
https://doi.org/10.31449/inf.v48i7.4918 Informatica 48 (2024) 1–10 1

Building Ensemble Models with Web Services on Microservice

Architecture

Máté Szabó

Department of Information Technology, Faculty of Informatics, University of Debrecen Kassai út 26, H-4028,

Debrecen, Hungary

E-mail: szabo.mate@inf.unideb.hu

Keywords: machine learning, microservice architecture, ensemble, web service

Received: June 2, 2023

The combination of machine learning with web services is not rare, as it is a possible way to make the

models reachable to other applications. For example, a mobile or web application with recommendation

feature can send requests to query the model’s prediction. The advantage of this method is that it does

not require to use the same platform or programming language on the model and application side. This

paper investigates the building of ensemble models with web services, in a complex microservice

architecture-based application. The ensemble models are special, because they rely on other pre-trained

models, so they can act as a wrapper model. The advantage of this approach is that it is applicable to

multiple models that are written in different programming languages. When we have these wrapper

models, all of them can be accessed through web services, which leads to many small services that can

be managed together in an application on microservice architecture. In this paper, we combine models

from Scikit Learn, Tensorflow, Weka and Deeplearning4j libraries to show how models written in

different languages can work together. We propose two similar architecture variants involving machine

learning and microservices to combine models from different platforms. The gateway variant uses

patterns like API gateway or backends for frontends, the direct variant uses direct access to web

services. The integration of these into existing web applications is also presented considering the server

or client-side computing load. The analysis shows that both of them can be used, but with different

software systems. The direct is preferred when the application partly relies on machine learning

services and thus only using few of them, and the gateway is preferred when the application is

dependent on these services.

Povzetek: Raziskava predstavlja integracijo ansambelskih modelov v mikroservisno arhitekturo preko

spletnih storitev za združevanje različno napisanih modelov.

1 Introduction
When we train machine learning models, it is often done

in our favored programming language; however, it might

be complicated to integrate it into an application. The

easiest scenario is when the model is stored in the

application, which means they are possibly written in the

same language and the machine learning library is

supported. In this case, we can simply just use it for

example making predictions, or recognizing images.

When it is not supported or usable by our preferred

language, the simplest solution is to have a different

application just for the machine learning tasks and it will

communicate with the original one. This solution

requires extra resources for communication as the model

or results have to be sent on the network. This first

scenario can cover applications built on monolith

architecture; the second one can cover the layered

architecture. Of course, these are just the obvious

examples of integrating machine learning in our web

applications. Cloud services can be an option but its

results are also queried through web services, so it is

similar to the second case.

When we want to integrate machine learning into

applications, we have to decide what kind of algorithms

we would like to try and how to access it. When we have

the answer for accessing the models from applications,

our project is already restricted to a given set of libraries.

For example, if we chose to make a machine learning

module that can be accessed by the application directly,

our project should use libraries of the same language.

The other question is what kind of models would be

trained? Is deep learning needed or K-nearest neighbour

is enough, or is data suitable for unsupervised or

supervised learning? After decisions like these, the set of

available libraries is narrowed. In most of the cases, this

is enough to choose, but if we want to use more than just

one of them, because one of them supports algorithms

that the other does not, we might encounter some trouble.

In this case, the applications have to communicate even

more.

Microservice architecture structures the application as a

collection of services that are independently deployable

and loosely coupled. Each microservice consists of data

store and application logic, which can only be accessed

through its public API. As these software components are

mailto:szabo.mate@inf.unideb.hu

2 Informatica 48 (2023) 1–10 Máté Szabó

independent, each of them can use proper tools and

languages to achieve their goals, so it is possible that one

component is written in Python, while others can use

Java if it is suitable for their tasks. As a microservice is a

small part of the whole application, it can be developed

or maintained by a smaller developer team and as it is

independent, they can choose their own technology stack.

Of course, this architectural style is not applicable to any

kind of program, because the huge number of HTTP

requests can be costly. The main disadvantage can be the

communication between the microservices, because if the

application is big enough and contains several services,

the number of requests and responses can increase. In a

standard web application environment, that means that

the program packages the data in JSON format, sends an

HTTP request, the other service receives the message,

extracts the JSON to its object type, and then writes and

sends a response, which is processed by the sender. This

messaging can occur even ten thousand times per second.

