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Against the backdrop of global climate change and increasing constraints on agricultural resources,
developing smart agricultural technologies is a key path to achieving food security and sustainable
development. This study aims to investigate the development path of rural smart agriculture driven by
artificial intelligence, with a focus on addressing the bottlenecks in traditional agricultural prediction
models in terms of accuracy, efficiency, and resource consumption. This study focuses on winter wheat
and summer corn rotation farmland, and collects environmental data through a Pico W+ESP32-CAM
sensor network. After wavelet denoising, outlier detection, and Kalman smoothing interpolation
preprocessing, the soil moisture prediction effects of various models are compared. Based on the
predicted fruit, rule-based irrigation control is implemented. The core indicators include crop yield,
protein and vitamin content, water and fertilizer usage, and model performance (response time, error,
trainable parameters, etc.). Quantum Neural Network-Back Propagation model is constructed by
combining an loT multi-sensor data acquisition system. This study innovatively integrates quantum bits
and parameterized quantum gates into the prediction module. The results showed that in terms of
prediction, the accuracy of the soil moisture prediction model reached 97.48%, which was 10.29% higher
than that of the traditional Back Propagation Neural Network (87.19%). The model response time was
only 1.27 seconds, and the computational resource utilization rate has been reduced to 23.18%, meeting
the real-time decision-making needs of farmland. The irrigation strategy based on the predicted results
increased water resource utilization efficiency by 47.57%, reduced fertilizer usage by 19.41%, and
increased economic benefits per unit area by 28.30%. The research method has achieved high-precision
dynamic prediction of soil moisture. This research verified the feasibility of artificial intelligence
algorithms in agricultural edge computing scenarios, provided a closed-loop solution of "perception
decision execution™ for rural smart agriculture, and promoted the transformation of agricultural
production to precision and low-carbon.

Povzetek: Raziskava predstavlja pametno kmetijstvo, ki z 1oT-senzorji in napovednim modelom (kvantna
nevronska mreza) omogoca natancno napoved talne vlage ter avtomatizirano namakanje, kar izboljsa

pridelke in kakovost ter hkrati zmanjsa porabo vode, gnojil in racunske vire.

1 Introduction

In the process of globalization, climate change and
agricultural ~ resource  constraints have  become
increasingly prominent, posing a serious threat to food
security and sustainable development [1, 2]. Traditional
agriculture relies heavily on human and material
resources, with a relatively extensive production method
and low resource utilization efficiency, making it difficult
to adapt to the current complex and ever-changing
environment [3]. At the same time, population growth has
led to a continuous growth in the requirement for food and
agricultural products, and agriculture urgently needs
transformation [4]. In this context, Smart Agriculture (SA)
combined with Artificial Intelligence (Al) has emerged.
SA, with the help of modern information technology, is
expected to achieve a leapfrog improvement in
agricultural production efficiency and become a key

breakthrough in solving agricultural difficulties [5, 6].
Numerous scholars have conducted extensive research on
SA. In terms of data collection, Internet of Things (IoT)
technology has been widely applied. Pincheira et al.
proposed the use of sensor-based unmanned vehicles to
collect accurate agricultural data. Practical application
showed that this method could collect accurate dynamic
data [7]. Ahmed et al. designed a blockchain-based
"cluster head sleep scheduling” data aggregation method
to address multi-sensor data redundancy and energy
consumption in intelligent agriculture. This method could
reduce energy consumption, extend network lifespan, and
achieve efficient data collection and pest attack prevention
and control [8]. Mohapatra et al. developed an intelligent
agriculture model to improve the communication
efficiency of loT devices and soil monitoring level in
agriculture. This model could optimize agricultural
communication and soil monitoring [9].
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In terms of decision support, Akhter and Sofi
proposed an apple disease prediction model to improve
orchard vyield. Introducing this model into traditional
agricultural production has improved the quality and yield
of orchards [10]. Ali et al. used the 10T, Wireless Sensor
Networks (WSN), and Sensor Cloud (SC) to collect and
analyze agricultural data to provide digital solutions for
agriculture. The experimental results indicated that this
method could provide more agricultural development
plans [11]. Sharma et al. proposed an unmanned weed
control technology to integrate Al with agricultural
technology. This method reduced manpower and could
also be applied in unmanned spraying [12].

