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With the rapid development of smart cities, efficient and real-time urban landscape management has 

become an urgent research topic. This paper proposes a Hybrid Soft Computing Framework (HSCF) 

that combines Fuzzy Logic, Improved Genetic Algorithm (IGA), and Adaptive Particle Swarm 

Optimization (APSO) to dynamically optimize urban systems such as lighting and irrigation. By 

integrating heterogeneous sensor data (e.g., weather, pedestrian flow, and traffic conditions), the 

framework senses environmental changes and makes optimization decisions in real time.The Fuzzy 

Logic module handles low-latency adjustments, such as dynamically tuning lighting brightness based on 

crowd density, achieving response times of less than 100 ms. The IGA performs mid-term optimization 

of multi-objective landscape layouts (e.g., energy efficiency, aesthetics, and functionality) every 5 

minutes, evolving Pareto-optimal solutions through non-dominated sorting and crowding distance 

analysis with a population size of 50, crossover rate of 0.8–0.95, and mutation rate of 0.05–0.15. The 

APSO continuously refines these solutions using real-time spatio-temporal data, adaptively balancing 

exploration and exploitation through inertia weight adjustments (ranging from 0.4 to 0.9) and 

acceleration constants (c₁ = 1.2–1.8, c₂ = 1.2–2.0).Experimental results demonstrate that HSCF 

outperforms traditional methods (e.g., FLC and PSO), achieving 16.2%-22.7% energy consumption 

reduction, 36.6% water savings in irrigation systems, and maintaining stability under extreme weather 

and ±20% data noise. Key innovations include dynamic spatio-temporal data fusion, real-time 

decision-making, and joint fitness evaluation across layers. Future work will focus on scalability and 

integration of additional data sources (e.g., UAV-derived 3D maps) to address more complex urban 

management tasks. This framework provides a replicable, data-driven solution for adaptive smart city 

landscape management. 

Povzetek: 

 

1 Introduction 
With the rapid development of information 

technology and the continuous promotion of the smart 

city concept, urban management is facing unprecedented 

challenges. Smart city construction aims to optimise the 

allocation of urban resources, improve the efficiency of 

urban operation and enhance the quality of life of citizens 

through modern information technology. As an important 

part of the smart city, the dynamic adjustment and 

management of urban landscapes plays a crucial role in 

enhancing the quality of the urban environment, 

conserving resources, and promoting sustainable 

development. Traditional urban landscape management 

methods often rely on static rules and manual control, 

and cannot be flexibly adjusted according to the actual 

situation. 

Scholars have explored the synergistic innovation 

path of data-driven and intelligent algorithms through 

multidisciplinary crossover. Zhu et al.[1] took the lead in 

constructing a dynamic urban planning framework 

integrating hybrid artificial intelligence and big data. 

Their proposed coupled model of deep reinforcement  

 

learning and multi-objective optimisation provides 

real-time decision support for the dynamic configuration 

of landscape elements, but has not yet solved the 

complexity of high-dimensional data feature interactions. 

To address this limitation, Yu et al.[2] developed a 

multi-objective landscape planning model based on the 

NSGA-II algorithm, which achieves a Pareto-optimal 

solution for landscape aesthetic value and ecological 

benefits by integrating geospatial big data and ecological 

constraints, but its static optimisation characteristics are 

difficult to adapt to the needs of dynamic urban evolution. 

In this regard, Khan et al.[3] innovatively proposed a 

multi-scale modelling framework to temporally and 

spatially correlate macro urban form and micro landscape 

elements through hierarchical reinforcement learning, 

and the cross-scale feedback mechanism they constructed 

significantly enhanced the adaptive ability of the 

landscape system. Wang and Ma[4] further introduced 

digital twin technology into this field, and developed a 

collaborative energy-landscape digital twin platform, 

which can be used for the development of the landscape 

system through real-time data and ecological constraints, 
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and the energy-landscape collaboration. digital twin 

platform, which realizes the dynamic adaptation of 

renewable energy facilities and landscape layout through 

a real-time data stream-driven particle swarm 

optimization algorithm, but the network latency problem 

affects the response speed of the system. Ruan et al.[5], on 

the other hand, expanded the research boundaries from 

the dimension of social computing, and used a fuzzy 

cognitive map and a spatio-temporal clustering algorithm 

to analyze social media data streams, revealing the 

dynamic mapping relationship between public 

behavioural patterns and landscape Bibri[6] systematically 

demonstrates the theoretical support of urban computing 

technology for dynamic landscape planning, and 

proposes to embed online learning mechanism into the 

planning decision-making cycle, which is a theoretical 

framework that effectively solves the synergy problem of 

long-term and short-term planning objectives in 

traditional methods. Kuru[7] pioneers the introduction of 

UAV swarm intelligence technology, and the use of 

UAVs in the planning process. introduced the UAV 

swarm intelligence technology to achieve aerial dynamic 

reorganisation of landscape elements through a 

distributed swarm algorithm, and its proposed 3D spatial 

optimisation model breaks through the limitations of 

traditional 2D planning. Notably, the hybrid network 

security architecture constructed by Sengan et al.[8] 

provides an important guarantee for the data security of 

the dynamic landscape system, and the quantum 

encrypted data stream transmission protocol designed by 

them effectively guards against the risk of cyber-attacks 

during the real-time optimisation process. There is still 

room for improvement in existing research in terms of 

algorithm fusion, real-time response speed and 

human-computer collaboration mechanism, and in the 

future, the in-depth fusion of digital twin, swarm 

intelligence and blockchain technology needs to be 

strengthened in order to construct a more resilient and 

adaptive smart landscape generation system. 

 

Table 1: Comparison of related work 

Research

ers 
Method 

Application 

Domain 

Performance 

Metrics 
Limitations 

Zhu et 

al. 

Deep 

Reinforcement 

Learning + 

Multi-Objective 

Optimization 

Lighting, 

Landscape 

Configuration 

Energy reduction: 

12% 

Complexity of 

high-dimensional 

data interactions 

remains unresolved 

Yu et al. NSGA-II 

Landscape 

Aesthetic Value and 

Ecological Benefits 

Pareto-optimal 

solutions 

Static 

optimization, difficult 

to adapt to dynamic 

urban evolution 

Khan et 

al. 

Hierarchical 

Reinforcement 

Learning 

Macro Urban Form 

and Micro Landscape 

Elements 

Cross-scale 

feedback enhances 

system adaptability 

Lacks real-time 

data processing 

capabilities 

Wang 

and Ma 

Digital Twin + 

Particle Swarm 

Optimization 

Renewable Energy 

Integration 

Response time: 200 

ms 

Network latency 

affects system 

response speed 

Ruan et 

al. 

