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The pharmaceutical industry plays a crucial role in public health by providing essential medications to 

address various medical conditions. Predicting drug sales accurately is paramount for pharmaceutical 

companies to efficiently manage their resources, plan production, and optimize marketing strategies. To 

address this an AI-based model for predicting medication product sales based on the Enhanced Golden 

Eagle Optimized and Extreme Gradient Boosting (EGEO-XGBoost) framework. The technique begins with 

data collecting from the Kaggle website, followed by pre-processing with Min-max normalization to remove 

noise and assure consistency. The preprocessed data is then used to extract relevant features via Linear 

Discriminant Analysis (LDA). The enhanced EGEO method fine-tunes the parameters of the XGBoost model, 

improving its predictive ability. The comparative findings demonstrate that the proposed method 

significantly improves accuracy (0.90), specificity (0.86), sensitivity (0.92), MCC (0.82), F1-score (0.94), 

and RMSE (4.02). Incorporating such predictive models into the decision-making processes of 

pharmaceutical corporations can result in improved resource management, better marketing plans, and 

increased operational effectiveness. 

Povzetek: Predlagan je model za napovedovanje prodaje zdravil na osnovi izboljšanega algoritma Extreme 

Gradient Boosting, optimiziranega z metodo Enhanced Golden Eagle Optimization (EGEO-XGBoost). 

 

 

1 Introduction 

The pharmaceutical industry was critical to enhancing the 

world's health through the development and provision of 

life-saving drugs. Strategic planning by pharmaceutical 

companies is highly reliant on their ability to forecast the 

sales of drugs. They can use it to effectively manage 

resources, optimize production, and make decisions on 

marketing and sales plans with knowledge [1]. Traditional 

sales forecasting methods often yield suboptimal outcomes 

because they fail to capture the dynamic and complex 

nature of the pharmaceutical industry.  

Some of the challenges with traditional methods include 

the incapability to efficiently process large and diversified 

datasets and, the failure to take into account extraneous 

factors like changes in regulatory laws, public health 

incidents, and macroeconomic conditions. All these 

shortcomings cause issues such as overstocking or 

understocking pharmaceuticals, missing business 

opportunities, and failing to respond on time to market 

changes in demand [2, 3].  

The pharmaceutical sector has undergone huge changes 

over time due to multiple reasons, among which are 

increases in medical expertise, changing regulatory 

environments, shifting consumer habits, and varying 

healthcare policies. These dynamic ingredients create 

uncertainties and challenges that even traditional 

forecasting models are unable to address properly. Hence, 

pharmaceutical companies are often faced with issues such 

as overstock or understocking of pharmaceuticals, missing 

business opportunities, and not responding to the changing 

trend of demand [4].  

To bridge these gaps, the interest in AI and ML in 

predictive models has generated much momentum. AI-

based models allow efficient computations of large 

datasets of historical sales records, demographic 

information, prescription trends, and competitor analysis, 

altogether integrated with external factors for 

comprehensive forecasting. Such models differ from 

traditional techniques in their ability to pick up on some 

minute patterns and adapt according to market dynamics 

in real-time [5].  

These AI-driven drug sales forecasting models come with 

multiple benefits. These include optimized production 

planning, reduced waste, and improved management of 

inventory. In addition, by aligning marketing strategies 

with promising markets and client segments, return on 

investment can be maximized while also supporting better 
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resource allocation [6, 7]. Besides, the incorporation of 

external variables such as trends in public health and 

regulatory changes makes the prediction more accurate 

and holistic. However, challenges to implementing AI-

based models abound, such as high-quality and updated 

data requirements, concerns regarding data privacy, 

regulatory compliance, and the interpretability of complex 

models [8]. Nonetheless, ongoing improvements in AI and 

ML techniques are poised to deliver transformational 

solutions in the sales forecasting space of the 

pharmaceutical sector. 

By using AI-based predictive analytics, pharmaceutical 

companies will be able to achieve accurate, flexible, and 

data-driven forecasts. This will help ensure more efficient 

strategic planning and greater operational resilience in the 

long term. This may help to solve the dynamic nature of 

the industry while creating a more robust health ecosystem 

[9,10]. 

 

Aim of the research: An AI-based model to effectively 

predict drug sales by using Enhanced Golden Eagle 

Optimized and Extreme Gradient Boosting on the sales to 

ensure effective drug production. Improved resource 

management through data-driven techniques improves 

production planning and better strategies for marketing 

products. 

 

1.1 Motivation of the research 

The pharmaceutical industry is highly sensitive to the 

predictive inaccuracy of drug sales, an exercise that is 

important for maximal production, efficient distribution, 

and appropriate marketing strategy optimization. 

Traditional methods are inadequate in comparing the real 

complexity and dynamic nature of the market, and, 

consequently, resource allocations are suboptimal. 

Motivation is built on the interest in exploring how AI-

based models can improve the forecasting of drug sales. 

The ability of large and diverse datasets, such as historical 

sales, market trends, and consumer demographics, to aid 

in the hidden patterns and adaptive change in conditions 

for AI systems helps pharmaceutical companies make 

more accurate, data-driven predictions and improve the 

management of their resources and accurately target 

specific customer segments, improving sales performance 

and access to lifesaving medications for patients. 

1.2 Contribution 
The following key points are described AI AI-based 

predicting drug sales contribution.  

 

• Data pre-processing with Min-Max normalization: 

Aims to ensure balanced learning by normalizing 

heterogeneous pharmaceutical data into a similar range. It 

makes the model converge faster and prevents overfitting, 

resulting in more accurate and reliable predictions of drug 

sales. 