The current traditional agricultural prediction models
are prone to local optima, slow convergence, and limited
accuracy, making it difficult to meet real-time and
accurate decision-making needs. Most studies focus on
single technology applications and lack systematic
solutions, making it difficult to achieve intelligent
transformation of the entire agricultural production chain.
To accurately predict agricultural data and explore the
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development path of rural SA driven by Al, a QNN-BP
model that integrates Quantum Neural Network (QNN)
and Back Propagation (BP) neural network is proposed.
Combined with multiple sensors in the 10T, a "perception
prediction decision execution" loop is formed to address
the above issues. The research innovations are as follows:
(1) Key input features such as soil temperature and
humidity, meteorological data, etc. are transformed into
guantum state representations, and the model's search for
the global optimal solution is accelerated by the
superposition characteristics of quantum bits; (2) By
parameterizing quantum gates, a shallow quantum
network structure is constructed, which reduces hardware
resource requirements while retaining the advantages of
quantum computing; (3) The quantum annealing
technique is used to optimize the initial weights of the
model, and the classical BP algorithm is combined to fine
tune the parameters, avoiding gradient vanishing and
balancing the convergence speed and prediction accuracy
of the model. Summary Table of Review and Methods of
This Study as shown in Table 1.

Table 1: Summary table of review and methods of this study

Technology

h Researcher Method Key Application Outcomes
Domain
Pincheira et al Sensor-based Unmanned Ground
7] ' Vehicle (UGV) Data Collection Precise dynamic data collection
10T Data Method
Collection Ahmed et al. [8] Blockchain-enabled CI_uster Head Reduces energy use; extends network life; aids pest control
Sleep Scheduling
Mohapatraetal.  loT-Based Agricultural Intelligent — - . . -
9] Monitoring Model Improves communication efficiency; enhances soil monitoring
Akhte[rl%r]d Sofi Apple Disease Prediction Model Improves orchard yield/quality; aids disease control
A_gl_'lcultural Alietal. [11] loT, WSN, SC Reveals data correlations; improves digital plans
Decision Support
Sharma et al. Al-Integrated Unmanned Weed Reduces labor input; adapts to unmanned sprayin
[12] Control Technology put, adap praying
Data Collection - ) A Realize high-precision prediction of soil moisture, optimize
Prediction - This Study QNN-BP + IoT Data Acquisition agricultural resource utilization efficiency and unit area

Decision Loop System (DAS)

economic benefits

2 Methods

2.1 Rural smart agriculture data collection

Rural Smart Agriculture (RSA) is a modern
agricultural model that relies on digital technologies,
including Al, big data, the 10T, and blockchain, to achieve
efficient resource allocation and coordinated industrial
development through intelligent transformation of the
entire agricultural production, operation, management,
and service chain [13-15]. Agricultural 10T, through
sensing, transmitting, and processing agricultural
production data, helps achieve intelligent monitoring and
precise management, improving production efficiency and
resource utilization. The architecture of agricultural 10T is
shown in Figure 1.
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Figure 1: Architecture of agricultural 1oT

In Figure 1, the 10T architecture typically consists of
the layers of perception, transport, service, and
application. As the bottom layer, the perception layer is
responsible for sensing and collecting various data in the
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environment through sensors and other devices, and is the
data source of the entire 10T. The transport layer mainly
transmits the data collected by the perception layer to
ensure a stable flow of data between nodes within the
system. The service layer is the core part of the loT,
responsible for processing large amounts of transmitted
data, conducting deep mining, and intelligent management
of the data. The application layer directly faces users and
integrates 10T technology into SA through interaction with
the service layer, providing specific application scenarios
and services, and bringing an intelligent experience and
value to users. To explore the development path of RSA,
data analysis is indispensable. Before analyzing
agricultural data, it is necessary to first collect the data. To
effectively collect agricultural data, this study combined
multiple sensors to establish a DAS. Figure 2 shows the
framework of the hardware structure.
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Figure 2: Hardware structure of DAS

