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With the acceleration of urbanization, the vibration control of high-rise buildings is becoming 

increasingly prominent. To address the limitations of traditional methods on convergence and robustness 

against noise, this study proposes a hybrid intelligent control model that integrates a genetic algorithm 

with a long short-term memory neural network, while incorporating an improved sparrow search 

algorithm for parameter refinement and a digital twin framework for bidirectional data-driven control. 

Numerical experiments using seismic records from the PEER Ground Motion Database demonstrated that 

the proposed model achieved approximately 20% faster convergence compared with particle swarm 

optimization, whale optimization, and artificial fish swarm algorithms. The root mean square error of 

vibration prediction was reduced to 0.0180, the identified stiffness error of each floor remained below 

1%, and the total control energy was reduced by about 15%. These results confirm the advantages of the 

proposed method on prediction accuracy, control efficiency, and stability, and highlight its potential 

applications in seismic design of high-rise structures and smart construction practices. 

Povzetek:

1 Introduction 
Structural vibration control technology, as a cutting-edge 

field of science and technology, encompasses multiple 

disciplines, including civil disaster prevention, automatic 

control, and materials electronics [1]. Although traditional 

vibration control technology has solved theoretical 

complex system control problems, many difficulties still 

exist in practical engineering fields, such as significant 

differences between structural control system modeling 

and actual construction, and low sensor reliability in 

control algorithms [2]. Currently, with the development of 

science and technology, building structural vibration 

control technology has greatly improved, contributing to 

enhanced seismic resistance and comfort of structures. By 

adjusting structural vibration control strategies, engineers 

can find specific solutions to meet project requirements 

[3]. Structural vibration control strategies not only 

improve the dynamic performance of structures but also 

optimize parameter settings [4]. Existing methods include 

using Euler-Bernoulli beams for system dynamic analysis, 

building structural models based on the Newton-Euler 

method, and approximating system dynamics using the 

assumed mode method for wireless characteristics. These 

methods have greatly facilitated the design of subsequent 

controllers [5]. However, they also bring many challenges, 

such as incomplete controller designs and the inability of 

building walls to connect with vibration systems. 

Therefore, in response to difficulties in controlling 

vibrations of high-rise buildings and the unpredictability  

 

of sudden faults, this study constructs a hybrid model for 

intelligent control of building structural vibration, 

combining Multi-objective Optimization Genetic 

Algorithm (MOGA) and Long Short-Term Memory 

(LSTM) artificial neural network. During the model 

construction, the Multi-strategy Improved Sparrow Search 

Algorithm (MISSA) and Digital Twin technology are also 

utilized to predict and analyze the structural stability. It is 

expected that this model will greatly improve vibration 

control in high-rise buildings and have broader application 

prospects in the field of vibration control. 

The innovation and contribution of this research lie in 

constructing a fusion model framework for intelligent 

control of building structural vibration based on the 

existing algorithms. For the first time, multi-objective 

genetic optimization, temporal depth prediction, global 

search enhancement, and digital twin technology are 

organically combined to form a closed-loop mechanism of 

"prediction - optimization - control". This model can not 

only improve the accuracy of vibration response 

prediction and real-time control strategy, but also achieve 

dynamic simulation of structural safety and fault adaptive 

capability through digital twin, providing a new approach 

for intelligent control in complex building scenarios. 

2 Related work 
In recent years, structural vibration control technologies 

have evolved from traditional passive devices to 

intelligent algorithm-driven methods. Passive control, as  
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Figure 1: The specific process of the MOGA. 

one of the earliest approaches, reduces structural 

responses by adding damping or mass adjustments. 

Chowdhury S et al. reviewed inertially amplified passive 

vibration control devices, demonstrating the potential 

applications of linear and nonlinear isolation systems in 

multi-degree-of-freedom structures [6]. Vázquez-

Greciano A et al. and Yang F et al. summarized the 

development of tuned liquid dampers and tuned mass 

dampers, pointing out their advantages in reducing both 

horizontal and vertical vibrations, while also highlighting 

the challenges of optimal design and multi-frequency 

adaptability [7-8]. In addition, Patsialis D et al. proposed 

an optimization framework that coupled tuned mass 

dampers with inerter devices, emphasizing the importance 

of considering nonlinear behavior in multi-storey 

structures to improve vibration reduction performance [9]. 

