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Biology is a rich source of inspiration in designing digital artifacts capable of autonomous, cooperative 

and distributed behaviors. Particularly, conceptual links can be established between (1) communication 

networks and (2) colonies of bacteria that communicate using chemical molecules. The goal of this paper 

is to propose a computational multiagent model of an interspecies bacterial communication system, 

termed quorum sensing, and analyze its self-sustainability and its self-maintaining ability to cooperatively 

form artificial wireless networks. Specifically, we propose a bottom-up agent-based approach combined 

with Ordinary Differential Equations, which abstract the intracellular dynamics, such as a proposed 

metabolism model that serves as a basis underlying self-sustainable networks. Results show that artificial 

bacterial cells have regeneration abilities in the light of random cell death and selected area for cell 

death, and a metabolism allowing them to exploit their own produced energy to cooperate at the 

population level to exhibit near-optimal self-organizing light-producing behaviors. The resulting artificial 

networks display several beneficial properties and could be used for the emergence of resistant wireless 

network topologies without the use of overhead messages. 

Povzetek: Analizirano je komuniciranje med bakterijami, na osnovi katerih so razvite agentne metode za 

bolj odporna brezžična omrežja. 

1 Introduction 
Biology is a rich source of inspiration in designing 

artifacts capable of adaptive, distributed and autonomous 

behavior, which is one of the main goals of artificial life. 

In our works, we are interested in simulating the biological 

principles of self-regulation, to design artificial systems 

that display self-organized behaviors. One of the self-

organizing principles of living organisms is that their units 

have the ability to communicate to help fulfill their goals. 

For instance, there is a growing belief that the robustness 

of biological systems is often derived from collective 

behaviors at a population level [1]. In the context of 

unicellular organisms, bacteria were considered for a long 

time to be independent unicellular organisms until 1979. 

Bacterial colonies of Vibrio-fischeri and Vibrio-harveyi 

were shown to be able to exhibit a cooperative light-

emitting behavior, when the population reaches high cell 

densities [2]. This phenomenon is referred to as Quorum 

Sensing (QS). In fact, bacterial cells can communicate 

with each other by synthesizing, emitting, and sensing a 

signaling molecule known as an “autoinducer”. When the 

autoinducer binds to the corresponding genetic receptor in 

a receiving cell, it triggers a regulatory response, which in 

turn results in the generation of more signaling molecules 

in the colony. 

Communication is essential to any kind of 

coordinated parallel processes. The methods of 

communication have been investigated by the artificial life 

community in two contexts: unicellular and multicellular 

organisms. Multicellular approaches include artificial 

embryogeny [3] and morphogenetic engineering [4] 

models, which are developmental models that build an 

entire organism (a pattern or a morphology) from a single 

cell. The underlying idea is to model the behavior of how 

a single cell could reproduce and generate a predefined 

shape under specific constraints. Many multicellular 

models have been developed and used to solve different 

problems such as morphogenesis of French flags [5], [6]. 

Cell signaling in biological multicellular organisms 

results from a highly complex network of signaling 

pathways, including juxtracrine, paracrine and endocrine 

pathways, which are often abstracted into high-level 

mechanisms in computational models, and are difficult to 

thoroughly analyze. On the other hand, unicellular cell 

signaling mechanisms, such as quorum sensing, are 

relatively simple. Each bacterium produces and releases a 

signaling molecule that regulates gene expression over the 

bacterial colony when the population reaches high cell 

densities. Moreover, despite their sizes, bacteria have 

computational and evolutionary autonomous capabilities 

for self-replication and self-organization [7]. Indeed, 

compared to a cell of a multicellular organism, a bacterial 

cell is a mobile and autonomous entity that can grow and 

act independently at an individual level, and coordinate its 

behavior with other cells at a population level. 
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In this paper, we propose the exploration of the 

unicellular approach, which provides several intrinsic 

beneficial properties, e.g. all the organisms are 

autonomous and share a single distributed communication 

system (QS). 

To this end, we use a bottom-up agent-based approach 

and propose a cell-based model combined with Ordinary 

Differential Equations (ODEs), which includes a model of 

growth, a model of bioluminescence and a model of 

metabolism. We test our model in a set of experiments 

where we evaluate the sustainability and communication 

capabilities of bacterial colonies, their self-organized 

bioluminescence behavior, and their regeneration abilities. 

Our experiments reveal several insights into the cell 

behaviors to develop scalable artificial communication 

networks. In summation, our main contributions are: 

i. As communication is essential to any kind of 

coordinated parallel processes in natural and 

artificial systems, we propose a computer-based 

simulation of a bacterial communication system 

(QS). 

ii. Metabolism, as the biological process that 

allows for energy production, is crucial to any 

functional behavior. Thus, we propose a model 

of metabolism that allows bacteria to self-

sustain, enabling them to grow, divide, and 

communicate using their own self-produced 

energy. 

iii. Bacterial cells in our model are able to cooperate 

at the population level to exhibit near-optimal 

light-producing behaviors using our proposed 

model of bioluminescence.  

iv. Our unicellular communication model possesses 

emerging abilities of regeneration in two cases: 

random distributed cell death, and particular cell 

death in a specific region of the colony. 

v. Bioluminescence is conceived as a basis 

underlying cooperative artificial network 

formation. The emergent communication 

network displays beneficial properties: self-

reproduction of the network nodes (cell division), 

cooperative formation of the network links (QS), 

and autonomy via self-sustaining network nodes 

(metabolism). These intrinsic network properties 

lead to the evolution of cooperation toward 

common goals, such as increasing the number of 

networked cells. 

vi. A parallel is made between wireless networks 

and simulations of bacteria colonies that 

communicate using QS molecules. The resulting 

artificial network could be potentially used for 

the emergence of autonomous networks that can 

address issues such as limiting the use of 

configuration messages commonly known as 

overhead messages, which are a key factor for the 

development of new self-organized networks [8]. 

Finally, we believe that the abstract representation of 

complex interactions among QS molecules would 

contribute to enrich our understanding of biological 

microbial communities, which may provide further 

insights for novel design techniques.  

The rest of this paper is organized as follows. Section 

2 presents the related works and the problem statement. 