Besides this, we can mention latency, bandwidth, or

topology that can affect the performance of microservice

based software. The importance of this architectural style

can be seen from Google Trends [1]. Many software

projects use it, because development time can shorten as

the tasks are much smaller and easier to implement.

Besides that, the testing of these services is easier,

because they are independent and the codebase is much

smaller than on traditional architectures. The

implementation can be written in any programming

language, as it can be started in small, for example we

can create 3 web services that communicate with each

other and each of them has its own functionality. I chose

a hybrid solution with the Spring Boot framework’s

reference implementation. The needed maven

dependencies are spring-boot-starter-web, spring-cloud-

starter, spring-cloud-starter-eureka-server. The Eureka

server is for the registration of services, so they can

discover each other from there. The other dependencies

are for creating web services, which can accept or send

HTTP requests.

This paper is restricted to web applications, as these are

the most popular kinds of applications according to the

JetBrains Developer Ecosystem Survey 2021 [2]. There

are many ways to structure applications as it is

mentioned earlier, but we would like to achieve a

machine learning system that connects different libraries

from different environments, so the product could be

language independent. The idea is that libraries can be

wrapped in web services. To support the high number of

them, a lot of services should be created, and to manage

them as one application we decided to use microservice

architecture. It is the best decision as the elements are

loosely coupled in the software and data management

can be decentralized, so services can send requests to

other services through their public API and each of them

has the ability to manage its own database. In this way,

multiple datasets and their models can be handled, for

example we have a web service that wraps the

Deeplearning4j library, so we can train models and query

the results with HTTP requests. To manage data, train

models, and extract the results, we only have to design

the appropriate endpoints. When the web services are

finished, the application can be assembled with the

microservices.

The combination of different machine learning models is

not rare as many research state that it can improve

performance. There are many ensemble techniques like

bagging, boosting, voting, and stacking. The idea of them

is that they mostly use only the results of the different

models and because of this; we can get these results from

different platforms or services. One of the easiest is the

voting, which can be majority and weighted. Diettrich’s

results show that in certain cases, ensemble models can

outperform single classifiers [3]

The combination of machine learning and microservice

architecture gives us the opportunity to distribute model

training in both model and data parallel ways, and

besides that, it has the advantage of connecting different

platforms in one application. As disadvantages we can

mention the dependence on the network and the high

number of communications. According to Google Trends

[1], the keyword Microservice has been a popular search

phrase since 2016; it was at the top in 2020, nowadays

the number of related searches decreased to 60 on a scale

of 0-100. Although federated learning architecture also

has a centralized and decentralized variant like this work,

the process of training and the goal are somewhat

different. Federated learning often results in a bigger

model, because the local clients train models and they

update the global models’ parameters [4]. In this work,

the client can choose between using single classifiers and

ensemble models. The direct and gateway approach can

align to any kind of client application, which can decide

to put the computing load on the server or on its own

side. We don’t have parameter synchronization or

parameter sharing, each model is independent. The

common between federated learning and this work is that

both of them train local models and both can end up in a

single classifier.

2 Related work
There are many papers about connecting microservices

and machine learning, but the purpose and the

implementation can be different. Pahl and Loipfinger

defined machine learning as a service, and their system

encapsulated ML in a microservice with a REST

interface [5]. DroidAutoML [6] uses the same

architecture, but its goal is extended to mobile devices as

it can configure and evaluate algorithms to detect

Android malware. In this work, the whole ML work is

decomposed into small services, like model training,

feature database, scanner, apk database, which then

communicate with each other. Ribeiro et al. use a similar

solution for machine learning deployment [7]. They

proposed an architecture to support generic ML pipelines

and implemented case studies to test it. This paper uses

ensembles to make predictions with different models just

like Attota et al. in their work [8]. They use several API

gateways with model ensembling, and these gateways

communicate with the central server’s aggregation

service. The cCube architecture [9] has a similar purpose,

Building Ensemble Models with Web Services on Microservice… Informatica 48 (2024) 1–10 3

to easily develop and deploy ML applications, and for

this, it uses an orchestrator service. The user

communicates only with this, and it forwards the data to

the learners and the scheduler. Our paper presents a

centralized solution which based on this work. This

technology can be applied in fields like healthcare, where

KETOS [10] uses machine learning as a service and the

users can use R, Python and DataShield in one

application. It is a clinical decision support system with

its own development and deployment process. There is a

special use case of machine learning in software

development, where we provision, and classify

microservices with these algorithms like in [11], [12],

[13]. For designing the architectures, we used the

Guidelines for adopting frontend architectures and

patterns in microservices-based systems [14].

