map of size 64 x 64 x64. Another
max-pooling layer with a 2 x2 window is applied, reducing
the size to 32 x32x64. Subsequently, a third convolutional
layer with 128 filters produces an activation map of size
16x16x128, followed by another max-pooling layer that
reduces the size to § x8x 128. The final convolutional layer
applies 256 filters to this output, producing a 4 x4 x256 vol-
ume. A fully connected layer with 1200 neurons is then
applied, followed by the output layer with a single neuron.

For activation functions, we use the Rectified Linear Unit
(ReLU) for all layers except the final one. The ReLU func-
tion is commonly used in classification tasks, as it activates
the convolutional layers by outputting the input directly if
it is positive, and zero otherwise. Mathematically, ReLU is
defined as:

f(x) = max(0, ) (1)

ReLU introduces non-linearity into the model, allow-
ing it to learn complex patterns, while being computation-
ally efficient compared to other activation functions. For
the final output layer, we use the sigmoid function, which

transforms real-valued inputs to a range between 0 (non-
COVID-19) and 1 (COVID-19), making it suitable for bi-
nary classification tasks. The sigmoid function is mathe-
matically defined as:

2

4.3.1 Pooling layer

The pooling layer serves as a down-sampling technique
used to reduce the spatial dimensions of each feature map
while retaining essential information. Max-pooling is the
most commonly used type of pooling, where the maximum
value from a group of values is selected. In our model, each
feature map undergoes processing with a 2 x 2 max-pooling
layer, which reduces the dimensionality and highlights the
most important features. This operation helps to decrease
computational complexity and focuses on the relevant fea-
tures within the image.

4.3.2 Flattening layer

The flattening layer converts the multi-dimensional output
from the preceding convolutional or pooling layers into a
one-dimensional array, which is then fed into the fully con-
nected layers. This transformation allows the network to
make predictions based on the features learned in previous
layers. In our DCNN architecture, we use a fully connected
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layer with 1300 neurons, followed by an output layer with
a single neuron.

4.3.3 Dropout layer

To mitigate overfitting during training, we use a dropout
layer in the DCNN architecture. In each training iteration,
a random selection of neurons is temporarily omitted with
a specified probability. This regularization technique helps
improve the model’s ability to generalize to unseen data by
reducing reliance on specific neurons. In our model, we
applied a dropout rate of 0.3 in the convolutional layers and
0.5 in the fully connected layers.

4.3.4 Optimizer

For optimizing the model, we employed the Adaptive Mo-
ment Estimation (Adam) optimizer. Adam dynamically ad-
justs the network’s weights during training based on the
provided data. It is particularly advantageous for networks
that handle large datasets and parameters, offering effi-
ciency in both computation and memory usage.

4.3.5 Model training

We carefully optimized the hyperparameters for our learn-
ing approach by evaluating other complex architectures,
such as Artificial Neural Networks (ANN), AlexNet, and
DCNN. Hyperparameter tuning was conducted for each
model by adjusting key parameters such as learning rate,
batch size, and weight decay to achieve optimal perfor-
mance. For the DCNN model, this process was repeated
extensively to refine the hyperparameters, ensuring the best
possible performance in terms of classification accuracy.

5 Classification performance

To evaluate the performance of our Deep Convolutional
Neural Network (DCNN) model, we employed various
metrics. A confusion matrix was utilized to assess the
model’s performance, that includes the following four key
parameters:

— True Positive (TP): The number of correctly predicted
positive samples.

— True Negative (TN): The number of correctly pre-
dicted negative samples.

— False Positive (FP): The number of incorrectly pre-
dicted positive samples.

— False Negative (FN): The number of incorrectly pre-
dicted negative samples.
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5.1 Accuracy

Accuracy is a commonly used metric to evaluate the
model’s overall performance, representing the model’s abil-
ity to correctly differentiate between classes in the test set.
The accuracy is defined as:

TP+ TN

A =
cc TP+ FP+FN+TN

©)

As shown in Equation (3), accuracy is the proportion of
correctly predicted labels over the total number of samples
in the dataset.