Our cellular model for quorum sensing, growth, 

metabolism, and bioluminescence is described in Section 

3. Our artificial communication network model is 

presented in Section 4. The simulation results are 

evaluated and discussed in Section 5 and 6. Section 7 

concludes the paper.  

2 Related works and problem 

statement 
The related works are grouped in three subsections: 

quorum sensing, regeneration and bioinspired wireless 

networking for self-organizing network topologies. 

2.1 Quorum sensing 

Quorum sensing, as a simple and powerful biological 

communication system, has attracted the interest of 

interdisciplinary research groups. In the field of 

bioinspired systems, QS has been investigated from 

different perspectives, including artificial ecosystems [9], 

membrane computing [10], digital evolution [11], swarm 

robotics [12], logic computing [13], dynamic clustering 

[14], synthetic systems [15], bioinspired agent-based 

modeling [16] and control [17], and game theory [18]. 

On the one hand, in the field of artificial life, only a 

small number of works have investigated digital 

simulations of QS considering metabolism and 

bioluminescence. While in the seminal works of [19] and 

[20], a QS simulation was proposed, their model did not 

consider bacterial metabolism for energy production and 

consumption. Since energy is vital to any physiological 

process in living organisms, in this paper we include such 

a model of metabolism in our simulations. Furthermore, 

we propose a computational model of bioluminescence 

using the same QS model.  

Additionally, few works have investigated the 

analogy between QS simulations and communication 

networks: in our work, we establish a conceptual link 

between QS and artificial communication networks. In 

[21], a QS-based communication network model was 

proposed, which used autoinducer molecules for 

communication. In our work, we address a similar 

problem using a network-centric approach, but we use a 

light-based communication protocol instead of 

autoinducers, because: 

• propagation of light is less limited by distance 

than a signaling molecule, 

• the different intensities of light are favorable for 

hierarchical structures, with several cell types: 

super-spreaders of light called wild-type 
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cooperators, simple spreaders called cooperators, 

and non-bioluminescent cells which  do not 

spread light, called cheaters. Hierarchical 

structures are known to be beneficial for the 

optimization of the network resources [22]. 

2.2 Regeneration abilities 

Regeneration is the ability of an organism, unicellular or 

multicellular, to resist damage by re-growth and renewal 

of dead cells. Hardware regeneration, often referred to as 

self-repairing, is a technique that allows electronic 

systems to reconfigure themselves if a part of a unit breaks 

down. Bioinspired developmental models are usually 

used. This part of electronics is commonly called 

embryogenics. Miller developed a self-repairing system, 

[23] [24] using cellular automata and Cartesian Genetic 

Programming. His model can generate a French flag able 

to reconstruct itself when the environment randomly 

moves the cells. This work has been reproduced by Liu 

[25] on a reprogrammable electronic ship, showing fault-

tolerance abilities.  

As additional models about regeneration of artificial 

multicellular organisms have been proposed, we can cite 

the regeneration of dead cells in previous studies: the two-

dimensional and three-dimensional shapes of Fleischer 

[26] , the star fish of Cussat-Blanc et al. [27], and the bat 

of Djezzar et al. [28]. In [29], an efficient cell-to-cell 

communication mechanism that allows the maintenance 

of Planarian worm-like shapes was introduced. The 

efficiency of the model has been verified in the light of 

random cell death. However, regeneration after a selected 

area for cell death was presented as a challenge that was 

not raised by the proposed mechanism. 

On unicellular artificial life simulation models, 

regeneration is less studied. Fewer works exist on 

regeneration and resistance of unicellular organisms. In 

this paper, we present a unicellular model of 

communication with emerging abilities of regeneration 

studied in two cases: (1) in the light of random cell death, 

and also (2) a selected area for cell death due to factors 

such as the action of an antibiotic or damage on a specific 

area of the unicellular-based structure. These regeneration 

abilities are beneficial for the development of self-

organizing network topologies with self-maintaining 

features. 

2.3 Bioinspired wireless networking for 

self-organizing topologies  

One of the major challenges is topology when wireless 

networks are designed. The network topology or physical 

placement of nodes is the base infrastructure that can 

intensely affect the entire network performance. Indeed, a 

careful node placement in a wireless networks can be an 

effective optimization means for coping with many 

resources limitation problems such as energy, location 

data requirements, computation time, and especially 

overhead communications, such as hello configuration 

messages. Overhead messages present common issues in 

designing a network topology, particularly: 

• computation time and energy. 

• security vulnerability. For example, during the 

exchange of overhead (hello) messages, a listener 

node can save important information on the network's 

structure such as the location of cluster heads. 

• self-adaptation when the topology is subjected to 

failures. A flaw in the topology necessitates the re-

launching of overhead controls as well as human 

intervention. 

Nature and bio-inspired mechanisms of self-

organization could present an efficient solution to reduce 

overhead controls in designing a wireless network 

topology.  Indeed, artificial and swarm intelligence have a 

long history of use as bioinspired alternative approaches 

able to transform natural patterns of collective behavior 

into useful models for self-organizing network topologies. 

In fact, researchers have proposed models inspired from 

ants [30], honeybees [31], fireflies [32], [33], Boids of 

Reynolds [34], etc. A survey on bioinspired networking is 

presented in [8]. Most of the existing approaches, 

bioinspired or not, require geographic data on nodes, such 

as position, and overhead messages. 

Considering the wireless network as a biological 

system is very interesting. It is connected to the goal of 

this paper. To achieve this goal, artificial life and 

particularly morphogenetic engineering is an original 

promising idea to emulate self-regulation, cooperation and 

regeneration capabilities of colonies of bacteria for the 

emergence of network topologies presenting these 

features. 

Consequently, in this paper we propose an artificial 

life simulation model of bacteria QS for the emergence of 

wireless network topologies, and for the purpose of: 

• eliminating overhead messages. 

• regeneration, resilience, and tolerance abilities, 

especially when the network is subjected to 

failures or external attacks. 

3 Cellular dynamics model 
Our cells are bacterial agents that evolve in a two-

dimensional environment and have the ability to sense the 

environment (taking up substrates and autoinducers), 

grow, divide and survive. They possess a QS genetic 

controller circuit allowing them to coordinate their cellular 

communication with other cells. Moreover, they are able 

to synthesize light via a proposed model of 

bioluminescence and have a metabolism allowing them to 

accomplish all of these actions. 

