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With the rapid development of smart cities, efficient and real-time urban landscape management has
become an urgent research topic. This paper proposes a Hybrid Soft Computing Framework (HSCF)
that combines Fuzzy Logic, Improved Genetic Algorithm (IGA), and Adaptive Particle Swarm
Optimization (APSO) to dynamically optimize urban systems such as lighting and irrigation. By
integrating heterogeneous sensor data (e.g., weather, pedestrian flow, and traffic conditions), the
framework senses environmental changes and makes optimization decisions in real time.The Fuzzy
Logic module handles low-latency adjustments, such as dynamically tuning lighting brightness based on
crowd density, achieving response times of less than 100 ms. The IGA performs mid-term optimization
of multi-objective landscape layouts (e.g., energy efficiency, aesthetics, and functionality) every 5
minutes, evolving Pareto-optimal solutions through non-dominated sorting and crowding distance
analysis with a population size of 50, crossover rate of 0.8 -0.95, and mutation rate of 0.05 -0.15. The
APSO continuously refines these solutions using real-time spatio-temporal data, adaptively balancing
exploration and exploitation through inertia weight adjustments (ranging from 0.4 to 0.9) and
acceleration constants (c; = 1.2 -1.8, ¢ = 1.2 -2.0).Experimental results demonstrate that HSCF
outperforms traditional methods (e.g., FLC and PSO), achieving 16.2%-22.7% energy consumption
reduction, 36.6% water savings in irrigation systems, and maintaining stability under extreme weather
and £20% data noise. Key innovations include dynamic spatio-temporal data fusion, real-time
decision-making, and joint fitness evaluation across layers. Future work will focus on scalability and
integration of additional data sources (e.g., UAV-derived 3D maps) to address more complex urban
management tasks. This framework provides a replicable, data-driven solution for adaptive smart city

landscape management.

Povzetek:

1 Introduction

With the rapid development of information
technology and the continuous promotion of the smart
city concept, urban management is facing unprecedented
challenges. Smart city construction aims to optimise the
allocation of urban resources, improve the efficiency of
urban operation and enhance the quality of life of citizens
through modern information technology. As an important
part of the smart city, the dynamic adjustment and
management of urban landscapes plays a crucial role in
enhancing the quality of the urban environment,
conserving resources, and promoting sustainable
development. Traditional urban landscape management
methods often rely on static rules and manual control,
and cannot be flexibly adjusted according to the actual
situation.

Scholars have explored the synergistic innovation
path of data-driven and intelligent algorithms through
multidisciplinary crossover. Zhu et al.l'l took the lead in
constructing a dynamic urban planning framework
integrating hybrid artificial intelligence and big data.
Their proposed coupled model of deep reinforcement

learning and multi-objective optimisation provides
real-time decision support for the dynamic configuration
of landscape elements, but has not yet solved the
complexity of high-dimensional data feature interactions.
To address this limitation, Yu et al.’! developed a
multi-objective landscape planning model based on the
NSGA-II algorithm, which achieves a Pareto-optimal
solution for landscape aesthetic value and ecological
benefits by integrating geospatial big data and ecological
constraints, but its static optimisation characteristics are
difficult to adapt to the needs of dynamic urban evolution.
In this regard, Khan et al.’! innovatively proposed a
multi-scale modelling framework to temporally and
spatially correlate macro urban form and micro landscape
elements through hierarchical reinforcement learning,
and the cross-scale feedback mechanism they constructed
significantly enhanced the adaptive ability of the
landscape system. Wang and Mal¥ further introduced
digital twin technology into this field, and developed a
collaborative energy-landscape digital twin platform,
which can be used for the development of the landscape
system through real-time data and ecological constraints,
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and the energy-landscape collaboration. digital twin
platform, which realizes the dynamic adaptation of
renewable energy facilities and landscape layout through
a real-time data stream-driven particle swarm
optimization algorithm, but the network latency problem
affects the response speed of the system. Ruan et al.’], on
the other hand, expanded the research boundaries from
the dimension of social computing, and used a fuzzy
cognitive map and a spatio-temporal clustering algorithm
to analyze social media data streams, revealing the
dynamic mapping relationship between public
behavioural patterns and landscape Bibril® systematically
demonstrates the theoretical support of urban computing
technology for dynamic landscape planning, and
proposes to embed online learning mechanism into the
planning decision-making cycle, which is a theoretical
framework that effectively solves the synergy problem of
long-term and short-term planning objectives in
traditional methods. Kuru!’! pioneers the introduction of
UAV swarm intelligence technology, and the use of
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UAVs in the planning process. introduced the UAV
swarm intelligence technology to achieve aerial dynamic
reorganisation of landscape elements through a
distributed swarm algorithm, and its proposed 3D spatial
optimisation model breaks through the limitations of
traditional 2D planning. Notably, the hybrid network
security architecture constructed by Sengan et al.l®
provides an important guarantee for the data security of
the dynamic landscape system, and the quantum
encrypted data stream transmission protocol designed by
them effectively guards against the risk of cyber-attacks
during the real-time optimisation process. There is still
room for improvement in existing research in terms of
algorithm fusion, real-time response speed and
human-computer collaboration mechanism, and in the
future, the in-depth fusion of digital twin, swarm
intelligence and blockchain technology needs to be
strengthened in order to construct a more resilient and
adaptive smart landscape generation system.

Table 1: Comparison of related work

Research Method Appllpatlon Perfo_rmance Limitations
ers Domain Metrics
Deep .
Reinforcement Lighting, . . Co_mple>§|ty of
Zhu et : Energy reduction: high-dimensional
al Learning + Lan_dscap_e 12% data interactions
' Multi-Objective Configuration .
A remains unresolved
Optimization
Landscape Static
Yuetal. NSGA-II Aesthetic Value and Paret(_)-opnmal optimization, d'ff'C_UIt
. . solutions to adapt to dynamic
Ecological Benefits .
urban evolution
Khan et Hierarchical Macro Urban Form Cross-scale Lacks real-time
al Reinforcement and Micro Landscape feedback enhances data processing
' Learning Elements system adaptability capabilities
Wang D_|g|tal Twin + Renewable Energy Response time: 200 Network latency
Particle Swarm . affects system
and Ma S Integration ms
Optimization response speed
Fuzzy .
- . Not directly
Ruan et Cogr)ltlve Map + Social Media Data _Reveals dynamlg applied to real-world
al Spatlo—TemporaI Analysis mapping between public landscape
' Clustering behavior and landscape LU
. optimization
Algorithm
Hybrid Urban . Supports embedding Requires further
. - Dynamic : . L
Bibri Computing . of online learning validation in
Landscape Planning ; .
Framework mechanisms real-world scenarios
High
UAV Swarm 3D Spatial I _Breaks thrqu_gh computational
Kuru . N limitations of traditional .
Intelligence Optimization . complexity, lacks
2D planning .
real-time support

The aim of this paper is to propose a hybrid soft
computing framework (HSCF) for real-time dynamic
urban landscape optimisation, including the regulation
of lighting and irrigation systems, by combining fuzzy
logic, Improved Genetic Algorithm (IGA) and
Adaptive Particle Swarm Optimisation (APSO). Logic,
IGA and APSO, can outperform traditional methods

