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With the acceleration of urbanization, the vibration control of high-rise buildings is becoming
increasingly prominent. To address the limitations of traditional methods on convergence and robustness
against noise, this study proposes a hybrid intelligent control model that integrates a genetic algorithm
with a long short-term memory neural network, while incorporating an improved sparrow search
algorithm for parameter refinement and a digital twin framework for bidirectional data-driven control.
Numerical experiments using seismic records from the PEER Ground Motion Database demonstrated that
the proposed model achieved approximately 20% faster convergence compared with particle swarm
optimization, whale optimization, and artificial fish swarm algorithms. The root mean square error of
vibration prediction was reduced to 0.0180, the identified stiffness error of each floor remained below
1%, and the total control energy was reduced by about 15%. These results confirm the advantages of the
proposed method on prediction accuracy, control efficiency, and stability, and highlight its potential

applications in seismic design of high-rise structures and smart construction practices.

Povzetek:

1 Introduction

Structural vibration control technology, as a cutting-edge
field of science and technology, encompasses multiple
disciplines, including civil disaster prevention, automatic
control, and materials electronics [1]. Although traditional
vibration control technology has solved theoretical
complex system control problems, many difficulties still
exist in practical engineering fields, such as significant
differences between structural control system modeling
and actual construction, and low sensor reliability in
control algorithms [2]. Currently, with the development of
science and technology, building structural vibration
control technology has greatly improved, contributing to
enhanced seismic resistance and comfort of structures. By
adjusting structural vibration control strategies, engineers
can find specific solutions to meet project requirements
[3]. Structural vibration control strategies not only
improve the dynamic performance of structures but also
optimize parameter settings [4]. Existing methods include
using Euler-Bernoulli beams for system dynamic analysis,
building structural models based on the Newton-Euler
method, and approximating system dynamics using the
assumed mode method for wireless characteristics. These
methods have greatly facilitated the design of subsequent
controllers [5]. However, they also bring many challenges,
such as incomplete controller designs and the inability of
building walls to connect with vibration systems.
Therefore, in response to difficulties in controlling
vibrations of high-rise buildings and the unpredictability

of sudden faults, this study constructs a hybrid model for
intelligent control of building structural vibration,
combining  Multi-objective  Optimization  Genetic
Algorithm (MOGA) and Long Short-Term Memory
(LSTM) artificial neural network. During the model
construction, the Multi-strategy Improved Sparrow Search
Algorithm (MISSA) and Digital Twin technology are also
utilized to predict and analyze the structural stability. It is
expected that this model will greatly improve vibration
control in high-rise buildings and have broader application
prospects in the field of vibration control.

The innovation and contribution of this research lie in
constructing a fusion model framework for intelligent
control of building structural vibration based on the
existing algorithms. For the first time, multi-objective
genetic optimization, temporal depth prediction, global
search enhancement, and digital twin technology are
organically combined to form a closed-loop mechanism of
"prediction - optimization - control". This model can not
only improve the accuracy of vibration response
prediction and real-time control strategy, but also achieve
dynamic simulation of structural safety and fault adaptive
capability through digital twin, providing a new approach
for intelligent control in complex building scenarios.

2 Related work

In recent years, structural vibration control technologies
have evolved from traditional passive devices to
intelligent algorithm-driven methods. Passive control, as
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Figure 1: The specific process of the MOGA.