3.1 Quorum sensing 

To simulate cell-to-cell communication in heterogeneous 

microbial communities, we use a generic 𝐿𝑢𝑥𝐼/𝐿𝑢𝑥𝑅 QS 

language that is employed by over thirty species of Gram-

negative bacteria [2]. All 𝐿𝑢𝑥𝐼/𝑅 systems are mediated by 

autoinducers, such as acylated homoserine lactone (𝐴𝐻𝐿). 

Explicitly, the autoinducer molecule is synthesized by the 
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synthase 𝑙𝑢𝑥𝐼 homologs, 𝐿𝑢𝑥𝑅 is a receptor that can bind 

the 𝐴𝐻𝐿 molecules, and the 𝐿𝑢𝑥𝑅 − 𝐴𝐻𝐿 complex 

activates the transcription of the downstream operon. 

The molecular regulation network of a bacterial agent 

is based on the empirical ODE-models proposed by [19] 

and [20]. This model uses two positive feedback loops 

(Figure 1). The autoinducer AHL (𝐴) and the receptor 

LuxR (𝑅) form a dimerized complex (𝐶) that regulates the 

expression of both 𝑙𝑢𝑥𝐼 and 𝑙𝑢𝑥𝑅 genes, which produces 

more 𝐴𝐻𝐿 molecules and 𝐿𝑢𝑥𝑅 receptors, respectively. 

The following equations describe the molecular dynamics 

of this genetic circuit: 
𝑑[𝐴]

𝑑𝑡
= 𝐶𝐴 +

𝑘𝐴[𝐶]

𝐾𝐴 + [𝐶]
− 𝑘0[𝐴] − 𝑘1[𝑅][𝐴] + 𝑘2[𝑅𝐴]

− 𝑝𝑒[𝐴] + 𝑝𝑎[𝐴𝑒]  ,   (1) 
𝑑[𝑅]

𝑑𝑡
= 𝐶𝑅 +

𝑘𝑅[𝐶]

𝐾𝑅 + [𝐶]
− 𝑘3[𝑅] − 𝑘1[𝑅][𝐴]

+ 𝑘2[𝑅𝐴]   ,         (2)  
𝑑[𝑅𝐴]

𝑑𝑡
= 𝑘1[𝑅][𝐴] − 𝑘2[𝑅𝐴] − 2𝑘4[𝑅𝐴]

2 + 2𝑘5[𝐶], (3) 

𝑑[𝐶]

𝑑𝑡
= 𝑘4[𝑅𝐴]

2 − 𝑘5[𝐶] , (4) 

𝑑[𝐴𝑒]

𝑑𝑡
= ∑(𝑝𝑒[𝐴] − 𝑝𝑎[𝐴𝑒]) + 𝐷

𝑏𝑎𝑐𝑡

∇2[𝐴𝑒],     (5) 

where the notation [𝑋] represents the concentration of 

a particular molecular species 𝑋 and 𝑅𝐴 is the 𝐿𝑢𝑥𝑅 −
𝐴𝐻𝐿 complex. 𝐴𝑒 is the extracellular concentration of 𝐴 

sensed from the environment. 𝑝𝑒and 𝑝𝑎 are emission rate 

and absorption rate of 𝐴 and 𝐴𝑒, respectively. 𝐶𝐴 and 𝐶𝑅 

represent the basal level transcription of 𝐴 and 𝑅, 

respectively. 

3.2 Growth  

For simplicity, cells grow through the substrate-dependent 

growth model of Monod [35]. In the model of Monod, the 

specific growth rate (𝜇) of a bacterium biomass (𝑋) 
depends on the substrate concentration (𝑆). The equation 

is given by: 

𝜇 = 𝜇𝑚𝑎𝑥 ∙
𝑆

𝑆 + 𝐾𝑆
         (6) 

where 𝜇𝑚𝑎𝑥 is the maximum growth rate and 𝑘𝑠 is the 

substrate affinity (the value of 𝑆 when 𝜇/𝜇𝑚𝑎𝑥 =  0.5). 

These two parameters are assumed to be constant but 

depend on strain and environmental conditions. Using the 

specific growth rate (𝜇), 𝑑[𝑋]/𝑑𝑡 is calculated as follows: 
𝑑[𝑋]

𝑑𝑡
= 𝑋 ∙ 𝜇    (7) 

To calculate the specific energy requirement rate 

(𝑞𝐴𝑇𝑃) for cell growth, Stouthamer and Bettenhausen [36] 

introduced Eq. 8 and used the energetic growth yield 

coefficients (𝑌𝑋/𝐴𝑇𝑃). This parameter is assumed to be 

constant and represents the cell mass synthesized (𝑋) per 

unit of energy generated (𝐴𝑇𝑃). The equation is given by: 

𝑞𝐴𝑇𝑃 =
𝜇

𝑌𝑋/𝐴𝑇𝑃
    (8) 

We note that the energy (𝐴𝑇𝑃) consumption due to 

the cell growth is subtracted from the total energy of the 

cell. 

3.3 Bioluminescence 

In general, bioluminescence is a light-producing reaction 

catalyzed by a luciferase. Luciferase is a photoprotein 

enzyme that transforms a light-producing substrate called 

luciferin into light. The process requires the presence of 

other substances, like oxygen and adenosine triphosphate 

(𝐴𝑇𝑃). For simplicity, oxygen is assumed to exist in 

abundance in the environment. Therefore, the enzymatic 

reaction can be written in the form of a bi-molecular 

reaction that involves an enzyme (𝐸), binding to a 

substrate (𝑆) to form a complex (𝐸𝑆), which in turn 

releases a product (𝑃), regenerating the original enzyme. 

