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This paper introduces a graphical design model for smart clothing structures based on cloud computing 

and an integrated approach combining Transformer architecture with conditional Generative Adversarial 

Networks (cGANs). The model aims to revolutionize the functional clothing design industry by 

transforming users' diverse needs into machine-understandable vector representations using a multi-head 

self-attention mechanism. Subsequently, a decoder generates design elements, which are then visualized 

using cGAN techniques. To evaluate the model's performance, we conducted extensive computational 

experiments using a comprehensive dataset that includes various design styles and occupational 

categories, such as medical, catering, aviation, and industrial clothing. The model was trained and 

validated using K-fold cross-validation, ensuring robustness and generalizability. Key performance 

metrics were assessed, including design element similarity, layout rationality, and personalization 

accuracy. Experimental results show that the model achieves an average design element similarity score 

of over 89%, a layout rationality score of over 90%, and a personalization accuracy of nearly 92%. These 

performance indicators demonstrate the model's effectiveness in design accuracy, efficiency, 

personalization, and market adaptability, particularly for occupational clothing design in healthcare, 

catering, aviation, and industrial applications. The integration of Transformer and cGAN technologies 

significantly enhances the model's capability to generate high-quality, personalized designs while 

maintaining robustness and scalability. This approach provides a comprehensive solution for automating 

the design process, leading to improved design outcomes and enhanced user satisfaction. 

Povzetek: Članek obravnava arhitekturo transformatorja, ki jo omogoča računalništvo v oblaku, za 

oblikovanje funkcionalnih struktur oblačil. Model, ki temelji na kombinaciji transformatorja in cGAN, 

pretvarja potrebe uporabnikov v vektorske predstavitve in generira oblikovalske elemente. 

 

1 Introduction 
Functional apparel, also known as occupational clothing 

or uniforms, are garments designed for specific 

occupations or work environments, which are designed 

not only for aesthetics and comfort, but also, more 

importantly, for their functionality, safety, and for brand 

image. Functional clothing plays a crucial role in various 

industries, they are not only the embodiment of dress code, 

but also the sign of professional identity, the booster of 

work efficiency, and the carrier of corporate culture [1]. In 

the medical industry, the white coats and operating room-

specific clothing worn by healthcare workers not only 

create a professional image, but also have the hygienic 

functions of disinfection and anti-bacteria, protecting both 

doctors and patients from the risk of infection. In the 

restaurant industry, the uniforms of chefs and waiters not 

only keep neat and clean to meet food safety standards, but 

also convey the brand style of the restaurant through color 

and design. In the aviation and hospitality industries, the 

uniforms of cabin crew and receptionists are a direct 

reflection of the corporate image, and they convey the 

concept of professional and reliable service through a  

 

uniform visual language. In the industrial field, especially 

in the chemical and construction industries, the protective 

performance of functional clothing is crucial. The 

application of special materials such as anti-static, 

fireproof, and anti-radiation provides the necessary safety 

for workers and reduces occupational hazards [2]. 

Functional apparel is equally indispensable in a 

variety of industries such as education, retail, and 

transportation, where they help to differentiate between 

different positions and promote teamwork while 

enhancing customer or public trust. The design of 

functional clothing needs to take into account the nature 

of the work, environmental factors, corporate culture, and 

ergonomic principles to ensure that the wearer can 

perform his or her job comfortably while reflecting the 

professionalism of the occupation and the consistency of 

the company [3]. 

Traditional functional apparel design is often limited 

by physical resources and geographic distances, and the 

design process usually requires frequent physical 

exchanges between designers, material suppliers, and 

manufacturers, which is not only time-consuming and 

labor-intensive, but can also lead to slow design iterations. 
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In addition, due to the lack of effective data management 

and analysis tools, design decisions often rely on 

experience and intuition, making it difficult to accurately 

capture market trends and user needs. This design 

approach also limits remote team collaboration and 

reduces design flexibility and responsiveness [4]. 

The advent of cloud computing has revolutionized the 

landscape of functional apparel design. By migrating 

design tools, resource libraries, and collaboration 

platforms to the cloud, cloud computing breaks down 

geographic boundaries and enables instant sharing of 

resources and remote team collaboration on a global scale. 

Designers can access the latest design software from any 

location, utilize cloud storage for file backup and version 

control, and greatly improve design efficiency [5]. The 

aim of this study is to explore how cloud computing can 

empower the structural graphic design of functional 

apparel, and by analyzing the application of cloud 

computing technology in the design process, we hope to 

reveal its positive impact on design efficiency, 

collaborative work, and innovativeness [6]. 

The innovation of this paper focuses on proposing a 

graphical design model of clothing structure based on 

cloud computing and Transformer architecture, which 

realizes efficient and precise understanding and response 

to diversified user needs through deep learning 

technology. The research mainly includes: (1) Dynamic 

adaptability and personalized design: relying on the elastic 

resources of cloud computing, the model is able to adjust 

in real time to respond to different user needs, ensure the 

uniqueness and personalization of the design, and satisfy 

the precise requirements for details in the design of 

functional clothing. (2) Multi-head self-attention 

mechanism: the introduced multi-head self-attention 

mechanism enhances the model's ability to capture the 

complex relationships among parts in the input sequence, 

and even if these parts are far away from each other in the 

sequence, they can still be correctly associated, thus 

enhancing the innovation and functionality of the design 

[7].  