one of the earliest approaches, reduces structural
responses by adding damping or mass adjustments.
Chowdhury S et al. reviewed inertially amplified passive
vibration control devices, demonstrating the potential
applications of linear and nonlinear isolation systems in
multi-degree-of-freedom  structures [6]. Vazquez-
Greciano A et al. and Yang F et al. summarized the
development of tuned liquid dampers and tuned mass
dampers, pointing out their advantages in reducing both
horizontal and vertical vibrations, while also highlighting
the challenges of optimal design and multi-frequency
adaptability [7-8]. In addition, Patsialis D et al. proposed
an optimization framework that coupled tuned mass
dampers with inerter devices, emphasizing the importance
of considering nonlinear behavior in multi-storey
structures to improve vibration reduction performance [9].
In the field of semi-active  control,
magnetorheological dampers have gradually become a
research hotspot. Cruze D et al. designed single- and
multi-coil dampers and verified their energy dissipation
performance under low power consumption, proving their
applicability in seismic-resistant buildings and foundation
isolation [10]. Bhowmik K et al. combined the LQG
control strategy with the Bouc-Wen model to achieve
semi-active vibration control of soft-storey buildings,
significantly reducing inter-storey responses under
various seismic excitations [11]. Kontoni D P N et al.
further indicated that tuned mass dampers could
effectively mitigate SSI effects in irregular steel high-rise
buildings [12]. Zhang C W proposed the Active Rotary
Inertia Driver (ARID) system, expanding the application
scope of active control in bridges and large structures [13].
With the development of artificial intelligence and
data-driven methods, Al-based vibration monitoring and
control have gradually emerged. Zar A et al. reviewed the
latest advances in vibration-based damage detection
methods, pointing out the potential of deep learning in
feature extraction and damage identification, while also
revealing problems such as overfitting and data
insufficiency [14]. AL Houri A et al. focused on the
application of artificial intelligence in passive control
structure design, emphasizing its advantages in optimizing
isolation systems and enhancing disaster resilience [15].
In conclusion, extensive research has been conducted
in structural vibration control by scholars worldwide, with

notable achievements in vibration control. However, there
is limited research on intelligent vibration control for
building structures, particularly in areas such as state
feature extraction and control goal recognition. Therefore,
this study proposes a hybrid model for building structural
vibration intelligent control, combining multi-objective
optimization and LSTM. The hybrid model performs
system parameter identification and control strategy
calculation, making structural vibration control more
effective and further enhancing the applicability of the
control system.

3 Intelligent control
structural vibration
MOGA and LSTM

The study considers a multi-storey shear-type high-rise
building, where each floor is treated as a single degree-of-
freedom, with mass, stiffness, and damping characteristics
taken into account. Under external loads such as
earthquakes or wind excitations, the structure exhibits
inter-storey displacements and accelerations. The control
system obtains structural responses through sensors
placed on key floors, while actuators apply the control
forces. The main objective of this study is to significantly
reduce inter story displacement and acceleration under
limited maximum control force constraints, thereby
ensuring the stability and safety of the structure under
extreme load conditions.

of building
combining

3.1 Design of hybrid algorithm based on
MOGA and LSTM

The construction industry has now entered the stage of
intelligent development, and control algorithms are
capable of precisely managing building structures [16].
However, with the continuous increase in the size and
complexity of building structures, traditional control
algorithms tend to suffer from overfitting and have
difficulty handling complex analyses [17]. To address
these issues, this study proposes an intelligent control
method that combines MOGA and LSTM, enabling
intelligent optimization for complex building structures.
The study proposes the following research questions and
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Figure 2: LSTM internal structure.

hypotheses: Can the integration of MOGA and LSTM
improve the accuracy and convergence efficiency of
structural vibration control? Can MISSA enhance global
search ability and avoid local optima? Can digital twin
technology improve the generalization and stiffness
identification accuracy of the model in complex
buildings? Accordingly, three hypotheses are formulated:
H1: MOGA-LSTM achieves higher prediction accuracy
than some existing optimization algorithms. H2: MISSA
improves convergence speed and global optimization
performance. H3: Digital twin technology can effectively
enhance stiffness identification accuracy.

The specific process of the MOGA is shown in figure
1.

As shown in figure 1, the principle of MOGA is
composed of encoding and population initialization,
fitness evaluation, selection, crossover, and mutation
operations, as shown in figure 1. The crossover and
mutation operations in MOGA help with spatial
exploration and prevent premature convergence,
maintaining population diversity. MOGA can perform
single-objective optimization. The fitness function model
is denoted in equation (1).

minJ (X )= aPIDR ,, (X )+ BRMS,., (X )+7Eq, (X ) (2)

In equation (1), X represents the parameter to be
optimized encoded by MOGA. PIDR_,, is the peak inter-

story displacement ratio, which is used to measure the
maximum inter-story deformation of the structure under
earthquake action. RMS,__ is the root mean square of the

floor acceleration, which reflects the comfort and safety of
the structural vibration. E_, is the control energy, which

is obtained by integrating the square of the actuator control
force over the entire time history and reflects the control
cost. « , B, and y respectively represent weight

coefficients, which are used to balance the importance of
the three factors, thereby comprehensively optimizing
structural safety, comfort, and economy. The multi-
objective optimization setting of MOGA is shown in
equation (2).