This may be represented as follows: 

𝐸 + 𝑆
𝐾𝑟
←
𝐾𝑓
→ 𝐸𝑆

𝐾𝑐𝑎𝑡
→  𝐸 + 𝑃, (9) 

where 𝐾𝑓 is the forward rate, 𝐾𝑟  is the reverse rate, 

and 𝐾𝑐𝑎𝑡 is the catalytic rate. By applying conservation 

constraints of the material and assuming that the 

concentration of enzymes is very low in comparison with 

the metabolite concentration, the equation describing this 

reaction is as follows: 
𝑑[𝑃]

𝑑𝑡
=

𝐾𝑐𝑎𝑡[𝐸][𝑆]

𝐾𝑟 + 𝐾𝑐𝑎𝑡
𝐾𝑓

+ [𝑆]
 , (10) 

By setting: 𝐾𝐿 =
𝐾𝑟+𝐾𝑐𝑎𝑡

𝐾𝑓
 and 𝑃𝑚𝑎𝑥 = 𝐾𝑐𝑎𝑡[𝐸], we 

obtain the following equation: 
𝑑[𝑃]

𝑑𝑡
=
𝑃𝑚𝑎𝑥[𝑆]

𝐾𝐿 + [𝑆]
, (11) 

where 𝑃𝑚𝑎𝑥  represents the maximum production rate 

and 𝐾𝐿is the concentration of 𝑆 at which the reaction rate 

is at half-maximum. 

In the case of bioluminescent bacteria, the bacterial 

luciferase is encoded and synthesized by the 𝑙𝑢𝑥 operon. 

The transcription of the 𝑙𝑢𝑥 operon is activated by the 

𝐿𝑢𝑥𝑅 −  𝐴𝐻𝐿 dimerized complex (𝐶) as shown in Figure 

 
Figure 1: Dynamics of a 𝐿𝑢𝑥𝐼/𝐿𝑢𝑥𝑅 quorum sensing. 

The L𝑢𝑥𝐼 synthesize the autoinducer molecule 

(𝐴𝐻𝐿). The receptor 𝐿𝑢𝑥𝑅 can bind the 𝐴𝐻𝐿 

molecule to form a complex 𝐿𝑢𝑥𝑅 − 𝐴𝐻𝐿. The 

dimerized complex composed of two 𝐿𝑢𝑥𝑅 − 𝐴𝐻𝐿 

complexes, regulates the expression of both 𝐿𝑢𝑥𝑅 

(positive feedback loop 1), and 𝐿𝑢𝑥𝐼 (positive 

feedback loop 2), which produces more 𝐿𝑢𝑥𝑅 

receptors and 𝐴𝐻𝐿 molecules, respectively. 

 



A Computational Multiagent Model of Bioluminescent Bacteria... Informatica 43 (2019) 395–408 399 

2. The bacterium produces light only at high cell density 

(i.e. only when a quorum is met). At low cell densities, 

even with higher concentration of the luciferin substrate, 

bacterial cells do not produce light. Then, we assume that: 

(1) the substrate exists abundantly in the cell cytoplasm 

and (2) the dimerized complex 𝐶 that controls the 

synthesis of the luciferase enzyme is assumed to be a 

determining factor. Therefore, we model the cell light 

production as a function of the dimerized complex 𝐶. 

Hence equation Eq. 11 is modified to: 
𝑑[𝐿]

𝑑𝑡
=
𝐿𝑚𝑎𝑥[𝐶]

𝐾𝐿 + [𝐶]
 , (12) 

where 𝐿 is the light production rate, 𝐿𝑚𝑎𝑥  is the 

maximum light production rate, and 𝐾𝐿 is the 

concentration of 𝐶 at which 𝐿 is at half-maximum. 

Bioluminescence is expressed as the accumulation of the 

green fluorescent protein 𝑔𝑓𝑝. The 𝑔𝑓𝑝 is incremented at 

each time step according to the light production rate 𝐿. The 

more gfp a cell accumulates, the greener the cell becomes.  

3.4 Metabolism 

Metabolism is the process that describes energy 

production and consumption [37]. In our model, 

metabolism is calculated by subtracting the energy spent 

to grow, divide, produce light, or survive (maintenance 

energy) from the total energy of the organism (sum of 

basal energy and energy produced from substrate). Figure 

3 represents material and energy inputs and outputs of the 

cell metabolism. 𝐴𝑇𝑃 is the molecule that stores and 

transports energy in living organisms. We model the 

bacterial 𝐴𝑇𝑃 cycle as follows: 

∆ 𝐴𝑇𝑃 = (𝐴𝑇𝑃0 + 𝐸. 𝐴𝑇𝑃𝑆 − 𝐴𝑇𝑃𝐺 − 𝐴𝑇𝑃𝐷 − 𝐴𝑇𝑃𝐿
− 𝐴𝑇𝑃𝑀)(∆𝑡),   (13) 

where: 

• ∆ 𝐴𝑇𝑃 is the total energy change of the organism. 

• 𝐴𝑇𝑃0 is the basal energy.  

• 𝐴𝑇𝑃𝑆 is the substrate energy. It represents the energy 

produced from metabolized substrates. This term is 

calculated as follows: 

𝑑[𝐴𝑇𝑃𝑆]

𝑑𝑡
= 𝑌𝐴𝑇𝑃/𝑆 ∙

𝑑[𝑆]

𝑑𝑡
  , (14) 

where 𝑌𝐴𝑇𝑃/𝑆 is the energetic substrate yield. It represents 

the amount of 𝐴𝑇𝑃 produced per unit of substrate. 

• 𝐸 is the substrate metabolism efficiency (equal to 

40%). This is because only 40 to 50% of the energy 

stored in a carbon substrate is converted to biological 

energy (𝐴𝑇𝑃). The rest is released as heat (Figure 3).  

• 𝐴𝑇𝑃𝐺  is the growth energy. It represents the energy 

consumption due to the cell growth. The consumption 

of 𝐴𝑇𝑃 due to the cell growth, at each time step, is 

given by: 

𝑑[𝐴𝑇𝑃𝐺]

𝑑𝑡
= 𝑞𝐴𝑇𝑃 ∙ 𝑋     ,   (15) 

 Using Eq. 8, Eq. 15 becomes: 
𝑑[𝐴𝑇𝑃𝐺]

𝑑𝑡
=

𝜇

𝑌𝑋 𝐴𝑇𝑃⁄
∙ 𝑋  ,   (16) 

 Using Eq. 7, Eq. 16 becomes: 
𝑑[𝐴𝑇𝑃𝐺]

𝑑𝑡
=

1

𝑌𝑋 𝐴𝑇𝑃⁄
∙
𝑑[𝑋]

𝑑𝑡
  , (17) 

• 𝐴𝑇𝑃𝐷  is the division energy. It 

represents the energetic cost of cell division and 

is equal to 0.5 𝜇𝑀. 