Although it seems like microservice is perfectly

suitable for most kind of applications; it has several

drawbacks and can cause many issues through

development. It can increase the system’s complexity

because of the increasing number of independent

services. This means, that the project needs skilled

developers. The architecture also has challenges in the

areas of monitoring, versioning, and state management.

[15]

Distributed machine learning also has its

disadvantages like the increase of aggregate processing

time and the work with the multiple computing nodes.

Because the training is more intense, it needs multiple

computers, leading to increased energy consumption.

Even with more computing resource, because of the

distribution, it is not guaranteed that the training will be

faster that much. [16]

3 Architecture of the system
We had many ideas about how to integrate machine

learning services in a microservice architecture-based

application, but we narrowed it down to 2 variants, the

gateway and the direct variant. The first one is a tree-like

approach where the smaller services end up in a bigger

summing service and this works like as if the application

would have a machine learning subsystem. This solution

is similar to the MapReduce architecture, but it is

specific to web applications. In the direct way, there is no

such summing service, so the requestor can process the

results and if it wants, can combine them. In either of

them, ML microservices should build models on the

same datasets, so it is tempting to have one common

database behind them, because if not, we must store the

same data multiple times within one application. Rules of

the architecture forbid this solution, because we would

lose the independency of microservices, so all of them

will have its own database. There are many patterns for

building applications with microservice architecture, like

the mentioned API gateway [14] and backends for

frontends [14] and beside them we use the gateway

aggregation pattern from [17], [18]. Because of this

pattern, we will often use the aggregator service and API

gateway terms instead of each other. In our reference

implementations we built a backend system with Spring

Boot, Spring Cloud with the Eureka Server for service

discovery [19]. This server manages the services' IP

address and port number, so this is from where each

client knows the addresses where they can send requests.

The Java microservices for training and managing Weka

[20] and Deeplearning4j [21] models are written in the

same environment. The Python microservices for Scikit

[22], TensorFlow [23] and Microsoft Azure models used

Flask [24] to be accessible by other web services

3.1 Direct variant

In this variant, there is no API gateway, so we cannot use

the backends for frontends pattern. As there is no

gateway, the clients can directly access the models and

can request predictions for their data. The combination of

the trained models is not easy in this variant, because we

do not have an independent node that creates ensemble

models; instead, the client has to do it. The client can

query the results of the model endpoints, and based on

these, it can construct its own ensemble model. The

advantage of this variant is that the clients can process as

little data as needed, because when they need a decision

tree, they can query for one, when they need a voting or

averaging based ensemble method for two models, they

query for the models’ results and use the chosen

technique. As there is no aggregator service, each of the

microservices remain independent and do not rely on

other machine learning endpoints’ data, so the software

remains loosely coupled which is an advantage in

microservice architecture. Integrating this solution into a

backend system could be challenging as there is no

aggregator service, so the caller service must explicitly

name a model service to use. We suggest this variant for

applications, that use machine learning for a few of its

functions. In these systems, developers can use only the

needed model from its service, so the network load will

be distributed between them. As few of the ML services

are used in the application, it should not cause

maintenance difficulties. An implementation of this

variant can be seen in Figure 1. The blue arrows indicate

the path of the data; the green ones are for service

registration. In this figure, we can see a web and a mobile

application that uses different machine learning models’