I ={i, i, iy} ()

Inequation (2), | represents the individual sequence.
i, denotes the individual. d, represents the total sum of

individual crowding distances. MOGA integrates multiple
objective functions, as shown in equation (3).

F ()= w (1 ®

In equation (3), F(x) represents the objective

function, and w is the weight vector, with w, >0 .

MOGA optimizes building load objectives and improves
the energy-efficient design of building structures. LSTM
captures long-distance data from information and adjusts
parameters. Therefore, the study combines the improved
GA with LSTM. The internal structure of LSTM is
presented in figure 2.

As shown in figure 2, the LSTM mainly consists of
the input gate, forget gate, output gate, and cell state. The
cell state selectively allows information to pass through or
be forgotten, maintaining stability during processing. The
forget gate determines which information to discard from
the cell state, the input gate updates the cell state, and the
output gate decides the output information. Thus, the
LSTM can determine the direction of the time series. The
updated input gate of LSTM is shown in equation (4).

i =0 (W, x[%,h_]+b)
C, =tanh(W, x[x,,h_,]+b))
In equation (4), W, and W, represent the weights. b

(4)

and i, represent the biases, which decide whether the

input gate data can enter the t state. The greatest
advantage of LSTM s its memory capability, as it
connects both the previous and the subsequent time steps,
continuously updating information in the predictive
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Figure 3: MOGA-LSTM control optimization algorithm flow.

monitoring memory block. Therefore, to address the
challenges posed by the complex and variable data of
building structures, as well as the potential failures of the
building control system, this study combines the global
search capability of MOGA and the effective sequence
data processing ability of LSTM. This study proposes an
MOGA-LSTM-based control optimization algorithm to
improve the building structure. The algorithm flowchart is
presented in figure 3.

As shown in figure 3, MOGA-LSTM is mainly
divided into the input layer, LSTM layer, GA layer, and
output layer. First, the data is normalized and divided.
Then, the training data is processed, and the hidden data
features are extracted through multiple layers of LSTM.
Next, the characteristics of MOGA are used to determine
the actual parameters of the LSTM layer. Finally, the data
from the transmission process is weighted and summed in
the output layer, and the error in the structure is calculated.
The final output is shown in equation (5).

rt :G(Wr ><|:Xt'ht—1j|-‘-br)
h, =1, xtanh(C,)
In equation (5), W, represents the final output

weights. b, represents the final bias of the input gate. h,

represents the final output of the hidden layer. When the
forget gate filters the information, the calculation is shown
in equation (6).

{L = (W, x[x.h,]+b)
C, =i xC +1,xC,_,

In equation (6), at time t, the input to the neuron is
X . h represents the output of the neuron. o is the

®)

(6)

activation function of the neuron. |, is the final result of

the forget gate. Therefore, MOGA is primarily employed
to perform global optimization of key hyperparameters in
LSTM. Its search space covers network structure, learning
rate, and batch size, with individuals represented using

real-number encoding. The fitness function jointly
considers prediction error, inter-story drift suppression,
and control energy to achieve multi-objective
optimization. Meanwhile, constraints are imposed to
ensure that the results satisfy actuator saturation and
structural stability requirements, thereby guaranteeing
their physical rationality and engineering feasibility.

3.2 Design of hybrid model for building
structural vibration intelligent control
based on MISSA and digital twin

The vibration stability of building structures plays a
decisive role in the quality of buildings. Unavoidable
natural disasters pose significant challenges to the design
of building structures [19]. Currently, in the field of
building structure control, there are issues in control
algorithms and actuator development, such as large
modeling errors compared to the actual structure and low
reliability of control systems [20]. While MOGA-LSTM
offers some assistance in optimizing structural data, there
are still shortcomings in structural vibration stability.
Therefore, to address issues such as the time delay in
building structure control forces and prioritization of
measurement points, this study improves MOGA-LSTM
by incorporating a multi-strategy enhanced sparrow
search algorithm for building structural vibration
intelligent control. MISSA is mainly embedded as a global
optimizer within the MOGA-LSTM model to further
refine candidate solutions through local fine-tuning. The
optimization parameters mainly focus on the learning rate
of LSTM and the distribution of hidden neurons, aiming
to improve the convergence speed and stability of the
model under complex seismic excitations. MISSA is
activated after MOGA converges to a near-optimal
solution, and it enhances population diversity through
chaotic initialization, sine-cosine updates, and Lévy flight
strategies, thereby avoiding local optima and achieving
superior hyperparameter configurations in the
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later iterations. The improved Circle chaotic mapping
initialization of the population is shown in equation (7).

