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For carbon accounting and ecosystem monitoring, one must be able to correctly forecast biomass in 

tropical forests. The ability of Extra Trees to concurrently forecast biomass is investigated in this 

research. Estimated aboveground biomass (AGB), belowground biomass (BGB), and total biomass (TB) 

depend on 175 trees gathered from 27 Central Vietnamese sites. Among the predicting variables were tree 

structural measurements, site features, and categorical ecological markers. One-hot encoding categorical 

data, normalizing numerical characteristics, and removing missing values variables were among the 

preprocessing procedures. The dataset was split into training and testing sets (80/20) using a fixed 

random seed, and GridSearchCV revealed the best model hyperparameters. Utilizing a set random seed 

(80/20), the data was separated into training and testing groups; then GridSearchCV was used to find the 

best model parameters. The performance of ET at baseline was examined in light of linear regression, 

Long Short-Term Memory (LSTM), Bagging, and Gradient Boosting (GB). With an R² value of 0.9975 

and RMSE for ET of 0.9975, the score on the held-out test set was 4.89 which Bagging (R² = 0. 9948, 

RMSE = 7. 08) and linear regression were superior than LSTM (R² = 0. 9813, RMSE = 13. 41). 0. 9849, 

RMSE = 12. 06). These results support the greater accuracy and robustness of ET for biomass estimation, 

so emphasizing its importance for producing dependable Plans for forest carbon stock assessments and 

conservation. 

Povzetek: Študija preuči Extra Trees za sočasno napoved nadzemne, podzemne in skupne biomase 

tropskih gozdov iz meritev dreves in lokacijskih značilnosti ter pokaže, da ta ansambelski pristop dosega 

bolj robustne napovedi kot primerjalni modeli za potrebe ogljičnega knjigovodstva..  

 

1 Introduction 
Biomass prediction [1] is essential for an understanding of 

carbon storage and the general condition of tropical 

woodlands. Field data combined with allometric models—

which tend to focus on either aboveground or 

belowground biomass—had formerly been used to 

estimate biomass. Aboveground biomass, comprising 

trunks, branches, and leaves of trees, can be measured 

relatively more easily compared to the belowground 

biomass, which consists of roots and soil organic matter. 

However, since precise estimates of both components are 

important for complete carbon accounting and informed 

decisions regarding forest management and conservation, 

traditional methods fall short due to various limitations. 

This has led to a growing call for more integrated and 

reliable approaches [2], [3], [4], [5]. 

Recent advances in deep learning have improved the 

accuracy of biomass prediction in tropical forests. In our 

comparison, the deep model is an LSTM configured for 

multi-output regression, jointly predicting AGB, BGB, 

and TB. We include this sequential architecture to test 

whether deep representation capacity adds value beyond 

tree ensembles; however, given the cross-sectional nature  

 

of our features, LSTM serves as a stress-test rather than 

the natural inductive bias for these data. This approach 

enhances both the reliability and efficiency of biomass 

estimation. This approach offers an integrated view of 

forest biomass whereas the methodology enhances the 

dependability and accuracy of biomass estimation. The 

inclusion of the multi-output deep learning model into 

biomass prediction in this chapter represents a significant 

step forward in our ability to monitor and control Far more 

efficient tropical forests [6], [7], [8]. In recent years, the 

integration of advanced Machine Learning techniques, 

including deep learning methods, into ecological research 

has gained increasing attention. Indeed, a number of 

studies have so far explored the potential of deep learning 

models to achieve increases in the accuracy of biomass 

predictions from various forest ecosystems [9]. For 

example, the application of convolutional neural networks 

and recurrent neural networks has been explored to deal 

with spatial and temporal data, respectively, with the aim 

of enhancing biomass estimate accuracy from remote 

sensing data. Another equally attractive option includes 

multivariate models, which predict several interdependent 

variables simultaneously and have gained popularity in 

ecological studies by modeling more holistic interactions 
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within a complex forest ecosystem. For instance, Li et al. 

[10]illustrated that the integration of Landsat 8 and 

Sentinel-1A data using the XGBoost algorithm had better 

performance in estimating aboveground biomass for 

subtropical forests. This method outperformed traditional 

approaches and has the potential to reduce estimation 

errors. Sharma et al. [11] investigated UAV-based 

multispectral data and Machine Learning for the 

estimation of oat biomass. Their study showed promising 

correlations between derived vegetation indices and 

biomass at some locations; however, model accuracy 

varied greatly across sites. The study also underlined that 

airborne remote sensing is able to efficiently support 

biomass predictions, although model consistency and the 

integration of more biophysical parameters have to be 

considered in further studies. Zhang et al. [12] evaluated 

Machine Learning regression algorithms for forest 

aboveground biomass estimation from satellite data, 

finding that ensemble methods, particularly CatBoost, 

outperformed nonensemble methods across various 

sampling scenarios, emphasizing the need for improved 

estimation accuracy at extreme biomass levels in future 

research. Ma et al. [13] utilized airborne LiDAR data to 

assess forest aboveground biomass (AGB), revealing that 

certain LiDAR-derived features consistently ranked as 

sensitive indicators for estimating total and component 

AGB, with random forest showing superior performance 

compared to support vector regression. 

Furthermore, Li at al. [14] innovatively integrated 

random forest and least squares models to enhance forest 

biomass prediction accuracy, emphasizing the importance 

of canopy height, soil organic matter, and the red-edge 

chlorophyll vegetation index as critical variables for 

precise estimation of carbon storage in subtropical forests. 

In their research [3],  Huy et al. looked at how well multi-

output deep learning (MODL) models predicted biomass 

components in forests and discovered that Approaches 

covering a range of tropical forest types and 

environmental gradients produced considerably less 

mistakes than traditional methods. Machine learning 

algorithms, especially in support vector regression, 

performed better than conventional biomass predictions in 

Lebanon's cedar tree stands, according to a recent study 

[15] is quite important. elements of efficient forest 

management and carbon-bracketing techniques. The 

accuracy of RF models in estimating soil CO2 emissions 

from different restoration habitats was as Canteral et al. 

[16]  have shown. This shows their ongoing capacity to 

reduce the doubts about the dynamics of the carbon cycle 

[17]. Sesnie et al. showed how well ensemble Machine 

Learning models worked by using data from many 

satellite sensors that foretold tree biomass. Diversity 

indexes of seasonally dry tropical woods that provide 

pertinent data for more comprehensive biodiversity 

mapping projects. As discussed by Li et al. [18], Machine 

Learning algorithms have shown significant 

improvements in biomass prediction accuracy in forest 

ecosystems. 