 

• Feature Selection via Linear Discriminant 

Analysis (LDA): LDA particularly identifies and selects 

those features that have the most influence in preprocessed 

drug sales data. Focusing on these key features, LDA helps 

improve the accuracy of sales predictions, making sure that 

the model focuses on the most predictive factors for drug 

sales forecasting. 

 

• Combining XGBoost with Enhanced Golden Eagle 

Optimization (EGEO): The model combines XGBoost, a 

powerful machine learning algorithm with the EGEO 

technique. This optimization approach fine-tunes the 

model's parameters to achieve higher accuracy in drug 

sales within the pharmaceutical business. 

 

• Performance evaluation: It includes a thorough 

performance evaluation of the AI-based model by 

analyzing key metrics. These metrics establish the model's 

ability to provide accurate predictions on drug sales, which 

further enhances its practical use in the pharmaceutical 

industry for strategic decision-making purposes. 

 

2 Related works  

Table 1 shows demonstrates that the summary of previous 

studies. 

 

 

Table 1: Summary of related works 

 

Reference Objective Methods Datasets Key Findings 

Bhattamisra et al., 

[11] 

To explore AI 

applications in 

pharmaceutical and 

healthcare research. 

Literature review, 

case studies on AI 

applications in 

healthcare. 

PubMed, clinical 

trial data, AI 

healthcare 

applications. 

AI plays a crucial 

role in enhancing 

drug discovery, 

personalized 

healthcare, and 

system 

optimization in the 

pharmaceutical 

industry. 
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Vora et al., [12] 

To examine the role 

of AI in 

pharmaceutical 

technology and 

drug delivery 

design. 

Review of AI-based 

drug delivery 

technologies and 

systems. 

Pharmaceutical 

databases, drug 

delivery system 

data. 

AI contributes to 

improving 

precision in drug 

formulation and the 

design of 

personalized drug 

delivery systems. 

Shilong, [13] 

To develop a 

machine learning 

model for sales 

forecasting using 

XGBoost. 

XGBoost model for 

forecasting drug 

sales. 

Drug sales data 

(historical sales 

data). 

XGBoost 

effectively 

forecasts sales, 

showcasing high 

predictive accuracy 

for sales trends in 

the pharmaceutical 

sector. 

Lin et al., [14] 

To predict drug-

drug interactions 

using multi-source 

data and 

transformer self-

attention 

mechanism. 

Multi-source data 

fusion, transformer 

self-attention 

mechanism. 

Drug interaction 

databases. 

The model 

successfully 

predicts drug-drug 

interactions with 

high accuracy, 

using advanced 

machine-learning 

techniques. 

Tichy et al., [15] 

To analyze trends 

in prescription drug 

expenditures. 

Statistical analysis 

of prescription drug 

market data. 

U.S. prescription 

drug expenditure 

data 

Identifies trends in 

prescription drug 

costs, providing 

projections for 

future expenditures 

in healthcare 

systems. 

Agrawal et al., 

[16] 

To review AI 

applications in drug 

delivery systems 

and technology. 

Case studies and 

literature review on 

AI-driven drug 

delivery. 

Pharmaceutical and 

drug delivery 

system data. 

AI enhances the 

precision of drug 

targeting, reduces 

side effects, and 

advances 

personalized 

medicine in drug 

delivery systems. 

Biehn et al., [17] 

To develop AI-

based ADMET 

models for drug 

discovery. 

ADMET modeling 

using AI-based 

platforms like 

SAFIRE. 

SAFIRE platform, 

ADMET drug data. 

Improves the 

accuracy of 

ADMET 

predictions, 

supporting faster 

and more efficient 

drug discovery 

processes. 

Saikia et al., [18] 

To review AI’s role 

in therapeutic drug 

monitoring and 

clinical toxicity. 

Literature review 

on AI in therapeutic 

monitoring. 

Clinical therapeutic 

drug monitoring 

datasets, toxicology 

data. 

AI plays an 

essential role in 

monitoring 

therapeutic drug 

levels, minimizing 

clinical toxicity, 

and optimizing 

drug safety. 

Ali & Alrobaian, 

[19] 

To evaluate the 

current and 

Literature review 

and analysis of AI 

Industry reports, 

and pharmaceutical 

AI offers promising 

advancements in 
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prospects of AI in 

pharmaceutical 

development. 

technologies in 

pharmaceutical 

development. 

development 

databases. 

pharmaceutical 

product 

development, 

though challenges 

remain regarding 

large-scale 

implementation and 

real-world 

applications. 

Łapińska et al., 

[20] 

To introduce an AI-

based application 

(SerotoninAI) for 

drug discovery. 

AI-driven drug 

discovery platform 

focusing on 

serotoninergic 

systems. 

Serotonergic drug 

data 

AI-based 

SerotoninAI system 

enhances drug 

discovery, 

particularly for 

serotonergic 

systems, improving 

discovery times and 

accuracy. 

Serrano et al., [21] 

To assess AI 

applications in drug 

discovery and 

personalized 

medicine. 

Review of AI 

applications in drug 

discovery and 

personalized drug 

delivery. 

Pharmaceutical and 

clinical data, drug 

discovery 

databases. 

AI is 

revolutionizing 

drug discovery, 

particularly in 

personalized 

medicine, by 

enabling more 

accurate and 

efficient drug 

delivery methods. 

Jena et al., [22] 

To explore AI-

driven drug 

delivery systems in 

the pharmaceutical 

industry. 