Xig = mod{dlxk +d, —isin(dlnxk )1} (7
d,z
In equation (7), k represents the dimension of the
solution. d,, d,, and d, represent the parameters. The
position of the MISSA discoverer is improved by
incorporating the cosine-sine algorithm. The update
calculation is shown in equation (8).
@ = @i +(Opay — O )-SIN (L7 /T, )
R, <ST
,R, >ST
8

i :{(1-w).x;,m + @8I (1)]5, Xy = X4

" (1-w)- X, +a)-cos(|r1)-‘r2 Kpest = X

In equation (8), t represents the number of iterations.
o is the nonlinear decreasing factor, X, . is the position
of the n -th sparrow at the t -th iteration in the m -th
dimension, and r, represents the random number on
0~27 . MISSA adopts the Lévy flight strategy to
improve optimization accuracy. The position update for
the joiner is shown in equation (9).

0.01u
Levy(x)= 2

vl ©)
X:1+r1n = Xt + (thJest - X\tnlorst ) A LeVy(d )

best

In equation (9), ¢ ranges within [1,3]. 4 is arandom

number between 0~1 . d represents the problem
dimension to be solved. The position update for the
sentinel in MISSA is shown in equation (10).

Xl:est +ﬂ|xrt1m _Xéest ’if’ fn > fg
Xrt:ri = t |Xrt1,m_x\:vorst . (10)
O R IALEATLLI
’ (f,—f,)+e

In equation (10), X, represents the best position,

B is a normally distributed random number, and 1 is the
variance value. f, represents the fitness value of the n -
thindividual, where f; represents the best fitnessand f,

represents the worst fitness. In summary, MISSA can
perform global optimization on complex structural data
and avoid the local optima. The specific process of MISSA
is shown in figure 4.

In figure 4, the sparrow algorithm improved with
multiple strategies initializes the population by using
circle chaotic mapping. After initializing the population,
the positions of discoverers and joiners are updated using
the cosine strategy and Lévy flight strategy. Once the
positions are updated, the fitness of the updated positions
is calculated. The algorithm then checks whether the
individual positions exceed the boundaries of the search
space and whether the iteration count satisfies the
conditions. As building structural vibrations have poor
adaptability to external environments due to time delays
during actual control, this study combines the MISSA
global search with digital twin technology to perform
safety analysis and prediction on the building structural
framework, enhancing the intelligent control of building
structures. Digital twin technology enables dynamic
collaboration of structures and supports virtual physical
interaction configuration modeling to achieve structural
security and intelligent control. The safety intelligent
framework of the digital twin building structure is shown
in equation (11).

FDT = (SPr’ Svm'Ptd 1 Lfa'Cn) (11)

In equation (11), S, and S, represent the physical
structure entity and the virtual structure model. P, and
L, represent the twin data processing layer and the

functional application layer. C, represents the

connections between the structural components. The
specific structural safety intelligent control framework of
digital twin technology is shown in figure 5.
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In figure 5, the structure security intelligent The global optimization ability of MISSA is employed to

framework based on digital twin mainly consists of
functional application layer, twin data processing layer,
and virtual and physical structure simulation modules. The
twin data processing layer incorporates both temporal and
spatial dimensions. In the temporal dimension, vibration
response data are collected in real-time by sensors and
transmitted to the twin, where the virtual model
dynamically updates its state based on the physical data
and then feeds the corrected prediction back to the
physical structure, thereby achieving bidirectional
synchronization between the virtual and physical systems.
In the spatial dimension, the twin model simultaneously
analyzes load-bearing parameters and performance
parameters to assess the overall structural safety. With
regard to the data processing pipeline, the twin
sequentially executes data acquisition, cleaning, feature
extraction, prediction, and comparison with subsequent
correction. To address sensor noise and model uncertainty,
error correction methods and confidence interval
constraints are applied, which improves stability and
reliability. Furthermore, real-time constraints such as
upper limits on sampling frequency and feedback delay
have been introduced to ensure that prediction and control
commands can be applied to physical structures within
acceptable engineering time windows.