Fuzzy 

Cognitive Map + 

Spatio-Temporal 

Clustering 

Algorithm 

Social Media Data 

Analysis 

Reveals dynamic 

mapping between public 

behavior and landscape 

Not directly 

applied to real-world 

landscape 

optimization 

Bibri 

Hybrid Urban 

Computing 

Framework 

Dynamic 

Landscape Planning 

Supports embedding 

of online learning 

mechanisms 

Requires further 

validation in 

real-world scenarios 

Kuru 
UAV Swarm 

Intelligence 

3D Spatial 

Optimization 

Breaks through 

limitations of traditional 

2D planning 

High 

computational 

complexity, lacks 

real-time support 

 

The aim of this paper is to propose a hybrid soft 

computing framework (HSCF) for real-time dynamic 

urban landscape optimisation, including the regulation 

of lighting and irrigation systems, by combining fuzzy 

logic, Improved Genetic Algorithm (IGA) and 

Adaptive Particle Swarm Optimisation (APSO). Logic, 

IGA and APSO, can outperform traditional methods 

(e.g. Fuzzy Logic Control and Particle Swarm 

Optimisation) in terms of real-time data processing and 

dynamic optimisation; the hybrid framework has 

significant advantages in terms of energy-efficiency 

optimisation, and the HSCF is able to achieve higher 

energy savings than the existing studies, while ensuring 

the dynamic adaptability and robustness of the landscape 
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system. The system boundaries are defined as follows: 

the algorithmic part will be tested in a simulation 

environment to verify its effectiveness in dynamic data 

processing and optimisation performance, while the 

practical application will be limited to lighting and 

irrigation systems in urban landscapes, with real-time 

data (e.g., weather, foot traffic, traffic conditions, etc.) 

obtained through IoT sensors; for experimental 

conditions and reproducibility, all experiments are 

conducted under the same hardware and software 

conditions to ensure the reproducibility of the results, 

the experimental data include the data collected from 

real scenarios as well as the simulation-generated data 

to cover different environmental conditions (e.g., 

extreme weather and emergent conditions), and the 

parameter settings (e.g., the population size of the IGA, 

the inertia weights of the APSO, etc.) are finely tuned 

based on the pre-experiments in order to balance the 

exploratory and developmental capabilities. The HSCF 

framework proposed in this paper has the following 

innovations: the combination of real-time and dynamic 

optimisation, where the framework achieves real-time 

adjustment through fuzzy logic, and mid-term 

optimisation and dynamic adaptation through IGA and 

APSO, which effectively solves the problem of 

insufficient real-time responsiveness and dynamic 

adaptability in the existing researches; multi-objective 

optimisation functionality, where the framework is able to 

optimise multiple objectives (e.g., energy-efficiency, 

aesthetics, and functionality) at the same time and achieve 

global adaptive capability through the Joint adaptation 

assessment mechanism to achieve global optimisation; 

Data-driven strategy, the framework adopts a 

spatio-temporal data fusion approach to unify information 

from different data sources into a spatio-temporally 

consistent framework to improve data processing 

efficiency and optimisation accuracy.

2 Hybrid soft computing framework 

design 

2.1 System architecture 
Figure 1 visualises the architecture of the hybrid 

soft computing framework, which consists of three main 

layers: the data layer, the processing layer and the output 

layer. The data layer is responsible for collecting and 

pre-processing data, where IoT sensors collect 

information such as weather data, people flow and traffic 

conditions. The data is preprocessed to align 

spatio-temporal data and filter noise. The processing 

layer focuses on core algorithms, including fuzzy logic 

controllers, Improved Genetic Algorithm (IGA) and 

Adaptive Particle Swarm Optimisation (APSO). These 

algorithms work together through a hybrid optimisation 

engine to dynamically tune the solution. The output layer 

uses the optimised solution to generate visualisations 

through platforms such as GIS and Unity3D, as well as 

issuing control commands for systems such as lighting 

and irrigation. The diagram illustrates the flow of data 

between these layers, from data collection and 

pre-processing to optimisation and control command 

issuance, where feedback loops ensure continuous 

adjustment of the system. This structure demonstrates the 

system's ability to handle real-time data processing, 

decision-making and control in a dynamic and 

collaborative manner, with each layer playing a specific 

role in the overall operation of the framework. 

 

 

Figure 1: System architecture diagram 
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2.2 Core algorithm fusion mechanism 
2.2.1 Fuzzy logic 

First of all, it is necessary to define the affiliation 

function for the input variables. Here, we take ‘crowd 

density’ (D) and ‘light brightness’ (L) as examples to 

illustrate the definition of the affiliation function[9]. 

The affiliation function of the crowd density D: 

Assumptions  0,1D , denotes the flow density from 

‘low’ to ‘high’. 

We define the affiliation function of D as follows: 

( )
1 , 0 0.5

2 , 0.5 1
D

D D
D

D D


−  
= 

−  
(1) 

Where ( )D D  represents the degree of affiliation 

of the crowd density D, indicating the degree to which 

the value belongs to a ‘low’ or ‘high’ crowd density. 

The affiliation function of light brightness L: 

Assume that  0,1L , represents the light brightness 

from ‘dark’ to ‘bright’. Define the affiliation function of 

L as: 

( )
1 , 0 0.5

2 , 0.5 1
L

L L
L

L L


−  
= 

−  
  (2) 

Where, ( )L L  represents the light brightness L  

affiliation, reflecting the light brightness belongs to the 

degree of ‘dark’ or ‘bright’. 

Fuzzy rules produce fuzzy outputs based on fuzzy 

relationships between input variables[10-11]. Here, we 

assume that the control objective is to adjust the light 

luminance L based on the crowd density D and construct 

the fuzzy rule set. For example: 

Rule 1: If crowd density is high (D high), then light 

luminance is high (L high). 

Rule 2: If the crowd density is low (D low), the light 

luminance is low (L low). 

According to this rule, we can use the following 

fuzzy language to express: 

High crowd density: D is ‘high’. 

Low crowd density: D is ‘low’. 

High brightness: L is ‘high’. 

Low brightness: L is ‘low’. 

The fuzzy inference process includes rule activation, 

fuzzy synthesis and defuzzification. The following are 

the details of the process: 

(1) Rule activation 

Based on the input variables D and the affiliation 

function, we activate the fuzzy rule using the ‘minimum 

value method’. For example, if the crowd density D = 0.7 

(higher crowd density) and the light luminance L = 0.3 

(lower luminance), the rule activation value is calculated 

in the following way: 

( ) ( )( ) ( )Rule1Activationvalue.min 0.7 , 0.3 min 0.3,0.7 0.3D L  = =  

( ) ( )( ) ( )Rule2Activation value.min 0.7 , 0.3 min 0.3,0.7 0.3D L  = =  

 

(2) Fuzzy Synthesis 

Through rule activation, we can synthesise the 

outputs of multiple rules together. Assuming that there 

are multiple fuzzy rules producing results, we use the 

‘maximum value method’ to synthesise the output of 

each rule. The result of each rule is multiplied by the 

activation value to produce the final fuzzy output[12]. 

Assume that the output of the rule is an affiliation 

function of the brightness of the light L. The output of 

the synthesised rule will be a function of the brightness 

of the light. The synthesised output has the following 

affiliation function: 

( ) ( ) ( )( )
final rule1 rule 2

max ,L L LL L L  =     (3) 

where ( )
finalL L  and ( )

rule 2L L  are outputs 

activated by rules. 

(3) Defuzzification 

The defuzzification process converts fuzzy values 

into actual outputs. The most commonly used 

defuzzification method is the ‘centre of gravity method’: 

( )

( )

1

0

output 1

0

L

L

L L dL
L

L dL






=



            (4) 

Where 
outputL  is the output light luminance value 

and ( )L L  is the output affiliation function after fuzzy 

synthesis. 

The centre of gravity method calculates the ‘centre 

of gravity’ of the output affiliation function to get the 

final light brightness value. Through this process, the 

fuzzy logic can adjust the light brightness in real time 

according to the fuzzy relationship between the crowd 

density and the current light brightness[13-14]. 

Assume that the landscape layout consists of n 

regions, and the configuration of each region is 

represented by ( )1 2, , ,i i i imx x x x=  , where 
ijx  is the 

jth decision variable for the ith region. The objective 

function can be expressed as: 

( ) ( ) ( ) ( )1 2 3f x w E x w A x w F x= + +   (5) 

Among them: ( )E x  Indicates energy consumption, 

reflecting the energy consumption required in each area 

of the layout. 

( )A x Indicates aesthetics and measures the visual 

impact of the layout. 

( )F x Indicates functionality and measures the 

efficiency and ease of use of the layout. 