result using its web service

4 Informatica 48 (2023) 1–10 Máté Szabó

3.2 Gateway variant

The gateway variant can be achieved with patterns like

API gateway and backends for frontends, where there are

aggregator microservices. If we use the API gateway,

there will be one aggregator service that contains client

specific APIs for example one for web application and

one for mobile. This service communicates with each of

the needed machine learning microservice, so it can

access models and predictions too. The backends for

frontends pattern defines separate API gateways for

different kinds of clients, thus we will have a gateway for

web clients and another one for mobile clients, each of

them accessing the needed machine learning

microservices. In the unified API gateway for high

availability clusters paper [25], the authors propose a

centralized solution for managing clusters. Our work

uses a similar idea, but instead of clusters, we manage

other services. We consider the aggregator service as a

microservice too despite its size and complexity. It is

responsible for managing data, training, persisting and

accessing models, making ensemble models. The

combination of trained models remains on server side in

this variant, as we can have a separate microservice for

this purpose. In this architecture, the models are only

reachable through an aggregator service, which comes

with a downside, that it will encounter more network

load than the other services. To avoid this problem, we

could make the aggregator service scalable with multiple

copies of it behind a load balancer. Integrating this

solution to a backend system is not a complex task as

there is an aggregator service, so each machine learning

service can be accessed from it. The downside of this

architecture is that both the ensemble service and the API

gateway could increase coupling, which depends on the

Figure 1: Direct architecture variant with web and mobile clients.

Figure 2: Gateway architecture variant with web and mobile clients.

Building Ensemble Models with Web Services on Microservice… Informatica 48 (2024) 1–10 5

implementation. We suggest this variant for applications

that are using many machine learning services as

developers have to use only one connection point, thus

the code will be more maintainable. This variant can be

seen in Figure 2. The blue arrows indicate the path of the

data; the green ones are for service registration, but here

the mobile and the web application uses the aggregator

service to access the needed models’ results.

4 Messages between the web services
The whole communication in this microservice

application uses the REST API. This means that the web

services have to meet the criteria of the REST

architectural style. It has a uniform interface as we

uniquely identify the resources and send only the

necessary data in JSON and they could be manipulated

through representations. When we have two

microservices that communicate with each other, one can

identify as a server and the other as the client. Although

we do train models and persist the state of them, the

application is stateless and only the resources have states.

The responses are cacheable as the client can reuse them

later for the same requests. The last constraint of REST is

the layered system, and in this application, and especially

in microservice architecture, the service does not know if

it is an intermediary server or not. Almost each of the

services relies on other ones, so at subsystem level, we

could see the layering.

It can be seen that every workflow involves the

HTTP requests and responses in this system. We send

messages to persist data in the database, train a model

with parameters, predict with the given data or query a

model. The goal of this system is to make ML available

on web capable devices, so when we have trained

models, there are two ways to use them. The client can

request the model itself, which can be used on client side.

This way has downsides like the size of these models can

be really huge and sending them through network can be

challenging, in addition, the client must use the same

environment as the server does, so a Java object that

contains an ML model cannot be used in Python

environment. If we can use the same environment, the

advantage of this solution is the reusability as when we

successfully transfer a model to the client, it can use it

without a network connection, and it will own a local

copy of the model. The other way is when the client

sends data to the server, which will send back the

model’s results. This solution is the most commonly used

one as the size of messages is usually smaller and they

can easily be processed. For example, the client sends the

items in a shopping cart and the response contains a set

of items with the probabilities of the customer buying it.

We do not have to use the same environment on the

client and the server side, as the client does not receive

model objects; instead, they get data that is not that

complex like a set of numbers or a matrix or a list of

strings, which can be processed on a wide range of

environments. The only downside is that this solution

depends on the network as for each prediction it must

send an HTTP request and process a response, so it must

be implemented with caution for devices that do not

always have a stable network connection. On devices like

mobiles this problem can be bypassed with a hybrid

solution like storing a model on device but update them

from web services. We can use TensorFlow and

TensorFlow Lite in this case. In Table 1. we can see the

endpoints of some microservice in the system.

5 Combining models of different

platforms
The main goal of this application is not just to make

machine learning usable as a subsystem, but to allow us

to combine different models from different platforms

with ensembles. Software developers like to use multiple

platforms, languages, web services and cloud together,

and these architectures below let them to integrate

heterogeneous machine learning services with aggregator

services. In Figure 3, we can see that there is not much

difference between the gateway and direct variant when

it comes to model combination. The used color codes are

the following: red means direct and yellow means the

other one. It can be seen that the only difference between

them is the place of the ensemble service or subsystem.