5.2 Precision

Precision, as defined in Equation (4), represents the propor-
tion of accurately predicted positive labels out of all pre-
dicted positive labels. It is a measure of the model’s ability
to avoid false positives:

TP

P .. _
recision TP 1 FP

4)

5.3 Recall

Recall, as defined in Equation (5), represents the ratio of
correctly predicted positive labels to the total number of
actual positive labels. It measures the model’s ability to
correctly identify positive instances:

TP

Recall = ———
A= TPYFN

)

5.4 Specificity

Specificity, as shown in Equation (6), is used to measure the
model’s ability to accurately recognize negative instances,
i.e., the proportion of correctly identified negative samples:

TN

SpeCIﬁCIty = m

(6)

5.5 Fl1-score

The Fl-score, as defined in Equation (7), is the harmonic
mean of Precision and Recall. It provides a balance be-
tween the two metrics, particularly useful when the data is
imbalanced:

2 x (Recall x Precision)

F1- =
score Recall + Precision

(M

The Fl-score is particularly useful for evaluating the
overall performance when there is an uneven class distri-
bution between the positive and negative classes.
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5.6 Area under the curve (AUC)

The Area Under the Curve (AUC) is a performance met-
ric that evaluates the ability of the model to distinguish be-
tween positive and negative classes. Specifically, the AUC
measures the area under the Receiver Operating Character-
istic (ROC) curve. AUC values range from 0 to 1, with
higher values indicating better model performance. An
AUC value of 0.5 indicates a model with no discrimination
ability (random guessing), while a value of 1.0 represents
perfect classification performance.

1
AUC = / ROC Curve (8)
0

5.7 Matthews correlation coefficient (MCC)

The Matthews Correlation Coefficient (MCC) is a metric
used to evaluate the quality of binary classifications. It con-
siders all four components of the confusion matrix (TP, TN,
FP, FN) and is particularly useful when the classes are im-
balanced. The MCC is defined as:

B TP-TN — FP-FN
- /(TP + FP)YTP + FN)(TN + FP)(TN + FN)
MCC values range from -1 to +1. A value of +1 indicates
perfect classification, while -1 indicates total disagreement
between the predicted and actual labels. A value of 0 indi-
cates no better performance than random classification.

MCC

®

5.8 Cohen’s kappa

Cohen’s Kappa is a statistic that measures inter-rater agree-
ment for categorical items. It is used to assess the agree-
ment between two raters or classifiers and adjusts for the
possibility of random chance. Cohen’s Kappa is defined
as:
P o P e
k=T 7. (10)

Where: - P, is the observed agreement (proportion of
times the model’s predictions match the true labels). - P.
is the expected agreement (proportion of times the labels
would match due to chance).

Kappa values range from -1 to 1, where 1 indicates
perfect agreement, 0 indicates agreement no better than
chance, and negative values indicate less agreement than
would be expected by chance.

6 Experimental results

6.1 Environment description

To evaluate the performance of the proposed method, we
utilized a chest X-ray (CXR) image dataset sourced from
Kaggle ®. his dataset consists of 13,808 CXR images, which

6COVID-19 Radiography Database. COVID-19 Chest X-ray images
and Lung masks Database.
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were used for both training and testing our model. The
images were categorized into two classes: COVID-19 and
non-COVID-19. The implementation was carried out us-
ing the Apache Spark framework on a single-node cluster
(standalone setup). The specifications of the cluster are as
follows:

— Software Environment: Ubuntu 18.04 LTS, Spark
3.0.1, Keras, Python 7.13, and TensorFlow 2.7.

— Hardware Environment: Intel Core i5-4210U CPU
with a 1.70 GHz clock speed (4 cores) and 8 GB of
RAM.

Presentation of the dataset

Access to large-scale COVID-19 datasets for non-
commercial research is often limited due to privacy con-
cerns. As a result, many studies in this area rely on smaller,
publicly available datasets. For this study, we employed
a comprehensive dataset available on Kaggle, which in-
cludes chest X-ray (CXR) images of COVID-19-positive
and pneumonia cases. This dataset, curated by a collabo-
rative team from the University of Qatar, Bangladesh, Pak-
istan, and Malaysia, in partnership with medical experts,
contains 13,808 PNG-format CXR images, each with a res-
olution of 299 pixels.

