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The combination of machine learning with web services is not rare, as it is a possible way to make the 

models reachable to other applications. For example, a mobile or web application with recommendation 

feature can send requests to query the model’s prediction. The advantage of this method is that it does 

not require to use the same platform or programming language on the model and application side. This 

paper investigates the building of ensemble models with web services, in a complex microservice 

architecture-based application. The ensemble models are special, because they rely on other pre-trained 

models, so they can act as a wrapper model. The advantage of this approach is that it is applicable to 

multiple models that are written in different programming languages. When we have these wrapper 

models, all of them can be accessed through web services, which leads to many small services that can 

be managed together in an application on microservice architecture. In this paper, we combine models 

from Scikit Learn, Tensorflow, Weka and Deeplearning4j libraries to show how models written in 

different languages can work together. We propose two similar architecture variants involving machine 

learning and microservices to combine models from different platforms. The gateway variant uses 

patterns like API gateway or backends for frontends, the direct variant uses direct access to web 

services. The integration of these into existing web applications is also presented considering the server 

or client-side computing load. The analysis shows that both of them can be used, but with different 

software systems. The direct is preferred when the application partly relies on machine learning 

services and thus only using few of them, and the gateway is preferred when the application is 

dependent on these services. 

Povzetek: Raziskava predstavlja integracijo ansambelskih modelov v mikroservisno arhitekturo preko 

spletnih storitev za združevanje različno napisanih modelov.

 

1 Introduction 
When we train machine learning models, it is often done 

in our favored programming language; however, it might 

be complicated to integrate it into an application. The 

easiest scenario is when the model is stored in the 

application, which means they are possibly written in the 

same language and the machine learning library is 

supported. In this case, we can simply just use it for 

example making predictions, or recognizing images. 

When it is not supported or usable by our preferred 

language, the simplest solution is to have a different 

application just for the machine learning tasks and it will 

communicate with the original one. This solution 

requires extra resources for communication as the model 

or results have to be sent on the network. This first 

scenario can cover applications built on monolith 

architecture; the second one can cover the layered 

architecture. Of course, these are just the obvious 

examples of integrating machine learning in our web 

applications. Cloud services can be an option but its 

results are also queried through web services, so it is 

similar to the second case. 

 

 

 

When we want to integrate machine learning into 

applications, we have to decide what kind of algorithms 

we would like to try and how to access it. When we have 

the answer for accessing the models from applications, 

our project is already restricted to a given set of libraries. 

For example, if we chose to make a machine learning 

module that can be accessed by the application directly, 

our project should use libraries of the same language. 

The other question is what kind of models would be 

trained? Is deep learning needed or K-nearest neighbour 

is enough, or is data suitable for unsupervised or 

supervised learning? After decisions like these, the set of 

available libraries is narrowed. In most of the cases, this 

is enough to choose, but if we want to use more than just 

one of them, because one of them supports algorithms 

that the other does not, we might encounter some trouble. 

In this case, the applications have to communicate even 

more. 

Microservice architecture structures the application as a 

collection of services that are independently deployable 

and loosely coupled. Each microservice consists of data 

store and application logic, which can only be accessed 

through its public API. As these software components are 
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independent, each of them can use proper tools and 

languages to achieve their goals, so it is possible that one 

component is written in Python, while others can use 

Java if it is suitable for their tasks. As a microservice is a 

small part of the whole application, it can be developed 

or maintained by a smaller developer team and as it is 

independent, they can choose their own technology stack. 

Of course, this architectural style is not applicable to any 

kind of program, because the huge number of HTTP 

requests can be costly. The main disadvantage can be the 

communication between the microservices, because if the 

application is big enough and contains several services, 

the number of requests and responses can increase. In a 

standard web application environment, that means that 

the program packages the data in JSON format, sends an 

HTTP request, the other service receives the message, 

extracts the JSON to its object type, and then writes and 

sends a response, which is processed by the sender. This 

messaging can occur even ten thousand times per second. 

Besides this, we can mention latency, bandwidth, or 

topology that can affect the performance of microservice 

based software. The importance of this architectural style 

can be seen from Google Trends [1]. Many software 

projects use it, because development time can shorten as 

the tasks are much smaller and easier to implement. 