The digital twin assumes different roles at different
stages. During the training stage, it generates or augments
diverse datasets based on the virtual model to enhance the
generalization capability of the MOGA-LSTM. During
the inference stage, the outputs of the MOGA-LSTM are
compared with the simulation results of the virtual model.

refine parameters and update strategies. Through this
approach, digital twin can not only intelligently analyze
building structures, but also reduce modeling errors in
design and construction processes, thereby improving
safety prediction and control performance under complex
environmental conditions. The specific expression of its
safety control is given in equation (12).

H ey on) =9 (o tlyr i tty)  (12)

In equation (12), f (¢, ¢, ¢, ) represents the set

of mechanical parameters. R denotes the limits within
the parameter specifications. g (4, 44, 4, ) represents

the set of intelligent control measures. Therefore, to
address issues such as the time-varying nature of building
material properties and unstable safety performance, this
study combines MOGA-LSTM with global optimization
and digital twin technology of MISSA for prediction and
simulation. A hybrid model based on MISSA and digital
twin is developed for intelligent vibration control of
building structures. The mechanism of this model
integration is shown in figure 6.

From figure 6, digital twin technology enables
simulation and measurement output, while the
combination of MISSA and MOGA-LSTM allows for
safety prediction and key parameter setting of the
structure. The data is then analyzed and predicted
intelligently, and transmitted to the multidimensional
physical system for precise execution. Driven by digital
twin and MISSA algorithms, a hybrid model of
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intelligent vibration control for building structures based
on MISSA and digital twin can detect and capture unsafe
factors in the structure, thereby controlling the key factors
of building structural vibration.

4  Performance verification of the
improved hybrid model for
intelligent vibration control of
building structures

4.1 Comparison and analysis of MOGA-
LSTM performance

To highlight the superior performance of MOGA-LSTM,
the study compared it with Particle Swarm Optimization
(PSO), Whale Optimization Algorithm (WOA), and
Artificial Fish Swarm Algorithm (AFSA). In terms of the
experimental environment, Matlab R2019b is used as the
primary software, supplemented by Python 3.9. The deep
learning framework is PyTorch 1.12.1, with GPU
acceleration enabled by CUDA 11.6. Numerical
computation and data processing rely on NumPy 1.21 and
SciPy 1.7, while visualization is carried out using
Matplotlib 3.5 and Seaborn 0.11. The hardware
configuration includes an Intel i7-12650H @ 2.30GHz
CPU, an NVIDIA RTX 3070 GPU, and 32 GB of memory,
running on the Windows 11 operating system. In terms of
algorithm parameter settings, to ensure fairness, the
maximum number of iterations for all optimization
algorithms is set to 100, and the fitness function evaluation
criteria are kept consistent. For PSO, the population size
is 50, the inertia weight is 0.7, and both learning factors c1

and c2 are set to 1.5. For WOA, the population size is 50,
and the encircling parameter decreases linearly. For
AFSA, the fish school size is 50, the visual range is 5, the
step length is 0.5, and the crowding factor threshold is
0.75. In the MOGA-LSTM, the genetic algorithm takes a
population size of 100, a crossover probability of 0.8, and
a mutation probability of 0.1. The maximum number of
iterations is also set to 100. The LSTM network consists
of two hidden layers with 128 neurons each, a learning rate
of 0.001, and a batch size of 64. All methods are run with
the same data split and random seed to ensure fairness and
reproducibility of the experimental results.

The study employs two public datasets, namely the
PEER Ground Motion Database and the IASC-ASCE
SHM Benchmark Dataset. The former contains typical
seismic acceleration time-history records, which are used
to verify the model’s vibration prediction and control
performance under earthquake loads. The latter provides
frame structural vibration response data from a structural
health monitoring benchmark, which are used to train and
test the model’s parameter identification and control
performance. To validate the convergence performance of
the MOGA-LSTM hybrid algorithm in building
structures, the four control algorithms, including PSO,
WOA, AFSA, and MOGA-LSTM, are tested using the
Schaffer benchmark function, and the test results are
shown in figure 7.