Literature review 

on AI’s impact on 

drug delivery 

systems. 

Industry and 

pharmaceutical 

data. 

AI enhances the 

efficiency of drug 

delivery systems, 

particularly in 

designing 

customized 

delivery for patient-

specific needs. 

Visan & Negut, 

[23] 

To explore AI 

integration in drug 

discovery and 

delivery systems. 

Literature review 

on AI tools in drug 

discovery and 

delivery. 

Pharmaceutical and 

drug discovery 

databases. 

AI is transforming 

drug discovery and 

delivery, though its 

implementation 

still faces 

challenges in 

validation across 

diverse real-world 

applications. 

Rathipriya et al., 

[24] 

To validate various 

shallow and deep 

neural network 

methods for 

demand forecasting 

in the 

pharmaceutical 

industry. 

Shallow and deep 

neural networks, 

RMSE for 

predictive accuracy 

evaluation. 

Sales and demand 

data of eight 

pharmaceutical 

product groups. 

Shallow neural 

network-based 

DFMs achieved a 

lower mean RMSE 

(6.27), proving 

more effective in 

estimating future 

demand than deep 

neural networks. 

Jaganathan et al., 

[25] 

To develop 

quantitative 

Machine learning 

algorithms, feature 

A dataset of 1,253 

drug compounds 

The SVM-based 

classifier achieved 
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structure-activity 

relationship models 

for predicting drug-

induced liver 

toxicity using 

machine learning. 

selection 

techniques, support 

vector machines, 

10-fold cross-

validation. 

with molecular 

descriptors. 

an accuracy of 

0.811, sensitivity of 

0.840, specificity of 

0.783, and MCC of 

0.623, 

outperforming prior 

models in both 

internal and 

external validation. 

 

2.1 Research gap 

Existing methods applied in drug sales forecasting and 

drug discovery are very limited in the sense that their 

generalizability, scalability, and performance would be 

compromised to some extent in generalizing different drug 

classes, datasets, and regions. Our proposed model for 

predicting sales of pharmaceutical products, based on the 

Enhanced Golden Eagle Optimization and Extreme 

Gradient Boosting (EGEO-XGBoost) framework, fills 

these gaps by combining optimized techniques with a 

state-of-the-art predictive model for improved accuracy 

and scalability and improved generalization through 

adaptation across heterogeneous datasets and changing 

conditions, in turn providing even more reliable, 

actionable sales forecast in the pharma industry.  

 

3  Methodology  

A proposed methodology that employs an AI-based model 

for the forecasting of sales on pharmaceutical products 

uses a combination of an enhanced golden eagle optimized 

Extreme gradient boosting (EGEO-XGBoost). First, the 

data from Kaggle are preprocessed using Min-max 

normalization to eliminate noises and ensure consistency 

in data. A linear discriminate analysis technique is used to 

extract the features of the preprocessed data. This 

integrated approach will help enhance the accuracy of drug 

sales forecasting which can be used for better resource 

management and decision-making in the industry. Figure 

1 illustrates the overview of the research framework.  

 

3.1 Data gathering  

The dataset gathered from kaggle 

[https://www.kaggle.com/code/milanzdravkovic/pharma-

sales-data-analysis-and-forecasting/data], includes the 

drug sales collected across different stores over time. The 

main attributes included in the data set are the store ID, 

product ID, quantity of sales, and the date of transactions. 

Such time-series data is beneficial in the overall 

understanding of the performance of sales as well as 

analysis regarding trends, seasonality, and patterns. Data 

structured to accommodate sales forecasting, inventory 

planning, and business decisions related to pharmaceutical 

businesses. The collection method is primarily based on 

real-world sales activities so that the dataset obtained is  

 

 

relevant for predictive analytics and machine learning 

model development. 

 

 
 

Figure 1: Overview of research to predict pharmaceutical 

product 

 

 

3.2 Min-max normalization 

A data preparation technique called min-max 

normalization, often referred to as feature scaling or min-

max scaling, is used to change numerical data into a certain 

range, typically [0, 1]. With this normalization technique, 

all the numerical features in a dataset are put on an equal 

footing, making them comparable and preventing features 

with higher values from overpowering the analysis or 

https://www.kaggle.com/code/milanzdravkovic/pharma-sales-data-analysis-and-forecasting/data
https://www.kaggle.com/code/milanzdravkovic/pharma-sales-data-analysis-and-forecasting/data
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adversely affecting machine learning algorithms. Using 

this technique, you can scale numerical data to a specific 

range. Data normalization or feature scaling are other 

names for it. Normalization aims to climb all of them 

evenly to make it easier to compare or understand a 

dataset's characteristics or variables. The following is the 

min-max normalization formula (1): 

 

𝑋𝑛𝑒𝑤 =
𝑋−min⁡(𝑋)

max(𝑋)−min⁡(𝑋)
          (1) 

 

Where 𝑋𝑛𝑒𝑤the result of normalizing is to produce a new 

value, 𝑋 is the value of the former, max(𝑋) is the highest 

value in the dataset, and⁡min(𝑋) is the smallest value in 

the dataset. 

Before dividing by the range, which consists of the 

maximum and minimum values of the content, each data 

point must first be subtracted from the feature's minimum 

value. The importance of the dataset can be scaled between 

0 and 1 following min-max normalization. Suppose the 

beginning values fall within a different ideal range (for 

instance, between -1 and 1). In that case, we may change 

the formula to reflect this by expressing the intended 

minimum and maximum values throughout the 

normalization process. 

