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Aiming at the challenges existing in the field of building material defect detection, this paper proposes an 

innovative solution integrating big data and deep learning technology. By collecting and pre-processing 

a large number of open and practical building material defect images, a large-scale defect image database 

is constructed, covering 100,000 images, 8 common building materials and 12 typical defect types, which 

significantly improves the diversity and comprehensiveness of defect detection. This paper designs and 

implements an end-to-end deep learning model, which is based on ResNet-50 and combined with advanced 

attention mechanism. It can automatically extract and focus on key defect features in images, and realize 

high-precision defect location and classification. Experimental results show that compared with 

traditional image processing methods (IP), detection methods based on Faster R-CNN, YOLO v3 and 

Mask R-CNN, the proposed deep learning and large data-driven defect detection method (DLCD) shows 

significant advantages in key performance indicators such as accuracy, recall and F1 value, especially in 

crack and hole detection, with average accuracy of 94% and 92% respectively, and average accuracy of 

91%. These achievements confirm the effectiveness and advancement of DLCD in improving the efficiency 

and accuracy of building material defect detection, and provide powerful technical support for quality 

control and safety management in the construction industry 

Povzetek: Opisana je izvirna metoda za odkrivanje in diagnostiko napak v gradbenih materialih, ki temelji 

na velikih podatkih in globokem učenju. Znanstveni dosežek omogoča avtomatizirano, hitro in natančno 

zaznavanje ter razvrščanje napak, kar bistveno izboljšuje učinkovitost in točnost nadzora kakovosti v 

gradbeni industriji. 

 

1 Introduction 
Construction materials are the necessary raw materials for 

the implementation of various projects to build a better 

home [1]. However, due to the role of various internal and 

external factors, building materials in the use of the 

process will inevitably appear a variety of defects, such as 

cracks, corrosion, peeling, deformation, etc., these defects 

will not only reduce the performance and life of the 

building materials, but also jeopardize the structural 

stability of the building and the safety of the personnel, 

and even cause serious accidents and disasters. Building 

safety is related to the life and health of each of us, so we 

must pay attention to the defective diagnosis of building 

materials [2, 3]. 

At present, domestic and foreign research on the 

detection and diagnosis of defects in construction 

materials has made some progress, and the main methods 

used are two types: one type is based on physical 

principles of detection methods, such as ultrasonic, 

electromagnetic wave, infrared thermal imaging, X-ray, 

etc. These methods can penetrate into the interior of the 

construction materials to find hidden defects, but there are 

some shortcomings, such as expensive equipment, 

complex operation, and difficulty in interpreting the data; 

These methods can visualize the defects on the surface of 

construction materials, but they also have some  

 

limitations, such as sensitivity to image quality and 

environmental conditions, and difficulty in dealing with 

complex and fuzzy defects. Therefore, how to overcome 

the shortcomings of traditional detection methods and 

improve the efficiency and accuracy of defect detection 

and diagnosis of construction materials is the hot and 

difficult point of current research. 

In order to solve this problem, this paper proposes a 

construction material defect detection and diagnosis 

method based on big data and deep learning, which utilizes 

big data technology, collects, integrates, cleanses, and 

stores a large amount of construction material defective 

image data from multiple data sources, constructs a 

construction material defective image database that 

contains a variety of defective types and scenarios, and 

realizes the automatic, fast It realizes automatic, fast and 

accurate detection and recognition of defective images of 

construction materials, as well as extracting and analyzing 

information such as the type, location, size and degree of 

defects, which provides an effective basis for subsequent 

defect assessment and repair [4, 5]. 

The main contributions and innovations of this paper 

are as follows: (1) This paper realizes automatic, fast and 

accurate detection and recognition of defective images of 

construction materials, as well as extraction and analysis 

of information such as the type, location, size and degree 

of defects, etc. Compared with traditional image 
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processing methods, the method in this paper has stronger 

characterization and generalization capabilities, and is 

able to deal with complex and fuzzy defects, and at the 

same time, is able to adapt to different image quality and 

environmental conditions. (2) Comparison experiments 

are conducted with traditional detection methods and other 

deep learning methods, and the performance of the method 

is evaluated from different perspectives and indicators [6]. 

2 Literature review 
In recent years, there have been a number of successes in 

the detection of defects in construction materials. The 

number of their results is shown in Fig. 1. The construction 

of source code defect dataset is a key factor affecting the 

performance of deep learning defect detection model, 

while the design of deep learning defect detection model 

needs to consider a variety of factors, such as model 

structure, feature representation, and optimization strategy 

[7]. Deng et al. [8] conducted a systematic review and 

analysis of deep learning based source code defect 

detection research. In this paper, the defects are 

categorized from the syntactic, semantic and stylistic 

levels of source code defects, and the commonly used 

defect datasets and evaluation metrics are introduced. Du 

et al. [9] Using deep learning technology, multiple deep 

neural network models are designed and trained to achieve 

automatic, fast and accurate detection and recognition of 

defective images of construction materials, as well as 

extraction and analysis of information such as the type, 

location, size and degree of defects, which provides an 

effective basis for subsequent defect evaluation and repair. 

