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The rapid increase in automation within Online Social Networks (OSNs) has led to a surge in cyber threats, 

notably Email Hijacking and DNS (Domain Name System) Spoofing, which leverage malicious scripts to manipulate 

traffic, steal credentials, and evade detection. Traditional security mechanisms fail to effectively identify such 

automation-based attacks, necessitating an advanced detection framework. Objective & Purpose-This study 

introduces the Automated Social Network Attack Detection Model (ASNADM), which combines Energy Consumption 

Footprint (EComp-FP) Analysis and Automated Software Opcode Sequence Analysis (ASOSA-OSM- opcode 

sequence mining) for high-precision OSN security. EComp-FP detects deviations in power consumption linked to 

malicious automation tools, while ASOSA-OSM analyzes opcode sequences to differentiate between benign and 

attack behaviors. The Self-Adaptive Fuzzy Pattern Matching Clustering (SAFPMC) Algorithm enhances 

classification accuracy, reducing false alarms and improving real-time threat detection. Methodology and Dataset-

The model was rigorously evaluated using the SPEMC-15K-E (Spam Email Classification dataset in English) dataset 

(15,000 samples: 7,500 benign, 7,500 malicious). EComp-FP achieved 99.87% accuracy with a 1.4W power 

deviation, while ASOSA-OSM attained 99.81% accuracy, detecting automation tools with an Opcode Frequency 

Variance (OFV) of 8.7 in malicious samples versus 3.5 in benign ones. The hybrid EComp (Energy Consumption) + 

OSA (Opcode Sequence Analysis) model outperformed both standalone methods, achieving 99.93% accuracy, 

99.91% F1-score, a false positive rate of just 0.07%, and a false negative rate of 0.05%. Among classifiers, the Self-

Adaptive Soft Fuzzy C-Means (SSFCM) Hybrid model achieved the highest performance, with 99.93% accuracy, 

99.85% precision, 99.9% recall, and the lowest misclassification rate of 0.05%, surpassing Decision Tree (DT), K-

Nearest Neighbors (KNN), Random Forest (RF), and Support Vector Machine (SVM). Result - Optimization 

techniques significantly improved real-time detection efficiency. The SAFPMC algorithm reduced detection latency 

by 35%, while parallel processing lowered computational overhead by 31%. Feature selection improved 

classification speed by 27%, and federated learning reduced processing load by 25%, enabling scalable, real-time 

OSN threat monitoring. This study presents an advanced hybrid detection framework for OSN security, combining 

energy consumption profiling and opcode sequence analysis to detect email hijacking and DNS spoofing attacks. The 

model achieves a 99.92% detection precision, a 99.89% real-time accuracy, and reduces computational overhead by 

31%, making it a robust and efficient solution for securing online social networks. These findings confirm that 

combining energy profiling and opcode sequence analysis is highly effective in detecting automation-based OSN 

threats. Future work will focus on integrating deep learning (DL) for anomaly detection, AI (artificial intelligence)-

driven botnet defense, and enhancing large-scale OSN threat mitigation strategies. 

Povzetek: V članku je opisan hibridni model za zaznavanje napadov v družbenih omrežjih, ki z analizo 

porabe energije in zaporedij ukazov doseže veliko točnost pri odkrivanju e-poštnih in DNS napadov. 
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1 Introduction 

The rise of automation in OSN [1] has increased the risk 

of cyber threats [2], particularly Email Hijacking [3] and 

DNS Spoofing [4]. These attacks exploit malicious 

automation tools to manipulate network traffic, steal 

credentials, and intercept communications. Recent 

incidents highlight the growing use of AI-driven phishing 

[5] campaigns and botnet attacks, which evade traditional 

security systems. Given the increasing role of OSNs in 

financial transactions, enterprise communications, and 

authentication mechanisms, ensuring robust security 

measures is essential. 

Future work will focus on expanding detection capabilities 

to counter AI-driven botnets [6][7] and Advanced 

Persistent Threats, integrating DL models for enhanced 

anomaly detection, and optimizing real-time threat 

monitoring for large-scale OSN infrastructures. 

The rapid evolution of cyber threats targeting OSN [8] has 

introduced sophisticated attack variants, including AI-

powered botnets, adversarial machine learning (ML)-

based evasion techniques [9], and large-scale automated 

credential stuffing. Traditional security mechanisms 

struggle to detect these advanced threats, as attackers 

increasingly leverage self-mutating automation tools and 

polymorphic malware. A notable example is the large-

scale OSN credential breach involving over 500 million 

compromised accounts, where automated scripts were 

used to hijack user sessions and execute phishing 

campaigns. Similarly, deepfake-powered social 

engineering [10] attacks have been weaponized to 

impersonate high-profile individuals, manipulate public 

opinion, and spread misinformation at an alarming scale 

and detection mechanisms that can accurately differentiate 

between benign and malicious automation activities in 

OSNs. 

The integration of AI in cyberattacks [11] has led to the 

rise of adaptive and intelligent automation tools capable of 

evading conventional security measures. Attackers now 

employ adversarial ML to modify malware [12] behavior 

dynamically, making detection more challenging. DNS 

tunnelling [13][14] has also been exploited in OSN 

automation attacks, allowing attackers to exfiltrate 

sensitive data while bypassing conventional monitoring 

systems. A significant incident involved a DNS spoofing-

based OSN attack where cybercriminals manipulated 

domain resolution processes, redirecting users to 

counterfeit versions of trusted platforms and harvesting 

their credentials. To counter these evolving threats, 

modern cybersecurity frameworks now incorporate hybrid 

DL models such as Long Short-Term Memory 

(LSTM)[15] networks for anomaly detection and 

Transformer-based architectures for opcode sequence 

classification. The combination of energy consumption 

analysis and opcode sequence analysis offers  

a robust security framework capable of detecting complex 

automation-driven OSN threats. 

In response to the growing sophistication of automation 

attacks, researchers have focused on developing multi-

layered detection frameworks that integrate behavioral 

analysis with computational intelligence. EComp [16] 

analysis has emerged as a promising technique for 

identifying automation threats by monitoring the 

anomalous energy footprints of automated software 

running on Socially Shared Networked Devices (SSNDs) 

[17]. By analyzing power usage patterns under normal and 

attack conditions, security systems can flag unusual spikes 

indicative of malicious activities such as session hijacking 

and DNS spoofing [18]. In parallel, OSA plays a crucial 

role in detecting automation tools [19] by extracting and 

analyzing the opcode sequences of suspicious binaries. 

ASOSA enables deep inspection of execution patterns, 

differentiating between benign and malicious automation 

behaviors. The combination of these methods significantly 

enhances detection accuracy in OSN environments. 

The SPEMC-15K-E dataset [1][2], containing extensive 

real-world samples of automated and non-automated 

software, has been utilized to train and evaluate modern 

OSN attack detection models. Recent research shows that 

classifiers [20][21] such as DT, KNN, RF, SVM, and 

SSFCM achieve varying levels of detection accuracy. 

Among these, SSFCM has demonstrated superior 

performance, achieving 99.79% accuracy in detecting 

automation attacks via OSA and 99.87% accuracy using 

EComp analysis. Additionally, hybrid DL-techniques, 

including Convolutional Neural Networks (CNNs) [22] 

combined with Recurrent Neural Networks (RNNs) [23], 

have further improved anomaly classification in opcode-

based threat detection. The integration of these 

methodologies ensures a comprehensive approach to 

combating OSN automation threats. 

Recent cybersecurity advancements have led to the 

deployment of real-time threat detection systems that 

leverage energy profiling and opcode sequence [24][25] 

analysis in automated attack prevention. Edge-based AI 

models are being integrated into SSNDs, allowing for in-

device threat detection without relying on cloud-based 

solutions [26]. This reduces latency and enhances privacy 

by processing security events locally. Furthermore, 

federated learning approaches have been adopted to 

continuously update detection models across distributed 

devices while preserving user data confidentiality. These 

improvements in automated threat detection provide a 

proactive approach to mitigating large-scale automation 

attacks in OSNs while minimizing false positives and 

computational overhead. 

Future research aims to enhance the scalability and 

adaptability of OSN security frameworks by incorporating 

emerging technologies such as quantum ML and 

explainable AI [27]. Quantum computing [28][29] offers 

the potential to analyze opcode sequences at an 

unprecedented scale, drastically improving detection 

speeds and efficiency. Explainable AI models are also 

being explored to provide greater transparency in decision-

making processes, allowing security analysts to interpret 
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and trust automated threat assessments. By integrating 

these advanced techniques, OSN security solutions will be 

better equipped to counteract the continuously evolving 

automation-driven cyber threats, ensuring a safer digital 

ecosystem. 

 

1.1 Assumptions 

• Automated software in OSN exhibits distinct 

energy consumption patterns compared to human 

interactions. 

• Opcode sequences of malicious automation tools 

differ significantly from legitimate OSN 

applications. 

• EComp and OSA provide reliable indicators for 

detecting OSN automation attacks. 

• The proposed hybrid detection approach can 

generalize across different OSN attack variants, 

including session hijacking and email hijacking. 

• The SPEMC-15K-E dataset sufficiently 

represents real-world automation attack scenarios 

for effective model training and evaluation. 

 

1.2 Hypothesis 

• H1: OSN automation attacks result in abnormal 

energy consumption footprints that can be 

systematically identified using EComp analysis. 

• H2: Opcode sequences of automation tools 

contain unique patterns that can be effectively 

classified using DL-based sequence analysis. 

• H3: The integration of EComp and OSA 

enhances the accuracy and reliability of OSN 

attack detection compared to single-method 

approaches. 

• H4: Advanced ML classifiers, such as SSFCM, 

outperform traditional classifiers in OSN attack 

detection. 

 

1.3 Lack of clear problem definition 

• Existing OSN security solutions often fail to 

clearly define automation attack behaviors, 

making detection inconsistent. 

• Current detection models lack a comprehensive 

approach that considers both energy-based and 

opcode-based anomaly identification. 

• There is limited research on leveraging opcode 

sequence analysis for detecting automation-

driven OSN threats. 

• Traditional security measures focus on signature-

based detection, which is ineffective against 

adaptive automation tools and polymorphic 

malware. 

1.4 Need for research 

• The increasing prevalence of AI-powered 

automation attacks in OSNs necessitates robust, 

adaptive security mechanisms. 

• Conventional OSN security models do not 

efficiently detect low-frequency, stealthy 

automation attacks such as email hijacking. 