In the field of semi-active control, 

magnetorheological dampers have gradually become a 

research hotspot. Cruze D et al. designed single- and 

multi-coil dampers and verified their energy dissipation 

performance under low power consumption, proving their 

applicability in seismic-resistant buildings and foundation 

isolation [10]. Bhowmik K et al. combined the LQG 

control strategy with the Bouc-Wen model to achieve 

semi-active vibration control of soft-storey buildings, 

significantly reducing inter-storey responses under 

various seismic excitations [11]. Kontoni D P N et al. 

further indicated that tuned mass dampers could 

effectively mitigate SSI effects in irregular steel high-rise 

buildings [12]. Zhang C W proposed the Active Rotary 

Inertia Driver (ARID) system, expanding the application 

scope of active control in bridges and large structures [13]. 

With the development of artificial intelligence and 

data-driven methods, AI-based vibration monitoring and 

control have gradually emerged. Zar A et al. reviewed the 

latest advances in vibration-based damage detection 

methods, pointing out the potential of deep learning in 

feature extraction and damage identification, while also 

revealing problems such as overfitting and data 

insufficiency [14]. AL Houri A et al. focused on the 

application of artificial intelligence in passive control 

structure design, emphasizing its advantages in optimizing 

isolation systems and enhancing disaster resilience [15]. 

In conclusion, extensive research has been conducted 

in structural vibration control by scholars worldwide, with 

notable achievements in vibration control. However, there 

is limited research on intelligent vibration control for 

building structures, particularly in areas such as state 

feature extraction and control goal recognition. Therefore, 

this study proposes a hybrid model for building structural 

vibration intelligent control, combining multi-objective 

optimization and LSTM. The hybrid model performs 

system parameter identification and control strategy 

calculation, making structural vibration control more 

effective and further enhancing the applicability of the 

control system. 

3 Intelligent control of building 

structural vibration combining 

MOGA and LSTM 
The study considers a multi-storey shear-type high-rise 

building, where each floor is treated as a single degree-of-

freedom, with mass, stiffness, and damping characteristics 

taken into account. Under external loads such as 

earthquakes or wind excitations, the structure exhibits 

inter-storey displacements and accelerations. The control 

system obtains structural responses through sensors 

placed on key floors, while actuators apply the control 

forces. The main objective of this study is to significantly 

reduce inter story displacement and acceleration under 

limited maximum control force constraints, thereby 

ensuring the stability and safety of the structure under 

extreme load conditions. 

3.1 Design of hybrid algorithm based on 

MOGA and LSTM 

The construction industry has now entered the stage of 

intelligent development, and control algorithms are 

capable of precisely managing building structures [16]. 

However, with the continuous increase in the size and 

complexity of building structures, traditional control 

algorithms tend to suffer from overfitting and have 

difficulty handling complex analyses [17]. To address 

these issues, this study proposes an intelligent control 

method that combines MOGA and LSTM, enabling 

intelligent optimization for complex building structures. 

The study proposes the following research questions and  
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Figure 2: LSTM internal structure. 

hypotheses: Can the integration of MOGA and LSTM 

improve the accuracy and convergence efficiency of 

structural vibration control? Can MISSA enhance global 

search ability and avoid local optima? Can digital twin 

technology improve the generalization and stiffness 

identification accuracy of the model in complex 

buildings? Accordingly, three hypotheses are formulated: 

H1: MOGA-LSTM achieves higher prediction accuracy 

than some existing optimization algorithms. H2: MISSA 

improves convergence speed and global optimization 

performance. H3: Digital twin technology can effectively 

enhance stiffness identification accuracy. 

The specific process of the MOGA is shown in figure 

1. 

As shown in figure 1, the principle of MOGA is 

composed of encoding and population initialization, 

fitness evaluation, selection, crossover, and mutation 

operations, as shown in figure 1. The crossover and 

mutation operations in MOGA help with spatial 

exploration and prevent premature convergence, 

maintaining population diversity. MOGA can perform 

single-objective optimization. The fitness function model 

is denoted in equation (1). 

( ) ( ) ( ) ( )maxmin acc ctrl
X

J X PIDR X RMS X E X  = + + (1) 

In equation (1), X  represents the parameter to be 

optimized encoded by MOGA. 
maxPIDR  is the peak inter-

story displacement ratio, which is used to measure the 

maximum inter-story deformation of the structure under 

earthquake action. accRMS  is the root mean square of the 

floor acceleration, which reflects the comfort and safety of 

the structural vibration. 
ctrlE  is the control energy, which 

is obtained by integrating the square of the actuator control 

force over the entire time history and reflects the control 

cost.  ,  , and   respectively represent weight 

coefficients, which are used to balance the importance of 

the three factors, thereby comprehensively optimizing 

structural safety, comfort, and economy. The multi-

objective optimization setting of MOGA is shown in 

equation (2). 
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In equation (2), I  represents the individual sequence. 

ki  denotes the individual. 
id  represents the total sum of 

individual crowding distances. MOGA integrates multiple 

objective functions, as shown in equation (3). 