Besides that, the testing of these services is easier, 

because they are independent and the codebase is much 

smaller than on traditional architectures. The 

implementation can be written in any programming 

language, as it can be started in small, for example we 

can create 3 web services that communicate with each 

other and each of them has its own functionality. I chose 

a hybrid solution with the Spring Boot framework’s 

reference implementation. The needed maven 

dependencies are spring-boot-starter-web, spring-cloud-

starter, spring-cloud-starter-eureka-server. The Eureka 

server is for the registration of services, so they can 

discover each other from there. The other dependencies 

are for creating web services, which can accept or send 

HTTP requests. 

This paper is restricted to web applications, as these are 

the most popular kinds of applications according to the 

JetBrains Developer Ecosystem Survey 2021 [2]. There 

are many ways to structure applications as it is 

mentioned earlier, but we would like to achieve a 

machine learning system that connects different libraries 

from different environments, so the product could be 

language independent. The idea is that libraries can be 

wrapped in web services. To support the high number of 

them, a lot of services should be created, and to manage 

them as one application we decided to use microservice 

architecture. It is the best decision as the elements are 

loosely coupled in the software and data management 

can be decentralized, so services can send requests to 

other services through their public API and each of them 

has the ability to manage its own database. In this way, 

multiple datasets and their models can be handled, for 

example we have a web service that wraps the 

Deeplearning4j library, so we can train models and query 

the results with HTTP requests. To manage data, train 

models, and extract the results, we only have to design 

the appropriate endpoints. When the web services are 

finished, the application can be assembled with the 

microservices. 

The combination of different machine learning models is 

not rare as many research state that it can improve 

performance. There are many ensemble techniques like 

bagging, boosting, voting, and stacking. The idea of them 

is that they mostly use only the results of the different 

models and because of this; we can get these results from 

different platforms or services. One of the easiest is the 

voting, which can be majority and weighted. Diettrich’s 

results show that in certain cases, ensemble models can 

outperform single classifiers [3] 

The combination of machine learning and microservice 

architecture gives us the opportunity to distribute model 

training in both model and data parallel ways, and 

besides that, it has the advantage of connecting different 

platforms in one application. As disadvantages we can 

mention the dependence on the network and the high 

number of communications. According to Google Trends 

[1], the keyword Microservice has been a popular search 

phrase since 2016; it was at the top in 2020, nowadays 

the number of related searches decreased to 60 on a scale 

of 0-100. Although federated learning architecture also 

has a centralized and decentralized variant like this work, 

the process of training and the goal are somewhat 

different. Federated learning often results in a bigger 

model, because the local clients train models and they 

update the global models’ parameters [4]. In this work, 

the client can choose between using single classifiers and 

ensemble models. The direct and gateway approach can 

align to any kind of client application, which can decide 

to put the computing load on the server or on its own 

side. We don’t have parameter synchronization or 

parameter sharing, each model is independent. The 

common between federated learning and this work is that 

both of them train local models and both can end up in a 

single classifier. 

2 Related work 
There are many papers about connecting microservices 

and machine learning, but the purpose and the 

implementation can be different. Pahl and Loipfinger 

defined machine learning as a service, and their system 

encapsulated ML in a microservice with a REST 

interface [5]. DroidAutoML [6] uses the same 

architecture, but its goal is extended to mobile devices as 

it can configure and evaluate algorithms to detect 

Android malware. In this work, the whole ML work is 

decomposed into small services, like model training, 

feature database, scanner, apk database, which then 

communicate with each other. Ribeiro et al. use a similar 

solution for machine learning deployment [7]. They 

proposed an architecture to support generic ML pipelines 

and implemented case studies to test it. This paper uses 

ensembles to make predictions with different models just 

like Attota et al. in their work [8]. They use several API 

gateways with model ensembling, and these gateways 

communicate with the central server’s aggregation 

service. The cCube architecture [9] has a similar purpose, 



Building Ensemble Models with Web Services on Microservice… Informatica 48 (2024) 1–10 3 

to easily develop and deploy ML applications, and for 

this, it uses an orchestrator service. The user 

communicates only with this, and it forwards the data to 

the learners and the scheduler. Our paper presents a 

centralized solution which based on this work. This 

technology can be applied in fields like healthcare, where 

KETOS [10] uses machine learning as a service and the 

users can use R, Python and DataShield in one 

application. It is a clinical decision support system with 

its own development and deployment process. There is a 

special use case of machine learning in software 

development, where we provision, and classify 

microservices with these algorithms like in [11], [12], 

[13]. For designing the architectures, we used the 

Guidelines for adopting frontend architectures and 

patterns in microservices-based systems [14]. 

