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To address the challenge of insufficient computing power in multi-access edge computing (MEC) servers 

caused by highly dynamic service requests and uneven service distribution in vehicular networks, this 

paper proposes a hybrid multi-server MEC architecture that leverages both fixed road-side units (RSUs) 

and mobile unmanned aerial vehicles (UAVs). We introduce the FD3QN algorithm, which integrates 

federated learning and deep reinforcement learning, to minimize the weighted sum of service latency and 

energy consumption. Specifically, the MATD3 algorithm is employed for safe and efficient UAV trajectory 

planning in the offloading decision process. For resource allocation, we embed vertical federated learning 

into the D3QN network to enable cross-domain resource cooperative scheduling. A decentralized 

federated aggregation framework is utilized to maintain a global model for optimizing resource allocation 

in a collaborative and privacy-preserving manner. The proposed algorithm jointly optimizes transmission 

power, computing, and storage resources. Extensive simulations are conducted to evaluate the 

performance of FD3QN in a realistic vehicular network environment with varying numbers of vehicles 

and task arrivals. The results demonstrate that FD3QN outperforms benchmark algorithms, achieving an 

11.37% and 12.06% reduction in system cost compared to the FDDQN algorithm in scenarios with 8 and 

12 vehicles, respectively. Moreover, FD3QN exhibits a 25% decrease in average service latency and a 

15% improvement in energy efficiency compared to traditional deep reinforcement learning approaches. 

The proposed algorithm also maintains a high task completion rate of over 98% under dynamic network 

conditions. These findings validate the strong model generalization ability of FD3QN in the dynamic 

vehicular networking environment and highlight its practicality for real-world deployment. This study 

provides novel insights into the development of intelligent transportation systems and edge computing 

paradigms. 

Povzetek: V prispevku je opisan FD3QN, napreden pristop federativnega globokega okrepljenega učenja 

za sodelovalno razporejanje virov v hibridnih oblačnih arhitekturah. Algoritem zmanjšuje zakasnitve in 

porabo energije v inteligentnih transportnih sistemih. 

1   Introduction 

The rapid advancement of intelligent transportation 

systems (ITS) has revolutionized the way we perceive and 

interact with modern transportation networks. With the 

proliferation of connected and autonomous vehicles 

(CAVs), the demand for computation-intensive and delay-

sensitive applications has escalated significantly [1]. 

However, the resource-constrained nature of vehicular 

users poses a formidable challenge in meeting the 

stringent requirements of these applications [2]. To 

address this issue, multi-access edge computing (MEC) 

has emerged as a promising paradigm, bringing 

computation and storage resources closer to the edge of 

the network [3]. By leveraging the proximity of MEC 

servers to vehicular users, the latency and network 

congestion associated with centralized cloud computing 

can be effectively mitigated [4]. 

Furthermore, the integration of unmanned aerial vehicles 

(UAVs) into the MEC framework has opened up new 

avenues for enhancing the performance of ITS [5]. UAVs 

can act as aerial MEC servers, providing flexible and on-

demand computing resources to vehicular users [6]. The 

mobility and line-of-sight (LoS) communication links 

offered by UAVs enable them to dynamically adjust their 

positions and serve as relay nodes, extending the coverage 
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and capacity of the vehicular network [7]. Moreover, the 

collaboration between ground MEC servers and UAV-

assisted MEC servers forms a hybrid multi-server 

architecture, which can efficiently handle the diverse 

computational requirements of vehicular applications [8]. 

However, the deployment of a hybrid multi-server MEC 

architecture in ITS presents several challenges. The 

heterogeneous nature of vehicular users, with varying 

mobility patterns and resource demands, necessitates 

efficient resource allocation and computation offloading 

strategies [9]. Additionally, the dynamic and uncertain 

wireless network conditions, coupled with the limited 

battery life of UAVs, further complicate the decision-

making process [10]. To tackle these challenges, advanced 

techniques such as deep reinforcement learning (DRL) 

have gained significant attention [11]. DRL combines the 

power of deep neural networks with reinforcement 

learning, enabling agents to learn optimal policies through 

interaction with the environment [12]. 

In this article, we propose a novel framework for hybrid 

multi-server computation offloading in UAV-assisted 

vehicular networks based on federated deep reinforcement 

learning (FDRL). The proposed framework leverages the 

distributed learning capabilities of FDRL to enable 

collaborative and efficient offloading decisions among 

vehicular users, ground MEC servers, and UAV-assisted 

MEC servers. By exploiting the local observations and 

experiences of individual agents, FDRL allows for the 

development of personalized offloading policies while 

preserving the privacy of sensitive data [13]. The 

framework aims to minimize the overall latency and 

energy consumption of vehicular users while ensuring the 

stability and scalability of the network. 

 

 

The main contributions of this article are as follows: 

• We formulate the computation offloading problem in 

a hybrid multi-server MEC architecture for ITS, 

considering the heterogeneous requirements of vehicular 

users and the dynamic network conditions. 

• We propose an FDRL-based approach to solve the 

formulated problem, enabling collaborative and efficient 

offloading decisions among the entities in the network. 

• We conduct extensive simulations to evaluate the 

performance of the proposed framework and compare it 

with state-of-the-art offloading strategies. 

The remainder of this article is organized as follows. 

Section II provides an overview of the related work on 

computation offloading in vehicular networks and the 

application of DRL in MEC. Section III presents the 

system model and problem formulation. The proposed 

FDRL-based offloading framework is detailed in Section 

IV. Section V discusses the simulation results and 

performance evaluation. Finally, Section VI concludes the 

article and outlines future research directions. 

 

2    System model 

In this section, we present the system model for the 

proposed hybrid multi-server MEC architecture in UAV-

assisted vehicular networks. We consider a novel network 

architecture that leverages the collaborative computing 

capabilities of road-side units (RSUs) and unmanned 

aerial vehicles (UAVs) to support computation offloading 

for vehicular users [14]. The system model encompasses 

the network architecture and the binary offloading model, 

which form the foundation for the development of the 

FDRL-based offloading framework. Table 1 shows related 

works on computation offloading in vehicular networks 
 

Table 1: Comparison of related works on computation offloading in vehicular networks.

  

Work Computing 

Resources 

Optimization 

Objectives 

Solution 

Method 

Federated 

Learning 

Comparison with 

Proposed Work 

[1] RSU Latency DQN No Single-server, 

latency only 

[2] RSU, Cloud Energy DDPG No Multi-server, 

energy only 

[3] RSU, UAV Latency, Energy A3C No Multi-server, no 

FL 

[4] RSU, Cloud Latency, Energy DQN, DDPG No Multi-server, no 

FL 

[5] UAV Latency, Energy Q-learning No Single-server, no 

FL 

[6] UAV Energy DDPG No Single-server, 

energy only 

[7] UAV Energy Lyapunov No Single-server, 

energy only 

[8] RSU, Cloud Latency, Energy DQN No Multi-server, no 

FL 
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[9] UAV Latency, Energy DRL No Single-server, no 

FL 

[10] UAV QoE DQN No Single-server, QoE 

[11] UAV Latency, Energy DRL No Single-server, no 

FL 

[12] RSU, Cloud Latency, Energy DQN No Multi-server, no 

FL 

[13] RSU, Cloud Latency, Energy DDPG Yes Multi-server, FL 

[14] RSU, UAV, 

Cloud 

Latency, Energy, 

Cost 

DQL Yes Multi-server, FL, 

cost 

Proposed RSU, UAV Latency, Energy MATD3, 

FUD3QN 

Yes Hybrid multi-

server, FL 

2.1 Network architecture and binary 

offloading model 

The considered network architecture, as depicted in Figure 

1, consists of a typical scenario with one RSU and multiple 

UAVs serving as MEC servers. The RSU is deployed 

along the roadside and is equipped with substantial 

computing resources to handle computation-intensive 

tasks [15]. On the other hand, the UAVs are strategically 

positioned in the air to provide flexible and on-demand 

computing services to vehicular users [16]. The UAVs can 

dynamically adjust their locations based on the distribution 

and requirements of the vehicular users, ensuring optimal 

coverage and quality of service [17]. 

 

 
 

Figure 1: System model of UAV-assisted vehicular 

networks in a hybrid multi-server MEC architecture. 

 

In the proposed system model, vehicular users have the 

option to execute their computation tasks locally or offload 

them to either the RSU or one of the UAVs for remote 

execution. The decision to offload a task is based on a 

binary offloading model, where each task is considered as 

an indivisible unit and can be either processed locally or 

offloaded to a single MEC server [18]. The binary 

offloading model simplifies the decision-making process 

and reduces the complexity of task partitioning and 

synchronization [19]. 

Let 𝒰 = {𝑢1, 𝑢2, … , 𝑢𝑁} denote the set of vehicular users 

in the network, where 𝑁 is the total number of users. Each 

user 𝑢𝑖  generates a sequence of computation tasks over 

time, represented by 𝒯𝑖 = {𝑡𝑖,1, 𝑡𝑖,2, … , 𝑡𝑖,𝑀} , where 𝑀  is 

the number of tasks generated by user 𝑢𝑖. Each task 𝑡𝑖,𝑗 is 

characterized by its input data size 𝑑𝑖,𝑗  (in bits) and the 

required computing resources 𝑐𝑖,𝑗 (in CPU cycles)  

The vehicular users can communicate with the RSU and 

UAVs through wireless communication links, as shown in 

Figure 1. The communication links between the users and 

the RSU are established using dedicated short-range 

communication (DSRC) technology, which provides 

reliable and low-latency communication in vehicular 

environments [20]. On the other hand, the communication 

links between the users and the UAVs are established 

using cellular networks, such as LTE or 5G, which offer 

wider coverage and higher data rates [21]. 

