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A lot of work is devoted to formalizing and devising architectures for agents' cooperative behaviour, for 
coordinating the behaviour of individual agents within groups, as well as to designing agent societies 
using social laws. However, providing agents with abilities to automatically devise societies so as to 
form coherent emergent groups that coordinate their behaviour via social laws, is highly challenging. 
These systems are called self-organised. We are beginning to understand some of the ways in which self-
organised agent systems can be devised. In this perspective, this paper provides several examples of 
multi-agent systems in which self-organisation, based on different mechanisms, is used to solve complex 
problems. Several criteria for comparison of self-organisation between the different applications are 
provided. 
Povzetek: Članek opisuje primere in kriterije samoorgarnizacije v agentnih sistemih. 

1 Introduction
Multi-Agent Systems (MAS) have attracted much 
attention as means of developing applications where it is 
beneficial to define function through many autonomous 
elements. As multi-agent systems get more complex, 
questions arise about the best way to control agent 
activity, and thus application performance. Centralised 
control of MAS is one approach, but is of limited use 
because of the risk of dependency on the controlling 
element, and the consequential lack of robustness. This 
also makes little sense when agents have capabilities of 
autonomy that can provide useful benefits in 
applications. Partially or completely decentralised 
control is an alternative, but means of implementing this 
without disrupting agent performance in support of 
applications are important. Mechanisms of self-
organisation [7] are useful because agents can be 
organised into configurations for useful application 
without imposing external centralised controls. 

This paper discusses several different mechanisms 
for generating self-organisation in multi-agent systems 
[8]. Reactive multi-agent systems [29] provide the basis 
for self-organisation in several examples as the 
interaction between the agents and their environment 
provides the flexibility for dynamic change. Cooperation 
drives self-organisation in the AMAS agent modelling 
theory [2][8]. The holon concept can also be used to 
define and analyse self-organising agent systems [26]. In 
this introductory part, these approaches are now 
discussed in a more detailed way. 

1.1 Self-organisation by Reactive Multi-
agent Systems 

Reactive multi-agent systems [29] are systems made up 
of simply behaving units with decentralized control. 
Agents are situated in a dynamic environment through 
which they interact. They are characterized by limited 
(possibly no) representation of themselves, of others and 
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of the environment. Their behaviours are based on 
stimulus-response rules. Decision-making is based on 
limited information about the environment and on limited 
internal states and does not refer to explicit deliberation. 
The individuals do not have an explicit representation of 
the collective task to be achieved because of their 
simplicity. Therefore, the solution of the problem is a 
consequence of successive interactions between agents 
and the environment. Their characteristics enable them to 
adapt dynamically their function or structure to changing 
conditions without external intervention. 

Using such a model to solve a given problem 
requires designing a system as three components: the 
environment, the agent behaviours and the dynamics of 
the whole such that the agent society is able to fulfil its 
requirements with a reasonable efficiency.  

1.2 Self-organisation using Cooperative 
Information Agents 

A specific example of a platform for self-organisation 
using reactive multi-agents is provided by the DIET 
Agents platform. This platform [14][6] is a suitable basis 
for self-organising applications using cooperative 
information agents. This platform was developed as part 
of the EU DIET project, inspired by the way that 
complexity emerges in natural ecosystems.  

The DIET Agents platform [14][6] is designed as a 
three layer architecture: (1) core layer; (2) application 
reusable component layer; (3) application layer. The core 
layer provides the minimal software needed to implement 
multi-agent functionality, through the DIET platform 
kernel. It also provides basic support for debugging and 
visualisation. The basic classes and elements in the DIET 
platform kernel are arranged around an element 
hierarchy: worlds, environments; agents; connections, 
and messages. 

Agents are located in environments, and can form 
connections with each other through which messages can 
be passed. Multiple environments can be situated in 
worlds. Agents are initially created with only four 
possible behaviours: creation (of other agents); 
destruction (of itself); communication (with other 
agents); migration (between environments). But they are 
designed so that their properties can be extended.  

The other two layers of the platform, the application 
reusable component (ARC) layer, and application layer 
support this extension. The ARC layer provides 
functionality that can be shared between applications, but 
is not essential for the DIET kernel, while the application 
layer provides application-specific functionality. 
Software for applications can be developed in this layer 
without having to disrupt the core layer. 

This platform is appropriate for applications 
involving cooperative information exchange because 
individual agents can take on cooperative behaviour by 
extension of their autonomous capability. The platform is 
designed that agent action is resource-constrained, so that 
actions will stop if they start consuming too much system 
resources. Actions are also fail-fast; they will fail if they 
are not executed immediately. In this way applications 
requiring the interaction of many agents can be supported 
within realistic resource constraints. 

This platform is also suitable for applications 
involving self-organisation because no decisions have 
been made about how agents should be organised, and 
they are free to rearrange within and between 
environments according to application requirements. 