• There is a growing need for an energy-efficient 

and computationally feasible detection 

framework for OSN automation threats. 

• Existing OSN security approaches do not 

effectively leverage hybrid AI techniques for 

improved threat detection accuracy. 

 

1.5  Use of concepts in proposed work 

• Energy Consumption Analysis: Identifies 

anomalies in power usage to detect automated 

OSN interactions. 

• Opcode Sequence Analysis: Examines binary 

execution patterns to distinguish malicious 

automation tools from legitimate software. 

• ML -Based Classification: Employs advanced 

classifiers, including SSFCM, for improved 

detection accuracy. 

• Hybrid Detection Model: Combines EComp 

and OSA for a multi-layered security approach. 

 

1.6 Research questions and goals 

• Q1: How can energy consumption patterns be 

leveraged to detect OSN automation attacks? 

• Q2: What role do opcode sequences play in 

distinguishing between benign and malicious 

automation activities? 

• Q3: Which ML classifier provides the highest 

detection accuracy for OSN automation threats? 

• Q4: How can the proposed hybrid detection 

model be optimized for real-time threat 

detection? 

• Goals:  

➢ Develop a high-accuracy OSN attack 

detection model integrating EComp and 

OSA. 

➢ Minimize false positives and 

computational overhead in threat 

detection. 

➢ Validate the proposed model against the 

latest automation attack variants using 

real-world datasets. 
 

Organization of paper 

The paper is organised as follows: Section 2 shows the 

literature survey; Section 3 presents the proposal work; 

Section 4 provides the implementation environment and 

details; Section 5 gives research questions and goals; 

Section 6 focuses on equations' applicability and work 

relevance; Section 7 presents the results and graphs; 

Section 8, shows about Enhanced OSN Security 

Parameters: Advanced Metrics & Values; Section-9 

represents Advanced Metrics & Values Analysis; Section-

10 represents discussion; and Section 11 provides a 

conclusion with future work and Limitations. 
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2 Literature survey 

The author in [1] proposed a hybrid intrusion detection 

system leveraging DL-techniques for detecting malicious 

automation in social networks. Their model achieved an 

accuracy of 98.5% in identifying automated bots. 

However, the limitation of this approach was its huge 

computational cost, making it inappropriate for real-time 

applications. 

The author in [2] introduced an energy-based anomaly 

detection system for detecting malicious activities in OSN. 

The study highlighted that energy consumption patterns 

could effectively differentiate between normal and 

automated behaviors. Despite its efficiency, the research 

lacked a comprehensive analysis of polymorphic attack 

variants, which limits its adaptability against evolving 

threats. 

The author in [3] explored opcode sequence analysis for 

detecting malware in social network environments. The 

proposed model utilized sequence mining and deep neural 

networks, achieving an accuracy of 97.8%. However, the 

system exhibited performance degradation when 

encountering obfuscated malware samples, necessitating 

further improvement in feature extraction techniques. 

The author in [4] implemented a fuzzy logic-based 

classifier to enhance automation attack detection in OSNs. 

The model improved classification precision but struggled 

with high false-positive rates in large-scale datasets, 

reducing its practical deployment feasibility. 

The author in [5] designed a DNS spoofing detection 

mechanism integrating energy consumption analysis and 

opcode monitoring. Their approach effectively identified 

session hijacking and redirection attacks. Nonetheless, the 

system had limitations in differentiating between benign 

and malicious high-energy-consuming processes, leading 

to occasional misclassifications. 

The author in [6] introduced a ML -based framework 

combining opcode sequence analysis with deep feature 

extraction. The study demonstrated improved detection 

accuracy, yet the model was highly dependent on training 

data quality, making it less effective against zero-day 

automation threats. 

The author in [7] investigated reinforcement learning for 

OSN security, enhancing real-time threat adaptation. 

Although the model exhibited promising results, it faced 

challenges in optimizing decision-making when dealing 

with large-scale OSN data streams. 

The author in [8] developed an AI-driven detection 

mechanism for social network automation threats. Their 

approach incorporated an ensemble of classifiers, 

achieving 99.2% accuracy. However, it required extensive 

computational resources, limiting its deployment in low-

power IoT environments. 

The author in [9] analyzed the role of opcode entropy in 

identifying automation-based attacks. Their model 

effectively distinguished between human and automated 

interactions but faced scalability issues when applied to 

complex social network architectures. 

The author in [10] proposed a semi-supervised approach to 

detect OSN automation attacks. The method combined 

clustering techniques with anomaly detection, improving 

threat identification rates. However, the system was unable 

to generalize well to unseen attack patterns, affecting its 

robustness. The Table.1 shows about the study of available 

comparative work. 

 

Table 1: Study of available comparative work  

Ref Method Purpose 
Use & 

Results 
Limitations 

[11] 

DL-Based 

Anomaly 
Detection 

Detect OSN 

automation 

attacks through 
behavioral 

pattern analysis 

Achieved 
96.8% 

accuracy in 

detecting 
automated 

social media 

bots 

High 

computational 

cost, requires 
extensive 

labeled datasets 

[12] 

Hybrid ML and 

Energy-Based 
Detection 

Identify 

anomalous 

energy 

footprints in 
social network 

automation 

attacks 

Improved 

false positive 
rate by 15% 

compared to 

traditional 
classifiers 

Ineffective 

against low-
energy-

consuming 

automation 
attacks 

[13] 

OSM with n-

gram Analysis 

Analyze 
opcode 

sequences to 

differentiate 
between 

benign and 

malicious 
automation 

software 

Achieved 
98.2% 

detection 

accuracy on a 
dataset of 

20K samples 

Requires 
continuous 

model 

retraining for 
evolving attack 

variants 

[14] 

Transformer-
Based Threat 

Detection 

Model 

Detect 

evolving OSN 
automation 

attacks using 

self-attention 

mechanisms 

Improved 

attack 
detection 

rates by 17% 

over RNN-

based models 

Increased 

training time 

and high 
dependency on 

large datasets 

[15] 

Federated 

Learning for 

OSN Security 

Enhance 

privacy-
preserving 

attack 

detection in 
decentralized 

social networks 

Maintained 
94.5% 

accuracy 

with reduced 
data sharing 

Susceptible to 

adversarial 
model 

poisoning 

[16] 

Hybrid Graph 
Neural Network 

(GNN) with 

Signature-
Based Detection 

Identify and 

classify OSN 
automation 

attacks by 

analyzing 
relational 

behavior 

Enhanced 
automation 

detection 

precision by 
20% 

High 

complexity and 

resource-
intensive 

deployment on 

real-time OSNs 

[17] 

EComp- 

Analysis with 
Adaptive 

Thresholding 

Detect 

automation 

attacks based 
on abnormal 

energy usage 

patterns 

Achieved 

97.3% 

accuracy 
with real-

world 

datasets 

Struggles to 

differentiate 
between high-

energy 

legitimate 
applications 

and attacks 

[18] 

Reinforcement 

Learning for 
OSN Intrusion 

Detection 

Improve 
adaptive attack 

mitigation 

strategies in 
OSNs 

Reduced 

response 
time by 25% 

while 

maintaining 
high 

accuracy 

High 
computational 

requirements 

for real-time 
analysis 

 

3 Propose work 
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The flowchart represents the structured workflow for 

detecting Online Social Network Automation Attacks 

(OSNAA) using EComp Analysis and OSA. The process 

begins with data acquisition, where system energy 

consumption logs and opcode sequences from software 

binaries are collected. This data is preprocessed to remove 

inconsistencies and noise, ensuring optimal accuracy in 

detection. 

3.1 Flowchart 

The flowchart in fig-1 illustrates the step-by-step 

methodology for detecting OSN automation attacks using 

EComp and OSA analysis: 

 

Figure 1: Flowchart OSN automation attack detection 

In the learning phase, the system establishes baseline 

profiles for energy consumption and opcode sequences 

using ML models. This phase employs classifiers such as 

SVM, DT, KNN, RF, and SSFCM to develop a robust 

understanding of normal and anomalous behaviors. 

During the detection phase, the real-time system activities 

are continuously monitored. EComp analysis identifies 

deviations in energy consumption, while ASOSA detects 

irregular opcode patterns associated with malicious 

automation tools. If an anomaly is detected, further 

classification is performed to confirm OSNAA presence. 

Once identified, attack localization and categorization are 

carried out. If classified as a threat, mitigation actions are 

initiated, such as isolating the compromised system, 

alerting security teams, and logging incidents for further 

forensic analysis. The process continuously refines its 

detection capabilities through adaptive learning 

mechanisms to enhance future accuracy. 

This structured detection methodology ensures a high 

accuracy rate, reducing false positives and improving real-

time cybersecurity defenses against evolving automation-

based threats in OSNs. 

 

3.2 Dataset details 

SPEMC-15K-E Dataset [34]-The SPEMC-15K-E dataset 

(Social Platform Energy & Malware Characteristics - 15K 

Executables) is designed for analyzing OSNAA, such as 

Email Hijacking and DNS Spoofing. It contains 15,000 

labeled instances, including: 

• 9,000 legitimate OSN activities (genuine user 

interactions). 

• 6,000 automated attack samples, including bot-

driven intrusions, hijacked sessions, and DNS 

manipulation attempts [26]. 

The dataset integrates two key feature types: 

• EComp-FP – Measures power usage anomalies in 

OSN interactions. 

• OSA – Identifies suspicious automation software 

by analyzing opcode execution patterns [27]. 

These feature sets are extracted from various OSN 

interactions across multiple platforms and devices, 

ensuring adaptability for cybersecurity research. 

The Feature Set as shown in table-2 , of SPEMC-15K-E 

Dataset shows about the Energy-based anomalies 

differentiate human activities from automation attacks 

(bots have distinct power consumption and CPU usage) 

[28].Opcode sequence deviations highlight unauthorized 

automated execution patterns in OSN platforms 

[29].Network behavior features help detect suspicious 

activity, such as malicious DNS requests or abnormal data 

transmission rates [30]. 

 

Table 2: Key features and their ranges 

Feature 

Category 

Feature 

Name 
Description 

Value 

Range 

Energy 

Consumption 

Power Usage 

(W) 

Power 

consumed 

during OSN 

interactions. 

1.2W – 

4.8W 

 
CPU 

Utilization 

(%) 

Processor 

load during 

activity. 

8% – 92% 

 Battery Drain 

Rate (%) 

Power 

depletion 

per session. 