Even though min-max normalization was a 

straightforward and popular method, some datasets might 

have better solutions. Various scaling procedures, such as 

Z-score normalization or resilient scaling, may be more 

appropriate depending on the information's characteristics 

and the particular specifications of the machine learning 

method being applied. 

 

3.3 Feature extraction 

When forecasting Drug sales, the process of picking and 

developing pertinent features (variables) from the raw data 

that are likely to have a large impact on successfully 

predicting drug sales is referred to as feature extraction. By 

condensing the original data into a smaller representation 

while preserving the most crucial details, feature 

extraction aims to improve the accuracy of predictive 

models. 

 

3.3.1 Linear discriminates analysis (LDA) 

Linear discriminate analysis (LDA), a dimensionality-

reduction and classification method, is used in statistics 

and machine learning. When the classes were distinct and 

evenly dispersed, it was extremely beneficial for 

addressing classification problems. The goal of LDA was 

to find a linear combination of characteristics that 

maximizes class separation while minimizing variation 

within each category. LDA's major objective was to 

maintain any information discriminating based on a 

person's class while projecting the original data into a 

lower-dimensional space. This was achieved by increasing 

the ratio of the within-class scatter matrix to the between-

class scatter matrix. 

The linear discriminate analysis (LDA) will be explained 

step-by-step using the following equations: 

 

 

3.3.1.1 Making the mean vector calculations: 

Assume there are 𝑚𝑢 data points in each 𝑢 class, which all 

exist. The mean vector for class 𝑢 was calculated as the 

(equation 2) average of all feature vectors in class 𝑢, 

designated as 𝑚u. 

 

𝑚𝑢 = ⁡
1

𝑛𝑢
∑ 𝑋𝑋∈⁡𝑐𝑙𝑎𝑠𝑠𝑢           (2) 

 

3.3.1.2 Calculate the scatter matrix for the class (𝒌𝒓): 

The within-class scatter matrix 𝑘𝑟 calculates the expansion 

or distribution of the data for each type. The scattered 

values from each class were added together to get the final 

result. The class's data points' covariance matrices are used 

as the scatter matrix for that class. The formula 3 for "𝑘𝑟" 

is 

 

𝑘𝑟 = ⁡∑ ∑ (𝑚𝑢−𝑚)(𝑚𝑢−𝑚)𝑇𝑋∈⁡𝑐𝑙𝑎𝑠𝑠𝑢
𝑢
𝑢=1              (3)  

 

3.3.1.3 Calculate the scatter matrix 𝒌𝒃 between classes: 

The spread or distribution of the class mean values was 

ascertained using the between-class scatter matrix𝑘𝑏. The 

weighted sum of the outer products was used to determine 

the difference between the class means, and the overall 

mean across all data points."𝑘𝑏" equation 4 is as follows: 

 

𝑘𝑏 = ∑ 𝑛𝑢(𝑚𝑢−𝑚)(𝑚𝑢−𝑚)𝑇𝑢
𝑢=1          (4) 

 

Where 

By dividing the average of all mc vectors by the sum of the 

data points in each class, the total mean vector of all the 

data points in the dataset was calculated using equation 5. 

 

m = 
1

𝑁
∑ 𝑛𝑢𝑚𝑢

𝑢
𝑢=1            (5) 

 

3.3.1.4 Find the eigenvalues and eigenvectors for 

(𝒌𝒓
−𝟏⁡⁡, 𝒌𝒃): 

The inverse of (𝑘𝑏), written as (𝑘𝑟
−1,𝑘𝑏), is the product 

(𝑘𝑟
−1,𝑘𝑏), which we now compute. The product (𝑘𝑟

−1,𝑘𝑏)'s 

eigenvalues and associated eigenvectors v were then 

identified. 

 

3.3.1.5 Find the highest (𝒌) eigenvectors: 

The eigenvalues are arranged in ascending order, and the 

top 𝑘 eigenvectors are chosen to match the top 𝑘 greatest 

eigenvalues. The transformation matrix R will comprise 

these "𝑘" eigenvectors and project the data onto a lower-

dimensional space. 

 

3.3.1.6 Introduce the data into the new subspace: 
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The original data Y should be multiplied by the conversion 

matrix R produced in the previous phase to produce a new 

feature space with a lower dimensionality (equation 6). 

 

[Ynew] = Y · R                  (6) 

 

An S-dimensional vector, where S is the number of 

selected eigenvectors (dimensionality reduction), will 

represent each data point in the transformed subspace. A 

linear discriminate analysis is helpful for classification and 

dimensionality reduction problems because it identifies a 

linear combination of characteristics that maximizes the 

separation between classes while decreasing the variation 

within each category. 

 

3.4 prediction of drug sales using enhanced 

Golden Eagle Optimized Extreme Gradient 

Boosting (EGEO-Xgboost) 

A hybrid AI-based model is developed for medication 

product sales forecasting using the Enhanced Golden 

Eagle Optimized and Extreme Gradient Boosting (EGEO-

XGBoost) framework. The Enhanced Golden Eagle 

Optimization (EGO) algorithm provides a global search 

ability with the strength of predictive accuracy in the 

Extreme Gradient Boosting (XGBoost) model. This 

enables model parameter optimization with better 

precision and efficiency for predicting sales. This helps the 

model integrate techniques to give pharmaceutical 

companies the insight needed in managing resources, 

production planning, and marketing strategy optimization. 