1 2 3, ,w w w weighting factors for energy consumption, 

aesthetics and functionality, respectively. 
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Fuzzy logic and the multi-objective function f(x) 

serve distinct yet complementary roles in the Hybrid Soft 

Computing Framework (HSCF). Here’s a concise 

explanation of their integration: 

Role of Fuzzy Logic 

Fuzzy logic is employed for real-time adjustments, 

such as dynamically tuning light luminance based on 

crowd density. It processes sensor data using membership 

functions and fuzzy rules to generate immediate control 

outputs. For example: 

Rule 1: If crowd density is high, then light 

luminance is high. 

Rule 2: If crowd density is low, then light luminance 

is low. These rules are applied through fuzzy inference, 

including rule activation, fuzzy synthesis, and 

defuzzification (e.g., centre of gravity method) to 

produce precise control commands. 

Role of Multi-Objective Function f(x) 

The function f(x) is designed for broader landscape 

layout optimization, considering objectives such as 

energy consumption, aesthetics, and functionality. It is 

optimized using Improved Genetic Algorithm (IGA) and 

Adaptive Particle Swarm Optimization (APSO) for 

long-term strategic planning. 

Integration Mechanism 

Fuzzy logic and f(x) are integrated through: 

Dynamic Inputs: Real-time outputs from fuzzy logic 

(e.g., light adjustments) are fed into f(x) as dynamic 

inputs for optimization. 

Feedback Loop: Optimization results from f(x) 

refine fuzzy rules, improving long-term decision-making. 

Together, they balance real-time responsiveness with 

strategic optimization, ensuring efficient and adaptive 

landscape management. 

 

2.2.2 Improved genetic algorithm 

The basic process of the genetic algorithm includes 

initialising the population, fitness assessment, selection, 

crossover, mutation and updating the population. Each 

step is described in detail below[15]. 

The initialisation population contains N individuals, 

each of which is a potential landscape layout scheme. 

The genes of each individual consist of multiple decision 

variables (e.g., facility type, location, etc.). The 

initialisation of the population is randomly generated to 

ensure diversity in the exploration space[16]. 

Assuming that each decision variable ,ij ij ijx a b    . 

Then the process of initialising an individual can be 

represented as: 
( ) ( ) ( )rand
k

ij ij ij ijx a b a= + −           (6) 

Among them. ( )rand is a function that generates 

random numbers in the interval [0, 1], k is the kth 

individual, and 
ija  and 

ijb  are the minimum and 

maximum values of the decision variable 
ijx , 

respectively. 

The fitness assessment determines the merit of each 

individual by calculating its objective function value. For 

multi-objective optimisation problems, non-dominated 

ordering and crowding calculations are commonly used 

to assess fitness. 

For each individual 
kx , its ‘dominance relation’ in 

the multi-objective space is calculated[17]. An individual 

is said to be dominated by 
ix  if its objective function 

value is not inferior to that of individual 
jx  on all 

objectives and is superior to 
jx  on at least one 

objective. 

By sorting all individuals in a non-domination order, 

we can obtain the rank of each individual (Pareto Front). 

Crowding is used to measure how sparse an 

individual is in the target space. Assuming that the 

crowding degree of individual 
kx  in the target space is 

( )kC x , it is calculated as: 

( )
( ) ( )

( ) ( )

1 1

, ,

1 max min

i iM
k m k m

k i i
m

f f
C x

f f

+ −

=

 −
=  

 − 
         (7) 

where ( )
,

i

k mf  is the target value of individual 
kx  on 

the mth target, 
( )

max

i
f  and 

( )
min

i
f  are the maximum and 

minimum values of that target in the whole population, 

respectively, and M is the number of targets. 

The selection operation determines which 

individuals will move on to the next generation. In 

multi-objective optimisation, we usually use tournament 

selection or selection based on crowding. 

Tournament selection: a number of individuals are 

randomly selected to compete and select the more 

adapted individuals to enter the next generation[18-19]. 

Crowding-based selection: individuals with lower 

crowding are selected to maintain the diversity of the 

population. 

Crossover operations exchange the genes of two 

parent individuals to generate new offspring individuals. 

Crossover operations usually use single-point crossover 

or multipoint crossover to ensure that the offspring 

inherits the best traits of the parent. 

Assuming parent individuals ( )1 11 12 1, , , mx x x x=   

and ( )2 21 22 2, , , mx x x x=  , the crossover operation 

generates offspring individuals '

1x  and '

2x : 

( )'

1 11 12 1 2, 1 2, , , , , ,k k mx x x x x x+=        (8) 

( )'

2 21 22 2 1, 1 1, , , , , ,k k mx x x x x x+=        (9) 

Where  k  is the crossover point. 

The mutation operation avoids the algorithm from 

falling into a local optimal solution by introducing new 

genetic information by making small random changes to 

the genes of an individual[20-21]. Suppose a gene 
ijx  is 

mutated and its mutation operation is: 
( ) ( ) ( )rand
new

ij ij ij ijx x b a= +   −    (10) 

where   is the magnitude of variation and 

( )rand  is the random number. 

 

2.2.3 Adaptive particle swarm 
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The inertia weight w controls the balance between 

the particle's current velocity and the previous velocity. 

In the adaptive particle swarm algorithm, the inertia 

weight w(t) decreases gradually with the increase of 

iteration number, which helps the particles to maintain a 

large search range at the initial stage to avoid falling into 

the local optimal solution[22-24]; and decreases gradually 

at the later stage to enhance the local search ability of the 

particles. The adaptive inertia weight update formula is: 

( )
( )max min

max

w w
w t w t

T

−
= −         (11) 

where 
maxw  is the initial inertia weight; 

minw  is 

the minimum inertia weight; T  is the maximum 

number of iterations; and t  is the current number of 

iterations. 

In adaptive particle swarm algorithms, 
1c and 

2c  

can be dynamically adjusted to enhance the exploration 

or exploitation capabilities of the algorithm based on the 

performance of the current optimisation process. 

Typically, 
1c  and 

2c  are updated as follows: 

( )
( )1max 1min

1 1max

c c
c t c t

T

−
= −       (12) 

( )
( )2max 2min

2 2max

c c
c t c t

T

−
= −       (13)   

Where: 
1maxc  and 

2maxc  are the maximum values 

of the acceleration constant, respectively; 
1minc  and 

2minc  are the minimum values of the acceleration 

constant, respectively; t is the maximum number of 

iterations; t is the current number of iterations. 

In the initial stage, the acceleration constant is larger 

to allow the particles to search more strongly towards the 

individual optimal position and the global optimal 

position; while in the later stage, the acceleration 

constant is gradually reduced as the optimisation 

progresses in order to improve the local search 

capability[25]. 

The basic process of adaptive particle swarm 

optimisation is as follows[26-27]: 

Initialising the particle swarm x i
 and speed vi

, 

and randomly set 
idp  and 

dg . 

Calculate the fitness value for each particle ( )x if . 

Update the individual optimal position according to 

the fitness value 
idp  and global optimum position 

dg . 

Update the velocity and position of the particles, 

using the update equation above. 

Adjust inertia weights based on real-time feedback 

( )w t  and the acceleration constant ( ) ( )1 2,c t c t . 

Check if the stopping condition (e.g. maximum 

number of iterations or convergence of the objective 

function) is met. 

If the stopping condition is not met, return to step 3. 

2.2.4 Hybrid Optimization Engine: Fusion 

Mechanism 
To address the parameter tuning details for the 

Improved Genetic Algorithm (IGA) and Adaptive 

Particle Swarm Optimization (APSO) used in the 

experiments, the following table summarizes all key 

hyperparameters and their respective ranges or fixed 

values. These parameters are carefully chosen to balance 

exploration, exploitation, and convergence during the 

optimization process

 

Table 1: Parameter range analysis 

Parameter Description Value / Range Notes 

IGA Hyperparameters 

Population Size (N) 
Number of individuals in the 

population 
50 

Fixed value for consistency across 

experiments. 