• 𝐴𝑇𝑃𝐿  is the light energy. It represents the energy used 

to produce light. We use a similar equation to Eq. 17 

to calculate  𝐴𝑇𝑃𝐿 . This is given by: 

𝑑[𝐴𝑇𝑃𝐿]

𝑑𝑡
=

1

𝑌𝐿 𝐴𝑇𝑃⁄
∙
𝑑[𝐿]

𝑑𝑡
 , (18) 

where 𝑌𝐿 𝐴𝑇𝑃⁄  is the energetic light yield coefficient. 

• 𝐴𝑇𝑃𝑀 is the maintenance energy (equal to 0.25 μM). 

3.5 Parameters 

Table 2 lists the parameters used in our model. QS 

parameter values are adopted from [20]. 

Parameter  Value Unit 

𝑝𝑒 0.025 - 

𝑝𝑎 0.025 - 

𝜇𝑚𝑎𝑥 0.034 fl/min 

𝐾𝑆 1 𝜇𝑀𝑜𝑙 

𝑌𝑋 𝐴𝑇𝑃⁄  0.034 𝑓𝑙/𝜇𝑀𝑜𝑙 

𝐿𝑚𝑎𝑥  2.0e -1 𝑅𝐿𝑈/𝑚𝑖𝑛 

𝐾𝐿 2.1e-7 𝜇𝑀𝑜𝑙 

𝐴𝑇𝑃0 1000 𝜇𝑀𝑜𝑙 

𝑌𝐴𝑇𝑃/𝑆 1000 - 

𝑌𝐿 𝐴𝑇𝑃⁄  0.135 𝑅𝐿𝑈/𝜇𝑀𝑜𝑙 

𝑇𝐿  0.20 - 

Table 1: Model parameters. 

  

Figure 2: Light production regulated by a 𝑙𝑢𝑥𝐼/𝑙𝑢𝑥𝑅  QS. 
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4 Artificial wireless network 
QS is intrinsically a wireless communication system. 

Practically, traditional wireless networks can connect 

heterogeneous devices without physical links. Similarly, 

within microbiomes, different types of bacteria can 

establish a wireless molecular communication network 

without previously established paths. 

However, the QS-based communication network is 

different from a classical wireless network in the sense 

that bacterial cells do not have IP addresses and the signals 

that they convey (autoinducers) do not have specific 

destinations encoded in the signals. This means that QS 

establishes communication without access to the location 

of cells. We want to take advantage of this property for the 

emergence of a network topology without using data 

location (cell position) and overhead messages. To do so, 

our network is based only on the internal dynamics of 

nodes, i.e. intracellular factors, and we use light as a 

modeling choice for the following reasons: 

1. Light is a self-organizing cooperative behavior that 

emerges from QS dynamics. 

2. The different light productivities, i.e. intensities, 

strong, (hyper-luminescent cells), medium, 

(luminescent cells), and null (non- luminescent cells), 

permit a network topology with a certain hierarchy, 

very suitable for networks, because it optimizes the 

network resources [22].  

3. Light as an internal factor (𝑔𝑓𝑝) allows self-selection 

of the node types without a centralized control. 

Indeed, a simple local test of the value of the 𝑔𝑓𝑝 at 

a cell allows for the determination of the node’s type. 

4. Light is an internal factor, but it has a beneficial 

external half-side effect. It is visible by other nodes 

and therefore can be sensed, for example, by a 

photosensitive sensor node. A signaling molecule 

such as autoinducer does not have this characteristic. 

The internal concentration of a signaling molecule 

inside a node is not visible by other nodes. 

5. The strength of the emitted signal in a traditional 

wireless network may be analogous to the light 

intensity.  

6. The sensitivity of the receiver in a traditional wireless 

network is analogous to the concentration of the 

signal receptor (𝐿𝑢𝑥 𝑅). 

Based on the above observations, we propose a QS 

network based only on intracellular factors. Figure 4 

shows the network node types and explains how the 

network links are established to from a network topology. 

The following subsections explains the network links and 

nodes. 

4.1 Network links 

A directed link is established from bacterium A to 

bacterium B under two conditions: 

• The light signal concentration (𝑔𝑓𝑝/𝑣𝑜𝑙𝑢𝑚𝑒) inside 

bacterium A is larger than that of bacterium B. 

• The bacterium B is a sensitive receiver. A bacterium 

is considered to be a sensitive receiver to light if its 

concentration of 𝐿𝑢𝑥𝑅 is above an activation 

threshold 𝑇𝑅. 

The first condition specifies the link direction. It 

represents the fact that there is a descending light gradient 

from bacterium A to Bacterium B. The second condition 

ensures that bacterium B is able to receive the signal. 

4.2 Network nodes 

QS is a cooperative effort of a bacterial population in 

which certain bacteria do not participate. The non-

participating bacteria are usually called cheaters [38]. 

In our work, a node is an abstraction of a bacterium cell. 

Since, within microbiomes, different type of cooperators 

and cheaters tend to coexist in collaboration or in conflict 

with one another [39], [40], we adopt a similar biological 

terminology to define the node's types of our artificial 

wireless network. 

To account for different light productivity, we classify 

the network nodes into three categories based on the 

intracellular intensity of light (gfp/volume). More 

precisely: 

– nodes with 𝑔𝑓𝑝 𝑣𝑜𝑙𝑢𝑚𝑒 > 20⁄  are up-regulated cells 

with high productivity of light (they are able to 

produce light at a high intensity). The nodes in this 

category are super spreaders that can send light to all 

 
Figure 3: Material and energy inputs and outputs of 

the cell metabolism. 

 
 

Figure 4: Establishment of the bacteria network topology. 

(a) WT-cooperator bacteria can connect to cooperators 

and cheaters. (b) Cooperator bacteria can connect to 

cheaters and can receive signals from WT-cooperators. 

(c) Cheaters cannot connect to WT-cooperators and 

cooperators but can receive signals. The direction of the 

link shows how the link is established. (d) The more gfp 

a cell accumulates, the greener the cell becomes, and the 

cell switches to the other cell type. Cheaters can switch to 

cooperators, and cooperators can switch to WT-

cooperators. 
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the other types of nodes. They are considered to be 

wild-type cooperators (WT-cooperators).  