When we do not have an aggregator service, the client

has to make ensembles, but if we have one, it can be

done on server side.

Table 1: Endpoints of the gateway and direct variants

Service Endpoint Data Description

dataup POST /upload list Persist data in the database.

dtree POST /train dataset, parameters Train a decision tree with the given parameters.

dtree GET /model model id Get the trained model from service.

neural POST /predict unlabelled data Predict the label of an unlabeled data.

dataman GET /dataset dataset name Query for dataset as a list.

ensemble GET /model model type, id Forward request to the appropriate microservice.

ensemble POST

/ensemble

method, list of model

type, id

Build the given ensemble model using models from other

microservices.

ensemble POST /upload list Forward dataset to the data manager service.

6 Informatica 48 (2023) 1–10 Máté Szabó

5.1 Direct variant

As there is no API gateway or aggregator service, this

variant lacks the ability to combine models on server

side. The client can do this work with an ensemble

service or subsystem. In practice it looks like the client

needs a prediction that should come from multiple

trained models on the server side. The first step is to use

the appropriate ensemble technique, so it could choose a

bagging, boosting or a simple voting. When we go for

voting, the client side sends HTTP requests to the

server’s model endpoints to get their predictions. For

example, it sends data to TensorFlow, decision tree,

neural network and a random forest model, that are

written in Python, Java, Python with Scikit-learn, and the

random forest comes from Azure service. Each of them

sends back their results to the client as an HTTP

response, which can use the voting technique on them.

The direct variant’s model combination process can be

seen in Figure 3.

5.2 Gateway variant

This variant puts the entire computing load on server

side, and thus the combination of models too. As we

have an aggregator service, it can use other model

microservices’ results in an ensemble model, which can

be queried from the client side. When we have different

trained models behind services, like a Deeplearning4J

and Scikit neural network model, they can be part of the

microservice architecture-based application, and their

results are accessible from the aggregator or ensemble

service. The usual use case looks like the client needs a

prediction and for that, it would use the mentioned

Deeplearning4J and Scikit neural network models. To get

their results, it sends an HTTP request to the aggregator

service that forwards this request to the model services.

The aggregator creates an ensemble model from the

responses and then it can respond back to the client with

the results. The gateway variant’s model combination

process can be seen in Figure 3.

6 Integration as a subsystem
The architectures and concepts above focus on

applications that mainly train and manage machine

learning models, but it is clear that most of the

applications use ML as a subsystem or as a service. To

meet this need, the variants detailed can act as a

subsystem, so they can be integrated into existing

software to improve them with the methods of machine

learning. In the integration process, we can distinguish

three elements: the clients, which are probably user

interfaces, the backend and the ML variant.

The integration of the direct variant starts with

connecting the frontends with the backend software.

There is nothing new here, the web or mobile clients

query data from the backend and then display them. The

connection of ML services to the backend is unique in

each application, but it is common that we need to

connect backend classes to model endpoints without

aggregator service. This variant is suggested when the

main software is smaller or it would use few machines

learning services, because the backend system has to

maintain connections with multiple endpoints, and the

high number of ML usage would negatively affect

software maintainability. There are many advantages of

the direct variant in the terms of integration. The backend

software can minimize network usage by querying only

the needed models. Extension can be achieved easily as

developers can implement new algorithms and introduce

them as new endpoints. Backward compatibility can be

kept as a microservice can have multiple endpoints for

the same data. Without an API gateway there is no

service that processes most of the data and this could

result in a lower risk of critical errors and system

shutdowns, because if one endpoint is faulty, only some

of the services would become unavailable. The main

disadvantage is the difficulties of integration, because it

requires much programming work on the backend side.

An implementation can be seen in Figure 4.

Figure 3: Model ensembling process comparison in the two variants

Building Ensemble Models with Web Services on Microservice… Informatica 48 (2024) 1–10 7

The integration of the gateway variant is similar to

the other; the only difference is in the connection

between the backend and the ML subsystem. As there is

an API gateway, multiple backend service is connected

to it, so they can query the results of machine learning

services through it. This can be seen in Figure 5.