For the analysis, we focused on a subset of 12,000 X-
ray images, consisting of 3,000 COVID-19 cases and 9,000
non-COVID-19 cases. Due to the inherent class imbalance
in the dataset, with fewer COVID-19 samples, an image
augmentation technique was applied to increase the number
of COVID-19 images. The augmentation methods, which
included image shifts, flips, and rotations, resulted in a
total of 18,000 images (9,000 COVID-19 and 9,000 non-
COVID-19). The dataset was then partitioned into 80% for
training and 20% for testing, as suggested in [10]. The
training set contained 14,400 images, equally distributed
between the two classes (7,200 COVID-19 and 7,200 non-
COVID-19), while the testing set included 3,600 images
(1,800 from each class). This balanced approach ensured
robust training and evaluation of the model.

6.2 Results and discussion

Table 2 presents the results of training and testing the Arti-
ficial Neural Network (ANN) model with a dropout rate of
0.25 on the 18000 chest X-ray (CXR) dataset. The metrics
included are the training and testing accuracy, test epoch
time, and overall training time for different batch sizes. It
is observed that the highest testing accuracy (84.62%) is
achieved with a batch size of 16, which required a training
time of 49 minutes. As the batch size increased to 32, the
test accuracy declined significantly to 50%, despite a slight
reduction in training time (48 minutes 23 seconds). Further-
more, with a batch size of 100, the test accuracy decreased
to 64.89%, and the training time was further reduced to 47

https://www.kaggle.com/datasets/tawsifurrahman/covid19-
radiography-database/data
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Table 2: The effect of batch size on the ANN model with 13,808 CXR dataset

Batch Size | Accuracy of Training (%) | Test Accuracy (%) | Test Epoch Time | Training Time
16 99.79 84.62 53s 49 min
32 98.80 50.00 42s 48 min 23s
100 99.84 64.89 35s 47 min 25s

minutes 25 seconds. These results indicate that increasing
the batch size from 16 to 100 improved training efficiency
by reducing training time but negatively impacted model
accuracy.

Table 3 compares the training and testing times, along
with the accuracy of the ANN model, for various numbers
of epochs with a dropout rate of 0.25. It is evident that
the number of epochs has no significant effect on the train-
ing accuracy of the ANN model, which reaches 100% af-
ter eight epochs. However, the testing accuracy fluctuates
across different epoch values, peaking at 84.62% after six
epochs. The primary impact of increasing the number of
epochs is on training time, where longer training durations
are observed as the epoch count increases, highlighting a
trade-off between computational time and performance.

Table 4 shows the impact of different epoch counts on the
performance of the DCNN model, without dropout, using a
batch size of 32. The results reveal that while training accu-
racy remains high at 100% from 18 epochs onwards, test-
ing accuracy improves with an increasing number of epochs
and stabilizes at 91.88% after 100 epochs. Notably, training
time increases with the number of epochs, with the longest
duration recorded at 5 hours, 28 minutes, and 50 seconds for
100 epochs. The testing accuracy shows a clear trend: it is
lowest at 60.43% after just 2 epochs, increases gradually
to 70.73% at 25 epochs, and reaches the optimal value of
91.88% after 100 epochs. This indicates that while longer
training times are necessary for optimal classification per-
formance, the model benefits from additional epochs, espe-
cially when the number of epochs exceeds 18.