Although it seems like microservice is perfectly 

suitable for most kind of applications; it has several 

drawbacks and can cause many issues through 

development. It can increase the system’s complexity 

because of the increasing number of independent 

services. This means, that the project needs skilled 

developers. The architecture also has challenges in the 

areas of monitoring, versioning, and state management. 

[15] 

Distributed machine learning also has its 

disadvantages like the increase of aggregate processing 

time and the work with the multiple computing nodes. 

Because the training is more intense, it needs multiple 

computers, leading to increased energy consumption. 

Even with more computing resource, because of the 

distribution, it is not guaranteed that the training will be 

faster that much. [16] 

3 Architecture of the system 
We had many ideas about how to integrate machine 

learning services in a microservice architecture-based 

application, but we narrowed it down to 2 variants, the 

gateway and the direct variant. The first one is a tree-like 

approach where the smaller services end up in a bigger 

summing service and this works like as if the application 

would have a machine learning subsystem. This solution 

is similar to the MapReduce architecture, but it is 

specific to web applications. In the direct way, there is no 

such summing service, so the requestor can process the 

results and if it wants, can combine them. In either of 

them, ML microservices should build models on the 

same datasets, so it is tempting to have one common 

database behind them, because if not, we must store the 

same data multiple times within one application. Rules of 

the architecture forbid this solution, because we would 

lose the independency of microservices, so all of them 

will have its own database. There are many patterns for 

building applications with microservice architecture, like 

the mentioned API gateway [14] and backends for 

frontends [14] and beside them we use the gateway 

aggregation pattern from [17], [18]. Because of this 

pattern, we will often use the aggregator service and API 

gateway terms instead of each other. In our reference 

implementations we built a backend system with Spring 

Boot, Spring Cloud with the Eureka Server for service 

discovery [19]. This server manages the services' IP 

address and port number, so this is from where each 

client knows the addresses where they can send requests. 

The Java microservices for training and managing Weka 

[20] and Deeplearning4j [21] models are written in the 

same environment. The Python microservices for Scikit 

[22], TensorFlow [23] and Microsoft Azure models used 

Flask [24] to be accessible by other web services 

3.1 Direct variant 

In this variant, there is no API gateway, so we cannot use 

the backends for frontends pattern. As there is no 

gateway, the clients can directly access the models and 

can request predictions for their data. The combination of 

the trained models is not easy in this variant, because we 

do not have an independent node that creates ensemble 

models; instead, the client has to do it. The client can 

query the results of the model endpoints, and based on 

these, it can construct its own ensemble model. The 

advantage of this variant is that the clients can process as 

little data as needed, because when they need a decision 

tree, they can query for one, when they need a voting or 

averaging based ensemble method for two models, they 

query for the models’ results and use the chosen 

technique. As there is no aggregator service, each of the 

microservices remain independent and do not rely on 

other machine learning endpoints’ data, so the software 

remains loosely coupled which is an advantage in 

microservice architecture. Integrating this solution into a 

backend system could be challenging as there is no 

aggregator service, so the caller service must explicitly 

name a model service to use. We suggest this variant for 

applications, that use machine learning for a few of its 

functions. In these systems, developers can use only the 

needed model from its service, so the network load will 

be distributed between them. As few of the ML services 

are used in the application, it should not cause 

maintenance difficulties. An implementation of this 

variant can be seen in Figure 1. The blue arrows indicate 

the path of the data; the green ones are for service 

registration. In this figure, we can see a web and a mobile 

application that uses different machine learning models’ 

result using its web service 
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3.2 Gateway variant 