We suggest the use of this variant when the main

software would heavily depend on machine learning

services as integration and maintenance is much easier

than the direct variant, although they share some

advantages. For example, both of them are easily

extendible and backward compatible. The main risk here

is the huge responsibility of the API gateway, because if

something goes wrong there, all of the machine learning

services would become unavailable.

The developer team can decide which variant is

more suitable for their application by the following

criteria. How many models would the software use? The

more models needed, the more likely the gateway variant

is needed. When the application only uses like 2-3

models, it can be faster to use the direct variant as it

leaves out the gateway’s request/response. How many

computing resources the client has? When the clients are

simple computers or mobile devices, their computing

capacity is limited, so it is suggested to use the gateway

variant and put the computing load on the server. Who

should store the data? If we do not want to store data on

client devices, then the gateway variant is more suitable.

How much data do we have? Only smaller datasets or

dataset slices can be stored on client devices, so direct

variant is suggested when we have this kind of data. How

many requests will the clients send? Applications can be

heavily dependent on services, so it is possible, that for

example a mobile application sends multiple requests per

second. The number of request criteria should be

interpreted with the number of models. When we need a

few models and a lot of requests, direct variant is

preferred, but if we have a few requests too, both variant

can be suitable.

The protection of data privacy depends on the

implementation of these architecture variants, but this

can limit the functionality of them. In the direct variant,

ensemble model building is often done on the client side,

and because of that, some data must be present on client

Figure 4: Integrating direct variant into a monolithic application.

Figure 5: Integrating gateway variant into a monolithic application using aggregator service.

8 Informatica 48 (2023) 1–10 Máté Szabó

devices. To avoid this, the client-side tasks should be

moved to the server side, and then only the models’

result can be sent. The gateway variant can care about

data privacy by default, as it can only be accessed

through the gateway, and the implementation can restrict

what kind of data can go out from the server side and

who can access it.

6.1 Reference implementation

We made applications for each variant to experience

the work with these proposed architectures. Both variants

used the same environment, an Intel Core i7-7700HQ

processor with 16GB RAM and Windows 10 operating

system. The service management software was a Java

and Spring-Boot project on a Tomcat application server

and the machine learning part uses Python, Scikit-learn

and Flask. In both implementations, data upload and data

management endpoints were part of the Spring

application. Although there are exchange formats we

could use for sending machine learning models, like

ONNX [26], we chose not to use it, because with it, we

would have to use a supported framework and model to

make our machine learning solution interoperable. We

thought that an architecture should not have restrictions

like that.

As the field of use is different for each variant, their

performance should be measured differently, because

competing them with the same parameters can be

misleading. To prove that the direct access can be

somewhat faster, we made a performance test on both

direct and gateway variants. This shows that how many

requests the endpoint can serve within 1 minute, what is

the average response time and the error rate. The direct

variant could handle 1085 requests from 20 virtual users

with an average of 13.71 requests per second. The

average response time is 17 ms, the minimum is 9 ms,

and the maximum is 317 ms. The 90% of the requests hit

the endpoint within 24 ms. The error rate was 0. As the

gateway variant means one extra HTTP request/response

pair for each request, its results are indeed a bit worse.

From 20 virtual users, it could serve 1004 requests with

an average of 12.96 requests per second. The average

response time is 51 ms, the minimum is 18 ms, and the

maximum is 1221 ms. The 90% of the requests hit the

endpoint within 121 ms. The error rate was 0. These

results are predictable as one extra hop; one extra JSON

packaging will always have some cost. Although the

results of the gateway variant are worse in this scenario,

it does not mean that it is less usable in certain

environments.

7 Possible improvements and

conclusion
Training machine learning models and making them

more accessible to another system with microservice

architecture can be very useful in development and this

paper presented a unique way of connecting bigger

software systems. Making machine learning models

portable can be difficult, but hiding them behind scalable

web services is easier to implement for many developers,

and that is why we avoided the use of ONNX [26] and

other formats.

These architectures have many possibilities for

future work, like comparing them in real applications,

examining the scalability, integrating distributed model

training or combining them with different kinds of

software architectures. The microservices let us extend

these web services to perform model or data parallel

distributed training, for example training a neural

network, where each perceptron is a microservice.