Table 5 illustrates the effect of dropout rates on the accu-
racy of the DCNN model using the same dataset and batch
size of 32. The results demonstrate that increasing dropout
rates in both the convolutional layer (CL) and fully con-
nected layer (FC) improves the model’s classification accu-
racy. The highest accuracy of 95.53% was achieved with a
dropout rate of 0.3 in the CL and 0.5 in the FC layer. For
lower dropout rates (0.0 to 0.2 in both layers), the accu-
racy is relatively lower, fluctuating between 90.53% and
93.50%. However, introducing dropout rates of 0.3 or 0.4
in the CL and FC layers significantly boosts the model’s
performance, with the optimal result observed at a dropout
rate of 0.3 in the CL and 0.5 in the FC layer. The find-
ings indicate that regularization using dropout not only pre-
vents overfitting but also contributes significantly to im-
proved generalization, thus enhancing the model’s overall
classification capability. The results suggest that a balanced

dropout strategy (e.g., 0.3 in CL and 0.5 in FC) yields the
best performance, while further increasing the dropout rate
in the FC layer beyond 0.5 may lead to diminishing returns
in accuracy.

Table 7 details the optimized architecture of the deep
convolutional neural network (DCNN), achieving a peak
accuracy of 95.53% through systematic hyperparameter
tuning and refinement. The learning rate was set to 0.001,
striking a balance between convergence speed and stabil-
ity. The Adam optimizer was employed, leveraging the
combined benefits of AdaGrad and RMSProp to ensure ef-
ficient and adaptive gradient updates. To enhance gener-
alization, dropout rates were configured at 0.3 for con-
volutional layers and 0.5 for fully connected layers, pre-
venting overfitting. A batch size of 32 was chosen, pro-
viding a balance between training speed and model perfor-
mance. Additionally, weight decay (0.0001) was incorpo-
rated to further regularize the model. The DCNN archi-
tecture consisted of multiple convolutional layers, progres-
sively increasing the number of filters from 32 in the first
layer to 256 in the final convolutional layer. Each convolu-
tional layer was followed by a 2x2 max-pooling layer, aid-
ing in feature extraction and dimensionality reduction. The
fully connected layers consisted of 1200 neurons, with a
sigmoid activation function in the output layer, suitable
for binary classification. Regularization techniques, in-
cluding dropout, weight decay, and max-pooling, were em-
ployed to enhance robustness. The model was trained us-
ing the spark-tensorflow-distributor framework, lever-
aging distributed computing for efficient training on large
datasets. Furthermore, as illustrated in Table 6, our pro-
posed system, which employs a DCNN model with the fine-
tuning configuration detailed in Table 7, achieved the fol-
lowing results:

To provide a more comprehensive evaluation, we in-
cluded the following metrics:

— Area Under the Curve (AUC): The ROC curve was
plotted, and the AUC was calculated to be 0.98, indi-
cating excellent discriminative ability.

— Matthews Correlation Coefficient (MCC): The
MCC value of 0.93 highlights the model’s balanced
performance, especially for imbalanced datasets.

— Cohen’s Kappa: A value of 0.92 was obtained, indi-
cating strong agreement between predicted and actual
labels, adjusted for chance.
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Table 3: Study of the effect of epochs on the ANN model

Epochs | Training Accuracy (%) | Test Accuracy (%) | Time of Epoch Test | Training Time
2 96.89 67.45 55 sec 16 min 12 sec
4 98.59 84.46 54 sec 32 min 5 sec
6 99.79 84.62 53 sec 48 min
8 100 75.87 59 sec 1h 3 min 52 sec
10 100 72.60 56 sec 1h 19 min 39 sec
14 100 70.13 55 sec 1h 51 min 33 sec
18 100 72.29 54 sec 2h 28 min 5 sec
20 100 70.65 55 sec 2h 45 min 5 sec
Table 4: Study of the effect of epochs on the DCNN model with 13,808 CXR dataset
Number of Epochs | Training Accuracy (%) | Training Time | Testing Accuracy (%) | Testing Time
2 88.79 4 min 4 sec 60.43 51 sec
4 95.89 8 min 15 sec 61.88 49 sec
8 70.10 16 min 33 sec 70.41 50 sec
18 100 43 min 48 sec 69.73 51 sec
25 100 58 min 50 sec 70.73 52 sec
100 100 5 h 28 min 50 sec 91.88 50 sec