 

3.4.1 Extreme Gradient Boosting (XGBoost) 

The XGBoost is a tree-based algorithm that generates trees 

sequentially to minimize errors, and it further enhances the 

traditional Gradient Boosting Decision Tree by 

incorporating regularization to prevent overfitting. It's a 

highly efficient algorithm and is used widely in different 

applications. Based on this approach, for drug sales 

prediction, XGBoost iteratively builds a tree to predict 

future sales figures and optimizes the model such that 

overfitting is avoided using a regularization term. 

Unlike traditional GBDT, the XGBoost objective function 

includes a regularization term that balances model 

accuracy and complexity. The objective function is 

expressed as Equation (7): 

 

𝑈 = ∑ 𝑆(𝑦𝑗 , (𝐹(𝑥𝑗)) + ∑ 𝐺𝑡
ℎ=1

𝑛
𝑗=1 (𝑓ℎ) + 𝐷      (7) 

 

Where, 𝑆(𝑦𝑗 , (⁡𝐹(𝑥𝑗)) represents the loss (error between 

actual and predicted drug sales), 𝐺(𝑓ℎ) is the regularization 

term, controlling the complexity of the model, and 𝐷 is a 

constant that can be ignored during optimization. The 

𝐺(𝑓ℎ) regularization term ensures that over-fitting is also 

avoided and could be defined by equation (8): 

 

𝐺(𝑓ℎ) = αT +
1

2
η∑ wi

2H
i=1           (8) 

 

α regulates the penalty for adding leaves to the tree, 𝑇 is 

the overall number of trees, and wi
2 is the weight or 

predicted sales of each of the leaf nodes. Moreover, the 

XGBoost optimization uses the second-order Taylor 

series, in contrast to first-order derivatives with traditional 

GBDT. Such optimization helps increase the model's 

capacity to pick up on intricate patterns that are found in 

data. With MSE used as the loss function, it minimizes 

error but ensures that no overfitting takes place to obtain 

accurate predictions. The following is the implementation 

using the main function equation (9) assuming MSE as a 

loss function:  

 

𝑈 = ∑ [𝑝𝑗𝜔𝑝(𝑦𝑗)
+

1

2
(𝑞𝑗𝜔𝑞(𝑦𝑗)

2 )]𝑛
𝑗=1 + 𝛼𝑇 +

1

2
η∑ 𝜔𝑖

2T
i=1  

                                     (9) 

Where, 𝑔𝑗  and 𝑇𝑗 represent 1st and 2nd derivatives of loss, 

which measures the change in the error function 

concerning the predicted drug sales values. The contribute 

to the learned parameters of the model for predicting the 

sales of the drug at each point. 𝜔𝑝(𝑦𝑗)
 and 𝜔𝑞(𝑦𝑗)

 represent 

the learned parameters of the model for predicting the sales 

of the drug at each point. The term 𝑞𝑗𝜔𝑞(𝑦𝑗)
2  represents the 

second-order, accounting for curvatures of the loss 

function, which can promise more stable and accurate 

predictions for cases involving complicated patterns of 

drug sales.  

The final step calculates the total loss as the summation of 

losses of all leaf nodes. Since each leaf node is a sale 

category, the summation of leaf node loss values provides 

the overall model error. This is described by Equation (10):  

 

𝑈 = ∑ [𝑝𝑖𝜔𝑖]
𝐻
𝑖=1 +

1

2
(𝑄⁡𝑖 + η)𝜔𝑖

2 + 𝛼𝑇      (10) 

 

Where 𝑝𝑖 = ∑ 𝑝𝑗 , ⁡𝑄⁡𝑖 = ∑ 𝑞𝑗𝑗∈𝐼𝑖𝑗∈𝐼𝑖
, which are 

contributions from each of the leaf nodes that aggregate in 

their predicted contribution to drug sales. 

An optimum prediction of the model is achieved by 

minimizing this objective function by XGBoost, thus 

learning the input feature-target output relationship in drug 

sales. The process includes regularization techniques, 

which provide good generalizations on new samples by 

avoiding overfitting problems, thus proving a reliable form 

of sales forecast. 

 

3.4.2 Enhanced Golden Eagle Optimization (EGEO) 

Enhanced Golden Eagle Optimization (EGEO) is the 

extension of the traditional Golden Eagle Optimization 

methods. It uses a spiral trajectory mechanism similar to 

that the golden eagle uses to trace its prey efficiently and 

strike it down. Thus, EGEO would be able to conduct a 

more effective global search in the preliminary phases by 
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flying across various regions and a focused local search in 

the latter phase by honing the attack angle. This makes 

EGEO equipped with a nice memory component to 

preserve information about the best solutions it finds so 

that faster convergence and the least chance of getting 

trapped into local optima are achieved. With these 

enhancements, EGEO has a greater degree of robustness 

and efficiency over traditional methods to solve complex 

global optimization problems. The mathematical formulae 

used by golden eagles to simulate their movements while 

seeking prey were described as follows. 

 

3.4.3 The Spiralling flight patterns of golden eagles 

Every AI model within the prediction system remembers 

the best sales prediction that this model has ever 

experienced so far. The model, chasing a better drug sales 

prediction, is simultaneously attracted both to the analysis 

of history and the prediction of trends. Figure 2 is a 

graphical representation of the prediction and analysis 

vectors in 2D space. Every model may randomly pick one 

sales prediction from the other model and update its 

parameters based on the data already visited. Also, the 

model can revisit its memory. Such a process might lead 

to a sequence of numbers: l ∈ {1, 2 …, N_AI}, where 

N_AI denotes the total number of AI models.  