(e.g. Fuzzy Logic Control and Particle Swarm
Optimisation) in terms of real-time data processing and
dynamic optimisation; the hybrid framework has
significant advantages in terms of energy-efficiency
optimisation, and the HSCF is able to achieve higher
energy savings than the existing studies, while ensuring
the dynamic adaptability and robustness of the landscape
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system. The system boundaries are defined as follows:
the algorithmic part will be tested in a simulation
environment to verify its effectiveness in dynamic data
processing and optimisation performance, while the
practical application will be limited to lighting and
irrigation systems in urban landscapes, with real-time
data (e.g., weather, foot traffic, traffic conditions, etc.)
obtained through IoT sensors; for experimental
conditions and reproducibility, all experiments are
conducted under the same hardware and software
conditions to ensure the reproducibility of the results,
the experimental data include the data collected from
real scenarios as well as the simulation-generated data
to cover different environmental conditions (e.g.,
extreme weather and emergent conditions), and the
parameter settings (e.g., the population size of the IGA,
the inertia weights of the APSO, etc.) are finely tuned
based on the pre-experiments in order to balance the
exploratory and developmental capabilities. The HSCF

2 Hybrid soft computing framework
design

2.1 System architecture

Figure 1 visualises the architecture of the hybrid
soft computing framework, which consists of three main
layers: the data layer, the processing layer and the output
layer. The data layer is responsible for collecting and
pre-processing data, where IoT sensors collect
information such as weather data, people flow and traffic
conditions. The data is preprocessed to align
spatio-temporal data and filter noise. The processing
layer focuses on core algorithms, including fuzzy logic
controllers, Improved Genetic Algorithm (IGA) and
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framework proposed in this paper has the following
innovations: the combination of real-time and dynamic
optimisation, where the framework achieves real-time
adjustment through fuzzy logic, and mid-term
optimisation and dynamic adaptation through IGA and
APSO, which effectively solves the problem of
insufficient real-time responsiveness and dynamic
adaptability in the existing researches; multi-objective
optimisation functionality, where the framework is able to
optimise multiple objectives (e.g., energy-efficiency,
aesthetics, and functionality) at the same time and achieve
global adaptive capability through the Joint adaptation
assessment mechanism to achieve global optimisation;
Data-driven  strategy, the framework adopts a
spatio-temporal data fusion approach to unify information
from different data sources into a spatio-temporally
consistent framework to improve data processing
efficiency and optimisation accuracy.

Adaptive Particle Swarm Optimisation (APSO). These
algorithms work together through a hybrid optimisation
engine to dynamically tune the solution. The output layer
uses the optimised solution to generate visualisations
through platforms such as GIS and Unity3D, as well as
issuing control commands for systems such as lighting
and irrigation. The diagram illustrates the flow of data
between these layers, from data collection and
pre-processing to optimisation and control command
issuance, where feedback loops ensure continuous
adjustment of the system. This structure demonstrates the
system's ability to handle real-time data processing,
decision-making and control in a dynamic and
collaborative manner, with each layer playing a specific
role in the overall operation of the framework.
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IoT Sensors
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Figure 1: System architecture diagram
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2.2 Core algorithm fusion mechanism
2.2.1 Fuzzy logic

First of all, it is necessary to define the affiliation
function for the input variables. Here, we take ‘crowd
density’ (D) and ‘light brightness’ (L) as examples to
illustrate the definition of the affiliation function®!.

The affiliation function of the crowd density D:

Assumptions D €[0,1], denotes the flow density from
‘low’ to ‘high’.
We define the affiliation function of D as follows:

(D)= 1-D, 0<D<05
#t2)=19 D, 05<D<1 M

Where 1, (D) represents the degree of affiliation

of the crowd density D, indicating the degree to which
the value belongs to a ‘low’ or ‘high’ crowd density.
The affiliation function of light brightness L:

Assume that L E[O,l], represents the light brightness

from ‘dark’ to ‘bright’. Define the affiliation function of
L as:
1-L, 0<L<05

/uL(L):{Z—L, 05<L<1 @)

Where, g (L) represents the light brightness L

affiliation, reflecting the light brightness belongs to the
degree of ‘dark’ or ‘bright’.
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Fuzzy rules produce fuzzy outputs based on fuzzy
relationships between input variables®'4, Here, we
assume that the control objective is to adjust the light
luminance L based on the crowd density D and construct
the fuzzy rule set. For example:

Rule 1: If crowd density is high (D high), then light
luminance is high (L high).

Rule 2: If the crowd density is low (D low), the light
luminance is low (L low).

According to this rule, we can use the following
fuzzy language to express:

High crowd density: D is ‘high’.

Low crowd density: D is ‘low’.

High brightness: L is ‘high’.

Low brightness: L is ‘low’.

The fuzzy inference process includes rule activation,
fuzzy synthesis and defuzzification. The following are
the details of the process:

(1) Rule activation

Based on the input variables D and the affiliation
function, we activate the fuzzy rule using the ‘minimum
value method’. For example, if the crowd density D = 0.7
(higher crowd density) and the light luminance L = 0.3
(lower luminance), the rule activation value is calculated
in the following way:

RulelActivationvalue.min ( u, (0.7), 4 (0.3)) =min(0.3,0.7) =0.3
Rule2Activation value.min (4, (0.7), 4 (0.3)) =min(0.3,0.7) = 0.3

(2) Fuzzy Synthesis

Through rule activation, we can synthesise the
outputs of multiple rules together. Assuming that there
are multiple fuzzy rules producing results, we use the
‘maximum value method’ to synthesise the output of
each rule. The result of each rule is multiplied by the
activation value to produce the final fuzzy output(*?l,
Assume that the output of the rule is an affiliation
function of the brightness of the light L. The output of
the synthesised rule will be a function of the brightness
of the light. The synthesised output has the following
affiliation function:

t,, (L)= maX(i”Lm.el (L), m,, (L)) 3)

i, (L)
activated by rules.
(3) Defuzzification
The defuzzification process converts fuzzy values
into actual outputs. The most commonly used
defuzzification method is the ‘centre of gravity method’:

s (Lya
P (L

Where L, Is the output light luminance value

where and (L) are outputs

4

and (L) is the output affiliation function after fuzzy

synthesis.

The centre of gravity method calculates the ‘centre
of gravity’ of the output affiliation function to get the
final light brightness value. Through this process, the
fuzzy logic can adjust the light brightness in real time
according to the fuzzy relationship between the crowd
density and the current light brightnesst*3-14,

Assume that the landscape layout consists of n
regions, and the configuration of each region is
represented by X =(Xy,%,..., %y, ), Where x; Is the
jth decision variable for the ith region. The objective
function can be expressed as:

f(X)=WE(X)+W,A(X)+W,F (x) (5)

Among them: E(x) Indicates energy consumption,
reflecting the energy consumption required in each area
of the layout.

A(x) Indicates aesthetics and measures the visual
impact of the layout.