Crossover Rate (CR) 
Probability of crossover 

between parent individuals 
[0.8, 0.95] 

Tuned to encourage genetic 

diversity while promoting 

convergence. 

Mutation Rate (MR) 
Probability of mutation in an 

individual 
[0.05, 0.15] 

Adjusted to avoid premature 

convergence and maintain 

population diversity. 

Mutation Delta (Δ) 
Magnitude of random mutation 

applied to genes 
[0.1, 0.3] 

Represents the range of permissible 

changes during mutation. 

Selection Method 

Method for selecting 

individuals for the next 

generation 

Tournament 

Selection 

Tournament size randomly selected 

from 3–5 individuals. 

Crowding Distance 

Factor 

Metric for maintaining 

diversity in multi-objective 

space 

[0.5, 1.5] 
Adjusted during Pareto Front 

ranking to preserve sparse regions. 

APSO Hyperparameters 

Swarm Size (S) 
Number of particles in the 

swarm 
30 

Fixed value for consistency across 

experiments. 
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Inertia Weight (w) 
Balances exploration and 

exploitation 
[0.4, 0.9] 

Adaptively updated during 

iterations (Equation 11). 

Minimum Inertia 

Weight (w_min) 

Lower bound for inertia 

weight 
0.4 

Helps maintain exploration in later 

stages. 

Maximum Inertia 

Weight (w_max) 
Upper bound for inertia weight 0.9 

Encourages global search in early 

iterations. 

Acceleration 

Constants 

Controls particle movement 

toward personal/global best 

c₁ = [1.2, 1.8], c₂ = 

[1.2, 2.0] 

Tuned to balance local and global 

search (Equations 12–13). 

Maximum Iterations 

(T) 

Total number of optimization 

iterations 
100 

Fixed to ensure convergence 

without excessive computation 

time. 

 
To optimise the performance of the algorithms, the 

hyperparameters of the IGA (Improved Genetic 

Algorithm) and APSO (Adaptive Particle Swarm 

Optimisation) algorithms were finely tuned in our 

experiments. the population size of the IGA was set to 50 

in order to balance the diversity and computational 

efficiency. The crossover rate was set between 0.8 and 

0.95 to promote gene exchange between individuals, and 

the mutation rate was set between 0.05 and 0.15 to 

introduce small random perturbations to avoid premature 

convergence. The crowding distance factor was adjusted 

between 0.5 and 1.5 to maintain the diversity of the 

Pareto front in the multi-objective optimisation, and the 

particle population size was set to 30 for APSO, also 

taking into account the computational cost and diversity. 

The inertia weights are adaptively adjusted according to 

Eq. 11, aiming to balance early exploration and later 

exploitation in the optimisation process. The acceleration 

constants c1 and c2 are dynamically adjusted to balance 

the effects of individual best (local search) and global 

best (global search). These parameters are fine-tuned by 

preliminary experiments to ensure convergence while 

avoiding falling into local optima. For example, adaptive 

strategies, such as update rules for inertia weights, enable 

the framework to respond to changes in the dynamic 

environment in real time. The above parameter settings 

ensure the reproducibility and transparency of the 

framework implementation. 
To clarify the integration of Fuzzy Logic, Improved 

Genetic Algorithm (IGA), and Adaptive Particle Swarm 

Optimization (APSO), we propose a hierarchical-parallel 

fusion mechanism (Figure 2). This design ensures joint 

optimization while preserving each algorithm's 

specialized role. Below is the detailed workflow: 
（1）Hierarchical Structure 

Layer 1 (Real-Time Control - Fuzzy Logic): 

Handles low-latency adjustments (e.g., lighting 

brightness) using predefined fuzzy rules. Inputs (e.g., 

crowd density) are fuzzified, processed via rule 

activation, and defuzzified into immediate control 

commands. 

Output: Baseline parameters for IGA/APSO (e.g., 

target energy thresholds). 

Layer 2 (Mid-Term Optimization - IGA): 

Operates at 5-minute intervals to optimize 

multi-objective landscape layouts (energy, aesthetics, 

functionality). Uses non-dominated sorting and crowding 

distance to evolve Pareto-optimal solutions. 

Output: Candidate configurations for APSO 

refinement. 

Layer 3 (Dynamic Adaptation - APSO): 

Continuously fine-tunes IGA outputs using real-time 

spatio-temporal data (e.g., weather changes). Adaptive 

inertia weights (w(t)) and acceleration constants (c₁(t), 

c₂(t)) balance exploration-exploitation. 

Output: Final control commands (e.g., irrigation 

schedules). 

（2）Parallel Feedback Loops 

Data Synchronization: Spatio-temporal data fusion  

aligns inputs across layers. Edge nodes process Layer 1; 

cloud clusters handle Layers 2–3. 

Joint Fitness Evaluation: A unified fitness function 

(Equation 5) evaluates solutions across all layers, 

weighted by real-time priorities (e.g., energy savings 

during peak demand). 

（3）Pseudocode: Hybrid Optimization Cycle 

def hybrid_optimization_cycle(sensor_data): 

    # Layer 1: Fuzzy Logic (Real-Time) 

    fuzzy_output = 

fuzzy_controller(sensor_data.crowd_density) 

    baseline_params = defuzzify(fuzzy_output) 

     

    # Layer 2: IGA (Mid-Term) 

    if time_interval % 5min == 0: 

        iga_population = 

initialize_iga(baseline_params) 

        pareto_front = iga_optimize(iga_population, 

fitness_function) 

     

    # Layer 3: APSO (Continuous) 

    apso_particles = 

initialize_from_pareto(pareto_front) 

    optimized_solution = apso_adapt(apso_particles, 

sensor_data) 

     

    return execute_control(optimized_solution)
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Figure 2: Hybrid fusion mechanism

2.3 Dynamic data-driven strategies 
2.3.1 Real-time integration of spatio-temporal data 

The goal of spatio-temporal data integration is to 

unify data from different data sources (e.g., sensors, 

networks, APIs, etc.) to ensure that the data are 

spatio-temporally consistent and can be updated in real 

time. Spatio-temporal data integration should not only 

consider the real-time nature of the data, but also deal 

with the heterogeneity, noise and missing value problems 

in the data. 

(1) Spatio-temporal data fusion methods 

Spatio-temporal data fusion aims to align data from 

multiple sources in temporal and spatial dimensions. It is 

assumed that there are multiple data sources 

1 2, , , mD D D ,where each data source 
iD  Includes 

timestamp
it and space coordinates ( ),i ix y , Its data 

model is: 

( ) , , ,i i i i iD t x y v=                (14) 

included among these 
iv  as a data source 

iD  the 

observations in represent observations at a particular time 

and spatial location. 

In order to fuse multiple data sources, we normalise 

the spatio-temporal data using temporal window t  and 

spatial window s . Setting the spatio-temporal weight 

iw  for each data source, the combined data 
fusedD  can 

be expressed as: 

( ) ( ) ( )fused

1

, , , , , ,
m

i i

i

D t x y w t x y D t x y
=

=  (15) 

Among them: ( ), ,iw t x y  It's a data source 
iD  

point in time ( ), ,t x y  The weights can be dynamically 

adjusted according to the reliability of the data source, 

the frequency of updates, and other factors. 

( )fused , ,D t x y  is the result of the fused data. 

(2) Spatio-temporal data alignment 

The purpose of spatio-temporal data alignment is to 

ensure the consistency of different data sources in time 

and space. In practical applications, data usually have the 

problem of misaligned timestamps and misaligned spatial 

locations. To solve this problem, we can use interpolation 

methods to align time and space. 