– Nodes with 0 < 𝑔𝑓𝑝/𝑣𝑜𝑙𝑢𝑚𝑒 < 20 are considered to 

be cooperators. These nodes are down regulated cells 

that can receive light from all WT-cooperators but do 

not produce light at high intensity. So, they are able to 

send light at a rate TL = 0.20 to sensitive cheaters.  

– Nodes with 𝑔𝑓𝑝 𝑣𝑜𝑙𝑢𝑚𝑒 = 0⁄  are non-

bioluminescent bacteria called cheaters. They may be 

non-QS cells or QS cells that do not produce light. 

They are receivers called cheaters because they do not 

collaborate toward the common goals (producing light 

and establishing links) but gain benefit from the other 

cells that can do so.  

This classification of nodes based on the intracellular gfp 

value at a node allows each node to self-select its type 

without using a centralized process to attribute to each 

node a specified type. 

5 Experiments and results 
Using an open source simulator [41], we set up a two-

dimensional environment of size (80 𝜇𝑚, 80 𝜇𝑚). At the 

beginning of the simulation, 100 generic bacterial agents 

are randomly dispersed in the environment (Figure 5a). A 

bacterium cell is assumed to be 1𝜇𝑚 in diameter and, 

initially 2 μm long. Thus, its initial volume is 𝑉 = 1.57𝑓𝑙 

(femtoliters). To support the survival and growth of cells, 

we assume a constant nutrition concentration 𝑆 =
10 𝜇𝑀𝑜𝑙𝑒. In Figure 5a-c, cells that are close to the 

nutrient source are able to sense and absorb substrates. As 

a cell takes in substrates, it grows until it doubles its 

volume to 𝑉 = 3.14𝑓𝐿, at which point it divides. When 

the cell divides, it gives rise to two cells. One of the cells 

is chosen arbitrarily to be the mother and the other 

becomes its daughter. Then, the program running on the 

mother is copied to the daughter cell. 

5.1 Quorum sensing dynamics 

The quorum is met at t ⋍ 180 min, when the population 

size is 250 cells (Figure 5d). From 𝑡 =  270 𝑚𝑖𝑛 towards 

the end of simulation (Figure 5g- i), we can clearly see the 

AHL in blue around the colony that does not appear 

obviously in the early stages, because the diffusion of 

signaling molecules is spatially limited and significantly 

slower than the kinetic dynamics of bacteria. Figure 6a 

shows the evolution of the average amount of autoinducer 

inside cells over time (median and interquartile range of 

20 independent runs of the simulation). From the 

beginning of the simulation to t ⋍ 180 min, the 

accumulation of AHL inside the cells was stable, but after 

this crucial moment at which the quorum is met, the 

intracellular amount of  AHL begins to accelerate up 

to 0.6. In our model, unlike the seminal work of [20], the 

environment is not initialized with AHL.  AHL is rather 

(a) 

 
Figure 5: Evolution of bioluminescence, case 1: a single nutrient source placed in the center of the environment. 

Substrate is shown in purple, 𝐴𝐻𝐿 in blue, black cells are non-fluorescent. Fluorescence is expressed as a gradient 

ranging from the dark to light green. (a), (b) and (c) represent the beginning of the simulation: cells grow and divide. 

In (d), (e) and (f), the quorum is being reached, fluorescent cells begin to appear. Finally, (g), (h) and (i) show 

homogenous behavior of bioluminescent cells. 
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only produced and diffused by cells. However, in our 

simulations the  average accumulation of 𝐴𝐻𝐿 by cells 

exceeds the rate achieved in [20] (0.6 against 0.1). This 

means that exploiting metabolism, cells grow, reproduce, 

survive and produce more AHL molecules. 

5.2 Bioluminescence regulation  

Bioluminescence is shown as a gradient ranging from  

dark to light green. At high cell densities, the number of 

cells exceeding  250  contributes to the increase of 𝐴𝐻𝐿 

emitted by all the cells in the environment. The cells 

accelerate the production rates of AHL, using the positive 

feedback loop in Eq. 1. Consequently, the intracellular 

amount of the dimerized complex 𝐶 increases as well, 

which can be seen in Figure 6b, where the quantity of the 

dimerized complex begins to increase from 𝑡 ⋍ 180 𝑚𝑖𝑛. 

At this moment, the values of the light production rate 

given by Eq.12 are positives, and thus cells can 

accumulate 𝑔𝑓𝑝𝑠 and express bioluminescence. Indeed, 

bioluminescence is observed from time t =  217 min in 

Figure 5d. In Figure 6d, once the quorum is met at t ⋍
180 min, the cells begin to produce 𝑔𝑓𝑝. At this precise 

moment of the simulation, the 𝐴𝑇𝑃 rate starts to decelerate 

(Figure 6c). This is due to the energy cost of 

bioluminescence. In Figure 6c, from 𝑡 =  300 𝑚𝑖𝑛 to the 

end of the simulation, the ATP level is stabilized, which 

leads to the sustainable behavior of bacteria. 

5.3 Bioluminescence behavior 

It is interesting to observe bioluminescence behavior at the 

individual and the population level. At the individual 

level, the number of bioluminescent cells represents 73% 

of the population. This corresponds to the empirical rates 

found in real populations of bacteria. In fact, analysis of 

the QS-regulated bioluminescence of a wild type strain 

revealed that only 69% of the cells of the population 

produced bioluminescence, 25% remained dark and 6% 

were dead [42]. 

At the beginning of the simulation, in Figure 5a–f, the 

arrangement or spatial organization of bioluminescent 

cells is not homogeneous, and we cannot observe an 

organized behavior at the population level. However, from 

𝑡 =  318 𝑚𝑖𝑛, we can clearly see the degradation of the 

fluorescence from the center of the colony to its border 

(Figure 5h). The bioluminescent cells organize themselves 

around the edge of the colony to make other cells emit 

light. To investigate this hypothesis, in the second case of 

the simulation, two nutrient sources were placed in the 

opposite corners of the environment. This allows the 

development of two colonies as far as possible from each 

other. We can observe through this simulation in Figure 

7e-f, that the hypothesis is verified. Indeed, in each 

colony, the bioluminescence occurs toward each other. 

Also, we can observe that other cells that are not part of 

both colonies have become fluorescent (green cells 

surrounded by circles in Figure 7e and 7f). 