( ) ( )
1

n

i i

i

F x w f x
=

=                              (3) 

In equation (3), ( )F x  represents the objective 

function, and w  is the weight vector, with 0iw  . 

MOGA optimizes building load objectives and improves 

the energy-efficient design of building structures. LSTM 

captures long-distance data from information and adjusts 

parameters. Therefore, the study combines the improved 

GA with LSTM. The internal structure of LSTM is 

presented in figure 2. 

As shown in figure 2, the LSTM mainly consists of 

the input gate, forget gate, output gate, and cell state. The 

cell state selectively allows information to pass through or 

be forgotten, maintaining stability during processing. The 

forget gate determines which information to discard from 

the cell state, the input gate updates the cell state, and the 

output gate decides the output information. Thus, the 

LSTM can determine the direction of the time series. The 

updated input gate of LSTM is shown in equation (4). 

 ( )
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t c t t i
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                   (4) 

In equation (4), tW  and cW  represent the weights. ib  

and ti  represent the biases, which decide whether the 

input gate data can enter the t  state. The greatest 

advantage of LSTM is its memory capability, as it 

connects both the previous and the subsequent time steps, 

continuously updating information in the predictive  
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Figure 3: MOGA-LSTM control optimization algorithm flow. 

monitoring memory block. Therefore, to address the 

challenges posed by the complex and variable data of 

building structures, as well as the potential failures of the 

building control system, this study combines the global 

search capability of MOGA and the effective sequence 

data processing ability of LSTM. This study proposes an 

MOGA-LSTM-based control optimization algorithm to 

improve the building structure. The algorithm flowchart is 

presented in figure 3. 

As shown in figure 3, MOGA-LSTM is mainly 

divided into the input layer, LSTM layer, GA layer, and 

output layer. First, the data is normalized and divided. 

Then, the training data is processed, and the hidden data 

features are extracted through multiple layers of LSTM. 

Next, the characteristics of MOGA are used to determine 

the actual parameters of the LSTM layer. Finally, the data 

from the transmission process is weighted and summed in 

the output layer, and the error in the structure is calculated. 

The final output is shown in equation (5). 

 ( )
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t r t t r
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

= 

                     (5) 

In equation (5), 
rW  represents the final output 

weights. 
rb  represents the final bias of the input gate. 

th  

represents the final output of the hidden layer. When the 

forget gate filters the information, the calculation is shown 

in equation (6). 
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In equation (6), at time t , the input to the neuron is 

tx . 
th  represents the output of the neuron.   is the 

activation function of the neuron. 
tI  is the final result of 

the forget gate. Therefore, MOGA is primarily employed 

to perform global optimization of key hyperparameters in 

LSTM. Its search space covers network structure, learning 

rate, and batch size, with individuals represented using 

real-number encoding. The fitness function jointly 

considers prediction error, inter-story drift suppression, 

and control energy to achieve multi-objective 

optimization. Meanwhile, constraints are imposed to 

ensure that the results satisfy actuator saturation and 

structural stability requirements, thereby guaranteeing 

their physical rationality and engineering feasibility. 

3.2 Design of hybrid model for building 

structural vibration intelligent control 

based on MISSA and digital twin 

The vibration stability of building structures plays a 

decisive role in the quality of buildings. Unavoidable 

natural disasters pose significant challenges to the design 

of building structures [19]. Currently, in the field of 

building structure control, there are issues in control 

algorithms and actuator development, such as large 

modeling errors compared to the actual structure and low 

reliability of control systems [20]. While MOGA-LSTM 

offers some assistance in optimizing structural data, there 

are still shortcomings in structural vibration stability. 

Therefore, to address issues such as the time delay in 

building structure control forces and prioritization of 

measurement points, this study improves MOGA-LSTM 

by incorporating a multi-strategy enhanced sparrow 

search algorithm for building structural vibration 

intelligent control. MISSA is mainly embedded as a global 

optimizer within the MOGA-LSTM model to further 

refine candidate solutions through local fine-tuning. The 

optimization parameters mainly focus on the learning rate 

of LSTM and the distribution of hidden neurons, aiming 

to improve the convergence speed and stability of the 

model under complex seismic excitations. MISSA is 

activated after MOGA converges to a near-optimal 

solution, and it enhances population diversity through 

chaotic initialization, sine-cosine updates, and Lévy flight 

strategies, thereby avoiding local optima and achieving 

superior hyperparameter configurations in the  
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Figure 4: Specific flow of MISSA. 

later iterations. The improved Circle chaotic mapping 

initialization of the population is shown in equation (7). 