 

 
Figure 2: Movement of golden birds in a spiral 

 

3.4.3.1 Selection of Prey 

Every AI model should select a target dataset for training 

and prediction operations in every iteration. The model 

also chooses its input data from a database of historical 

drug sales data. Based on this, the selected data computes 

the prediction and analysis vectors. It checks its memory 

and updates its memory if the new prediction is better than 

the earlier one.  

 

3.4.3.2 Attack 

A vector that depicts the progress of the prediction from 

the current state of the model to the best-predicted sales in 

the model's memory is as follows equation (11): 

�⃗� 𝑟 = �⃗� 𝐼
∗ − �⃗� 𝑟                               (11) 

Where �⃗� 𝑟 is the model's prediction vector, �⃗� 𝐼
∗ is the best 

previous prediction from the model, and �⃗� 𝑟  is the current 

state of the model in the sales prediction process. 

  

3.4.3.3 Travel 

The prediction vector runs parallel to the analysis vector, 

tangent to the predicted sales curve. This is also known as 

the model's speed of adjustment in sales forecasting. By 

equation (12) the destination point of the analysis vector 

is, 

 

𝐶 𝑟 =
𝑑−∑ 𝑏𝑓𝑓𝑓≠𝑟

𝑏𝑟
                 (12) 

 

Where𝑏𝑟, 𝑏𝑓 ⁡𝜖⁡�⃗� 𝑟 are each component of the hyperplane 

equation in n-dimensional space, and �⃗� 𝑟 = {𝑏1, 𝑏2, … . , 𝑏𝑛} 

represent prediction vector, respectively. 

 

3.4.3.4 Assuming new positions: 

The changing direction of its 

prediction depends completely on the model's prediction 

and analysis directions. Consequently, an update step 

for a model 𝒓 during an iteration t can be well defined by 

the following equation:  

 

∆𝑦𝑟= 𝑗 1𝑞𝑏
�⃗� 𝑟

‖�⃗� 𝑟‖
+ 𝑗 2𝑞𝑐

𝐶 𝑟

‖𝐶 𝑟‖
     (13) 

 

Where the 𝑞𝑏
𝑡  and the 𝑞𝑐

𝑡 define at iteration 𝑡 respectively 

prediction and analysis coefficients controlling which part 

of its coefficients have an impact on the prediction or 

analysis; and the vectors 𝑗 1 and 𝑗 2 are random. The 

following equation (14) is the new prediction of the model: 

 

𝑦𝑟
𝑡+1 = 𝑦𝑟

𝑡 + ∆𝑦𝑟
𝑡                 (14) 

 

When the prediction made at position 𝑟⁡is more precise 

than the preceding position, that new prediction will be 

updated to memory. 

 

3.4.3.5 Exploration to Exploitation Transition: 

The method of the AI model changes from exploring to 

exploiting. The prediction coefficient 𝑞𝑏 and analysis 

coefficient 𝑞𝑐 are used to switch between them. Using 

equations (15) and (16) are linear expressions: 

 

𝑞𝑏 = 𝑞𝑏
0 +

𝑡

𝑇
|𝑞𝑏

𝑡 − 𝑞𝑏
0|            (15) 

 

𝑞𝑐 = 𝑞𝑐
0 +

𝑡

𝑇
|𝑞𝑐

𝑡 − 𝑞𝑐
0|      (16) 

 

In the above equation, 𝑞𝑏
0 and 𝑞𝑐

0 are the starting values for 

predicting the tendency of sales of drugs, 𝑞𝑏, and analyzing 

market trends, qc, respectively. In this scenario, T denotes 

the maximum number of iterations, 𝑞𝑏
𝑡 , and 𝑞𝑐

𝑡 would be 

the final values for the tendencies to predict and analyze 
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drug sales. The process of the EGEO-XGBoost described 

in Algorithm 1.  

 

Algorithm:1 The Process of EGEO-XGBoost 

Step 1: Load the dataset from Kaggle 

Step 2:  Perform data preprocessing: 

   a. Handle missing values 

   b. Convert date-time attributes 

   c. Normalize numerical features using Min-Max 

Normalization: 

      For each feature X: 

      X_new = (X - min(X)) / (max(X) - min(X)) 

Step 3: Perform Feature Extraction using Linear 

Discriminant Analysis (LDA): 

   a. Compute mean vector for each class 

   b. Compute within-class scatter matrix 

   c. Compute between-class scatter matrix 

   d. Compute eigenvalues and eigenvectors of (S_W^(-1) 

* S_B) 

   e. Select top k eigenvectors and transform the dataset 

Step 4: Initialize Enhanced Golden Eagle Optimization 

(EGEO) algorithm: 

   a. Initialize population of golden eagles 

   b. Set attack and cruise coefficients 

   c. Initialize memory for best solutions 

Step 5: Perform iterative optimization: 

   a. For each golden eagle: 

      i. Select a target prey from memory 

      ii. Compute attack vector: 

          B_r = Y_best - Y_r 

      iii. Compute cruise vector: 

          C_r = (d - sum(b_f)) / b_r 

      iv. Update position: 

          delta_Yr = j1 * q_b * B_r / ||B_r|| + j2 * q_c * C_r / 

||C_r|| 

          Y_r^(t+1) = Y_r^t + delta_Yr 

      v. Update memory if new position improves fitness 

   b. Adjust attack and cruise coefficients for exploration-

exploitation balance: 

      q_b = q_b0 + (t/T) * |q_bt - q_b0| 

      q_c = q_c0 + (t/T) * |q_ct - q_c0| 

   c. Repeat until stopping criteria are met 

Step 6: Train XGBoost model using optimized 

hyperparameters: 

   a. Define XGBoost objective function: 

