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For carbon accounting and ecosystem monitoring, one must be able to correctly forecast biomass in
tropical forests. The ability of Extra Trees to concurrently forecast biomass is investigated in this
research. Estimated aboveground biomass (AGB), belowground biomass (BGB), and total biomass (TB)
depend on 175 trees gathered from 27 Central Vietnamese sites. Among the predicting variables were tree
structural measurements, site features, and categorical ecological markers. One-hot encoding categorical
data, normalizing numerical characteristics, and removing missing values variables were among the
preprocessing procedures. The dataset was split into training and testing sets (80/20) using a fixed
random seed, and GridSearchCV revealed the best model hyperparameters. Utilizing a set random seed
(80/20), the data was separated into training and testing groups; then GridSearchCV was used to find the
best model parameters. The performance of ET at baseline was examined in light of linear regression,
Long Short-Term Memory (LSTM), Bagging, and Gradient Boosting (GB). With an R2 value of 0.9975
and RMSE for ET of 0.9975, the score on the held-out test set was 4.89 which Bagging (R? = 0. 9948,
RMSE = 7. 08) and linear regression were superior than LSTM (R2 = 0. 9813, RMSE = 13. 41). 0. 9849,
RMSE = 12. 06). These results support the greater accuracy and robustness of ET for biomass estimation,
so emphasizing its importance for producing dependable Plans for forest carbon stock assessments and
conservation.

Povzetek: Studija preuci Extra Trees za socasno napoved nadzemne, podzemne in skupne biomase
tropskih gozdov iz meritev dreves in lokacijskih znacilnosti ter pokaze, da ta ansambelski pristop dosega

bolj robustne napovedi kot primerjalni modeli za potrebe ogljicnega knjigovodstva. .

1 Introduction

Biomass prediction [1] is essential for an understanding of
carbon storage and the general condition of tropical
woodlands. Field data combined with allometric models—
which tend to focus on either aboveground or
belowground biomass—had formerly been used to
estimate biomass. Aboveground biomass, comprising
trunks, branches, and leaves of trees, can be measured
relatively more easily compared to the belowground
biomass, which consists of roots and soil organic matter.
However, since precise estimates of both components are
important for complete carbon accounting and informed
decisions regarding forest management and conservation,
traditional methods fall short due to various limitations.
This has led to a growing call for more integrated and
reliable approaches [2], [3], [4], [5].

Recent advances in deep learning have improved the
accuracy of biomass prediction in tropical forests. In our
comparison, the deep model is an LSTM configured for
multi-output regression, jointly predicting AGB, BGB,
and TB. We include this sequential architecture to test
whether deep representation capacity adds value beyond
tree ensembles; however, given the cross-sectional nature

of our features, LSTM serves as a stress-test rather than
the natural inductive bias for these data. This approach
enhances both the reliability and efficiency of biomass
estimation. This approach offers an integrated view of
forest biomass whereas the methodology enhances the
dependability and accuracy of biomass estimation. The
inclusion of the multi-output deep learning model into
biomass prediction in this chapter represents a significant
step forward in our ability to monitor and control Far more
efficient tropical forests [6], [7], [8]. In recent years, the
integration of advanced Machine Learning techniques,
including deep learning methods, into ecological research
has gained increasing attention. Indeed, a number of
studies have so far explored the potential of deep learning
models to achieve increases in the accuracy of biomass
predictions from various forest ecosystems [9]. For
example, the application of convolutional neural networks
and recurrent neural networks has been explored to deal
with spatial and temporal data, respectively, with the aim
of enhancing biomass estimate accuracy from remote
sensing data. Another equally attractive option includes
multivariate models, which predict several interdependent
variables simultaneously and have gained popularity in
ecological studies by modeling more holistic interactions
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within a complex forest ecosystem. For instance, Li et al.
[10]illustrated that the integration of Landsat 8 and
Sentinel-1A data using the XGBoost algorithm had better
performance in estimating aboveground biomass for
subtropical forests. This method outperformed traditional
approaches and has the potential to reduce estimation
errors. Sharma et al. [11] investigated UAV-based
multispectral data and Machine Learning for the
estimation of oat biomass. Their study showed promising
correlations between derived vegetation indices and
biomass at some locations; however, model accuracy
varied greatly across sites. The study also underlined that
airborne remote sensing is able to efficiently support
biomass predictions, although model consistency and the
integration of more biophysical parameters have to be
considered in further studies. Zhang et al. [12] evaluated
Machine Learning regression algorithms for forest
aboveground biomass estimation from satellite data,
finding that ensemble methods, particularly CatBoost,
outperformed nonensemble methods across various
sampling scenarios, emphasizing the need for improved
estimation accuracy at extreme biomass levels in future
research. Ma et al. [13] utilized airborne LiDAR data to
assess forest aboveground biomass (AGB), revealing that
certain LiDAR-derived features consistently ranked as
sensitive indicators for estimating total and component
AGB, with random forest showing superior performance
compared to support vector regression.

Furthermore, Li at al. [14] innovatively integrated
random forest and least squares models to enhance forest
biomass prediction accuracy, emphasizing the importance
of canopy height, soil organic matter, and the red-edge
chlorophyll vegetation index as critical variables for
precise estimation of carbon storage in subtropical forests.
In their research [3], Huy et al. looked at how well multi-
output deep learning (MODL) models predicted biomass
components in forests and discovered that Approaches
covering a range of tropical forest types and
environmental gradients produced considerably less
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mistakes than traditional methods. Machine learning
algorithms, especially in support vector regression,
performed better than conventional biomass predictions in
Lebanon's cedar tree stands, according to a recent study
[15] is quite important. elements of efficient forest
management and carbon-bracketing techniques. The
accuracy of RF models in estimating soil CO2 emissions
from different restoration habitats was as Canteral et al.
[16] have shown. This shows their ongoing capacity to
reduce the doubts about the dynamics of the carbon cycle
[17]. Sesnie et al. showed how well ensemble Machine
Learning models worked by using data from many
satellite sensors that foretold tree biomass. Diversity
indexes of seasonally dry tropical woods that provide
pertinent data for more comprehensive biodiversity
mapping projects. As discussed by Li et al. [18], Machine
Learning  algorithms  have  shown  significant
improvements in biomass prediction accuracy in forest
ecosystems.