F(x) Indicates functionality and measures the

efficiency and ease of use of the layout.
W, W, , W, weighting factors for energy consumption,

aesthetics and functionality, respectively.
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Fuzzy logic and the multi-objective function f(x)
serve distinct yet complementary roles in the Hybrid Soft
Computing Framework (HSCF). Here’s a concise
explanation of their integration:

Role of Fuzzy Logic

Fuzzy logic is employed for real-time adjustments,
such as dynamically tuning light luminance based on
crowd density. It processes sensor data using membership
functions and fuzzy rules to generate immediate control
outputs. For example:

Rule 1: If crowd density is high, then light
luminance is high.

Rule 2: If crowd density is low, then light luminance
is low. These rules are applied through fuzzy inference,
including rule activation, fuzzy synthesis, and
defuzzification (e.g., centre of gravity method) to
produce precise control commands.

Role of Multi-Objective Function f(x)

The function f(x) is designed for broader landscape
layout optimization, considering objectives such as
energy consumption, aesthetics, and functionality. It is
optimized using Improved Genetic Algorithm (IGA) and
Adaptive Particle Swarm Optimization (APSO) for
long-term strategic planning.

Integration Mechanism

Fuzzy logic and f(x) are integrated through:

Dynamic Inputs: Real-time outputs from fuzzy logic
(e.g., light adjustments) are fed into f(x) as dynamic
inputs for optimization.

Feedback Loop: Optimization results from f(x)
refine fuzzy rules, improving long-term decision-making.
Together, they balance real-time responsiveness with
strategic optimization, ensuring efficient and adaptive
landscape management.

2.2.2 Improved genetic algorithm

The basic process of the genetic algorithm includes
initialising the population, fitness assessment, selection,
crossover, mutation and updating the population. Each
step is described in detail below[*®],

The initialisation population contains N individuals,
each of which is a potential landscape layout scheme.
The genes of each individual consist of multiple decision
variables (e.g., facility type, location, etc.). The
initialisation of the population is randomly generated to
ensure diversity in the exploration spacel¢l.

Assuming that each decision variable X; e[aij ,bij}.

Then the process of initialising an individual can be
represented as:

X! =2y +(b; —ay)-rand( ) )
Among them.rand( )is a function that generates

random numbers in the interval [0, 1], k is the kth
individual, and @; and b; are the minimum and

of the decision variable Xx. ,

maximum values i
respectively.
The fitness assessment determines the merit of each

individual by calculating its objective function value. For
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multi-objective optimisation problems, non-dominated
ordering and crowding calculations are commonly used
to assess fitness.

For each individual ¥, its ‘dominance relation’ in

the multi-objective space is calculated™”). An individual
is said to be dominated by X if its objective function

value is not inferior to that of individual X; on all
objectives and is superior to X; on at least one

objective.
By sorting all individuals in a non-domination order,
we can obtain the rank of each individual (Pareto Front).
Crowding is used to measure how sparse an
individual is in the target space. Assuming that the
crowding degree of individual X, in the target space is

C (X, )., itis calculated as:

M fk(i;l) _ fk(:l)
C(x)=2| = f(i) ™

“ U
where £ is the target value of individual x, on

the mth target, £ and f!) are the maximum and

minimum values of that target in the whole population,
respectively, and M is the number of targets.

The selection operation determines which
individuals will move on to the next generation. In
multi-objective optimisation, we usually use tournament
selection or selection based on crowding.

Tournament selection: a number of individuals are
randomly selected to compete and select the more
adapted individuals to enter the next generation[*8-29],

Crowding-based selection: individuals with lower
crowding are selected to maintain the diversity of the
population.

Crossover operations exchange the genes of two
parent individuals to generate new offspring individuals.
Crossover operations usually use single-point crossover
or multipoint crossover to ensure that the offspring
inherits the best traits of the parent.

Assuming parent individuals X; =(X11,X12,...,X1m)
and X, =(X21,X22,...,X2m) , the crossover operation

generates offspring individuals x, and X, :
Xi:(Xn’X12’---’X1kvX2,k+1'--~vX2m) (®)

sz:(szxzz!---vxzwX1,k+1!---!X1m) )

Where k is the crossover point.

The mutation operation avoids the algorithm from
falling into a local optimal solution by introducing new
genetic information by making small random changes to
the genes of an individual®!. Suppose a gene x; is

mutated and its mutation operation is:

X =x; +5-rand( )-(b; —3;)  (10)

where & is the magnitude of variation and
rand( ) is the random number.

2.2.3 Adaptive particle swarm
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The inertia weight w controls the balance between
the particle's current velocity and the previous velocity.
In the adaptive particle swarm algorithm, the inertia
weight w(t) decreases gradually with the increase of
iteration number, which helps the particles to maintain a
large search range at the initial stage to avoid falling into
the local optimal solution*?¥; and decreases gradually
at the later stage to enhance the local search ability of the
particles. The adaptive inertia weight update formula is:

w(t)=w,

(Wi —W,
max_f (11)

min).t

where w_ is the initial inertia weight; w_; is
the minimum inertia weight; T is the maximum
number of iterations; and t is the current number of
iterations.

In adaptive particle swarm algorithms, c,and c,
can be dynamically adjusted to enhance the exploration
or exploitation capabilities of the algorithm based on the
performance of the current optimisation process.
Typically, ¢, and c, are updated as follows:

(Clmax - Clmin )
T

CZ (t) = C2max - (szaXTiczmin ) t (13)

Where: ¢, and c,, are the maximum values
of the acceleration constant, respectively; c, . and
Cmn are the minimum values of the acceleration

constant, respectively; t is the maximum number of
iterations; t is the current number of iterations.

In the initial stage, the acceleration constant is larger
to allow the particles to search more strongly towards the
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individual optimal position and the global optimal
position; while in the later stage, the acceleration
constant is gradually reduced as the optimisation
progresses in order to improve the local search
capability?*],

The basic process of adaptive particle swarm
optimisation is as follows?¢-27];

Initialising the particle swarm X; and speed Vv,

and randomly set p, and g, .
Calculate the fitness value for each particle f (X, ).

Update the individual optimal position according to
the fitness value p,, and global optimum position g, .

Update the velocity and position of the particles,
using the update equation above.
Adjust inertia weights based on real-time feedback

w(t) and the acceleration constant ¢, (t),c, (t).

Check if the stopping condition (e.g. maximum
number of iterations or convergence of the objective
function) is met.

If the stopping condition is not met, return to step 3.