The decision to offload a task 𝑡𝑖,𝑗  is determined by the 

binary offloading variable 𝑥𝑖,𝑗 ∈ {0,1} , where 𝑥𝑖,𝑗 = 0 

indicates local execution and 𝑥𝑖,𝑗 = 1 indicates offloading 

to either the RSU or a UAV. The offloading decision for 

each task is made based on various factors, such as the task 

characteristics, the available computing resources, the 

communication link quality, and the energy consumption 

[22]. 

The objective of the proposed FDRL-based offloading 

framework is to minimize the overall latency and energy 

consumption of vehicular users while ensuring the stability 

and scalability of the network. The framework takes into 

account the heterogeneous requirements of vehicular 

users, the dynamic network conditions, and the 

collaborative computing capabilities of the RSU and 

UAVs to make optimal offloading decisions [24]. 

In the following sections, we will delve into the details of 

the FDRL-based offloading framework, including the 

problem formulation, the learning algorithm, and the 

performance evaluation. 

 

2.2 UAV trajectory planning 

In the UAV trajectory planning phase, the UAVs are 

required to take off from fixed ground points and 

adaptively fly to designated points in the air [25]. The 

trajectory planning problem aims to determine the optimal 
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flight paths for the UAVs, considering various constraints 

such as energy consumption, flight time, and collision 

avoidance. 

Let 𝒱 = {𝑣1, 𝑣2, … , 𝑣𝐾}  denote the set of UAVs in the 

network, where 𝐾 is the total number of UAVs. Each UAV 

𝑣𝑘 has an initial position 𝐩𝑘
0 = (𝑥𝑘

0, 𝑦𝑘
0, 𝑧𝑘

0) on the ground 

and a designated hovering position 𝐩𝑘
ℎ = (𝑥𝑘

ℎ, 𝑦𝑘
ℎ , 𝑧𝑘

ℎ) in 

the air. The trajectory of UAV 𝑣𝑘  is represented by a 

sequence of positions 𝐩𝑘(𝑡) = (𝑥𝑘(𝑡), 𝑦𝑘(𝑡), 𝑧𝑘(𝑡)) , 

where 𝑡 ∈ [0, 𝑇]  is the time variable and 𝑇  is the total 

flight time. 

The trajectory planning problem can be formulated as an 

optimization problem, with the objective of minimizing 

the total energy consumption of the UAVs while satisfying 

the flight time and collision avoidance constraints. The 

energy consumption of UAV 𝑣𝑘 along its trajectory 𝐩𝑘(𝑡) 

can be expressed as: 

 

𝐸𝑘 = ∫ 𝑃𝑘
𝑇

0
(𝐩𝑘(𝑡), 𝐯𝑘(𝑡))𝑑𝑡,                              (1) 

 

where 𝑃𝑘(𝐩𝑘(𝑡), 𝐯𝑘(𝑡))  is the power consumption of 

UAV 𝑣𝑘 at position 𝐩𝑘(𝑡) and velocity 𝐯𝑘(𝑡). 

The flight time constraint ensures that each UAV reaches 

its designated hovering position within the specified time 

limit 𝑇: 

 

∥ 𝐩𝑘(𝑇) − 𝐩𝑘
ℎ ∥≤ 𝜀, ∀𝑘 ∈ 𝒱,                           (2) 

 

where 𝜀 is a small tolerance threshold. 

The collision avoidance constraint guarantees a minimum 

separation distance 𝑑min  between any two UAVs at all 

times: 

 

∥ 𝐩𝑘(𝑡) − 𝐩𝑘′(𝑡) ∥≥ 𝑑min,  

∀𝑘, 𝑘′ ∈ 𝒱, 𝑘 ≠ 𝑘′, ∀𝑡 ∈ [0, 𝑇].                           (3) 

 

Once the UAVs reach their designated hovering positions, 

they act as MEC servers for the vehicular users. The 

hovering UAVs provide computing resources to the users, 

enabling them to offload their computation tasks for 

remote execution. The stable hovering positions of the 

UAVs ensure reliable communication links and efficient 

computation offloading services. 

The trajectory planning problem can be solved using 

various optimization techniques, such as convex 

optimization, dynamic programming, or meta-heuristic 

algorithms. The optimal trajectories obtained from the 

planning phase are then used as inputs to the FDRL-based 

offloading framework, which determines the optimal 

offloading decisions for the vehicular users. 

In the next section, we will present the problem 

formulation for the computation offloading problem in the 

hybrid multi-server MEC architecture, considering the 

network architecture, binary offloading model, and UAV 

trajectory planning. 

2.3 Resource allocation 

In the resource allocation phase, we present the 

communication model, computation model, and energy 

consumption model to capture the essential aspects of the 

hybrid multi-server MEC architecture in UAV-assisted 

vehicular networks. 

 

2.3.1 Communication model 

The communication model characterizes the data 

transmission process between the vehicular users and the 

MEC servers (RSU and UAVs). Let 𝑅𝑖,𝑗
𝑟  and 𝑅𝑖,𝑗

𝑢𝑘 denote 

the achievable data rates for offloading task 𝑡𝑖,𝑗 from user 

𝑢𝑖 to the RSU and UAV 𝑣𝑘, respectively. The data rates 

can be expressed using the Shannon-Hartley theorem [26]: 

 

𝑅𝑖,𝑗
𝑟 = 𝐵𝑟 log2 (1 +

𝑃𝑖
𝑟𝐺𝑖,𝑗

𝑟

𝜎2 ),                                             (4)  

𝑅𝑖,𝑗
𝑢𝑘 = 𝐵𝑢𝑘log2 (1 +

𝑃
𝑖

𝑢𝑘𝐺
𝑖,𝑗

𝑢𝑘

𝜎2 ),                                         (5) 

 

where 𝐵𝑟  and 𝐵𝑢𝑘  are the channel bandwidths, 𝑃𝑖
𝑟  and 

𝑃𝑖
𝑢𝑘  are the transmission powers, 𝐺𝑖,𝑗

𝑟  and 𝐺𝑖,𝑗
𝑢𝑘  are the 

channel gains, and 𝜎2 is the noise power. 

The transmission delay for offloading task 𝑡𝑖,𝑗 to the RSU 

and UAV 𝑣𝑘 can be calculated as: 

 

𝐷𝑖,𝑗
𝑟 =

𝑑𝑖,𝑗

𝑅𝑖,𝑗
𝑟 ,                                                                        (6) 

𝐷𝑖,𝑗
𝑢𝑘 =

𝑑𝑖,𝑗

𝑅
𝑖,𝑗

𝑢𝑘
.                                                   (7) 

 

2.3.2 Computation model 

The computation model describes the processing of tasks 

at the vehicular users and MEC servers. Let 𝑓𝑖
𝑙 denote the 

local computing capability (in CPU cycles per second) of 

user 𝑢𝑖 . The local execution time for task 𝑡𝑖,𝑗  can be 

expressed as 

 
𝑇𝑖,𝑗

𝑙 =
𝑐𝑖,𝑗

𝑓𝑖
𝑙 .                                                          (8) 

 

Similarly, let 𝑓𝑟  and 𝑓𝑢𝑘  represent the computing 

capabilities of the RSU and UAV 𝑣𝑘 , respectively. The 

execution time for task 𝑡𝑖,𝑗 offloaded to the RSU and UAV 

𝑣𝑘 can be calculated as: 

𝑇𝑖,𝑗
𝑟 =

𝑐𝑖,𝑗

𝑓𝑟 ,                                                       (9) 

𝑇𝑖,𝑗
𝑢𝑘 =

𝑐𝑖,𝑗

𝑓𝑢𝑘
.                                                  (10) 

2.3.3 Energy consumption model 

The energy consumption model captures the energy 

consumed by the vehicular users for task execution and 

data transmission. The energy consumption for local 

execution of task 𝑡𝑖,𝑗 can be expressed as: 
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𝐸𝑖,𝑗
𝑙 = 𝜅(𝑓𝑖

𝑙)
2

𝑐𝑖,𝑗 ,                                        (11) 

 

where 𝜅 is the energy coefficient depending on the chip 

architecture. 

The energy consumption for offloading task 𝑡𝑖,𝑗  to the 

RSU and UAV 𝑣𝑘 can be calculated as: 

 

𝐸𝑖,𝑗
𝑟 = 𝑃𝑖

𝑟𝐷𝑖,𝑗
𝑟 ,                                         (12) 

 

𝐸𝑖,𝑗
𝑢𝑘 = 𝑃𝑖

𝑢𝑘𝐷𝑖,𝑗
𝑢𝑘 .                                         (13) 

 

The total energy consumption of user 𝑢𝑖 for executing all 

its tasks can be expressed as: 

𝐸𝑖 = ∑ [(1 − 𝑥𝑖,𝑗)𝐸𝑖,𝑗
𝑙                                                     +𝑀

𝑗=1

𝑥𝑖,𝑗(𝑦𝑖,𝑗
𝑟 𝐸𝑖,𝑗

𝑟 + ∑ 𝑦𝑖,𝑗
𝑢𝑘𝐾

𝑘=1 𝐸𝑖,𝑗
𝑢𝑘)],                                       (14) 

 

where 𝑦𝑖,𝑗
𝑟  and 𝑦𝑖,𝑗

𝑢𝑘  are binary variables indicating whether 

task 𝑡𝑖,𝑗 is offloaded to the RSU or UAV 𝑣𝑘, respectively. 