While this study explores the potential of Multi-
Output Deep Learning (MODL) models, such as Long
Short-Term Memory (LSTM), for biomass prediction, we
focus on the Extra Trees (ET) algorithm for its superior
performance in small, noisy datasets typical of ecological
research. While LSTM has been shown to be effective for
sequential data, we demonstrate that in this non-
sequential, cross-sectional scenario, ET outperforms
MODL due to its robustness in capturing nonlinear
interactions and preventing overfitting.

Building on these considerations, Table 1 provides a
comparative overview of prior biomass prediction studies,
highlighting the diversity of applied methodologies,
ranging from traditional allometric approaches to
advanced machine learning frameworks. The table
emphasizes the variation in datasets, predictor variables,
and evaluation metrics, illustrating the fragmented
landscape of biomass modeling. This contextualization
underscores the rationale for testing both MODL
architectures and ensemble learners in the present work.

Table 1: Summary of prior biomass prediction studies.

Study Models Dataset Metrics Key findings
. XGBoost outperformed
: Landsat 8 + Sentinel- "
Li et al. (2020) XGBoost. RF 1A- subtropical | Rz, RMSE traditional ~ methods,
[14] ' forésts ’ improving AGB
estimation accuracy.
Sharma et al ML regressors with Strong correlations
" | UAV  multispectral | Oat biomass, multisite | Correlation, RMSE | found, but performance
(2022) [15] ! )
data varied across sites.
8 ML regression Ensemble models
Zhang et al. algorithms (CatBoost, Satellite-based Forest R?, RMSE (CatBoost)
(2020) [16] SVR, RF, etc.) AGB outperformed non-
T ensemble methods.
Random Forest
Ma et al. (2023) Airborne LIDAR, | R?, feature | superior; LiDAR-
[17] Random Forest, SVR subtropical forests sensitivity derived features critical
predictors.
Huy et al. | Multi-output Deep i;ni led destructtlr\gilg/ RMSE. MAE MODL improved
(2024) [5] Learning (MODL) Viet%am ' ’ multi-output  biomass
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prediction S
traditional WNSUR.
ET outperforms
Present study Extra Trees (ET), GB, | 175 trees, 27 plots, | R2, RMSE, MAE, | baselines; robust under
Bagging, LSTM Vietnam VAF small, noisy ecological

datasets.

This study will test the ET algorithm’s efficiency in
enhancing the accuracy and reliability of simultaneous
biomass estimates of aboveground, belowground, and
total biomass in tropical forests.

Gaps and challenges. Prior biomass-estimation
studies have been characterized by (i) limited sample sizes
resulting from destructive sampling, (ii) collinearity
among structural and site variables, and (iii)
heterogeneous protocols that complicate generalization. In
addition, many works have compared single-output
models or emphasized cost or emissions proxies without
jointly estimating AGB, BGB, and TB or reporting cross-
validated variability. This study’s contribution. Biomass
prediction is cast as a multi-output regression problem
(AGB, BGB, TB), with ET, GB, Bagging, and LSTM
benchmarked under a uniform pipeline with leakage-safe
cross-validation. A baseline linear regression model is
provided for clarity, and model interpretability is added
via feature importance and SHAP analysis to ground
ecological plausibility. The results show that ET achieves
the strongest test performance for this dataset—an
empirical conclusion rather than an a priori assumption.
These models were selected to represent complementary
methodological families. GB provides strong boosting
performance on nonlinear ecological data; ET offers
variance reduction and robustness on small, noisy
datasets; Bagging improves stability via bootstrap
aggregation; and LSTM serves as a deep-learning
comparator with sequence-modeling capacity. Together,
they cover both ensemble and neural approaches, enabling
a balanced evaluation of methodological suitability for
tropical biomass prediction.

By incorporating a new optimization approach to
couple with the ET algorithm, this study aims to overcome
the deficiencies of traditional methods and enhance
predictive performance. It does so by introducing, for the
first time, the use of ET to predict biomass, comparing it
with established Machine Learning techniques such as
Gradient Boosting, Bagging, and LSTM networks. Until
now, ET has been recently applied in ecological modeling;
this study will offer fresh viewpoints on its capacity for
more exact and reliable biomass estimation supports
environmental monitoring and helps forest management.
We benchmark ET against Gradient Boosting (GB),
Bagging, and a Long Short-Term Memory (LSTM)
network. GB provides a strong boosted-tree baseline that
incrementally corrects residuals; Bagging isolates the
effect of variance reduction via bootstrap aggregation; and
LSTM offers a deep-learning comparator with sequence-
model capacity. This panel spans complementary
inductive biases for nonlinear tabular data, enabling a fair
assessment of whether multi-output ET is preferable for
tropical biomass estimation.

1.1 Research questions and hypotheses

This study addresses the following research questions:

e RQ1: Can multi-output ensemble methods (Extra
Trees, Gradient Boosting, Bagging) and deep
learning models (LSTM) provide accurate
simultaneous predictions of AGB, BGB, and TB
in small, destructively sampled tropical forest
datasets?

¢ RQ2: How does the ET algorithm perform relative
to other machine learning methods in terms of
predictive accuracy, variance reduction, and
robustness to noisy ecological features?

e RQ3: How do machine learning approaches
compare to a traditional linear regression baseline
for biomass prediction?

Based on prior literature, we hypothesize that (H1) ET
will outperform other methods due to its strong variance-
reduction properties; (H2) ensemble methods in general
will provide more stable results than LSTM in small cross-
sectional datasets; and (H3) all machine learning
approaches will outperform linear regression due to their
ability to capture nonlinear interactions.