Time alignment: assuming two data sources 
1D  

respond in singing 
2  D  The timestamps are respectively 

1t  respond in singing 
2t , included among these 

1 2t t . 

We can use linear interpolation to align time: 

( ) ( )
( )

( )
( ) ( )( )1 2 '

2 1 2 2 2 2 2 2' '

1 2

t t
D t D t D t D t

t t

−
= +  −

−
(16) 

Among them. '

1t respond in singing '

2 2t D Adjacent 

timestamps in the 

Spatial alignment: for spatial inconsistencies, spatial 

coordinates can be aligned using spatial interpolation 

methods (e.g. Kriging interpolation). 

 

2.3.2 Spatio-temporal feature extraction methods 

(1) Time-based feature extraction 

Time-based feature extraction aims to capture the 

dynamic characteristics of data over time. Common 

time-based features include trend, periodicity, volatility, 

etc. 

Trend analysis: Assuming that the data value at a 

particular moment is D(t)D(t)D(t), its trend can be 

represented by a first-order difference or fitting model. 

For example, a linear regression model is used to fit the 

trend of the data: 

( )D t at b +              (17) 

where a is the slope of the trend change and b is the 

intercept. 

Periodicity analysis: Use Fourier Transform to 

analyse the periodic components of the data. Set the time 

series data as D(t), and the Fourier Transform formula is: 

( ) ( ) 2 iftD f D t e dt






−

−
=     (18) 

Among them. ( )D f  is a representation of the data 

in the frequency domain, and the periodic component can 

be revealed by frequency domain analysis. 

Volatility analysis: The volatility of the data is 

calculated using the moving average method, and 

volatility is usually expressed through the standard 

deviation of the data: 
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Among them.  is the mean value of the data. n is 

the data window size. 

(2) Spatial-based feature extraction 

Spatial-based feature extraction involves extracting 

spatial distributions and interrelationships from spatial 

data. Common spatial features include density, 

aggregation and spatial correlation. 

Spatial density analysis: Spatial density usually 

indicates the amount of data per unit area or per unit 

volume in a given area. Assuming that the data at each 

location in the space is ( ),i iD x y , Then the spatial 

density ( ),x y  This can be calculated by the weighted 

average method: 

( ) ( )
1

1
, ,

n

i i i

i

x y w D x y
A


=

=      (20) 

where A is the area of the region and 
iw is the 

weight of each position. 

Spatial Aggregation: Spatial aggregation measures 

the degree to which objects of the same type are 

concentrated in space. Spatial autocorrelation analysis 

can be used to calculate the degree of aggregation of 

spatial data. Spatial autocorrelation indices are usually 

expressed using Moran's I: 

( )( )
1 1

1 1

n n

ij i jn n
i j

iji j

n
I w D D D D

w = =
= =

= − −
 

 (21) 

Spatial correlation: Spatial correlation indicates the 

degree of interaction between spatial data. The relevance 

of spatial data can be analysed by calculating the local 

autocorrelation of spatial data (LISA): 

( )( )
1

n

i ij i j

j

LISA w D D D D
=

=  − −       (22) 

3 Experimental design and 

verification 

3.1 Experimental environment construction  
In order to verify the effectiveness of the hybrid soft 

computing framework, the simulated smart city 

experimental platform is built, and its configuration is 

shown in the following table: 

 

Table 2: Configuration of the simulated smart city platform 

Category Components Technical Options/Parameters 

Data Sources 

Meteorological Data Synthetic dataset (based on WRF meteorological model) 

People flow data SUMO + NetLogo Co-Simulation 

Traffic flow SUMO Road Network Simulator 

Energy consumption data 
SUMO Energy Model (for traffic-related energy) + 

NetLogo Agent-based Irrigation Model 

Computing 

Resources 

Edge Computing Nodes NVIDIA Jetson AGX Xavier × 4 

Cloud Computing Cluster Kubernetes cluster (CPU: 32 cores, GPU: V100 × 2) 

Streaming Data Processing Apache Kafka + Flink 

Storage Systems InfluxDB (temporal data) + PostGIS (spatial data) 

Visualisation Tools 

Real-time Monitoring Panel Grafana 

GIS Visualisation Platform ArcGIS Pro + 3D rendering engine 

User Interaction Simulator Unity3D 

Data Analysis Tools Tableau + Python (Matplotlib) 

 

The simulation of data sources uses the WRF model 

to generate high-precision meteorological data to 

simulate extreme scenarios such as typhoons and 

droughts. In addition, the dynamic interaction between 

people and traffic is generated through joint simulation of 

SUMO and NetLogo to support the injection of 

unexpected events (e.g., crowd surge during concert 

dispersal). The computational resources are designed in a 

hierarchical manner: edge nodes are responsible for 

low-latency processing of real-time tasks (e.g., light 

regulation) to avoid transmission delays in the cloud, 

while the cloud handles computationally-intensive tasks 

such as multi-objective optimisation of IGAs and 

accelerates population evolution using GPUs. In terms of 

the synergy of visualisation tools, Grafana is used to 

monitor the real-time decisions of the algorithms (e.g., 

APSO parameter tuning process), while ArcGIS and 

Unity3D are used to validate the reasonableness and 

aesthetics of the landscape layout and to support the 

evaluation from multiple perspectives. 

In order to validate the representativeness of 

modelled sensor data in reflecting real urban scenarios, 

we conducted a calibration and comparison study. Our 

work focused on modelling three key data types in an 

urban environment: meteorological data, pedestrian flow 

data and energy consumption data. Meteorological data 

was generated using the WRF (Weather Research and 

Forecasting) model to simulate temperature, humidity, 

rainfall and wind patterns. Pedestrian flow data was 

simulated using SUMO (Urban Traffic Simulation) for 

traffic flow and NetLogo for pedestrian dynamics. 

Energy consumption data was simulated using 

EnergyPlus to model the building's energy use for 

lighting and irrigation systems. To ensure the accuracy of 

the simulations, we calibrated them against historical 

datasets from Zhengzhou, China; WRF outputs were 
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compared to historical meteorological data provided by 

the China Meteorological Administration (CMA), SUMO 

and NetLogo simulations were validated against 

pedestrian flow data collected during a public event in 

the Zhengzhou City Plaza, and EnergyPlus simulations 

were compared to smart meter measurements taken in a 

public park. smart meter measurements in a public park. 

The simulated data were compared to real-world 

observations using metrics such as Mean Absolute Error 

(MAE) and Spatio-Temporal Dynamic Consistency. The 

results are summarised in the table below: 

 

Table 3: Data set validation 

Data Type Validation Method MAE Alignment with Real Data 

Meteorological Data Comparison with CMA historical records < 5% High alignment 

Pedestrian Flow Data Comparison with public event data < 5% High alignment 

Energy Consumption Data Comparison with smart meter data < 10% Moderate alignment 

 

The simulation scenarios were carefully designed to 

replicate key urban dynamics, including ‘normal 

scenarios’ with smooth pedestrian flows and mild 

weather, as well as ‘extreme weather scenarios’ with 

reduced visibility requiring emergency adjustments (e.g., 

heavy rain), and ‘emergency scenarios’ with sudden 

spikes in pedestrian density (e.g., concert break-ups). (e.g. 

a concert break-up). The representativeness of these 

simulated scenarios was verified by real-world events, 

with pedestrian flow simulations capturing density spikes 

with high fidelity, meteorological simulations closely 

matching historical typhoon events, and energy 

consumption patterns closely matching measured data 

with only minor deviations due to simplifying 

assumptions in the model. The strengths of the study are 

that calibration with real-world data ensures that the 

simulation matches the observed urban dynamics, and 

the use of well-established simulation tools such as WRF, 

SUMO and EnergyPlus enhances its credibility. However, 

limitations are also seen in the fact that the simulation 

scenarios may oversimplify the diversity of human 

behaviour and the validation is mainly focused on 

specific scenarios that may not be fully generalisable to 

all urban environments. 
To evaluate the performance and efficiency of the 

edge-cloud architecture, we conducted benchmarks 

comparing edge-only deployment and hybrid edge-cloud 

deployment. The focus was on assessing speed-up in 

processing time and energy savings achieved by 

offloading specific components to edge nodes. The 

results are summarized in the following table: 
 

 

Table 4: Performance comparison between edge-only and hybrid edge-cloud deployments 

Metric Edge-Only Deployment Hybrid Edge-Cloud Deployment 
Improvement (Hybrid vs. 