1.3 Self-organisation by Cooperation in 
AMAS 

For several years the SMAC (for Cooperative MAS) 
team has studied self-organisation as a means to get rid 
of the complexity and openness of computing 
applications [2]. A theory has been proposed (called 
AMAS for Adaptive Multi-Agent Systems) in which 
cooperation is the engine thanks to which the system 
self-organises for adapting to changes coming from its 
environment (see [2] and section 4.4. in [8]). Cooperation 
in this context is defined by three meta-rules: (1) 
perceived signals are understood without ambiguity, (2) 
received information is useful for the agent’s reasoning, 
and (3) reasoning leads to useful actions toward other 
agents. Interactions between agents of the system depend 
only on the local view they have and their ability to 
cooperate with each other. These modifications make the 
organisation of the system also change and therefore 
make the global behaviour of the system emerge. At the 
agent level, cooperation is described in a proscriptive 
way: an agent knows how to detect situations it judges 
being non cooperative, from its point of view, and acts 
for always trying to remain cooperative toward others but 
also toward itself. 

1.4 Self-organisation by Holons 
According to Koestler, a holon is a self-similar structure 
that may consist of several holons as sub-structures [17]. 
The hierarchical structure composed of holons is called a 
holarchy. Holarchies allow the description of systems as 
recursive self-similar entities which constitute the holons. 

We have chosen to describe the behaviour of the 
members of a holon and their interactions in terms of 
roles and organisation. These roles represent the "status" 
of the holon inside a specific holon. In our approach each 
holon may play four roles: StandAlone, Head, Part and 
Multi-Part. As a holon joins a HMAS (Holonic Multi-
Agent System) Organisation, it has no special bindings 
and does not collaborate with any other holon. 

This situation represents a Stand Alone Behaviour. In 
this state, the agent's decisions are not attached to any 
restriction but its own goals and objectives. The holon 
will remain in this state as long as it is satisfied. The 
Stand-Alone represents how "non-members" are seen by 
an existing holon. Following the Holonic Paradigm, the 
holon seen as a Stand-Alone can actually be the 
Representative of a holon.  

As the representative, the holon plays the Head role. 
According to the objective and rules of the holon, the 
Head responsibilities and rights may range from merely 
administrative tasks to be able to take decisions 
concerning all members. The head is not necessarily a 
unique holon. After an holon starts performing the Head 
Role, it will be the representative of the members of his 
Holon at this level and therefore, able to engage the 
holon in new tasks. 
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Members not playing the Head role are considered as 
Parts of the holon. Once a holon is accepted in a Holon, 
its autonomy is reduced because of its obligations with 
the Holon. The degree of this autonomy lost may vary 
according to the holon's purpose. 

The MultiPart Role is a special case of the Part Role. 
This role is played by holons belonging to more than one 
Holon. Interesting possibilities are available when a 
holon is shared.  
In order to enable holons to dynamically change their 
roles, we define a notion of satisfaction. Each holon tries 
to be self-satisfied. If it cannot reach a satisfaction 
threshold it tries to change its role. Eventually the last 
concept of the framework is affinity. The affinity enables 
one StandAlone holon to choose with which holon to 
merge. It measures the compatibility of the holon's goals 
and services. 

Self-organisation by holons uses direct interactions 
and cooperation (see section 4.5 in [8]). 

1.5 Overview 
Given the existence of multiple mechanisms for 
generating self-organisation in multi-agent systems, what 
can self-organised systems be used for? Section 2 
reviews a variety of examples of MAS applications 
drawing upon self-organisation. Section 3 seeks to 
compare these applications, by identifying some criteria 
that are general to multi-agent systems. Section 4 
provides a conclusion. 

2 Applications 
The diversity of approaches for stimulating self-
organisation within multi-agent systems means that MAS 
have the potential to support a variety of applications. 
This section describes some example applications using 
MAS that draw upon self-organisation to make the 
applications more effective.  

Two applications address problems in information 
retrieval, using middle agents (section 2.1) and 
evolutionary algorithms (section 2.2). Further 
applications are considered in the areas of timetabling 
(section 2.3), flood forecasting (section 2.4), land use 
allocation (section 2.5), localisation and tracking (section 
2.6), adaptive meshing in wireless networks (section 2.7) 
and traffic simulation (section 2.8). Other examples of 
application can be found in [18].This wide range of 
examples gives an indication of the usefulness of self-
organisation in achieving the complex behaviour 
required for real-world applications. 