2 Methodology and dataset

A leakage-safe pipeline is implemented, consisting of the
following stages: data curation — preprocessing (missing-
data handling, encoding, scaling) — train/validation
selection with K-fold cross-validation applied within the
training set only — model selection and tuning (ET, GB,
Bagging, LSTM) — final training on the full training set
using the best hyperparameters — held-out test
evaluation. All three targets (AGB, BGB, TB) are
predicted jointly in a multi-output framework, and
robustness is quantified through cross-validation statistics
and confidence intervals on the test-set metrics

The contribution is framed around ET (ET)—an
ensemble of fully randomized decision trees (a variant of
Random Forest) in which randomized split thresholds and
feature subsampling are employed to reduce variance and
capture nonlinear feature interactions in tabular ecological
data. ET is deployed in a multi-output regression setting
for AGB, BGB (belowground biomass), and TB (total
biomass) in order to exploit cross-target correlations. On
the small-to-medium tropical forest dataset, ET is shown
to yield the most reliable test-set performance among the
compared learners by effectively handling noisy
measurements, collinearity, and heterogeneous predictor
scales. ET is particularly suitable here because (i)
destructive-sampling forest datasets are typically small-n
with complex, nonlinear structure; (ii) ET’s heavy
randomization curbs overfitting better than deep trees
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trained deterministically; and (iii) tree ensembles natively
support mixed feature types and are robust to monotone
transformations, which simplifies preprocessing relative
to deep models. A dataset of 175 destructively sampled
trees from 27 plots in Vietnam’s Central Highlands (tree-
level records) was used. Predictors included structural
measurements (e.g., DBH, total height, canopy area),
site/environmental descriptors (e.g., elevation, slope, soil
type/category), and any available remote-sensing proxies
collocated to plots. The targets were AGB, BGB, and TB
(kg). Rows with missing target values were removed;
numeric predictors were standardized; and categorical
predictors were one-hot encoded. The data were split
80/20 (train/test) with a fixed random seed, and all cross-
validation and scaling were fitted only on the training
partition to avoid leakage. In the current simulation, the
ET method was used to improve regression accuracy and
compare it with several state-of-the-art Machine Learning
models, namely Gradient Boosting, Bootstrap
Aggregating, and Long Short-Term Memory networks.
During testing and training, the models' evaluation
indicators were defined and shown via plot fit and plot
regression diagrams, hence providing a complete
comparative study of their ability to forecast biomass. The
dataset employed in this investigation was created for a
book [3]. It relies on a destructive sample of 175 trees
harvested from 27 specifically chosen plots in Vietnam's
Central Highlands ecoregion. This dataset helped
construct and cross-validate multi-output Deep Learning
(DL) models, which are an alternative to the traditional
Weighted Nonlinear Seemingly Unrelated Regression
(WNSUR) technique. The input features for model
training include tree-level measurements (e.g., diameter at
breast height, tree height, canopy area) and environmental
variables relevant for biomass prediction, selected based
on prior studies and domain knowledge. These features
were used to predict aboveground biomass (AGB),
belowground biomass (BGB), and total biomass (TB)
simultaneously.
Before training, the dataset was preprocessed as
follows: rows with missing values were removed to ensure
data quality; numeric features were standardized using
StandardScaler to have zero mean and unit variance;
categorical variables (if any) were encoded using one-hot
encoding to make them compatible with all machine
learning models.
Hyperparameters for each model were optimized
using GridSearch with 5-fold cross-validation. The
selected optimal parameters were as follows:
e Gradient Boosting (GB): learning rate = 0.2, max
depth = 5, n_estimators = 200

e Extra Trees (ET): max depth =
min_samples_split = 2, n_estimators = 50

e Bagging: max features = 1, max samples = 1,
n_estimators = 100

e Long Short-Term Memory (LSTM): lookback = 10,
units = 50, dropout = 0.2.

None,
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Though the collection is rather modest—175 trees
over 27 plots—this is in line with destructive sampling
research in tropical woodlands, where logistical and
environmental constraints limit the amount of data
available. Earlier works using destructive sampling (e.g.,
Huy et al. 2024 [ 5]) depend on comparable scales. Our
research therefore provides a useful benchmark dataset
and mirrors a fair sample size for field-based biomass
forecast.

The main purpose was to forecast aboveground
biomass (AGB), belowground biomass (BGB), and total
tree biomass (TB) in two major tropical forest types:
dipterocarp forest (DF) and evergreen broadleaf forest
(EBLF). When compared to standard WNSUR models,
multi-output DL models outperformed the latter in terms
of simultaneous predictions. These deep learning models
effectively incorporated multiple complex ecological
factors, considerably improving the reliability and
accuracy of forest biomass projections. (Figure 1).

2.1 Algorithm selection and justification

The machine learning algorithms used in this study were
selected to capture a wide range of modeling capabilities
suitable for ecological biomass prediction:

¢ Gradient Boosting (GB)

GB incrementally fits new trees to residuals of
previous ones, achieving high predictive accuracy on
nonlinear data. In our implementation, hyperparameters
were tuned via GridSearchCV, yielding learning rate =
0.2, max depth = 5, and n_estimators = 200. This setup
balances complexity with generalization.

o Extra Trees (ET)

ET constructs randomized decision trees with split
thresholds drawn at random, which reduces variance and
limits overfitting on small datasets. Our optimal
configuration used n_estimators = 50, max depth = None,
and min_samples_split = 2.

eBagging

Bagging stabilizes predictions by aggregating
multiple bootstrap-trained models. Here, we used
Decision Trees as base learners with n_estimators = 100,
max_features = 1.0, and max_samples = 1.0.

eLong Short-Term Memory (LSTM)

LSTMs are recurrent neural networks designed for
sequential data. While our dataset is cross-sectional, we
included LSTM as a deep-learning comparator. The model
was configured with lookback = 10, hidden units = 50, and
dropout = 0.2.

The detailed search space and tuned values for each
algorithm are summarized in Table 2, which documents
the hyperparameters optimized through GridSearchCV.
This table provides transparency in the model selection
process and ensures reproducibility, highlighting the
balance achieved between predictive performance and
computational efficiency across the compared learners.
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Table 2: Hyperparameters used for model tuning via GridSearchCV

Model Parameter Best Value
Learning Rate 0.2
Gradient Boosting (GB) Max Depth 5
N Estimators 200
Max Depth None
Extra Trees (ET) Min Samples Split 2
N Estimators 50
Max Features 1.0
Bagging Max Samples 1.0
N Estimators 100
Lookback Window 10
LSTM Units 50
Dropout 0.2
2.2 Preprocessing and model setup Hyperparameter  tuning was  performed  using

The dataset consisted of 175 destructively sampled trees
from 27 plots in Vietnam’s Central Highlands, with
predictor variables including tree structural measurements
(e.g., diameter at breast height, total height, canopy area),
site descriptors (e.g., elevation, slope, soil type), and
categorical ecological indicators. The target variables
were Aboveground Biomass (AGB), Belowground
Biomass (BGB), and Total Biomass (TB).