Acknowledgement
The work is supported by the EFOP-3.6.1-16-2016-

00022 project. The project is co-financed by the

European Union and the European Social Fund.

References
[1] (2022) Google trends. [Online]. Available:

https://trends.google.com/trends/

[2] (2022) The state of developer ecosystem in 2021

infographic. [Online]. Available:

https://www.jetbrains.com/lp/devecosystem-2021/

[3] Dietterich, T.G. (2000). Ensemble Methods in

Machine Learning. In: Multiple Classifier Systems.

MCS 2000. Lecture Notes in Computer Science, vol

1857. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/3-540-45014-9_1

[4] Chen Zhang, Yu Xie, Hang Bai, Bin Yu, Weihong

Li, Yuan Gao, A survey on federated learning,

Knowledge-Based Systems, Volume 216, 2021,

106775, ISSN 0950-7051,

https://doi.org/10.1016/j.knosys.2021.106775.

[5] M.-O. Pahl and M. Loipfinger, “Machine learning as

a reusable microservice,” in NOMS 2018 - 2018

IEEE/IFIP Network Operations and Management

Symposium, Taipei, Taiwan, Apr. 2018, pp. 1–7.

https://doi.org/10.1109/noms.2018.8406165

[6] Y.-D. Bromberg and L. Gitzinger, “Droidautoml: A

microservice architecture to automate the evaluation

of android machine learning detection systems,” in

IFIP International Conference on Distributed

Applications and Interoperable Systems, Valletta,

Malta, Jun. 2020, pp. 148–165.

https://doi.org/10.1007/978-3-030-50323-9_10

[7] J. L. Ribeiro, M. Figueredo, A. Araujo, N. Cacho,

and F. Lopes, “A microservice based architecture

topology for machine learning deployment,” in 2019

IEEE International Smart Cities Conference (ISC2),

Casablanca, Morocco, Oct. 2019, pp. 426–431.

https://doi.org/10.1109/isc246665.2019.9071708

[8] D. C. Attota, V. Mothukuri, R. M. Parizi, and S.

Pouriyeh, “An ensemble multi-view federated

learning intrusion detection for iot,” IEEE Access,

vol. 9, pp. 117 734–117 745, Aug. 2021.

https://doi.org/10.1109/access.2021.3107337

[9] P. Salza, E. Hemberg, F. Ferrucci, and U.-M.

O’Reilly, “ccube: a cloud microservices architecture

for evolutionary machine learning classification,” in

https://trends.google.com/trends/
https://doi.org/10.1007/3-540-45014-9_1
https://doi.org/10.1016/j.knosys.2021.106775

Building Ensemble Models with Web Services on Microservice… Informatica 48 (2024) 1–10 9

Proceedings of the Genetic and Evolutionary

Computation Conference Companion, Berlin,

Germany, Jul. 2017, pp. 137–138.

https://doi.org/10.1145/3067695.3076089

[10] J. Gruendner, T. Schwachhofer, P. Sippl, N. Wolf,

M. Erpenbeck et al., “Ketos: Clinical decision

support and machine learning as a service–a training

and deployment platform based on docker, omop-

cdm, and fhir web services,” PloS one, vol. 14, no.

10, p. e0223010, Oct. 2019.

https://doi.org/10.1371/journal.pone.0223010

[11] M. Chippa, A. Priyadarshini, and R. Mohanty,

“Application of machine learning techniques to

classify web services,” in 2019 IEEE International

Conference on Intelligent Techniques in Control,

Optimization and Signal Processing (INCOS),

Virudhunagar, India, Apr. 2019, pp. 1–7.

https://doi.org/10.1109/incos45849.2019.8951339

[12] H. Alipour and Y. Liu, “Online machine learning for

cloud resource provisioning of microservice backend

systems,” in 2017 IEEE International Conference on

Big Data (Big Data), Boston, MA, USA, Dec. 2017,

pp. 2433–2441.

https://doi.org/10.1109/bigdata.2017.8258201

[13] H. Chang, M. Kodialam, T. Lakshman, and S.