( )3

1 1 2 1

1

mod sin ,1k k k

d
X d x d d X

d



+

 
= + − 

 
          (7) 

In equation (7), k  represents the dimension of the 

solution. 
1d , 

2d , and 
3d  represent the parameters. The 

position of the MISSA discoverer is improved by 

incorporating the cosine-sine algorithm. The update 

calculation is shown in equation (8). 
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In equation (8), t  represents the number of iterations. 

  is the nonlinear decreasing factor, ,

t

n mX  is the position 

of the n -th sparrow at the t -th iteration in the m -th 

dimension, and 
1r  represents the random number on 

0 ~ 2 . MISSA adopts the Lévy flight strategy to 

improve optimization accuracy. The position update for 

the joiner is shown in equation (9). 
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          (9) 

In equation (9),   ranges within  1,3 .   is a random 

number between 0 ~ 1 . d  represents the problem 

dimension to be solved. The position update for the 

sentinel in MISSA is shown in equation (10). 
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In equation (10), 
t

bestX  represents the best position, 

  is a normally distributed random number, and 1  is the 

variance value. 
nf  represents the fitness value of the n -

th individual, where gf  represents the best fitness and 
wf  

represents the worst fitness. In summary, MISSA can 

perform global optimization on complex structural data 

and avoid the local optima. The specific process of MISSA 

is shown in figure 4. 

In figure 4, the sparrow algorithm improved with 

multiple strategies initializes the population by using 

circle chaotic mapping. After initializing the population, 

the positions of discoverers and joiners are updated using 

the cosine strategy and Lévy flight strategy. Once the 

positions are updated, the fitness of the updated positions 

is calculated. The algorithm then checks whether the 

individual positions exceed the boundaries of the search 

space and whether the iteration count satisfies the 

conditions. As building structural vibrations have poor 

adaptability to external environments due to time delays 

during actual control, this study combines the MISSA 

global search with digital twin technology to perform 

safety analysis and prediction on the building structural 

framework, enhancing the intelligent control of building 

structures. Digital twin technology enables dynamic 

collaboration of structures and supports virtual physical 

interaction configuration modeling to achieve structural 

security and intelligent control. The safety intelligent 

framework of the digital twin building structure is shown 

in equation (11). 

( )Pr , , , ,DT vm td fa nF S S P L C=                 (11) 

In equation (11), PrS  and vmS  represent the physical 

structure entity and the virtual structure model. tdP  and 

faL  represent the twin data processing layer and the 

functional application layer. nC  represents the 

connections between the structural components. The 

specific structural safety intelligent control framework of 

digital twin technology is shown in figure 5. 
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Figure 5: Intelligent control framework for structural safety. 

In figure 5, the structure security intelligent 

framework based on digital twin mainly consists of 

functional application layer, twin data processing layer, 

and virtual and physical structure simulation modules. The 

twin data processing layer incorporates both temporal and 

spatial dimensions. In the temporal dimension, vibration 

response data are collected in real-time by sensors and 

transmitted to the twin, where the virtual model 

dynamically updates its state based on the physical data 

and then feeds the corrected prediction back to the 

physical structure, thereby achieving bidirectional 

synchronization between the virtual and physical systems. 

In the spatial dimension, the twin model simultaneously 

analyzes load-bearing parameters and performance 

parameters to assess the overall structural safety. With 

regard to the data processing pipeline, the twin 

sequentially executes data acquisition, cleaning, feature 

extraction, prediction, and comparison with subsequent 

correction. To address sensor noise and model uncertainty, 

error correction methods and confidence interval 

constraints are applied, which improves stability and 

reliability. Furthermore, real-time constraints such as 

upper limits on sampling frequency and feedback delay 

have been introduced to ensure that prediction and control 

commands can be applied to physical structures within 

acceptable engineering time windows. 

The digital twin assumes different roles at different 

stages. During the training stage, it generates or augments 

diverse datasets based on the virtual model to enhance the 

generalization capability of the MOGA-LSTM. During 

the inference stage, the outputs of the MOGA-LSTM are 

compared with the simulation results of the virtual model. 