2.2.4 Hybrid Optimization Engine: Fusion
Mechanism

To address the parameter tuning details for the
Improved Genetic Algorithm (IGA) and Adaptive
Particle Swarm Optimization (APSO) used in the
experiments, the following table summarizes all key
hyperparameters and their respective ranges or fixed
values. These parameters are carefully chosen to balance
exploration, exploitation, and convergence during the
optimization process

Table 1: Parameter range analysis

Parameter Description Value / Range Notes
IGA Hyperparameters
Population Size (N) Number of individuals in the 50 Fixed value for consistency across
P population experiments.
Probability of crossover Tuned to encourage genetic
Crossover Rate (CR) between parent individuals [0.8, 0.95] diversity while promoting
convergence.
- N Adjusted to avoid premature
Mutation Rate (MR) Pmbab'“%(;)itlzgﬂfllt'on ihan [0.05, 0.15] convergence and maintain
population diversity.
. Magnitude of random mutation Represents the range of permissible
Mutation Delta (A) applied to genes [0.1,03] changes during mutation.
. . M.Et.hOd for selecting Tournament Tournament size randomly selected
Selection Method individuals for the next Selection from 35 individuals
generation )
. . Metric for maintaining . .
Crowding Distance diversity in multi-objective [0.5, 1.5] A_djusted during Pareto Front
Factor space ranking to preserve sparse regions.
APSO Hyperparameters
. Number of particles in the Fixed value for consistency across
Swarm Size (S) swarm 30 experiments.
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. . Balances exploration and Adaptively updated during
Inertia Weight (w) exploitation [0-4,0.9] iterations (Equation 11).
Minimum Inertia Lower bound for inertia Helps maintain exploration in later
- - . 0.4
Weight (w_min) weight stages.
Maximum Inertia N . Encourages global search in early
Weight (w_max) Upper bound for inertia weight 0.9 iterations.
Acceleration Controls particle movement c1=[12,1.8],¢c.= Tuned to balance local and global
Constants toward personal/global best [1.2,2.0] search (Equations 12-13).
Maximum lterations | Total number of optimization F.'XGd to ensure convergence
. . 100 without excessive computation
(T) iterations time

To optimise the performance of the algorithms, the
hyperparameters of the IGA (Improved Genetic
Algorithm) and APSO (Adaptive Particle Swarm
Optimisation) algorithms were finely tuned in our
experiments. the population size of the IGA was set to 50
in order to balance the diversity and computational
efficiency. The crossover rate was set between 0.8 and
0.95 to promote gene exchange between individuals, and
the mutation rate was set between 0.05 and 0.15 to
introduce small random perturbations to avoid premature
convergence. The crowding distance factor was adjusted
between 0.5 and 1.5 to maintain the diversity of the
Pareto front in the multi-objective optimisation, and the
particle population size was set to 30 for APSO, also
taking into account the computational cost and diversity.
The inertia weights are adaptively adjusted according to
Eq. 11, aiming to balance early exploration and later
exploitation in the optimisation process. The acceleration
constants ¢; and ¢, are dynamically adjusted to balance
the effects of individual best (local search) and global
best (global search). These parameters are fine-tuned by
preliminary experiments to ensure convergence while
avoiding falling into local optima. For example, adaptive
strategies, such as update rules for inertia weights, enable
the framework to respond to changes in the dynamic
environment in real time. The above parameter settings
ensure the reproducibility and transparency of the
framework implementation.

To clarify the integration of Fuzzy Logic, Improved
Genetic Algorithm (IGA), and Adaptive Particle Swarm
Optimization (APSO), we propose a hierarchical-parallel
fusion mechanism (Figure 2). This design ensures joint
optimization while preserving each algorithm's
specialized role. Below is the detailed workflow:

(1) Hierarchical Structure

Layer 1 (Real-Time Control - Fuzzy Logic):

Handles low-latency adjustments (e.g., lighting
brightness) using predefined fuzzy rules. Inputs (e.g.,
crowd density) are fuzzified, processed via rule
activation, and defuzzified into immediate control
commands.

Output: Baseline parameters for IGA/APSO (e.g.,
target energy thresholds).

Layer 2 (Mid-Term Optimization - IGA):

Operates at S-minute intervals to  optimize
multi-objective landscape layouts (energy, aesthetics,
functionality). Uses non-dominated sorting and crowding
distance to evolve Pareto-optimal solutions.

Output: Candidate configurations
refinement.

Layer 3 (Dynamic Adaptation - APSO):

Continuously fine-tunes IGA outputs using real-time
spatio-temporal data (e.g., weather changes). Adaptive
inertia weights (w(t)) and acceleration constants (ci(t),
c2(t)) balance exploration-exploitation.

Output: Final control commands (e.g., irrigation
schedules).

(2) Parallel Feedback Loops

Data Synchronization: Spatio-temporal data fusion
aligns inputs across layers. Edge nodes process Layer 1;
cloud clusters handle Layers 2-3.

Joint Fitness Evaluation: A unified fitness function
(Equation 5) evaluates solutions across all layers,
weighted by real-time priorities (e.g., energy savings
during peak demand).

(3) Pseudocode: Hybrid Optimization Cycle
def hybrid_optimization_cycle(sensor_data):

# Layer 1: Fuzzy Logic (Real-Time)

fuzzy output =
fuzzy controller(sensor data.crowd _density)

baseline params = defuzzify(fuzzy output)

for APSO

# Layer 2: IGA (Mid-Term)
if time_interval % Smin == 0:
iga_population =
initialize iga(baseline params)
pareto_front = iga optimize(iga population,
fitness_function)

# Layer 3: APSO (Continuous)

apso_particles =
initialize from_pareto(pareto_front)

optimized_solution = apso_adapt(apso_particles,
sensor_data)

return execute_control(optimized_solution)
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Figure 2: Hybrid fusion mechanism

2.3 Dynamic data-driven strategies
2.3.1 Real-time integration of spatio-temporal data

The goal of spatio-temporal data integration is to
unify data from different data sources (e.g., sensors,
networks, APIs, etc.) to ensure that the data are
spatio-temporally consistent and can be updated in real
time. Spatio-temporal data integration should not only
consider the real-time nature of the data, but also deal
with the heterogeneity, noise and missing value problems
in the data.

(1) Spatio-temporal data fusion methods

Spatio-temporal data fusion aims to align data from
multiple sources in temporal and spatial dimensions. It is
assumed that there are multiple data sources
D,D,,...,D, ,where each data source D, Includes

timestamp t, and space coordinates (Xi , yi) , Its data
model is:

D, :{(ti'xilyi'vi )} (14)

included among these v, as a data source D, the

observations in represent observations at a particular time
and spatial location.

In order to fuse multiple data sources, we normalise
the spatio-temporal data using temporal window At and
spatial window As. Setting the spatio-temporal weight

w, for each data source, the combined data D, can

be expressed as:
Drusea (1. X,Y) = D W, (8%, ) D; (t,x, ) (15)
i=1

Among them: W (t,x,y) It's a data source D,

point in time (t, X, y) The weights can be dynamically

adjusted according to the reliability of the data source,
the frequency of wupdates, and other factors.

Dyysea (1 X, ) s the result of the fused data.

(2) Spatio-temporal data alignment

The purpose of spatio-temporal data alignment is to
ensure the consistency of different data sources in time
and space. In practical applications, data usually have the
problem of misaligned timestamps and misaligned spatial
locations. To solve this problem, we can use interpolation

methods to align time and space.
Time alignment: assuming two data sources D,

respond in singing D, The timestamps are respectively
t, respond in singing t,, included among these t #t,.
We can use linear interpolation to align time:
(t—t) -
D, (t)=D,(t,)+7—> '(Dz (t,)-D, (t2)> (16)
(t-t)
Among them. t, respond in singing t,D, Adjacent
timestamps in the
Spatial alignment: for spatial inconsistencies, spatial

coordinates can be aligned using spatial interpolation
methods (e.g. Kriging interpolation).