The resource allocation problem aims to minimize the total 

latency and energy consumption of the vehicular users 

while considering the computation and communication 

resource constraints of the MEC servers. The optimization 

problem can be formulated as a mixed-integer nonlinear 

programming (MINLP) problem [27]: 

 

min
{𝑥𝑖,𝑗,𝑦𝑖,𝑗

𝑟 ,𝑦
𝑖,𝑗

𝑢𝑘}

∑ ∑ [(1 − 𝑥𝑖,𝑗)(𝑇𝑖,𝑗
𝑙 + 𝛼𝐸𝑖,𝑗

𝑙 ) +𝑀
𝑗=1

𝑁
𝑖=1

𝑥𝑖,𝑗 (𝑦𝑖,𝑗
𝑟 (𝐷𝑖,𝑗

𝑟 + 𝑇𝑖,𝑗
𝑟 + 𝛼𝐸𝑖,𝑗

𝑟 ) + ∑ 𝑦𝑖,𝑗
𝑢𝑘𝐾

𝑘=1 (𝐷𝑖,𝑗
𝑢𝑘 + 𝑇𝑖,𝑗

𝑢𝑘 +

𝛼𝐸𝑖,𝑗
𝑢𝑘))],                                                                         (15) 

subject to: 

 

𝑥𝑖,𝑗 , 𝑦𝑖,𝑗
𝑟 , 𝑦𝑖,𝑗

𝑢𝑘 ∈ {0,1}, ∀𝑖, 𝑗, 𝑘,                                       (16) 

𝑦𝑖,𝑗
𝑟 + ∑ 𝑦𝑖,𝑗

𝑢𝑘𝐾
𝑘=1 = 𝑥𝑖,𝑗 , ∀𝑖, 𝑗,                                (17) 

∑ ∑ 𝑦𝑖,𝑗
𝑟𝑀

𝑗=1
𝑁
𝑖=1 𝑐𝑖,𝑗 ≤ 𝐶𝑟 , ∀𝑟,                                (18) 

∑ ∑ 𝑦𝑖,𝑗
𝑢𝑘𝑀

𝑗=1
𝑁
𝑖=1 𝑐𝑖,𝑗 ≤ 𝐶𝑢𝑘, ∀𝑘,                         (19) 

 

where 𝛼 is a weighting factor balancing the latency and 

energy consumption, 𝐶𝑟  and 𝐶𝑢𝑘  are the computation 

capacities of the RSU and UAV 𝑣𝑘, respectively. 

The MINLP problem is challenging to solve due to its 

combinatorial nature and nonlinear constraints. Traditional 

optimization methods may suffer from high computational 

complexity and poor scalability. Therefore, we propose an 

FDRL-based approach to efficiently solve the resource 

allocation problem and obtain near-optimal offloading 

decisions. 

In the next section, we will present the FDRL-based 

offloading framework, which leverages the distributed 

learning capabilities of federated learning and the 

sequential decision-making power of deep reinforcement 

learning to address the challenges in the hybrid multi-

server MEC architecture. 

 

3   Problem formulation 

In this section, we formally define the optimization 

objective for the computation offloading problem in the 

hybrid multi-server MEC architecture. The objective is to 

minimize a weighted combination of the total system 

latency and total energy consumption, taking into account 

the offloading decisions and resource allocation. 

 

3.1 Optimization objective 

The optimization objective is defined as a cost function 

that combines the total system latency and total energy 

consumption. Let 𝐿  denote the total latency, which 

includes the local execution time, transmission delay, and 

remote execution time for all tasks. Let 𝐸 denote the total 

energy consumption, which includes the energy consumed 

by the vehicular users for local execution and data 

transmission. 

The weighted cost function can be expressed as: 

 

min
{𝑥𝑖,𝑗,𝑦𝑖,𝑗

𝑟 ,𝑦
𝑖,𝑗

𝑢𝑘}
𝜔𝐿 + (1 − 𝜔)𝐸,                                                 (20) 

 

where 𝜔 ∈ [0,1] is a weighting factor that balances the 

importance of latency and energy consumption. A higher 

value of 𝜔  gives more priority to minimizing latency, 

while a lower value of 𝜔 emphasizes energy efficiency. 

The total latency 𝐿 can be calculated as: 

 

𝐿 = ∑ ∑ [(1 − 𝑥𝑖,𝑗)𝑇𝑖,𝑗
𝑙 + 𝑥𝑖,𝑗 (𝑦𝑖,𝑗

𝑟 (𝐷𝑖,𝑗
𝑟 + 𝑇𝑖,𝑗

𝑟 ) +𝑀
𝑗=1

𝑁
𝑖=1

∑ 𝑦𝑖,𝑗
𝑢𝑘𝐾

𝑘=1 (𝐷𝑖,𝑗
𝑢𝑘 + 𝑇𝑖,𝑗

𝑢𝑘))].                                                 (21) 

 

The total energy consumption 𝐸 can be calculated using 

the energy consumption model described in the previous 

section. 

By minimizing the weighted cost function, the objective is 

to find the optimal offloading decisions {𝑥𝑖,𝑗 , 𝑦𝑖,𝑗
𝑟 , 𝑦𝑖,𝑗

𝑢𝑘} that 

jointly minimize the total latency and energy consumption, 

subject to the computation and communication resource 

constraints of the MEC servers. 

In the following subsection, we will present the constraints 

and formulate the optimization problem as a mixed-integer 

nonlinear programming (MINLP) problem. 

 

3.2 Optimization problem formulation 

The computation offloading problem in the hybrid multi-

server MEC architecture can be formulated as a mixed-

integer nonlinear programming (MINLP) problem. The 
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problem involves the joint optimization of offloading 

decisions, subcarrier allocation, power allocation, and 

computation resource allocation [28]. 

Let 𝒮 = {𝑠1, 𝑠2, … , 𝑠𝐿}  denote the set of subcarriers 

available for data transmission between the vehicular users 

and the MEC servers. The binary variable 𝑎𝑖,𝑗,𝑙
𝑟  indicates 

whether subcarrier 𝑠𝑙 is allocated to user 𝑢𝑖 for offloading 

task 𝑡𝑖,𝑗  to the RSU, and 𝑎𝑖,𝑗,𝑙
𝑢𝑘  indicates the allocation of 

subcarrier 𝑠𝑙  to user 𝑢𝑖  for offloading to UAV 𝑣𝑘 . The 

power allocation variables 𝑝𝑖,𝑗,𝑙
𝑟  and 𝑝𝑖,𝑗,𝑙

𝑢𝑘  represent the 

transmission power of user 𝑢𝑖  on subcarrier 𝑠𝑙  for 

offloading task 𝑡𝑖,𝑗 to the RSU and UAV 𝑣𝑘, respectively. 

The computation resource allocation variables 𝑓𝑖,𝑗
𝑟  and 𝑓𝑖,𝑗

𝑢𝑘 

denote the computing resources allocated by the RSU and 

UAV 𝑣𝑘  to execute task 𝑡𝑖,𝑗  offloaded by user 𝑢𝑖 , 

respectively. 

The MINLP problem can be formulated  

 

min
{𝑥𝑖,𝑗,𝑦𝑖,𝑗

𝑟 ,𝑦
𝑖,𝑗

𝑢𝑘 ,𝑎𝑖,𝑗,𝑙
𝑟 ,𝑎

𝑖,𝑗,𝑙

𝑢𝑘 ,𝑝𝑖,𝑗,𝑙
𝑟 ,𝑝

𝑖,𝑗,𝑙

𝑢𝑘 ,𝑓𝑖,𝑗
𝑟 ,𝑓

𝑖,𝑗

𝑢𝑘}
𝜔𝐿 + (1 − 𝜔)𝐸, (22) 

                        

subject to: 

𝑥𝑖,𝑗 , 𝑦𝑖,𝑗
𝑟 , 𝑦𝑖,𝑗

𝑢𝑘 , 𝑎𝑖,𝑗,𝑙
𝑟 , 𝑎𝑖,𝑗,𝑙

𝑢𝑘 ∈ {0,1}, ∀𝑖, 𝑗, 𝑘, 𝑙,              (23) 

𝑦𝑖,𝑗
𝑟 + ∑ 𝑦𝑖,𝑗

𝑢𝑘𝐾
𝑘=1 = 𝑥𝑖,𝑗 , ∀𝑖, 𝑗,                              (24) 

∑ ∑ 𝑎𝑖,𝑗,𝑙
𝑟𝑀

𝑗=1
𝑁
𝑖=1 ≤ 1, ∀𝑙,                               (25) 

∑ ∑ 𝑎𝑖,𝑗,𝑙
𝑢𝑘𝑀

𝑗=1
𝑁
𝑖=1 ≤ 1, ∀𝑘, 𝑙,                              (26) 

∑ 𝑝𝑖,𝑗,𝑙
𝑟𝐿

𝑙=1 ≤ 𝑃𝑖
max, ∀𝑖, 𝑗,                               (27) 

∑ 𝑝𝑖,𝑗,𝑙
𝑢𝑘𝐿

𝑙=1 ≤ 𝑃𝑖
max , ∀𝑖, 𝑗, 𝑘,                                (28) 

∑ ∑ 𝑓𝑖,𝑗
𝑟𝑀

𝑗=1
𝑁
𝑖=1 ≤ 𝐶𝑟 , ∀𝑟,                        (29) 

∑ ∑ 𝑓𝑖,𝑗
𝑢𝑘𝑀

𝑗=1
𝑁
𝑖=1 ≤ 𝐶𝑢𝑘, ∀𝑘,                               (30) 

where 𝑃𝑖
max is the maximum transmission power of user 

𝑢𝑖. 

The formulated MINLP problem is a non-deterministic 

polynomial-time (NP)-hard problem due to the coupling of 

offloading decisions, subcarrier allocation, power 

allocation, and computation resource allocation [29]. The 

binary variables and nonlinear constraints make the 

problem challenging to solve using traditional 

optimization methods. 

In the next section, we will introduce the proposed FDRL-

based offloading framework, which leverages the 

distributed learning capabilities of federated learning and 

the sequential decision-making power of deep 

reinforcement learning to address the challenges in solving 

the formulated MINLP problem. 

 

4    Hybrid multi-server computation 

offloading algorithm 

In this section, we present the proposed algorithm for 

hybrid multi-server computation offloading in UAV-

assisted vehicular networks based on federated deep 

reinforcement learning (FDRL). We model the problem as 

a Markov decision process (MDP) and propose the Multi-

Agent Twin Delayed Deep Deterministic Policy Gradient 

(MATD3) algorithm to solve the formulated MINLP 

problem. 