The global optimization ability of MISSA is employed to 

refine parameters and update strategies. Through this 

approach, digital twin can not only intelligently analyze 

building structures, but also reduce modeling errors in 

design and construction processes, thereby improving 

safety prediction and control performance under complex 

environmental conditions. The specific expression of its 

safety control is given in equation (12). 

( ) ( )1 2 1 2, , , , , ,R

m mf g      ⎯⎯→           (12) 

In equation (12), ( )1 2, , , mf     represents the set 

of mechanical parameters. R  denotes the limits within 

the parameter specifications. ( )1 2, , , mg     represents 

the set of intelligent control measures. Therefore, to 

address issues such as the time-varying nature of building 

material properties and unstable safety performance, this 

study combines MOGA-LSTM with global optimization 

and digital twin technology of MISSA for prediction and 

simulation. A hybrid model based on MISSA and digital 

twin is developed for intelligent vibration control of 

building structures. The mechanism of this model 

integration is shown in figure 6. 

From figure 6, digital twin technology enables 

simulation and measurement output, while the 

combination of MISSA and MOGA-LSTM allows for 

safety prediction and key parameter setting of the 

structure. The data is then analyzed and predicted 

intelligently, and transmitted to the multidimensional 

physical system for precise execution. Driven by digital 

twin and MISSA algorithms, a hybrid model of  
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Figure 6: Structure intelligent control hybrid model framework. 

intelligent vibration control for building structures based 

on MISSA and digital twin can detect and capture unsafe 

factors in the structure, thereby controlling the key factors 

of building structural vibration. 

4 Performance verification of the 

improved hybrid model for 

intelligent vibration control of 

building structures 

4.1 Comparison and analysis of MOGA-

LSTM performance 

To highlight the superior performance of MOGA-LSTM, 

the study compared it with Particle Swarm Optimization 

(PSO), Whale Optimization Algorithm (WOA), and 

Artificial Fish Swarm Algorithm (AFSA). In terms of the 

experimental environment, Matlab R2019b is used as the 

primary software, supplemented by Python 3.9. The deep 

learning framework is PyTorch 1.12.1, with GPU 

acceleration enabled by CUDA 11.6. Numerical 

computation and data processing rely on NumPy 1.21 and 

SciPy 1.7, while visualization is carried out using 

Matplotlib 3.5 and Seaborn 0.11. The hardware 

configuration includes an Intel i7-12650H @ 2.30GHz 

CPU, an NVIDIA RTX 3070 GPU, and 32 GB of memory, 

running on the Windows 11 operating system. In terms of 

algorithm parameter settings, to ensure fairness, the 

maximum number of iterations for all optimization 

algorithms is set to 100, and the fitness function evaluation 

criteria are kept consistent. For PSO, the population size 

is 50, the inertia weight is 0.7, and both learning factors c1 

and c2 are set to 1.5. For WOA, the population size is 50, 

and the encircling parameter decreases linearly. For 

AFSA, the fish school size is 50, the visual range is 5, the 

step length is 0.5, and the crowding factor threshold is 

0.75. In the MOGA-LSTM, the genetic algorithm takes a 

population size of 100, a crossover probability of 0.8, and 

a mutation probability of 0.1. The maximum number of 

iterations is also set to 100. The LSTM network consists 

of two hidden layers with 128 neurons each, a learning rate 

of 0.001, and a batch size of 64. All methods are run with 

the same data split and random seed to ensure fairness and 

reproducibility of the experimental results. 

The study employs two public datasets, namely the 

PEER Ground Motion Database and the IASC-ASCE 

SHM Benchmark Dataset. The former contains typical 

seismic acceleration time-history records, which are used 

to verify the model’s vibration prediction and control 

performance under earthquake loads. The latter provides 

frame structural vibration response data from a structural 

health monitoring benchmark, which are used to train and 

test the model’s parameter identification and control 

performance. To validate the convergence performance of 

the MOGA-LSTM hybrid algorithm in building 

structures, the four control algorithms, including PSO, 

WOA, AFSA, and MOGA-LSTM, are tested using the 

Schaffer benchmark function, and the test results are 

shown in figure 7. 

As shown in figure 7(a), AFSA achieved complete 

convergence under the Schaffer benchmark function after 

40 iterations, while PSO and WOA converged between the 

20th and 40th iterations. In contrast, MOGA-LSTM 

remained relatively stable throughout the entire 100 

iterations. From figure 7(b), it was evident that MOGA- 
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Figure 7: Algorithm convergence under Schaffer benchmark function. 