2 Literature review 

2.1 Overview of the development of 

functional clothing 

Functional apparel, i.e., functional clothing, is designed to 

meet the needs of the wearer in specific environments, 

whether it is protection from extreme climatic conditions 

or safety and convenience for specific occupational 

activities. From the initial waterproof, windproof, and 

breathable to the modern intelligent sensing and self-

regulation, the development of functional apparel has 

demonstrated the deep integration of science and 

technology with textile innovation [8]. The development 

of this field has not only been driven by advances in 

materials science, but has also benefited from the results 

of ergonomic, biomechanical, and environmental 

adaptation research [9]. 

The origins of functional clothing can be traced back 

to the early 20th century, when the properties of natural 

fibers were explored to create more durable and protective 

clothing [10]. However, the real revolution in functional 

clothing occurred in the mid-20th century with the 

invention of synthetic fibers such as nylon and polyester, 

new materials that were not only lightweight and 

wearable, but also had some waterproofing and warmth 

properties [11]. Subsequently, the emergence of 

waterproof and breathable membranes, such as Gore-Tex, 

marked a new era for functional clothing [12]. In recent 

years, the development of functional apparel has focused 

more on the smartness and responsiveness of materials. 

For example, phase change materials (PCMs) are capable 

of absorbing or releasing heat according to changes in 

ambient temperature to maintain the stability of the human 

microenvironment [13]. In addition, the application of 

conductive fabrics and nanotechnology enables garments 

to integrate sensors for health monitoring, environmental 

sensing, and other functions [14]. These innovations not 

only enhance the utility of clothing, but also open the way 

for personalization and customization. 

The functional apparel market continues to expand as 

consumers demand higher levels of health, safety, and 

comfort, as well as an increase in outdoor sports and 

professional work scenarios [15]. Especially after the 

epidemic, the focus on personal hygiene and protection 

has driven the use of antimicrobial and antiviral materials 

in apparel [16]. Meanwhile, sustainability has become a 

focus of industry attention, with green materials and 

circular economy models being increasingly introduced 

into functional apparel design [17]. 

The future development of functional clothing will 

focus more on user experience and human-computer 

interaction. The integration of wearable technologies will 

make clothing part of the Internet of Things, enabling data 

collection and intelligent feedback [18]. In addition, with 

advances in artificial intelligence and machine learning, 

personalized design and on-demand manufacturing will 

become the norm, satisfying consumers' pursuit of 

uniqueness and adaptability [19]. Eventually, functional 

clothing will become more than just a piece of clothing, 

but an intelligent interface that connects the body to the 

external world. 

2.2 Application of cloud computing in the 

field of clothing design 

Cloud computing has brought unprecedented changes to 

the apparel design industry with its superior data 

processing capability and flexible service model. From 

design to production to supply chain management, cloud 

computing technology is gradually penetrating and 

optimizing the entire apparel industry chain, creating more 

value for designers, producers and consumers [20]. 

During the design phase, cloud computing provides 

powerful and easily accessible computing resources that 

enable designers to perform complex design simulations 

and 3D renderings without relying on expensive local 

hardware facilities [21]. For example, platforms such as 

the Bock Intelligent Apparel Cloud CAD System utilize 

cloud computing technology to allow designers and 

production staff to design and manage work from any 
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location, at any time, greatly enhancing efficiency and 

flexibility (. The Smart Custom Apparel Cloud CAD 

system even integrates advanced design tools and 

intelligent algorithms to help designers rapidly iterate their 

designs while maintaining a high level of innovation and 

personalization [22]. Cloud computing also facilitates the 

digital transformation of the apparel production process by 

enabling supply chain transparency and collaboration 

through cloud platforms, effectively reducing inventory 

costs and shortening the time-to-market cycle [23]. 

Services provided by companies such as Zeta Cloud, 

which utilize cloud computing and meta-universe 

technologies, provide a new perspective on apparel design 

and production, making remote collaboration and virtual 

presentations possible, reducing the production of 

physical prototypes, and saving time and resources [24]. 

On the consumer side, cloud computing is able to 

accurately capture consumer preferences and market 

trends through big data analysis, providing customized 

products and services for apparel companies [25]. 

Applications such as virtual fitting rooms and 

personalized recommendation systems allow consumers 

to experience the real effect of clothing before purchase, 

improving customer satisfaction and loyalty [26]. 

2.3 Current status of domestic and 

international research 

Overseas, research on the application of cloud computing 

in apparel design is quite mature, focusing on improving 

design efficiency, enhancing user experience, and 

optimizing supply chain management. For example, [27] 

explored how cloud technology can accelerate the 3D 

modeling and simulation process of apparel by providing 

high-performance computing power, thus shortening the 

product development cycle. At the user level, on the other 

hand, research by [28] demonstrates how cloud-driven 

virtual fitting technology can transform the consumer 

shopping experience by reducing return rates and 

increasing online sales through accurate body size 

matching. Domestic studies have also followed the 

international pace and are dedicated to exploring how 

cloud computing can empower various aspects of apparel 

design and manufacturing. A study by [29] revealed the 

application of cloud computing in the apparel supply 

chain, which significantly reduced operational costs by 

predicting market demand and optimizing inventory 

management through big data analysis. In addition, the 

project focuses on the development of intelligent design 

software on the cloud computing platform, which utilizes 

machine learning algorithms and is able to automatically 

generate design solutions based on fashion trends and 

consumer feedback, which greatly enhances the 

innovation and efficiency of design. The summary table of 

research results is specifically shown in Table 1. 

 

Table 1: Summary of research results. 