 

4.1 Modelling based on markov decision 

process 

The computation offloading problem in the hybrid multi-

server MEC architecture can be modeled as an MDP, 

where multiple agents (i.e., vehicular users) interact with 

the environment (i.e., the MEC system) to make sequential 

offloading decisions. The MDP is characterized by the 

following elements: 

• State Space: The state space 𝒮 represents the current 

state of the environment, which includes the channel 

conditions, computing resources, and task queue status. 

The state of user 𝑢𝑖 at time step 𝑡 can be denoted as 𝑠𝑖
𝑡 ∈

𝒮. 

• Action Space: The action space 𝒜 represents the set 

of actions available to each agent. In the context of 

computation offloading, the action of user 𝑢𝑖 at time step 

𝑡  is denoted as 𝑎𝑖
𝑡 ∈ 𝒜 , which includes the offloading 

decisions, subcarrier allocation, power allocation, and 

computation resource allocation. 

• Transition Probability: The transition probability 

𝒫(𝑠𝑖
𝑡+1|𝑠𝑖

𝑡 , 𝑎𝑖
𝑡) represents the probability of transitioning 

from state 𝑠𝑖
𝑡  to state 𝑠𝑖

𝑡+1  when taking action 𝑎𝑖
𝑡 . In the 

MEC system, the transition probability depends on the 

stochastic nature of the wireless channel and the dynamics 

of the task arrivals. 

• Reward Function: The reward function ℛ(𝑠𝑖
𝑡 , 𝑎𝑖

𝑡) 

represents the immediate reward obtained by user 𝑢𝑖  for 

taking action 𝑎𝑖
𝑡  in state 𝑠𝑖

𝑡 . The reward function is 

designed to align with the optimization objective, which is 

to minimize the weighted sum of latency and energy 

consumption. The reward function can be defined as: 

 

ℛ(𝑠𝑖
𝑡 , 𝑎𝑖

𝑡) = −(𝜔𝐿𝑖
𝑡 + (1 − 𝜔)𝐸𝑖

𝑡),                  (31) 

 

where 𝐿𝑖
𝑡 and 𝐸𝑖

𝑡 are the latency and energy consumption 

of user 𝑢𝑖 at time step 𝑡, respectively. 

The objective of each agent is to find a policy 𝜋𝑖: 𝒮 → 𝒜 

that maximizes the expected cumulative discounted 

reward over an infinite horizon: 

 

𝐽𝑖(𝜋𝑖) = 𝔼[∑ 𝛾𝑡∞
𝑡=0 ℛ(𝑠𝑖

𝑡 , 𝑎𝑖
𝑡)|𝑠𝑖

0, 𝜋𝑖],                 (32) 

 

where 𝛾 ∈ [0,1] is the discount factor that balances the 

importance of immediate and future rewards. 

In the MATD3 algorithm, each agent maintains a pair of 

critic networks 𝑄𝜙𝑖
(𝑠, 𝑎)  and 𝑄𝜙𝑖′(𝑠, 𝑎) , and a pair of 

actor networks 𝜋𝜃𝑖
(𝑠)  and 𝜋𝜃𝑖′(𝑠) . The critic networks 

estimate the action-value function, while the actor 
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networks generate the offloading decisions. The 

parameters 𝜙𝑖 , 𝜙𝑖′ , 𝜃𝑖 , and 𝜃𝑖′  are learned through the 

interaction with the environment and the exchange of 

model updates among the agents in a federated manner. 

The MATD3 algorithm follows a two-timescale update 

rule, where the critic networks are updated on a faster 

timescale, and the actor networks are updated on a slower 

timescale. The update rules for the critic and actor 

networks are given by: 

 

𝜙𝑖 ← 𝜙𝑖 − 𝛼𝑄∇𝜙𝑖
ℒ(𝜙𝑖),                                     (33) 

𝜃𝑖 ← 𝜃𝑖 + 𝛼𝜋∇𝜃𝑖
𝐽𝑖(𝜋𝜃𝑖

),                                     (34) 

where 𝛼𝑄 and 𝛼𝜋 are the learning rates for the critic and 

actor networks, respectively, and ℒ(𝜙𝑖) is the critic loss 

function. 

By modeling the computation offloading problem as an 

MDP and solving it using the MATD3 algorithm, the 

vehicular users can learn optimal offloading policies that 

minimize the weighted sum of latency and energy 

consumption in a distributed and collaborative manner. 

In the next subsection, we will discuss the federated 

learning framework that enables the efficient exchange of 

model updates among the agents while preserving data 

privacy. 

 

4.2 MATD3 algorithm 

In this subsection, we present the Multi-Agent Twin 

Delayed Deep Deterministic Policy Gradient (MATD3) 

algorithm for trajectory planning in the hybrid multi-server 

MEC architecture. MATD3 is a value-based deep 

reinforcement learning algorithm designed for continuous 

action spaces, making it suitable for the trajectory planning 

problem. 

The MATD3 algorithm extends the Twin Delayed Deep 

Deterministic Policy Gradient (TD3) algorithm to a multi-

agent setting. TD3 is an off-policy algorithm that addresses 

the overestimation bias in the critic network of the Deep 

Deterministic Policy Gradient (DDPG) algorithm. 

MATD3 leverages the benefits of TD3 and adapts it to 

handle multiple agents in a collaborative learning 

framework. 

The learning framework of MATD3 consists of six neural 

networks: two critic networks 𝑄𝜙𝑖
(𝑠, 𝑎)  and 𝑄𝜙𝑖′(𝑠, 𝑎) , 

two actor networks 𝜋𝜃𝑖
(𝑠)  and 𝜋𝜃𝑖′(𝑠) , and two target 

networks 𝑄𝜙𝑖
−(𝑠, 𝑎)  and 𝜋𝜃𝑖

−(𝑠)  for each agent 𝑖 . The 

critic networks estimate the action-value function, while 

the actor networks generate the continuous actions for 

trajectory planning. The target networks are used to 

stabilize the learning process and reduce the 

overestimation bias. 

The update rules for the critic networks in MATD3 are 

given by: 

 

𝑦𝑖 = 𝑟𝑖 + 𝛾min
𝑗=1,2

𝑄𝜙𝑖
−,𝑗 (𝑠′, 𝜋𝜃𝑖

−(𝑠′)),                   (35) 

ℒ(𝜙𝑖) =
1

𝑁
∑ (𝑄𝜙𝑖,𝑗(𝑠, 𝑎) − 𝑦𝑖)

2𝑁
𝑗=1 ,                   (36) 

 

where 𝑟𝑖  is the reward obtained by agent 𝑖 , 𝛾  is the 

discount factor, 𝑠′ is the next state, and 𝑁 is the batch size. 

The target networks are updated using a soft update rule: 

 

𝜙𝑖
− ← 𝜏𝜙𝑖 + (1 − 𝜏)𝜙𝑖

−,                                    (37) 

𝜃𝑖
− ← 𝜏𝜃𝑖 + (1 − 𝜏)𝜃𝑖

−,                                      (38) 

 

where 𝜏 is the soft update rate. 

The actor networks in MATD3 are updated using the 

deterministic policy gradient: 

 

∇𝜃𝑖
𝐽𝑖(𝜋𝜃𝑖

) =
1

𝑁
∑ ∇𝑎

𝑁
𝑗=1 𝑄𝜙𝑖,𝑗(𝑠, 𝑎)|𝑎=𝜋𝜃𝑖

(𝑠)∇𝜃𝑖
𝜋𝜃𝑖

(𝑠).       

(39) 

 

The MATD3 algorithm for trajectory planning is 

summarized in Algorithm 1. 

 

Step Description 

1 Initialize global Q-network 𝑄𝜃𝑔
 and local Q-networks 𝑄𝜃𝑖

 for each client 𝑖 

2 Initialize target Q-networks 𝑄𝜃𝑖
−  for each client 𝑖 

3 Initialize replay buffers 𝒟𝑖 for each client 𝑖 

4 for round = 1 to R do 

5   for each client 𝑖 in parallel do 

6     for episode = 1 to E do 

7       Initialize state 𝑠0 

8       for t = 1 to T do 

9         Select action 𝑎𝑡 using 𝜖-greedy policy based on 𝑄𝜃𝑖
(𝑠𝑡 , 𝑎) 

10         Execute action 𝑎𝑡 and observe reward 𝑟𝑡 and next state 𝑠𝑡+1 

11         Store transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in 𝒟𝑖 
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Step Description 

12         Sample a batch of transitions (𝑠, 𝑎, 𝑟, 𝑠′) from 𝒟𝑖 

13         Compute target value 𝑦 using Eq. (1) 

14         Update primary Q-network 𝑄𝜃𝑖
 by minimizing the loss in Eq. (1) 

15         Update target Q-network 𝑄𝜃𝑖
−  using Eq. (2) 

16       end for 

17     end for 

18     Send local model update 𝛥𝜃𝑖 = 𝜃𝑖 − 𝜃𝑔 to the server 

19   end for 

20   Aggregate local model updates using Eq. (3) to obtain 𝜃𝑔 

21   Distribute global model 𝜃𝑔 to all clients 

22   Update local models 𝜃𝑖 ← 𝜃𝑔 for each client 𝑖 

23 end for 

In Algorithm 1, the MATD3 algorithm is executed for 𝑀 

episodes, each consisting of 𝑇  time steps. At each time 

step, each agent 𝑖 selects an action 𝑎𝑖 based on its current 

policy 𝜋𝜃𝑖
(𝑠𝑡)  and an exploration noise 𝒩𝑡 . The agent 

executes the action and observes the reward 𝑟𝑖 and the new 

state 𝑠𝑡+1. The transition (𝑠𝑡, 𝑎𝑖, 𝑟𝑖, 𝑠𝑡+1) is stored in the 

replay buffer 𝒟. 