Table 1: Results of ablation experiment. 

Configuration Convergence Iterations Best Validation RMSE RMSE Std 

(i) LSTM only 100 ± 0 0.0320 0.0040 

(ii) LSTM + MOGA 95 ± 3 0.0241 0.0021 

(iii) LSTM + MISSA 92 ± 4 0.0232 0.0025 

(iv) LSTM + MOGA + MISSA 78 ± 5 0.0190 0.0014 

(v) LSTM + MOGA + MISSA + Digital twin 68 ± 4 0.0180 0.0012 

 

LSTM converged after 6 iterations, while PSO, WOA, and 

AFSA all showed less effective convergence. Therefore, 

MOGA-LSTM demonstrated lower training errors and 

better convergence performance. Further ablation 

experiments are conducted, and the results are shown in 

Table 1. 

From Table 1, with the progressive introduction of 

GA, MISSA, and the digital twin module, the model 

exhibited clear improvements in convergence speed, 

prediction accuracy, and stability. When GA or MISSA 

was added, the number of iterations decreased and the 

validation error was reduced, indicating that both global 

search and local refinement enhanced model performance. 

When GA and MISSA were combined, the convergence 

was significantly accelerated, errors were further reduced, 

and the results became more stable. After adding the 

digital twin, the model achieved the best performance on 

convergence efficiency and prediction accuracy, while 

also maintaining high consistency across multiple runs. In 

summary, the complete framework performed best across 

all metrics, confirming the necessity and effectiveness of 

incorporating each module. 

To better illustrate the prediction performance of 

MOGA-LSTM in building structural control, this study 

takes floor acceleration response as the primary prediction 

variable. The data is sourced from the PEER Ground 

Motion Database (such as the El Centro seismic records), 

which drives the vibration response of the IASC-ASCE 

benchmark frame structure. All seismic records are 

sampled at a rate of 0.01 s, with a total duration of 60 s. 

The data is divided into 70% for training, 15% for 

validation, and 15% for testing, and zero mean Gaussian 

noise and 0.005g standard deviation are added to the test 

set to simulate sensor measurement errors. The predicted 

values and true values of PSO, WOA, AFSA, and MOGA-

LSTM are compared, and the results are shown in Figure 

8. 

As shown in figure 8(a), the predicted values of AFSA 

for sample 1 mainly concentrated in the central region, 

with error fluctuations predominantly in the range of 40-

45. In figure 8(b), PSO exhibited larger error fluctuations 

for sample data between 15 and 50, and the error was more 

evident when compared to the real values. In figure 8(c), 

WOA showed significant error fluctuations between 

sample data 25 and 75, with clear up-and-down variations. 

However, as shown in figure 8(d), MOGA-LSTM’s 

predicted values aligned closely with the real values, with 

a prediction accuracy of 97.56%. Therefore, MOGA-

LSTM achieved higher prediction accuracy, smaller error 

fluctuations, and better data control analysis. To further 

highlight the prediction performance in building 

structures, the study also compared the mean squared error 

and prediction error for PSO, WOA, AFSA, and MOGA-

LSTM. In addition to these four algorithms, Multiple 

Objective Particle Swarm Optimization (MOPSO) and 

Spider Wasp Optimizer (SWO) are added to increase the 

diversity of the comparison results. The comparison 

results are shown in Table 2. 

As shown in Table 2, PSO had the longest running 

time at 51s, with the maximum relative error reaching 

61.24%. MOGA-LSTM had the shortest running time at 

13s, with a root mean square error of 1.248 and a 

maximum relative error of 15.142%. MOPSO had the  
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Figure 8: Predicted state comparison chart. 

Table 2: Comparison of mean square error and prediction error results. 

Algorithm Running time/s 
Root mean square 
error 

Maximum relative 
error/% 

Mean absolute 
error/% 

Mean relative 
error/% 

PSO 51 5.014 61.245 5.210 11.487 

WOA 43 4.348 48.361 4.168 7.468 

AFSA 60 4.126 34.786 4.032 6.875 

MOGA-LSTM 13 1.248 15.142 1.478 4.210 

MOPSO 25 3.216 26.132 2.676 5.168 

SWO 36 2.487 30.456 2.148 5.014 

 

second longest running time at 25s, with a mean relative 

error of 5.168%. The mean relative error of SWO was very 

close to MOPSO, with a difference of only 0.514%. The 

MOGA-LSTM hybrid algorithm demonstrated higher 

operational efficiency in building structure control, better 

handling data errors, and strengthening structure failure 

prediction. 