While this study explores the potential of Multi-

Output Deep Learning (MODL) models, such as Long 

Short-Term Memory (LSTM), for biomass prediction, we 

focus on the Extra Trees (ET) algorithm for its superior 

performance in small, noisy datasets typical of ecological 

research. While LSTM has been shown to be effective for 

sequential data, we demonstrate that in this non-

sequential, cross-sectional scenario, ET outperforms 

MODL due to its robustness in capturing nonlinear 

interactions and preventing overfitting. 

Building on these considerations, Table 1 provides a 

comparative overview of prior biomass prediction studies, 

highlighting the diversity of applied methodologies, 

ranging from traditional allometric approaches to 

advanced machine learning frameworks. The table 

emphasizes the variation in datasets, predictor variables, 

and evaluation metrics, illustrating the fragmented 

landscape of biomass modeling. This contextualization 

underscores the rationale for testing both MODL 

architectures and ensemble learners in the present work. 

Table 1: Summary of prior biomass prediction studies. 

Study  Models  Dataset  Metrics  Key findings  

Li et al. (2020) 

[14] 
XGBoost, RF 

Landsat 8 + Sentinel-

1A; subtropical 

forests 

R², RMSE 

XGBoost outperformed 

traditional methods, 

improving AGB 

estimation accuracy. 

Sharma et al. 

(2022) [15] 

ML regressors with 

UAV multispectral 

data 

Oat biomass, multisite Correlation, RMSE 

Strong correlations 

found, but performance 

varied across sites. 

Zhang et al. 

(2020) [16] 

8 ML regression 

algorithms (CatBoost, 

SVR, RF, etc.) 

Satellite-based Forest 

AGB 
R², RMSE 

Ensemble models 

(CatBoost) 

outperformed non-

ensemble methods. 

Ma et al. (2023) 

[17] 
Random Forest, SVR 

Airborne LiDAR, 

subtropical forests 

R², feature 

sensitivity 

Random Forest 

superior; LiDAR-

derived features critical 

predictors. 

Huy et al. 

(2024) [5] 

Multi-output Deep 

Learning (MODL) 

175 destructively 

sampled trees, 

Vietnam 

RMSE, MAE 
MODL improved 

multi-output biomass 
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prediction vs 

traditional WNSUR. 

Present study 
Extra Trees (ET), GB, 

Bagging, LSTM 

175 trees, 27 plots, 

Vietnam 

R², RMSE, MAE, 

VAF 

ET outperforms 

baselines; robust under 

small, noisy ecological 

datasets. 

 

This study will test the ET algorithm’s efficiency in 

enhancing the accuracy and reliability of simultaneous 

biomass estimates of aboveground, belowground, and 

total biomass in tropical forests. 

Gaps and challenges. Prior biomass-estimation 

studies have been characterized by (i) limited sample sizes 

resulting from destructive sampling, (ii) collinearity 

among structural and site variables, and (iii) 

heterogeneous protocols that complicate generalization. In 

addition, many works have compared single-output 

models or emphasized cost or emissions proxies without 

jointly estimating AGB, BGB, and TB or reporting cross-

validated variability. This study’s contribution. Biomass 

prediction is cast as a multi-output regression problem 

(AGB, BGB, TB), with ET, GB, Bagging, and LSTM 

benchmarked under a uniform pipeline with leakage-safe 

cross-validation. A baseline linear regression model is 

provided for clarity, and model interpretability is added 

via feature importance and SHAP analysis to ground 

ecological plausibility. The results show that ET achieves 

the strongest test performance for this dataset—an 

empirical conclusion rather than an a priori assumption. 

These models were selected to represent complementary 

methodological families. GB provides strong boosting 

performance on nonlinear ecological data; ET offers 

variance reduction and robustness on small, noisy 

datasets; Bagging improves stability via bootstrap 

aggregation; and LSTM serves as a deep-learning 

comparator with sequence-modeling capacity. Together, 

they cover both ensemble and neural approaches, enabling 

a balanced evaluation of methodological suitability for 

tropical biomass prediction. 

By incorporating a new optimization approach to 

couple with the ET algorithm, this study aims to overcome 

the deficiencies of traditional methods and enhance 

predictive performance. It does so by introducing, for the 

first time, the use of ET to predict biomass, comparing it 

with established Machine Learning techniques such as 

Gradient Boosting, Bagging, and LSTM networks. Until 

now, ET has been recently applied in ecological modeling; 

this study will offer fresh viewpoints on its capacity for 

more exact and reliable biomass estimation supports 

environmental monitoring and helps forest management. 

We benchmark ET against Gradient Boosting (GB), 

Bagging, and a Long Short-Term Memory (LSTM) 

network. GB provides a strong boosted-tree baseline that 

incrementally corrects residuals; Bagging isolates the 

effect of variance reduction via bootstrap aggregation; and 

LSTM offers a deep-learning comparator with sequence-

model capacity. This panel spans complementary 

inductive biases for nonlinear tabular data, enabling a fair 

assessment of whether multi-output ET is preferable for 

tropical biomass estimation. 

1.1 Research questions and hypotheses 

This study addresses the following research questions: 

• RQ1: Can multi-output ensemble methods (Extra 

Trees, Gradient Boosting, Bagging) and deep 

learning models (LSTM) provide accurate 

simultaneous predictions of AGB, BGB, and TB 

in small, destructively sampled tropical forest 

datasets? 

• RQ2: How does the ET algorithm perform relative 

to other machine learning methods in terms of 

predictive accuracy, variance reduction, and 

robustness to noisy ecological features? 

• RQ3: How do machine learning approaches 

compare to a traditional linear regression baseline 

for biomass prediction? 

Based on prior literature, we hypothesize that (H1) ET 

will outperform other methods due to its strong variance-

reduction properties; (H2) ensemble methods in general 

will provide more stable results than LSTM in small cross-

sectional datasets; and (H3) all machine learning 

approaches will outperform linear regression due to their 

ability to capture nonlinear interactions. 