2.1 Self-organisation of User Communities 
using Middle Agents 

Multi-agent systems can be used to support information 
exchange within user communities by providing each 
user with a user agent that represents their interests. But 
how does a user agent make contact with other user 
agents that represent users with common interests? 
Assuming that not all users know each other, which is 
probably realistic, a pure peer-to-peer network could be 
used. This would involve flooding a network with 
queries. But this is inefficient, and risks overloading the 

system with queries. Middle agents or brokers are an 
alternative - user agents communicate with middle agents 
[5]. Multi-agent systems for information exchange using 
middle agents have been proposed which are centralised 
(e.g. [22]) - all queries go to one broker - but there is a 
risk that they will not be so robust, if the middle agent 
does not perform well. In this example we consider an 
application where middle agents are used in a 
decentralised configuration. 

The self-organising communities application [31] 
assigns each user a user agent. There are also multiple 
middle agents in the system. User agents do not retain a 
profile for their user, but they forward queries to the 
middle agents. The user agents carry and seek to acquire 
information for their users. Each user agent registers with 
at least one middle agent. Once they are registered with 
the middle agent, the middle agent can access 
information that the user agent holds that may be of 
interest to other user agents. Each middle agent receives 
queries from multiple user agents. Given these queries 
the middle agent carries out a search of the pool of 
information it holds from user agents already registered 
with it. If it can respond to the query using this 
information then that information is dispatched to the 
user agent that issued the original query and the search is 
rapidly completed. If not, the middle agent can interact 
with other middle agents to try and obtain information 
from them. Once the middle agent has carried out this 
search, it relays the result to the user agent.  

The middle agent then examines whether the search 
was successful, and if so provides a positive mark to the 
two user agents, both the requestor and the provider. If 
the search was unsuccessful, the requestor gets a negative 
mark, to indicate load on the system. After marks have 
been assigned the middle agent checks the location of the 
requestor and provider user agents. If the search has been 
successful, and the requestor and provider agents are not 
already registered with it, the middle agent requests the 
middle agent with which the provider agent is currently 
registered to transfer the provider agent to the group of 
the requestor agent. Movement of agents between groups 
is regulated by the awards given to user agents following 
responses to queries, and designed to get user agents into 
the same groups around middle agents where they often 
have queries covering common areas. In this way user 
communities can be built up using user agents and 
middle agents, without any central control on agent 
behaviour. This is a highly scalable process that 
continues to operate highly efficiently even as the 
number of users increases substantially. 

2.2 Self-organisation through Evolving 
Agent Populations 

We can use a MAS to represent user interests through 
user agents, but given that there may be many different 
users in different locations there may be problem in 
finding other users to interact with. The evolving 
preferences application [18] considers an application 
scenario where many users interact with each other via a 
DIET Agents platform supporting user agents. Each user 
deploys a user agent in a DIET environment, but because 
users may interact with the system in different contexts, 
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there will be a lot of different environments. The 
different environments are connected in a peer network. 
User agents stay in their own environment, but create a 
population of scout agents that they send through the 
peer network to search out other user agents representing 
users with common interests. 

Each scout agent carries information representing the 
interests of the user that it represents. It also has a 
preference for environments determined by a bitstring 
genome created when it is generated. Based on this 
genome it will search out other environments and interact 
with other scout agents in them. Scout agents then return 
to their home environment and report back information 
that they have gathered in other environments; both 
about different environments and about their success in 
interacting with other scout agents representing similar 
interests. On return to their home environment scout 
agents are destroyed, but their genome is used in an 
evolutionary algorithm where the selection criteria is 
defined by the success of the scout agent in locating 
environments where there are other scout agents to 
interact with that have similar interests. Over time the 
evolutionary algorithm converges to a situation where 
scout agents will converge in environments according to 
their users' preferences, so that different environments 
hold different user agents that can interact on behalf of 
their users. This shows how an evolutionary algorithm 
can be combined with agent interaction in a distributed 
network to stimulate self-organisation of agents into 
different environments, and thus to stimulate information 
exchange between users in different environments. 

2.3 Self-organisation for the School 
Timetabling Problem 

An example of a classical constraint-satisfaction problem 
(CSP) is the school timetabling problem in which a 
timetable for a certain duration must be found while 
respecting the explicit constraints (availability, 
specialisation, equipment needed…) of different 
stakeholders (teachers, student groups and possibly 
rooms) as well as their implicit constraints (for example, 
impossibility to be in two places at the same time). The 
inherent distributed aspect of the timetabling problem 
explains a processing by a MAS. Unlike most of the 
approaches using MAS (for instance [4]), agents do not 
use negotiation to find a solution in ETTO (Emergent 
Time Table Organisation), the problem solver presented 
here [23].  

The environment is made of a three-dimensional 
virtual grid composed of cells. Each cell represents a 
time slot for a given day, for a given hour, and for a 
given lecture room.  

Two kinds of cooperative agents were identified: a 
Representative Agents (RA) and Booking Agents (BA). 
A RA is associated with every human stakeholder, 
manages its constraints and represents an interface with 
the real world. RAs delegate time slot and room search to 
Bas which are the actual self-organizing agents. A BA 
explores the grid to find free cells and meet potential 
partners in order to fulfil its aim: booking a time slot for 
a given lecture to give (for a teacher) or to take (for a 

student group) in accordance with constraints used by its 
proxy RA. 