Research/Met

hod 

Accura

cy 

Personaliz

ation 

Design 

Efficien

cy 

Key 

Technologies/Mate

rials 

Main 

Findings/Contribu

tions 

Gaps/Improve

ment Points 

Gore-Tex 

Waterproof & 

Breathable 

Membrane 

High Low Medium ePTFE 

Provides excellent 

water resistance and 

breathability 

Lacks 

personalized 

design and 

intelligent 

regulation 

capabilities 

Smart PCM 

Clothing 

Moderat

e 
Moderate Low 

Phase Change 

Materials 

Can regulate the 

microenvironment 

according to 

ambient temperature 

High production 

cost and long 

design cycle 

Conductive 

Fabric Health 

Monitoring 

High Moderate 
Moderat

e 

Conductive Fibers, 

Sensors 

Achieves real-time 

health data 

monitoring 

Short battery 

life, poor wash 

durability 

Zeta Cloud 

Virtual Design 

Platform 

High High High 

Cloud Computing, 

Metaverse 

Technology 

Accelerates design 

processes and 

reduces the need for 

physical prototypes 

May lack certain 

functionalities 

compared to 

custom hardware 

Bock 

Intelligent 

Apparel 

Cloud CAD 

Moderat

e 
High High 

Cloud Computing, 

CAD 

Enhances design 

flexibility and 

collaboration 

Strong 

dependence on 

internet 

connection 

Machine 

Learning-
High High High 

Machine Learning 

Algorithms 

Enables automated 

design proposals 

Data privacy and 

security 
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Driven Design 

Software 

based on trends and 

feedback 

concerns are 

challenges 

 

 

Literature [30] discusses the effectiveness of 

interactive genetic algorithms (IGAs) and shows how such 

algorithms optimize design solutions through user 

preference feedback. The study highlights IGA's ability as 

a tool to capture users 'aesthetic preferences and generate 

designs that conform to those preferences. Literature [31] 

presents a new approach to combining traditional art 

elements with modern design techniques. Lu's work shows 

how to create culturally meaningful and visually appealing 

graphic design works by reorganizing traditional patterns 

and symbols. Together, these two findings inspire us that 

similar approaches can be taken to enhance the garment 

design process, by using IGA to better meet the individual 

needs of consumers, and by integrating traditional visual 

elements to enrich the cultural content and aesthetic value 

of garment design. 

3 Graphic design model of clothing 

structure based on cloud 

computing  
This model framework is based on the Transformer 

architecture, which skillfully combines the powerful 

arithmetic power of cloud computing with advanced 

artificial intelligence technology in order to realize 

efficient and accurate graphical design of functional 

clothing structures. The model is mainly divided into three 

key layers: the input layer, the encoder layer, and the 

decoder layer, each of which carries specific functions, 

and its hierarchy is shown in Figure 1. 

 

 

Figure 1: Hierarchy 

 

The input layer is responsible for receiving the user's 

requirements expressed in the form of text, keywords or 

speech, and transforming them into vector representations 

through the embedding layer to lay the foundation for 

subsequent processing. The encoder layer employs a 

multi-head self-attention mechanism to parse the deeper 

meaning of the user's demand and transforms the input 

vector sequence into a semantically rich vector sequence 

Z. This process is realized by stacking multiple identical 

sublayers, each including a self-attention module and a 

feed-forward neural network, which together enhance the 

model's comprehensive understanding of the input 

sequence.  

The innovation lies in the dynamic adaptability and 

highly customizable capability of the model. Through 

cloud computing, the model is able to adjust in real time 

to respond to changes in different user requirements, while 

ensuring the uniqueness and personalization of the design. 

In addition, the introduction of the multi-head self-

attention mechanism enables the model to capture the 

complex relationships between parts in the input 

sequence, and even if these parts are far apart in the 

sequence, they can still be correctly correlated, which is 

difficult to do with traditional models. This capability is 

critical to understanding the nuances in functional clothing 

design, ensuring that the design not only meets functional 

requirements, but also reflects specific occupational 

characteristics and corporate culture. 

3.1 Input layer 

In a cloud-based graphical design model for clothing 

structures, the input layer is the starting point of the entire 

process, and it bears the key task of transforming the 

diverse and unstructured input requirements of users into 

machine-understandable vector representations. Users 

may present their requirements in a variety of forms, 

including, but not limited to, detailed textual descriptions, 

concise lists of keywords, or intuitive voice commands. 

These requirements form a collection of sequences 

1 2  { , ,..., }nS s s s= , where each element is  represents a 

word or token in the sequence. 

In order for the model to be able to process such 

sequences, we first need to map each word or token in the 

text is  to a vector in a high-dimensional space. This 

process is usually done through a layer called Embedding. 

The embedding layer converts each token is  into a fixed-

length vector ( )iE s  by finding a matrix E of pre-trained 

word vectors. Here the vector dimension modeld  is a 

hyperparameter of the model that determines the 

granularity and complexity of the vector representation 

within the model. 

Specifically, if the size of the vocabulary is V, the 

shape of the embedding matrix E will be modeld . When 

the model receives the token is , it looks up the 

corresponding rows in E to get ( )iE s . For example, if 

modeld  = 512, then ( )iE s  will be a 512-dimensional 

vector of real numbers [17]. 

The embedding matrix (E is not static after random 

initialization, but is continuously updated during training 

as part of the model to better capture the semantic 

relationships between words. This means that as the model 

is trained, the vectors in (E will gradually learn how to 

reflect the meaning and interactions of words in context. 

For example, "shirt" and "suit" tend to be closely related 
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in design languages, and their vector representations will 

tend to be close in space. 

3.2 Encoder layer 

In deep learning architectures, especially for Natural 

Language Processing (NLP) and sequence modeling tasks, 

the encoder layer plays a crucial role and is responsible for 

transforming the input vector sequences into higher-level 

abstract representations. This step is crucial for the model 

to understand and process user requirements. The encoder 

layer consists of a series of identical but independent 

sublayers, each of which integrates a multi-head self-

attention mechanism and a feed-forward neural network 

designed to understand and encode the input information 

from different perspectives [15]. 