      U = sum(S(y_j, F(x_j))) + sum(G(f_h)) + D 

   b. Compute regularization term: 

      G(f_h) = alpha * T + (1/2) * eta * sum(w_i^2) 

   c. Use second-order Taylor expansion for loss 

approximation: 

      U = sum[p_j * omega(y_j) + 1/2 * (q_j * 

omega_q(y_j)^2)] + alpha * T + 1/2 * eta * sum(w_i^2) 

   d. Optimize quadratic function to minimize loss 

   e. Train XGBoost with optimal parameters found via 

EGEO 

Step 7: Evaluate the trained model: 

   a. Compute accuracy metrics (RMSE) 

   b. Perform validation using test dataset 

Step 8: Predict drug sales using the trained EGEO-

XGBoost model 

Step 9: Output final predictions and insights 

 

 

 

4 Result  

The experiment was performed on a Linux system using 

an Intel Core 2 Duo processor with 2.16 GHz and 8 GB 

RAM. The data was retrieved from the Kaggle website and 

consisted of 600,000 weekly sales records of 57 

pharmaceutical products between 2014 and 2019. These 

included sales date, quantity of drug sold, and the name of 

the brand. The products were categorized under eight 

groups using the Anatomical Therapeutic Chemical (ATC) 

classification, which classifies drugs according to their 

therapeutic and chemical properties. Figure 3 represents 

the categories of drugs.  

 

 
 

Figure 3: Elements Of the Drug Dataset 

 

The proposed EGEO-XGBoost model was found to 

perform better than existing models in most cases with 

remarkable improvements for M01AB (0.12), M01AE 

(0.48), N02BA (0.15), N02BE (0.008), N05B (0.006), 

N05C (0.35), R03 (0.025), and R06 (0.608). This shows 

that EGEO-XGBoost has better predictive accuracy in 

drug sales forecasting. Figure 4 illustrates the RMSE 

comparison for the medicine category using EGEO-

XGBoost on the sales prediction dataset. 
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Figure 4: RMSE comparison for drug category using 

EGEO-XGBoost on sales prediction dataset 

 

For predictive analysis, a few existing 

models, like RF, MLP, and SVM (Jaganathan et al. 

[25]), along with Radial Basis Function Neural Network 

(RBF-NN), Probabilistic NN (P-NN), and Generalized 

Regression NN (GR-NN) (Rathipriya et al. 

[24]) were used for analysis. The proposed model, EGEO-

XGBoost, was applied using R software to preprocess the 

data, obtain relevant features from the data, and improves 

the prediction accuracy.  

RMSE: One of the most common metrics used to measure 

the accuracy of a predictive model. It is defined as the 

square root of the average of the squared differences 

between the predicted and observed values. The lower the 

RMSE, the better the model is performing, as it indicates 

that the model's predictions are closer to the actual values. 

Equation (17) was used to calculate the RMSE.  

 

𝑅𝑀𝑆𝐸 = √
1

2
∑ (𝑠𝑎𝑙𝑒𝑠_𝐾𝑗 − 𝑠𝑎𝑙𝑒𝑠_𝐵𝑗)

2𝑛
𝑗=1     (17) 

 

Table 2 and Figure 5 compare the RMSE for predictive 

models of drug sales in different categories using existing 

models (RBF-NN, P-NN, and GR-NN) compared with the 

proposed EGEO-XGBoost model.  

 

Table 2: RMSE Of Comparison AI-Based model for drug 

sales prediction 

Models RMSE 

RBF-NN Rathipriya et al. [24] 6.59 

P-NN Rathipriya et al. [24] 6.21 

GR-NN Rathipriya et al. [24] 6.01 

EGEO-XGBoost [Proposed] 4.02 

 
Figure 5: Model performance of RMSE comparison for 

drug sales prediction 

 

Accuracy: In machine learning, accuracy was a common 

evaluation metric used to assess a model's performance. 

Equation (18) was used to calculate accuracy. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦⁡ =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃
              (18) 

 

Compared to the existing models, such as SVM with an 

accuracy of 0.82, MLP at 0.79, and RF at 0.77. The 

proposed EGEO-XGBoost model attains the highest 

accuracy of 0.90, outperforming all other models. Table 3 

and Figure 6 illustrate the outcomes of the accuracy 

evaluation. The significant improvement indicates the 

EGEO-XGBoost framework's superior capacity for 

predictions for drug sales. Figure 6 despite the result of 

accuracy. 
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Figure 6: Assessing Overall prediction accuracy in Drug 

sales forecasting 

 

Sensitivity: Sensitivity measures the model's ability to 

correctly identify positive instances (accurate predictions 

of sales growth or success). The calculation of precision is 

expressed in the following equations (19). 

 

Sensitivity⁡ = ⁡
𝑇𝑃

𝑇𝑃+𝐹𝑁
          (19) 

 

The EGEO-XGBoost model is sensitivity by 0.92 

compared to the other existing approaches: SVM is 0.84, 

MLP is 0.80, and RF is at 0.81. Sensitivity assessment 

outcomes are displayed in Table 3 and Figure 7. The higher 

sensitivity of the EGEO-XGBoost model shows it was able 

to detect more of the true positives to be important for 

achieving correct predictions in sales forecasting.  

 
Figure 7: Sensitivity comparison in drug sales prediction 

Specificity: Specificity is the measure of how well a model 

can correctly reject negative instances, meaning that it 

distinguishes between low sales and other factors that are 

not relevant. Specificity is calculated using the following 

equations (20).  