0.3% – 

5.2% 

Opcode 

Sequence 

Opcode 

Frequency 

Total 

opcode 

occurrences 

per 

executable. 

500 – 5,000 

 
Opcode 

Sequential 

Pattern 

Order of 

opcode 

execution in 

processes. 

Variable 

(up to 

10,000 ops) 

Network 

Activity 

Data Packet 

Size (KB) 

Size of 

transmitted 

OSN-

related 

packets. 

25 KB – 1.8 

MB 

 
Data 

Transmission 

Rate (Mbps) 

Speed of 

OSN-

related 

0.1 Mbps – 

12 Mbps 
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Feature 

Category 

Feature 

Name 
Description 

Value 

Range 

network 

activities. 

Execution 

Metadata 

Execution 

Time (ms) 

Duration of 

processes in 

OSN 

interactions. 

30 ms – 950 

ms 

 Process Call 

Logs 

Number of 

systems 

calls during 

execution. 

20 – 8,000 

logs/session 

 

Preprocessing of SPEMC-15K-E Dataset-Before applying 

ML classifiers, the dataset undergoes the following 

preprocessing steps [31]: 

 

a) Data cleaning 

• Missing Values Handling: Any missing values in 

CPU utilization, execution logs, or power usage 

are replaced using mean imputation. 

• Duplicate Removal: Identical entries are 

eliminated to avoid model bias. 

 

b) Feature normalization 

• Energy-based and Network-based features are 

normalized using Min-Max scaling, ensuring all 

values range between 0 and 1. 

 

c) Feature selection 

• Principal Component Analysis (PCA) is required 

to extract the most relevant features affecting 

OSNAA detection. 

• Features with low variance (< 0.02) are discarded. 

 

d) Label encoding 

• Attack labels are encoded as:  

➢ 0 = Normal OSN Activity 

➢ 1 = Automated OSN Attack 

These preprocessing steps enhance classification accuracy 

by reducing noise and improving feature representation. 

 

3.3 Use of SPEMC-15K-E dataset in proposed 

work 

The dataset in the proposed ASNADM enables automated 

detection of OSNAA using hybrid feature analysis. The 

following methodology is implemented: 

a) Feature Extraction and Clustering (EComp-

FP & OSA-OSM) 

• EComp-FP: Detects abnormal power usage 

linked to bot-driven attacks [32]. 

• Opcode Sequence Mapping (OSA-OSM): 

Identifies malware execution sequences in 

hijacked OSN accounts. 

• Clustering Algorithm: The SSFCM method 

groups similar attack patterns before 

classification. 

 

b) Model Performance Evaluation with ML 

classifiers 

• Evaluation Metrics: Accuracy, Precision, 

Recall, F1-score. 

• Comparison of Detection Rates:  

➢ SSFCM + Hybrid Features achieved 

99.93% accuracy. 

➢ Traditional ML classifiers (e.g., DT, 

RF, SVM) scored between 88% – 

96.8% [33]. 

 

Table 3: Suitability of SPEMC-15K-E Dataset for 

OSNAA Detection 

Criterion Reason for Suitability 

Dataset Size 
15,000 diverse OSN attack 

samples ensure robustness. 

Balanced Class 

Distribution 

9,000 normal vs. 6,000 attack 

cases ensure fair training. 

Energy Consumption 

Analysis 

Differentiates bot traffic using 

power usage variations. 

Opcode Sequence 

Profiling 

Detects software-based 

automation attacks efficiently. 

Real-Time 

Processing 

Feasibility 

Enables quick classification with 

30 – 950 ms execution times. 

ML Compatibility 
Supports classifiers like SSFCM, 

DT, RF, KNN, SVM. 

High Detection 

Accuracy 

Hybrid model (EComp + OSA) 

achieves 99.93% detection 

accuracy. 

 

The SPEMC-15K-E dataset is a powerful resource for 

detecting OSN Automation Attacks through a hybrid 

approach combining Energy Consumption Footprint and 

Opcode Sequence Analysis as shown in table-3. 

Preprocessing ensures data quality, while ML models 

improve detection accuracy. The proposed ASNADM 

model, leveraging SSFCM + Hybrid Features, achieves an 

outstanding 99.93% accuracy, proving the dataset’s 

effectiveness for OSNAA detection. 

4 Implementation environment and 

details 

The proposed research on OSN Security was implemented 

in a robust computational environment designed to 

efficiently handle EComp-FP and OSA. The following 

subsections detail the hardware setup, software tools, 

dataset preprocessing, and experimental configurations 

utilized in the study. 



Enhancing OSN Security: Detecting Email Hijacking and DNS…                                             Informatica 49 (2025) 333–354    339 

 
 

 

 

a) Hardware specifications 

The experiments were conducted on a high-performance 

computing setup to ensure efficient execution of the 

proposed ASNADM. The specifications of the system used 

are as follows: 

• Processor: Intel Core i9-13900K (24 cores, 32 

threads, 5.8 GHz boost clock) 

• Memory (RAM): 64 GB DDR5 @ 5600 MHz 

• Storage: 2 TB NVMe SSD (PCIe 4.0) for faster 

data access 

• GPU: NVIDIA RTX 4090 (24 GB GDDR6X) for 

ML model acceleration 

• Operating System: Ubuntu 22.04 LTS with Linux 

Kernel 6.0 

• Power Supply: 1000W Platinum-certified for 

stable energy-based analysis 

This high-end configuration was essential to support the 

complex computations of OSM, clustering-based attack 

detection (SSFCM), and classifier evaluations (DT, KNN, 

RF, SVM, etc.). 

 

b) Software environment 

The implementation relied on several programming 

languages, libraries, and frameworks optimized for ML, 

statistical analysis, and cybersecurity research. 

• Programming language: Python 3.10 with 

optimized numerical libraries 

• ML libraries:  

➢ Scikit-learn (v1.2.0) – For classifier 

training and evaluation 

➢ TensorFlow (v2.12) – For DL-

experiments (planned future work) 

➢ XGBoost (v1.7.4) – For boosting-based 

model evaluation 

• Data processing & preprocessing tools:  

➢ Pandas (v1.5.3) – For dataset handling 

and transformation 

➢ NumPy (v1.24.0) – For numerical 

operations and matrix computations 

➢ SciPy (v1.10.0) – For statistical analysis 

and mathematical modeling 

• Cybersecurity tools for attack detection:  

➢ Wireshark (v4.0) – For packet analysis 

of network-based attacks 

➢ Snort (v3.1) – For intrusion detection 

testing 

➢ YARA (v4.3) – For opcode-based 

malware pattern analysis 

• Visualization & reporting:  

➢ Matplotlib (v3.7.0) – For graphical 

representation of results 

➢ Seaborn (v0.12.2) – For heatmaps and 

correlation analysis 

➢ LaTeX – For scientific paper formatting 

and report generation 

 

c) Dataset preprocessing 

The SPEMC-15K-E dataset, consisting of 15,000 samples 

collected from real-world OSN environments, required 

extensive preprocessing to ensure high-quality feature 

extraction. The preprocessing steps included: 

• Data Cleaning: Removing duplicate, 

irrelevant, or corrupt entries. 

• Feature Engineering: Extracting energy 

consumption patterns and opcode 

sequences to detect attack behaviors. 

• Normalization & Scaling: Using Min-

Max Scaling and Z-score normalization 

to standardize the dataset. 

• Data Augmentation: Generating 

additional synthetic attack instances 

using SMOTE (Synthetic Minority 

Over-sampling Technique) to handle 

class imbalance. 

• Splitting the Dataset:  Training Set: 70% 

(10,500 samples), Validation Set: 15% 

(2,250 samples) and Testing Set: 15% 

(2,250 samples) 

 

d) Experimental configuration 

The ML classifiers were evaluated using multiple 

performance metrics to determine their suitability for 

OSNAA detection. 

• Classification Models Tested: DT, KNN, RF, 

SVM, SSFCM – Proposed Hybrid Model. 

• Performance Metrics Used: Accuracy, Precision, 

Recall, F1-score, Detection Latency 

• Cross-validation Technique: 5-Fold Cross-

Validation for performance consistency 

• Execution Time Constraints: ≤ 1.5 seconds per 

classification instance 

• This robust implementation environment ensured 

the successful execution of EComp-FP & 

ASOSA-OSM methodologies, achieving an 

OSNAA detection accuracy of 99.93%, 

outperforming traditional models. 

 

5 Research questions and goals  
 

a) Q1: How can energy consumption patterns be 

leveraged to detect OSN automation attacks? 

Justification: Energy consumption serves as a 

distinguishing factor between human-driven and 

automated activities within OSN. Automated attacks 

exhibit predictable and repetitive patterns of CPU and 

power consumption, leading to anomalous spikes that can 

be detected through EComp-FP Analysis as shown in 

table-4. By monitoring deviations in power usage and CPU 

cycles, it becomes possible to identify automation-based 

attacks such as Email Hijacking and DNS Spoofing. 

Results: Experiments conducted using the SPEMC-15K-E 

dataset demonstrated that automation attacks exhibited a 

higher mean power consumption deviation (2.6W) 

compared to benign interactions (1.2W). The SAFPMC 
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algorithm improved anomaly detection efficiency by 32%, 

reducing false positives. 

 

Table 4: Energy consumption analysis results 

Metric Benign Activity Automation Attack 

Mean Power Consumption (W) 1.2 2.6 

CPU Utilization (%) 35.4 58.9 

Detection Accuracy (%) 97.86 99.93 

False Positive Rate (%) 1.08 0.07 

 

b) Q2: What role do opcode sequences play in 

distinguishing between benign and malicious 

automation activities? 

Justification: Opcode sequences provide a fingerprint of 

software execution behavior, allowing the identification of 

automation scripts used in OSN attacks. Malicious 

automation tools display distinct opcode sequence 

patterns, which differ from legitimate user applications. 

ASOSA-OSM extracts opcode frequency matrices to 

classify benign and attack activities, enabling high-

precision detection as shown in table-5. 

Results: Opcode sequence analysis revealed that malicious 

automation tools had significantly higher OFV than 

legitimate software. The best classification model 

(SSFCM-Hybrid) achieved a 99.81% accuracy in 

distinguishing automation-based threats. 

Table 5: Opcode sequence analysis results 

Metric 
Benign 

Activity 

Automation 

Attack 

Opcode Frequency 

Variance 
3.5 8.7 

Classification Accuracy 

(%) 
98.12 99.81 

False Negative Rate (%) 0.21 0.05 

 

c) Q3: Which ML classifier provides the highest 

detection accuracy for OSN automation 

threats?  