The behavioural model is based on the AMAS 
theory, the engine of self-organisation is cooperation. 
Five different situations for reorganisation are identified 
based on the three meta-rules ensuring cooperation (see 
section 1.3)  For instance, if a BA ba1 encounters, in a 
given cell, another BA ba2 with which it cannot partner 
(for example, two teachers meet), ba1 judges this 
situation as incompetence and changes its location to find 
a more relevant partner. Furthermore to enable a more 
efficient exploration of partnership possibilities, ba1 will 
memorise the location and the BAs it may know via ba2, 
to exchange them during further encounters. In a 
cooperative situation, a BA books the cell in which it is 
situated, and partners with another BA. 

The positive results obtained by now show that the 
approach used is suited for this kind of problem. BAs are 
able to relax constraints to find a solution. A solution is 
found when constraints or stakeholders vary (added or 
removed) in a dynamical way. Furthermore, the ability to 
insert agents has enabled us to show that adding 
supernumerary agents helps finding a solution and gives 
better results. This can be explained by the fact that the 
added agents can disrupt others which are satisfied with a 
solution that could be optimised. However ETTO has 
weaknesses. By nature, cooperative agents in AMAS 
have only a limited knowledge about their environment 
and do not know the global goal to achieve as well as the 
global cost of the solution they may found. Thus they go 
on exploring the grid to find a more relevant solution 
even if the best solution is already found. An external 
observer has to stop the solving process when the 
organisation fits his requirements.  

Many approaches have been used to try to solve such 
a problem (see for example, the “Practice and Theory of 
Automated Timetabling“ at the URL: 
http://mat.gsia.cmu.edu/PATAT04/). Most of them are 
(distributed) CSP-based solvers, some are agent-based 
solutions, some use evolutionary approaches and others 
ant algorithms [28]. Timetabling problems in the real 
world are dynamic problems, restarting from scratch 
each time a constraint is modified (added, removed) 
would not be efficient and few works are interested in 
this problem. Usually, the main objective is to have the 
smallest impact possible on the current solution as in [21] 
in which this is done by introducing a new search 
algorithm that limits the number of additional 
perturbations. In ETTO, self-organisation enables the 
system to adapt to perturbations and changes in its 
environment because modifying a stakeholder’s 
constraint makes the corresponding BA question its 
bookings and its possible partnership. If it judges that 
they are inconsistent with its new state, it tries to find 
new ones by roaming the grid and applying its usual 
behaviour. 

2.4 Self-organisation for Flood Forecasting 
Flood forecasting is a complex dynamic problem, 
parameters that can explain this phenomenon are 
numerous and heterogeneous: including hygrometry, 
declivity, surface, nature and permeability of the ground, 
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rain heights, stations topologies, … Current forecasting 
systems have a physical approach of this phenomenon: 
the better these parameters are known, the better results 
are. Tuning these parameters for a forecast station take 
several months and they have to be adjusted when 
environmental conditions evolve.  

The STAFF real-time simulator uses an adaptive 
model for flood forecasting, which is composed of two 
levels of self-organizing multi-agent systems [13].  

The environment is made of the sensors of the 
Garonne river basin.  

Agents of the lower level represent each physical 
sensor. Such an agent has to encapsulate its datum for 
determining its influence on the forecast that the system 
has to model. The goal of each upper level agent is to 
compute the water level variation during a unitary period 
(typically an hour); for that, it uses a weighted sum of 
agents in the lower level. 

The behavioural model is based on the AMAS 
theory. The hydrological model's adaptive nature is 
obtained by adjustment of these weights, decided from 
cooperation between the agents. Agents do not know the 
objective of the global system, the self-organisation by 
cooperation between agents defines how the model has to 
be adjusted according to the input data, the results 
coming from other agents and the error made on the 
forecast. This makes the model generic and improves its 
performances.  

Positive results were obtained showing that the 
model correctly followed the real evolution of the flood 
even in limit use cases (such as noisy and missing data, 
totally upstream stations or real-time learning) in which 
usual hydrological models are inadequate. The model 
does not need any predefined parameters because it is 
adjusted just once, when installed, using historical flood 
data. For example, one week was sufficient to adjust the 
24 models currently used for the stations making flood 
forecasting in the Garonne river basin.  

Classical physic-hydrological forecasting models are 
mathematical approaches that consist in generic formula 
which parameters are tuned from measures on ground 
and from historical account of flood. Neural networks 
have been used in flood forecasting, for instance in [30] 
or used with self-organising feature map [15]. In the 
former approach, relevant stations must be selected by 
hand and the learning algorithm is not a generic one. In 
both approaches, contrary to STAFF, there is no real-
time learning. 