In Figure 2, the system hardware structure adopts a
modular design, including a core control module, a Data
Acquisition Module (DAM), a communication module, a
display module, an Irrigation Control Module (ICM), and
a power module. The DAM integrates multiple sensors,
such as temperature and humidity sensors, soil
temperature sensors, soil humidity sensors, etc., for real-
time monitoring of key environmental parameters,
including soil and air’s temperature and humidity, and
light intensity. These sensors are connected to the core
controller through communication protocols including,
Inter Integrated Circuit (12C) and  Universal
Asynchronous Receiver/Transmitter (UART), to ensure
stable data transmission [16]. The communication module
adopts Wi Fi technology to achieve wireless transmission
of data to the data management platform. The display
module utilizes a screen to display real-time
environmental information, enabling farmers to intuitively
understand the growth environment of crops. The ICM
achieves an automatic irrigation function based on soil
moisture data through a relay control circuit. The entire
system adopts a low-power design, suitable for long-term
operation in agricultural environments. The hardware
shell design focuses on protection, preventing adverse
weather and human damage, and ensuring stable system
operation. This system can provide reliable data support
for agricultural intelligent management, promoting the
development of agricultural production towards precision
and intelligence. The hardware settings of the DAS are
listed in Table 2.
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Table 2;: Hardware module parameters of DAS

Module Name Model Measuring Accuracy
Core Control Raspberry Pi Pico 264 KB memory, 2 MB
Module w flash memory
DAM / /
Air Temperature Temperature accuracy
and Humidity DHT22 +0.5°C, humidity
Sensor accuracy 3% RH
Soil
Temperature Temspl_3518820 ) +0.5°C
Sensor oil Type
Soil Moisture FDR - Soil +2% VWC (Volumetric
Sensor Moisture Sensor Water Content)
Light Intensity +10% (within the range
Sensor TSL2591 of 0.11x-88,0001x)
Carbon Dioxide o
Concentration MG811 %50 ppm (within the
range of 0-5000 ppm)
Sensor
Communication ESP32 - CAM - Supports Wi-Fi and
Module Wi-Fi / Bluetooth Bluetooth d_ual-_mode
Module communication
) Pimoroni Hyper - 1.3-inch OLED displ_ay
Display Module OLED Display screen with a resolution

of 128 x 64 pixels

JQC - 3F(T73) - Rated voltage 5 V, rated

ICM

5V current 10 A
Electromagnetic Rated voltage 24 VDC,
Valve 2W025 - 15 diameter DN15

Input voltage 4.5 V-35 V,
adjustable output voltage
1.23 V-32 V, maximum
output current 3 A

Power Module LM2596S - ADJ

The hardware module of DAS can effectively detect
various environmental data. To achieve automatic data
collection, this study designs software for DAS. Figure 3
shows the software architecture of DAS.
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Figure 3: Software structure of DAS

Light intensity

In Figure 3, the software part of DAS is developed on
the open-source Arduino IDE platform, using C/C++
language to program and control various functional
modules [17]. In the main loop, the system is in charge of
collecting sensor data, uploading data to the cloud
platform, and receiving remote control commands. The
specific operation includes real-time collection and
reading of sensor data such as air temperature and
humidity, soil temperature and humidity, light intensity,
CO: concentration, etc., and converting the data into a
standard format through preprocessing. The system
utilizes the message queue telemetry transmission
protocol to stably transmit data to the cloud platform
through a Wi-Fi module, achieving remote monitoring and
management. At the same time, the software supports
automatic control of irrigation equipment based on soil
moisture data, accurately adjusting the irrigation amount.
The interface design is user-friendly, making it easy for
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users to intuitively understand the system's operating
status and configure parameters.