Edge-Only) 

Processing Latency (ms) 320 110 65.6% reduction 

Energy Consumption (W) 15.2 9.8 35.5% reduction 

Throughput (tasks/sec) 25 45 80% increase 

 

Hybrid edge-cloud deployments significantly reduce 

processing latency compared to pure edge deployments. 

This is attributed to offloading computationally intensive 

tasks (e.g., multi-objective optimisation) to the cloud, 

while the edge nodes handle low-latency real-time tasks 

(e.g., lighting tuning). Energy savings in hybrid 

deployments are achieved thanks to optimised resource 

utilisation, with edge nodes processing only the 

necessary computations, thus reducing redundant 

processing. The hybrid architecture improves system 

throughput by leveraging cloud resources for batch 

processing and edge nodes for real-time decision making. 

In terms of methodology, we constructed two benchmark 

setups: a pure edge architecture, where all tasks are 

handled by the edge nodes (NVIDIA Jetson AGX 

Xavier), and a hybrid edge-cloud architecture, where the 

edge nodes handle the real-time tasks while the cloud 

(Kubernetes cluster with V100 GPUs) handles the 

optimisation tasks. For both setups, we measured metrics 

such as latency, energy consumption, and throughput 

under the same workload. 

 

3.2 Comparison benchmarking method 
The experimental design includes three scenario 

divisions: a normal scenario with smooth pedestrian flow 

and mild meteorological conditions; an extreme weather 

scenario with heavy rainfall leading to reduced visibility, 

requiring emergency adjustments to lighting and 

irrigation; and a contingency scenario that simulates the 

dispersal of a concert triggering a surge of pedestrian 

flow in a local area with a sudden increase in density of 

200%. Comparison dimensions include: optimisation 

capability (measured by energy consumption reduction 

rate and landscape diversity index (Shannon entropy 

calculation)), real-time (i.e., response latency time from 

data input to control command issuance), and robustness 

(user satisfaction under contingencies, assessed by 

crowdsourcing score averages). 
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Table 5: Illustrative table for comparison of baseline methodologies 

Benchmark Methods Core principles Parameter settings 

Traditional Genetic 

Algorithm (GA) 

Standard Genetic Algorithm, optimising 

only energy consumption objectives 

Population size: 50 

Crossover rate: 0.8 

Mutation rate: 0.1 

Fuzzy Logic Control 

(FLC) 

Real-time adjustment of landscape 

parameters based on fuzzy rules only 

Rule base: static expert rules (no 

self-learning) 

Defuzzification: Centre of gravity 

method 

Standard Particle Swarm 

(PSO) 

Fixed inertia weights (w=0.7), no adaptive 

mechanism 

Number of particles: 30 

c₁=c₂=1.5 

NSGA-II 

Classic multi-objective optimisation 

algorithm (energy consumption + 

aesthetics) 

Population size: 50 

Crossover rate: 0.9 

Fuzzy-PSO hybrid 
Simple cascade of fuzzy rules and PSO (no 

synergy mechanism) 

PSO parameters same as standard 

settings 

Fuzzy rule same as FLC 

Threshold Control 
Binary decision-making based on soil 

moisture thresholds 
Threshold value: 0.3 (arbitrary unit) 

 

To address scalability concerns for the Hybrid Soft 

Computing Framework (HSCF), we analyze algorithmic 

and infrastructural constraints when expanding from 

limited city segments (e.g., plaza, single irrigation zone) 

to full urban environments with 100+ regions. Key 

constraints include latency scaling with increased sensor 

density, computational complexity of multi-objective 

optimization, and communication overhead in distributed 

systems. To mitigate these challenges, we propose 

strategies such as regional partitioning for distributed 

processing, hierarchical optimization (local and global 

tiers), adaptive resource allocation between edge and 

cloud nodes, and model simplification using surrogate 

methods. These approaches ensure the framework 

remains efficient, responsive, and scalable for large-scale 

smart city applications. 

 

3.3 Evaluation metrics  
In order to comprehensively evaluate the 

performance of the hybrid soft computing framework, 

the following four types of quantitative indicators are 

defined, covering the dimensions of real-time, user 

perception, energy efficiency and landscape diversity:

 

Table 6: Definition of evaluation indicators and calculation method 

Indicator Name Definition formula Data Sources 

Response Delay 

Time interval from data 

entry to generation of 

control commands 
delay output inputT T T= −  System logs (nanosecond 

timestamps) 

User Satisfaction 

User's subjective rating 

of the landscape layout 

(on a scale of 1-5) 

 ( )
N

user i i

i 1

1
S s s 1,2,3,4,5

N =

=   

 

Crowdsourcing platform 

questionnaire + eye gaze 

hotspot analysis 

Energy consumption 

reduction rate 

Percentage reduction in 

optimised energy 

consumption compared 

to baseline energy 

consumption 

base opt

energy

base

E E
R 100%

E

−
=   

EnergyPlus simulation 

data + smart meter 

measurements 

Landscape Diversity 

Index 

Diversity of distribution 

of landscape elements 

(vegetation, amenities, 

lighting) 

n
i

i i i

i 1 total

A
H p lnp p

A=

 
= − = 

 
  

 

GIS spatial analysis 

(ArcGIS land use 

classification) 
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Response latency grading criteria are as follows: 

excellent (<100ms) to meet real-time control needs, such 

as dynamic adjustment of lighting; qualified (100ms~1s) 

for tasks with acceptable short delays, such as sprinkler 

scheduling; and unqualified (>1s) to support only offline 

optimisation tasks, such as layout planning. The user 

satisfaction calibration method includes subjective 

scoring and objective assistance: subjective scoring 

collects the public's visual comfort and convenience 

ratings of the landscape through questionnaires; objective 

assistance uses an eye-tracking device to track the user's 

visual dwell time and quantify the uniformity of the 

visual focal point distribution (uniformity = 1 - σ gaze 

time / μ gaze time). For landscape diversity index 

expansion, type weights were introduced and ecological 

value coefficients wi were used (e.g., tree weight = 1.2, 

lawn = 0.8), and spatial fragmentation was combined 

with the Landscape Shape Index (LSI) to assess layout 

coherence. 

This study compares the Landscape Diversity Index 

with established diversity measures used in landscape 

ecology and urban planning, such as the Shannon 

Diversity Index (SDI) and the Patch Richness Measure 

(PRM). This comparison informs the proposed index and 

highlights its strengths in capturing the compositional 

and spatial heterogeneity of urban landscapes. 

 

Table 7: Comparison with existing diversity metrics 

Metric Definition Strengths Limitations 

Shannon Diversity Index 

(SDI) 

Quantifies compositional 

diversity based on species 

richness and evenness. 

Widely used in ecology; 

accounts for species 

richness and distribution. 

Does not capture spatial 

arrangement or 

configuration of patches. 