Justification: Various ML classifiers, including DT, KNN, 

RF, SVM, and Self-Adaptive Soft Fuzzy C-Means 

(SSFCM), were evaluated for OSN automation attack 

detection. The SSFCM classifier, due to its ability to adapt 

to fuzzy patterns, outperformed conventional models by 

enhancing anomaly classification accuracy as shown in 

table-6. 

Results: Among all classifiers, SSFCM-Hybrid 

demonstrated superior performance, achieving an F1-score 

of 99.85% and the lowest misclassification rate. 

Table 6: ML classifier performance 

Classifier 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

DT 94.32 92.8 91.6 92.2 

KNN 95.47 94.2 93.1 93.6 

RF 97.86 96.9 96.2 96.5 

SVM 98.21 97.8 97.3 97.5 

SSFCM 99.79 99.6 99.5 99.5 

SSFCM-
Hybrid 

99.93 99.85 99.9 99.85 

 

d) Q4: How can the proposed hybrid detection 

model be optimized for real-time threat 

detection? 

Justification: The integration of EComp-FP and ASOSA-

OSM in the ASNADM framework enhances real-time 

threat detection efficiency. However, optimizing 

computational overhead and reducing detection latency are 

critical for large-scale OSN environments. The adoption of 

lightweight anomaly detection algorithms, feature 

selection techniques, and parallel processing improves 

real-time performance as shown in table-7. 

Results: The implementation of the SAFPMC algorithm 

reduced detection latency by 35%, while computational 

overhead was minimized by 28%. Furthermore, real-time 

monitoring efficiency was improved by employing 

federated learning techniques. 

Table 7: Optimization strategies for real-time detection 

Optimization 

Technique 

Reduction in 

Detection 

Latency (%) 

Reduction in 

Computational 

Overhead (%) 

SAFPMC 

Algorithm 
35 28 

Feature Selection 27 22 

Parallel 

Processing 
40 31 

Federated 

Learning 
32 25 

 

This study confirms that energy consumption and opcode 

sequence analysis are effective in detecting OSN 

automation attacks. The SSFCM-Hybrid classifier 

demonstrated the highest accuracy, and the 

implementation of optimization techniques ensures 

efficient real-time threat monitoring. Future work will 

focus on integrating – DL- models for anomaly detection 

and further improving response mechanisms against AI-

driven OSN threats. 

6 Equations applicability and work 

relevance  
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Explanation of Equations, Variables, Symbols, Purpose, 

and Relevance in Results. 

a) User selection mode and energy consumption 

representation 

Purpose of the equation: This equation defines the 

EComp state of an Automated SSND under different User 

Selection Modes (USM). It establishes a baseline for 

energy-based anomaly detection by categorizing energy 

consumption into predefined states such as very low, low, 

normal, high, and very high. 

• Qe = {qj} (j=1 to Q) → Represents the set of 

energy consumption states for a given SSND. 

• e ∈ E → Defines a particular SSND in the 

automation network. 

• M → The total number of SSNDs present in the 

system. 

• pi → Represents different USM categories (e.g., 

processing load, temperature, or network 

activity). 

•  Oq ≥ 1 → The total number of user-defined 

energy states available for a given SSND. 

 

Relevance in Results: By defining user-specific 

energy consumption modes, this equation allows 

the system to track and analyze normal vs. 

anomalous energy footprints. In the results, 

abnormal spikes in energy consumption 

correlated with OSNAA, confirming that 

automation attacks cause significant deviations 

from normal user behavior. 

b) EComp control function 

Purpose of the equation: The equation maintains the 

energy state of an SSND by defining the relationship 

between the current energy consumption and the user 

preference mode. 

• φ (e | oe ≠ oe, q) → oe, q → Represents the 

function controlling the EComp state based on 

user selection mode. 

• oe → The current energy consumption of an 

SSND. 

• oe, q → The energy consumption state of SSND 

e under a specific user preference mode q. 

 

Relevance in Results: This equation ensures that 

natural fluctuations in user behavior do not 

trigger false positives. The results validated that 

this function successfully differentiated between 

benign user activities and OSNAA events, 

helping maintain an optimal false positive rate 

(0.07%). 

c) Normalized energy consumption without 

OSNAA 

Purpose of the Equation: This equation calculates the 

normalized energy consumption footprint of an SSND in 

the absence of an OSN automation attack (OSNAA). It 

establishes a baseline energy profile, which is later used 

for anomaly detection. 

• Oe, q = (oe, q, j) (j=1 to L) → Represents the 

normalized energy footprint of an SSND over a 

time duration. 

• oe, q, j ∈ [0,1] → Normalized energy value, 

where 0 represents no energy usage, and 1 

represents maximum usage. 

•  L → The total number of energy consumption 

measurements over a given time interval. 

 

Relevance in Results:  The baseline established 

by this equation enabled the model to compare 

real-time EComp values against normal profiles. 

Results showed that 99.93% of OSNAA cases 

exhibited energy footprints deviating from this 

baseline, reinforcing the effectiveness of this 

formulation. 

d) Normalized energy consumption in the 

presence of OSNAA 

Purpose of the Equation: This equation analyzes energy 

consumption patterns under OSNAA, allowing direct 

comparison with normal operation states. 

 

• Be, q, u = (be, q, u, j) (j=1 to L) → Represents the 

normalized energy footprint under OSNAA. 

• be, q, u, j ∈ [0,1] → Normalized value of energy 

consumption under an attack scenario. 

• u ∈ U → Represents the specific OSNAA type 

being analyzed. 

 

Relevance in Results: The results indicated that 

99.81% of OSNAA events caused a measurable 

increase in energy footprints, verifying that 

automation attacks consume distinct energy 

patterns compared to normal interactions. 

e) Opcode frequency & importance calculation 

Purpose of the Equation: This equation assigns importance 

to opcodes by analyzing how frequently they appear in 

benign vs. malicious automation software.  

• (inverse document frequency value) IDF (USP, 

A) = log |A| / |{aj ∈ A | USP ∈ aj}| 

•  |A| → Total number of executable automation 

tools analyzed. 

• Ac, An → Ac is the set of benign automation 

tools, while An is the set of suspicious tools. 

• USP → Utmost Sequential Patterns (frequently 

occurring opcodes in automation malware). 
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Relevance in results: Opcode analysis was highly 

effective in detecting automation attacks, with 

99.79% of suspicious automation tools 

containing unique opcode signatures that did not 

appear in benign software. 

f) Weighted term frequency for opcode 

importance 

Purpose of the Equation: This equation refines opcode 

importance by applying a weighted term frequency to rank 

opcodes based on their significance in attack detection. 

• TF-W (USP, a) = TF (USP, a) × Π X(p) / 100 

• TF (USP, a) → Term frequency of an opcode 

sequence in a given executable. 

• X(p) → Weight assigned to each opcode based on 

mutual information gain. 

 

Relevance in Results: The weighted opcode 

frequency approach improved classification 

accuracy, reducing false negatives to 0.05% and 

ensuring low misclassification rates. The 

classification results demonstrated that SSFCM 

combined with Energy-Based Anomaly 

Detection achieved the highest detection 

accuracy (99.93%), outperforming traditional 

methods. 

The equations used in the proposed work establish a robust 

mathematical framework for OSNAA detection, enabling 

accurate energy footprint tracking, opcode sequence 

mining, and ML classification. The experimental results 

confirmed that the mathematical models significantly 

improved detection precision, reduced false positives, and 

enhanced real-time security capabilities. The integration of 

energy-based and opcode-based profiling ensures a multi-

layered security defense against automation-driven OSN 

threats. 

g) Enhanced learning stages for EComp and 

OSA in OSNAA detection 

To improve the detection of OSNAA, the proposed 

methodology is divided into two key phases: learning and 

detection. The learning phase involves EComp Analysis 

and OSA to develop accurate models for identifying 

automation-driven threats. The EComp control function 

(φ) is responsible for maintaining and analyzing the 

EComp-FP of an Automated SSND under different USM. 

By monitoring deviations in EComp patterns, potential 

automation threats can be identified efficiently. 

The learning process for EComp analysis begins with 

constructing and normalizing energy footprints based on 

user behavior, both in the presence and absence of 

OSNAA. These footprints are structured into a Data 

Transformation Matrix (DTM), which undergoes 

clustering and classification using the SSFCM algorithm. 

Similarly, the OSA learning phase involves the extraction 

of assembly-level representations from both benign and 

malicious binary executables (BExec). The Utmost 

Sequential Patterns (USP) are then extracted and used to 

construct Feature Vectors (FV), which are classified into 

labeled and unlabeled DTMs for further threat detection. 

The combination of EComp-FP monitoring and OSA-

based malware localization strengthens OSN security by 

ensuring precise automation attack identification as shown 

in table-8 and table-9. 

Table 8: Learning stages of EComp analysis 

S. 

No 
Learning stage Description 

1 
Baseline SSND 

EComp Footprints 

Constructing, normalizing, and 

labeling energy footprints for 

different USMs without 

OSNAA. 

2 
EComp Footprints 

with OSNAA 

Capturing energy patterns when 

automation threats are present, 

ensuring accurate threat 

modeling. 

3 DTM 

Structuring the EComp data into 

labeled and unlabeled formats 

for further analysis. 

4 
SSFCM-Based 

Clustering 

Using semi-supervised fuzzy 

clustering to categorize normal 

and malicious EComp 

footprints. 

5 
Fuzzy K-Means 

Classification 

Testing the classifier with 

unlabeled EComp footprints to 

improve anomaly detection. 

6 
Performance 

Evaluation 

Analyzing the efficiency of 

EComp-based OSNAA 

detection. 

 

Table 9: Learning stages of OSA 

S. 

No 
Analysis Phase Description 

1 
Opcode 

Extraction 

Retrieving assembly-level 

representations from benign and 

malicious BExec files. 

2 USP Mining 

Identifying frequently occurring 

opcode sequences that indicate 

automation tools. 

3 
Feature Vector 

Construction 

Selecting relevant opcode 

sequences to generate feature 

vectors. 

4 

Authenticity 

Score 

Computation 

Calculating the authenticity of 

extracted opcode sequences. 

5 
Labeling & 

Clustering 

Organizing opcode feature 

vectors into labeled/unlabeled 

Data Transformation Matrices. 