2 Methodology and dataset 
A leakage-safe pipeline is implemented, consisting of the 

following stages: data curation → preprocessing (missing-

data handling, encoding, scaling) → train/validation 

selection with K-fold cross-validation applied within the 

training set only → model selection and tuning (ET, GB, 

Bagging, LSTM) → final training on the full training set 

using the best hyperparameters → held-out test 

evaluation. All three targets (AGB, BGB, TB) are 

predicted jointly in a multi-output framework, and 

robustness is quantified through cross-validation statistics 

and confidence intervals on the test-set metrics 

The contribution is framed around ET (ET)—an 

ensemble of fully randomized decision trees (a variant of 

Random Forest) in which randomized split thresholds and 

feature subsampling are employed to reduce variance and 

capture nonlinear feature interactions in tabular ecological 

data. ET is deployed in a multi-output regression setting 

for AGB, BGB (belowground biomass), and TB (total 

biomass) in order to exploit cross-target correlations. On 

the small-to-medium tropical forest dataset, ET is shown 

to yield the most reliable test-set performance among the 

compared learners by effectively handling noisy 

measurements, collinearity, and heterogeneous predictor 

scales. ET is particularly suitable here because (i) 

destructive-sampling forest datasets are typically small-n 

with complex, nonlinear structure; (ii) ET’s heavy 

randomization curbs overfitting better than deep trees 
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trained deterministically; and (iii) tree ensembles natively 

support mixed feature types and are robust to monotone 

transformations, which simplifies preprocessing relative 

to deep models. A dataset of 175 destructively sampled 

trees from 27 plots in Vietnam’s Central Highlands (tree-

level records) was used. Predictors included structural 

measurements (e.g., DBH, total height, canopy area), 

site/environmental descriptors (e.g., elevation, slope, soil 

type/category), and any available remote-sensing proxies 

collocated to plots. The targets were AGB, BGB, and TB 

(kg). Rows with missing target values were removed; 

numeric predictors were standardized; and categorical 

predictors were one-hot encoded. The data were split 

80/20 (train/test) with a fixed random seed, and all cross-

validation and scaling were fitted only on the training 

partition to avoid leakage. In the current simulation, the 

ET method was used to improve regression accuracy and 

compare it with several state-of-the-art Machine Learning 

models, namely Gradient Boosting, Bootstrap 

Aggregating, and Long Short-Term Memory networks. 

During testing and training, the models' evaluation 

indicators were defined and shown via plot fit and plot 

regression diagrams, hence providing a complete 

comparative study of their ability to forecast biomass. The 

dataset employed in this investigation was created for a 

book [3]. It relies on a destructive sample of 175 trees 

harvested from 27 specifically chosen plots in Vietnam's 

Central Highlands ecoregion. This dataset helped 

construct and cross-validate multi-output Deep Learning 

(DL) models, which are an alternative to the traditional 

Weighted Nonlinear Seemingly Unrelated Regression 

(WNSUR) technique. The input features for model 

training include tree-level measurements (e.g., diameter at 

breast height, tree height, canopy area) and environmental 

variables relevant for biomass prediction, selected based 

on prior studies and domain knowledge. These features 

were used to predict aboveground biomass (AGB), 

belowground biomass (BGB), and total biomass (TB) 

simultaneously. 

Before training, the dataset was preprocessed as 

follows: rows with missing values were removed to ensure 

data quality; numeric features were standardized using 

StandardScaler to have zero mean and unit variance; 

categorical variables (if any) were encoded using one-hot 

encoding to make them compatible with all machine 

learning models.  

Hyperparameters for each model were optimized 

using GridSearch with 5-fold cross-validation. The 

selected optimal parameters were as follows: 

• Gradient Boosting (GB): learning rate = 0.2, max 

depth = 5, n_estimators = 200 

• Extra Trees (ET): max depth = None, 

min_samples_split = 2, n_estimators = 50 

• Bagging: max features = 1, max samples = 1, 

n_estimators = 100 

• Long Short-Term Memory (LSTM): lookback = 10, 

units = 50, dropout = 0.2. 

Though the collection is rather modest—175 trees 

over 27 plots—this is in line with destructive sampling 

research in tropical woodlands, where logistical and 

environmental constraints limit the amount of data 

available. Earlier works using destructive sampling (e.g., 

Huy et al. 2024 [ 5]) depend on comparable scales. Our 

research therefore provides a useful benchmark dataset 

and mirrors a fair sample size for field-based biomass 

forecast. 

The main purpose was to forecast aboveground 

biomass (AGB), belowground biomass (BGB), and total 

tree biomass (TB) in two major tropical forest types: 

dipterocarp forest (DF) and evergreen broadleaf forest 

(EBLF). When compared to standard WNSUR models, 

multi-output DL models outperformed the latter in terms 

of simultaneous predictions. These deep learning models 

effectively incorporated multiple complex ecological 

factors, considerably improving the reliability and 

accuracy of forest biomass projections. (Figure 1). 

2.1 Algorithm selection and justification 

The machine learning algorithms used in this study were 

selected to capture a wide range of modeling capabilities 

suitable for ecological biomass prediction: 

• Gradient Boosting (GB) 

GB incrementally fits new trees to residuals of 

previous ones, achieving high predictive accuracy on 

nonlinear data. In our implementation, hyperparameters 

were tuned via GridSearchCV, yielding learning rate = 

0.2, max depth = 5, and n_estimators = 200. This setup 

balances complexity with generalization. 

• Extra Trees (ET) 

ET constructs randomized decision trees with split 

thresholds drawn at random, which reduces variance and 

limits overfitting on small datasets. Our optimal 

configuration used n_estimators = 50, max depth = None, 

and min_samples_split = 2. 

•Bagging 

Bagging stabilizes predictions by aggregating 

multiple bootstrap-trained models. Here, we used 

Decision Trees as base learners with n_estimators = 100, 

max_features = 1.0, and max_samples = 1.0. 

•Long Short-Term Memory (LSTM) 

LSTMs are recurrent neural networks designed for 

sequential data. While our dataset is cross-sectional, we 

included LSTM as a deep-learning comparator. The model 

was configured with lookback = 10, hidden units = 50, and 

dropout = 0.2. 

The detailed search space and tuned values for each 

algorithm are summarized in Table 2, which documents 

the hyperparameters optimized through GridSearchCV. 