At the beginning of the simulation, in Figure 5a–f, the 

arrangement or spatial organization of bioluminescent 

cells is not homogeneous, and we cannot observe an 

organized behavior at the population level. However, from 

𝑡 =  318 𝑚𝑖𝑛, we can clearly see the degradation of the 

fluorescence from the center of the colony to its border 

(Figure 5h). The bioluminescent cells organize themselves 

around the edge of the colony to make other cells emit 

light. To investigate this hypothesis, in the second case of 

the simulation, two nutrient sources were placed in the 

opposite corners of the environment. This allows the 

development of two colonies as far as possible from each 

other. We can observe through this simulation in Figure 

7e-f, that the hypothesis is verified. Indeed, in each 

colony, the bioluminescence occurs toward each other. 

Also, we can observe that other cells that are not part of 

both colonies have become fluorescent (green cells 

surrounded by circles in Figure 7e and 7f). 

(a) (b)  

(c) (d)  

Figure 6: Intracellular molecules dynamics: median and interquartile range of 20 independent simulations. (a) Evolution 

of the amount of the autoinducer, A. (b) Evolution of the amount of the dimerized complex, C. (c) Evolution of the 

amount of ATP. (d) Evolution of bioluminescence, gfp/volume. 
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5.4 Regeneration and resistance abilities 

The regeneration abilities of our model are tested in two 

cases:  1) in the light of a random cell death, and 2) a 

selected area for cell death. 

5.4.1 Random cell death 

In this experiment, we want to verify how the model 

behaves with a random distributed cell death. In Figure 8, 

random cell death of 216 cells is inflicted on the bacteria 

colony at 𝑡 =  255 𝑚𝑖𝑛. The 216 dead cells are 

regenerated at 𝑡 =  311 𝑚𝑖𝑛, for a regeneration total time 

of 56 𝑚𝑖𝑛. Several simulations of random cells death were 

carried out over several time stages by varying the number 

of killed cells.  

 

Figure 8: Regeneration after a programed random cell 

death. (a) a random cell death of 216 cells. (b) and (c) 

regrowth and regeneration of death cells. (d) Reformation 

of the colony structure. 

Experiments show that the model provides intrinsic 

abilities of regeneration and maintaining of the structure 

without reprogramming or adding any further specific 

technique to the basic model. The average regeneration 

rate is 4 cells/min for an average regeneration time of 

0.25 𝑚𝑖𝑛/𝑐𝑒𝑙𝑙. 

5.4.2 A selected area for cell death 

In this experiment, we want to verify how the model 

behaves with non-equally distributed cell death, i.e. where 

a cluster of adjacent cells dies simultaneously due, for 

example, to the action of an antibiotic or damage on a 

specific area of the colony structure. To do so, a selected 

area for cell death is made. In the experiment reported by 

Figure 9; 26% of cells of the colony, 124 𝑐𝑒𝑙𝑙𝑠, are killed. 

Dead cells are regenerated in 34 𝑚𝑖𝑛. The experiment 

shows that the model is capable of regrowth, reformation 

and maintaining of the structure. Several cuts of selected 

regions for cell death have been tested. The average 

regeneration rate is 5 cells/min for an average regeneration 

time of 0.2 min/cell. 

 
Figure 9: Regeneration after selected area for cell death. 

(a)  A vertical cut (124 killed cells) is made in the middle 

of the colony. (b)–(c): Regrowth and regeneration of death 

cells. (d) Reformation of the colony structure. 

In [28], after killing 23% of the artificial multicellular 

creature, the average regeneration rate is 25 𝑐𝑒𝑙𝑙𝑠/𝑚𝑖𝑛 for 

an average regeneration time of 0.04 𝑚𝑖𝑛/𝑐𝑒𝑙𝑙. This 

represents 1/5 of the regeneration time of our model i.e. 

0.2 𝑚𝑖𝑛/𝑐𝑒𝑙𝑙. Despite this observation, we consider a 

regeneration time between 0.2 to 0.25 𝑚𝑖𝑛/𝑐𝑒𝑙𝑙 as 

advantageous because our model includes physical force 

and growth kinetic simulations. 

5.5 Network evolution 

The artificial network evolves as the bacteria colony 

grows. It evolves via (1) self-selection of the cell type 

(local test of the gfp value), and (2) sending of links (based 

on two simple rules, Section 4.1) without calculation of 

the cell positions.  In this section, we want to observe the 

evolution of the properties of this network, mainly: the 

number of networked cells and links of each cell type. 

Also, we need to test whether a fairly simple network 

definition allows the entire population of cells to be 

(a) (b) (c) (d) 

 
Figure 7: Evolution of bioluminescence-case 2: two nutrient sources, the first placed in the top right of the 

environment, the second placed in bottom left. (a) and (b): Beginning of the simulation. (c) and (d): Bioluminescent 

cells begin to appear at the left bottom of the environment. (e) and (f): A self-organized bioluminescence behavior 

of each colony toward each other. 
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networked (total number of cells = total number of 

networked cells). To do so, three measures have been 

considered: number of cells, number of links, and number 

of networked cells of each cell type. 

A cell is considered to be sensitive to light if its 

intracellular concentration of 𝑙𝑢𝑥𝑅 is above the threshold  

𝑇_𝑅 = 0.0155. The first measure we calculate is the 

numbers of different cell types. This is represented in 

Figure 10a. In Figure 10a, from 𝑡 =  0 𝑚𝑖𝑛 to 𝑡 =
 50 𝑚𝑖𝑛, the number of cheaters is stable and equal to 100 

cells. As the colony grows, the number of cheaters begins 

to increase gradually, where it reaches its maximum i.e. 

294 cells at 𝑡 =  260 𝑚𝑖𝑛. After this time, the number 

stagnates until the end of the simulation. At the instant 

𝑡 =  210 𝑚𝑖𝑛, the quorum is being met, the cells begin to 

emit light and consequently cooperators begin to emerge 

in the population. At 𝑡 =  300 𝑚𝑖𝑛 the number of 

cooperators exceeds the number of cheaters, while WT-

cooperators start to appear. The number of cooperators 

and WT-cooperators continues to increase as the number 

of cells increases, while the number of cheaters remains 

stable. At the end of the simulation, we can notice that 

cooperator cells are dominant in the population with 752 

cells which represents 55% of the population, compared to 

294 cheaters and 324 WT-cooperators which account for 

21% and 24%, respectively. 