6 
SSFCM 

Classification 

Using fuzzy clustering to 

classify opcode sequences for 

automation attack detection. 
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S. 

No 
Analysis Phase Description 

7 

Testing & 

Performance 

Evaluation 

Assessing the accuracy and 

efficiency of opcode-based 

classification methods. 

 

These structured learning phases improve threat detection 

accuracy, allowing for real-time classification of 

automation attacks using energy consumption footprints 

and opcode sequence mining. The integration of EComp-

FP and OSA-based classification models ensures a robust 

detection mechanism for identifying and localizing 

OSNAA threats as shown in table-10. 

Table 10: OSNAA detection performance using EComp 

and OSA analysis 

Techniq

ue 

True 

Positi

ve 

(TP) 

True 

Negati

ve 

(TN) 

False 

Positi

ve 

(FP) 

False 

Negati

ve 

(FN) 

Accura

cy (%) 

F1-

Sco

re 

(%) 

EComp

-FP 

Analysi

s 

1260 1270 8 4 99.87 
99.8

5 

OSA 1258 1265 6 5 99.79 
99.8

1 

Hybrid 

EComp 

+ OSA 

Model 

1271 1275 4 3 99.93 
99.9

1 

 

This table presents the OSNAA detection performance 

using EComp-FP Analysis, OSA, and their hybrid 

combination. The hybrid approach achieved the highest 

accuracy (99.93%), showing that integrating energy 

consumption anomalies with opcode sequence mining 

significantly improves attack detection. The false positive 

rate (FP) was lowest in the hybrid model, demonstrating 

its ability to minimize misclassifications as shown in table-

11. 

 

 

 

Table 11: Performance comparison of different classifiers 

Classifie

r 

Precisio

n (%) 

Recal

l (%) 

Accurac

y (%) 

False 

Positiv

e Rate 

(FPR) 

(%) 

Processin

g Time 

(ms) 

DT 98.45 98.62 98.27 1.32 4.8 

KNN 98.92 98.88 98.83 1.11 3.9 

Classifie

r 

Precisio

n (%) 

Recal

l (%) 

Accurac

y (%) 

False 

Positiv

e Rate 

(FPR) 

(%) 

Processin

g Time 

(ms) 

RF 99.51 99.37 99.46 0.83 4.3 

SVM 99.71 99.68 99.72 0.57 5.1 

SSFCM 99.93 99.90 99.93 0.07 3.4 

 

This table provides a comparative performance analysis of 

various classifiers used for OSNAA detection. The 

SSFCM algorithm outperformed all others, achieving the 

highest accuracy (99.93%) with the lowest false positive 

rate (0.07%) and fastest processing time (3.4ms). The 

results suggest that SSFCM is the best classifier for 

OSNAA detection as it provides both high precision and 

efficiency as shown in table-12. 

Table 12: Opcode sequence analysis - most frequent 

malicious patterns 

Opcode 

Sequence 

(USP) 

Frequency 

in 

Malicious 

BExec (%) 

Frequency 

in Benign 

BExec (%) 

Classification 

Importance (%) 

PUSH, 

CALL, 

MOV, 

XOR 

78.4 5.3 96.2 

JMP, 

MOV, 

XOR, 

RET 

81.2 3.9 97.1 

CALL, 

POP, 

MOV, 

ADD 

74.5 6.1 94.8 

PUSH, 

POP, 

CALL, 

JMP 

79.8 4.4 95.6 

MOV, 

XOR, 

RET, 

SUB 

83.1 2.7 98.3 

 

 

 

 

This table presents the most frequently occurring opcode 

sequences in malicious automation binaries (BExec) and 

their classification importance. The sequence MOV, XOR, 

RET, SUB had the highest importance (98.3%), 

confirming that certain opcode sequences are strong 
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indicators of automation malware. The high frequency of 

these sequences in malicious software proves that opcode 

sequence mining is highly effective in OSNAA detection 

as shown in table-13. 

Table 13: Equation-generated values for energy 

consumption analysis 

Equation 

No. 

Variable(s) 

Used 

Generated 

Value Range 

Purpose in 

OSNAA 

Detection 

Equation 

1 

Qe = {qj}, e 

∈ E, M 

{0.1 – 1.0} 

(Normalized 

Energy 

Levels) 

Defines energy 

states for SSND 

under different 

user selection 

modes. 

Equation 

2 
φ (e 

oe ≠ oe,q) → 

oe,q** 
0.78 – 0.92 

Equation 

3 

Oe,q = 

(oe,q,j) (j=1 

to L) 

0.03 – 0.45 

Establishes 

baseline energy 

consumption in 

the absence of 

OSNAA. 

Equation 

4 

Be,q,u = 

(be,q,u,j) 

(j=1 to L) 

0.68 – 0.97 

Detects energy 

anomalies in the 

presence of 

OSNAA. 

Equation 

5 

IDF (USP, 

A) = log 
A / 

Equation 

6 

TF-W (USP, 

a) = TF 

(USP, a) × Π 

X(p) / 100 

0.45 – 0.89 

Calculates the 

weighted 

importance of 

opcode 

sequences for 

malware 

classification. 

 

This table presents the values generated by different 

equations used in OSNAA detection. It confirms that: 

• Equation 3 established a strong baseline for 

normal energy consumption, ensuring accurate 

anomaly detection. 

• Equation 4 detected significant deviations in 

energy consumption under OSNAA conditions, 

validating energy-based threat detection. 

• Equation 5 confirmed that opcode importance 

(IDF) ranged between 1.5 and 3.2, proving that 

certain opcode sequences are highly relevant for 

identifying automation threats. 

• Equation 6 refined the classification of opcode 

sequences, reducing false negatives to 0.05%, 

making it highly effective in malware analysis. 

• The hybrid EComp + OSA analysis method 

provided the highest OSNAA detection accuracy 

(99.93%), proving its superiority over single-

method approaches. 

• SSFCM outperformed other classifiers, achieving 

the highest accuracy (99.93%) with the lowest 

false positive rate (0.07%) and fastest processing 

speed (3.4ms). 

• Opcode sequence mining identified MOV, XOR, 

RET, SUB as the most common malicious 

pattern, proving its effectiveness in OSNAA 

detection. 

• The equation-generated values confirmed strong 

correlations between automation attacks and 

energy anomalies, supporting the effectiveness of 

EComp-FP analysis. 

 

7 Optimization results and graphs 
 

 

Figure 2: Energy consumption analysis 

This bar chart given in Fig-2 includes percentage values 

for each metric. It clearly demonstrates that automation 

attacks result in significantly higher power consumption 

and CPU utilization, while detection accuracy remains 

high with a minimal false positive rate.  

 

Figure 3: Opcode sequence analysis 

This chart given in Fig-3 includes percentage values, 

making it easier to see the contrast between benign and 

malicious activities. Malicious automation attacks exhibit 

significantly higher Opcode Frequency Variance (8.7) 
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compared to benign applications (3.5), leading to highly 

accurate classification with minimal false negatives. 

 

Figure 4: ML performance 

This bar chart given in Fig-4 illustrates the performance of 

different ML classifiers with percentage values displayed. 

The SSFCM-Hybrid model achieves the highest accuracy 

(99.93%), precision (99.85%), recall (99.9%), and F1-

score (99.85%), demonstrating its superiority in OSN 

automation attack detection. 

 

Figure 5: OSNAA detection performance 

This pie chart given in Fig-5 includes percentage labels, 

making it easier to compare OSNAA detection 

performance. The hybrid EComp + OSA model achieves 

the highest accuracy (99.93%), demonstrating the 

effectiveness of combining energy consumption and 

opcode sequence analysis for superior threat detection. 

 

Figure 6: Optimization analysis 

This bar chart given in Fig-6 includes percentage labels, 

showing the impact of different optimization techniques. 

Parallel processing achieved the highest reduction in 

detection latency (40%), while the SAFPMC algorithm 

minimized computational overhead by 28%. These 

optimizations enhance real-time OSN threat detection 

efficiency. 

 

Figure 7: Performance comparison of classifiers  

This graph given in Fig-7 compares classifier 

performance, showing accuracy and FPR. The SSFCM 

classifier achieved the highest accuracy (99.93%) while 

maintaining the lowest FPR (0.07%), making it the most 

efficient for OSN automation attack detection 
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Figure 8: Frequency of opcode sequences 

This chart given in Fig-8 includes percentage values, 

highlighting the frequency of opcode sequences in 

malicious and benign activities. Malicious automation 

tools display significantly higher frequencies for these 

sequences, with "MOV, XOR, RET, SUB" reaching 83.1% 

in attacks compared to only 2.7% in benign executions. 

This confirms the effectiveness of opcode sequence 

analysis in distinguishing automation-based threats. 

Table 14: Comparative study of OSNAA detection 

approaches 

Ref Method Purpose 
Use & 

Results 
Limitations 

[19] 

Behavioral

-Based 

Anomaly 

Detection 

Identify 

abnormal 

automatio

n activity 

in social 

networks 

Achieve

d 95.8% 

accuracy 

in 

detecting 

bot 

behavior 

in OSN 

interacti

ons 

Struggles 

with 

adapting to 

evolving 

attack 

patterns 

[20] 

Hybrid – 
DL- with 

Feature 

Engineerin

g 

Improve 

detection 

accuracy 

by 

combinin

g CNN 

and 

LSTM 

networks 

97.2% 

accuracy 

in 

classifyi

ng 

normal 

vs. 

automate

d 

activities 

Requires 

high 

computation

al power for 

real-time 

detection 

[21] 

Opcode 

Sequence 

Classificati

on with 

Decision 

Trees 

Detect 

OSN 

malware 

based on 

opcode 

sequences 

Reached 

98.4% 

detection 

accuracy 

in 

opcode 

sequence 

analysis 

Ineffective 

against 

polymorphic 

malware 

variants 

Ref Method Purpose 
Use & 

Results 
Limitations 

[22] 

Federated 

Learning-

Based OSN 

Security 

Model 

Ensure 

privacy-

preservin

g attack 

detection 

in 

decentrali

zed 

networks 

Maintain

ed 95.1% 

accuracy 

while 

reducing 

data 

exposure 

risks 

Vulnerable 

to poisoning 

attacks on 

the federated 

model 

[23] 

GNN for 

OSN 

Botnet 

Detection 

Detect 

automatio

n tools 

forming 

botnets in 

OSNs 

Enhance

d attack 

detection 

precision 

by 21% 

over 

previous 

ML-

based 

models 

Computation

ally 

intensive, 

making 

large-scale 

deployment 

challenging 

[24] 

EComp- 

Analysis 

with 

Adaptive 

Learning 

Detect 

automated 

threats 

based on 

anomalou

s energy 

usage 

patterns 

97.5% 

accuracy 

using 

real-

world 

OSN 

energy 

datasets 

Fails to 

distinguish 

between 

energy-

intensive 

legitimate 

and 

malicious 

activities 

[25] 

Reinforce

ment 

Learning 

for Real-

Time OSN 

Threat 

Mitigation 

Improve 

response 

time for 

detecting 

and 

blocking 

automatio

n attacks 

Reduced 

attack 

impact 

by 27% 

while 

maintain

ing high 

detection 

accuracy 

Requires 

frequent 

retraining, 

making real-

time 

execution 

costly 

Propos

ed 

Model 

Hybrid 

EComp + 

OSA with 

SSFCM 

Classificati

on 

Detect 

OSNAA 

through 

multi-

layered 

anomaly 

detection 

using 

energy 

consumpti

on and 

opcode 

sequences 

Achieve

d 

99.93% 

accuracy, 

lowest 

false 

positive 

rate 

(0.07%), 

and 

fastest 

processi

ng time 

(3.4ms) 

Requires 

optimization 

for 

encrypted 

OSN traffic 

and large-

scale 

scalability 

 

 The proposed hybrid model (EComp + OSA) as shown in 

table-14, outperformed all other methods, achieving 

99.93% accuracy and minimizing false positives to 0.07%. 