2.5 Self-organisation for Land Use 
Allocation 

Based on a real-world problem, we applied a self-
organising approach to simulate the assignment of land-
use categories in a farming territory, in the north-east of 
France [9][8]. This problem exhibits a function to 
optimise, while respecting a set of constraints, both local 
(compatibility of grounds and land-use categories) and 
global (ratio of production between land-use categories). 
This problem is one instance of quadratic assignment 
problem. 

The environment is the set of available zones in the 
farming territory, each zone is featured by its surface, its 
distance to the village, the kind of soil, etc.  

Agents are gathered into groups, each being 
associated to a land-use category. A group has a goal to 
satisfy by conquering spatial zones in the environment 
while respecting some constraints.  

The behavioural model is based on a few principles 
inspired by the eco-problem solving approach [11]. An 
agent can conquer a zone in the environment and then 
contribute to the satisfaction of its group; the zones are 
more or less attractive for an agent; when searching for a 
zone, an agent chooses the most attractive one. If the 
zone is free the agent occupies it; if it is already 
occupied, the two agents have to fight, and the outcome 
is determined by the respective strengths of their groups. 
Finally, the strength of a group decreases while its 
satisfaction increases, in order to ensure that groups 
farther from their objectives gain an advantage over 
those closer. 

The problem-solving process exhibits interesting 
properties. The system produces results that fit the 
expert's requirements and that are comparable with 
results obtained by simulated annealing.  

The dynamic of the problem-solving process is 
convergent to a stable state (which is a solution to the 
problem); is an anytime process (the system can be 
stopped at any step and is able to produce a solution the 
quality of which is dependent of the number of steps). 
Furthermore, the model exhibits self-adaptation 
properties: at runtime we can add or remove zones or 
land-use category and the system stabilises again to a 
solution. We obtained the same properties when 
modifying a group's goal. 

A lot of works on optimisation problems exist (e.g. 
[3]), however most of them are not self-organizing; two 
exceptions are built on reactive agents that self-organize. 
The first (Ant Colony Optimisation) is inspired by the 
foraging behaviour of ants [1] and the second (Particle 
Swarm Optimisation) by flocking [10]. Both provide 
results comparable to more conventional optimisation 
methods.  

In our case, we compared our system with simulated 
annealing. Simulated annealing provided better mean 
results even if the best solutions were found by the MAS 
approach. 

2.6 Localisation and Tracking using Self-
organisation 

The localisation task can be defined as finding the 
position of an object (or more than one), mobile or not, in 
a well defined referential location. The tracking problem 
is to provide a succession of positions that are spatially 
and temporally coherent. We proposed a reactive model 
to tackle this issue [12]. 

The environment of the agents is a representation of 
the real world. It is a square grid in which each state 
represents a target's possible position and is featured by 
an altitude that represents the possibility of presence of a 
target at this position and is provided by sensors. 
Environment dynamics is determined by accumulation 
and evaporation principles. The altitudes are refreshed 
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(accumulation) continuously as soon as sensors can 
furnish data. In the absence of data, altitude is decreasing  
(evaporation). 

Agents are equivalent to weighted particles evolving 
in an environment of force field. 

The behavioural model used is inspired by a model 
of flocking [24] but is expressed through a formulation 
taken from Newtonian physics (i.e. all behaviours are 
expressed as a combination of classical forces). Agents 
are attracted by position according to their altitude and 
are mutually repulse each other. Agents' movements are 
the consequence of these forces. 

We designed these antagonist behaviours to obtain a 
focusing of the agents on the position of highest altitude 
and a homogeneous spatial distribution of them in the 
rest of the environment (where there is a null altitude). 
Focusing is an emergent phenomenon, and is the solution 
of the problem: a group corresponds to the detection of a 
target. 

We compare our proposition with the Kalman filter 
in case of real robots' localisation [27]. The Kalman filter 
is better than the agent-based method when there is no 
noise. This advantage decreases when noise is 
introduced. Furthermore, the agent-based approach 
requires less knowledge about the problem than the 
Kalman one. 

The approach is able, at runtime, to deal with a 
variable number of targets and it is possible to add or 
remove sensors which is very difficult to take into 
account with classical algorithms. As far as we know 
there is no self-organized approach for localization. 

2.7 Self-organisation for Adaptive 
Meshing in Cellular Radio Networks 

A distinguishing feature of cellular radio mobile 
networks is the rapid increase of the consumer demand 
and the ensuing complexity in their design and 
management. Responding to this demand requires the 
space to be partitioned between a large amount of service 
units or cells. The adaptive meshing problem for 
dimensioning considers traffic statistics as a predefined 
resource that must be attributed to many adaptive low 
power Base Transceiver Stations. The environment is 
discretized in meshes which contains a number of 
resources according to traffic statistics. Each mesh will 
be assigned an agent whose main and unique goal is to 
cover the traffic in that mesh [26]. This goal must be 
accomplished respecting certain constraints like 
geometry and the maximal traffic that an antenna can 
cover. The problem solving is done by building up 
holons which cover a resource. 