The gateway variant can be achieved with patterns like 

API gateway and backends for frontends, where there are 

aggregator microservices. If we use the API gateway, 

there will be one aggregator service that contains client 

specific APIs for example one for web application and 

one for mobile. This service communicates with each of 

the needed machine learning microservice, so it can 

access models and predictions too. The backends for 

frontends pattern defines separate API gateways for 

different kinds of clients, thus we will have a gateway for 

web clients and another one for mobile clients, each of 

them accessing the needed machine learning 

microservices. In the unified API gateway for high 

availability clusters paper [25], the authors propose a 

centralized solution for managing clusters. Our work 

uses a similar idea, but instead of clusters, we manage 

other services. We consider the aggregator service as a 

microservice too despite its size and complexity. It is 

responsible for managing data, training, persisting and 

accessing models, making ensemble models. The 

combination of trained models remains on server side in 

this variant, as we can have a separate microservice for 

this purpose. In this architecture, the models are only 

reachable through an aggregator service, which comes 

with a downside, that it will encounter more network 

load than the other services. To avoid this problem, we 

could make the aggregator service scalable with multiple 

copies of it behind a load balancer. Integrating this 

solution to a backend system is not a complex task as 

there is an aggregator service, so each machine learning 

service can be accessed from it. The downside of this 

architecture is that both the ensemble service and the API 

gateway could increase coupling, which depends on the 

 
Figure 1: Direct architecture variant with web and mobile clients. 

 

 

Figure 2: Gateway architecture variant with web and mobile clients. 



Building Ensemble Models with Web Services on Microservice… Informatica 48 (2024) 1–10 5 

implementation. We suggest this variant for applications 

that are using many machine learning services as 

developers have to use only one connection point, thus 

the code will be more maintainable.  This variant can be 

seen in Figure 2. The blue arrows indicate the path of the 

data; the green ones are for service registration, but here 

the mobile and the web application uses the aggregator 

service to access the needed models’ results. 

4 Messages between the web services 
The whole communication in this microservice 

application uses the REST API. This means that the web 

services have to meet the criteria of the REST 

architectural style. It has a uniform interface as we 

uniquely identify the resources and send only the 

necessary data in JSON and they could be manipulated 

through representations. When we have two 

microservices that communicate with each other, one can 

identify as a server and the other as the client. Although 

we do train models and persist the state of them, the 

application is stateless and only the resources have states. 

The responses are cacheable as the client can reuse them 

later for the same requests. The last constraint of REST is 

the layered system, and in this application, and especially 

in microservice architecture, the service does not know if 

it is an intermediary server or not. Almost each of the 

services relies on other ones, so at subsystem level, we 

could see the layering. 

It can be seen that every workflow involves the 

HTTP requests and responses in this system. We send 

messages to persist data in the database, train a model 

with parameters, predict with the given data or query a 

model. The goal of this system is to make ML available 

on web capable devices, so when we have trained 

models, there are two ways to use them. The client can 

request the model itself, which can be used on client side. 

This way has downsides like the size of these models can 

be really huge and sending them through network can be 

challenging, in addition, the client must use the same 

environment as the server does, so a Java object that 

contains an ML model cannot be used in Python 

environment. If we can use the same environment, the 

advantage of this solution is the reusability as when we 

successfully transfer a model to the client, it can use it 

without a network connection, and it will own a local 

copy of the model. The other way is when the client 

sends data to the server, which will send back the 

model’s results. This solution is the most commonly used 

one as the size of messages is usually smaller and they 

can easily be processed. For example, the client sends the 

items in a shopping cart and the response contains a set 

of items with the probabilities of the customer buying it. 

We do not have to use the same environment on the 

client and the server side, as the client does not receive 

model objects; instead, they get data that is not that 

complex like a set of numbers or a matrix or a list of 

strings, which can be processed on a wide range of 

environments. The only downside is that this solution 

depends on the network as for each prediction it must 

send an HTTP request and process a response, so it must 

be implemented with caution for devices that do not 

always have a stable network connection. On devices like 

mobiles this problem can be bypassed with a hybrid 

solution like storing a model on device but update them 

from web services. We can use TensorFlow and 

TensorFlow Lite in this case. In Table 1. we can see the 

endpoints of some microservice in the system. 

5 Combining models of different 

platforms 
The main goal of this application is not just to make 

machine learning usable as a subsystem, but to allow us 

to combine different models from different platforms 

with ensembles. Software developers like to use multiple 

platforms, languages, web services and cloud together, 

and these architectures below let them to integrate 

heterogeneous machine learning services with aggregator 

services. In Figure 3, we can see that there is not much 

difference between the gateway and direct variant when 

it comes to model combination. The used color codes are 

the following: red means direct and yellow means the 

other one. It can be seen that the only difference between 

them is the place of the ensemble service or subsystem. 