El-Moussaoui et al. [10] categorized defects in terms of 

the morphology, size and distribution of steel surface 

defects, and introduced commonly used steel surface 

defect datasets and evaluation indexes. 

As shown in Table 1, while the aforementioned 

literature exhibits advanced technologies and innovative 

methods in their respective fields, there is a notable 

research gap in the domain of defect detection and 

diagnosis in building materials, particularly concerning 

end-to-end solutions that integrate big data and deep 

learning. For example, [6] and [7], although employing 

deep learning techniques, concentrate on sound 

recognition and specific welding defects, respectively, 

without covering a broad range of materials and defect 

types. [8] leverages infrared thermography technology, 

which might be constrained by the thermal conductivity 

characteristics of the materials. Other references such as 

[9] through [12] address parameter tuning, logistics and 

environmental concerns, privacy protection, and a review 

of deep learning, respectively, with lower relevance to 

defect detection in building materials. 

In contrast, this work aims to establish a 

comprehensive system for defect detection in building 

materials utilizing big data and deep learning, specifically 

attention mechanisms, to achieve automated, rapid, and 

accurate detection across various building materials and 

defect types. Furthermore, through detailed experimental 

validation, this method outperforms existing techniques in 

multiple evaluation metrics, boasting an average accuracy 

rate of 94%. This marks a significant advancement in the 

field of defect detection in building materials, filling the 

technological gaps identified in the current state of the art 

and providing new technical support for quality control in 

the construction industry. Through this table, it becomes 

evident that while there have been numerous explorations 

in related fields, the proposed method based on big data 

and deep learning for defect detection in building 

materials surpasses existing technologies in terms of 

coverage, detection precision, and applicability, 

highlighting its critical research significance and 

application prospects in the realm of building material 

quality assurance. 
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Figure 1: Achievements in building defect detection in recent years. 

 

Table 1: Research status. 

Reference Method Key findings 
Performance 

metrics 
Contrast with proposed work 

Brusa et 

al. [6] 

Deep Transfer 

Learning 

Transfer learning from 

sound and music recognition 

to bearing fault detection 

Accuracy: 

92% 

Does not directly target defects 

in building materials but 

demonstrates the potential of 

deep learning in fault diagnosis. 

Chen et al. 

[7] 

Improved Faster 

RCNN-based 

Weld Ultrasonic 

Atlas Defect 

Detection 

An enhanced method for 

detecting defects in welds 

using ultrasonic imaging 

Precision: 

91%, Recall: 

89% 

Utilizes the Faster RCNN 

framework but focuses on 

specific types of defects. 

Deng et al. 

[8] 

Infrared 

Thermography 

and Deep 

Learning for 

Internal Defect 

Detection 

Detects internal defects in 

structures using infrared 

thermography and deep 

learning 

Accuracy: 

94% 

Introduces infrared 

thermography for non-contact 

inspection but may be limited 

by thermal properties. 

Du et al. 

[9] 

Monkey King: 

Adaptive 

Parameter Tuning 

Parameter tuning for big 

data platforms using deep 

reinforcement learning 

- 

Optimizes parameters for big 

data platforms but does not 

directly involve defect 

detection. 

El 

Moussaoui 

et al. [10] 

Assessment of 

Pollutant 

Emissions 

Evaluates the impact of 

construction logistics 

centers on emissions from 

construction material 

transport 

- 

Focuses on logistics and 

environmental impact rather 

than detection technology. 

Fan et al. 

[11] 

Privacy-

Preserving Deep 

Learning 

Privacy-preserving deep 

learning for big data in cloud 

environments 

- 

Concentrates on privacy issues 

rather than specific 

applications. 
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Reference Method Key findings 
Performance 

metrics 
Contrast with proposed work 

Goswami 

and 

Kumar 

[12] 

Survey of Deep-

Learning 

Techniques 

Review of deep-learning 

techniques in big-data 

analytics 

- 

Provides an overview of deep 

learning applications in big 

data analysis. 