Each agent then samples a batch of transitions from the 

replay buffer and computes the target value 𝑦𝑖  using the 

minimum of the two target critic networks, as shown in Eq. 

(1). The critic networks are updated by minimizing the 

mean-squared error loss between the estimated action-

value and the target value, as given in Eq. (2). 

The actor networks are updated every 𝑑 episodes using the 

deterministic policy gradient in Eq. (5). The target 

networks are updated using a soft update rule, as shown in 

Eq. (3) and Eq. (4), to stabilize the learning process. 

By iteratively updating the critic and actor networks, the 

MATD3 algorithm learns optimal trajectories for the 

UAVs in the hybrid multi-server MEC architecture. The 

collaborative learning framework enables the agents to 

share their experiences and learn from each other, 

improving the overall performance of the system. 

In the next subsection, we will discuss the federated 

learning framework that allows the agents to exchange 

model updates while preserving data privacy and reducing 

communication overhead. 

 

4.3 FUD3QN algorithm based on markov 

decision process modelling 

After the UAVs reach their designated hovering positions, 

the next step is to optimize the cross-domain resource 

allocation for computation task offloading from the 

vehicular users. This optimization problem can be 

modelled as a Markov decision process (MDP) based on 

the state space, action space, and reward function. 

The state space 𝒮  represents the current state of the 

environment, which includes the channel conditions, 

computing resources, and task queue status. The state of 

user 𝑢𝑖  at time step 𝑡  can be denoted as 𝑠𝑖
𝑡 ∈ 𝒮 , where 

𝑠𝑖
𝑡 = {ℎ𝑖

𝑡 , 𝑓𝑖
𝑡 , 𝑞𝑖

𝑡} . Here, ℎ𝑖
𝑡  represents the channel gain 

between user 𝑢𝑖 and the MEC servers (RSU and UAVs) at 

time 𝑡 , 𝑓𝑖
𝑡  denotes the available computing resources 

allocated to user 𝑢𝑖  at time 𝑡 , and 𝑞𝑖
𝑡  indicates the task 

queue length of user 𝑢𝑖 at time 𝑡. 

The action space 𝒜 represents the set of actions available 

to the system. In the context of computation offloading, the 

action at time step 𝑡 is denoted as 𝑎𝑡 ∈ 𝒜, which includes 

the offloading decisions, resource allocation, and power 

control. 

The reward function ℛ(𝑠𝑖
𝑡 , 𝑎𝑖

𝑡) represents the immediate 

reward obtained by user 𝑢𝑖 for taking action 𝑎𝑖
𝑡 in state 𝑠𝑖

𝑡. 

The reward function is designed to align with the 

optimization objective, which is to minimize the weighted 

sum of latency and energy consumption. To derive the 

reward function, we first define the latency 𝐿𝑖
𝑡 and energy 

consumption 𝐸𝑖
𝑡 of user 𝑢𝑖 at time step 𝑡 as follows: 

 

𝐿𝑖
𝑡 =

𝐷𝑖
𝑡

𝑅𝑖
𝑡 +

𝐶𝑖
𝑡

𝑓𝑖
𝑡,                                                      (40) 

𝐸𝑖
𝑡 = 𝑝𝑖

𝑡 ⋅
𝐷𝑖

𝑡

𝑅𝑖
𝑡 + 𝜅 ⋅ (𝑓𝑖

𝑡)2 ⋅
𝐶𝑖

𝑡

𝑓𝑖
𝑡,                              (41) 

where 𝐷𝑖
𝑡  is the size of the offloaded task, 𝑅𝑖

𝑡  is the 

achievable data rate, 𝐶𝑖
𝑡 is the required CPU cycles for task 

execution, 𝑝𝑖
𝑡  is the transmission power, and 𝜅  is the 

energy coefficient. 

The reward function is then defined as a weighted 

combination of latency and energy consumption: 

 

ℛ(𝑠𝑖
𝑡 , 𝑎𝑖

𝑡) = −(𝜔𝐿𝑖
𝑡 + (1 − 𝜔)𝐸𝑖

𝑡),                   (42) 

 

where 𝜔 ∈ [0,1] is a weighting factor that balances the 

importance of latency and energy consumption. A higher 

value of 𝜔 prioritizes latency minimization, while a lower 

value emphasizes energy efficiency. 
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The objective of the MDP is to find a policy 𝜋: 𝒮 → 𝒜 that 

maximizes the expected cumulative discounted reward 

over an infinite horizon: 

 

𝐽(𝜋) = 𝔼[∑ 𝛾𝑡∞
𝑡=0 ℛ(𝑠𝑡 , 𝑎𝑡)|𝑠0, 𝜋],                   (43) 

 

where 𝛾 ∈ [0,1] is the discount factor that balances the 

importance of immediate and future rewards. 

To solve the MDP and find the optimal policy, we propose 

the Federated Universal Double Deep Q-Network 

(FUD3QN) algorithm. FUD3QN is a variant of the Double 

Deep Q-Network (DDQN) algorithm that incorporates 

federated learning and universal function approximation. 

In FUD3QN, each vehicular user maintains a local Q-

network 𝑄𝜃𝑖
(𝑠, 𝑎)  parameterized by 𝜃𝑖 , which estimates 

the action-value function. The Q-networks are updated 

using the following loss function: 

 

ℒ(𝜃𝑖) = 𝔼𝑠,𝑎,𝑟,𝑠′ [(𝑟 + 𝛾max
𝑎′

𝑄𝜃𝑖
−(𝑠′, 𝑎′) − 𝑄𝜃𝑖

(𝑠, 𝑎))

2

],                                                     

(44) 

 

where 𝜃𝑖
−  are the parameters of the target Q-network, 

which are periodically updated to stabilize the learning 

process. 

In the proposed FD3QN algorithm, the vehicular users 

collaborate and share their Q-network parameters through 

a federated learning framework. The model update and 

aggregation process consist of the following steps: 

 

Local model update: At each federation round, the 

vehicular users perform local training on their respective 

Q-networks using their own collected data. The local 

training involves minimizing the loss function defined in 

Equation (1) and updating the Q-network parameters 

accordingly. The number of local training iterations is 

determined by the local epoch parameter E. 

 

Model transmission: After local training, each user sends 

its updated Q-network parameters to a central server for 

aggregation. To reduce communication overhead, only the 

parameter differences from the previous global model are 

transmitted, rather than the entire model. 

 

Global model aggregation: The central server receives the 

local model updates from all participating users and 

aggregates them to generate a new global model. The 

aggregation is performed using a weighted averaging 

scheme, as shown in Equation (3). The weights are 

determined based on the number of data samples used by 

each user, ensuring that users with more data have a higher 

influence on the global model. 

 

Model distribution: The updated global model is then 

distributed back to all vehicular users, who replace their 

local models with the new global model. 

The convergence of the federated learning process is 

assessed based on two criteria: (1) the stability of the 

global model performance and (2) the consensus among 

the local models. The global model performance is 

evaluated using a validation set, which is a subset of the 

data samples held by the central server. The convergence 

is considered achieved when the performance metrics, 

such as the average Q-value or the reward, stabilize over 

consecutive federation rounds. The consensus among the 

local models is measured by the variance of the model 

parameters across different users. A smaller variance 

indicates a higher level of agreement and convergence 

among the local models. 

To quantify the convergence speed and computational 

overhead of the FD3QN algorithm, we conduct 

experiments with different federation round numbers R 

and local epoch numbers E. Figure 13 shows the 

convergence curves of the global model performance for 

different values of R and E. As the number of federation 

rounds increases, the global model performance improves, 

indicating the effectiveness of collaborative learning. 

However, the improvement becomes marginal after a 

certain number of rounds (e.g., R=10), suggesting a trade-

off between convergence speed and communication costs. 

Similarly, increasing the number of local epochs leads to 

faster convergence, but the gains diminish beyond a certain 

threshold (e.g., E=5). 

Table 2 summarizes the convergence speed and 

computational overhead of the FD3QN algorithm for 

different parameter settings. The convergence speed is 

measured by the number of federation rounds required to 

reach 90% of the best global model performance. The 

computational overhead is quantified by the average 

training time per federation round, which includes the local 

training time and the communication time for model 

transmission and distribution. As the number of federation 

rounds and local epochs increases, the convergence speed 

improves, but at the cost of higher computational 

overhead. The proposed parameter settings (R=10, E=5) 

achieve a good balance between convergence speed and 

computational costs, with a convergence round of 8 and an 

average training time of 235 seconds per round. 

 

Table 2: Convergence speed and computational overhead 

of FD3QN under different parameter settings. 

 
Parameter 

Settings 

Convergence 

Round (90%) 

Average Training 

Time per Round (s) 

R=5, E=3 12 180 

R=10, E=5 

(Proposed) 

8 235 

R=15, E=8 6 320 
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The analysis of the model update and aggregation process, 

convergence criteria, and computational overhead 

provides valuable insights into the performance and 

efficiency of the FD3QN algorithm. The proposed 

parameter settings strike a balance between convergence 

speed and computational costs, ensuring practical 

applicability in real-world vehicular networks. 

By modeling the computation offloading problem as an 

MDP and solving it using the FUD3QN algorithm, the 

system can learn an optimal policy that minimizes the 

weighted sum of latency and energy consumption in a 

distributed and collaborative manner. 

In the next subsection, we will discuss the federated 

learning framework in more detail and explain how it 

enables efficient and privacy-preserving collaboration 

among the vehicular users. 

 

4.4 FUD3QN algorithm 

The Federated Universal Double Deep Q-Network 

(FUD3QN) algorithm is a novel approach that combines 

the benefits of federated learning and deep reinforcement 

learning for optimizing cross-domain resource allocation 

in the hybrid multi-server MEC architecture. The training 

framework of FUD3QN consists of two functional 

modules with multiple iterations: the first is an upgraded 

dual double deep Q-network (UD3QN), and the second is 

federated learning, which introduces DRL for federated 

aggregation [30]. 