2.3.2 Spatio-temporal feature extraction methods

(1) Time-based feature extraction

Time-based feature extraction aims to capture the
dynamic characteristics of data over time. Common
time-based features include trend, periodicity, volatility,
etc.

Trend analysis: Assuming that the data value at a
particular moment is D(t)D(t)D(t), its trend can be
represented by a first-order difference or fitting model.
For example, a linear regression model is used to fit the
trend of the data:

D(t)zat+b 17
where a is the slope of the trend change and b is the
intercept.

Periodicity analysis: Use Fourier Transform to
analyse the periodic components of the data. Set the time
series data as D(t), and the Fourier Transform formula is:

D(f)=["D(t)e*™"dt (18
Among them. D( f) is a representation of the data

in the frequency domain, and the periodic component can
be revealed by frequency domain analysis.

Volatility analysis: The volatility of the data is
calculated using the moving average method, and
volatility is usually expressed through the standard
deviation of the data:
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o(t)= [+ > (D(t)-4)

i=1

(19)

Among them. . is the mean value of the data. n is

the data window size.

(2) Spatial-based feature extraction

Spatial-based feature extraction involves extracting
spatial distributions and interrelationships from spatial
data. Common spatial features include density,
aggregation and spatial correlation.

Spatial density analysis: Spatial density usually
indicates the amount of data per unit area or per unit
volume in a given area. Assuming that the data at each

location in the space is D(x,Y;), Then the spatial

density p(x,y) This can be calculated by the weighted
average method:

p(¥)=4 2w -D(x.y) (@)

where A is the area of the region and w;is the

weight of each position.
Spatial Aggregation: Spatial aggregation measures
the degree to which objects of the same type are
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concentrated in space. Spatial autocorrelation analysis
can be used to calculate the degree of aggregation of
spatial data. Spatial autocorrelation indices are usually
expressed using Moran's I:

n n n _ _
<< 22%(D-D)(p,-D) @n
z_ W i=l =1

i=1. j=1 Y
Spatial correlation: Spatial correlation indicates the
degree of interaction between spatial data. The relevance
of spatial data can be analysed by calculating the local

autocorrelation of spatial data (LISA):

LISA = iw” .(D,-D)(D, -D)

(22)

3 Experimental and

verification

3.1 Experimental environment construction

In order to verify the effectiveness of the hybrid soft
computing framework, the simulated smart city
experimental platform is built, and its configuration is
shown in the following table:

design

Table 2: Configuration of the simulated smart city platform

Category Components

Technical Options/Parameters

Meteorological Data

Synthetic dataset (based on WRF meteorological model)

People flow data

SUMO + NetLogo Co-Simulation

Data Sources Traffic flow

SUMO Road Network Simulator

Energy consumption data

SUMO Energy Model (for traffic-related energy) +
NetLogo Agent-based Irrigation Model

Edge Computing Nodes

NVIDIA Jetson AGX Xavier x 4

Computing Cloud Computing Cluster

Kubernetes cluster (CPU: 32 cores, GPU: V100 x 2)

Resources Streaming Data Processing

Apache Kafka + Flink

Storage Systems

InfluxDB (temporal data) + PostGIS (spatial data)

Real-time Monitoring Panel

Grafana

GIS Visualisation Platform

ArcGIS Pro + 3D rendering engine

Visualisation Tools - -
User Interaction Simulator

Unity3D

Data Analysis Tools

Tableau + Python (Matplotlib)

The simulation of data sources uses the WRF model
to generate high-precision meteorological data to
simulate extreme scenarios such as typhoons and
droughts. In addition, the dynamic interaction between
people and traffic is generated through joint simulation of
SUMO and NetLogo to support the injection of
unexpected events (e.g., crowd surge during concert
dispersal). The computational resources are designed in a
hierarchical manner: edge nodes are responsible for
low-latency processing of real-time tasks (e.g., light
regulation) to avoid transmission delays in the cloud,
while the cloud handles computationally-intensive tasks
such as multi-objective optimisation of IGAs and
accelerates population evolution using GPUs. In terms of
the synergy of visualisation tools, Grafana is used to
monitor the real-time decisions of the algorithms (e.g.,
APSO parameter tuning process), while ArcGIS and
Unity3D are used to validate the reasonableness and

aesthetics of the landscape layout and to support the
evaluation from multiple perspectives.

In order to validate the representativeness of
modelled sensor data in reflecting real urban scenarios,
we conducted a calibration and comparison study. Our
work focused on modelling three key data types in an
urban environment: meteorological data, pedestrian flow
data and energy consumption data. Meteorological data
was generated using the WRF (Weather Research and
Forecasting) model to simulate temperature, humidity,
rainfall and wind patterns. Pedestrian flow data was
simulated using SUMO (Urban Traffic Simulation) for
traffic flow and NetLogo for pedestrian dynamics.
Energy consumption data was simulated using
EnergyPlus to model the building's energy use for
lighting and irrigation systems. To ensure the accuracy of
the simulations, we calibrated them against historical
datasets from Zhengzhou, China; WRF outputs were



180 Informatica 49 (2025) 171-188

compared to historical meteorological data provided by
the China Meteorological Administration (CMA), SUMO
and NetLogo simulations were validated against
pedestrian flow data collected during a public event in
the Zhengzhou City Plaza, and EnergyPlus simulations
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were compared to smart meter measurements taken in a
public park. smart meter measurements in a public park.

The simulated data were compared to real-world
observations using metrics such as Mean Absolute Error
(MAE) and Spatio-Temporal Dynamic Consistency. The
results are summarised in the table below:

Table 3: Data set validation

Data Type Validation Method MAE Alignment with Real Data
Meteorological Data Comparison with CMA historical records < 5% High alignment
Pedestrian Flow Data Comparison with public event data < 5% High alignment
Energy Consumption Data Comparison with smart meter data <10% | Moderate alignment

The simulation scenarios were carefully designed to
replicate key wurban dynamics, including ‘normal
scenarios” with smooth pedestrian flows and mild
weather, as well as ‘extreme weather scenarios’ with
reduced visibility requiring emergency adjustments (e.g.,
heavy rain), and ‘emergency scenarios’ with sudden

spikes in pedestrian density (e.g., concert break-ups). (e.g.

a concert break-up). The representativeness of these
simulated scenarios was verified by real-world events,
with pedestrian flow simulations capturing density spikes
with high fidelity, meteorological simulations closely
matching historical typhoon events, and energy
consumption patterns closely matching measured data
with only minor deviations due to simplifying
assumptions in the model. The strengths of the study are
that calibration with real-world data ensures that the
simulation matches the observed urban dynamics, and

the use of well-established simulation tools such as WREF,
SUMO and EnergyPlus enhances its credibility. However,
limitations are also seen in the fact that the simulation
scenarios may oversimplify the diversity of human
behaviour and the validation is mainly focused on
specific scenarios that may not be fully generalisable to
all urban environments.