Prior to model training, rows containing missing
values were removed. Numerical features were
standardized using StandardScaler to zero mean and unit
variance, and categorical features were one-hot encoded.
The dataset was split into training and testing partitions
using an 80/20 ratio (test_size=0.2) with a fixed random
seed of 42 to ensure reproducibility.

GridSearchCV within the training set for each model. The
optimal values obtained were:
e Gradient Boosting (GB): learning rate = 0.2, max
depth =5, n_estimators = 200
e ET: max depth = None, min_samples_split = 2,
n_estimators = 50
e Bagging: base estimator =
max_features = 1.0, max_samples =
n_estimators = 100
e LSTM: lookback window = 10, hidden units = 50,
dropout = 0.2
These configurations were selected as they
consistently delivered the best cross-validation results for
their respective models. Final evaluation was performed
on the held-out test set.

Decision Tree,
1.0,

/‘I\/Iodelling ProcedureJ

1 a Test
Stagel: T
Start modeling In ut\‘ . Train 5
p / GB Stage5:
\ - Applay ET algorithm
Gradient-boosting
Bagging ( ET }D Compare
6
[ Bootsrap 2ggregating Extra-trees gfrgﬁnﬁa-re proposed model with 3
Target | ( LSTM N A different machine learning models
‘ by evaluation metrics.
_ Long short-Term Memory End

Stage2:
Define inputs and
tagents in dataset

Stage3:
Split dataset into training(75%)
and testing(25%) sets

Stage4:
Apply machine learning models

4

Figure 1: The procedure of modelling

The models under study were statistically assessed
with a range of often used metrics, as Table 4 shows. The
Mean Absolute Dividing the sum of the absolute variation
determined by the total count of observations. By the
square root of the mean of the squared differences between
each prediction and the associated reality, the RMSE is
determined. It therefore illuminates the model's forecasts'

veracity. The variance explained (VAF) reveals the degree
of variance in the actual values predicted by the
predictions. Usually described is the Pearson's correlation
coefficient, often known as the R-value in the linear
relationship between the actual and predicted values. The
Max Error shows the largest disparity between the
anticipated and actual values, therefore producing a worst-
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case forecast scenario. Standard deviation (Std) measures
the dispersion of the prediction errors from the mean
value, giving an indication of the variability in model
performance. These statistical markers give a broad sense
of the models' performance, dependability, and accuracy

[3].
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2.3 Computational environment

All tests were carried out in Google Colab utilizing Python
3.x in order to guarantee repeatability. Key software
libraries and versions are presented in Table 3. To keep
consistency across runs, a fixed random seed of 42 was
used throughout the data splitting, cross-validation, and
training operations.

Table 3: Computational environment used in this study.

Component Details

Platform Google Colab

Python Version 3.X (Colab runs Python 3 by default)
Libraries

NumPy 1.21.x or higher

Pandas 1.3.x or higher

scikit-learn 0.24.x or higher

TensorFlow/Keras TensorFlow 2.x (with Keras as part of it)
OpenPyXL For Excel file handling

2.4 Statistical analysis

Reporting of R?, VAF, MAE, RMSE, and MaxError as
well as K-fold suggests the study emphasizes model
validation and explanatory diagnostics instead of manual

feature extraction. For interpretability, permutations
importances and SHAP values are calculated to
investigate the factors propelling AGB, BGB, and means
and standard deviations utilized to measure stability. TB
and to evaluate ecological realism.

Table 4: Statistical evaluation indexes.

Criteria Equation
Mean Absolute Error, MAE Zizlyi=il
n
Root Mean Square Error, RMSE Tie, 0i=90)?
n
Variance account factor, VAF (1 - w) * 100
var(ty)

SN2 (tn—D)(Pn—P)

Pearson’s correlation coefficient, R

S5 a2 [Z s np2?]

Max error, Max Max = max (abs (Yreqs — Ya))
Standard deviation, Std Standard Deviation = |2=1%0?
n—1

3 Machine learning

Managing and analyzing difficult environmental data
more effectively also helps Machine Learning to enhance
the precision and efficiency of biomass predictions in
tropical forests. From Utilizing sophisticated algorithms,
multioutput deep learning models—famer models—can
simultaneously forecast a spectrum of related outputs—
from aboveground to belowground biomass. In many
respects, this combined approach surpasses previous ones.
offers a significantly better grasp of forest ecosystems.
Among the several data sets machine learning systems can
analyze to find patterns are environmental characteristics
and remote sensing data. and relationships which
traditional techniques often ignore. Better the predictive
accuracy of such models, which makes them helpful tools
for projects meant to lessen the effects the more data they
accumulate over time. on forest management and
preservation of climate change.

3.1 Gradient-boosting

As shown in Figure 2, gradient boosting is a machine
learning technique whereby multiple models are generated
step wise to produce a strong predictive model. An initial
model, typically a rough constant prediction, is spawned.
Residuals, differences between the actual values and the
initial predictions, are computed. New models are trained
on predicting these residuals. Each new model's
predictions are added to the previous model's predictions,
typically scaled by a learning rate to control their
contribution and prevent overfitting. This iterative process
continues until the model's performance reaches an
acceptable level or a predefined number of iterations is
reached [19].

The strength of gradient boosting lies in its ability to
produce highly accurate models by correcting errors from
previous iteration. It is highly flexible and can be applied
to various types of loss functions, making it suitable for
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both regression and classification tasks. However,
gradient boosting can be computationally intensive and
prone to overfitting if not properly regularized. These

Weak Learner

Additive Model

Loss Function/

Gradient Boosting
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popular implementations, such as XGBoost, LightGBM,
and CatBoost, have optimized the algorithm for efficiency
and scalability [20].

Shrinkage

Penalized Learning

Improvements Random Sampling

Tree Constraints

Figure 2: The structure of gradient boosting

3.2 Bootstrap aggregating

Bootstrap aggregating, often abbreviated as bagging, is an
ensemble learning technique designed to improve the
stability and accuracy of Machine Learning algorithms.
This involves generating multiple subsets of data by
random sampling with replacement from the original
dataset. It considers each subset for training a different
model-mostly of the identical model type. Sampling with
replacement ensures that some observations may appear
multiple times in one subset, while others may not appear
at all. The key objective of bagging is to reduce the

model's variance, making it more robust and less prone to
overfitting.