4.2 Performance analysis of the hybrid 

model for intelligent vibration control 

of building structures with integrated 

algorithms 

To further verify the superior performance of the building 

structural vibration intelligent control model based on 

MOGA-LSTM, it is compared with the building structural 

vibration intelligent control models constructed using 

PSO, WOA, and AFSA algorithms. Since the building 

structural vibration control system is susceptible to natural 

factors, which can lead to structural safety instability, the 

study tests the generalization performance of the MOGA-

LSTM-based building structural vibration intelligent 

control model. In the simulation, the control force is 

generated by active mass dampers installed at the top and 

critical floors of the structure. To ensure engineering 

feasibility, the maximum control force is set to 1×108 N, 

while considering force and velocity saturation 

constraints. All stiffness parameters are expressed in N/m, 

and control forces are expressed in N to maintain 

consistency in physical units. The uncontrolled structural 

response is selected as the baseline for evaluating the 

relative improvement achieved by the proposed control 

strategy. The results for models constructed using 

MOGA-LSTM, PSO, WOA, and AFSA are shown in 

figure 9. 

From figure 9(a), influenced by the Kobe wave, the 

control force of the MOGA-LSTM model was close to the 

original applied force. The WOA model showed a 

maximum control force of 2×107 N at the 11th floor. From 

figure 9(b), the AFSA model showed a maximum control 

force of 3×107 N at the 16th floor, with a significant error 

compared to the original maximum control force 

calculation. In conclusion, the MOGA-LSTM model 

exhibited better generalization  
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Figure 9: Generalized performance test. 
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(b) Three-dimensional vibration deformation of 

flexible wall under MOGA-LSTM control
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(c) Three-dimensional vibration deformation of 

flexible wall under PSO control
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(d) Three-dimensional vibration deformation of 

flexible wall under WOA control
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Figure 10: Comparison of 3D vibration deformation curve of flexible wall. 

performance and stronger control adaptability. To further 

verify the control performance of the MOGA-LSTM 

model, it is compared with the PSO and WOA models 

through a three-dimensional simulation experiment of a 

flexible wall. The simulation results are shown in figure 

10. 
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Table 3: Stiffness identification of each floor. 

Floor 1 2 3 4 5 6 7 8 9 10 

True stiffness 3.28 8.64 8.64 8.64 7.12 5.68 5.68 5.67 5.67 5.67 

Identified stiffness 3.271 8.634 8.650 8.634 7.116 5.674 5.671 5.664 5.664 5.650 

Floor 11 12 13 14 15 16 17 18 19 20 

True stiffness 5.00 5.00 5.00 3.94 2.97 2.97 2.97 2.97 2.35 1.90 

Identified stiffness 4.981 5.041 5.004 3.954 2.961 2.964 2.965 2.981 2.341 1.910 

Table 4: Comparison of control performance for different methods on a 20-floor building. 

Method Peak PIDR (%) RMS Acceleration (m/s2) Control Energy (N·m) Stabilization Time (s) 

Uncontrolled 2.85 0.412 / 12.4 

TMD 2.10 0.326 / 10.6 

LQR 1.75 0.298 1.24×106 8.7 

MOGA-LSTM 1.42 0.251 9.85×105 5.3 

 

In the 3D simulation of the flexible wall shown in 

Figure 10, the wall height, width, and thickness were set 

according to typical frame structure parameters, with the 

base fixed and the top free. The model was discretized 

using a finite element mesh, and damping characteristics 

were represented by a Rayleigh model that considered 

both material and structural damping. Control forces were 

subject to saturation and rate limits, sensors were placed 

at the top and mid-height of the wall to monitor 

displacement and acceleration, and the Newmark-β 

method was used to ensure numerical stability. From 

figure 10(a), under the initial condition, the vibration 

deformation of the single-floor building without control 

could not converge to 0. From figure 10(b), the MOGA-

LSTM model stabilized the wall vibration at 5 s. Figure 

10(c) showed that the PSO model stabilized the wall 

vibration at 8 s. Figure 10(d) indicated that the WOA-

based building structural vibration control model still 

showed wall deformation between 4 and 6 s. Therefore, 

the MOGA-LSTM model effectively suppressed the 

vibration deformation of the flexible wall and exhibited 

better convergence. To further validate the parameter 

identification performance of the MOGA-LSTM model, 

stiffness identification was conducted for a 20-floor 

building under the El Centro ground motion. The input 

ground motion was obtained from the PEER Ground 

Motion Database, with a sampling rate of 0.01 s and a total 

duration of 60 s. Gaussian noise with zero mean and a 

standard deviation of 0.005 g was added to the test data to 

simulate sensor measurement errors. Stiffness 

identification was performed using a prediction error 

minimization-based MOGA-LSTM approach, in which 

the prediction errors of floor acceleration and 

displacement were used as the loss function to optimize 

the LSTM hyperparameters and output the estimated 

stiffness of each floor, while regularization constraints 

were incorporated to enhance stability. Each reported 

result represents the average of 20 independent trials, and 

relative errors are provided. The identification results are 

summarized in Table 3. 