Multi-Head Attention is one of the core innovations 

of the Transformer model, which allows the model to 

simultaneously attend to different locations of the input, 

thereby capturing more complex dependencies. Given a 

sequence of input vectors (E(S)), the Multi-Head 

Attention mechanism first decomposes the sequence into 

multiple distinct "heads", each of which computes the 

attention weights independently, so that different types of 

dependencies can be efficiently learned. For each head i, 

the attention computation can be expressed as Eq. (1). 

 

Attention( , , )Q K V

i i i ihead QW KW VW=         (1) 

 

Here, (Q, (K, and (V are the Query, Key, and Value 

matrices obtained by linear transformation from the input 

sequence (E(S), respectively, and , ,Q K V

i i iW W W  is the 

learnable weight matrix for tuning the way attention is 

computed for different heads. The attention function (text 

{Attention} is defined as: 

Attention( , , ) softmax( )
T

k

QK
Q K V V

d
=      (2) 

 

where (dk is the dimension of the key vector (K, which 

is used to scale the dot product result to prevent the 

gradient vanishing problem. Eventually, the outputs of all 

the heads are combined together by a splicing operation 

and another linear transformation is performed to obtain 

the final attention output as Eq. (3). 

 

1MultiHead( , , ) Concat( ,..., ) O

hQ K V head head W=      

(3) 

 

In addition to the multi-head self-attention, each 

sublayer of the encoder also includes a Feed-Forward 

Network (FFN) for further enhancing the expressive 

power of the model. The feed-forward network usually 

consists of two fully connected layers sandwiched 

between activation functions, such as ReLU, to introduce 

nonlinear transformations. After multiple rounds of 

processing in the encoder layer, the original sequence of 

user demand vectors (E(S)) is transformed into a higher-

level representation (Z.). This new vector sequence 

contains rich semantic information and contextual 

dependencies, providing the subsequent decoder layer 

with sufficient information to generate accurate responses 

or perform specified tasks. 

3.3 Decoder layer 

The decoder layer, as another core part of the model, is 

responsible for transforming the high-level semantic 

features extracted by the encoder layer into concrete 

design elements and image layouts. In contrast to the 

encoder layer, the decoder not only needs to be capable of 

self-understanding, i.e., understanding the context of its 

own generated sequences through the mechanism of 

multi-headed self-attention, but also be able to interact 

with the encoder layer and utilize the cross-attention 

sublayer to capture the details of user requirements. This 

design ensures that the decoder is able to leverage 

previous inputs and information provided by the encoder 

when generating design elements to achieve accurate and 

creative outputs. 

The operation of the decoder layer is based on the 

incremental construction of a sequence of design elements 

 1 2 m  ,  ,  ...,  D d d d= , where each jd  can represent 

a design element or a layout instruction. During the 

generation process, the decoder predicts the next design 

element td  at each time step (t until the entire design 

sequence is constructed. This process involves three key 

steps: 

1). Multinomial self-attention: The decoder first uses 

the mechanism of multinomial self-attention to focus on 

the context of its own generation sequence, which helps 

the model to understand the relationships between the 

generated elements and provides the basis for the next 

generation step. This step ensures consistency and 

coherence in the design. 

2). Cross-attention: After the multi-head self-

attention, the decoder interacts with the output of the 

encoder layer through the cross-attention sublayer, i.e., it 

utilizes the sequence of vectors Z generated by the encoder 

as additional input. Cross-attention enables the decoder to 

refer to the full semantic representation of the user's 

requirements, thus generating design elements closer to 

the user's real intentions. The cross-attention computation 

is similar to multi-head self-attention, but uses the matrix 

of keys encK  and values encV  from the encoder, as well as 

the decoder's own query matrix. 

The output of the decoder layer at each time step t can 

be expressed as Equation 4 and Eq. (5). 

 

1MultiHead( , , ) Concat( ,..., ) O

hQ K V head head W=   (4) 

(FFN(CrossAttn(SelfAttn( ), )))t ty f y Z=    (5) 

 

Where ty  denotes all decoder outputs prior to time 

step t;  SelfAttn  denotes the multi-head self-attention 

mechanism, which considers only the elements in ty  to 

maintain the causality of the sequence, i.e., future 
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information is not taken into account in the generation;

CrossAttn  denotes the cross-attention mechanism, 

which receives ty  as a query, and Z (the outputs of the 

encoder) as the key and the value, in order to integrate the 

information from the encoder; FFN  denotes the feed-

forward neural network, which is used for the nonlinear 

transformation; and f is an activation function, such as 

ReLU, for introducing nonlinearity. 

Ultimately, at each time step t, the decoder predicts 

the probability distribution of the next design element 

(d_t, which is obtained from the output layer via the 

Softmax function Eq. (6). 

 

( | , ) Softmax( )t t tP d y Z Wy b = +           (6) 

 

where W and (b are learnable weights and bias 

parameters, and  ( | , )t tP d y Z  denotes the probability 

that the next element is td  given the previous sequence

ty  and the encoder output Z. 

3.4 Output layer 

The output layer is the final stage of the whole design 

generation process, and its main task is to transform the 

symbol sequence D generated by the decoder layer into 

intuitive graphical elements and image layouts. This 

transformation process usually involves complex data 

conversion and image synthesis techniques, in which deep 

learning models such as Conditional Generative 

Adversarial Networks (cGAN) play an important role. 

Through carefully designed post-processing algorithms, 

the output layer can further optimize the design to ensure 

that the final product is both aesthetically pleasing and 

functional. 