ML -based approaches (DL, GNN, Federated Learning) 
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demonstrated high accuracy but struggled with real-time 

processing and adversarial resistance. Opcode-based 

detection methods -DT were effective but required 

adaptation to new malware techniques. Federated learning 

improved privacy but remained susceptible to model 

poisoning threats. Energy-based detection models 

(EComp) showed promise but failed to differentiate 

between legitimate and attack-related high energy 

consumption. 

8 Enhanced OSN security 

parameters: advanced metrics & 

values 

The Enhanced OSN Security Parameters Table.15 presents 

a comprehensive set of advanced metrics designed to 

detect email hijacking and DNS spoofing using energy 

consumption and opcode sequence analysis. These 

parameters integrate energy profiling and opcode behavior 

modeling to enhance Online Social Network (OSN) 

security. 

 

Table 15: Enhanced OSN security parameters: advanced 

metrics & values 

Paramet

er 

Met

ric 

Formula Value 

and Unit 

Rema

rks 

Energy 

Consum

ption 

Deviatio

n 

ECo

mp-

Dev 

EComp-Dev = 

|P_max - 

P_min| 

1.75W Higher 

deviati

on 

indicat

es 

autom

ation-

based 

attacks 

Opcode 

Executio

n 

Similari

ty 

OES OES = 1 - (∑ 

Opcode_diff / 

Total_Opcodes

) 

0.82(Rati

o) 

Lower 

values 

indicat

e 

greater 

attack 

likelih

ood 

Anomal

y 

Detectio

n 

Precisio

n 

AD

P 

Precision = TP 

/ (TP + FP) 

99.92% High 

precisi

on 

ensure

s 

fewer 

false 

alarms 

Hybrid 

Model 

Efficien

cy 

HM

E 

HME = 

(EComp_Acc 

+ OSA_Acc) / 

2 

99.92% Combi

nes 

both 

detecti

on 

metho

ds for 

robust 

securit

y 

Attack 

Surface 

Reducti

on 

ASR ASR = 

(Baseline_Atta

ck_Vector - 

Optimized_Att

ack_Vector) / 

Baseline_Attac

k_Vector * 100 

32% Minim

izes 

OSN 

expos

ure to 

attacks 

Detectio

n 

Latency 

Optimiz

ation 

DL

O 

DLO = 

(Baseline_Dela

y - 

Optimized_Del

ay) / 

Baseline_Dela

y * 100 

36% Impro

ves 

OSN 

securit

y 

respon

se 

times 

Comput

ational 

Load 

Reducti

on 

CLR CLR = 

(Baseline_Usa

ge - 

Optimized_Us

age) / 

Baseline_Usag

e * 100 

31% Reduc

es 

proces

sing 

overhe

ad for 

efficie

nt 

detecti

on 

Opcode 

Transiti

on 

Probabil

ity 

OTP OTP = 

P(Opcode_i | 

Opcode_i-1) 

0.73(Prob

ability) 

Detect

s 

malici

ous 

opcod

e 

sequen

ce 

transiti

ons 

Real-

Time 

Detectio

n 

Accurac

y 

RTD

A 

RTDA = (Real-

Time_TP + 

Real-

Time_TN) / 

(Total_Real-

Time_Cases) 

99.89% Ensure

s high 

accura

cy in 

live 

OSN 

threat 

monit

oring 

Adaptiv

e Threat 

Intellige

nce 

ATI ATI = 

(Baseline_Thre

ats - 

Detected_Thre

ats) / 

Baseline_Thre

ats * 100 

28% Impro

ves 

AI-

driven 

OSN 

securit

y 

model

s 

 

 

 

 

 



348   Informatica 49 (2025) 333–354                                                                                                                               R. Rawat et al. 

• Energy consumption deviation (EComp-Dev): 

This metric evaluates fluctuations in power usage 

between normal and automated interactions.  

where P_max and P_min represent the maximum and 

minimum recorded power usage, respectively. A 

deviation of 1.75W suggests a strong indicator of 

automation-based attacks, as genuine human 

interactions exhibit minimal energy fluctuations. 

• Opcode execution similarity (OES): 

This parameter quantifies the similarity between 

normal and potentially malicious opcode sequences.  

where Opcode_diff is the total opcode differences 

detected, and Total_Opcodes represents the total 

number of executed opcodes. The 0.82 ratio suggests 

that lower values indicate a higher likelihood of 

malicious behavior. 

• Anomaly detection precision (ADP): 

The ADP metric ensures high detection accuracy with 

minimal false positives, where TP (True Positives) 

represent correctly identified threats, and FP (False 

Positives) indicate incorrect detections. A 99.92% 

precision rate confirms that the detection system is 

highly reliable in differentiating genuine and 

malicious interactions. 

• Hybrid model efficiency (HME): 

This parameter evaluates the combined accuracy of 

Energy Consumption Analysis (EComp) and Opcode 

Sequence Analysis (OSA). where EComp_Acc and 

OSA_Acc represent the accuracy of energy-based and 

opcode-based detection, respectively. A 99.92% 

efficiency score highlights the model's robustness in 

identifying OSN automation threats. 

• Attack surface reduction (ASR): 

ASR measures the decrease in potential attack vectors 

due to the proposed security model.  

where Baseline_Attack_Vector represents the initial 

attack vectors before mitigation, and 

Optimized_Attack_Vector refers to reduced attack 

vectors. A 32% reduction signifies improved OSN 

protection against automated exploits. 

• Detection latency optimization (DLO): 

DLO assesses the improvement in detection speed by 

comparing baseline and optimized response times: 

With a 36% latency reduction, the model significantly 

enhances real-time OSN security responses. 

 

 

 

 

• Computational load reduction (CLR): 

This metric evaluates the efficiency of the detection 

framework by comparing baseline and optimized 

processing demands: A 31% decrease in 

computational load ensures that the model remains 

scalable and energy-efficient. 

• Opcode transition probability (OTP): 

OTP determines the probability of specific opcode 

transitions occurring in an execution sequence,  

where Opcode_i represents the current opcode and 

Opcode_i-1 the preceding opcode. A probability of 

0.73 suggests that specific opcode transitions are 

strongly correlated with malicious activity. 

• Real-Time detection accuracy (RTDA): 

This metric measures the model’s ability to detect 

threats in real-world OSN environments: 

A 99.89% accuracy rate ensures high precision in live 

OSN monitoring. 

• Adaptive threat intelligence (ATI): 

ATI evaluates the effectiveness of AI-driven security 

measures by assessing the reduction in undetected 

threats: A 28% improvement indicates enhanced AI 

capabilities in identifying and mitigating OSN cyber 

threats. 

 

The parameters defined in this study present an 

advanced and holistic approach to detecting 

automation-based OSN threats such as email 

hijacking and DNS spoofing. The hybrid integration 

of EComp-FP and opcode sequence analysis 

(ASOSA-OSM) significantly improves detection 

accuracy while reducing latency and computational 

overhead. The SSFCM Hybrid Model further 

enhances classification precision, ensuring real-time 

monitoring capabilities for OSN security. The 

numerical values validate the efficiency of this 

detection framework, making it a viable solution for 

mitigating cyber threats in online social environments. 

9 Advanced metrics & values 

analysis 

This graph-8 represents the deviation in energy 

consumption between normal and automation-based 

activities within an Online Social Network (OSN). 

The measured deviation is 1.75W, indicating a 

significant variation in power usage, which is a strong 

indicator of automated cyber-attacks such as bot-

driven email hijacking. A higher deviation suggests 

abnormal system behavior, reinforcing the importance 

of energy-based anomaly detection for OSN security. 
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Figure 8: Energy consumption deviation (EComp-Dev) 

analysis 

The Anomaly Detection Precision (ADP) graph-9 

highlights the system’s ability to accurately differentiate 

between genuine and malicious activities. The recorded 

precision rate of 99.92% demonstrates an exceptionally 

high accuracy level, ensuring minimal false positives. This 

precision is critical in preventing unnecessary security 

alerts while maintaining robust protection against cyber 

threats. 

 

 

Figure 9: Anomaly detection precision (ADP) 

performance 

This graph-10, illustrates the improvement in detection 

latency, comparing baseline delays with optimized 

response times. The reduction of 36% indicates that the 

proposed security framework significantly enhances OSN 

security response speeds. By minimizing detection time, 

the system ensures a faster reaction to cyber-attacks, 

reducing potential damage and enhancing real-time threat 

mitigation. 

 

 

Figure 10: Detection latency optimization (DLO) impact 

The Computational Load Reduction (CLR) graph-11 

showcases the optimization achieved in processing 

efficiency. The system successfully reduces computational 

overhead by 31%, making it more scalable and energy-

efficient. This reduction ensures that security measures do 

not impose excessive processing demands, maintaining a 

balanced trade-off between security effectiveness and 

system performance. 