Figure 10c represents the third measure we calculate, 

the number of networked cells. At 𝑡 =  290 𝑚𝑖𝑛, 

networked WT-cooperator cells begin to emerge and the 

number of networked cells fit the total number of total  

cells (the number of non-networked cells is equal to 

0).  Consequently, the network model permits all cells of 

the population to be networked without calculating the cell 

position. Indeed, the assumption we have made in the 

beginning of this section is verified. Although our 

communication network is defined on the basis of two 

simple rules, an emission rule and a reception rule, the 

network allows the totality of the cells of the population 

(100%) to be networked, whatever their position (near or 

far from the colony) or their type (QS or non-QS cell, 

bioluminescent or non-bioluminescent cell). 

We note that the results converged as a spontaneous 

evolution of the network dynamics without the use of any 

evolutionary algorithm. The artificial network has also the 

property of self-selection of the node’s type without a 

centralized control. Such artificial communication 

networks can be used for the emergence of self-organizing 

wireless network topologies that address issues such as 

location data and overhead messages. 

5.6 Cooperation measurements  

As in macroscale communities, within microbiomes, 

different types of bacteria tend to cooperate towards 

common goals. Since nodes and links are basic 

components for any network topology, we consider two 

common goals. The first common goal is the evolution of 

 

 (a) (b) 

 

(c) 

Figure 10: Measures of the artificial communication network. (a) Evolution of the number of cells. (b)  Evolution of 

the number of links. (c) Evolution of the number of networked cells. 
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the total number of links. The second common goal is the 

evolution of the number of networked cells. 

Our artificial communication network is based on a 

cooperative behavior of QS which is light. This 

cooperative behavior determines the network’s node types 

(via the gfp value) and how the links are established (a 

descending gradient of light). So, we need to measure how 

much cooperator cells contribute towards the common 

goals for the network: links and nodes. Also, we want to 

determine which kind of cooperators has the highest 

degree of cooperation for the common goals. To do so, 

cooperation is calculated as the benefit/cost ratio. Table 

1 shows the results considering two measures of 

cooperation. The first measure describes the contribution 

of cooperators (respectively WT-cooperators) for the 

common goal number 1: total number of links. The second 

measure describes the contribution of cooperators 

(respectively WT-cooperator) for the goal number 2: total 

number of networked cells. 

Node type Common goal 1:    

total links 

Common goal 

2: networked 

cells 

Cooperators 500000/752=664.89 1370/752=1.82 

WT-

cooperators 

500000/324=1543.20 1370/324=4.22 

Table 2: Cooperation measurements of the network. 

The total number of links is 50000, the number of 

networked cells is 1370, the number of cooperators is 752 

and the number WT-cooperators is 324. We note that up-

regulated cells, here WT-cooperators, have the higher 

degree of cooperation in the evolution of the properties of 

the subsequent communication network.  

6 Discussion 
To observe interesting behaviors of bacteria, it is 

necessary to simulate the interactions of a large number of 

bacterial cells in in silico models. Our model enables the 

colonies to have up to 1400 bacterial cells, while in the 

seminal work presented in [20] the population size does 

not exceed 256 cells, and 430 cells in [9]. We proposed a 

simplified computational model for bioluminescence. 

Nevertheless, bioluminescence emerges as a spontaneous 

property of the regulation system, without any centralized 

control on the QS genetic circuit. We note that a cell 

counter to measure cell density is not used to control QS, 

and neither global or local control is applied to cellular 

actions. In [9], the authors propose an algorithm of QS that 

uses a cell counter, to decide the behavior of cells. 

Conversely, in our model, cell actions are executed 

autonomously by the bacterial agent, all the time and in 

parallel– similarly to the reactions of real cells. 

In most artificial life models, metabolism is rarely 

taken into account, or it is greatly abstracted into a 

simplistic model where the amount of energy decreases at 

each time step, as in [9], [43], [44]. In such models, there 

is no real transformation of matter from nutrients to 

biomass, or 𝐴𝑇𝑃. However, in our model, there is an 

actual simulation of such production and consumption of 

energy. Positive terms in the metabolism equation (Eq. 13) 

describe energy production (transformation of matter, i.e. 

metabolization of substrate into 𝐴𝑇𝑃 and biomass), while 

negative terms describe energy consumption. The control 

of metabolism is one of the important features of QS 

regulation [45]. It is notable that our research is one of the 

few studies which link metabolism to QS. QS-regulated 

microbial metabolism includes bioenergy production [46], 

resource utilization and energy optimization, which are 

essential to population survival [47]. The results presented 

in this paper showed that metabolism has been regulated 

i.e. stabilized after the quorum is being met. This feature 

is very important for regulating the battery lifetime i.e. 

survival of the proposed artificial wireless networks. 

7 Conclusion 
We proposed computational models of metabolism and 

bioluminescence, allowing artificial bacterial agents to 

produce their own energy and communicate using light 

signals. We have also presented a self-sustainable network 

model in which the rules governing the formation of the 

network are linked to the dynamics of its components 

without any centralized control. Results show 

regeneration abilities and the emergence of homogenous 

behaviors over the population, e.g. the cooperation toward 

common goals in the evolution of the artificial 

communication network. This cooperation allows the 

totality of the cells of the population to be networked. The 

resulting artificial network could be potentially used for 

the emergence of wireless network topologies without the 

use of overhead messages and with self-maintaining and 

resistance features.  

Finally, pathogen microscopic bacteria in nature 

develop efficient and secure communication networks 

using the bacterial communication consensus (i.e. 

Quorum Sensing), which is highly robust to external 

attacks, displaying drug or antibiotic resistance.  

Quenching microbial quorum sensing, known as "Quorum 

quenching", is a strategy to inhibit the QS dynamics and 

thus the “bugs” that can be caused by pathogen bacteria. 

This concept could be used to prevent the security issue 

and develop self-organized defense mechanisms based on 

our QS–based artificial wireless networks. Additionally, 

our network could also be evolved with an evolutionary 

algorithm to solve specific common networks problems 

such as energy optimization or improvement of the quality 

of the network links. We hope that our work on QS 

inspired artificial wireless networks can foster ideas for 

future investigations. 
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