In the adaptive mesh problem, a stand-alone holon 
must ensure the coverage of its resource, then it will try 
to join a mesh immediately. The only situation where it 
remains in a stand-alone role is when its resource can get 
an antenna for it alone. A holon that performs the head 
role will be responsible for respecting the constraints of a 
mesh. It will be representing a possible mesh in the 
system, and will accept or refuse other holon's requests to 
fusion according the constraints. Although all heads 
represent possible meshes in the system, a Holon Head 
can decide to leave its role if, after trying to improve the 

Holon's satisfaction, the satisfaction is insufficient to 
remain as a Holon. In order to improve the Holon's 
satisfaction, will accept new holons to increase the Holon 
covered resource, or will command member holons to 
leave the Holon if they don't respect the geometrical 
constraints or if the covered resource has exceeded the 
maximum. 

A holon gets the Part role if negotiations with a 
Holon succeed. It will remain in the Holon if its 
satisfaction level is raising. However, it is also possible 
that the agent receives a command to leave the holon, in 
that case, it must return to Stand-Alone and restart the 
merging process. 

The holon's identifier should give the position of the 
holon's resource (X, Y coordinates) and the traffic it 
contains. 

Using these values, a holon can determine whether 
or not to merge. As explained before, the affinity should 
give a measure of the compatibility of the holon's goal 
and services. In this particular case, both holons will 
have the same goal, to ensure the coverage of their 
resources. Therefore, the main problem is to ensure that 
the geometrical constraints are respected. The affinity 
could be decomposed in two main parts: the distance 
affinity will provide a geometry dependent value used to 
ensure that the geometrical constraints are respected. As 
we need square meshes, we will use two parameters to 
test the distance affinity. First, we will check if the holon 
trying to merge is inside the acceptance distance. The 
Resource affinity is used to ensure that the limits of an 
antenna are not exceeded.  

2.8 Self-organisation for Traffic 
Simulation 

Multi-agent Systems operate within an environment and 
therefore, in an Agent Based Simulation (ABS) special 
attention must go to the analysis, model and 
implementation of the environment [20]. 

We propose the use of holarchies for the modelling 
of environments [25]. We simulate traffic within an 
industrial plant. The environment of this simulation is 
defined by the topology and road network of the plant. 
The concept of road is divided into links. A link 
represents a one-way lane of a road. A segment is 
composed of two exchange points, called input and 
output exchange points, and a link. Exchange points let 
vehicles pass from one link to the other. An exchange 
point is always shared by at least two segments and thus 
plays the multi-part role. The industrial plant is 
composed of a set of zones, that in turn contain Buildings 
and Segments. Buildings and Segments can also 
communicate through shared exchange points. Usually 
an exchange point represents a crossroad, but in can also 
represent an entrance used by trucks to access buildings. 
The agents will be the different vehicles driving through 
the plant. Each holon of the holarchy represents a 
specific context. For this simulation (HTS in the sequel) 
it's a specific place in the plant. These places have 
different granularity levels according to their level in the 
holarchy. During the simulation vehicle agents move 
from one holon to another and the granularity is chosen 
by execution or simulation constraints such as which 
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features can be observed. The dynamic choice of the 
environment granularity level during the simulation is 
transparent for the agents. The problem here is the 
simulation of traffic and the solving process is again 
based upon building and re-organisation of holarchies as 
vehicles drive through the plant and change the holon 
they belong to. 

This holarchy defines the organisational and 
topological structure in which agents will evolve. Each 
environmental holon will enforce contextual physical 
laws and represent a specific granularity level of the real 
plant topology. This holarchy is predefined as it 
represents the real plant environment. Indeed, the latter 
can't evolve and the physical laws we need to enforce are 
known a priori. All necessary information to simulate the 
traffic inside a link is local (other vehicles, road signs, 
etc). This makes the model easier to distribute in a 
network and leaves the door open to Real-time 
applications as well as Virtual Reality implementations. 

This approach has many advantages for the 
simulation. Indeed, such a definition of the environment 
allows the progressive decomposition of the environment 
complexity and enables to assign environmental laws to 
the pertinent holon. 

3 Comparison and Discussion 
This part is an attempt to compare self-organised systems 
presented above using a list of criteria inspired by the 
work done in the AgentLinkIII “Self-organisation in 
MAS” Technical Forum Group. The first paragraph of 
this section lists all the criteria we use along a 
classification based on the level at which they can be 
expressed. In the next section, each criterion is discussed 
in more detail with regard to our different approaches. 