Generator G: receives the random noise z and the 

condition variable c (in this case D, and generates the 

image I. The goal of the generator is to learn to generate a 

realistic image from a given condition c, making it 

difficult for the discriminator to distinguish between the 

generated image and the real image. Discriminator D: 

receives the image I and the condition variable c and 

determines whether the image is realistic or not. The goal 

of the discriminator is to distinguish between the real 

image and the image generated by the generator. During 

the training process, the generator tries to deceive the 

discriminator, while the discriminator tries to recognize 

the generated image. This process can be represented by 

the following objective function as Eq. (8). 

 
~ ( ) ~ ( )min max ( , ) [log ( | )] [log(1 ( ( | ) | ))]

data zG D x p x z p zV D G D x c D G z c c= +E E  

(8) 

 

Where  ( )datap x  is the distribution of the real data, 

) (zp z  is the prior distribution of the noise, c is the 

condition variable, x is the real sample, and z is the noise 

vector. 

Once cGAN has generated a preliminary design 

image, the output layer may also apply post-processing 

algorithms to further optimize the design. These 

algorithms aim to adjust various aspects of the design, 

including but not limited to color correction, edge 

refinement, texture enhancement, etc., to ensure that the 

design meets predefined aesthetic and functional criteria. 

For example, unwanted noise may be removed by an 

image smoothing algorithm or a color space 

transformation may be used to adjust the hue and 

saturation of an image. 

In addition to basic image processing, the post-

processing phase can include more advanced design 

optimization steps. For example, image segmentation and 

object detection algorithms can be used to check that 

individual elements of a design are placed appropriately, 

or machine learning models can be used to assess the 

attractiveness and innovation of the overall design. The 

goal of design optimization is to ensure that the final 

product is not only visually pleasing, but also performs 

well in terms of functionality and user experience [20]. 

3.5 Application of cloud computing in 

modeling 

Cloud computing plays a crucial role in the graphical 

design model of apparel structures based on the 

Transformer architecture, not only providing a powerful 

computing infrastructure, but also facilitating flexibility, 

scalability and innovation in the design process. The 

following are some of the key aspects of cloud computing 

in modeling applications, which are specified as shown in 

Figure 2. 

 

Figure 2: The role of cloud computing. 

 

Cloud computing platforms provide a large number of 

computational resources, which are crucial for training 

and running Transformer-based deep learning models. 

Since such models usually contain millions or even 

billions of parameters, the training process requires 

processing massive amounts of data and performing 

complex mathematical operations, so high-performance 

GPU and TPU clusters are indispensable. Cloud 

computing environments can dynamically allocate these 

resources, scaling up or down according to the needs of 

model training, effectively shortening model training time 

and reducing costs. 

Apparel design models rely on a large amount of 

historical design cases, user preference data, and industry 
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trend information. Cloud computing provides safe and 

reliable large-scale data storage solutions, such as cloud 

database and object storage services, to efficiently store 

and retrieve this data. In addition, cloud services support 

data backup and recovery, guaranteeing data security and 

business continuity for design models. 

The elastic nature of cloud computing allows design 

models to be adjusted and updated in real time to respond 

to rapidly changing market needs and user preferences. 

This not only includes fine-tuning of model parameters, 

but also covers the rapid integration of new design trends. 

Through cloud computing, design models can 

continuously learn the latest design styles, ensuring that 

the design output is always at the forefront of the industry. 

At the same time, based on the user's individual needs, the 

model can provide customized design suggestions to 

enhance the user experience. 

The distributed computing power of the cloud allows 

design teams to collaborate globally. Designers, engineers 

and market analysts can share the same design platform to 

instantly view and edit draft designs, enabling seamless 

communication and collaboration across geographies. 

This collaborative design model greatly improves work 

efficiency and facilitates the collision and integration of 

ideas. 

4 Experimental evaluation 

4.1 Experimental design 

In order to comprehensively evaluate the effectiveness and 

practicality of a cloud-based graphical design model for 

apparel structures, we designed a series of experiments 

aimed at verifying the performance of the model in terms 

of design accuracy, efficiency, personalization capability, 

and market adaptability. The experimental design is 

divided into the following parts: 

We constructed a comprehensive apparel design 

dataset containing multi-dimensional information such as 

historical design cases, user preferences, industry trends, 

and functional requirements. The dataset not only covers 

a wide range of occupational categories, such as medical, 

restaurant, aviation, and industrial, but also includes 

design styles from different cultures to ensure the 

generalizability and diversity of the model. 

Model training is performed on a cloud computing 

platform, which utilizes massively parallel computing 

resources to accelerate the training process. We adopted a 

cross-validation strategy by dividing the dataset into 

training, validation, and testing sets with the proportions 

of 70%, 15%, and 15%, respectively. The training phase 

aims to optimize the model parameters to minimize the 

design error and improve the design quality. The 

validation set is used to tune the hyperparameters and 

ensure the model generalization capability. The test set is 

used for final evaluation of the model performance and is 

not involved in the training process. 

We designed a set of benchmark tests to assess design 

accuracy by comparing model-generated designs with 

reference designs created by human designers. This 

included measuring the similarity of design elements, 

layout rationality, and the degree of functionality 

achieved. In addition, industry experts were invited to 

make subjective evaluations of the designs' innovativeness 

and usefulness. 

In order to quantify the processing speed and response 

time of the model, we recorded the time required for the 

whole process from user input to design output, especially 

the performance under highly concurrent requests. 

Meanwhile, the running efficiency of the model under 

different loads is compared to check the elastic scaling 

capability in cloud computing environment. 