2.2 Agricultural data preprocessing and
soil prediction model

This study establishes RSA-DAS by combining
multiple sensors and using the open-source Arduino IDE
as the development platform, laying the foundation for the
analysis and application of agricultural data. However,
agricultural environmental data collected using sensors
may have issues such as noise, missing values, and
outliers, thus requiring preprocessing. The data
preprocessing program is shown in Figure 4.
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Figure 4: Data cleaning process

In Figure 4, this study first cleans the data by using
data filtering algorithms to remove obvious errors and
duplicate data, ensuring the accuracy of the data from the
source. Then, to address the issue of missing values, a
combination of time series analysis and spatial
interpolation methods is used for filling. In the prediction
of missing values in time series, a Kalman smoother is
used to fit the trend and periodicity of historical data to fill
in missing values. The standard formula is shown in
equation (1) [18].

T -1
Xgr = Xge Pt|tA (t) Pmn (XtHJT - an) M)
In equation (1), Xy is the smoothed estimation value

of the t time state based on the total observation data (up
to the upper limit of time T ) (corresponding to the
prediction result of missing values in the original

equation). Xy, is the estimated value of state filtering at
time t. Ptlt is the covariance matrix of the state filtering
estimation at time t. AT (t) is the transition matrix of
time t state, and Pt+jut is the one-step prediction
covariance matrix of time t+1 state. X, is the

smoothed estimation of the state attime t +1. X, isthe

one-step predicted value of the state at time t +1. This
formula improves the accuracy of filling missing values in
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time series by integrating the current filtering result with
subsequent smoothing information. This study measures
the interpolation quality by comparing errors and
backtesting. In terms of spatial interpolation, data
collected from peripheral sensors is utilized, and the
missing values are comprehensively estimated using the
inverse distance weighting method to make the filling
results closer to the real situation. The formula is shown in

equation (2) [19].
3(a-47)
7= 2)
247
i=1

*

In equation (2), 7~ is the interpolation result of the
target position. Z; is the observation value of the i -th

neighboring sensor. d. is the Euclidean distance between
the target position and the i -th sensor. 7 is the distance
attenuation index, ¥ >0, usually ¥ =2 . In inverse

distance weighted interpolation, it is necessary to adjust
the sensor geometry based on the spatial shape of the
target monitoring area to achieve effective coverage, and
also adjust the power parameters to ensure stable
transmission of data from each sensor. After adjustment,
the missing values are estimated comprehensively by
calculating the Euclidean distance between the target
position and each sensor, using the reciprocal of the
distance attenuation index (7, usually 2) as the weight.
The sensor layout needs to evenly cover the monitoring
area to reduce sampling bias. If the distance between
sensors is too large, it will reduce interpolation accuracy,
and if it is too small, it will easily lead to data redundancy.
The sensitivity of 7 is reflected in the sudden increase of
the weight proportion of neighboring sensors when ¥
increases (easily affected by local data), and the more
uniform weight distribution when 7 decreases
(smoothness is enhanced but local features may be lost).
Usually, 2 is taken to balance accuracy and smoothness.
The outlier handling adopts anomaly detection
methods based on clustering analysis. Data points that
deviate significantly from normal data clustering results
are identified as outliers and corrected or removed based
on domain knowledge and data context, effectively
avoiding the interference of outliers on the analysis
results. The calculation formula is shown in equation (3).