3.1 Criteria Used 
Some of the criteria we use can be considered as 
descriptive/static criteria of the approach whilst others 
are related to the dynamical aspects of the problem 
solving process. Criteria belonging to the first group can 
be stated without running the system but by “simply” 
looking at its description: 

• Absence of external or of centralised control: no 
entity, external or internal to the system, is 
explicitly responsible for the actions of agents or 
for centralising information flow. 

• Dynamic operation: the solution is built in a 
dynamic way and not by applying a predefined 
plan or by instantiating a predefined solution. 

• Emergent properties: properties that emerge from 
local interactions within the system and that 
cannot be deduced by simply observing 
individual behaviours (see section 3 in [8]). 

• Simple local rules: do simple individual 
behavioural rules lead to complex patterns? 

• Reusability: is the solution (or part of it) reusable 
in other contexts? 

On the contrary, criteria found in the second group need 
experiments to be tested: 

• Anytime property: the system can be stopped at 
any step and is able to produce a solution the 

quality of which is dependent of the number of 
steps. 

• Instability: is the system non-linear, is it sensitive 
to parameters variations? 

• Adaptation: how does the system react to 
changes coming from the environment of the 
system? 

3.2 Discussion 
In some applications, the absence of external control 
may not exist and some entities may centralise 
information or decision. Therefore, applications can be 
classified from fully decentralised to partially centralised. 

For example, localisation application is fully 
decentralised, as well as timetabling or flood forecasting.  

On the contrary, in the holonic approach, Head role 
refers to a partial centralisation of decisions. This loss of 
autonomy corresponds to the holarchy handling. 
Moreover, the Head role may be played by the entire 
holon as a group.  

The self-organising communities application, using 
middle agents, is decentralised in that information 
retrieval is distributed across multiple middle agents. But 
the evolving preferences application, which evolves 
environmental preferences for information exchange, 
includes an element of centralisation through the use of 
selection on scout agent populations; although this is 
only partial as multiple populations are selected in 
parallel. 

 
In all the applications presented above, the solution is 
built dynamically. 
 
Emergent properties refer to simplicity of individuals, in 
terms of local rules or behaviours, despite their collective 
ability to produce a complex pattern. In other words the 
concepts needed to explain the global properties are not 
present at agents' level.  
For example, in the land use allocation problem, the 
global constraint (ratio of production between land-use 
categories) is not explicitly represented at the agent level 
but implicitly formulated through the groups' goal and 
the strength of groups that affect the conflict's outcome. 
In the localisation problem, we need to interpret the 
spatial positions of the agents in order to detect groups 
and then obtaining the target position. In the examples of 
allocation and localisation, the agents' behaviour is 
equivalent to stimulus-response rules and therefore is 
simple (at least simpler than the collective patterns that 
emerge). 

In all problems solved with self-organisation by 
cooperation, and following the AMAS theory, the 
function of the system is not known by the agents which 
only know their own local and simple function led by 
cooperation rules. By not being able to have a global 
knowledge, agents do not know when a solution is found, 
and an external observer is needed to make this 
detection.  

For the holonic approach since holons are recursive 
structures the behaviour of a holon may be the result of 
interaction of sub-holons. Indeed, a holon which is 
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unable to accomplish its goal will try to merge with a 
holon with complementary capabilities.  

Emergent properties are also apparent in the self-
organising communities application, which converges to 
a situation where groups of user agents with common 
interests can interact despite an arbitrary configuration of 
agents initially.  

 
Following the anytime property, experiments have 
shown that the main feature of the timetabling 
application is that modifications can be done without 
stopping the search for a solution (the schedule) while 
this latter is in progress, unexpected events are processed 
while actors are changing their constraints. The schedule 
is constantly changing as agents are searching for better 
bookings and partnerships and it becomes better as the 
solving makes progress. In the flood forecasting, a 
current solution (model) is given also at anytime, it 
becomes better as the learning process progresses. 
However, if disturbances appear, in both cases, the 
current solution may be questioned by agents for which 
unpredictable changes create non cooperative situations. 
Therefore the solution may be totally changed, may 
become totally “false” before converging again towards a 
good solution in a more or less great time.  

In the AM there is a first step which is the 
construction of holarchies. After then the solution 
improves as the time allocated grows.  

All applications based on reactive agents 
experimentally show their anytime ability. 

In the self-organising communities application, user 
agents and middle agents rearrange user communities 
dynamically depending upon queries, and this can be 
stopped and resumed at any time, and thus support the 
anytime property. The evolving preferences application 
uses an evolutionary algorithm to stimulate preferences 
in populations of scout agents; the algorithm can be 
stopped and restarted but it will not continue changing 
for ever as an optimum will be reached. 

 
Some solutions are reusable like the application 
independent framework of the holonic approach which 
can be applied to problem solving or simulation in 
different contexts. The general framework of the solution 
built for the timetabling problem can be also reused in 
other constraint satisfaction problems (such as supply 
chain management, for example) but rules enabling 
agents to detect and solve non cooperative situations are 
specifically suited to the problem. 
 