We used big data analytics to simulate the 

individualized needs of different user groups and test 

whether the model can generate designs that meet specific 

user preferences. In addition, the model's ability to predict 

and design trend changes based on market trends was 

evaluated to verify its market adaptability and foresight. 

In order to obtain the actual feelings of end users, we 

designed a user experience test, inviting the target user 

groups to try out the model-generated design and 

collecting their feedback on the design style, comfort, 

functionality and brand fit. Questionnaires and in-depth 

interviews were used to collect users' overall satisfaction 

with the design and suggestions for improvement. 

To ensure the reliability and broad applicability of the 

experimental results, we constructed a diverse dataset that 

included a wide range of design styles and occupational 

categories. Specifically: 

Design style diversity: the dataset covers apparel 

samples of multiple design styles, such as modern 

minimalist, traditional classic, sports and casual, to ensure 

that the model can adapt to different aesthetic needs and 

fashion trends. 

Occupational category diversity: The dataset covers a 

wide range of industries such as medical, aviation, 

catering and industrial, etc. The design samples within 

each industry fully reflect the needs and characteristics 

specific to that field, such as comfort and hygiene in the 

medical industry, and safety and durability in the 

industrial industry. 

Diversity of user groups: The dataset includes novice 

workers, experienced employees, and groups with special 

needs, ensuring the accuracy and broad applicability of the 

model for personalized design. 

Data format diversity: The samples in the dataset 

include 2D image data, 3D model data, as well as user 

feedback and behavioral data, and this diversity helps the 

model understand and learn design elements from multiple 

perspectives. 

By covering a wide range of data diversity, we ensure 

the reliability of the experimental results and the broad 

applicability of the model in real-world applications. 

In order to ensure the generalization ability of the 

model during the training process and reduce the 

overfitting problem, we adopt the K-Fold Cross 

Validation (K-Fold) method. The specific steps include: 

first, randomly divide the entire dataset into K subsets, 

each of which is approximately the same size; then rotate 

one of the subsets as the validation set, and merge the 

remaining K-1 subsets as the training set, so that the model 

can be trained and validated on K different combinations 
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of training-validation; and finally average the results of 

the K validations as the estimation of the model's 

performance, which is an effective way to reduce the 

performance fluctuations caused by the unreasonable data 

division. effectively reduce the performance fluctuations 

caused by unreasonable data partitioning. In addition, in 

order to further mitigate the overfitting problem, we apply 

L1 and L2 regularization techniques to the model to limit 

the complexity of the parameters and prevent the model 

from being too complex. Through these measures, we 

effectively improve the generalization ability and stability 

of the model to ensure the reliability and practicality of the 

experimental results. 

In this study, we utilize advanced cloud computing 

platforms and specific computing resources for efficient 

design simulation and data analysis. Specifically, we use 

Amazon Web Services (AWS) and Google Cloud 

Platform (GCP), two mainstream cloud service providers, 

which offer rich computing resources and services that can 

fulfill the needs of large-scale data processing and 

complex design tasks. 

During the design phase, we used AWS EC2 P3 

instances with NVIDIA V100 GPUs, which provide 

powerful graphics processing to support complex 3D 

rendering and simulation tasks. With GPU-accelerated 

computation, we were able to complete a large number of 

design iterations in a short period of time, significantly 

improving design efficiency. In addition, we leverage 

AWS S3 storage services to store massive amounts of 

design data and use AWS Lambda serverless computing 

services to process and analyze it, enabling flexible 

resource scheduling and a pay-as-you-go model. 

For real-time applications, we chose GCP's Compute 

Engine instance and configured it with NVIDIA T4 GPUs, 

which are suitable for machine learning inference tasks 

and can provide real-time personalized design 

recommendations. With GCP's Kubernetes Engine 

(GKE), we deployed containerized applications to ensure 

system stability and scalability across workloads. In 

addition, GCP's BigQuery service was used to process 

large-scale datasets to support real-time data analytics and 

user behavior prediction. 

4.2 Experimental results 

 

 

Figure 3: Design element similarity scores. 

 

Figure 3 demonstrates the similarity scores of 

elements in the structural design of smart garments for 

different design types. The average similarity score 

reflects the degree of similarity of the design elements on 

the whole, with medical garments having the highest 

similarity score of 89.5%, indicating better uniformity 

among the design elements of medical garments. The 

maximum similarity score and minimum similarity score 

reveal the range of fluctuation in the similarity of the 

design elements in each category, e.g., the maximum 

similarity score for catering uniforms is 97.0%, indicating 

that the similarity between the elements is extremely high 

in some designs. These data are important for assessing 

the standardization and consistency of design elements. 

 

Table 2: Layout rationality score. 

Design 

Type 

Average 

Reasonable

ness Score 

Maximum 

Reasonable

ness Score 

Minimum 

Reasonable

ness Score 

Medica

l 

Clothi

ng 

91.0% 96.0% 87.0% 

Cateri

ng 

Unifor

ms 

93.0% 98.0% 88.0% 

aviatio

n 

unifor

m 

90.5% 95.0% 86.0% 

Indust

rial 

Protect

ive 

Clothi

ng 

89.0% 94.0% 84.0% 

 

Table 2 presents the scores of different design types 

in terms of layout rationality. The average reasonableness 

score indicates the overall level of reasonableness of the 

design layout. Catering uniforms ranked first with an 

average score of 93.0%, showing the high reasonableness 

of its design layout.  

 

Table 3: Personalization accuracy. 