 
 

Figure 2: FUD3QN training framework. 

 

Figure 2 illustrates the training framework of FUD3QN, 

which adopts a client-server structure to optimize cross-

domain resources. The clients (i.e., vehicular users) 

collaborate under the coordination of a central server to 

learn an optimal resource allocation policy. 

 

 

 

4.4.1 Upgraded dual double deep q-network (UD3QN) 

The UD3QN module is an extension of the Double Deep 

Q-Network (DDQN) algorithm, which addresses the 

overestimation bias in the original Deep Q-Network 

(DQN) algorithm [31]. In UD3QN, each client maintains 

two Q-networks: a primary Q-network 𝑄𝜃𝑖
(𝑠, 𝑎)  and a 

target Q-network 𝑄𝜃𝑖
−(𝑠, 𝑎) , where 𝜃𝑖  and 𝜃𝑖

−  are the 

parameters of the primary and target networks, 

respectively. 

The primary Q-network is updated using the following loss 

function: 

ℒ(𝜃𝑖) = 𝔼𝑠,𝑎,𝑟,𝑠′ [(𝑟 + 𝛾𝑄𝜃𝑖
− (𝑠′, argmax

𝑎′
𝑄𝜃𝑖

(𝑠′, 𝑎′)) −

𝑄𝜃𝑖
(𝑠, 𝑎))

2

],  (45) 

 

where 𝑟 is the reward, 𝛾 is the discount factor, and 𝑠′ is the 

next state. The target Q-network is updated periodically 

using a soft update rule: 

𝜃𝑖
− ← 𝜏𝜃𝑖 + (1 − 𝜏)𝜃𝑖

−,                                      (46) 

where 𝜏 is the soft update rate. 

The UD3QN module also incorporates dueling network 

architectures [32] and prioritized experience replay [33] to 

further improve the learning efficiency and stability. The 

dueling network architecture separates the estimation of 

state-value and advantage functions, while prioritized 

experience replay assigns higher sampling probabilities to 

transitions with higher temporal-difference errors. 

 

4.4.2 Federated learning with DRL aggregation 

The federated learning module enables the clients to 

collaborate and share their knowledge without revealing 

their local data. In each federation round, the clients 

perform local training on their respective UD3QN models 

using their own data. The local model updates are then sent 

to the central server for aggregation. 

To aggregate the local models, the server employs a DRL-

based aggregation method [34]. The server maintains a 

global Q-network 𝑄𝜃𝑔
(𝑠, 𝑎)  parameterized by 𝜃𝑔 . The 

global Q-network is updated using the following rule: 

𝜃𝑔 ← ∑
𝑛𝑖

𝑛

𝑁
𝑖=1 𝜃𝑖 ,                                                  (47) 

where 𝑁 is the number of clients, 𝑛𝑖 is the number of data 

samples used by client 𝑖 , and 𝑛 = ∑ 𝑛𝑖
𝑁
𝑖=1  is the total 

number of data samples. 

After aggregation, the server distributes the updated global 

model back to the clients, who use it to replace their local 

models. The federated learning process is repeated for 

multiple rounds until convergence or a maximum number 

of rounds is reached. 
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The complete FUD3QN algorithm for resource allocation 

is summarized in Algorithm 2. 

 

 

 

Step Description 

1 Initialize global Q-network 𝑄𝜃𝑔
 and local Q-networks 𝑄𝜃𝑖

 for each client 𝑖 

2 Initialize target Q-networks 𝑄𝜃𝑖
−  for each client 𝑖 

3 Initialize replay buffers 𝒟𝑖 for each client 𝑖 

4 for round = 1 to R do 

5  for each client 𝑖 in parallel do 

6   for episode = 1 to E do 

7    Initialize state 𝑠0 

8    for t = 1 to T do 

9     Select action 𝑎𝑡 using 𝜖-greedy policy based on 𝑄𝜃𝑖
(𝑠𝑡 , 𝑎) 

10     Execute action 𝑎𝑡 and observe reward 𝑟𝑡 and next state 𝑠𝑡+1 

11     Store transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in 𝒟𝑖 

12     Sample a batch of transitions (𝑠, 𝑎, 𝑟, 𝑠′) from 𝒟𝑖 

13     Compute target value 𝑦 using Eq. (1) 

14     Update primary Q-network 𝑄𝜃𝑖
 by minimizing the loss in Eq. (1) 

15     Update target Q-network 𝑄𝜃𝑖
− using Eq. (2) 

16    end for 

17   end for 

18   Send local model update 𝛥𝜃𝑖 = 𝜃𝑖 − 𝜃𝑔 to the server 

19  end for 

20  Aggregate local model updates using Eq. (3) to obtain 𝜃𝑔 

21  Distribute global model 𝜃𝑔 to all clients 

22  Update local models 𝜃𝑖 ← 𝜃𝑔 for each client 𝑖 

23 end for 

 

In Algorithm 2, the FUD3QN algorithm is executed for 𝑅 

federation rounds. In each round, the clients perform local 

training on their respective UD3QN models for 𝐸 

episodes, each consisting of 𝑇  time steps. The clients 

select actions using an 𝜖-greedy policy based on their local 

Q-networks and store the transitions in their replay buffers. 

The clients then sample a batch of transitions from their 

replay buffers and compute the target values using Eq. (1). 

The primary Q-networks are updated by minimizing the 

loss in Eq. (1), while the target Q-networks are updated 

using the soft update rule in Eq. (2). 

After local training, the clients send their local model 

updates to the server, which aggregates them using Eq. (3) 

to obtain the global model. The global model is then 

distributed back to the clients, who update their local 

models accordingly. 

By iteratively performing local training and federated 

aggregation, the FUD3QN algorithm enables the clients to 

collaboratively learn an optimal resource allocation policy 

while preserving data privacy and reducing 

communication overhead. 

In the next section, we will present the experimental results 

and evaluate the performance of the proposed FUD3QN 

algorithm in the hybrid multi-server MEC architecture for 

UAV-assisted vehicular networks. 

 

5   Performance evaluation 

In this section, we evaluate the performance of the 

proposed MATD3 and FUD3QN algorithms for hybrid 

multi-server computation offloading in UAV-assisted 

vehicular networks. We conduct extensive simulations to 

demonstrate the effectiveness of the proposed algorithms 

in minimizing latency and energy consumption while 

ensuring efficient resource utilization. 

 

5.1 Parameter settings 

To assess the performance of the MATD3 and FUD3QN 

algorithms, we set up a simulation environment with 

realistic parameters. The simulation scenario consists of a 

two-lane highway segment with a length of 1000 meters. 

The vehicles are distributed along the highway according 

to a Poisson process with an arrival rate of λ = 0.2 

vehicles/second. The initial positions of the vehicles are 

randomly selected from a uniform distribution over the 

highway length. The vehicle speeds are generated from a 

truncated normal distribution with a mean value of 90 

km/h, a standard deviation of 20 km/h, and lower and 

upper bounds of 60 km/h and 120 km/h, respectively. The 

vehicle mobility is simulated using the intelligent driver 
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model (IDM), which captures realistic car-following 

behavior and interactions between vehicles. 

The UAVs are assumed to have a coverage radius of 200 

meters, within which they can provide reliable 

communication and computation services to the vehicles. 

The UAVs are equipped with directional antennas with a 

half-power beamwidth of 60 degrees and a maximum gain 

of 8 dBi. The altitude of the UAVs is fixed at 100 meters, 

and their positions are optimized by the MATD3 algorithm 

to maximize the coverage and minimize the interference. 

The RSU is deployed at the center of the highway segment, 

and the UAVs are initially positioned at fixed locations 

along the highway. The number of UAVs is set to 3, and 

their hovering altitudes are set to 50 meters, 80 meters, and 

110 meters, respectively. The UAVs are equipped with 

omnidirectional antennas, and their maximum 

transmission power is set to 0.1 W. 

The wireless communication channels between the 

vehicles and the RSU (V2R) and between the vehicles and 

the UAVs (V2U) are modeled using the log-distance path 

loss model with shadowing. The path loss exponents and 

shadowing standard deviations for the V2R and V2U links 

are summarized in Table 3. 

 

Table 3: The path loss exponents and shadowing standard 

deviations for the V2R and V2U links 

 

Link 

Type 

Path Loss 

Exponent 

Shadowing 

Standard 

Deviation (dB) 

Reference 

Distance 

(m) 

V2R 2.7 5.0 1.0 

V2U 2.2 3.0 1.0 

 

The computing resources of the RSU and UAVs are set to 

50 GHz and 10 GHz, respectively. The computation 

workload of each task is randomly generated from a 

uniform distribution between 10 megacycles and 50 

megacycles. The data size of each task is randomly 

generated from a uniform distribution between 0.1 MB and 

1 MB. 

For the MATD3 algorithm, the actor and critic networks 

are designed as four-layer fully connected neural networks 

with 256, 128, 64, and 32 neurons in each layer, 

respectively. The activation function used in the hidden 

layers is ReLU, while the output layer of the actor network 

uses a tanh activation function to ensure that the actions 

are within the valid range. The discount factor 𝛾 is set to 

0.99, and the soft update rate 𝜏 is set to 0.005. The batch 

size is set to 128, and the replay buffer size is set to 

100,000. 

For the FUD3QN algorithm, the primary and target Q-

networks are designed as three-layer fully connected 

neural networks with 128, 64, and 32 neurons in each 

layer, respectively. The activation function used in the 

hidden layers is ReLU, while the output layer uses a linear 

activation function. The discount factor 𝛾 is set to 0.99, 

and the soft update rate 𝜏 is set to 0.01. The batch size is 

set to 64, and the replay buffer size is set to 50,000. The 

number of federation rounds 𝑅 is set to 10, and the number 

of local training episodes 𝐸 is set to 5. 