As shown in Table 3, the identified stiffness error of 

the MOGA-LSTM model was below 1% for all floors. 

Specifically, the identified stiffness on the 19th floor was 

2.341, while the actual value was 2.35, with a relative error 

of 0.37%. For the 12th floor, the identified value was 

5.041, differing from the true value of 5.00 by 0.82%. 

These results demonstrate that the proposed hybrid model 

maintains high stability and accuracy under noisy 

conditions, effectively identifying the stiffness parameters 

of high-rise building structures and showing good 

applicability and robustness in structural vibration control. 

To further verify the vibration control performance of 

the MOGA-LSTM model, comparative experiments are 

conducted on a 20-floor building under the El Centro and 

Kobe ground motions. The seismic records were obtained 

from the PEER Ground Motion Database, with a sampling 

rate of 0.01 s and a total duration of 60 s. During the 

simulation process, the saturation and rate limits of the 

actuator were uniformly applied. The comparison involves 

a Linear Quadratic Regulator (LQR), a Tuned Mass 

Damper (TMD), and the proposed MOGA-LSTM model, 

with the uncontrolled case set as the baseline. The 

evaluation metrics include Peak Inter-floor Drift Ratio 

(PIDR), Root Mean Square (RMS) floor acceleration, and 

total control energy. Each result is averaged over 20 

independent trials, and relative errors are reported. The 

results are summarized in Table 4. 

As shown in Table 4, the MOGA-LSTM model 

outperformed traditional methods across all evaluation 

metrics. Compared with the uncontrolled case, the peak 

PIDR was reduced by approximately 50% and the RMS 

floor acceleration by about 39%. Compared with TMD 

and LQR, MOGA-LSTM demonstrated a much shorter 

stabilization time, requiring only 5.3 s to reach steady 

state. These results indicate that the proposed hybrid 

model not only achieves significantly better vibration 

mitigation than classical control methods, but also exhibits 

stronger engineering applicability on energy efficiency 

and response stability. 

5 Conclusion 
To address the long calculation time for control signals 

and high hardware costs in building structures, this study 

developed an MOGA-LSTM-based hybrid intelligent 

control model for structural vibration suppression. The 

model integrated MISSA and digital twin technology to 

detect and capture structural safety risks. To evaluate the 

performance of the hybrid control model, it was compared 

with PSO, WOA, and AFSA from convergence effects 

and other aspects. Experimental results showed that the 

MOGA-LSTM model converged after 6 iterations with a 
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prediction accuracy of 97.56%. In contrast, the prediction 

accuracy of PSO, WOA, and AFSA was 92.15%, 94.56%, 

and 95.12%, respectively, all of which were lower than 

that of MOGA-LSTM. Furthermore, the MOGA-LSTM-

based control model achieved the best control effect on 

flexible wall structures at 5 s, gradually stabilizing 

thereafter. In comparison, the PSO- and WOA-based 

models achieved optimal control at 6 s and 8 s, 

respectively, which were not as effective as the MOGA-

LSTM model. 

Overall, the proposed MOGA-LSTM model not only 

demonstrates favorable convergence and stability in 

experiments, but also provides a scalable intelligent 

solution for structural vibration control in buildings. From 

a state-of-the-art perspective, the model can be deeply 

integrated with digital twin, IoT-based sensor networks, 

and intelligent monitoring platforms, thereby laying the 

foundation for dynamic safety assessment and predictive 

maintenance throughout the building lifecycle. In practical 

applications, the approach can be extended to seismic 

design of high-rise buildings, structural monitoring of 

bridges and tunnels during construction, risk warning in 

construction processes, and real-time control and feedback 

in smart construction environments, highlighting its broad 

application prospects and practical value in the building 

technology and construction domains. Although this study 

did not explore the vibration suppression and intelligent 

adjustment of multi-floor flexible high-rise building 

systems, further research in this area is recommended in 

the future. 
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