When we do not have an aggregator service, the client 

has to make ensembles, but if we have one, it can be 

done on server side. 

Table 1: Endpoints of the gateway and direct variants 

Service Endpoint Data Description 

dataup POST /upload list Persist data in the database. 

dtree POST /train dataset, parameters Train a decision tree with the given parameters. 

dtree GET /model model id Get the trained model from service. 

neural POST /predict unlabelled data Predict the label of an unlabeled data. 

dataman GET /dataset dataset name Query for dataset as a list. 

ensemble GET /model model type, id Forward request to the appropriate microservice. 

ensemble POST 

/ensemble 

method, list of model 

type, id 

Build the given ensemble model using models from other 

microservices. 

ensemble POST /upload list Forward dataset to the data manager service. 
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5.1 Direct variant 

As there is no API gateway or aggregator service, this 

variant lacks the ability to combine models on server 

side. The client can do this work with an ensemble 

service or subsystem. In practice it looks like the client 

needs a prediction that should come from multiple 

trained models on the server side. The first step is to use 

the appropriate ensemble technique, so it could choose a 

bagging, boosting or a simple voting. When we go for 

voting, the client side sends HTTP requests to the 

server’s model endpoints to get their predictions. For 

example, it sends data to TensorFlow, decision tree, 

neural network and a random forest model, that are 

written in Python, Java, Python with Scikit-learn, and the 

random forest comes from Azure service. Each of them 

sends back their results to the client as an HTTP 

response, which can use the voting technique on them. 

The direct variant’s model combination process can be 

seen in Figure 3. 

5.2 Gateway variant 

This variant puts the entire computing load on server 

side, and thus the combination of models too. As we 

have an aggregator service, it can use other model 

microservices’ results in an ensemble model, which can 

be queried from the client side. When we have different 

trained models behind services, like a Deeplearning4J 

and Scikit neural network model, they can be part of the 

microservice architecture-based application, and their 

results are accessible from the aggregator or ensemble 

service. The usual use case looks like the client needs a 

prediction and for that, it would use the mentioned 

Deeplearning4J and Scikit neural network models. To get 

their results, it sends an HTTP request to the aggregator 

service that forwards this request to the model services. 

The aggregator creates an ensemble model from the 

responses and then it can respond back to the client with 

the results. The gateway variant’s model combination 

process can be seen in Figure 3. 

6 Integration as a subsystem 
The architectures and concepts above focus on 

applications that mainly train and manage machine 

learning models, but it is clear that most of the 

applications use ML as a subsystem or as a service. To 

meet this need, the variants detailed can act as a 

subsystem, so they can be integrated into existing 

software to improve them with the methods of machine 

learning. In the integration process, we can distinguish 

three elements: the clients, which are probably user 

interfaces, the backend and the ML variant. 

The integration of the direct variant starts with 

connecting the frontends with the backend software. 

There is nothing new here, the web or mobile clients 

query data from the backend and then display them. The 

connection of ML services to the backend is unique in 

each application, but it is common that we need to 

connect backend classes to model endpoints without 

aggregator service. This variant is suggested when the 

main software is smaller or it would use few machines 

learning services, because the backend system has to 

maintain connections with multiple endpoints, and the 

high number of ML usage would negatively affect 

software maintainability. There are many advantages of 

the direct variant in the terms of integration. The backend 

software can minimize network usage by querying only 

the needed models. Extension can be achieved easily as 

developers can implement new algorithms and introduce 

them as new endpoints. Backward compatibility can be 

kept as a microservice can have multiple endpoints for 

the same data. Without an API gateway there is no 

service that processes most of the data and this could 

result in a lower risk of critical errors and system 

shutdowns, because if one endpoint is faulty, only some 

of the services would become unavailable. The main 

disadvantage is the difficulties of integration, because it 

requires much programming work on the backend side. 

An implementation can be seen in Figure 4. 

 

Figure 3: Model ensembling process comparison in the two variants 
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The integration of the gateway variant is similar to 

the other; the only difference is in the connection 

between the backend and the ML subsystem. As there is 

an API gateway, multiple backend service is connected 

to it, so they can query the results of machine learning 

services through it. This can be seen in Figure 5. 