Outlier ; <> [x; -, >0-0, @3)

In equation (3), Outlier ; is the j -th data point
judged as an outlier. X; is the ] -th data point to be
tested. £, isthe centroid position of cluster C . ||||2 is the

Euclidean distance. o, is the standard deviation of

cluster C. @ is the anomaly threshold, usually & > 2.5.
The clustering method adopts k-means, which is suitable
for clustering environmental parameters. The number of
clusters is set to 3-5 categories (corresponding to different
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micro environmental feature clusters of farmland), and the
pollution rate is taken as 1%-5%. The number of
deleted/adjusted points is about 100-300, which can
reduce the interference of outliers. Meanwhile, to
eliminate the influence of dimensionality, improve the
efficiency and accuracy of model training, this study uses
a data standardization method based on the wavelet
transform. Firstly, wavelet multi-resolution denoising is
performed on the agricultural environmental data
collected by sensors, such as soil temperature and
humidity (with the mother wavelet selected as db4,
decomposition level 3, and a soft threshold used for
thresholding). Then, the denoised data are standardized
instead of directly using wavelet coefficients as features.
This method not only converts data to the same scale but
also better preserves the detailed features and internal
structure of the data, offering a solid foundation for data
analysis and modeling.

After data preprocessing, the quality can be improved.
Al is widely used in agriculture. Taking farmland
irrigation as an example, to provide a scientific basis for
agricultural irrigation decision-making, this study uses BP
as the basis to predict soil moisture changes. However, BP
has shortcomings such as easily falling into local optima
and slow convergence speed. To improve the performance
of BP in soil moisture prediction, QNN is used to improve
BP, forming the QNN-BP model. QNN is a novel
algorithm that combines quantum computing and classical
neural networks. It utilizes the superposition and
entanglement properties of quantum bits to perform global
search and optimization more efficiently. Figure 5 shows
the QNN-BP’s structure.
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Figure 5: Structure of QNN-BP model

In Figure 5, the QNN-BP model structure includes an
input layer, a quantum layer, a hidden layer, and an output
layer. The input layer receives data on factors affecting
soil moisture, including air temperature and humidity, soil
temperature, etc. The quantum layer is composed of
multiple quantum bit units, which utilize the superposition
and entanglement properties of quantum bits to perform
quantum encoding and processing on input data,
converting the data into quantum state representations to
enhance data expression capabilities. The quantum state
encoding calculation is shown in equation (4).

¥i) = QSR (6)10) @
In equation (4), |l//in is the encoded input quantum
state. @, is the rotation angle corresponding to the k -th
feature. Ry (.) is a rotation gate operation around the Y
axis (single qubit unitary transformation). |0) is the

ground state of quantum bits. @ is a tensor product that
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combines states of multiple qubits. The corresponding
upper and lower limits are the starting index and ending
index. The evolution formula of quantum variational
circuits is shown in equation (5).

U(¢) :Hll_:l H,(4) (%)
In equation (5), U(@) is the global unitary
transformation of the quantum layer. ¢ = [¢1,¢2...¢,] is

a variational parameter vector (¢ is the | -th layer
parameter). L is the depth of the quantum layer, which
controls the complexity of entanglement. HI is the | -th

layer Hamiltonian, and [][ is the interlayer

transformation product. The hidden layer adopts the ReLU
function of traditional BP for nonlinear transformation.
The node output formula is shown in equation (6).

h, = ReLU iwn‘jz ;+b, (6)
j=1
In equation (6), N, is the output of the M -th node in
the hidden layer. Wn? is the connection weight from the
quantum layer to the hidden layer, and the superscript 4
indicates that the quantum is correlated. b, is the hidden
layer bias term. ReLU (x) = max(0, X) is a modified
linear activation function. Z; is the measurement value of
the ] -th quantum bit, as shown in equation (7).

Zi =Wou | Z; [U(D) | win) O
In equation (7), (W, | and |y,,) are the output and
j is the Pauli Z

operator acting on the j -th quantum bit. The quantum

and the hidden layers are connected through a specific
weight matrix. Weight initialization combines quantum
state randomness and classical methods. The output layer
is designed based on the predicted target to predict the soil
moisture value, as shown in equation (8).

y = iwnfhm +b° 8)

input state of the quantum layer. Z

In equation (8), ¥ is the predicted value of soil
moisture. Wn? is the weight from the hidden to output

layer. h° is the output layer bias. By measuring the

observability of quantum bits in quantum circuits (Pauli-Z
operator), the expected value is obtained. After
normalization preprocessing, it is directly used as the input
layer feature of the classical BP network to achieve the
connection between quantum output and the classical
network. The loss function adopts Mean Squared Error
(MSE), and the calculation formula is shown in equation