All the models are trained, and their predictions are
combined to form the final output. For classification tasks,
it typically involves majority voting or probability
averaging (see Figure 3). It works by taking the
predictions of several models and combining them to
produce a better prediction than any single model could
make alone. The method especially works well with high-
variance algorithms such as decision trees. The most
famous implementation of bagging is the Random Forest
algorithm. It creates an ensemble of decision trees,
combines their outputs to improve accuracy, and controls
overfitting.

Bagging

Figure 3: The structure of bootstrap aggregating
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3.3 Long short-term memory

Figure 4 displays Long Short-Term Memory (LSTM), an
RNN architecture variant suited to modeling sequences of
data and time series. Unlike traditional RNNs, which
suffer from the vanishing gradient problem that makes
learning long-term dependencies difficult, LSTMs are
designed to remember information for a long time. They

J. Chen

do this by using a series of gates—input gate, forget gate,
and output gate—that govern the flow of information into
and out of the cell state. These gates enable the network to
retain only useful information and discard irrelevant data.
Hence, LSTMs perform exceptionally well in tasks such
as language modeling, speech recognition, and time series
forecasting.

Long Short -Term Memory

Ct1

Xt

—+ Ct

X Tanh

Tanh

Figure 4: The structure of long short-term memory (LSTM).

Because of these capabilities, LSTMs have been
studied and applied in a wide range of domains. Other
applications of LSTMs include financial time-series data;
in natural language processing, they are employed in
machine translation tasks that call for comprehension of
context across numerous words. where the time axis is
utilized to forecast stock prices. Moreover, LSTMs are
among the most flexible and strong Machine Learning
instruments. Deep learning jobs are resistant to noise and
varied lengths of input series. This is made possible by the
design's capacity for data processing and its success in
retaining context across long sequences. Because of its
adaptability, LSTM has become a crucial building block
in developing intelligent systems needing temporal data
processing.

3.4 Extratree

Figure 5 shows that the Extra Tree algorithm (ET), also
known as Extremely Randomized Trees, is an ensemble

learning technique applied to both regression and
classification problems. ET trains an ensemble of fully
randomized trees: at each node, a random subset of
features is considered and random split thresholds are
drawn; the best among these random splits is selected by
impurity reduction. Trees are grown to near-purity (or
constrained by min samples split/min samples leaf), and
predictions are averaged across ‘“n estimators”. This
aggressive randomization lowers variance and mitigates
overfitting on small-n tabular data. In tuning, we search
over n estimators, max depth, min samples split, min
samples leaf, and max features, selecting hyperparameters
by cross-validated performance on the training set. Unlike
traditional decision trees, ET introduces two levels of
randomness by selecting split points randomly from a
subset of features.
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Figure 5: The structure of extra tree algorithm

4 Results and discussion

The performance of Extra Trees (ET) was compared with
other machine learning models, including Gradient
Boosting (GB), Bagging, and Long Short-Term Memory
(LSTM), for predicting aboveground biomass (AGB),
belowground biomass (BGB), and total biomass (TB). ET
achieved the highest test-set performance with Rz = 0.997
(BGB), 0.997 (AGB), and 0.996 (TB), demonstrating its
robustness in capturing complex nonlinear relationships in
ecological data. In contrast, GB performed slightly lower
on the test set (R?2 = 0.994), which aligns with prior
findings that ensemble tree methods are more effective for
small, heterogeneous datasets.

Although ET showed excellent performance, its
results emphasized the difficulty of grabbing belowground
biomass (BGB) because of its natural noisiness. To solve
these problems, future studies should investigate bigger
datasets and add remote sensing capabilities.

The better performance of Extra Trees (ET) in
biomass estimation indicates its possible incorporation
with remote sensing processes in operational forestry
monitoring systems. For near-real-time estimates of
aboveground and underground biomass in forested
regions, for instance, ET might be combined with LiDAR

data or satellite-derived vegetation indices. Combination
might allow for more effective forest management
wherein quick biomass assessments are needed to guide
carbon sequestration calculations or conservation
initiatives.

4.1 Benchmark model comparison

To provide a benchmark for comparison, a linear
regression model was implemented using the same input
features. Performance metrics including VAF, R2, MAE,
MAPE, Max Error, and RMSE were calculated. Linear
regression achieved a VAF of 0.976, RZ of 0.975, and
RMSE of 0.157, indicating its limited ability to capture
nonlinear relationships in the data. In contrast, all machine
learning models, particularly ET, showed significantly
improved performance, highlighting the effectiveness of
ensemble learning for biomass prediction in tropical
forests.

The numerical outcomes of the linear regression
benchmark are reported in Table 5, which consolidates all
calculated performance metrics. While the results confirm
that linear regression provides a reasonable baseline, the
relatively higher error measures underscore its inadequacy
for modeling complex ecological interactions compared to
the nonlinear learners evaluated in this study.
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Table 5: Result of linear regression
Model VAF R2 MAE MAPE Max Error RMSE | EV
LR 0.976 0.975 0.097 24.500 0.573 0.157 | 0.976

4.2 Model comparison and interpretation

Across folds and on the held-out test set, ET exhibits the
highest R2?VAF and the lowest MAE/RMSE,
outperforming GB, Bagging, and LSTM. The
performance gap is most pronounced for BGB, where tree-
ensemble variance reduction appears to help with noisier
belowground signals. GB is competitive but slightly less
stable (higher fold-to-fold Std), consistent with boosted
trees’ sensitivity to learning-rate/depth trade-offs. LSTM
underperforms in this cross-sectional setting, which aligns
with its sequential inductive bias. Error distributions show
ET reduces extreme residuals (MaxError) relative to

Bagging/LSTM, indicating better handling of outliers.
And for the Cross-validation robustness. Table 6
summarizes 5-fold means + SD: ET (VAF 0.9970+0.0025;
R2 0.9967+0.0028; MAE 0.0295+0.0111) vs GB
(0.9958+0.0034;  0.9951+0.0037;  0.0446%0.0193),
Bagging (0.9934+0.0047; 0.9928+0.0046;
0.0568+0.0214), LSTM (0.9892+0.0065; 0.9873+0.0075;
0.0751+0.0238). Figure 6 supports ET's stability benefits.
These results fit the theoretical basis for model selection:
ET's fierce randomization reduces overfitting, while GB
and Bagging give competitive ensemble baselines; LSTM
is less successful given the lack of temporal structure in
the data.