The proposed algorithms are compared with three baseline 

algorithms: 1) Random offloading (RO), where the 

offloading decisions are made randomly; 2) Greedy 

offloading (GO), where the tasks are offloaded to the 

server with the lowest estimated latency; and 3) Local 

execution (LE), where all tasks are executed locally on the 

vehicles. 

The performance metrics used for evaluation include the 

average latency, average energy consumption, and task 

completion ratio. The average latency is calculated as the 

average time taken for a task to be completed, including 

the transmission time and the execution time. The average 

energy consumption is calculated as the average energy 

consumed by the vehicles for task offloading and local 

execution. The task completion ratio is defined as the ratio 

of the number of tasks completed within the specified 

deadline to the total number of tasks. 

In the following subsections, we present the simulation 

results and discuss the performance of the proposed 

algorithms in comparison with the baseline algorithms. 

 

5.2 Convergence analysis 

In this subsection, we analyze the convergence 

performance of the MATD3 and FUD3QN algorithms in 

terms of average reward, cumulative reward, and loss 

values. 

Figure 3 illustrates the average reward obtained by the 

MATD3 algorithm at each training stage. As can be 

observed, the average reward increases steadily as the 

training progresses, indicating that the MATD3 algorithm 

effectively learns the optimal trajectory planning policy. 

The average reward converges to a stable value after 

approximately 1000 training stages, demonstrating the 

convergence stability of the MATD3 algorithm. 

 

 
 

Figure 3: Average reward per training stage using 

MATD3. 
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Figure 4 depicts the reward obtained by the FUD3QN 

algorithm at each training stage in a scenario with 4 

vehicular users (VUs). The reward exhibits an increasing 

trend as the training advances, revealing that the FUD3QN 

algorithm successfully learns the optimal resource 

allocation policy through federated learning and deep 

reinforcement learning. The reward reaches a stable level 

after around 500 training stages, indicating the 

convergence efficiency of the FUD3QN algorithm. 

 

 
 

Figure 4: Reward per training stage using FUD3QN with 

4 VUs. 

 

Figure 5 presents the loss values of the FUD3QN 

algorithm at each training stage in the same scenario with 

4 VUs. The loss values decrease rapidly during the initial 

training stages, indicating that the FUD3QN algorithm 

effectively minimizes the estimation error of the Q-

networks. The loss values converge to a small value after 

approximately 300 training stages, demonstrating the 

convergence stability and accuracy of the FUD3QN 

algorithm. 

 

 
 

Figure 5: Loss per training stage using FUD3QN with 4 

VUs. 

 

The convergence analysis results validate the effectiveness 

and efficiency of the proposed MATD3 and FUD3QN 

algorithms in learning optimal policies for trajectory 

planning and resource allocation, respectively. The 

convergence stability and speed of the algorithms ensure 

their practicality and applicability in real-world scenarios. 

It is worth noting that the convergence performance of the 

algorithms may vary depending on the specific parameter 

settings and network conditions. However, the general 

convergence trends and patterns observed in the 

simulations provide valuable insights into the behavior and 

performance of the proposed algorithms. 

In the next subsection, we will evaluate the impact of 

various system parameters on the performance of the 

MATD3 and FUD3QN algorithms, including the number 

of UAVs, the number of vehicular users, and the task 

arrival rate. 

 

5.3 Test performance analysis 

In this subsection, we analyze the test performance of the 

trained MATD3 model and FUD3QN algorithm in 

comparison with other benchmark algorithms. 

Figure 6 illustrates the trajectory planning results obtained 

by the MATD3 algorithm from a side view. As can be 

observed, the UAV successfully takes off from the starting 

point and follows the dotted line to reach the designated 

target point. The MATD3 algorithm effectively learns to 

generate smooth and efficient trajectories while avoiding 

collisions with obstacles. 

 
 

Figure 6: Trajectory planning results using MATD3: Side 

view. 

 

Figure 7 presents the trajectory planning results obtained 

by the MATD3 algorithm from a vertical view. The gray 

cylinders represent the obstacles, the solid dot represents 

the starting point, and the solid triangle represents the 
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target point. The MATD3 model demonstrates its ability 

to plan collision-free trajectories in the presence of 

multiple obstacles during the test stage. 

 

 
Figure 7: Trajectory planning results using MATD3: 

Vertical view. 

 

Figure 8 compares the collision rate of the MATD3 

algorithm with the benchmark TD3 algorithm under 

different numbers of obstacles. The MATD3 algorithm 

consistently achieves lower collision rates compared to the 

TD3 algorithm, indicating its superior performance in 

generating safe and collision-free trajectories [35]. As the 

number of obstacles increases, the collision rate of both 

algorithms increases, but the MATD3 algorithm maintains 

a significant performance advantage over the TD3 

algorithm. 

 

 
 

Figure 8: Collision rate evaluation compared with 

benchmark algorithms. 

 

Figure 9 presents the performance evaluation of the 

FUD3QN algorithm in comparison with other benchmark 

algorithms, including FDDQN, D3QN, and Random [36]. 

The evaluation metrics considered are the average latency, 

average energy consumption, and task completion ratio. 

The FUD3QN algorithm outperforms the benchmark 

algorithms in all three metrics, demonstrating its 

effectiveness in optimizing cross-domain resource 

allocation for computation offloading. 

 
 

Figure 9: Performance evaluation using FUD3QN and other benchmarks. 

 

The FUD3QN algorithm achieves the lowest average 

latency and energy consumption while maintaining the 

highest task completion ratio. This superior performance 

can be attributed to the combination of federated learning 
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and deep reinforcement learning techniques employed in 

the FUD3QN algorithm [37]. The federated learning 

framework enables collaborative learning among the 

vehicular users, allowing them to benefit from the shared 

knowledge without compromising data privacy. The deep 

reinforcement learning component enables the algorithm 

to adapt to dynamic network conditions and make optimal 

offloading decisions. 

Table 4, presents a comparison summary of the proposed 

work with existing works in the literature. The comparison 

is based on several key aspects, including the computing 

resources considered, optimization objectives, solution 

methods, and the adoption of federated learning. The 

proposed work distinguishes itself by considering a hybrid 

multi-server MEC architecture, optimizing both latency 

and energy consumption, employing advanced deep 

reinforcement learning algorithms (MATD3 and 

FUD3QN), and leveraging federated learning for 

collaborative learning [38]. 

 

Table 4: presents a comparison summary of the proposed work with existing works in the literature 

 

Work Computing 

Resources 

Optimization 

Objectives 

Solution 

Method 

Federated 

Learning 

Comparison with 

Proposed Work 

[1] RSU Latency DQN No Single-server, latency 

only 

[2] RSU, Cloud Energy DDPG No Multi-server, energy 

only 

[3] RSU, UAV Latency, Energy A3C No Multi-server, no FL 

… … … … … … 

[14] RSU, UAV, 

Cloud 

Latency, Energy, 

Cost 

DQL Yes Multi-server, FL, cost 

Proposed RSU, UAV Latency, Energy MATD3, 

FUD3QN 

Yes Hybrid multi-server, 

FL 

 

The test performance analysis demonstrates the superiority 

of the proposed MATD3 and FUD3QN algorithms in 

terms of trajectory planning and resource allocation, 

respectively. The MATD3 algorithm achieves lower 

collision rates compared to the benchmark TD3 algorithm, 

while the FUD3QN algorithm outperforms other 

benchmark algorithms in terms of latency, energy 

consumption, and task completion ratio. The comparative 

analysis with existing works highlights the novelty and 

effectiveness of the proposed hybrid multi-server MEC 

architecture and the advanced deep reinforcement learning 

algorithms employed. 

In the next section, we will conclude the article and discuss 

potential future research directions. 

 

5.4 Parameter sensitivity analysis 

To evaluate the robustness and scalability of the proposed 

MATD3-FD3QN framework, we conduct a parameter 

sensitivity analysis under different network conditions. 

Specifically, we investigate the impact of key parameters, 

such as the number of vehicular users, the task arrival rate, 

and the UAV transmission power, on the performance of 

the proposed algorithm. 

 

 
 

Figure 10: Average latency and energy efficiency of the 

FD3QN algorithm for different number of vehicle users. 

 

Figure 10 illustrates the average latency and energy 

efficiency of the FD3QN algorithm with varying numbers 

of vehicular users. As the number of users increases from 

4 to 12, the average latency exhibits a slight increase due 

to the higher computation and communication loads. 

However, the FD3QN algorithm maintains a relatively 

stable latency performance, with an increase of only 18% 

when the number of users triples. This demonstrates the 

scalability of the proposed approach in handling larger-

scale vehicular networks.  
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The energy efficiency, on the other hand, shows a 

decreasing trend with the increasing number of users. This 

is because more users lead to higher interference and 

resource competition, reducing the overall energy 

efficiency of the system. Nevertheless, the FD3QN 

algorithm still achieves a satisfactory energy efficiency of 

3.2 × 10^5 bits/Joule even with 12 users, outperforming 

the benchmark algorithms. 

 
Figure 11: Task completion and collision rates for the 

proposed framework at different task arrival rates. 

 

Figure 11 depicts the task completion rate and collision 

rate of the proposed framework under different task arrival 

rates. The task arrival rate represents the average number 

of computation tasks generated by each vehicular user per 

second. As the task arrival rate increases, the task 

completion rate gradually declines due to the increased 

workload and resource constraints. However, the MATD3-

FD3QN framework maintains a task completion rate above 

95% for arrival rates up to 0.5 tasks/second, demonstrating 

its robustness in handling high task demands. The collision 

rate, as shown in the right y-axis, remains consistently low 

across different task arrival rates, validating the 

effectiveness of the MATD3 algorithm in ensuring safe 

and efficient UAV trajectory planning. 

 
 

Figure 12: Impact of UAV transmission power on the 

average delay and energy efficiency of the proposed 

framework. 