70,00%

75,00%

80,00%

85,00%

90,00%

95,00%

100,00%

Medical
Clothing

Catering
Uniforms

Airline
Uniforms

Industrial
PPE

Average Similarity Score Maximum Similarity Score

Minimum Similarity Score
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user group 

Personalizati

on accuracy 

(%) 

Maximu

m 

accuracy 

(%) 

Minimu

m 

accurac

y (%) 

newcomer 

in the 

workplace 

90.0 95.0 85.0 

Experienc

ed staff 
92.0 96.0 88.0 

Special 

needs 

groups 

88.5 93.0 84.0 

 

Table 3 reflects the accuracy of personalized designs 

for different user groups. The accuracy rate of 

personalization design is directly related to whether the 

design can meet the needs of specific users. The accuracy 

rate of personalized design for newcomers in the 

workplace is 90.0%, which indicates that the design can 

fit the characteristics of this group better. The highest and 

lowest accuracy rates demonstrate the range of fluctuation 

of the design, such as the lowest accuracy rate of 84.0% 

for the special needs group, pointing out that there may be 

challenges in meeting special needs. These data are 

important references for improving the accuracy of 

personalized design. 

 

Table 4: Design quality assessment. 

Design Type 

Average 

design 

quality 

score 

(%) 

Highest 

quality 

score 

(%) 

Minimum 

quality 

score (%) 

Medical 

Professional 

Clothing 

91.5 96.0 87.0 

Catering 

Professional 

Clothing 

93.0 98.0 88.0 

Aviation 

Professional 

Clothing 

90.5 95.0 86.0 

Industrial 

protective 

clothing 

89.0 94.0 84.0 

 

Table 4 shows the design quality scores for different 

design types. The average design quality score is a key 

indicator of the overall level of design, and Medical 

Occupational Clothing indicates a high quality of design 

with a score of 91.5%. The highest and lowest quality 

scores, on the other hand, reflect fluctuations in quality 

across design types. For example, the highest quality score 

of 98.0% for catering occupational clothing indicates that 

very high quality standards are achieved in certain 

designs. These assessment results are important for 

improving design quality and meeting user expectations. 

 

 

Figure 4: Satisfaction of users' personalized needs. 

 

Figure 4 reveals the degree of satisfaction of 

personalized needs of different user groups. The degree of 

personalized need satisfaction is an important indicator of 

whether the design is able to meet the specific needs of the 

users. For example, the individualized need satisfaction 

level of 90.0% for medical professionals indicates that the 

design caters to the needs of this group to a large extent. 

The highest and lowest satisfaction levels, on the other 

hand, show the resilience of the design, e.g., the lowest 

satisfaction level of 82.0% for industrial operators 

indicates that there is room for improvement in meeting 

some specific needs. These data are important guidelines 

for improving designs to better serve different user groups. 

 

Table 5: Comparison of design quality evaluation among 

different studies. 

Design Type / 

Method 

Average 

Design 

Quality 

Score (%) 

Highest 

Quality 

Score 

(%) 

Lowest 

Quality 

Score 

(%) 

Medical 

Professional 

Clothing 

(This Study) 

91.5 96.0 87.0 

Catering 

Professional 

Clothing 

(This Study) 

93.0 98.0 88.0 

Aviation 

Professional 

Clothing 

(This Study) 

90.5 95.0 86.0 

Industrial 

Protective 

Clothing 

(This Study) 

89.0 94.0 84.0 
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Medical 

Professional 

Clothing [22] 

88.5 93.0 84.0 

Catering 

Professional 

Clothing [23] 

91.0 96.0 87.0 

Aviation 

Professional 

Clothing [24] 

90.0 95.0 86.0 

Industrial 

Protective 

Clothing [25] 

87.5 92.0 83.0 

 

As shown in Table 5, among all four design types, the 

Food Service Professional Apparel had the highest design 

quality score with an average score of 93.0%, which 

indicates that we have made significant progress in 

improving the rationality of our designs and meeting the 

needs of our users. In particular, our designs performed 

well in terms of standardization and consistency, as 

indicated by the similarity scores, with healthcare 

professional apparel having the highest average similarity 

score (89.5%), showing a high degree of uniformity 

between design elements. Compared to the existing 

literature, our method shows better performance in most 

design types. For example, the design quality scores in this 

study are higher compared to the medical professional 

apparel in Literature [22], which may be attributed to the 

use of more advanced materials and technologies, as well 

as a more refined analysis of user needs. In addition, our 

food service specialty apparel designs not only exceeded 

literature [23] in terms of mean scores, but also reached 

98.0% in terms of maximum scores, suggesting that, in 

some cases, our designs met extremely high-quality 

standards. Nonetheless, the design quality scores for 

industrial protective clothing were slightly lower than the 

other types, with a minimum score of only 84.0%, which 

suggests that we need to further optimize the design, 

especially in terms of meeting the needs of specific work 

environments. By comparing the results with those in the 

existing literature, it can be seen that our proposed solution 

has made progress in improving design quality and 

personalization accuracy, but there is still room for 

improvement, especially in minimizing design 

fluctuations. 

 

Table 6: Performance metrics comparison. 

Metric / 

Method 

Thi

s 

Stu

dy 

Medical 

Professi

onal 

Clothin

g [22] 

Caterin

g 

Professi

onal 

Clothin

g [23] 

Aviatio

n 

Professi

onal 

Clothin

g [24] 

Design 

Element 

Similarity 

89.

5% 
85.0% 87.0% 88.0% 

Metric / 

Method 

Thi

s 

Stu

dy 

Medical 

Professi

onal 

Clothin

g [22] 

Caterin

g 

Professi

onal 

Clothin

g [23] 

Aviatio

n 

Professi

onal 

Clothin

g [24] 

Average 

Layout 

Rationalit

y Score 

91.