Table 6: Five-fold cross-validation results for all models. Values reported as mean * standard deviation.

Model VAF Mean VAF Std Rz Mean R2 Std MAE Mean MAE Std
GB 0.995 0.003 0.995 0.003 0.044 0.019
ET 0.997 0.002 0.996 0.002 0.029 0.011
Bagging 0.993 0.004 0.992 0.004 0.056 0.021
LSTM 0.989 0.006 0.987 0.007 0.075 0.023

The possibility of overfitting arose from the very high
R2 and VAF numbers seen in training. We performed five-
fold cross-validation on the training data to investigate this
and include the mean + standard deviation of important
statistics in Table 6. With regularly low variation across
folds, ET produced the best average performance (R? =
0.996 + 0.002, MAE =0.029 + 0.011). The results verify
this. Gradient Boosting was competitive but showed
somewhat more volatility (R?2 = 0.995 + 0.003). Bagging
and LSTM exhibited less and more erratic outcomes with
LSTM displaying the greatest variability and lowest mean
R2. These results show that even if the R2 values of training
are excellent, the low standard deviations across folds

point to consistent generalization instead of overfitting.
This raises faith in the stated test results.

The small dataset size poses challenges for
generalizability, particularly in heterogeneous tropical
forests. To mitigate this, we applied 5-fold cross-
validation, reporting mean + standard deviation values for
each model. The low variability observed across folds for
ET (R2=0.996 + 0.002) and GB (0.995 + 0.003) indicates
stable generalization despite limited sample size.
Nonetheless, generalizability beyond the Central
Highlands is limited, and future studies should validate
these models on larger and more geographically diverse
datasets.
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Figure 6: Comparison of R2 values for BGB predictions across ET, GB, Bagging, and LSTM models.

Four models—Gradient Boosting (GB), ET (ET),
Bagging, and Long-Short-Term Memory (LSTM)—were
assessed in this comparative study across a range of
performance indicators; shown the best accuracy.
Achieving The best performance on The ET as against the
training data shows the lowest MAE and RMSE as well as
the highest VAF and R2. Among the test set, the highest
VAF and R? the lowest MAE and Mean Absolute
Percentage Error. Despite these strong results, ET had a

higher maximum error compared to Gradient Boosting.
LSTM performed poorly in terms of MAE, MAPE, and
RMSE, indicating lower accuracy and consistency in
predictions. Overall, Gradient Boosting and ET showed
the strongest performance, with ET slightly outperforming
Gradient Boosting on the test data as shown in Figure 7.
Also, the results based on Box plot given in Figure 8
emphasizes on the acceptable performance of ET.
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Figure 8: Comparison of model based on box plot

According to Figure 9, Gradient Boosting exhibited
the lowest maximum error on the training set (0.295),
indicating minimal extreme deviations. On the test set, its
maximum error was 28.645, which was still lower than
LSTM but higher than ETs. ET exhibited a higher
maximum error of 13.855 on the training set and 12.452
on the test set, indicating larger extreme deviations.
Bagging had the highest maximum error, with 195.863 on
the training set and 66.329 on the test set. LSTM had the
highest maximum error on the test set, 34.364, indicating

significant outliers. Gradient Boosting had the perfect R2
value of 1 on the training set and a very high R2 of 0.994
on the test set, signifying a model that fits the training data
excellently and generalizes well. ETs also demonstrated
strong R2 values (0.999 on training and 0.997 on test),
surpassing Bagging and LSTM. Bagging had a slightly
lower R2 than the top performers, while LSTM had the
lowest R2 on both training (0.995) and test sets (0.984),
reflecting poorer performance as confirmed in Figure 6.
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More details regarding the various metrics are compared
in Figure 10.
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Figure 9: Comparison

According to Figure 11, Gradient Boosting achieved
the lowest RMSE on training (0.0845), showing minimal
average squared deviation. Its test RMSE was 7.076, still
lower than most other models. ETs also had a lower

of model based on error

RMSE (4.282 on training and 4.886 on test) compared to
Bagging and LSTM. Bagging and LSTM had higher
RMSE values, with LSTM showing the highest test RMSE
(12.056), indicating larger errors in predictions.

{0777 Train I Test|
Bagging Bagging
3.406 0.982
LSTM LSTM
7.882 0.996
GB GB
0.061 1.000
ET 3.864 ET 0.998
W////////A 3665 MAE 0.999 |E\/I
d 5 6 71 8 9 10 00 05 10
MAE EV
0.981 66.329
0.985 34.365
LSTM 0ss| ™M 23.400
. 0.995 . - 28.645
/4 0295
0.998 12,453
ET 0.999 ET 13.856
0.0 02 04 06 08 10 IEI 0 50 100 150 200
R Max

Figure 10: Comparison of model based on metrics
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Gradient Boosting achieved the highest VAF on both  generalization. Bagging and LSTM showed lower VAF
the training and test sets, indicating it explained nearly all ~ scores, especially LSTM, which had the lowest VAF
of the variance in the data during training (99.999%) and  values in both sets, indicating a less effective variance
remained robust on the test set (99.522%). ETs also  explanation as shown in Figure 12. Besides, the results
performed well, with high VAF values of 99.903 during  given in Figure 13 emphasizes on the superiority of ET
training and 99.831 on the test set, suggesting strong  over the rest in terms of three case studies.
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Figure 12: Comparison of model based on hybrid
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Figure 13: Value of 3 case study according to ET for each case.