Reaction to perturbations (sensitivity, robustness, 
adaptation or instability). Given a system that stabilizes 
on a state (solution), when a perturbation occurs the 
system can i) escape from this state and potentially reach 
another stable one (this is adaptation); ii) temporarily 
change its state and come back to the initial stable state 
(this is robustness), iii) change from state to state without 
stabilizing (instability), or iv) change of state even in 
case of small perturbations (sensitivity). To assess these 
criteria, we need to perturb the system at runtime. A 
perturbation can be viewed as an external event on the 
system in relation with the unpredictable and dynamic 
features of the application domain. In the timetabling 

application, perturbations come from the stakeholders 
that may change their constraints in a dynamic way, new 
actors can also vary at runtime. Failures of sensors can 
also be viewed as unexpected events for the flood 
forecasting application.  

In land-use assignment, we did successful 
experiments where at runtime we changed the number of 
zones, the number of land use categories or by changing 
the goal of groups. In localization application, the system 
can successfully deal with situations where the number 
of targets and of sensors can vary at runtime. In all these 
situations, the systems were robust or adaptive according 
to the degree of the perturbation.  

The timetabling application is a good example of a 
non-linear complex system in which simple and small 
variations (personal constraints, for example) may imply 
major changes in the problem solution. Partnerships an 
agent makes can disturb other agents, thus a little 
modification in the timetable can question the current 
solution which may vary greatly. The system is sensitive 
to perturbations, but is also able to adapt to these 
changes. Indeed, the very essence of systems built by 
applying the AMAS theory is adaptation which is 
obtained by enabling agents to locally decide to change 
their interactions with each others using cooperation as a 
local criterion.  

In the AM and HTS the adaptation is done by the 
reorganisation of holarchies and is the basis of the 
approach. 

In the self-organising communities application, the 
behaviour of middle agents is designed to respond to 
perturbations from users introduced via their user agents. 
In this example a perturbation is in the form of a novel 
query. This may provide information about a change of 
interests of the user and hence of the user agent, and as a 
result the user agent may move from one community 
around a middle agent to another. The use of rewards for 
successful responses to queries provides a mechanism to 
react to perturbations. In the evolving preferences 
application such response to perturbation is reflected in 
changes in selection pressure on the scout agent 
population, and hence changes in the outcome of the 
evolutionary algorithm. 
 
This framework is still a tentative way to compare self-
organised applications and it can be improved in two 
directions. 

The first is the criteria list itself: it is still subject to 
discussion as the definition of criteria can be questioned 
and other criteria can be added to refine this comparison 
framework. 

The second is related to the kind of answer for each 
criterion; it is currently subjective according to the 
interpretation of the definition. It would be of interest, 
when criteria are well established, to provide 
measurements of them. For example, measuring the 
decentralisation degree by the percentage of agents in the 
system that are directly involved by the decision of 
another one (this can be measured by the number of 
agent in a holon when the head agent takes a decision). 
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4 Conclusion 
Multi-agent systems can be developed in many different 
ways. The autonomous nature of individual agents means 
that complex properties can emerge at the multi-agent 
system level. Self-organisation can be a useful way of 
controlling and regulating this complexity, especially 
when seeking to support an application. In a general way, 
applications that are too complex to give an a priori 
algorithm, that are plunged into open and real 
environments (the Internet, for instance) and for which a 
perfect design cannot be guaranteed can benefit from 
self-organisation. 

This paper has presented several examples of 
applications based on multi-agent systems that use self-
organising behaviour among the agents to facilitate 
application properties. The AMAS theory which uses 
self-organisation by cooperation has been successfully 
applied to various application domains: simulation, e-
commerce, network management, collective robotics, 
mechanical design in avionics, flood forecasting, and 
biological modelling. Reactive multi-agent systems have 
proved useful in diverse application areas such as 
localisation in mobile robotics They have also provided 
the basis for cooperative information agents for 
information retrieval. Agents based on self-organisation 
through holons have been useful in meshing for cellular 
networks, and in traffic simulation, for example. 

 
Self-organising multi-agent systems are at an early 

stage of development, with many different mechanisms 
of self-organisation to be explored. Despite this a number 
of examples have been outlined here, and already a 
diversity of application areas are being explored. We can 
anticipate self-organisation being of further relevance for 
applications of multi-agent systems in the future. 

The framework of comparison we have provided has 
proven its usefulness to understand these approaches 
even if it has to be considered as a first and tentative 
approach that needs to be improved. It is obvious that the 
choice of one approach is application-dependent and 
these criteria may be of some help in this choice. 
 
The authors would like to thank the participants of the 
two meetings of the AgentLinkIII “Self-organisation in 
MAS” TFG for their fruitful discussions. 
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