As shown in figure 7(a), AFSA achieved complete
convergence under the Schaffer benchmark function after
40 iterations, while PSO and WOA converged between the
20th and 40th iterations. In contrast, MOGA-LSTM
remained relatively stable throughout the entire 100
iterations. From figure 7(b), it was evident that MOGA-
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Table 1: Results of ablation experiment.
Configuration Convergence lterations Best Validation RMSE RMSE Std
(i) LSTM only 100 £ 0 0.0320 0.0040
(i) LSTM + MOGA 95+3 0.0241 0.0021
(i) LSTM + MISSA 92+4 0.0232 0.0025
(iv) LSTM + MOGA + MISSA 78+5 0.0190 0.0014
(v) LSTM + MOGA + MISSA + Digital twin 68+ 4 0.0180 0.0012

LSTM converged after 6 iterations, while PSO, WOA, and
AFSA all showed less effective convergence. Therefore,
MOGA-LSTM demonstrated lower training errors and
better convergence performance. Further ablation
experiments are conducted, and the results are shown in
Table 1.

From Table 1, with the progressive introduction of
GA, MISSA, and the digital twin module, the model
exhibited clear improvements in convergence speed,
prediction accuracy, and stability. When GA or MISSA
was added, the number of iterations decreased and the
validation error was reduced, indicating that both global
search and local refinement enhanced model performance.
When GA and MISSA were combined, the convergence
was significantly accelerated, errors were further reduced,
and the results became more stable. After adding the
digital twin, the model achieved the best performance on
convergence efficiency and prediction accuracy, while
also maintaining high consistency across multiple runs. In
summary, the complete framework performed best across
all metrics, confirming the necessity and effectiveness of
incorporating each module.

To better illustrate the prediction performance of
MOGA-LSTM in building structural control, this study
takes floor acceleration response as the primary prediction
variable. The data is sourced from the PEER Ground
Motion Database (such as the EI Centro seismic records),
which drives the vibration response of the IASC-ASCE
benchmark frame structure. All seismic records are
sampled at a rate of 0.01 s, with a total duration of 60 s.
The data is divided into 70% for training, 15% for
validation, and 15% for testing, and zero mean Gaussian

noise and 0.005¢g standard deviation are added to the test
set to simulate sensor measurement errors. The predicted
values and true values of PSO, WOA, AFSA, and MOGA-
LSTM are compared, and the results are shown in Figure
8.

As shown in figure 8(a), the predicted values of AFSA
for sample 1 mainly concentrated in the central region,
with error fluctuations predominantly in the range of 40-
45. In figure 8(b), PSO exhibited larger error fluctuations
for sample data between 15 and 50, and the error was more
evident when compared to the real values. In figure 8(c),
WOA showed significant error fluctuations between
sample data 25 and 75, with clear up-and-down variations.
However, as shown in figure 8(d), MOGA-LSTM’s
predicted values aligned closely with the real values, with
a prediction accuracy of 97.56%. Therefore, MOGA-
LSTM achieved higher prediction accuracy, smaller error
fluctuations, and better data control analysis. To further
highlight the prediction performance in building
structures, the study also compared the mean squared error
and prediction error for PSO, WOA, AFSA, and MOGA-
LSTM. In addition to these four algorithms, Multiple
Objective Particle Swarm Optimization (MOPSO) and
Spider Wasp Optimizer (SWO) are added to increase the
diversity of the comparison results. The comparison
results are shown in Table 2.

As shown in Table 2, PSO had the longest running
time at 51s, with the maximum relative error reaching
61.24%. MOGA-LSTM had the shortest running time at
13s, with a root mean square error of 1.248 and a
maximum relative error of 15.142%. MOPSO had the
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Figure 8: Predicted state comparison chart.
Table 2: Comparison of mean square error and prediction error results.
Algorithm RUNNING time/s Root mean square | Maximum relative | Mean absolute | Mean relative
g 9 error error/% error/% error/%
PSO 51 5.014 61.245 5.210 11.487
WOA 43 4.348 48.361 4.168 7.468
AFSA 60 4.126 34.786 4.032 6.875
MOGA-LSTM 13 1.248 15.142 1.478 4.210
MOPSO 25 3.216 26.132 2.676 5.168
Swo 36 2.487 30.456 2.148 5.014

second longest running time at 25s, with a mean relative
error of 5.168%. The mean relative error of SWO was very
close to MOPSO, with a difference of only 0.514%. The
MOGA-LSTM hybrid algorithm demonstrated higher
operational efficiency in building structure control, better
handling data errors, and strengthening structure failure
prediction.