This table provides transparency in the model selection 

process and ensures reproducibility, highlighting the 

balance achieved between predictive performance and 

computational efficiency across the compared learners.
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Table 2: Hyperparameters used for model tuning via GridSearchCV 

Model Parameter Best Value 

Gradient Boosting (GB) 

Learning Rate 0.2 

Max Depth 5 

N Estimators 200 

Extra Trees (ET) 

Max Depth None 

Min Samples Split 2 

N Estimators 50 

Bagging 

Max Features 1.0 

Max Samples 1.0 

N Estimators 100 

LSTM 

Lookback Window 10 

Units 50 

Dropout 0.2 

2.2 Preprocessing and model setup 

The dataset consisted of 175 destructively sampled trees 

from 27 plots in Vietnam’s Central Highlands, with 

predictor variables including tree structural measurements 

(e.g., diameter at breast height, total height, canopy area), 

site descriptors (e.g., elevation, slope, soil type), and 

categorical ecological indicators. The target variables 

were Aboveground Biomass (AGB), Belowground 

Biomass (BGB), and Total Biomass (TB). 

Prior to model training, rows containing missing 

values were removed. Numerical features were 

standardized using StandardScaler to zero mean and unit 

variance, and categorical features were one-hot encoded. 

The dataset was split into training and testing partitions 

using an 80/20 ratio (test_size=0.2) with a fixed random 

seed of 42 to ensure reproducibility. 

 

Hyperparameter tuning was performed using 

GridSearchCV within the training set for each model. The 

optimal values obtained were: 

• Gradient Boosting (GB): learning rate = 0.2, max 

depth = 5, n_estimators = 200 

• ET: max depth = None, min_samples_split = 2, 

n_estimators = 50 

• Bagging: base estimator = Decision Tree, 

max_features = 1.0, max_samples = 1.0, 

n_estimators = 100 

• LSTM: lookback window = 10, hidden units = 50, 

dropout = 0.2 

These configurations were selected as they 

consistently delivered the best cross-validation results for 

their respective models. Final evaluation was performed 

on the held-out test set.

 

 

Figure 1: The procedure of modelling 

The models under study were statistically assessed 

with a range of often used metrics, as Table 4 shows. The 

Mean Absolute Dividing the sum of the absolute variation 

determined by the total count of observations. By the 

square root of the mean of the squared differences between 

each prediction and the associated reality, the RMSE is 

determined. It therefore illuminates the model's forecasts' 

veracity. The variance explained (VAF) reveals the degree 

of variance in the actual values predicted by the 

predictions. Usually described is the Pearson's correlation 

coefficient, often known as the R-value in the linear 

relationship between the actual and predicted values. The 

Max Error shows the largest disparity between the 

anticipated and actual values, therefore producing a worst-
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case forecast scenario. Standard deviation (Std) measures 

the dispersion of the prediction errors from the mean 

value, giving an indication of the variability in model 

performance. These statistical markers give a broad sense 

of the models' performance, dependability, and accuracy 

[3].  

2.3 Computational environment 

All tests were carried out in Google Colab utilizing Python 

3.x in order to guarantee repeatability. Key software 

libraries and versions are presented in Table 3. To keep 

consistency across runs, a fixed random seed of 42 was 

used throughout the data splitting, cross-validation, and 

training operations.

Table 3: Computational environment used in this study. 

Component Details 

Platform Google Colab 

Python Version 3.x (Colab runs Python 3 by default) 

Libraries  

NumPy 1.21.x or higher 

Pandas 1.3.x or higher 

scikit-learn 0.24.x or higher 

TensorFlow/Keras TensorFlow 2.x (with Keras as part of it) 

OpenPyXL For Excel file handling 

2.4 Statistical analysis  

Reporting of R², VAF, MAE, RMSE, and MaxError as 

well as K-fold suggests the study emphasizes model 

validation and explanatory diagnostics instead of manual 

feature extraction. For interpretability, permutations 

importances and SHAP values are calculated to 

investigate the factors propelling AGB, BGB, and means 

and standard deviations utilized to measure stability. TB 

and to evaluate ecological realism.

Table 4: Statistical evaluation indexes. 

Criteria Equation 

Mean Absolute Error, MAE 
∑ |𝑦𝑖−𝑦̂𝑖|𝑛

𝑖=1

𝑛
  

Root Mean Square Error, RMSE √
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛

𝑖=1

𝑛
  

Variance account factor, VAF (1 −
𝑣𝑎𝑟(𝑡𝑛−𝑦𝑛)

𝑣𝑎𝑟(𝑡𝑛)
) ∗ 100  

Pearson’s correlation coefficient, R 
∑ (𝑡𝑛−𝑡̅)(𝑝𝑛−𝑝̅)𝑁

𝑛=1

√[∑ (𝑡𝑛−𝑝̅)2𝑁
𝑛=1 ][∑ (𝑝𝑛−𝑝̅)2𝑁

𝑛=1 ]

  

Max error, Max 𝑀𝑎𝑥 =  𝑚𝑎𝑥 (𝑎𝑏𝑠 (𝑌𝑟𝑒𝑎𝑙  −  𝑌𝑁))  

Standard deviation, Std 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = √
∑ (𝑥𝑖−𝑥̅)2𝑛

𝑖=1

𝑛−1
  

 

3 Machine learning 
Managing and analyzing difficult environmental data 

more effectively also helps Machine Learning to enhance 

the precision and efficiency of biomass predictions in 

tropical forests. From Utilizing sophisticated algorithms, 

multioutput deep learning models—famer models—can 

simultaneously forecast a spectrum of related outputs—

from aboveground to belowground biomass. In many 

respects, this combined approach surpasses previous ones. 

offers a significantly better grasp of forest ecosystems. 

Among the several data sets machine learning systems can 

analyze to find patterns are environmental characteristics 

and remote sensing data. and relationships which 

traditional techniques often ignore. Better the predictive 

accuracy of such models, which makes them helpful tools 

for projects meant to lessen the effects the more data they 

accumulate over time. on forest management and 

preservation of climate change. 

3.1 Gradient-boosting 

As shown in Figure 2, gradient boosting is a machine 

learning technique whereby multiple models are generated 

step wise to produce a strong predictive model. An initial 

model, typically a rough constant prediction, is spawned. 

Residuals, differences between the actual values and the 

initial predictions, are computed. New models are trained 

on predicting these residuals. Each new model's 

predictions are added to the previous model's predictions, 

typically scaled by a learning rate to control their 

contribution and prevent overfitting. This iterative process 

continues until the model's performance reaches an 

acceptable level or a predefined number of iterations is 

reached [19]. 