To evaluate the performance and efficiency of the
edge-cloud architecture, we conducted benchmarks
comparing edge-only deployment and hybrid edge-cloud
deployment. The focus was on assessing speed-up in
processing time and energy savings achieved by
offloading specific components to edge nodes. The
results are summarized in the following table:

Table 4: Performance comparison between edge-only and hybrid edge-cloud deployments

. i . ) Improvement (Hybrid vs.
Metric Edge-Only Deployment Hybrid Edge-Cloud Deployment Edge-Only)
Processing Latency (ms) 320 110 65.6% reduction
Energy Consumption (W) 15.2 9.8 35.5% reduction
Throughput (tasks/sec) 25 45 80% increase

Hybrid edge-cloud deployments significantly reduce
processing latency compared to pure edge deployments.
This is attributed to offloading computationally intensive
tasks (e.g., multi-objective optimisation) to the cloud,
while the edge nodes handle low-latency real-time tasks
(e.g., lighting tuning). Energy savings in hybrid
deployments are achieved thanks to optimised resource
utilisation, with edge nodes processing only the
necessary computations, thus reducing redundant
processing. The hybrid architecture improves system
throughput by leveraging cloud resources for batch
processing and edge nodes for real-time decision making.
In terms of methodology, we constructed two benchmark
setups: a pure edge architecture, where all tasks are
handled by the edge nodes (NVIDIA Jetson AGX
Xavier), and a hybrid edge-cloud architecture, where the
edge nodes handle the real-time tasks while the cloud
(Kubernetes cluster with V100 GPUs) handles the
optimisation tasks. For both setups, we measured metrics

such as latency, energy consumption, and throughput
under the same workload.

3.2 Comparison benchmarking method

The experimental design includes three scenario
divisions: a normal scenario with smooth pedestrian flow
and mild meteorological conditions; an extreme weather
scenario with heavy rainfall leading to reduced visibility,
requiring emergency adjustments to lighting and
irrigation; and a contingency scenario that simulates the
dispersal of a concert triggering a surge of pedestrian
flow in a local area with a sudden increase in density of
200%. Comparison dimensions include: optimisation
capability (measured by energy consumption reduction
rate and landscape diversity index (Shannon entropy
calculation)), real-time (i.e., response latency time from
data input to control command issuance), and robustness
(user satisfaction under contingencies, assessed by
crowdsourcing score averages).
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Table 5: Hlustrative table for com
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parison of baseline methodologies

Benchmark Methods Core principles

Parameter settings

Population size: 50

aesthetics)

Traditional Genetic | Standard Genetic Algorithm, optimising Crossover rate: 0.8
Algorithm (GA only energy consumption objectives L
g (GA) y i P ) Mutation rate: 0.1

Rule base: static expert rules (no

Fuzzy  Logic  Control | Real-time adjustment of landscape | self-learning)

(FLC) parameters based on fuzzy rules only Defuzzification: Centre of gravity
method

Standard Particle Swarm | Fixed inertia weights (w=0.7), no adaptive | Number of particles: 30

(PSO) mechanism cmer=15

Classic ~ multi-objective  optimisation S
NSGA-II algorithm  (energy  consumption  + Population size: 50

Crossover rate: 0.9

Simple cascade of fuzzy rul

Fuzzy-PSO hybrid synergy mechanism)

PSO parameters same as standard

es and PSO (no settings

Fuzzy rule same as FLC

LLLECL L moisture thresholds

Binary decision-making based on soil

Threshold value: 0.3 (arbitrary unit)

To address scalability concerns for the Hybrid Soft
Computing Framework (HSCF), we analyze algorithmic
and infrastructural constraints when expanding from
limited city segments (e.g., plaza, single irrigation zone)
to full urban environments with 100+ regions. Key
constraints include latency scaling with increased sensor
density, computational complexity of multi-objective
optimization, and communication overhead in distributed
systems. To mitigate these challenges, we propose
strategies such as regional partitioning for distributed
processing, hierarchical optimization (local and global
tiers), adaptive resource allocation between edge and

Table 6: Definition of evaluation

cloud nodes, and model simplification using surrogate
methods. These approaches ensure the framework
remains efficient, responsive, and scalable for large-scale
smart city applications.

3.3 Evaluation metrics

In order to comprehensively evaluate the
performance of the hybrid soft computing framework,
the following four types of quantitative indicators are
defined, covering the dimensions of real-time, user
perception, energy efficiency and landscape diversity:

indicators and calculation method

Indicator Name Definition formula Data Sources
Time interval from data System logs (nanosecond
Response Delay entry to generation Of | Ty = Toupur — Tinput y g

control commands

timestamps)

User's subjective rating
of the landscape layout
(on a scale of 1-5)

User Satisfaction

1 N
S, = N;S‘ (s €{1234,5})

Crowdsourcing platform
guestionnaire + eye gaze
hotspot analysis

Percentage reduction in

Enerav consumption optimised energy E,ue —Eoy EnergyPlus simulation
gy P consumption compared | Ry == % x100% data + smart meter
reduction rate .
to  baseline  energy base measurements
consumption
Diversity of distribution n A . .
Landscape Diversity | of landscape elements | H=->p;Inp;| p, = — GIS  spatial ~ analysis
- oy & A (ArcGIS land use
Index (vegetation, amenities, =1 total

lighting)

classification)
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Response latency grading criteria are as follows:
excellent (<100ms) to meet real-time control needs, such
as dynamic adjustment of lighting; qualified (100ms~1s)
for tasks with acceptable short delays, such as sprinkler
scheduling; and unqualified (>1s) to support only offline
optimisation tasks, such as layout planning. The user
satisfaction calibration method includes subjective
scoring and objective assistance: subjective scoring
collects the public's visual comfort and convenience
ratings of the landscape through questionnaires; objective
assistance uses an eye-tracking device to track the user's
visual dwell time and quantify the uniformity of the
visual focal point distribution (uniformity = 1 - ¢ gaze
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time / p gaze time). For landscape diversity index
expansion, type weights were introduced and ecological
value coefficients wi were used (e.g., tree weight = 1.2,
lawn = 0.8), and spatial fragmentation was combined
with the Landscape Shape Index (LSI) to assess layout
coherence.

This study compares the Landscape Diversity Index
with established diversity measures used in landscape
ecology and urban planning, such as the Shannon
Diversity Index (SDI) and the Patch Richness Measure
(PRM). This comparison informs the proposed index and
highlights its strengths in capturing the compositional
and spatial heterogeneity of urban landscapes.

Table 7: Comparison with existing diversity metrics

Metric Definition

Strengths Limitations

Quantifies compositional
diversity based on species
richness and evenness.

Shannon Diversity Index
(sbl)

Widely used in ecology;
accounts for species
richness and distribution.

Does not capture spatial
arrangement or
configuration of patches.

Counts the number of
distinct patches in a
landscape, regardless of size
or distribution.

Patch Richness Metric
(PRM)

Simple to calculate;
emphasizes patch
richness.

Ignores patch size, shape,
and spatial distribution,
leading to potential bias.

Integrates compositional
diversity (entropy-based) and
spatial heterogeneity
(LSI-based).

Landscape Diversity Index
(LDI)

Captures both species
richness and spatial

configuration; reflects
ecological coherence.

More complex to compute;
requires detailed spatial
data.