9).
Luse (D) == (5, - ©

=1



238  Informatica 49 (2025) 233246

In equation (9), Lysc (¢.W,b) represents the MSE
loss function. W =[W," W] is the classical layer weight
matrix. b=[b,,b, ] isthe bias vector. N is the number of
samples. ¥, is the predicted value of the i -th sample and

y; is the true soil moisture value of the i -th sample. The

optimization routine of the QNN-BP model is to first
optimize the initial weights of the model through quantum
annealing, and then fine-tune the parameters using the
Adam algorithm.

The training of the model utilizes quantum annealing
to optimize the weight matrix, updates the weights through
quantum state evolution and measurement, and adjusts the
hidden layer parameters using the Adam algorithm to
achieve efficient global search and precise local
optimization. The trained QNN-BP model can receive
new input data, and after quantum layer processing and
hidden layer feature extraction, the output layer provides
soil moisture prediction results, providing accurate
decision support for agricultural irrigation. The QNN-BP
model performs 8/16-bit integer quantization, simplifies
redundant quantum layer and classical layer parameters to
reduce resource consumption, and uses single-precision
floating-point numbers to balance prediction accuracy and
edge device computing storage costs to ensure numerical
accuracy. The rule-based triggering condition is whether
the soil moisture predicted by QNN-BP is within the
appropriate range. The safety constraint is set to suspend
irrigation when sensor data are abnormal, and the fault
protection is to cut off the power supply when the solenoid
valve fails, achieving irrigation control.

3 Results

A high-performance experimental platform is
designed to evaluate the data filtering effect of multiple
sensors and analyze the performance of the QNN-BP
model. The CPU adopts Intel Core i7-12700K, with a
main frequency of 3.6 GHz and a maximum turbo
frequency of 5.00 GHz. The GPU adopts NVIDIA
GeForce RTX 3060 12 GB, with 16 GB DDR4 3200 Mhz
memory and 1 TB SSD hard drive. Qiskit and Cirq are
quantum backends used to simulate quantum noise. At the
software level, classical quantum mixing training is
completed using TensorFlow 2.15.0, and data and
computational metrics are processed using Scikit learn
1.3.2. Ansatz is a shallow quantum circuit containing
Hadamard, Controlled-NOT, and Ry parameterized gates.
The parameter vector corresponds to the rotation angle of

the Ry gate, and the cost function takes the prediction error.

Q. Zhou

The optimizer first uses quantum annealing (optimizing
initial weights) and then fine-tunes with Adam. The
measurement strategy is to read the probability
distribution of quantum bits and convert it into classical
features. The network weights are transformed into a
Quantum Unconstrained Binary Optimization
Hamiltonian through linear mapping, and run on the Qiskit
Aer simulator. The annealing plan is set to linearly reduce
the temperature from 1,000 to 10 and iterate 200 times.
Classic features are encoded using angle encoding. Adam
has a learning rate of 0.001, batch size of 32, QNN-BP
population size of 50, crossover rate of 0.8, mutation rate
of 0.02, and termination condition of 200 iterations. QNN-
BP has 150-200 trainable parameters and infers FLOP of
1e3-1e4 per inference. BP has 100-150 trainable
parameters and FLOP of 800-1200. GA-BPNN has 120-
180 trainable parameters and FLOP of 900-1500. The
GPU-accelerated version framework is TensorFlow
2.15.0+Qiskit/Cirq. Table 3 shows the QNN-BP’s
parameters.