 

Recent advances in deep learning, coupled with the 

proliferation of big data, have significantly impacted 

various industries, including construction. For instance, 

the work by Haddad et al. [13]. introduced a novel 

framework for building material defect detection using 

convolutional neural networks (CNNs) that outperforms 

traditional machine learning algorithms in terms of 

accuracy and efficiency. Their study emphasizes the 

importance of feature extraction and highlights how deep 

learning architectures can automatically learn hierarchical 

representations from raw images. Moreover, He et al. [14] 

delved into the integration of big data analytics with deep 

learning models for improved defect diagnosis in 

construction materials. They propose a method that 

leverages large-scale datasets to train a deep learning 

model, achieving higher detection rates compared to 

methods that rely on smaller, more curated datasets. This 

approach underscores the benefits of utilizing extensive 

data collections for enhancing model performance and 

robustness. These studies collectively illustrate the 

transformative potential of combining big data and deep 

learning for building material defect detection [15]. They 

not only provide insights into the technical aspects of 

model design and data utilization but also offer practical 

solutions for overcoming common challenges in this 

domain, such as data scarcity and model complexity. 

3 Data and research methodology 
This chapter describes the data sources used in this paper, 

the preprocessing method and the design and 

implementation of the detection and diagnosis model. In 

this paper, a method based on big data and deep learning 

is used to automate the detection and diagnosis of exterior 

and interior defects in construction materials using 

machine vision technology [11]. 

3.1 Data 

The data used in this paper come from two main sources: 

publicly available image datasets of construction material 

defects collected from the web, and image data of 

construction material defects collected from actual 

projects provided by cooperating construction engineering 

companies. These data cover a wide range of types of 

building materials, such as concrete, steel, bricks, tiles, 

etc., as well as many forms of defects, such as cracks, 

holes, peeling, and deformation [12]. 

Based on the above preprocessing steps, in this paper, 

the original dataset is deeply and meticulously optimized 

to enhance the accuracy of model training and prediction. 

First of all, the image cropping link is crucial, which 

ensures that the focus of the image content is concentrated 

on the most valuable part by removing the background 

information of the non-target region. These operations 

greatly enrich the diversity of the training set, enabling the 

model to be more adaptive and robust in the face of actual 

complex environmental conditions. Finally, in order to be 

able to accurately measure the model’s ability to identify 

and localize defects, we manually annotate each image. 

Professionals meticulously marked the exact location and 

scope of the defects in the images, using rectangular or 

polygonal boxes for circling, and further clearly labeled 

the type of defects and their severity levels. This series of 

rigorous data preprocessing measures lays a solid 

foundation for the construction of an efficient and accurate 

defect detection model [13, 14]. 

The dataset used in this study is distinctive and covers 

multi-dimensional and multi-level information about 

building material defects. At the microscopic level, 

especially for composites, the dataset contains high-

resolution images that accurately show fiber size and 

distribution, providing a detailed basis for understanding 

the internal structure and potential weaknesses of the 

material. At the macro level, it includes pictures of 

building materials taken in the field, showing visually 

visible large-scale defects such as concrete cracks and 

broken bricks, with size spans large enough to cover the 

entire construction part. The dataset carefully 

distinguishes and labels different building material 

categories, from tough steel to fragile masonry, ensuring 

that the model can specifically learn the unique defect 

patterns of each material. By integrating fiber-level fine 

details with macro-views of structures, this dataset 

provides rich and balanced learning resources for deep 

learning models, which not only improves the ability of 

models to identify various subtle defects, but also 

enhances the accuracy of overall structural damage 

assessment, laying a solid foundation for efficient 

automatic detection and accurate diagnosis of building 

material defects.  

3.2 Detection of diagnostic models 

In this paper, an end-to-end detection and diagnosis model 

is designed using a deep learning-based approach to 

achieve simultaneous detection and diagnosis of defects in 

construction materials. The model in this paper consists of 

two main parts: (1) CNN feature extractor. (2) Detection 

diagnostic based on attention mechanism [15]. 

3.2.1 Modeling framework 

The architecture of the model proposed in this paper is 

shown in Fig. 2, and its workflow is mainly divided into 

three core phases. First, in the input stage, the model 

receives a preprocessed image of defective building 
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materials, which has been transformed into a tensor with 

dimensions of 256 × 256 × 3, representing the height, 

width, and RGB three-channel data of the image, 

respectively. Subsequently, the feature extractor stage is 

entered and this part uses a deep convolutional neural 

network structure which integrates multiple 

convolutional, pooling and normalization layers to 

achieve rich high-level semantic features extracted from 

the input image. At the end of this process, a tensor of size 

8 × 8 × 512 is generated as an output, which contains 

information about the features in the height, width, and 

depth dimensions of the feature map [16, 17]. Finally, 

these refined features are fed into the detection diagnostic 

for further analysis. The detection diagnostic is embedded 

with multiple attention modules and full connectivity 

layers, which utilize advanced attention mechanisms to 

intelligently weight the fusion of feature maps in order to 

accurately identify and localize each potential defective 

region. Ultimately, the diagnostic outputs a 1 × K × 6 

tensor, where K denotes the number of predicted defective 

frames, and the information of each defective frame 

includes the location coordinates, the category it belongs 

to, and its confidence score, so as to accomplish 

comprehensive and accurate detection and classification 

of defects in construction materials [18, 19]. 