Table 5: Study of the dropout effect on the DCNN model

Dropout in CL | Dropout in FC | Accuracy
0.0 0.0 90.53
0.0 0.1 90.69
0.0 0.2 90.88
0.0 0.5 90.73
0.1 0.0 92.40
0.1 0.1 92.55
0.1 0.2 92.16
0.2 0.0 92.66
0.2 0.1 92.88
0.2 0.2 92.95
0.2 0.5 93.50
0.3 0.0 93.96
0.3 0.1 94.60
0.3 0.2 94.99
0.3 0.5 95.53
0.4 0.0 95.06
0.4 0.1 93.89
0.4 0.2 93.54
0.4 0.5 92.33

Table 6: Performance metrics of the proposed model

Metric Value
Sensitivity (Recall) 0.94
Specificity 0.96
Precision 0.95
Accuracy 0.9553
F1-Score 0.95
Training Time (seconds) 18909
Testing Time per Image (seconds) | 0.006
Number of Images 18000

The tables 8 and 9 present the effects of batch size
and dropout rates at the fully connected (FC) layer on the
AlexNet model using CXR images. The results indicate
that neither batch size nor dropout significantly impacts ac-
curacy or training time in this architecture. The highest
classification accuracy, 73.8%, was consistently achieved
across various configurations, with minimal variation in
training time. For example, a batch size of 16 achieved
73.8% accuracy with a training time of 1 hour, 16 minutes,
and 45 seconds, while other batch sizes produced similar
results.

Figures 3 and 4 present a comparison of training du-
rations for the DCNN and ANN models. The DCNN
achieved optimal performance with a training time of
18,909 seconds (approximately 5 hours and 15 minutes)
over 100 epochs, attaining a recognition accuracy of
91.88%. In contrast, the ANN model required significantly
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Table 7: Summary of hyperparameters and fine-tuning strategies for deep convolutional neural network (DCNN) model

Parameter

Value/Description

Learning Rate 0.001

- Convolutional Layers (CL): 0.3

Dropout Rates - Fully Connected Layers (FC): 0.5
Optimizer Adam (combines AdaGrad and RMSProp)
Batch Size 32

Weight Decay 0.0001

Convolutional Layers

- 1st CL: 32 filters, output: 128x128x32
- 2nd CL: 64 filters, output: 64x64x64
- Final CL: 256 filters, output: 4x4x256

Max-Pooling Layers

2x2 window size

Fully Connected Layers

- FC layers: 1200 neurons
- Output layer: 1 neuron

Activation Functions

- ReLU for all layers except output
- Sigmoid for output layer

Training Framework

spark-tensorflow-distributor

Regularization Techniques

- Dropout layers
- Weight decay
- Max-pooling for dimensionality reduction

Table 8: Study of the batch effect with a dropout of 0.4 on the AlexNet model

. Trainin Trainin Testin Epoch Loss
Batch Size Accuracy Eg%) Time i Accuracyg(%) TI;me Function

16 73.82 1h 16m 45s 73.8 52s 0.575

60 73.82 1h 16m 50s 73.8 59s 0.57

128 68.78 1h 20m 45s 73.8 55s 0.60

300 73.50 1h 15m 56s 73.8 53s 0.60

500 73.79 1h 16m 50s 73.8 52s 0.60
less training time of 1,960 seconds (approximately 33 min-
utes) over 6 epochs—to achieve an accuracy of 84.62%,
both utilizing a batch size of 32. Additionally, these ex-
periments examined the effect of memory allocation per 4000
executor. When memory allocation exceeded 2,048 MB, a
training times for both the DCNN and ANN decreased sub- E
stantially. Conversely, when memory allocation was below =i
this threshold, training times increased notably. 20002

% 2880 2630
6.3 Performance comparison with = 2280 1960
state-of-the-art models

Table 10 compares the performance of various COVID- 0 1024 2084 4300 8592

19 detection models using chest X-ray images, highlight-
ing key metrics such as sensitivity, specificity, preci-
sion, accuracy, Fl-score, and computational efficiency.
Among the 2020 models, COVID-Net and COVID-CAPS
demonstrated moderate accuracy (85% and 95%, re-
spectively), while Shashank’s method (2020) achieved
high accuracy (96%) and Fl-score (97%). VGG19 and
DenseNet201 (2020) showed perfect specificity and preci-
sion but lower sensitivity (83%), whereas ResNetV2 vari-
ants and MobileNetV2 (2020) struggled with specificity-