The strength of gradient boosting lies in its ability to 

produce highly accurate models by correcting errors from 

previous iteration. It is highly flexible and can be applied 

to various types of loss functions, making it suitable for 
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both regression and classification tasks. However, 

gradient boosting can be computationally intensive and 

prone to overfitting if not properly regularized. These 

popular implementations, such as XGBoost, LightGBM, 

and CatBoost, have optimized the algorithm for efficiency 

and scalability [20].

 

Figure 2: The structure of gradient boosting 

3.2 Bootstrap aggregating 

Bootstrap aggregating, often abbreviated as bagging, is an 

ensemble learning technique designed to improve the 

stability and accuracy of Machine Learning algorithms. 

This involves generating multiple subsets of data by 

random sampling with replacement from the original 

dataset. It considers each subset for training a different 

model-mostly of the identical model type. Sampling with 

replacement ensures that some observations may appear 

multiple times in one subset, while others may not appear 

at all. The key objective of bagging is to reduce the  

 

 

 

model's variance, making it more robust and less prone to 

overfitting. 

All the models are trained, and their predictions are 

combined to form the final output. For classification tasks, 

it typically involves majority voting or probability 

averaging (see Figure 3). It works by taking the 

predictions of several models and combining them to 

produce a better prediction than any single model could 

make alone. The method especially works well with high-

variance algorithms such as decision trees. The most 

famous implementation of bagging is the Random Forest 

algorithm. It creates an ensemble of decision trees, 

combines their outputs to improve accuracy, and controls 

overfitting.

 

 

Figure 3: The structure of bootstrap aggregating 
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3.3 Long short-term memory 

Figure 4 displays Long Short-Term Memory (LSTM), an 

RNN architecture variant suited to modeling sequences of 

data and time series. Unlike traditional RNNs, which 

suffer from the vanishing gradient problem that makes 

learning long-term dependencies difficult, LSTMs are 

designed to remember information for a long time. They 

do this by using a series of gates—input gate, forget gate, 

and output gate—that govern the flow of information into 

and out of the cell state. These gates enable the network to 

retain only useful information and discard irrelevant data. 

Hence, LSTMs perform exceptionally well in tasks such 

as language modeling, speech recognition, and time series 

forecasting.

 

 

Figure 4: The structure of long short-term memory (LSTM). 

 

Because of these capabilities, LSTMs have been 

studied and applied in a wide range of domains. Other 

applications of LSTMs include financial time-series data; 

in natural language processing, they are employed in 

machine translation tasks that call for comprehension of 

context across numerous words. where the time axis is 

utilized to forecast stock prices. Moreover, LSTMs are 

among the most flexible and strong Machine Learning 

instruments. Deep learning jobs are resistant to noise and 

varied lengths of input series. This is made possible by the 

design's capacity for data processing and its success in 

retaining context across long sequences. Because of its 

adaptability, LSTM has become a crucial building block 

in developing intelligent systems needing temporal data 

processing. 

3.4 Extra tree 

Figure 5 shows that the Extra Tree algorithm (ET), also 

known as Extremely Randomized Trees, is an ensemble  

 

learning technique applied to both regression and 

classification problems. ET trains an ensemble of fully 

randomized trees: at each node, a random subset of 

features is considered and random split thresholds are 

drawn; the best among these random splits is selected by 

impurity reduction. Trees are grown to near-purity (or 

constrained by min samples split/min samples leaf), and 

predictions are averaged across “n estimators”. This 

aggressive randomization lowers variance and mitigates 

overfitting on small-n tabular data. In tuning, we search 

over n estimators, max depth, min samples split, min 

samples leaf, and max features, selecting hyperparameters 

by cross-validated performance on the training set. Unlike 

traditional decision trees, ET introduces two levels of 

randomness by selecting split points randomly from a 

subset of features.
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Figure 5: The structure of extra tree algorithm 

4 Results and discussion 
The performance of Extra Trees (ET) was compared with 

other machine learning models, including Gradient 

Boosting (GB), Bagging, and Long Short-Term Memory 

(LSTM), for predicting aboveground biomass (AGB), 

belowground biomass (BGB), and total biomass (TB). ET 

achieved the highest test-set performance with R² = 0.997 

(BGB), 0.997 (AGB), and 0.996 (TB), demonstrating its 

robustness in capturing complex nonlinear relationships in 

ecological data. In contrast, GB performed slightly lower 

on the test set (R² = 0.994), which aligns with prior 

findings that ensemble tree methods are more effective for 

small, heterogeneous datasets. 

Although ET showed excellent performance, its 

results emphasized the difficulty of grabbing belowground 

biomass (BGB) because of its natural noisiness. To solve 

these problems, future studies should investigate bigger 

datasets and add remote sensing capabilities.  

The better performance of Extra Trees (ET) in 

biomass estimation indicates its possible incorporation 

with remote sensing processes in operational forestry 

monitoring systems. For near-real-time estimates of 

aboveground and underground biomass in forested 

regions, for instance, ET might be combined with LiDAR  

 

 

data or satellite-derived vegetation indices. Combination 

might allow for more effective forest management 

wherein quick biomass assessments are needed to guide 

carbon sequestration calculations or conservation 

initiatives. 

4.1 Benchmark model comparison 

To provide a benchmark for comparison, a linear 

regression model was implemented using the same input 

features. Performance metrics including VAF, R², MAE, 

MAPE, Max Error, and RMSE were calculated. Linear 

regression achieved a VAF of 0.976, R² of 0.975, and 

RMSE of 0.157, indicating its limited ability to capture 

nonlinear relationships in the data. In contrast, all machine 

learning models, particularly ET, showed significantly 

improved performance, highlighting the effectiveness of 

ensemble learning for biomass prediction in tropical 

forests. 

The numerical outcomes of the linear regression 

benchmark are reported in Table 5, which consolidates all 

calculated performance metrics. While the results confirm 

that linear regression provides a reasonable baseline, the 

relatively higher error measures underscore its inadequacy 

for modeling complex ecological interactions compared to 

the nonlinear learners evaluated in this study. 
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Table 5: Result of linear regression 

Model VAF R² MAE MAPE Max Error RMSE EV 

LR 0.976 0.975 0.097 24.500 0.573 0.157 0.976 

 

4.2 Model comparison and interpretation 

Across folds and on the held-out test set, ET exhibits the 

highest R²/VAF and the lowest MAE/RMSE, 

outperforming GB, Bagging, and LSTM. The 

performance gap is most pronounced for BGB, where tree-

ensemble variance reduction appears to help with noisier 

belowground signals. GB is competitive but slightly less 

stable (higher fold-to-fold Std), consistent with boosted 

trees’ sensitivity to learning-rate/depth trade-offs. LSTM 

underperforms in this cross-sectional setting, which aligns 

with its sequential inductive bias. Error distributions show 

ET reduces extreme residuals (MaxError) relative to 

Bagging/LSTM, indicating better handling of outliers. 