Mukherjee, “Microservice fingerprinting and

classification using machine learning,” in 2019 IEEE

27th International Conference on Network Protocols

(ICNP), Chicago, IL, USA, Oct. 2019, pp. 1–11.

https://doi.org/10.1109/icnp.2019.8888077

[14] H. Harms, C. Rogowski, and L. L. Iacono,

“Guidelines for adopting frontend architectures and

patterns in microservices-based systems,” in

Proceedings of the 2017 11th Joint Meeting on

Foundations of Software Engineering, Paderborn,

Germany, Sep. 2017, pp. 902–907.

https://doi.org/10.1145/3106237.3117775

[15] Davide Taibi, Valentina Lenarduzzi, Claus Pahl, and

Andrea Janes. 2017. Microservices in agile software

development: a workshop-based study into issues,

advantages, and disadvantages. In Proceedings of the

XP2017 Scientific Workshops (XP '17). Association

for Computing Machinery, New York, NY, USA,

Article 23, 1–5.

https://doi.org/10.1145/3120459.3120483

[16] Joost Verbraeken, Matthijs Wolting, Jonathan Katzy,

Jeroen Kloppenburg, Tim Verbelen, and Jan S.

Rellermeyer. 2020. A Survey on Distributed

Machine Learning. ACM Comput. Surv. 53, 2,

Article 30 (March 2021), 33 pages.

https://doi.org/10.1145/3377454

[17] J. A. Valdivia, A. Lora-Gonzalez, X. Lim ´ on, K.

Cortes-Verdin, and ´ J. O. Ocharan-Hern ´ andez,

“Patterns related to microservice architecture: ´ a

multivocal literature review,” Programming and

Computer Software, vol. 46, no. 8, pp. 594–608,

Dec. 2020.

https://doi.org/10.1134/s0361768820080253

[18] H. Chawla and H. Kathuria, “Implementing

microservices,” in Building Microservices

Applications on Microsoft Azure. Berkeley, CA,

USA: Springer, 2019, pp. 21–41.

https://doi.org/10.1007/978-1-4842-4828-7_2

[19] K. S. P. Reddy, Beginning Spring Boot 2:

Applications and microservices with the Spring

framework. Berkeley, CA, USA: Apress, 2017.

https://doi.org/10.1007/978-1-4842-2931-6

[20] F. Eibe, M. A. Hall, and I. H. Witten, “The weka

workbench. online appendix for data mining:

practical machine learning tools and techniques,” in

Morgan Kaufmann. Amsterdam, Netherlands:

Elsevier, 2016. https://doi.org/10.1016/C2015-0-

02071-8

[21] D. Team et al., “Deeplearning4j: Open-source

distributed deep learning for the jvm,” Apache

Software Foundation License, vol. 2, no. 82, 2016.

[22] F. Pedregosa, G. Varoquaux, A. Gramfort, V.

Michel, B. Thirion, O. Grisel et al., “Scikit-learn:

Machine learning in python,” the Journal of machine

Learning research, vol. 12, pp. 2825–2830, Oct.

2011. https://doi.org/10.48550/arXiv.1201.0490

[23] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J.

Dean et al., “Tensorflow: A system for large-scale

machine learning,” in 12th USENIX symposium on

operating systems design and implementation (OSDI

16), Savannah, GA, USA, Nov. 2016, pp. 265–283.

https://doi.org/10.48550/arXiv.1605.08695

[24] M. Grinberg, Flask web development: developing

web applications with python. Sebastopol, CA,

USA: O’Reilly Media, Inc., 2018.

[25] Q. Zhang, H. Chu, M. Li, and X. Hu, “A unified api

gateway for high availability clusters,” in

Proceedings 2013 International Conference on

Mechatronic Sciences, Electric Engineering and

Computer (MEC), Shenyang, China, Dec. 2013, pp.

2321–2325.

https://doi.org/10.1109/mec.2013.6885428

[26] J. Bai, F. Lu, K. Zhang et al. (2019) Onnx: Open

neural network exchange. [Online]. Available:

https://github.com/onnx/onnx

https://doi.org/10.1145/3120459.3120483
https://github.com/onnx/onnx

10 Informatica 48 (2023) 1–10 Máté Szabó