4.2 Performance analysis of the hybrid

model for intelligent vibration control
of building structures with integrated
algorithms

To further verify the superior performance of the building
structural vibration intelligent control model based on
MOGA-LSTM, it is compared with the building structural
vibration intelligent control models constructed using
PSO, WOA, and AFSA algorithms. Since the building
structural vibration control system is susceptible to natural
factors, which can lead to structural safety instability, the
study tests the generalization performance of the MOGA-
LSTM-based building structural vibration intelligent

control model. In the simulation, the control force is
generated by active mass dampers installed at the top and
critical floors of the structure. To ensure engineering
feasibility, the maximum control force is set to 1x108 N,
while considering force and velocity saturation
constraints. All stiffness parameters are expressed in N/m,
and control forces are expressed in N to maintain
consistency in physical units. The uncontrolled structural
response is selected as the baseline for evaluating the
relative improvement achieved by the proposed control
strategy. The results for models constructed using
MOGA-LSTM, PSO, WOA, and AFSA are shown in
figure 9.

From figure 9(a), influenced by the Kobe wave, the
control force of the MOGA-LSTM model was close to the
original applied force. The WOA model showed a
maximum control force of 2x107 N at the 11th floor. From
figure 9(b), the AFSA model showed a maximum control
force of 3x107 N at the 16th floor, with a significant error
compared to the original maximum control force
calculation. In conclusion, the MOGA-LSTM model
exhibited better generalization
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(a) Three-dimensional vibration deformation of
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Figure 10: Comparison of 3D vibration deformation curve of flexible wall.
performance and stronger control adaptability. To further  through a three-dimensional simulation experiment of a

verify the control performance of the MOGA-LSTM flexible wall. The simulation results are shown in figure
model, it is compared with the PSO and WOA models  10.
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Table 3: Stiffness identification of each floor.

Floor 1 2 3 4 5 6 7 8 9 10
True stiffness 3.28 8.64 8.64 8.64 7.12 5.68 5.68 5.67 5.67 5.67
Identified stiffness 3.271 8.634 8.650 8.634 7.116 5.674 5.671 5.664 5.664 5.650
Floor 11 12 13 14 15 16 17 18 19 20
True stiffness 5.00 5.00 5.00 3.94 2.97 2.97 2.97 2.97 2.35 1.90
Identified stiffness 4.981 5.041 5.004 3.954 2.961 2.964 2.965 2.981 2.341 1.910

Table 4: Comparison of control performance for different methods on a 20-floor building.

Method Peak PIDR (%) RMS Acceleration (m/s2) Control Energy (N-m) Stabilization Time (s)
Uncontrolled 2.85 0.412 / 12.4

TMD 2.10 0.326 / 10.6

LQR 1.75 0.298 1.24x106 8.7

MOGA-LSTM 142 0.251 9.85x105 5.3

In the 3D simulation of the flexible wall shown in
Figure 10, the wall height, width, and thickness were set
according to typical frame structure parameters, with the
base fixed and the top free. The model was discretized
using a finite element mesh, and damping characteristics
were represented by a Rayleigh model that considered
both material and structural damping. Control forces were
subject to saturation and rate limits, sensors were placed
at the top and mid-height of the wall to monitor
displacement and acceleration, and the Newmark-$
method was used to ensure numerical stability. From
figure 10(a), under the initial condition, the vibration
deformation of the single-floor building without control
could not converge to 0. From figure 10(b), the MOGA-
LSTM model stabilized the wall vibration at 5 s. Figure
10(c) showed that the PSO model stabilized the wall
vibration at 8 s. Figure 10(d) indicated that the WOA-
based building structural vibration control model still
showed wall deformation between 4 and 6 s. Therefore,
the MOGA-LSTM model effectively suppressed the
vibration deformation of the flexible wall and exhibited
better convergence. To further validate the parameter
identification performance of the MOGA-LSTM model,
stiffness identification was conducted for a 20-floor
building under the EI Centro ground motion. The input
ground motion was obtained from the PEER Ground
Motion Database, with a sampling rate of 0.01 s and a total
duration of 60 s. Gaussian noise with zero mean and a
standard deviation of 0.005 g was added to the test data to
simulate  sensor  measurement errors.  Stiffness
identification was performed using a prediction error
minimization-based MOGA-LSTM approach, in which
the prediction errors of floor acceleration and
displacement were used as the loss function to optimize
the LSTM hyperparameters and output the estimated
stiffness of each floor, while regularization constraints
were incorporated to enhance stability. Each reported
result represents the average of 20 independent trials, and
relative errors are provided. The identification results are
summarized in Table 3.