In this experiment, to ensure the reliability and
reproducibility of the experimental results, each scenario
was run multiple times to account for variability. The
number of repetitions for each scenario is as follows:

Normal Scenario Experiment: This scenario consists
of smooth pedestrian flow and mild weather conditions
and is run 10 times to evaluate the performance of the
framework under typical urban conditions.

Extreme Weather Scenario Experiment: This
scenario simulates heavy rainfall and reduced visibility
and is run 12 times to evaluate the robustness of the
system under harsh environmental conditions.

Contingency Scenario Experiment: This scenario
simulates a concert dispersal event with a sudden 200%
increase in pedestrian density and is run 15 times to test
the framework's ability to adapt to an unexpected surge
in demand.

Benchmark Comparison Experiment: To ensure a
fair comparison between the Hybrid Soft Computing
Framework (HSCF) and traditional approaches (e.g.,
FLC, PSO, NSGA-II), each benchmark approach was
tested eight times under the same initial conditions.

In preliminary experiments, benchmark methods
such as traditional Genetic Algorithms (GA), NSGA-II
and fuzzy-PSO hybrid were evaluated in addition to
Fuzzy Logic Controller (FLC) and Particle Swarm
Optimisation (PSO). However, these methods exhibit
certain limitations that make them less competitive in
dynamic landscape generation tasks: while effective in
optimising a single energy consumption objective,
traditional GA is slow to converge and poorly adapted to

changes in dynamic scenarios such as pedestrian
densities, and most of them have a response time of more
than 2 seconds, which makes them unsuitable for
real-time applications. the NSGA-II algorithm, although
it improves its multi-objective optimisation capability
and can better Although the NSGA-II algorithm has
improved its multi-objective optimisation capability and
can better balance energy efficiency and landscape
aesthetics, its static characteristics prevent it from
responding to rapidly changing environmental conditions
such as extreme weather events. The hybrid fuzzy-PSO
approach, while improving the adaptability to some
extent, lacks a synergistic mechanism between the two
components, resulting in poor performance and a
reduction in energy consumption of only 12.5%, much
lower than that of the HSCF of 16.2%-22.7%. Given
these limitations, these methods were not included in the
main comparative analysis, and were replaced by FLC
and PSO, which are more representative of the trade-offs
between static rules and dynamic optimisation
Nevertheless, these results provide valuable insights into
understanding the relative strengths and weaknesses of
the different benchmarking methods, and highlight the
superiority of the HSCF in terms of real-time adaptability
and energy efficiency.

3.4 Analysis of results

(1) Real-time regulation effect of dynamic lighting
system in city square

Data collection included real-time pedestrian flow
density, light luminance and energy consumption data.
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Real-time footfall density was simulated by NetLogo to
generate 0-1 normalised density values (collected every 5
minutes) for the footfall dynamics in the plaza area.
Lighting brightness is recorded as control commands
(0-1 normalised values) output by the HSCF, FLC and
PSO algorithms. Energy consumption data is based on
the EnergyPlus model to calculate light power (watts/m2)
with Gaussian noise overlaid to simulate sensor error.
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Analysis methods include a time-series comparison plot,
which shows the trajectory of brightness adjustment of
different algorithms over a 2-hour period, reflecting
dynamic responsiveness, and an energy consumption
distribution plot, which compares the statistical
distribution of energy consumption (including median,
variance, and outliers) of each method via box-and-line
plots.

Dynamic Lighting Brightness Adjustment - Time Series Comparison
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Figure 2: Timing comparison diagram

The timing comparison diagram in Figure 2
illustrates the dynamic adjustment effects of the Hybrid
Soft Computing Framework (HSCF), Fuzzy Logic
Control (FLC), and Standard Particle Swarm
Optimisation (PSO) on the lighting system of a city
square over 120 minutes. HSCF (blue solid line) adjusts
luminance in real time based on crowd density, achieving
a peak luminance of 0.92 (£0.08) at 45 minutes during
high crowd density and reducing it to 0.35 (+£0.06) during
low-density periods, with a strong correlation (0.87,
p<0.01) to actual crowd density. FLC (green dashed line),
constrained by static rules, maintains a fixed luminance

of 0.6 for the first 60 minutes, which fails to meet the
target luminance of 0.8 during the nighttime peak (60—
120 minutes), leading to a 23% increase in user
complaints. PSO (orange dashed line), affected by
parameter stiffness, exhibits a significant response delay
(averaging 4.2 minutes) and maintains a high luminance
of 0.78 even after pedestrian flow declines past 80
minutes, resulting in unnecessary energy consumption.
This comparison highlights the superior real-time
adaptability and energy efficiency of HSCF over FLC
and PSO.

Lighting System Energy Consumption Distribution Comparison
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Figure 3: Energy consumption distribution

The energy distribution box plot further quantifies
the energy efficiency differences: the median energy
consumption of HSCF is 65.3 W/m2 (interquartile range
IQR = 17.5), which is significantly lower than that of

FLC (78.6 W/m2, IQR = 21.3) and PSO (74.8 W/m2,
IQR = 25.1), and there are no abnormally high energy
consumption values (HSCF max. value of 83.2 W/m2 vs.
FLC max. value of 101.5 W/m2). The experiments
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showed that HSCF reduced energy consumption by
16.2%-22.7% (p<0.05, t-test) compared with the
traditional method while ensuring real-time performance
(average response delay of 89ms), verifying the
comprehensive advantages of the hybrid algorithm.

(2) Adaptive decision-making for vegetation
irrigation systems under extreme weather conditions

For the irrigation system experiment, Threshold
Control is introduced as the baseline method for
comparison. Threshold Control operates by predefining
specific thresholds for soil moisture levels and activating
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the irrigation system when the moisture falls below the
threshold. This method relies on static rules similar to
Fuzzy Logic Control (FLC) but is tailored for irrigation
tasks. Unlike FLC, which adjusts control parameters
based on fuzzy rules and real-time inputs, Threshold
Control employs binary decision-making based on fixed
thresholds. This distinction makes Threshold Control a
suitable baseline for evaluating the dynamic adjustment
capabilities of the Hybrid Soft Computing Framework
(HSCF) in irrigation scenarios.

Irrigation Decision Comparison under Extreme Weather (Drought — Rain — Drought)
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Figure 4: Irrigation decision timing diagram

Comparison of the response strategies of the hybrid
framework (HSCF), conventional threshold control and
standard PSO in a 30-day extreme weather cycle (first 10
days of drought, middle 10 days of heavy rainfall, and
last 10 days of drought).The HSCF (blue solid line)
rapidly ramped up irrigation to 0.92m’/ha at the
beginning of the drought period (day 3) when soil
moisture dropped to 0.28, and stopped irrigation
immediately after sensing rainfall during the heavy
rainfall period (day 12) of 38 mm immediately stopped
irrigation (0.05 m%ha) and adjusted to 0.68 m3/ha as

needed during the drought recovery period (day 25);
threshold control (green dashed line) mechanically
implemented 0.2 m3/ha base irrigation even during the
heavy rainfall period due to static rule limitations,
resulting in excessively wet soil on day 15 (humidity of
0.81), which triggered root rots in 12% of the vegetation;
standard PSO (orange dashed line) fluctuated
dramatically in decision-making during sudden weather
changes (sudden drop in irrigation from 0.41 to 0.09
m?>/ha on days 10-11) due to a lag in parameter updating.