According to Figure 14, Gradient Boosting showed
the lowest MAE on the training data (0.06), indicating
minimal average deviation of predictions from actual
values. On the test set, however, Gradient Boosting's MAE
increased to 3.385, but it still performed better than other

models. ETs had a similar MAE on both training
(3.664584) and test (3.863) sets, while Bagging and
LSTM exhibited higher MAE values, with LSTM having
the highest MAE on the test set (9.451), reflecting larger
average prediction errors.
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Figure 14: RMSE according to ET for each case

According to hybrid outcome, the performance of ET
for each case study is acceptable as given in Figure 15 [5].
Gradient Boosting achieved the lowest MAPE on the
training set (0.003), showing minimal average percentage
error. It maintained a low MAPE of 0.0331 on the test set,
demonstrating effective relative error performance. ETs

had slightly higher MAPE values (0.314 on training and
0.065984 on test) but still performed better than Bagging
and LSTM. LSTM had the highest MAPE on the test set
(0.168), indicating relatively less accurate percentage
error. Gradient Boosting achieved a perfect explained
variance of 1 on training and a high 0.995 on test, showing
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excellent data fit. ETs also performed well, with a high
explained variance of 0.998316 on test. Bagging and
LSTM had lower explained variance values, with LSTM
being the least effective, indicating a less accurate

J. Chen

prediction errors. Its test STDError was 6.775, which was
still lower than Bagging and LSTM. ETs had a higher
standard deviation of error on both training (4.282) and
test (4.022), while LSTM had the highest test STDError

representation of the variance in the data. Gradient (8.767), indicating greater variability in errors as
Boosting showed the lowest standard deviation of erroron  demonstrated in Figure 16.
training (0.084), reflecting minimal variability in
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Figure 17: SHAP summary plot of feature importance for biomass prediction using extra trees.

The performance metrics outlined in Table 7 indicate
the following numerical results for the hybrid models. For
the training phase, GB achieved a VAF of 99.999 and an
Rz of 1, demonstrating nearly perfect prediction accuracy.
Its MAE was notably low at 0.060, while the RMSE was
0.084. In comparison, ET achieved a VAF of 99.903 and
an R2 of 0.999, with an MAE of 3.664 and an RMSE of
4.282. Bagging yielded a VAF of 98.172 and an R? of
0.981, with a higher MAE of 3.405 and an RMSE of
18.777. LSTM had a VAF of 99.552 and an R2 of 0.995,
but exhibited the highest MAE of 7.881 and an RMSE of
9.249. For the testing phase, ET stood out with a VAF of
99.831 and an R2 of 0.997, maintaining a low MAE of
3.863 and an RMSE of 4.886. In contrast, LSTM had a
VAF 0f 99.199, an R? of 0.984, with an MAE of 9.451 and
an RMSE of 12.056.

The detailed error metrics for the prediction of AGB,
BGB, and total biomass are given in Table 8. For its BGB,
the ETs system achieved the best training VAF of
99.90391 and for AGB 99.879, respectively, with the R?
values of 0.999 and 0.998 correspondingly. Since MAE of
3.664 for BGB and of 3.361 for AGB, while the RMSE
for BGB was equal to 4.282, and for AGB - 4.129. The
VAF for ETs was 99.889 when calculating TB, R2 stood
at 0.998, MAE was 3.738, and RMSE of 4.602. In the
testing phase, it was 99.863 for AGB and 99.831 for BGB.
The corresponding R? values were 0.997 and 0.997 for
AGB and BGB, respectively. For MAE, the values were
3.505 for AGB and 3.863 for BGB in reverse order. And
finally, their RMSE was 4.546 and for BGB, 4.886. TB-
VAF: 99.740, Rz 0.996, MAE: 3.879, RMSE: 5.956.
These reflect a much better performance through the ETs

model in predicting biomass with higher accuracy for
types and phases variation. MAE quantifies the average
deviation from the true biomass values. ET’s MAE of 3.86
indicates a high level of precision, making it more suitable
for practical applications like carbon accounting and forest
management. RMSE penalizes larger errors, capturing the
impact of outliers. ET’s RMSE (4.89) is lower than
Bagging and LSTM, reflecting more consistent
predictions even for extreme biomass values. GB has
slightly lower MAE than ET, but its higher RMSE
suggests that it occasionally produces larger deviations,
reducing reliability in field applications. Practical
Implication: These metrics demonstrate that ET provides
both accurate and robust predictions, which is critical for
forest monitoring programs where errors in biomass
estimates propagate directly into carbon stock
assessments.

Maximum error for ET was 12.452 on the test set,
compared with 28.645 for GB and 34.364 for LSTM.
STDError for ET was 4.022, lower than Bagging (13.379)
and LSTM (8.767). The lower maximum error and
standard deviation of ET indicate more reliable
predictions across all samples, especially in handling trees
with extreme biomass values. This further supports ET’s
suitability for real-world ecological applications, where
some plots or trees may deviate significantly from average
conditions.

ETs (ET): Best overall performance, robust to
outliers, effectively captures nonlinear relationships, and
generalizes well. Gradient Boosting (GB): Excellent on
training, slightly lower generalization on test, sensitive to
extreme values (higher RMSE). Bagging: Moderate
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performance, higher variability, less suitable for small
datasets with high feature complexity. LSTM: Poor test
performance due to limited dataset size and inability to
capture spatial relationships effectively; suitable mainly
for sequential or temporal data.

ET’s performance demonstrates that Machine
Learning can surpass traditional allometric models,
providing more reliable biomass estimates for both
aboveground and belowground components. Accurate

predictions directly inform carbon sequestration
calculations, forest management, and conservation
planning. The lower variability and robust test

performance indicate that ET is suitable for operational
forestry applications, where consistency and accuracy are
essential.

To further quantify robustness, we computed 95%
confidence intervals on the test-set metrics using bootstrap
resampling. For ET, Rz = 0.997 (95% CI: 0.996-0.998)
and RMSE = 4.89 (95% ClI: 4.32-5.51). GB achieved R?
= 0.994 (95% CI: 0.993-0.996), RMSE = 7.08 (95% ClI:
6.25-7.92). Bagging and LSTM exhibited wider intervals,

J. Chen

confirming less stability. These results are consistent with
the low standard deviations reported in the cross-
validation analysis (Table 6), supporting the reliability of
ET’s superior performance.