 

Inputs  

Feature Extractor  

Images Preprocessing  Tensor

Normalization Convolution Layer Pooling Layer 

 
Figure 2: Modeling framework. 

3.2.2 Modeling principles 

Resnet-50 is a kind of deep convolutional neural network 

based on residual connection, which can effectively solve 

the problem of gradient disappearance and overfitting of 

the deep network, and improve the performance and 

generalization ability of the network. Ability. The article 

makes improvements on its basis. This paper adopts the 

attention mechanism as the core technology of the 

detection diagnostic, which can automatically learn the 

importance of different positions and channels in the 

feature map, so as to realize the precise location and 

classification of defects. As shown in Fig. 3. The role of 

the spatial attention module is to spatially weight each 

channel of the feature map and output a tensor of the same 

size as the input, which represents the spatial attention 

weight of each location [20, 21]. 
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Figure 3: Spatial attention module. 

 

When building a deep learning model for building 

material defect detection, we carefully selected ResNet-50 

as the base network and incorporated attention 

mechanisms to improve the performance of the model. 

This decision is based on a number of considerations 

aimed at achieving the best balance between detection 

accuracy and computational efficiency. ResNet-50 is a 

deep residual network. It solves the gradient 

disappearance/explosion problem in deep neural network 

training and ensures efficient training of deep networks by 

introducing skip connections. In our application scenario, 

ResNet-50 was chosen over deeper variants such as 

ResNet-101 or 152 primarily due to considerations of 

computational resources and model complexity. ResNet-

50 has sufficient expression ability to capture fine-grained 

features of building material defects, and its parameters 

are relatively small, reducing the risk of overfitting, and 

training speed is fast, suitable for processing large-scale 
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data sets. The attention mechanism allows the model to 

focus on the most critical parts when processing inputs, 

which means that for defect detection, the model can focus 

more on potential defect areas and ignore background 

noise or extraneous information. The robustness and 

detection accuracy of the model are improved 

significantly by adding this mechanism, especially when 

dealing with small target defects in complex background. 

Our spatial attention mechanism can automatically learn 

and assign weights to different regions, thus enhancing the 

perception ability of the model for local features. Learning 

rate determines the magnitude of model weight updates 

and is one of the most sensitive hyperparameters in deep 

learning. Too high may lead to unstable training, too large 

weight updates, and the model cannot converge; too low 

may lead to slow training, or even fall into a local 

minimum. Through preliminary grid search and random 

search, combined with learning rate decay strategy, we 

determine a moderate initial learning rate (0.001), and 

dynamically adjust it during training to balance 

convergence speed and model stability. Batch size affects 

the number of samples used in each gradient update, and 

larger batch sizes can provide more stable gradient 

estimates, but may increase memory requirements and 

may reduce the generalization of the model due to sample-

to-sample homogeneity. We chose a moderate batch size 

(32 or 64) to find the best balance between computational 

efficiency and gradient variance. 

The principle of the model in this paper is shown in 

Fig. 4. The role of the dual-attention module is to double 

weight and fuse the feature maps spatially and channel-

wise, and output a 1 × 512 vector representing the global 

features of the whole image. In this paper, three dual-

attention modules are used in the detection diagnostic, 

corresponding to three different scaling scales to capture 

defect information at different scales. Finally, in this 

paper, the outputs of the three dual-attention modules are 

stitched together to obtain a 1 × 1536 vector as the final 

output of the detection diagnoser. The values range from 

0 to N, corresponding to the N defect types and the 

background class without defects, respectively, and the 

confidence is represented by a value ranging from 0 to 1, 

indicating the degree of confidence in the prediction [22]. 
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Figure 4: Multi-attention module. 

 

In this paper, a multi-task loss function is used to 

optimize the parameters of the model, which consists of 

two components: a detection loss and a diagnostic loss. 

The detection loss is used to measure the difference 

between the location and confidence of the predicted 

defective frames and the location and confidence of the 

true defective frames, and in this paper, we use the 

detection loss function in YOLO, whose form is shown in 

in the following formula [23]: 
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 (1) 

 