As shown in Table 3, the identified stiffness error of
the MOGA-LSTM model was below 1% for all floors.
Specifically, the identified stiffness on the 19th floor was
2.341, while the actual value was 2.35, with a relative error
of 0.37%. For the 12th floor, the identified value was
5.041, differing from the true value of 5.00 by 0.82%.

These results demonstrate that the proposed hybrid model
maintains high stability and accuracy under noisy
conditions, effectively identifying the stiffness parameters
of high-rise building structures and showing good
applicability and robustness in structural vibration control.

To further verify the vibration control performance of
the MOGA-LSTM model, comparative experiments are
conducted on a 20-floor building under the EI Centro and
Kobe ground motions. The seismic records were obtained
from the PEER Ground Motion Database, with a sampling
rate of 0.01 s and a total duration of 60 s. During the
simulation process, the saturation and rate limits of the
actuator were uniformly applied. The comparison involves
a Linear Quadratic Regulator (LQR), a Tuned Mass
Damper (TMD), and the proposed MOGA-LSTM model,
with the uncontrolled case set as the baseline. The
evaluation metrics include Peak Inter-floor Drift Ratio
(PIDR), Root Mean Square (RMS) floor acceleration, and
total control energy. Each result is averaged over 20
independent trials, and relative errors are reported. The
results are summarized in Table 4.

As shown in Table 4, the MOGA-LSTM model
outperformed traditional methods across all evaluation
metrics. Compared with the uncontrolled case, the peak
PIDR was reduced by approximately 50% and the RMS
floor acceleration by about 39%. Compared with TMD
and LQR, MOGA-LSTM demonstrated a much shorter
stabilization time, requiring only 5.3 s to reach steady
state. These results indicate that the proposed hybrid
model not only achieves significantly better vibration
mitigation than classical control methods, but also exhibits
stronger engineering applicability on energy efficiency
and response stability.

5 Conclusion

To address the long calculation time for control signals
and high hardware costs in building structures, this study
developed an MOGA-LSTM-based hybrid intelligent
control model for structural vibration suppression. The
model integrated MISSA and digital twin technology to
detect and capture structural safety risks. To evaluate the
performance of the hybrid control model, it was compared
with PSO, WOA, and AFSA from convergence effects
and other aspects. Experimental results showed that the
MOGA-LSTM model converged after 6 iterations with a



460  Informatica 46 (2022) 449-462

prediction accuracy of 97.56%. In contrast, the prediction
accuracy of PSO, WOA, and AFSA was 92.15%, 94.56%,
and 95.12%, respectively, all of which were lower than
that of MOGA-LSTM. Furthermore, the MOGA-LSTM-
based control model achieved the best control effect on
flexible wall structures at 5 s, gradually stabilizing
thereafter. In comparison, the PSO- and WOA-based
models achieved optimal control at 6 s and 8 s,
respectively, which were not as effective as the MOGA-
LSTM model.

Overall, the proposed MOGA-LSTM model not only
demonstrates favorable convergence and stability in
experiments, but also provides a scalable intelligent
solution for structural vibration control in buildings. From
a state-of-the-art perspective, the model can be deeply
integrated with digital twin, loT-based sensor networks,
and intelligent monitoring platforms, thereby laying the
foundation for dynamic safety assessment and predictive
maintenance throughout the building lifecycle. In practical
applications, the approach can be extended to seismic
design of high-rise buildings, structural monitoring of
bridges and tunnels during construction, risk warning in
construction processes, and real-time control and feedback
in smart construction environments, highlighting its broad
application prospects and practical value in the building
technology and construction domains. Although this study
did not explore the vibration suppression and intelligent
adjustment of multi-floor flexible high-rise building
systems, further research in this area is recommended in
the future.
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