SHAP values for Extra Trees were calculated to
evaluate feature contributions and so explain model
behavior. Figure 17 shows the SHAP summary chart, in
which predictors are ordered by their mean influence on
model output amount. The most important parameters
discovered were structural measurements, especially
diameter at breast height (DBH) and total tree height, then
canopy area and altitude. While categorical ecological
indicators showed smaller but non-negligible effects, soil
type and slope showed modest contributions. SHAP
scatter plots further show Consistent with ecological
predictions, rising DBH and tree height greatly boosted
forecast biomass. These findings validate the model's
predictive patterns with established ecological links,
therefore bolstering confidence in its utility for estimating
forest biomass.

Table 7: Error metrics derived from the application of hybrid models.

Optimizer GB. | ET | Bagging | LSTM
Train
VAF 99.999 99.903 98.172 99.552
R? 0.999 0.999 0.981 0.995
MAE 0.060 3.664 3.405 7.881
MAPE 0.003 0.314 0.022 0.752
MaxError 0.295 13.855 195.863 23.4
RMSE 0.084 4.282 18.777 9.249
ExplainedVariance 1 0.999 0.981 0.995
STDError 0.084 4.282 18.677 9.242
Test
VAF 99.522 99.831 98.136 99.199
R? 0.994 0.997 0.981 0.984
MAE 3.385 3.863 5.289 9.451
MAPE 0.033 0.065 0.032 0.168
MaxError 28.645 12.452 66.329 34.364
RMSE 7.076 4.886 13.411 12.056
ExplainedVariance 0.995 0.998 0.981 0.991
STDError 6.775 4.022 13.379 8.767
Table 8: Error metrics derived from the application of hybrid models.
AGB | BGB | TB
Optimizer Train
VAF 99.879 99.903 99.889
R? 0.998 0.999 0.998
MAE 3.361 3.664 3.738
MAPE 0.429 0.314 0.337
MaxError 11.585 13.855 13.685
RMSE 4.129 4.282 4.602
ExplainedVariance 0.998 0.999 0.998
STDError 4.129 4.282 4.602
Test
VAF 99.863 99.831 99.74
R? 0.997 0.997 0.996
MAE 3.505 3.863 3.879
MAPE 0.064 0.065 0.058
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MaxError 9.755 12.452 23.966
RMSE 4.546 4.886 5.956
ExplainedVariance 0.998 0.998 0.997
STDError 3.199 4.022 4.997

4.3 Discussion

The results demonstrate that ETs (ET) achieved superior
performance compared to Gradient Boosting, Bagging,
LSTM, and a linear regression baseline. These outcomes
are consistent with prior studies reporting the
effectiveness of ensemble tree models for ecological
prediction tasks. In particular, ET’s strength lies in its
ability to handle small, destructively sampled datasets by
leveraging aggressive randomization in both feature
selection and split thresholds, which reduces overfitting
and improves generalization. This characteristic is critical
in tropical forest applications where datasets are often
limited in size and contain noisy, heterogeneous
measurements. Compared  with state-of-the-art
approaches based on remote sensing and deep learning,
ET provides competitive or superior accuracy despite
relying on smaller field-based datasets. This suggests that
ET is well-suited for scenarios where destructive sampling
restricts sample size, and where nonlinear relationships
between tree structure, site descriptors, and biomass must
be captured reliably.

Nonetheless, some performance gaps were observed,
particularly in belowground biomass (BGB) estimation,
which is inherently noisier and less directly observable.

These gaps may be explained by collinearity among
predictors, class imbalance between tree size categories,
or sparse distribution of extreme values in the dataset.
Future research could address these challenges by
enlarging sample sizes, integrating additional remote
sensing features, or applying hybrid ensemble—deep
learning frameworks.

Overall, this study reinforces the value of ET as a
robust, variance-reducing ensemble model for ecological
prediction, while highlighting areas where ecological data
properties still limit predictive performance

4.4 Computational cost comparison

While Extra Trees (ET) outperformed Gradient Boosting
(GB), Bagging, and Long Short-Term Memory (LSTM) in
accuracy, it comes with a computational cost. As shown in
Table 9, ET required 1.142 seconds and 8.42 MB of
memory on average, making it more computationally
intensive than GB (0.973 s, 0 MB) and Bagging (0.250 s,
2.84 MB). LSTM (0.446 s, 0 MB) was also faster, but less
effective in biomass estimation. These findings highlight
that ET offers the best performance, albeit at a higher
computational cost, which must be considered when
deploying in real-time or field-based forestry applications.

Table 9: Computational cost comparison of models.

Model Time (s) Memory (MB)
GB 0.973 0

ET 1.142 8.421

Bagging 0.250 2.835

LSTM 0.446 0

5 Conclusion

Indeed, according to the evidence provided, the ET
method has yielded promising results regarding biomass
estimation in tropical forests compared with other
Machine Learning models: GB, Bagging, and LSTM
networks. Particularly, the ET got amazing training VAF
results of 99. 903 for BGB, 99. 879 for AGB, and 99. 889
for TB. Its R-squared values 0.999 were for as a result, it
was the best-fit model with a Mean Absolute Error of 3.
664 for ET, 0. 998 for BGB and 0. 998 for TB. The Root
Mean Square Errors of 4. 282, 4. 129, and 4. 602 for the
related biomass are given in respectively. Respectively
values for BGB, AGB, and TB are 3. 361 and 3. 738.
Because the ET model precisely and consistently
estimates biomass, as demonstrated by the emphasis of
these findings is its capacity as a tool for measuring
biomass; a device that could be used to enhance carbon
accounting and forest management techniques.

To provide more accurate forecasts, future studies
should focus on combining ETs with other sophisticated
Machine Learning prediction methods and their hybrid

models. Increasing the dataset more would let coverage of
a far wider spectrum of forest kinds and environmental
conditions, therefore improving the generalizing ability
and stability of the model. ET's coupling with remote
sensing methods and high-resolution photographs might
improve the accuracy of forest biomass distribution and
changes in structure. Additionally, creating a real-time
ET-based monitoring system would make dynamic
woodland management easier so that to preserve the
Adopt more Efficient ways to slow down climate change.

Future research should explore the integration of ET
with high-resolution remote sensing data, such as satellite
imagery (Landsat, Sentinel) or UAV-based LiDAR, to
improve biomass prediction accuracy across larger
forested regions. By incorporating these technologies, ET
can provide spatially explicit, real-time biomass estimates,
which could support dynamic forest management systems
and help track carbon stock changes over time.
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