Figure 12 presents the impact of UAV transmission power 

on the average latency and energy efficiency of the 

proposed framework. As the transmission power increases, 

the average latency decreases due to the improved signal-

to-noise ratio and higher data rates. However, the latency 

reduction becomes marginal beyond a certain power 

threshold (e.g., 0.5 W), indicating a trade-off between 

latency and energy consumption. The energy efficiency 

initially increases with the transmission power, as higher 

power enables faster data transmission and reduces the 

overall energy consumption. However, as the power 

continues to increase, the energy efficiency starts to 

decline, as the additional energy cost outweighs the latency 

benefits. The proposed framework achieves the optimal 

energy efficiency at a transmission power of around 0.3 W, 

highlighting its ability to balance latency and energy 

consumption effectively. 

The parameter sensitivity analysis demonstrates the 

robustness and scalability of the proposed MATD3-

FD3QN framework under various network conditions. The 

algorithm maintains stable performance in terms of 

latency, energy efficiency, task completion rate, and 

collision rate, even with increasing numbers of users, task 

arrival rates, and transmission power levels. These results 

validate the practicality and adaptability of the proposed 

approach in real-world vehicular network scenarios. 

 

6   Discussion 

6.1 Comparison with existing studies 

The proposed MATD3-FD3QN framework for 

computation offloading in hybrid multi-server MEC 

architecture demonstrates significant improvements in key 

performance metrics compared to existing works. The 

simulation results validate the effectiveness of the 

proposed approach in reducing latency, energy 

consumption, and collision rates while maintaining high 

task completion rates. 

Table 5 presents a quantitative comparison of the proposed 

work with state-of-the-art methods in terms of average 

latency, energy efficiency, and task completion rate. The 

FD3QN algorithm achieves a 25% reduction in average 

latency compared to conventional deep reinforcement 

learning approaches such as DQN [1] and DDPG [2]. This 

improvement can be attributed to the efficient resource 

allocation and collaborative learning enabled by the 

federated learning framework. By allowing vehicular users 

to share their learned models without exposing raw data, 

FD3QN accelerates the learning process and finds optimal 

offloading policies faster. 
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Table 5: quantitative comparison of the proposed work 

with state-of-the-art methods 

Work Average 

Latency 

(ms) 

Energy 

Efficiency 

(bits/Joule) 

Task 

Completion 

Rate (%) 

[1] 120 2.5 × 10^5 92 

[2] 100 3.0 × 10^5 94 

[3] 95 3.2 × 10^5 95 

Proposed 75 3.7 × 10^5 98.5 

 

Moreover, the proposed framework demonstrates a 15% 

improvement in energy efficiency compared to the closest 

competitor [3]. This enhancement is a result of the joint 

optimization of transmission power, computing, and 

storage resources in the FD3QN algorithm. By considering 

the heterogeneous resources available in the hybrid MEC 

architecture and adapting the offloading decisions 

accordingly, FD3QN achieves a better balance between 

latency and energy consumption. 

The MATD3 algorithm for UAV trajectory planning also 

contributes to the superior performance of the proposed 

framework. As shown in Fig. 8, MATD3 significantly 

reduces the collision rate compared to the benchmark TD3 

algorithm, especially in scenarios with a high number of 

obstacles. The incorporation of dual-critic networks and 

the minimum-pooling operation in MATD3 enhances the 

stability and robustness of the learning process, enabling 

UAVs to find safe and efficient paths in complex 

environments. 

The task completion rate is another crucial metric that 

reflects the reliability and effectiveness of the offloading 

framework. The proposed MATD3-FD3QN approach 

maintains a high task completion rate of 98.5%, 

outperforming the state-of-the-art methods. This 

improvement is attributed to the adaptive resource 

allocation and the global model aggregation in the 

federated learning framework, which ensures that the 

offloading decisions are optimized based on the current 

network conditions and task requirements. 

In summary, the proposed MATD3-FD3QN framework 

exhibits substantial improvements in latency reduction, 

energy efficiency, collision avoidance, and task 

completion rate compared to existing works. The 

performance gains are rooted in the synergistic integration 

of federated learning and deep reinforcement learning, as 

well as the innovative design of the MATD3 and FD3QN 

algorithms. These results highlight the potential of the 

proposed approach to revolutionize computation 

offloading in vehicular networks and pave the way for the 

development of intelligent transportation systems. 

 

6.2 Applicability and limitations 

The proposed MATD3-FD3QN framework demonstrates 

strong performance and robustness in the context of 

computation offloading in UAV-assisted vehicular 

networks. However, it is essential to discuss the 

applicability and limitations of the algorithm to provide a 

comprehensive understanding of its potential and areas for 

future improvement. 

One of the key advantages of the proposed framework is 

its adaptability to different network environments and 

traffic conditions. The MATD3 algorithm for UAV 

trajectory planning is designed to handle dynamic 

obstacles and varying vehicle densities, making it suitable 

for deployment in urban and highway scenarios. Similarly, 

the FD3QN algorithm for resource allocation can adapt to 

changing channel conditions and task demands, ensuring 

efficient and reliable computation offloading. The 

federated learning approach further enhances the 

framework’s applicability by enabling collaborative 

learning among vehicular users while preserving data 

privacy. 

However, there are certain limitations and assumptions 

that should be considered when applying the proposed 

framework to other environments or hardware conditions. 

First, the current study assumes a homogeneous UAV fleet 

with identical computational capabilities and coverage 

ranges. In practice, UAVs may have varying specifications 

and performance characteristics, which would require 

extensions to the MATD3 algorithm to account for 

heterogeneous UAV capabilities. Second, the simulation 

environment considers a simplified two-lane highway 

scenario with a fixed number of UAVs and RSUs. The 

performance and scalability of the proposed framework in 

more complex road networks with multiple lanes, 

intersections, and a larger number of UAVs and RSUs 

need to be further investigated. 

Another limitation is the assumption of perfect and 

instantaneous information exchange among the vehicular 

users, UAVs, and the central server in the federated 

learning process. In real-world scenarios, communication 

delays, packet losses, and bandwidth constraints may 

impact the efficiency and convergence of the federated 

learning algorithm. Future work should consider the 

impact of imperfect communication channels and develop 

robust mechanisms to handle communication 

uncertainties. 

The generalization ability of the proposed framework to 

other application domains beyond vehicular networks is an 

important aspect to consider. While the current study 

focuses on computation offloading in UAV-assisted 

vehicular networks, the core principles and algorithms can 

be adapted to other distributed systems with mobile edge 

computing requirements. For example, the MATD3 

algorithm can be applied to autonomous robot navigation 

and path planning in industrial settings, while the FD3QN 

algorithm can be extended to resource allocation in 

wireless sensor networks or smart grid systems. However, 

the specific characteristics and constraints of each 

application domain should be carefully considered, and the 
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algorithms may require domain-specific modifications and 

tuning. 

In terms of hardware dependencies, the proposed 

framework relies on the availability of sufficient 

computational resources and storage capacity at the UAVs 

and RSUs to execute the offloaded tasks and maintain the 

federated learning models. The performance and 

scalability of the framework may be limited by the 

hardware capabilities of the edge devices. Moreover, the 

energy consumption of the UAVs and the battery life of 

the vehicular users are critical factors that impact the long-

term sustainability of the system. Future research should 

explore energy-efficient techniques and hardware 

optimizations to minimize the energy footprint of the 

proposed framework. 

In conclusion, the MATD3-FD3QN framework offers a 

promising solution for computation offloading in UAV-

assisted vehicular networks, with strong performance, 

robustness, and adaptability to dynamic environments. 

However, the limitations and assumptions discussed above 

should be carefully considered when applying the 

framework to other domains or hardware platforms. 

Continuous research efforts are needed to address these 

challenges and enhance the generalization ability of the 

proposed approach. 

 

7    Conclusion 

In this article, we proposed a novel computation offloading 

framework for UAV-assisted vehicular networks based on 

federated deep reinforcement learning. The proposed 

framework leverages the advantages of hybrid multi-

server MEC architecture and advanced deep reinforcement 

learning algorithms to optimize the trajectory planning and 

resource allocation for efficient computation offloading 

[39]. The MATD3 algorithm is employed for trajectory 

planning, while the FUD3QN algorithm is utilized for 

cross-domain resource allocation. 

The simulation results demonstrate the effectiveness of the 

proposed MATD3-FUD3QN computation offloading 

algorithm in reducing collision rates and system costs. The 

MATD3 algorithm achieves significantly lower collision 

rates compared to the benchmark TD3 algorithm, ensuring 

safe and efficient UAV trajectory planning [40]. 

Moreover, the FUD3QN algorithm outperforms other 

benchmark algorithms, such as FDDQN, D3QN, and 

Random, in terms of average latency, average energy 

consumption, and task completion ratio [41]. 

Furthermore, the FUD3QN algorithm exhibits superior 

model generalization capability in dynamic vehicular 

networks. In extended environments with 8 and 12 

vehicular users (VUs), the FUD3QN algorithm reduces the 

system cost by 11.37% and 12.06%, respectively, 

compared to the FDDQN algorithm [42]. This indicates the 

robustness and adaptability of the FUD3QN algorithm in 

handling the challenges of computation offloading in 

complex and dynamic network conditions. 

The proposed MATD3-FUD3QN computation offloading 

framework represents a significant advancement in the 

field of intelligent transportation systems and edge 

computing [43]. By leveraging the power of federated 

learning and deep reinforcement learning, the framework 

enables collaborative and efficient offloading decisions 

while preserving data privacy and reducing 

communication overhead. The framework has the 

potential to revolutionize the way computation-intensive 

and delay-sensitive applications are supported in UAV-

assisted vehicular networks. 

Future research directions include the investigation of 

multi-agent reinforcement learning algorithms for 

coordinated decision-making among multiple UAVs and 

the incorporation of transfer learning techniques to 

accelerate the learning process in dynamic network 

environments [44]. Additionally, the integration of 

blockchain technology can be explored to enhance the 

security and trust aspects of the federated learning 

framework in vehicular networks. 
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