Memory amount(MO)

Figure 3: Impact of amount memory Spark’s on the training
time of ANN method (where the best training time is 1960s
for 6 epochs) using memory size of 8592MO
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Table 9: Study of the dropout effect with 5 layers and 16 batches on the AlexNet model

Dropout in FC | Training Accuracy (%) | Testing Accuracy (%) | Epoch’s Test Time | Training Time
(0.2,0.3,0.4) 73.82 73.8 52 sec 1h 18m 30s
(0.4,0.4,0.2) 73.06 73.8 52 sec 1h 16m 41s
(0.4,0.4,0.4) 73.82 73.8 53 sec 1h 19m 30s

Table 10: Comparison between our proposed approach with 13808 CXR and related works

Method Year | Sensitivity | Specificity | Precision | Accuracy | F1-Score | Training time | Testing time | Images
COVID-Net [43] 2020 0.90 0.80 - 0.85 0.22 - - 447
COVID-CAPS [44] 2020 0.90 0.95 - 0.95 - - - -
Shashank [45] 2020 0.98 091 0.96 0.96 0.97 - - 364
VGG19 [32] 2020 0.83 1.00 1.00 0.90 0.81 2641 4.0 50
CovidGAN [46] 2020 0.95 0.94 0.90 0.94 0.92 - - 192
ResNet50 [25] 2020 - 1.00 1.00 0.98 0.98 - - 2800
DenseNet201 [32] 2020 0.83 1.00 1.00 0.90 0.81 2122 6.00 50
ResNetV2 [32] 2020 1.00 0.62 0.40 0.70 0.57 1086 2.00 50
-ResNetV2 [32] 2020 1.00 0.71 0.60 0.80 0.75 1988 6.00 50
Xception [32] 2020 1.00 0.71 0.60 0.80 0.75 2035 3.00 50
MobileNetV2 [32] 2020 1.00 0.55 0.20 0.60 0.33 389 1.00 50
Inception [10] 2021 0.93 0.97 0.97 0.96 0.96 1800 0.014 3760
VGG16 (Fine Tuning) [47] 2020 - - - 0.8526 - - - 380
RESNETI18 (Fine Tuning) [47] 2020 - - - 0.8842 - - - 380
RESNETI101 (Fine Tuning) [47] | 2020 - - - 0.8737 - - - 380
RESNETS50 (Fine Tuning) [47] 2020 - - - 0.9263 - - - 380
VGG19 (Fine Tuning) [47] 2020 - - - 0.8947 - - - 380
AlexNet [48] 2021 0.9388 - 0.9518 0.9479 0.9021 - - 100
GoogleNet [48] 2021 0.9338 - 0.9512 0.8889 0.9485 - - 100
DenseNet201 [48] 2021 0.9285 - 0.9785 0.9056 0.8608 - - 100
ResNet18 [48] 2021 0.8913 - 0.9591 0.8728 0.9407 - - 100
ResNet50 [48] 2021 0.8819 - 0.9828 0.9455 0.9069 - - 100
Inceptionv3 [48] 2021 0.8925 - 0.8928 0.9640 0.9411 - - 100
VGG16 [48] 2021 0.8905 - 0.9480 0.9651 0.9585 - - 100
XceptionNet [48] 2021 0.9411 - 0.8919 0.8874 0.8919 - - 100
VGG19 [48] 2021 0.8863 - 0.9658 0.8886 0.9104 - - 100
Inceptionresnetv2 [48] 2021 0.9122 - 0.9375 0.9681 0.9213 - - 100
Inceptionresnetv3 [25] 2021 - 0.9740 0.8240 0.9770 0.9030 16027 - 3141
ResNet101 [25] 2021 - 0.9990 0.9890 0.9470 0.6860 17841 - 3141
ResNet152 [25] 2021 - 0.98 0.7570 0.9280 0.6090 18802 - 3141
Inception-ResNetV2 [25] 2021 - 0.9830 0.84 0.9530 0.7680 23078 - 3141
VGG 16 [53] 2023 0.96 - 0.96 0.96 0.96 - - 6000
Inceptionresnetv3 [53] 2023 0.91 - 0.91 0.91 0.90 - - 6000
ResNet [53] 2023 0.98 - 0.98 0.98 0.98 - - 6000
VGG 19 [53] 2023 0.89 - 0.96 0.96 0.92 - - 6000
Ensemble learning on Spark [54] | 2023 - - - 0.9431 - - - 6500
Proposed Model 2025 0.94 0.96 0.95 0.9553 0.95 18909 0.006 18000