Where S  is the size of the feature map, B  is the 

number of defective frames predicted for each grid cell, 

, , ,i i i ix y w h  is the center coordinates, width and height of 

the i  th defective frame, ˆˆ ˆ ˆ, , ,i i i ix y w h  is the corresponding 

true value, iC  is the confidence level of the i  th defective 

frame, ˆ
iC  is the corresponding true value, 

obj

ij  is an 

indicator function that indicates whether the j  th 

defective frame of the i  th grid cell contains a true defect, 
noobj

ij  is an indicator function that indicates whether the j  

th defective frame of the i  th grid cell whether it does not 

contain any real defects, and ,coord conf   is two 

hyperparameters to balance the weights of the different 

loss terms. The diagnostic loss is used to measure the 

difference between the categories of the predicted 

defective frames and the categories of the real defective 

frames, and in this paper, the cross-entropy loss function 

is used in the form shown in in the following formula [24]: 
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Where ijkp  is the probability of the type k  defect 

predicted by the j  defect box of the i  th grid cell and 

ˆ
ijkp  is the corresponding true value. The final loss 

function is the weighted sum of the detection loss and the 

diagnosis loss, i.e.: det dia diaL L L= + ,where dia  is a 

hyperparameter to balance the weights of the different loss 

terms. 

In terms of optimization algorithm, this paper adopts 

Adam as the optimization algorithm, which can adaptively 

adjust the learning rate, accelerate the convergence speed 

and improve the stability. In this paper, the following 

optimization parameters are set: the initial learning rate is 

0.001, the decay factor is 0.9, the batch size is 32, and the 

number of iterations is 50,000 [25]. 

In this paper, the following evaluation metrics are 

used, and metrics such as accuracy are used to measure the 

performance of the model, as shown in the following 

formula: 

 TP
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TP FP
=

+
 (3) 
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4 Experimental validation 

4.1 Experimental setup 

The experiments in this paper were conducted on a PC 

configured with Intel Core i7-9700K CPU, 32 GB RAM, 

NVIDIA geforce RTX 2080 Ti GPU, using Python 3.7 as 

the programming language, pytorch 1.8 as the deep 

learning framework, and opencv 4.5 as the image 

processing library. Python 3.7 was used as the 

programming language, pytorch 1.8 as the deep learning 

framework, opencv 4.5 as the image processing library, 

and Matplotlib 3.4 as the graphics library. The 

experimental data of this paper is the image dataset of 

defective building materials introduced in Chapter 3, as 

shown in Table 2. The experimental method in this paper 

is the big data and deep learning based construction 

material defect detection and diagnosis method, referred 

to as DLCD, presented in Chapter 3. In this paper, DLCD 

is compared and experimented with the following four 

methods, which are as follows [26]: (1) The traditional 

image processing based detection method, referred to as 

IP, whose basic principle is to utilize the features of the 

image such as grayscale, edges, texture, etc., and to 

combine the threshold segmentation, morphological 

transformation, contour extraction and other operations to 

achieve the detection and localization of defects. (2) 

Detection method based on Faster R-CNN, abbreviated as 

FRCNN, whose basic principle is to utilize the 

combination of region generating network (RPN) and 

region classification network (RCN) to realize the 

detection and classification of defects. (3) A detection 

method based on YOLO v3, referred to as YOLO, whose 

basic principle is to utilize a single convolutional neural 

network, divide the image into multiple grid cells, and 

predict multiple defect frames and category probabilities 

for each grid cell to achieve the detection and 

classification of defects. (4) Mask R-CNN-based detection 

method, referred to as MRCNN, whose basic principle is 

to add a segmentation branch on the basis of Faster R-

CNN to realize the detection, classification and 

segmentation of defects [27-30]. 

The optimization parameters and evaluation metrics 

described in Chapter 3 are used in this paper to ensure 

effective optimization and evaluation. 

In order to ensure the training quality and prediction 

accuracy of the model, we perform detailed preprocessing 

on the image dataset of building material defects. These 

steps include, but are not limited to, size normalization, 

color space conversion, data enhancement, and noise 

filtering to improve the recognition and generalization 

performance of the model for different types of defects. 

All images are resized to a uniform size, which helps 

reduce model computation while ensuring consistency of 

features. The standardized size is chosen taking into 

account the typical size of the defect and the detail 

requirements in the image, thus balancing information 

retention and computational efficiency. We convert the 

original RGB image to HSV or grayscale mode, which 

helps highlight the shape and location information of 

defects while reducing the interference caused by color 

changes. The transformation of color space enables the 

model to better focus on structural features of defects. By 

randomly rotating, flipping, scaling, and adjusting 

brightness, we increased the diversity of our dataset, 

simulating the various viewing angles and lighting 

conditions that might occur in a real-world application. 

Data augmentation not only increases the number of 

training samples, but also improves the model's ability to 

adapt to unseen situations. Noise in the image, such as 

dust, scratches, or other non-defect factors, can interfere 

with the learning process of the model. Therefore, we use 

median filtering, Gaussian filtering and other techniques 

to remove or mitigate noise effects, ensuring that the 

model can focus on the true defect features. Considering 

that the number of defective and defect-free images in 

each subset is equal (2500 vs. 2500), we pay special 

attention to maintaining the balance of positive and 

negative samples, avoiding the bias of the model towards 

majority classes during training, thus ensuring the 

sensitivity and specificity of the model in defect detection. 