Patch Richness Metric 

(PRM) 

Counts the number of 

distinct patches in a 

landscape, regardless of size 

or distribution. 

Simple to calculate; 

emphasizes patch 

richness. 

Ignores patch size, shape, 

and spatial distribution, 

leading to potential bias. 

Landscape Diversity Index 

(LDI) 

Integrates compositional 

diversity (entropy-based) and 

spatial heterogeneity 

(LSI-based). 

Captures both species 

richness and spatial 

configuration; reflects 

ecological coherence. 

More complex to compute; 

requires detailed spatial 

data. 

 

In this experiment, to ensure the reliability and 

reproducibility of the experimental results, each scenario 

was run multiple times to account for variability. The 

number of repetitions for each scenario is as follows: 

Normal Scenario Experiment: This scenario consists 

of smooth pedestrian flow and mild weather conditions 

and is run 10 times to evaluate the performance of the 

framework under typical urban conditions. 

Extreme Weather Scenario Experiment: This 

scenario simulates heavy rainfall and reduced visibility 

and is run 12 times to evaluate the robustness of the 

system under harsh environmental conditions. 

Contingency Scenario Experiment: This scenario 

simulates a concert dispersal event with a sudden 200% 

increase in pedestrian density and is run 15 times to test 

the framework's ability to adapt to an unexpected surge 

in demand. 

Benchmark Comparison Experiment: To ensure a 

fair comparison between the Hybrid Soft Computing 

Framework (HSCF) and traditional approaches (e.g., 

FLC, PSO, NSGA-II), each benchmark approach was 

tested eight times under the same initial conditions. 

In preliminary experiments, benchmark methods 

such as traditional Genetic Algorithms (GA), NSGA-II 

and fuzzy-PSO hybrid were evaluated in addition to 

Fuzzy Logic Controller (FLC) and Particle Swarm 

Optimisation (PSO). However, these methods exhibit 

certain limitations that make them less competitive in 

dynamic landscape generation tasks: while effective in 

optimising a single energy consumption objective, 

traditional GA is slow to converge and poorly adapted to  

 

changes in dynamic scenarios such as pedestrian 

densities, and most of them have a response time of more 

than 2 seconds, which makes them unsuitable for 

real-time applications. the NSGA-II algorithm, although 

it improves its multi-objective optimisation capability 

and can better Although the NSGA-II algorithm has 

improved its multi-objective optimisation capability and 

can better balance energy efficiency and landscape 

aesthetics, its static characteristics prevent it from 

responding to rapidly changing environmental conditions 

such as extreme weather events. The hybrid fuzzy-PSO 

approach, while improving the adaptability to some 

extent, lacks a synergistic mechanism between the two 

components, resulting in poor performance and a 

reduction in energy consumption of only 12.5%, much 

lower than that of the HSCF of 16.2%-22.7%. Given 

these limitations, these methods were not included in the 

main comparative analysis, and were replaced by FLC 

and PSO, which are more representative of the trade-offs 

between static rules and dynamic optimisation 

Nevertheless, these results provide valuable insights into 

understanding the relative strengths and weaknesses of 

the different benchmarking methods, and highlight the 

superiority of the HSCF in terms of real-time adaptability 

and energy efficiency. 

 

3.4 Analysis of results 
(1) Real-time regulation effect of dynamic lighting 

system in city square 

Data collection included real-time pedestrian flow 

density, light luminance and energy consumption data. 
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Real-time footfall density was simulated by NetLogo to 

generate 0-1 normalised density values (collected every 5 

minutes) for the footfall dynamics in the plaza area. 

Lighting brightness is recorded as control commands 

(0-1 normalised values) output by the HSCF, FLC and 

PSO algorithms. Energy consumption data is based on 

the EnergyPlus model to calculate light power (watts/m2) 

with Gaussian noise overlaid to simulate sensor error. 

Analysis methods include a time-series comparison plot, 

which shows the trajectory of brightness adjustment of 

different algorithms over a 2-hour period, reflecting 

dynamic responsiveness, and an energy consumption 

distribution plot, which compares the statistical 

distribution of energy consumption (including median, 

variance, and outliers) of each method via box-and-line 

plots.

 

 
Figure 2: Timing comparison diagram 

 

The timing comparison diagram in Figure 2 

illustrates the dynamic adjustment effects of the Hybrid 

Soft Computing Framework (HSCF), Fuzzy Logic 

Control (FLC), and Standard Particle Swarm 

Optimisation (PSO) on the lighting system of a city 

square over 120 minutes. HSCF (blue solid line) adjusts 

luminance in real time based on crowd density, achieving 

a peak luminance of 0.92 (±0.08) at 45 minutes during 

high crowd density and reducing it to 0.35 (±0.06) during 

low-density periods, with a strong correlation (0.87, 

p<0.01) to actual crowd density. FLC (green dashed line), 

constrained by static rules, maintains a fixed luminance 

of 0.6 for the first 60 minutes, which fails to meet the 

target luminance of 0.8 during the nighttime peak (60–

120 minutes), leading to a 23% increase in user 

complaints. PSO (orange dashed line), affected by 

parameter stiffness, exhibits a significant response delay 

(averaging 4.2 minutes) and maintains a high luminance 

of 0.78 even after pedestrian flow declines past 80 

minutes, resulting in unnecessary energy consumption. 

This comparison highlights the superior real-time 

adaptability and energy efficiency of HSCF over FLC 

and PSO. 

 

 
Figure 3: Energy consumption distribution 

 

The energy distribution box plot further quantifies 

the energy efficiency differences: the median energy 

consumption of HSCF is 65.3 W/m2 (interquartile range 

IQR = 17.5), which is significantly lower than that of 

FLC (78.6 W/m2, IQR = 21.3) and PSO (74.8 W/m2, 

IQR = 25.1), and there are no abnormally high energy 

consumption values (HSCF max. value of 83.2 W/m2 vs. 

FLC max. value of 101.5 W/m2). The experiments 
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showed that HSCF reduced energy consumption by 

16.2%-22.7% (p<0.05, t-test) compared with the 

traditional method while ensuring real-time performance 

(average response delay of 89ms), verifying the 

comprehensive advantages of the hybrid algorithm. 

(2) Adaptive decision-making for vegetation 

irrigation systems under extreme weather conditions 

For the irrigation system experiment, Threshold 

Control is introduced as the baseline method for 

comparison. Threshold Control operates by predefining 

specific thresholds for soil moisture levels and activating 

the irrigation system when the moisture falls below the 

threshold. This method relies on static rules similar to 

Fuzzy Logic Control (FLC) but is tailored for irrigation 

tasks. Unlike FLC, which adjusts control parameters 

based on fuzzy rules and real-time inputs, Threshold 

Control employs binary decision-making based on fixed 

thresholds. This distinction makes Threshold Control a 

suitable baseline for evaluating the dynamic adjustment 

capabilities of the Hybrid Soft Computing Framework 

(HSCF) in irrigation scenarios.

 

 
Figure 4: Irrigation decision timing diagram 

 

Comparison of the response strategies of the hybrid 

framework (HSCF), conventional threshold control and 

standard PSO in a 30-day extreme weather cycle (first 10 

days of drought, middle 10 days of heavy rainfall, and 

last 10 days of drought).The HSCF (blue solid line) 

rapidly ramped up irrigation to 0.92m³/ha at the 

beginning of the drought period (day 3) when soil 

moisture dropped to 0.28, and stopped irrigation 

immediately after sensing rainfall during the heavy 

rainfall period (day 12) of 38 mm immediately stopped 

irrigation (0.05 m³/ha) and adjusted to 0.68 m³/ha as 

needed during the drought recovery period (day 25); 

threshold control (green dashed line) mechanically 

implemented 0.2 m³/ha base irrigation even during the 

heavy rainfall period due to static rule limitations, 

resulting in excessively wet soil on day 15 (humidity of 

0.81), which triggered root rots in 12% of the vegetation; 

standard PSO (orange dashed line) fluctuated 

dramatically in decision-making during sudden weather 

changes (sudden drop in irrigation from 0.41 to 0.09 

m³/ha on days 10-11) due to a lag in parameter updating. 