precision trade-offs despite high sensitivity. Models from
2021, such as Inception [10] and InceptionResNetV2 [25],
delivered strong accuracy (96-97.7%) but required exten-
sive training times (e.g., 16,027-23,078 seconds). In 2023,
ResNet [53] achieved near-perfect accuracy (98%) and F1-
score (98%), while the proposed 2024 model stands out
with balanced performance: 95.53% accuracy, 0.94 sensi-
tivity, 0.96 specificity, and a remarkably low testing time
(0.006 seconds), despite a longer training time (18,909
seconds) likely due to its large dataset (18,000 images).
Computational efficiency is a key differentiator, with the
proposed model’s sub-second testing time outperforming
older architectures like VGG19 (4 seconds) and ResNet50
(unreported but likely higher). While some models (e.g.,

ResNet50 [25]1n 2020) achieved higher specificity (100%),
the proposed model’s balanced metrics, scalability, and
real-time inference capabilities position it as a robust solu-
tion for clinical deployment, particularly when compared to
fine-tuned models like RESNETFine50 (92.63% accuracy)
or ensemble methods (94.31% accuracy). Its combination
of high accuracy, competitive F1-score (95%), and mini-
mal latency underscores its suitability for rapid, large-scale
diagnostic applications.
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Figure 4: Impact of amount memory Spark’s on the train-
ing time of DCNN method (where the best training time is
18909s for 100 epochs) using memory size of 8592MO

7 Conclusion

In this paper, we have proposed an advanced method for
COVID-19 detection using deep learning and big data an-
alytics on large-scale chest X-ray images. By leveraging
the power of distributed training with Spark-TensorFlow-
Distributor, we have successfully accelerated the classifi-
cation process, achieving high accuracy (95.53%) in min-
imal time (0.06s). Our approach significantly outperforms
traditional models, such as ANN and AlexNet, in terms
of both classification accuracy and processing time. The
integration of the distributed DCNN model with Spark’s
in-memory computation capabilities enables efficient han-
dling of large-scale data, facilitating rapid and scalable
training of deep learning models.

We have demonstrated the effectiveness of our system
by comparing it with other state-of-the-art methods, high-
lighting its superior performance in terms of training and
testing time. This work emphasizes the potential of com-
bining deep learning and big data frameworks for real-time,
large-scale COVID-19 detection, contributing to the timely
identification of infected individuals and supporting public
health efforts.

7.1 Limitations

Our approach benefits from distributed computing but is
limited by infrastructure availability, requiring significant
resources for large-scale deployment. The model’s gener-
alizability is constrained by its training on a specific chest
X-ray dataset, and performance on diverse medical imag-
ing data requires further evaluation. Training deep neural
networks demands high-performance GPUs or TPUs, and
real-time applications may require dedicated computing en-
vironments.
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7.2 Future Scope

In our future research, we intend to explore further hyperpa-
rameters, such as the quantity of CL and filter dimensions,
to improve the recognition capabilities of our DCNN-based
method on our database. Furthermore, we intend to evalu-
ate our model on a more extensive dataset and deploy it
on large computing clusters to increase the validity of our
results while optimizing our proposal through various opti-
mization techniques referenced in [49], [50], [51], and [52].
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