 

Specificity⁡ = ⁡
𝑇𝑁

𝑇𝑁+𝐹𝑃
      (20) 

 

For specificity, the EGEO-XGBoost model also 

outperformed others with 0.86, which is more than that of 

SVM, MLP, and RF, having 0.79, 0.78, and 0.69, 

respectively. The higher specificity of EGEO-XGBoost 

indicates that this model performs strongly in avoiding 

false positives, especially in minimizing wrongful sales 

forecasts of pharmaceutical industries. Figure 8 and Table 

3 display the results of the specificity evaluation. 

 

 
Figure 8: Evaluation specificity in drug sales prediction 

 

Mathew Correlation Coefficient (MCC): MCC is a 

balanced measure that incorporates all four quadrants of 

the confusion matrix: True Positives, True Negatives, 

False Positives, and False Negatives. It ranges between -1 

for (total disagreement) up to +1 for (perfect agreement), 

with a value of 0 indicating no better than random 

prediction.  

 

𝑀𝐶𝐶 =
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
⁡⁡⁡⁡⁡⁡⁡⁡⁡ (21) 

 

The MCC score of the EGEO-XGBoost model is 0.82, 

which is significantly higher than that of SVM (0.61), 
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MLP (0.59), and RF (0.57). This higher MCC indicates 

that the EGEO-XGBoost model has better overall 

classification performance, meaning a better balance 

between true positives and negatives. Table 3 and Figure 9 

show the MCC evaluation results. 

 

 
Figure 9: Evaluation of MCC comparison in drug sales 

forecasting 

 

F1-score: It is the harmonic mean of precision and 

sensitivity that balances the two. It is useful when both 

false positives and false negatives matter for a very 

imbalanced dataset. Equation 18, therefore, was used to 

calculate the F1 score.  

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = ⁡
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
       (22)  

 

The EGEO-XGBoost model performs well with an F1-

score of 0.94, which is much higher than other existing 

methods SVM (0.84), MLP (0.80), and RF (0.77). This 

indicates that a higher F1-score shows the EGEO-

XGBoost to achieve an optimal balance between precision 

and recall in terms of its performance for the balanced 

prediction of drug sales. Figure 10 and Table 3 

demonstrate the evaluation result of the F1score. 

 
Figure 10: F1-score performance in drug sales prediction 

 

Table 3: Performance comparison of Different models for 

drug sales prediction 

Models  Accur

acy  

Sensiti

vity  

Specifi

city  

MC

C 

F1sc

ore  

RF 

Jaganat

han et 

al. [25] 

0.77 0.81 0.69 0.5

7 

0.77 

MLP 

Jaganat

han et 

al. [25] 

0.79 0.80 0.78 0.5

9 

0.80 

SVM 

Jaganat

han et 

al. [25] 

0.82  0.84 0.79 0.6

1 

0.84 

EGEO-

XGBoo

st 

[Propos

ed] 

0.90 0.92 0.86 0.8

2 

0.94 
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5  Discussion  

Evaluation shows a significant increase in the accuracy of 

forecasting over existing models, namely, RBF-NN, P-

NN, GR-NN, SVM, MLP, and RF, concerning the 

development and implementation of the EGEO-XGBoost 

model for predicting drug sales. The model also achieved 

(0.90) accuracy, which is more than SVM at 0.82, MLP at 

0.79, and RF at 0.77. As for sensitivity, EGEO-XGBoost 

was at 0.92, more than SVM at 0.84, MLP at 0.80, and RF 

at 0.81, indicating it is better at correctly predicting 

positive sales instances. For instance, the score of EGEO-

XGBoost was impressive at (0.86), which was higher than 

SVM (0.79), MLP (0.78), and RF (0.69), meaning it is less 

likely to give false positives. The MCC score of 0.82 for 

EGEO-XGBoost also indicates that it has a better balance 

between true positives and true negatives compared to 

SVM (0.61). Last, the model attained an F1-score of 

(0.94), much higher than other models, meaning that it 

balances precision and recall very well. EGEO-XGBoost 

outperforms other models in all key evaluation metrics 

and, therefore, can be regarded as a highly effective tool 

for drug sales prediction.  

 

6  Conclusion  

The EGEO-XGBoost model has highly effective 

performance regarding the prediction of drug sales, with 

higher predictive accuracy values compared to any 

traditional model. Using advanced techniques in the form 

of Min-max normalization, application of Linear 

Discriminant Analysis in feature extraction, and the 

Enhanced Golden Eagle Optimization, the proposed model 

shows significant enhancement in key metrics such as 

accuracy (0.90), sensitivity (0.92), specificity (0.86), MCC 

(0.82), F1-score (0.94) and RMSE (4.02). These findings 

thus underscore the ability of AI-driven models to enhance 

drug sales forecasting, leading to better decision-making, 

resource management, and marketing strategies in the 

pharmaceutical industry. Incorporation of such models 

would help in improved operational efficiency and better 

planning in the pharmaceutical industry. 

 

Limitation and future scope: 

Although promising results are produced, the limitations 

of the model lie in reliance on historical data that may not 

reflect sudden changes in the market or external 

influences. Moreover, the EGEO-XGBoost model needs 

further optimization for large datasets originating from 

heterogeneous pharmaceutical markets. The future 

direction can be oriented towards real-time data integration 

and the development of hybrid models, making it even 

more adaptable and robust for use in global drug sales 

forecasting.  
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