Irrigation System Water Resource Utilization Comparison
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Figure 5: Box line plot of water utilisation efficiency
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Figure 5 shows that the median water use efficiency
of HSCF reached 2.35 (unit moisture gain/irrigation
volume), which was 36.6% and 18.7% higher than the
threshold control (1.72) and PSO (1.98), respectively,
and had the lowest variance (IQR = 0.42 vs. 0.87/0.65),
which proved its ability of precise regulation. The
experimental data showed that HSCF saved 83.5% of
water during heavy rainfall (total irrigation 23.6 m*ha vs.
threshold control 143.2 m%ha), and the vegetation
survival rate was enhanced to 94.7% (79.3% in the
traditional method), which verified the ecological
adaptability of the dynamic mixing strategy.

(3) Visualisation Validity Analysis on Unity3D and
GIS Tools

The Unity3D wuser interaction simulator was
primarily designed to dynamically display and validate
the reasonableness and visual appeal of the landscape
layout, while allowing users to interact and thus assess
the usability of the landscape layout. In order to quantify
its performance, we examined the following metrics:
frame rate (FPS), which was maintained at an average of
60 FPS during the simulation, ensuring a smooth user
experience; usability score, which was evaluated through
a user questionnaire in three dimensions: ease of
interaction, visual comfort, and operation response speed
(out of 5), with an average score of 4.7; and interaction
response time, with an average response time of 80m
between the user's operation command and the system's
The average response time from user instruction to
system feedback is 80ms, which meets the requirement
of real-time interaction.

Figure 6: The effect of Unity3D landscape
simulation

ArcGIS is mainly responsible for spatial analysis in
this study, supporting spatial distribution optimisation
and ecological value assessment of landscape elements,
such as visual presentation of vegetation cover and
landscape diversity. To measure its performance, we
focused on the following quantitative indicators: spatial
analysis accuracy, by verifying the spatial consistency of
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the landscape layout, the result matches the actual data
by up to 95%; rendering efficiency, the 3D rendering
speed of ArcGIS reaches 15 frames/s, which is able to
generate the visual effect of the landscape distribution
quickly; and ecological value scoring, through the
quantitative analysis of the Landscape Diversity Index
(LDI) and the Ecological Value Coefficient (EVC).
Through the quantitative analysis of Landscape Diversity
Index (LDI) and Ecological Value Coefficient (EVC), the
optimised layout was verified to have improved
ecological benefits, with an average score of 36.6%.

Figure 7: ArcGIS landscape effects

4 Discussion

This study proposes a Hybrid Soft Computing
Framework (HSCF) that integrates fuzzy logic, Improved
Genetic Algorithm (IGA), and Adaptive Particle Swarm
Optimization (APSO) for real-time urban landscape
optimization. The experimental results demonstrate that
HSCF significantly outperforms traditional methods,
such as Fuzzy Logic Control (FLC) and Particle Swarm
Optimization (PSO), in terms of energy efficiency, water
use efficiency, and robustness. Below, we discuss the
quantitative  comparisons, algorithmic advantages,
system integration, and practical implications of HSCF.

4.1 Performance comparison and insights
Quantitative comparisons between HSCF and other
approaches reveal its superior performance. For example,
compared with FLC, HSCF achieves an energy
consumption reduction of 16.2%, while compared to
PSO, it achieves an improvement of 22.7%. Additionally,
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HSCF improves irrigation water use efficiency by 36.6%.
These results highlight the benefits of combining fuzzy
logic for real-time adjustments, IGA for mid-term
optimization, and APSO for dynamic adaptation. The
integration of these algorithms not only ensures real-time
responsiveness but also maintains high energy and
resource efficiency, which traditional methods fail to
achieve.

4.2 Algorithmic advantages

The performance gains of HSCF can be attributed to
its algorithmic design. For instance, APSO’s adaptive
inertia weight mechanism allows it to dynamically
balance exploration and exploitation during optimization.
In contrast, static PSO methods often suffer from
premature convergence and local optima trapping.
Similarly, IGA’s use of non-dominated sorting and
crowding distance ensures diverse Pareto-optimal
solutions for multi-objective optimization, whereas
traditional methods tend to prioritize single objectives.
These algorithmic advantages enable HSCF to adapt to
dynamic environments and optimize complex urban
systems more effectively.

4.3 System Integration and Edge Computing

HSCF’s system architecture emphasizes real-time
data processing and decision-making through edge
computing and GIS integration. By deploying fuzzy logic
at the edge layer, the framework ensures low-latency
adjustments based on sensor data (e.g., crowd density,
weather conditions). At the same time, cloud-based IGA
and APSO handle mid-term and long-term optimizations,
ensuring strategic adaptability. GIS integration further
enhances system performance by providing spatial
feedback for layout adjustments. This hierarchical and
parallel design improves scalability and supports efficient
resource allocation in complex urban environments.

4.4 Practical Implications and Future Directions

The proposed HSCF has significant implications for
practical deployment in smart cities. Its robustness to
extreme weather and unexpected events makes it suitable
for real-world applications where environmental
conditions are unpredictable. Additionally, its modular
design allows for integration with additional data sources,
such as UAV-derived 3D maps and blockchain systems
for data security. Future work will focus on optimizing
the framework’s scalability and exploring its application
in more complex urban management tasks, such as traffic
control and waste management. These advancements will
further enhance the framework’s adaptability and
applicability in real-world scenarios.

5 Conclusion

In this paper, a hybrid soft computing approach in
dynamic landscape generation for smart cities is
investigated and demonstrated to be significantly
effective in managing urban environments in real-time.
The proposed system architecture, which combines fuzzy
logic, Improved Genetic Algorithm (IGA) and Adaptive
Particle Swarm Optimisation (APSO) algorithm,
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dynamically adapts landscape elements, such as lighting
and irrigation systems, through real-time sensor data
inputs (e.g., weather, pedestrian flow, traffic, etc.).

Experimental validation results show that the
Hybrid Soft Computing Framework (HSCF) performs
well in optimising energy consumption and improving
user satisfaction compared to traditional methods. In
particular, HSCF outperforms traditional Fuzzy Logic
Control (FLC) and Particle Swarm Optimisation (PSO)
algorithms in terms of response speed, energy efficiency,
and robustness, especially under extreme weather and
unexpected events (e.g., crowd assembly).

Specifically, HSCF significantly reduces energy
consumption (16.2%-22.7%) and minimises response
delay while ensuring real-time decision-making
capability, demonstrating the combined benefits of this
hybrid algorithm. In addition, under extreme weather
conditions, the system's adaptive irrigation decision
improved water use efficiency by 36.6% compared to
threshold control, helping to achieve better ecological
adaptability.

The results show that the proposed hybrid soft
computing approach is not only efficient and adaptive,
but can provide a feasible solution for dynamic
management of smart cities. Future research can further
explore the scalability of the framework and integrate
more data sources to address a wider range of urban
management tasks.
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