And for the Cross-validation robustness. Table 6 

summarizes 5-fold means ± SD: ET (VAF 0.9970±0.0025; 

R² 0.9967±0.0028; MAE 0.0295±0.0111) vs GB 

(0.9958±0.0034; 0.9951±0.0037; 0.0446±0.0193), 

Bagging (0.9934±0.0047; 0.9928±0.0046; 

0.0568±0.0214), LSTM (0.9892±0.0065; 0.9873±0.0075; 

0.0751±0.0238). Figure 6 supports ET's stability benefits. 

These results fit the theoretical basis for model selection: 

ET's fierce randomization reduces overfitting, while GB 

and Bagging give competitive ensemble baselines; LSTM 

is less successful given the lack of temporal structure in 

the data. 

Table 6: Five-fold cross-validation results for all models. Values reported as mean ± standard deviation. 

Model VAF Mean VAF Std R² Mean R² Std MAE Mean MAE Std 

GB 0.995 0.003 0.995 0.003 0.044 0.019 

ET 0.997 0.002 0.996 0.002 0.029 0.011 

Bagging 0.993 0.004 0.992 0.004 0.056 0.021 

LSTM 0.989 0.006 0.987 0.007 0.075 0.023 

 

The possibility of overfitting arose from the very high 

R² and VAF numbers seen in training. We performed five-

fold cross-validation on the training data to investigate this 

and include the mean ± standard deviation of important 

statistics in Table 6. With regularly low variation across 

folds, ET produced the best average performance (R² = 

0.996 ± 0.002, MAE = 0.029 ± 0.011). The results verify 

this. Gradient Boosting was competitive but showed 

somewhat more volatility (R² = 0.995 ± 0.003). Bagging 

and LSTM exhibited less and more erratic outcomes with 

LSTM displaying the greatest variability and lowest mean 

R². These results show that even if the R² values of training 

are excellent, the low standard deviations across folds 

point to consistent generalization instead of overfitting. 

This raises faith in the stated test results. 

The small dataset size poses challenges for 

generalizability, particularly in heterogeneous tropical 

forests. To mitigate this, we applied 5-fold cross-

validation, reporting mean ± standard deviation values for 

each model. The low variability observed across folds for 

ET (R² = 0.996 ± 0.002) and GB (0.995 ± 0.003) indicates 

stable generalization despite limited sample size. 

Nonetheless, generalizability beyond the Central 

Highlands is limited, and future studies should validate 

these models on larger and more geographically diverse 

datasets.
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Figure 6: Comparison of R² values for BGB predictions across ET, GB, Bagging, and LSTM models. 

Four models—Gradient Boosting (GB), ET (ET), 

Bagging, and Long-Short-Term Memory (LSTM)—were 

assessed in this comparative study across a range of 

performance indicators; shown the best accuracy. 

Achieving The best performance on The ET as against the 

training data shows the lowest MAE and RMSE as well as 

the highest VAF and R². Among the test set, the highest 

VAF and R², the lowest MAE and Mean Absolute 

Percentage Error. Despite these strong results, ET had a 

higher maximum error compared to Gradient Boosting. 

LSTM performed poorly in terms of MAE, MAPE, and 

RMSE, indicating lower accuracy and consistency in 

predictions. Overall, Gradient Boosting and ET showed 

the strongest performance, with ET slightly outperforming 

Gradient Boosting on the test data as shown in Figure 7. 

Also, the results based on Box plot given in Figure 8 

emphasizes on the acceptable performance of ET. 
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Figure 7: Comparison of model based on value 

 

Figure 8: Comparison of model based on box plot 

According to Figure 9, Gradient Boosting exhibited 

the lowest maximum error on the training set (0.295), 

indicating minimal extreme deviations. On the test set, its 

maximum error was 28.645, which was still lower than 

LSTM but higher than ETs. ET exhibited a higher 

maximum error of 13.855 on the training set and 12.452 

on the test set, indicating larger extreme deviations. 

Bagging had the highest maximum error, with 195.863 on 

the training set and 66.329 on the test set. LSTM had the 

highest maximum error on the test set, 34.364, indicating 

significant outliers. Gradient Boosting had the perfect R² 

value of 1 on the training set and a very high R² of 0.994 

on the test set, signifying a model that fits the training data 

excellently and generalizes well. ETs also demonstrated 

strong R² values (0.999 on training and 0.997 on test), 

surpassing Bagging and LSTM. Bagging had a slightly 

lower R² than the top performers, while LSTM had the 

lowest R² on both training (0.995) and test sets (0.984), 

reflecting poorer performance as confirmed in Figure 6. 
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More details regarding the various metrics are compared 

in Figure 10.

 

 

Figure 9: Comparison of model based on error 

According to Figure 11, Gradient Boosting achieved 

the lowest RMSE on training (0.0845), showing minimal 

average squared deviation. Its test RMSE was 7.076, still 

lower than most other models. ETs also had a lower 

RMSE (4.282 on training and 4.886 on test) compared to 

Bagging and LSTM. Bagging and LSTM had higher 

RMSE values, with LSTM showing the highest test RMSE 

(12.056), indicating larger errors in predictions.

 

 

Figure 10: Comparison of model based on metrics 
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Figure 11: Comparison of model based on root mean square error 

Gradient Boosting achieved the highest VAF on both 

the training and test sets, indicating it explained nearly all 

of the variance in the data during training (99.999%) and 

remained robust on the test set (99.522%). ETs also 

performed well, with high VAF values of 99.903 during 

training and 99.831 on the test set, suggesting strong 

generalization. Bagging and LSTM showed lower VAF 

scores, especially LSTM, which had the lowest VAF 

values in both sets, indicating a less effective variance 

explanation as shown in Figure 12. Besides, the results 

given in Figure 13 emphasizes on the superiority of ET 

over the rest in terms of three case studies. 

 

 

Figure 12: Comparison of model based on hybrid 
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Figure 13: Value of 3 case study according to ET for each case. 