0% 
88.5% 90.0% 89.5% 

Personali

zation 

Accuracy 

92.

0% 
89.0% 90.5% 91.0% 

Average 

Design 

Quality 

Score 

91.

5% 
88.0% 90.0% 90.5% 

 

As shown in Table 6, the similarity score of design 

elements in this study is 89.5%, which is higher than 

85.0% for medical professional apparel, 87.0% for food 

service professional apparel and 88.0% for aviation 

professional apparel. This indicates that our model 

performs better in maintaining consistency and 

standardization of design elements. The average layout 

rationality score of the study was 91.0%, which is higher 

than 88.5% for medical professional apparel, 90.0% for 

food service professional apparel and 89.5% for aviation 

professional apparel. This means that our design performs 

better in terms of layout rationalization. The accuracy of 

personalization in this study is 92.0%, which is higher than 

89.0% for medical professional apparel, 90.5% for food 

service professional apparel and 91.0% for aviation 

professional apparel. This indicates that our model has 

higher accuracy in personalization. The average design 

quality score for this study was 91.5%, which is higher 

than 88.0% for medical specialty apparel, 90.0% for food 

service specialty apparel, and 90.5% for aviation specialty 

apparel. This indicates that our designs performed better 

in terms of overall quality. 

4.3 Discussion 

As automated design models evolve and are adopted, 

while they offer significant benefits in terms of increased 

design efficiency, personalization, and overall quality, 

they also raise a number of ethical issues. The most 

prominent of these are the issues of data privacy and the 

professional positioning of traditional designers. 

The process of personalized design requires the 

collection of a large amount of user data, including but not 

limited to sensitive information such as size, preferences, 

and health conditions. These data, if not handled properly, 

may leak the user's personal privacy. Therefore, ensuring 

the secure storage and transmission of data, as well as 

following strict privacy protection regulations, becomes 

one of the key considerations in the implementation of 

automated design models. Measures such as the use of 
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encryption and anonymization can effectively mitigate 

this risk. 

The application of automated design models may lead 

to pressure for career transition for some traditional 

designers. While the introduction of new technology aims 

to improve design efficiency and quality, it may also 

reduce the need for manual design. Therefore, there is a 

need to help designers adapt to the new technological 

environment through training and education so that they 

can work with automated tools to optimize human-

machine collaboration. In addition, the complexity and 

creative demands of the design field mean that human 

designers remain irreplaceable, with automated tools 

being more of an aid than a complete replacement. 

In the healthcare industry, accurate and safe design is 

critical to patient recovery. Automated design models can 

generate customized medical garments based on 

individual patient characteristics through big data 

analytics and machine learning algorithms. These 

garments not only improve the wearer's comfort, but also 

assist in the healing process, for example by monitoring 

the patient's vital signs through smart sensing materials. 

This has significant practical implications for post-

operative care, chronic disease management and 

telemedicine services. However, ensuring the accuracy 

and safety of these designs remains a challenge and must 

be rigorously tested and comply with relevant medical 

standards. 

In aviation, uniforms must be designed not only for 

aesthetics and comfort, but also to meet high standards of 

safety. Automated design models can speed up the design 

process and reduce the number of physical prototypes 

produced, thus saving time and resources. In addition, by 

utilizing advanced material science and manufacturing 

technologies, uniforms that are both lightweight and 

durable can be developed to suit the working environment 

of aviation personnel. While these innovations can help 

improve efficiency and flight safety, they also require 

strict adherence to aviation industry norms and standards 

to ensure that each uniform can withstand extreme 

conditions. 

Uniforms in the hospitality industry need to be 

designed not only to reflect the brand's characteristics, but 

also to take into account the needs of employees in 

different scenarios of activities. Automated design models 

can provide more reasonable layout and material selection 

suggestions based on the specific work characteristics of 

different positions. In this way, the professional image of 

employees can be enhanced and their job satisfaction 

increased. In addition, the use of sustainable design 

concepts, such as green material selection and recycling 

programs, can reduce the impact on the environment and 

respond to the growing awareness of environmental 

protection. 

In conclusion, automated design models face ethical 

considerations and technological challenges while 

enhancing design efficiency and personalization. By 

taking into account data privacy protection, career 

transition support, and the specific needs of each industry, 

it is possible to capitalize on the benefits of new 

technologies while ensuring the safety and suitability of 

design outcomes. 

5 Conclusion 
In the rapidly developing apparel design industry, 

traditional design methods are difficult to meet the 

growing demand for personalization and customization, 

while long design cycles and high costs have become 

industry pain points. In view of this, this study focuses on 

the integration of cloud computing and artificial 

intelligence technologies to develop a set of graphical 

design models for apparel structures based on the 

Transformer architecture, aiming to enhance the design 

efficiency and innovativeness while realizing a high 

degree of personalization and customization. The model is 

designed using the Transformer architecture and trained 

by the high-performance computing resources of the cloud 

computing platform, which ensures the model's ability to 

process large-scale datasets and the flexibility of real-time 

adjustment. The experimental evaluation covers multiple 

dimensions such as design accuracy, efficiency, 

personalization and market adaptability, and the model is 

trained and tested through a comprehensive apparel design 

dataset to verify the effectiveness and practicality of the 

model. The experimental results show that the model 

achieves excellent results in design element similarity, 

layout reasonableness, personalized design accuracy and 

design quality assessment, indicating that it has significant 

advantages in dealing with diverse user needs and industry 

trends. In particular, for the personalized design of 

different user groups, the model demonstrates an accuracy 

rate of up to 92%, proving its strong ability to meet 

specific needs. 
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