We suggest the use of this variant when the main 

software would heavily depend on machine learning 

services as integration and maintenance is much easier 

than the direct variant, although they share some 

advantages. For example, both of them are easily 

extendible and backward compatible. The main risk here 

is the huge responsibility of the API gateway, because if 

something goes wrong there, all of the machine learning 

services would become unavailable.  

The developer team can decide which variant is 

more suitable for their application by the following 

criteria. How many models would the software use? The 

more models needed, the more likely the gateway variant 

is needed. When the application only uses like 2-3 

models, it can be faster to use the direct variant as it 

leaves out the gateway’s request/response. How many 

computing resources the client has? When the clients are 

simple computers or mobile devices, their computing 

capacity is limited, so it is suggested to use the gateway 

variant and put the computing load on the server. Who 

should store the data? If we do not want to store data on 

client devices, then the gateway variant is more suitable. 

How much data do we have? Only smaller datasets or 

dataset slices can be stored on client devices, so direct 

variant is suggested when we have this kind of data. How 

many requests will the clients send? Applications can be 

heavily dependent on services, so it is possible, that for 

example a mobile application sends multiple requests per 

second. The number of request criteria should be 

interpreted with the number of models. When we need a 

few models and a lot of requests, direct variant is 

preferred, but if we have a few requests too, both variant 

can be suitable.  

The protection of data privacy depends on the 

implementation of these architecture variants, but this 

can limit the functionality of them. In the direct variant, 

ensemble model building is often done on the client side, 

and because of that, some data must be present on client 

 

Figure 4: Integrating direct variant into a monolithic application. 

 

Figure 5: Integrating gateway variant into a monolithic application using aggregator service. 
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devices. To avoid this, the client-side tasks should be 

moved to the server side, and then only the models’ 

result can be sent. The gateway variant can care about 

data privacy by default, as it can only be accessed 

through the gateway, and the implementation can restrict 

what kind of data can go out from the server side and 

who can access it. 

6.1 Reference implementation 

We made applications for each variant to experience 

the work with these proposed architectures. Both variants 

used the same environment, an Intel Core i7-7700HQ 

processor with 16GB RAM and Windows 10 operating 

system. The service management software was a Java 

and Spring-Boot project on a Tomcat application server 

and the machine learning part uses Python, Scikit-learn 

and Flask. In both implementations, data upload and data 

management endpoints were part of the Spring 

application. Although there are exchange formats we 

could use for sending machine learning models, like 

ONNX [26], we chose not to use it, because with it, we 

would have to use a supported framework and model to 

make our machine learning solution interoperable. We 

thought that an architecture should not have restrictions 

like that.  

As the field of use is different for each variant, their 

performance should be measured differently, because 

competing them with the same parameters can be 

misleading. To prove that the direct access can be 

somewhat faster, we made a performance test on both 

direct and gateway variants. This shows that how many 

requests the endpoint can serve within 1 minute, what is 

the average response time and the error rate. The direct 

variant could handle 1085 requests from 20 virtual users 

with an average of 13.71 requests per second. The 

average response time is 17 ms, the minimum is 9 ms, 

and the maximum is 317 ms. The 90% of the requests hit 

the endpoint within 24 ms. The error rate was 0. As the 

gateway variant means one extra HTTP request/response 

pair for each request, its results are indeed a bit worse. 

From 20 virtual users, it could serve 1004 requests with 

an average of 12.96 requests per second. The average 

response time is 51 ms, the minimum is 18 ms, and the 

maximum is 1221 ms. The 90% of the requests hit the 

endpoint within 121 ms. The error rate was 0. These 

results are predictable as one extra hop; one extra JSON 

packaging will always have some cost. Although the 

results of the gateway variant are worse in this scenario, 

it does not mean that it is less usable in certain 

environments. 

7 Possible improvements and 

conclusion 
Training machine learning models and making them 

more accessible to another system with microservice 

architecture can be very useful in development and this 

paper presented a unique way of connecting bigger 

software systems. Making machine learning models 

portable can be difficult, but hiding them behind scalable 

web services is easier to implement for many developers, 

and that is why we avoided the use of ONNX [26] and 

other formats.  

These architectures have many possibilities for 

future work, like comparing them in real applications, 

examining the scalability, integrating distributed model 

training or combining them with different kinds of 

software architectures. The microservices let us extend 

these web services to perform model or data parallel 

distributed training, for example training a neural 

network, where each perceptron is a microservice. 
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