According to Figure 14, Gradient Boosting showed 

the lowest MAE on the training data (0.06), indicating 

minimal average deviation of predictions from actual 

values. On the test set, however, Gradient Boosting's MAE 

increased to 3.385, but it still performed better than other 

models. ETs had a similar MAE on both training 

(3.664584) and test (3.863) sets, while Bagging and 

LSTM exhibited higher MAE values, with LSTM having 

the highest MAE on the test set (9.451), reflecting larger 

average prediction errors.

 

 

Figure 14: RMSE according to ET for each case 
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for each case study is acceptable as given in Figure 15 [5].  
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excellent data fit. ETs also performed well, with a high 

explained variance of 0.998316 on test. Bagging and 

LSTM had lower explained variance values, with LSTM 

being the least effective, indicating a less accurate 

representation of the variance in the data. Gradient 

Boosting showed the lowest standard deviation of error on 

training (0.084), reflecting minimal variability in 

prediction errors. Its test STDError was 6.775, which was 

still lower than Bagging and LSTM. ETs had a higher 

standard deviation of error on both training (4.282) and 

test (4.022), while LSTM had the highest test STDError 

(8.767), indicating greater variability in errors as 

demonstrated in Figure 16. 

 

 

Figure 15: Hybrid according to ET for each case study 

 

Figure 16: The findings of ET for each case study 
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Figure 17: SHAP summary plot of feature importance for biomass prediction using extra trees.

The performance metrics outlined in Table 7 indicate 

the following numerical results for the hybrid models. For 

the training phase, GB achieved a VAF of 99.999 and an 

R² of 1, demonstrating nearly perfect prediction accuracy. 

Its MAE was notably low at 0.060, while the RMSE was 

0.084. In comparison, ET achieved a VAF of 99.903 and 

an R² of 0.999, with an MAE of 3.664 and an RMSE of 

4.282. Bagging yielded a VAF of 98.172 and an R² of 

0.981, with a higher MAE of 3.405 and an RMSE of 

18.777. LSTM had a VAF of 99.552 and an R² of 0.995, 

but exhibited the highest MAE of 7.881 and an RMSE of 

9.249. For the testing phase, ET stood out with a VAF of 

99.831 and an R² of 0.997, maintaining a low MAE of 

3.863 and an RMSE of 4.886. In contrast, LSTM had a 

VAF of 99.199, an R² of 0.984, with an MAE of 9.451 and 

an RMSE of 12.056. 

The detailed error metrics for the prediction of AGB, 

BGB, and total biomass are given in Table 8. For its BGB, 

the ETs system achieved the best training VAF of 

99.90391 and for AGB 99.879, respectively, with the R² 

values of 0.999 and 0.998 correspondingly. Since MAE of 

3.664 for BGB and of 3.361 for AGB, while the RMSE 

for BGB was equal to 4.282, and for AGB - 4.129. The 

VAF for ETs was 99.889 when calculating TB, R² stood 

at 0.998, MAE was 3.738, and RMSE of 4.602. In the 

testing phase, it was 99.863 for AGB and 99.831 for BGB. 

The corresponding R² values were 0.997 and 0.997 for 

AGB and BGB, respectively. For MAE, the values were 

3.505 for AGB and 3.863 for BGB in reverse order. And 

finally, their RMSE was 4.546 and for BGB, 4.886. TB-

VAF: 99.740, R²: 0.996, MAE: 3.879, RMSE: 5.956. 

These reflect a much better performance through the ETs 

model in predicting biomass with higher accuracy for 

types and phases variation. MAE quantifies the average 

deviation from the true biomass values. ET’s MAE of 3.86 

indicates a high level of precision, making it more suitable 

for practical applications like carbon accounting and forest 

management. RMSE penalizes larger errors, capturing the 

impact of outliers. ET’s RMSE (4.89) is lower than 

Bagging and LSTM, reflecting more consistent 

predictions even for extreme biomass values. GB has 

slightly lower MAE than ET, but its higher RMSE 

suggests that it occasionally produces larger deviations, 

reducing reliability in field applications. Practical 

Implication: These metrics demonstrate that ET provides 

both accurate and robust predictions, which is critical for 

forest monitoring programs where errors in biomass 

estimates propagate directly into carbon stock 

assessments.  

Maximum error for ET was 12.452 on the test set, 

compared with 28.645 for GB and 34.364 for LSTM. 

STDError for ET was 4.022, lower than Bagging (13.379) 

and LSTM (8.767). The lower maximum error and 

standard deviation of ET indicate more reliable 

predictions across all samples, especially in handling trees 

with extreme biomass values. This further supports ET’s 

suitability for real-world ecological applications, where 

some plots or trees may deviate significantly from average 

conditions.  

ETs (ET): Best overall performance, robust to 

outliers, effectively captures nonlinear relationships, and 

generalizes well. Gradient Boosting (GB): Excellent on 

training, slightly lower generalization on test, sensitive to 

extreme values (higher RMSE). Bagging: Moderate 
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performance, higher variability, less suitable for small 

datasets with high feature complexity. LSTM: Poor test 

performance due to limited dataset size and inability to 

capture spatial relationships effectively; suitable mainly 

for sequential or temporal data. 

ET’s performance demonstrates that Machine 

Learning can surpass traditional allometric models, 

providing more reliable biomass estimates for both 

aboveground and belowground components. Accurate 

predictions directly inform carbon sequestration 

calculations, forest management, and conservation 

planning. The lower variability and robust test 

performance indicate that ET is suitable for operational 

forestry applications, where consistency and accuracy are 

essential. 

To further quantify robustness, we computed 95% 

confidence intervals on the test-set metrics using bootstrap 

resampling. For ET, R² = 0.997 (95% CI: 0.996–0.998) 

and RMSE = 4.89 (95% CI: 4.32–5.51). GB achieved R² 

= 0.994 (95% CI: 0.993–0.996), RMSE = 7.08 (95% CI: 

6.25–7.92). Bagging and LSTM exhibited wider intervals, 

confirming less stability. These results are consistent with 

the low standard deviations reported in the cross-

validation analysis (Table 6), supporting the reliability of 

ET’s superior performance. 

SHAP values for Extra Trees were calculated to 

evaluate feature contributions and so explain model 

behavior. Figure 17 shows the SHAP summary chart, in 

which predictors are ordered by their mean influence on 

model output amount. The most important parameters 

discovered were structural measurements, especially 

diameter at breast height (DBH) and total tree height, then 

canopy area and altitude. While categorical ecological 

indicators showed smaller but non-negligible effects, soil 

type and slope showed modest contributions. SHAP 

scatter plots further show Consistent with ecological 

predictions, rising DBH and tree height greatly boosted 

forecast biomass. These findings validate the model's 

predictive patterns with established ecological links, 

therefore bolstering confidence in its utility for estimating 

forest biomass.