Through the above preprocessing steps, we build a high-

quality dataset that provides a solid foundation for training 

and testing DLCD and other comparison methods, 

ultimately improving the robustness and accuracy of the 
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model for building material defect detection tasks. These 

careful preparations are one of the key factors in the 

success of the experiment, ensuring that the model can 

operate stably in complex real-world environments. 

 

Table 2: Data set details. 

Subs

ets 

Defe

ct 

type 

Defe

ct 

level 

Total 

numb

er of 

image

s 

Number 

of images 

containin

g defects 

Number 

of images 

that do 

not 

contain 

defects 

Crac

k-L 

Fiss

ures 

Mar

ginal 
5000 2500 2500 

Crac

k-H 

Fiss

ures 

Seve

rity 
5000 2500 2500 

Hole

-L 
Hole 

Mar

ginal 
5000 2500 2500 

Hole

-H 
Hole 

Seve

rity 
5000 2500 2500 

4.2 Experimental results 

In this paper, we use accuracy, recall and F1 value as the 

evaluation metrics of the detection results, which reflect 

the detection accuracy, detection coverage and 

comprehensive detection performance of the model, 

respectively. Table 3 gives the detection results of various 

methods on different subsets [31]. 

 

Table 3: Detection results of various methods on 

different subsets. 

Methodolo

gies 
Subsets Accuracy 

Recall 

rate 
F1 

IP 

Crack-L 0.82 0.76 0.79 

Crack-H 0.86 0.81 0.83 

Hole-L 0.78 0.72 0.75 

Hole-H 0.81 0.77 0.79 

On average 0.82 0.77 0.79 

FRCNN 

Crack-L 0.88 0.84 0.86 

Crack-H 0.91 0.88 O.89 

Hole-L 0.85 0.80 0.82 

Hole-H 0.87 0.83 0.85 

On average 0.88 0.84 0.86 

YOLO 

Crack-L 0.90 0.86 0.88 

Crack-H 0.93 0.90 0.91 

Hole-L 0.87 0.82 0.84 

Hole-H 0.89 0.85 0.87 

On average 0.90 0.86 0.88 

MRCNN 

Crack-L 0.92 0.88 0. 90 

Crack-H 0.95 0.92 0.93 

Hole-L 0.89 0.84 0.86 

Hole-H 0.91 0.87 0.89 

On average 0.92 0.88 0.90 

DLCD 

Crack-L 0.94 0.91 0.92 

Crack-H 0.97 0.95 0.96 

Hole-L 0.92 0.88 0.90 

Hole-H 0.94 0.91 0.92 

On average 0.94 0.91 0.79 

 

In this paper, the average accuracy is used as an 

evaluation metric for the diagnostic results, which reflects 

the prediction accuracy of the model for the defect 

categories under different confidence thresholds and the 

average prediction accuracy of the model under all defect 

categories, respectively. The diagnostic results of various 

methods on different subsets are given in Table 4, from 

which it can be seen that this paper’s method DLCD 

achieves the highest average accuracy and average mean 

accuracy on all subsets, indicating that this paper’s method 

is able to effectively identify the classes of defects and 

shows strong diagnostic capability and stability under 

different defect classes and confidence levels [32-34]. 

It can be seen from Table 5 that DLCD is not only 

ahead of other methods in accuracy and ROC-AUC, but 

also performs quite well in inference time, which indicates 

that DLCD has high computational efficiency while 

ensuring high detection performance, which is more 

suitable for rapid detection requirements in practical 

application environments.To further substantiate the 

generalization capability of the proposed method (DLCD), 

we compare its performance against traditional image 

processing methods (IP) and other deep learning 

approaches (FRCNN, YOLO, MRCNN) on extended 

datasets encompassing diverse conditions. These 

additional datasets include a variety of construction 

material types, defect categories, and environmental 

settings to ensure comprehensive and objective 

assessments. 

Table 4: Experimental results. 

Method-subset Average accuracy 

IP-Crack-L 0.75 

IP-Crack-H 0.79 

IP-h0le-L 0.71 

IP-h0le-H 0.74 

FRCNN-Crack-L 0.83 

FRCNN-Crack-H 0.86 

FRCNN-h0le-L 0.80 

FRCNN-h0le-H 0.85 

Y0L0-Crack-L 0.85 

Y0L0-Crack-H 0.88 

Y0L0-h0le-L 0.82 

Y0L0-h0le-H 0.84 

MRCNN-Crack-L 0.87 

MRCNN-Crack-H 0.9 

MRCNN-h0le-L 0.84 

MRCNN-h0le-H 0.86 

DLCD-Crack-L 0.89 

DLCD-Crack-H 0.92 

DLCD-h0le-L 0.87 

DLCD-h0le-H 0.89 

 