 

 
Figure 5: Box line plot of water utilisation efficiency 
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Figure 5 shows that the median water use efficiency 

of HSCF reached 2.35 (unit moisture gain/irrigation 

volume), which was 36.6% and 18.7% higher than the 

threshold control (1.72) and PSO (1.98), respectively, 

and had the lowest variance (IQR = 0.42 vs. 0.87/0.65), 

which proved its ability of precise regulation. The 

experimental data showed that HSCF saved 83.5% of 

water during heavy rainfall (total irrigation 23.6 m³/ha vs. 

threshold control 143.2 m³/ha), and the vegetation 

survival rate was enhanced to 94.7% (79.3% in the 

traditional method), which verified the ecological 

adaptability of the dynamic mixing strategy. 

(3) Visualisation Validity Analysis on Unity3D and 

GIS Tools 

The Unity3D user interaction simulator was 

primarily designed to dynamically display and validate 

the reasonableness and visual appeal of the landscape 

layout, while allowing users to interact and thus assess 

the usability of the landscape layout. In order to quantify 

its performance, we examined the following metrics: 

frame rate (FPS), which was maintained at an average of 

60 FPS during the simulation, ensuring a smooth user 

experience; usability score, which was evaluated through 

a user questionnaire in three dimensions: ease of 

interaction, visual comfort, and operation response speed 

(out of 5), with an average score of 4.7; and interaction 

response time, with an average response time of 80m 

between the user's operation command and the system's 

The average response time from user instruction to 

system feedback is 80ms, which meets the requirement 

of real-time interaction. 

 

Figure 6: The effect of Unity3D landscape 

simulation 

 

ArcGIS is mainly responsible for spatial analysis in 

this study, supporting spatial distribution optimisation 

and ecological value assessment of landscape elements, 

such as visual presentation of vegetation cover and 

landscape diversity. To measure its performance, we 

focused on the following quantitative indicators: spatial 

analysis accuracy, by verifying the spatial consistency of 

the landscape layout, the result matches the actual data 

by up to 95%; rendering efficiency, the 3D rendering 

speed of ArcGIS reaches 15 frames/s, which is able to 

generate the visual effect of the landscape distribution 

quickly; and ecological value scoring, through the 

quantitative analysis of the Landscape Diversity Index 

(LDI) and the Ecological Value Coefficient (EVC). 

Through the quantitative analysis of Landscape Diversity 

Index (LDI) and Ecological Value Coefficient (EVC), the 

optimised layout was verified to have improved 

ecological benefits, with an average score of 36.6%. 

 

Figure 7: ArcGIS landscape effects 

4 Discussion 
This study proposes a Hybrid Soft Computing 

Framework (HSCF) that integrates fuzzy logic, Improved 

Genetic Algorithm (IGA), and Adaptive Particle Swarm 

Optimization (APSO) for real-time urban landscape 

optimization. The experimental results demonstrate that 

HSCF significantly outperforms traditional methods, 

such as Fuzzy Logic Control (FLC) and Particle Swarm 

Optimization (PSO), in terms of energy efficiency, water 

use efficiency, and robustness. Below, we discuss the 

quantitative comparisons, algorithmic advantages, 

system integration, and practical implications of HSCF. 

 

4.1 Performance comparison and insights 
Quantitative comparisons between HSCF and other 

approaches reveal its superior performance. For example, 

compared with FLC, HSCF achieves an energy 

consumption reduction of 16.2%, while compared to 

PSO, it achieves an improvement of 22.7%. Additionally, 
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HSCF improves irrigation water use efficiency by 36.6%. 

These results highlight the benefits of combining fuzzy 

logic for real-time adjustments, IGA for mid-term 

optimization, and APSO for dynamic adaptation. The 

integration of these algorithms not only ensures real-time 

responsiveness but also maintains high energy and 

resource efficiency, which traditional methods fail to 

achieve. 

 

4.2 Algorithmic advantages 
The performance gains of HSCF can be attributed to 

its algorithmic design. For instance, APSO’s adaptive 

inertia weight mechanism allows it to dynamically 

balance exploration and exploitation during optimization. 

In contrast, static PSO methods often suffer from 

premature convergence and local optima trapping. 

Similarly, IGA’s use of non-dominated sorting and 

crowding distance ensures diverse Pareto-optimal 

solutions for multi-objective optimization, whereas 

traditional methods tend to prioritize single objectives. 

These algorithmic advantages enable HSCF to adapt to 

dynamic environments and optimize complex urban 

systems more effectively. 

4.3 System Integration and Edge Computing 

HSCF’s system architecture emphasizes real-time 

data processing and decision-making through edge 

computing and GIS integration. By deploying fuzzy logic 

at the edge layer, the framework ensures low-latency 

adjustments based on sensor data (e.g., crowd density, 

weather conditions). At the same time, cloud-based IGA 

and APSO handle mid-term and long-term optimizations, 

ensuring strategic adaptability. GIS integration further 

enhances system performance by providing spatial 

feedback for layout adjustments. This hierarchical and 

parallel design improves scalability and supports efficient 

resource allocation in complex urban environments. 

4.4 Practical Implications and Future Directions 

The proposed HSCF has significant implications for 

practical deployment in smart cities. Its robustness to 

extreme weather and unexpected events makes it suitable 

for real-world applications where environmental 

conditions are unpredictable. Additionally, its modular 

design allows for integration with additional data sources, 

such as UAV-derived 3D maps and blockchain systems 

for data security. Future work will focus on optimizing 

the framework’s scalability and exploring its application 

in more complex urban management tasks, such as traffic 

control and waste management. These advancements will 

further enhance the framework’s adaptability and 

applicability in real-world scenarios. 

5 Conclusion 
In this paper, a hybrid soft computing approach in 

dynamic landscape generation for smart cities is 

investigated and demonstrated to be significantly 

effective in managing urban environments in real-time. 

The proposed system architecture, which combines fuzzy 

logic, Improved Genetic Algorithm (IGA) and Adaptive 

Particle Swarm Optimisation (APSO) algorithm, 

dynamically adapts landscape elements, such as lighting 

and irrigation systems, through real-time sensor data 

inputs (e.g., weather, pedestrian flow, traffic, etc.). 

Experimental validation results show that the 

Hybrid Soft Computing Framework (HSCF) performs 

well in optimising energy consumption and improving 

user satisfaction compared to traditional methods. In 

particular, HSCF outperforms traditional Fuzzy Logic 

Control (FLC) and Particle Swarm Optimisation (PSO) 

algorithms in terms of response speed, energy efficiency, 

and robustness, especially under extreme weather and 

unexpected events (e.g., crowd assembly). 

Specifically, HSCF significantly reduces energy 

consumption (16.2%-22.7%) and minimises response 

delay while ensuring real-time decision-making 

capability, demonstrating the combined benefits of this 

hybrid algorithm. In addition, under extreme weather 

conditions, the system's adaptive irrigation decision 

improved water use efficiency by 36.6% compared to 

threshold control, helping to achieve better ecological 

adaptability. 

The results show that the proposed hybrid soft 

computing approach is not only efficient and adaptive, 

but can provide a feasible solution for dynamic 

management of smart cities. Future research can further 

explore the scalability of the framework and integrate 

more data sources to address a wider range of urban 

management tasks. 
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