Table 7: Error metrics derived from the application of hybrid models. 

Optimizer 
GB ET Bagging LSTM 

Train 

VAF 99.999 99.903 98.172 99.552 

R2 0.999 0.999 0.981 0.995 

MAE 0.060 3.664 3.405 7.881 

MAPE 0.003 0.314 0.022 0.752 

MaxError 0.295 13.855 195.863 23.4 

RMSE 0.084 4.282 18.777 9.249 

ExplainedVariance 1 0.999 0.981 0.995 

STDError 0.084 4.282 18.677 9.242 

 Test 

VAF 99.522 99.831 98.136 99.199 

R2 0.994 0.997 0.981 0.984 

MAE 3.385 3.863 5.289 9.451 

MAPE 0.033 0.065 0.032 0.168 

MaxError 28.645 12.452 66.329 34.364 

RMSE 7.076 4.886 13.411 12.056 

ExplainedVariance 0.995 0.998 0.981 0.991 

STDError 6.775 4.022 13.379 8.767 

Table 8: Error metrics derived from the application of hybrid models. 

 AGB BGB TB 

Optimizer Train 

VAF 99.879 99.903 99.889 

R2 0.998 0.999 0.998 

MAE 3.361 3.664 3.738 

MAPE 0.429 0.314 0.337 

MaxError 11.585 13.855 13.685 

RMSE 4.129 4.282 4.602 

ExplainedVariance 0.998 0.999 0.998 

STDError 4.129 4.282 4.602 

 Test 

VAF 99.863 99.831 99.74 

R2 0.997 0.997 0.996 

MAE 3.505 3.863 3.879 

MAPE 0.064 0.065 0.058 
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MaxError 9.755 12.452 23.966 

RMSE 4.546 4.886 5.956 

ExplainedVariance 0.998 0.998 0.997 

STDError 3.199 4.022 4.997 

4.3 Discussion 

The results demonstrate that ETs (ET) achieved superior 

performance compared to Gradient Boosting, Bagging, 

LSTM, and a linear regression baseline. These outcomes 

are consistent with prior studies reporting the 

effectiveness of ensemble tree models for ecological 

prediction tasks. In particular, ET’s strength lies in its 

ability to handle small, destructively sampled datasets by 

leveraging aggressive randomization in both feature 

selection and split thresholds, which reduces overfitting 

and improves generalization. This characteristic is critical 

in tropical forest applications where datasets are often 

limited in size and contain noisy, heterogeneous 

measurements. Compared with state-of-the-art 

approaches based on remote sensing and deep learning, 

ET provides competitive or superior accuracy despite 

relying on smaller field-based datasets. This suggests that 

ET is well-suited for scenarios where destructive sampling 

restricts sample size, and where nonlinear relationships 

between tree structure, site descriptors, and biomass must 

be captured reliably. 

Nonetheless, some performance gaps were observed, 

particularly in belowground biomass (BGB) estimation, 

which is inherently noisier and less directly observable. 

These gaps may be explained by collinearity among 

predictors, class imbalance between tree size categories, 

or sparse distribution of extreme values in the dataset. 

Future research could address these challenges by 

enlarging sample sizes, integrating additional remote 

sensing features, or applying hybrid ensemble–deep 

learning frameworks. 

Overall, this study reinforces the value of ET as a 

robust, variance-reducing ensemble model for ecological 

prediction, while highlighting areas where ecological data 

properties still limit predictive performance 

4.4 Computational cost comparison 

While Extra Trees (ET) outperformed Gradient Boosting 

(GB), Bagging, and Long Short-Term Memory (LSTM) in 

accuracy, it comes with a computational cost. As shown in 

Table 9, ET required 1.142 seconds and 8.42 MB of 

memory on average, making it more computationally 

intensive than GB (0.973 s, 0 MB) and Bagging (0.250 s, 

2.84 MB). LSTM (0.446 s, 0 MB) was also faster, but less 

effective in biomass estimation. These findings highlight 

that ET offers the best performance, albeit at a higher 

computational cost, which must be considered when 

deploying in real-time or field-based forestry applications.

Table 9: Computational cost comparison of models. 

Model Time (s) Memory (MB) 

GB 0.973 0 

ET 1.142 8.421 

Bagging 0.250 2.835 

LSTM 0.446 0 

5 Conclusion 
Indeed, according to the evidence provided, the ET 

method has yielded promising results regarding biomass 

estimation in tropical forests compared with other 

Machine Learning models: GB, Bagging, and LSTM 

networks. Particularly, the ET got amazing training VAF 

results of 99. 903 for BGB, 99. 879 for AGB, and 99. 889 

for TB. Its R-squared values 0.999 were for as a result, it 

was the best-fit model with a Mean Absolute Error of 3. 

664 for ET, 0. 998 for BGB and 0. 998 for TB. The Root 

Mean Square Errors of 4. 282, 4. 129, and 4. 602 for the 

related biomass are given in respectively. Respectively 

values for BGB, AGB, and TB are 3. 361 and 3. 738. 

Because the ET model precisely and consistently 

estimates biomass, as demonstrated by the emphasis of 

these findings is its capacity as a tool for measuring 

biomass; a device that could be used to enhance carbon 

accounting and forest management techniques. 

To provide more accurate forecasts, future studies 

should focus on combining ETs with other sophisticated 

Machine Learning prediction methods and their hybrid 

models. Increasing the dataset more would let coverage of 

a far wider spectrum of forest kinds and environmental 

conditions, therefore improving the generalizing ability 

and stability of the model. ET's coupling with remote 

sensing methods and high-resolution photographs might 

improve the accuracy of forest biomass distribution and 

changes in structure. Additionally, creating a real-time 

ET-based monitoring system would make dynamic 

woodland management easier so that to preserve the 

Adopt more Efficient ways to slow down climate change.  

Future research should explore the integration of ET 

with high-resolution remote sensing data, such as satellite 

imagery (Landsat, Sentinel) or UAV-based LiDAR, to 

improve biomass prediction accuracy across larger 

forested regions. By incorporating these technologies, ET 

can provide spatially explicit, real-time biomass estimates, 

which could support dynamic forest management systems 

and help track carbon stock changes over time. 
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