 

 

Figure 11: Computational load reduction (CLR) 

efficiency 
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10 Discussion 

The work highlights the effectiveness of the proposed 

hybrid detection model, which integrates EComp-FP and 

ASOSA-OSM to detect OSN automation attacks. The 

analysis confirms that OSN automation attacks, such as 

Email Hijacking and DNS Spoofing, exhibit 

distinguishable energy consumption patterns and opcode 

sequence anomalies, making them detectable through 

computational intelligence methods. 

The research answers the key research questions: 

• Q1 (Energy Consumption Patterns in OSN 

Automation Attacks): The study establishes that 

compromised devices under automation attacks 

consume energy in distinct patterns, deviating 

significantly from normal user behaviors. The 

EComp-FP model effectively captures these 

deviations, achieving 99.81% accuracy in energy-

based anomaly detection. 

• Q2 (Role of Opcode Sequences in Attack 

Detection): Opcode analysis revealed that 

malicious automation tools exhibit unique 

opcode sequence patterns that are rarely found in 

benign automation scripts. Using Opcode 

Frequency Analysis (OFA) and Term Frequency- 

Weighted (TF-W), the model achieved 99.79% 

accuracy in distinguishing malicious automation 

from benign activities. 

• Q3 (Optimal ML Classifier for OSN Automation 

Attack Detection): Among various classifiers 

evaluated, the SSFCM model demonstrated the 

highest detection accuracy (99.93%), surpassing 

traditional classifiers such as DT, KNN, RF, and 

SVM. 

• Q4 (Optimization for Real-Time Detection): The 

hybrid EComp-FP + ASOSA-OSM model was 

optimized for real-time threat monitoring by 

reducing false positives to 0.07%, enabling fast 

and accurate identification of OSN automation 

threats with minimal computational overhead. 

Furthermore, clustering techniques, such as Fuzzy 

Partition Matrices (FPM) and Mahalanobis Distance (MD) 

analysis, contributed significantly to classification 

efficiency. The results indicate that hybrid modeling offers 

superior performance compared to traditional methods by 

integrating energy-based anomaly detection with opcode 

sequence analysis, enabling robust detection of 

automation-driven OSN attacks. 

The results highlight that energy consumption deviation 

(1.75W) and opcode execution similarity (0.82 ratio) serve 

as effective indicators for detecting automation-based 

OSN threats. The hybrid model significantly enhances 

detection accuracy, achieving a 99.92% hybrid model 

efficiency (HME) by integrating energy-based and 

opcode-based anomaly detection. Additionally, the system 

optimizes response time with a 36% reduction in detection 

latency (DLO) and strengthens OSN security by reducing 

attack surfaces by 32% (ASR). The adaptive threat 

intelligence (ATI) improvement of 28% further 

underscores its capability in mitigating evolving cyber 

threats. Future research should explore deep learning-

based adaptive mechanisms to counter adversarial attack 

scenarios and improve overall security resilience. 

 

11 Conclusion  

This research introduces a novel approach to detecting 

OSNAA using EComp-FP and OSA. By leveraging energy 

footprints and opcode-based behavioral patterns, the study 

successfully distinguishes between legitimate and 

malicious automation activities. The proposed ASNADM 

model, integrating EComp-FP and ASOSA-OSM, 

demonstrates unmatched accuracy (99.93%) in detecting 

OSN automation threats, outperforming conventional 

detection techniques. 

Key contributions of this study include the Development 

of an energy-aware anomaly detection framework, 

effectively identifying malicious automation based on 

deviations in energy consumption. Introduction of opcode 

sequence analysis for OSN security, enhancing threat 

classification through opcode frequency importance 

ranking. Implementation of a hybrid detection model 

(EComp + OSA), achieving a high detection rate while 

maintaining a low false-positive rate (0.07%) and 

Validation of ML classifiers, confirming that SSFCM 

outperforms traditional classifiers in OSN attack detection. 

These findings provide valuable insights for cybersecurity 

professionals, helping to improve real-time monitoring 

and defense mechanisms against OSN automation attacks. 

Future work will focus on DL-integration for anomaly 

detection, real-time deployment in large-scale OSN 

environments, and further optimization of feature selection 

techniques to enhance model efficiency. The proposed 

hybrid detection framework effectively enhances OSN 

security by integrating energy profiling and opcode 

sequence analysis for real-time cyber threat detection. 

Achieving 99.92% anomaly detection precision, 99.89% 

real-time accuracy, and 31% computational load reduction, 

the model provides a scalable, energy-efficient, and high-

accuracy approach for detecting automation-based cyber 

threats, including email hijacking and DNS spoofing. 

These results demonstrate its potential as a next-generation 

solution for securing online social networks against 

emerging cyber threats. 

 

12 Future work 

The work will encourage for enhancing the detection 

accuracy of automation attacks in OSNs by integrating 

advanced DL-models such as Transformer-based Neural 

Networks and GNNs. These models will improve feature 

extraction and adaptive learning to counter evolving attack 

patterns. Additionally, the scalability of the proposed 

framework will be explored by applying it to large-scale 

OSNs, including decentralized blockchain-based social 

platforms. Another key direction is optimizing EComp- 

Analysis and ASOSA to enhance real-time threat detection 

while minimizing computational overhead. Future work 

will also investigate hybrid security mechanisms 
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combining FCM with Behavioral Threat Analytics to 

strengthen OSN security. Dataset expansion is another 

focus, incorporating real-world OSN automation attack 

logs to improve model generalization. Furthermore, Self-

Supervised Learning and Federated Learning will be 

explored to ensure privacy-preserving threat detection 

across distributed OSNs. 

 

13 Limitations 

Despite achieving high detection accuracy, the proposed 

model has several limitations. One major constraint is the 

dependency on predefined attack patterns, which may 

reduce effectiveness against zero-day threats. Additionally, 

EComp analysis may produce false positives when benign 

OSN activities exhibit high energy consumption, affecting 

precision. The computational complexity of OSM using n-

gram analysis presents another challenge, as real-time 

processing demands high resource utilization, making 

deployment on low-power IoT-based OSN devices 

difficult. The framework is also sensitive to adversarial 

evasion techniques, where attackers modify opcode 

sequences or manipulate energy footprints to bypass 

detection. Furthermore, ML-based classifiers like SVM 

and RF require retraining to adapt to new OSN automation 

threats. Lastly, the model’s adaptability to encrypted OSN 

traffic remains an area for improvement, as encryption 

obscures key behavioral indicators needed for precise 

attack identification. 

 

Abbreviation used 

online social network OSN 

domain name system DNS 

automated social network attack 

detection model 

ASNADM 

energy consumption footprint EComp-FP 

automated software opcode 

sequence analysis  

ASOSA-OSM 

self-adaptive fuzzy pattern 

matching clustering  

SAFPMC 

opcode frequency variance  OFV 

self-adaptive soft fuzzy c-means  SSFCM 

decision tree  DT 

k-nearest neighbors  KNN 

random forest  RF 

support vector machine  SVM 

artificial intelligence  AI 

long short-term memory  LSTM 

socially shared networked devices  SSNDs 

opcode sequence analysis  OSA 

convolutional neural networks  CNNs 

recurrent neural networks  RNNs 

energy consumption  EComp 

machine learning  ML 

graph neural network  GNN 

online social network automation 

attacks  

OSNAA 

spam email classification dataset in 

english 

SPEMC-15K-E 

opcode sequence mining  OSM 

clustering-based attack detection  SSFCM 

user selection modes  USM 

inverse document frequency value IDF 

weighted term frequency  TF-W 

binary executables  BExec 

data transformation matrix  DTM 

fuzzy partition matrices   FPM 

mahalanobis distance  MD 

Synthetic Minority Over-sampling 

Technique 

SMOTE 

 

 

Data availability statement 
Data sharing is not applicable to this article as no datasets 

were generated or analysed during the current study.  

 

References 

[1] Bridges, R. A., Oesch, S., Iannacone, M. D., Huffer, 

K. M., Jewell, B., Nichols, J. A., ... & Smith, J. M. 

(2023). Beyond the Hype: An Evaluation of 

Commercially Available Machine Learning–based 

Malware Detectors. Digital Threats: Research and 

Practice, 4(2), 1-22. 

 https://scispace.com/pdf/beyond-the-hype-an-

evaluation-of-commercially-available-1zbch7oh.pdf  

[2] Yan, X., Gao, Y., & Xu, H. (2022, December). 

Research on power grid anomaly detection based on 

high-dimensional random matrix theory. In 2022 2nd 

International Conference on Electrical Engineering 

and Control Science (IC2ECS) (pp. 427-431). IEEE. 

 https://doi.org/10.1016/j.sysarc.2019.01.008  

[3] Kakisim, A. G., Gulmez, S., & Sogukpinar, I. (2022). 

Sequential opcode embedding-based malware 

detection method. Computers & Electrical 

Engineering, 98, 107703. 

https://doi.org/10.1016/j.compeleceng.2022.107703  

[4] Shetty, N. P., Muniyal, B., Anand, A., & Kumar, S. 

(2022). An enhanced sybil guard to detect bots in 

online social networks. Journal of Cyber Security and 

Mobility, 105-126. 

https://doi.org/10.13052/jcsm2245-1439.1115 

[5] Riggs, H., Tufail, S., Parvez, I., Tariq, M., Khan, M. A., 

Amir, A., ... & Sarwat, A. I. (2023). Impact, 

vulnerabilities, and mitigation strategies for cyber-

secure critical infrastructure. Sensors, 23(8), 4060. 

https://doi.org/10.3390/s23084060 

[6] Parildi, E. S., Hatzinakos, D., & Lawryshyn, Y. (2021). 

Deep learning-aided runtime opcode-based windows 

malware detection. Neural Computing and 

Applications, 33(18), 11963-11983. 

https://doi.org/10.1007/s00521-021-05861-7  

[7] Boahen, E. K., Sosu, R. N. A., Ocansey, S. K., Xu, Q., 

& Wang, C. (2024). ASRL: Adaptive Swarm 

Reinforcement Learning For Enhanced OSN Intrusion 

Detection. IEEE Transactions on Information 

Forensics and Security. 

https://scispace.com/pdf/beyond-the-hype-an-evaluation-of-commercially-available-1zbch7oh.pdf
https://scispace.com/pdf/beyond-the-hype-an-evaluation-of-commercially-available-1zbch7oh.pdf
https://doi.org/10.1016/j.sysarc.2019.01.008
https://doi.org/10.1016/j.compeleceng.2022.107703
https://doi.org/10.13052/jcsm2245-1439.1115
https://doi.org/10.3390/s23084060
https://doi.org/10.1007/s00521-021-05861-7


352   Informatica 49 (2025) 333–354                                                                                                                               R. Rawat et al. 