Table 5: Accuracy, ROC-AUC, and inference time 

estimates. 
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Method Subset 
Preci

sion 

ROC-

AUC 

Inference 

time (ms) 

IP 

Crack-L 0.82 0.80 10 

Crack-H 0.86 0.82 10 

Hole-L 0.78 0.75 10 

Hole-H 0.81 0.78 10 

FRCNN 

Crack-L 0.88 0.90 30 

Crack-H 0.91 0.92 30 

Hole-L 0.85 0.86 30 

Hole-H 0.87 0.88 30 

YOLO 
Crack-L 0.90 0.92 15 

Crack-H 0.93 0.94 15 

Method Subset 
Preci

sion 

ROC-

AUC 

Inference 

time (ms) 

Hole-L 0.87 0.88 15 

Hole-H 0.89 0.90 15 

MRCN

N 

Crack-L 0.92 0.94 40 

Crack-H 0.95 0.96 40 

Hole-L 0.89 0.90 40 

Hole-H 0.91 0.92 40 

DLCD 

Crack-L 0.94 0.96 20 

Crack-H 0.97 0.98 20 

Hole-L 0.92 0.94 20 

Hole-H 0.94 0.96 20 

Table 6: Comparative results on extended datasets. 

Method Dataset Accuracy Recall F1 Score Precision ROC-AUC 

DLCD Diverse Set A 0.96 0.95 0.95 0.96 0.98 

DLCD Diverse Set B 0.94 0.93 0.93 0.94 0.97 

DLCD Diverse Set C 0.97 0.96 0.96 0.97 0.99 

IP Diverse Set A 0.78 0.75 0.76 0.78 0.80 

IP Diverse Set B 0.79 0.76 0.77 0.79 0.81 

IP Diverse Set C 0.80 0.77 0.78 0.80 0.82 

FRCNN Diverse Set A 0.90 0.88 0.89 0.90 0.92 

FRCNN Diverse Set B 0.89 0.87 0.88 0.89 0.91 

FRCNN Diverse Set C 0.91 0.89 0.90 0.91 0.93 

YOLO Diverse Set A 0.93 0.91 0.92 0.93 0.95 

YOLO Diverse Set B 0.92 0.90 0.91 0.92 0.94 

YOLO Diverse Set C 0.94 0.92 0.93 0.94 0.96 

MRCNN Diverse Set A 0.94 0.92 0.93 0.94 0.96 

MRCNN Diverse Set B 0.93 0.91 0.92 0.93 0.95 

MRCNN Diverse Set C 0.95 0.93 0.94 0.95 0.97 

 

As shown in Table 6, these results clearly indicate that 

the DLCD method maintains high performance across 

different datasets, showcasing robustness and adaptability 

to various construction material defects. The superior 

scores in accuracy, recall, F1 score, precision, and ROC-

AUC consistently place DLCD ahead of traditional and 

other deep learning methods, confirming its generalization 

ability and practical utility in real-world scenarios 

involving complex and diverse defect detection tasks. 

To dissect the contributions of various components in 

the proposed DLCD model, we conduct an ablation study 

focusing on the influence of the attention mechanism and 

the choice of loss function. The results highlight the 

effectiveness of these components in enhancing the 

overall performance of the model. 

 

Table 7: Ablation study results. 

Model 

Variant 

Accura

cy 

Reca

ll 

F1 

Sco

re 

Precisi

on 

RO

C-

AU

C 

DLCD 

(Full 

Model) 

0.96 0.95 0.95 0.96 0.98 

w/o 

Attentio

n 

Mechani

sm 

0.93 0.91 0.92 0.93 0.96 
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Model 

Variant 

Accura

cy 

Reca

ll 

F1 

Sco

re 

Precisi

on 

RO

C-

AU

C 

w/o 

Custom 

Loss 

Function 

0.94 0.92 0.93 0.94 0.97 

 

As shown in Table 7, the ablation study reveals that 

both the attention mechanism and the custom loss function 

significantly contribute to the model's performance. 

Removing the attention mechanism leads to a noticeable 

drop in all evaluation metrics, demonstrating its crucial 

role in focusing the model's learning process on relevant 

features. Similarly, the use of a custom loss function 

tailored to handle class imbalance and emphasize false 

negatives improves the model's ability to detect defects 

accurately. 

4.3 Discussion 

In this study, our deep learning and big data fusion method 

for building material defect detection and diagnosis 

(DLCD) shows significant performance improvements 

compared to traditional image processing methods (IP), 

Faster R-CNN based methods (FRCNN), YOLO v3 based 

methods (YOLO), and Mask R-CNN based methods 

(MRCNN). This is mainly due to DLCD's ability to learn 

complex features efficiently, especially its adaptability to 

subtle changes and diversity in building material defects. 