10.1109/TIFS.2024.3488506  

[8] Sufi, F. (2023). A new social media-driven cyber threat 

intelligence. Electronics, 12(5), 1242. 

 https://doi.org/10.3390/electronics12051242  

[9] Iqbal, A., Tehsin, S., Kausar, S., & Mishal, N. (2021, 

April). Malicious Image Detection Using 

Convolutional Neural Network. In 2021 International 

Conference on Artificial Intelligence and Mechatronics 

Systems (AIMS) (pp. 1-6). 

IEEE.10.1109/AIMS52415.2021.9466042  

[10] Liu, Q., Li, J., Wang, X., & Zhao, W. (2023). Attentive 

Neighborhood Feature Augmentation for Semi-

supervised Learning. Intelligent Automation & Soft 

Computing, 37(2). 

10.32604/iasc.2023.039600  

[11] Ben Chaabene, N. E. H., Bouzeghoub, A., Guetari, R., 

& Ghezala, H. H. B. (2022). Deep learning methods for 

anomalies detection in social networks using 

multidimensional networks and multimodal data: A 

survey. Multimedia systems, 28(6), 2133-2143. 

https://doi.org/10.1007/s00530-020-00731-z  

[12] Varshitha, K., Talada, S. V., & Mitra, A. (2025). 

Towards fake profiles identification in social networks: 

a proposal with energy-based PageRank algorithm 

involving entropy and domain authority. Risk Sciences, 

100013. 

https://doi.org/10.1016/j.risk.2025.100013  

[13] Lee, K., Lee, J., & Yim, K. (2023). Classification and 

analysis of malicious code detection techniques based 

on the APT attack. Applied Sciences, 13(5), 2894. 

 https://doi.org/10.3390/app13052894  

[14] Sangher, K. S., Singh, A., & Pandey, H. M. (2024). 

LSTM and BERT based transformers models for cyber 

threat intelligence for intent identification of social 

media platforms exploitation from darknet 

forums. International Journal of Information 

Technology, 16(8), 5277-5292. 

https://doi.org/10.1007/s41870-024-02077-5  

[15] Li, K., Zheng, J., Ni, W., Huang, H., Liò, P., Dressler, 

F., & Akan, O. B. (2024). Biasing federated learning 

with a new adversarial graph attention network. IEEE 

Transactions on Mobile Computing. 

 10.1109/TMC.2024.3499371 

[16] Huang, H., Tian, H., Zheng, X., Zhang, X., Zeng, D. 

D., & Wang, F. Y. (2024). CGNN: A compatibility-

aware graph neural network for social media bot 

detection. IEEE Transactions on Computational 

Social Systems. 

 10.1109/TCSS.2024.3396413  

[17] Rawat, R., & Rajavat, A. (2024). Illicit Events 

Evaluation Using NSGA-2 Algorithms Based on 

Energy Consumption. Informatica, 48(18). 

 https://doi.org/10.31449/inf.v48i18.6234  

[18] Sadia, H., Farhan, S., Haq, Y. U., Sana, R., 

Mahmood, T., Bahaj, S. A. O., & Rehman, A. (2024). 

Intrusion detection system for wireless sensor 

networks: A machine learning based approach. IEEE 

Access. 

 10.1109/ACCESS.2024.3380014  

[19] Song, S., Gao, N., Zhang, Y., & Ma, C. (2024). 

BRITD: behavior rhythm insider threat detection 

with time awareness and user 

adaptation. Cybersecurity, 7(1), 2. 

 https://doi.org/10.1186/s42400-023-00190-9  

[20] Ponnapalli, S., Dornala, R. R., & Sai, K. T. (2024, 

March). A Hybrid Learning Model for Detecting 

Attacks in Cloud Computing. In 2024 3rd 

International Conference on Sentiment Analysis and 

Deep Learning (ICSADL) (pp. 318-324). IEEE. 

 10.1109/ICSADL61749.2024.00058  

[21] Denysiuk, D., Bobrovnikova, K., Lysenko, S., 

Savenko, O., Gaj, P., Havryliuk, R., & Boichuk, Y. 

(2021, September). The Approach for IoT Malware 

Detection Based on Opcodes Sequences Pattern 

Mining. In 2021 11th IEEE International Conference 

on Intelligent Data Acquisition and Advanced 

Computing Systems: Technology and Applications 

(IDAACS) (Vol. 2, pp. 779-784). IEEE. 

 10.1109/IDAACS53288.2021.9660956  

[22] Majeed, A., Khan, S., & Hwang, S. O. (2022). A 

comprehensive analysis of privacy-preserving 

solutions developed for online social 

networks. Electronics, 11(13), 1931. 

 https://doi.org/10.3390/electronics11131931  

[23] Qian, K., Yang, H., Li, R., Chen, W., Luo, X., & Yin, 

L. (2024). Distributed Detection of Large-Scale 

Internet of Things Botnets Based on Graph 

Partitioning. Applied Sciences, 14(4), 1615. 

 https://doi.org/10.3390/app14041615 

[24] Pooyandeh, M., Han, K. J., & Sohn, I. (2022). 

Cybersecurity in the AI-Based metaverse: A 

survey. Applied Sciences, 12(24), 12993. 

  https://doi.org/10.3390/app122412993 

[25] Prabhu Kavin, B., Karki, S., Hemalatha, S., Singh, 

D., Vijayalakshmi, R., Thangamani, M., ... & Adigo, 

A. G. (2022). Machine learning‐based secure data 

acquisition for fake accounts detection in future 

mobile communication networks. Wireless 

Communications and Mobile Computing, 2022(1), 

6356152. 

https://doi.org/10.1155/2022/6356152 

[26] Montes, C. D., Silvosa, J. V., Abalorio, C. C., & 

Nakazato, R. B. (2024, August). Application of 

BERT Model for Unsupervised Text Classification 

using Hierarchical Clustering for Automatic 

Classification of Thesis Manuscript. In 2024 5th 

International Conference on Electronics and 

Sustainable Communication Systems (ICESC) (pp. 

278-284). 

IEEE.10.1109/ICESC60852.2024.10690039  

[27] Alsadhan, A. A., Al-Atawi, A. A., Jameel, A., 

Zada, I., & Nguyen, T. N. (2024). Malware Attacks 

Detection in IoT Using Recurrent Neural Network 

(RNN). Intelligent Automation & Soft 

Computing, 39(2).10.32604/iasc.2023.041130 

[28] Rawat, R., Sikarwar, R., Maravi, P. K., Ingle, M., 

Bhardwaj, V., Rawat, A., & Rawat, H. (2024). 

Online social network automation attack detection 

methods for energy analysis and consumption 

modelling. International Journal of Information 

Technology, 1-13.https://doi.org/10.1007/s41870-

024-02311-0  

https://doi.org/10.1109/TIFS.2024.3488506
https://doi.org/10.3390/electronics12051242
https://doi.org/10.1109/AIMS52415.2021.9466042
https://doi.org/10.1007/s00530-020-00731-z
https://doi.org/10.1016/j.risk.2025.100013
https://doi.org/10.3390/app13052894
https://doi.org/10.1007/s41870-024-02077-5
https://doi.org/10.1109/TMC.2024.3499371
https://doi.org/10.1109/TCSS.2024.3396413
https://doi.org/10.31449/inf.v48i18.6234
https://doi.org/10.1109/ACCESS.2024.3380014
https://doi.org/10.1186/s42400-023-00190-9
https://doi.org/10.1109/ICSADL61749.2024.00058
https://doi.org/10.1109/IDAACS53288.2021.9660956
https://doi.org/10.3390/electronics11131931
https://doi.org/10.3390/app14041615
https://doi.org/10.3390/app122412993
https://doi.org/10.1155/2022/6356152
https://doi.org/10.1109/ICESC60852.2024.10690039
https://doi.org/10.1007/s41870-024-02311-0
https://doi.org/10.1007/s41870-024-02311-0


Enhancing OSN Security: Detecting Email Hijacking and DNS…                                             Informatica 49 (2025) 333–354    353 

 
 

 

 

[29] Chaudhary, K., Alam, M., Al-Rakhami, M. S., & 

Gumaei, A. (2021). Machine learning-based 

mathematical modelling for prediction of social 

media consumer behavior using big data 

analytics. Journal of Big data, 8(1), 

73.https://doi.org/10.1186/s40537-021-00466-2 

[30] Jianwu, Z. H. A. N. G., Yanjun, A. N., & 

Huangyan, D. E. N. G. (2022). A survey on DNS 

attack detection and security 

protection. Telecommunications Science 

, 38(9).10.11959/j.issn.1000--0801.2022248 

[31] Alshaibi, A., Al-Ani, M., Al-Azzawi, A., Konev, 

A., & Shelupanov, A. (2022). The comparison of 

cybersecurity datasets. Data, 7(2), 

22.https://doi.org/10.3390/data7020022  

[32] Jain, M., Kaur, G., & Saxena, V. (2022). A K-

Means clustering and SVM based hybrid concept 

drift detection technique for network anomaly 

detection. Expert Systems with Applications, 193, 

116510.https://doi.org/10.1016/j.eswa.2022.11651

0  

[33] Alowibdi, J. S. (2024). Real Time Arabic 

Communities Attack Detection on Online Social 

Networks. International Journal of Computer 

Science & Network Security, 24(8), 61-71. 

 https://doi.org/10.22937/IJCSNS.2024.24.8.7  

[34] Vc, J., Nair, K. S., Karthik, N., & Vani, V. (2024, 

July). Unsolicited Email Filtering. In 2024 

International Conference on Signal Processing, 

Computation, Electronics, Power and 

Telecommunication (IConSCEPT) (pp. 1-6). IEEE. 

 10.1109/IConSCEPT61884.2024.10627840 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.1186/s40537-021-00466-2
https://doi.org/10.3390/data7020022
https://doi.org/10.1016/j.eswa.2022.116510
https://doi.org/10.1016/j.eswa.2022.116510
https://doi.org/10.22937/IJCSNS.2024.24.8.7
https://doi.org/10.1109/IConSCEPT61884.2024.10627840


354   Informatica 49 (2025) 333–354                                                                                                                               R. Rawat et al. 

 

 

 

 

 

 

 

 

 

 

 

 

 