Through the multi-level feature abstraction of deep 

neural networks, DLCD can automatically learn more 

robust defect representations, which is especially obvious 

in the detection of minor defects such as Crack-L and 

Hole-L. The average accuracy rate of DLCD reaches 

0.94., much higher than other methods. In addition, DLCD 

also performed well in the detection of severe defects 

(Crack-H and Hole-H) with an average accuracy of 0.95, 

indicating that DLCD can effectively detect not only 

obvious defects, but also more subtle damages. Compared 

with traditional image processing methods, DLCD 

overcomes the limitations of manual feature engineering 

and can automatically learn and adapt to a wider data 

distribution. In contrast, the IP method relies on 

predefined features and rules, which may not adequately 

capture the diversity of defects, resulting in a lower 

average accuracy (0.79). 

FRCNN and YOLO have high detection speed and 

certain accuracy, but in complex scenes of defects, due to 

the limitations of their architecture design, it may be 

difficult to achieve the best detection results. For example, 

FRCNN has an average accuracy of 0.88, while YOLO is 

0.88, both lower than DLCD. Although MRCNN 

improved defect segmentation, its average accuracy (0.90) 

was still slightly lower than that of DLCD, indicating that 

DLCD was better at defect identification and 

classification. 

Unexpected results and potential explanations 

Although DLCD exhibits superior performance in most 

cases, there are some phenomena in the experimental 

results that deserve further investigation. For example, in 

the Hole-L subset, the F1 value for DLCD was 0.90, a 

slight decrease compared to Crack-L (0.92) and Hole-H 

(0.92). This may be due to the high similarity between the 

visual features of minor hole defects and the background, 

which causes the model to encounter challenges in 

discrimination. Future work could consider introducing 

more training samples or employing more sophisticated 

attention mechanisms to improve this situation. 

5 Conclusion 
This paper proposes a method for detecting and 

diagnosing defects in construction materials based on big 

data and deep learning, aiming to improve the detection 

efficiency and accuracy. The main work of this paper is to 

collect and annotate a large number of defective images of 

construction materials using big data technology, and 

construct a defective image database of construction 

materials with high scale and quality, which provides data 

support for the subsequent deep learning model training 

and testing. And several deep neural network models, 

including convolutional neural network, attention 

mechanism network, multi-task learning network, etc., 

were designed and trained using deep learning technology 

to achieve the detection, identification, analysis and 

evaluation of construction material defects, and improve 

the generalization ability and robustness of the model. 

Finally, an end-to-end detection and diagnosis model was 

designed, which employs the attention mechanism and 

multi-task loss function to realize the simultaneous 

detection and diagnosis of defects, improving the 

efficiency and accuracy of the model. Experiments are 

carried out on the image database of construction material 

defects, and the results show that the method proposed in 

this paper is better than existing methods in terms of 

accuracy, recall and F1 value, which verifies the 

effectiveness and superiority of the method in this paper. 

The DLCD model, while demonstrating remarkable 

success in the detection of construction material defects, 

is not without its constraints, signaling opportunities for 

further refinement and innovation. Foremost among these 

limitations is the model's sensitivity to data variability, 

with performance potentially faltering when faced with 

defects starkly contrasting those in its training repertoire. 

To counteract this, the integration of a more expansive and 

diverse dataset during the training phase is imperative, 

fortifying the model's adaptability and resilience in the 

face of unfamiliar defect patterns. 

Furthermore, the current model's computational 

demands may hinder its deployment in real-time 

monitoring systems, where swift response times are non-

negotiable. To bridge this gap, optimization strategies 

such as model pruning and leveraging specialized 

hardware to expedite inference are essential, ensuring the 

model's readiness for integration into time-critical 

applications. 

Another area requiring attention is the model's 

capacity for multi-defect recognition. Presently inclined 

towards identifying singular defects, the DLCD model 
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stands to benefit from enhancements enabling 

simultaneous detection and classification of multiple 

defects within a single image, a capability vital for 

navigating the complexities of real-world inspection 

scenarios. 

Lastly, addressing the deep learning model's inherent 

black-box nature is crucial. By developing interpretability 

tools that demystify the model's decision-making process, 

particularly in defect detection, trust and confidence 

amongst industrial users can be cultivated, facilitating 

broader adoption and integration into the construction 

sector. 

Future research endeavors will thus concentrate on 

expanding the model's exposure to diverse defect profiles, 

streamlining its architecture for accelerated inference, 

augmenting its multi-defect recognition abilities, and 

enriching its interpretability. These strategic 

advancements promise to consolidate the DLCD model's 

position as a formidable and adaptable solution for 

construction material defect detection, paving the way for 

its widespread utilization in ensuring structural integrity 

and safety standards across the industry. 
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