Table 3: QNN-BP model parameters

Parameter Parameter

Category Name Value
Input Layer 4 (Air Temperature and Humidity,
Neurons Soil Temperature, Light Intensity)
Hidden 10
Layer Nodes
Output Layer . .
Nodes 1 (Soil Moisture)
Activation
BP Function RelL.U
Tralnl_ng Adam
Function
Maximum
Iterations 200
Minimum
Error 0.001
Threshold
Qubits 4
Quantum
QNN Layer Depth
Quantum
Gates Used Hadamard, CNOT

The experimental data come from multi-sensor
detection parameters of cultivated land in a certain village,
and are processed using research methods. The processed
data are the dataset used to analyze the performance of the
QNN-BP model. The ratio of training to testing set is
80%:20%. The dataset includes parameters such as soil
temperature and humidity, air temperature and humidity,
and light intensity, covering the entire crop growth cycle.
During the data preprocessing process, the amount of data
and file size before and after each step are shown in Figure
6.



Exploration of the Development Path of Rural Smart Agriculture...

Informatica 49 (2025) 233-246 239

18 1 Before treatment 35 Before treatment
D 7 After treatment £ After treatment
8 16r150 20l
3 1| a2 142143 143135 138138 24.75 24.86 24.21 24.15
s lar B8] ursy 48] gaz)
c 12t ~
s @
3 10t =3 s
E (]
S 8
Eof
o
S 4}
g
3 2?21
0 : . L o e
Data Missing  Outlier standardi Data Missing  Outlier standardi
cleaning value filling handling  zation cleaning value filling handling  zation
Step Step
(@) Changes in data volume (b) File size
Figure 6: Data volume and file size before and after data preprocessing
In Figure 6 (a), the data cleaning step removed 1 94.05 0.94
obvious errors and duplicate data, reducing the data g gg'gé 8'32
volume from 15,000 to 14,200, a decrease of 800, and GA- 4 0471 0.95
improving data quality. After the loss value filling BPNN 5 94.74 0.95
process, the data volume only increased by 100 entries. Meé(ljn \fisg’inr?afd 94.9040.85  0.95+0.01
After handling outliers, the data volume decreased from € f ° 9702 0.97
14,300 to 13,800, a decrease of 500. After data 2 9785 098
standardization, the amount of data remained unchanged 3 97.91 0.99
at 13,800, as standardization only involved scaling and QNN-BP 4 97.33 0.98
other operations on the data, and did not change the Mean +5stan dard 97.49 0.98
quantity of data. In Figure 6 (b), the file size after data deviation 97.50£0.45  0.98+0.01

processing decreased from 25.88 MB to 24.15 MB,
indicating that the standardization process optimized the
data’s storage efficiency. The data preprocessing process
effectively improved data quality, reasonably reduced
redundant and abnormal data, optimized storage space,
and laid a solid foundation for subsequent analysis tasks.
In terms of performance analysis of the QNN-BP model,
this study compared the traditional BP and the Genetic
Algorithm-optimized BP Neural Network (GA-BPNN)
model [20]. This study compares calculations under the
same code path. The experimental results of 5-fold
forward cross-validation based on time sequence
segmentation are shown in Table 4.

Table 4: Results of 5-fold forward cross-validation
experiment based on time sequence segmentation

Method Cross validation folds AC((:(;J )a ey F1 value
1 86.12 0.87
2 87.56 0.88
3 88.01 0.89
BP 4 86.89 0.87
5 87.42 0.88
Mean ¢ standard 87204125  0.88+0.01

deviation

As shown in Table 4, this study adopts a time
sequential forward validation method, dividing the
agricultural data collection time series into 5 continuous
intervals. The k-th fold of the training set is the cumulative
data of the first k-1 intervals. The test set is the subsequent
data of the k-th interval (such as fold 1: training set=1-20%
time data, test set=21-25% time data; fold 5: training
set=1-80% time data, test set=81-100% time data). The
purpose is to avoid future data leaks and meet the time
prediction needs of agricultural scenarios. The accuracy of
QNN-BP and the standard deviation of F1 values (0.45,
0.01) are both lower than BP (1.25, 0.01) and GA-BPNN
(0.85, 0.01), indicating stronger temporal prediction
stability. This study uses Qiskit Aer's gasm_Simulator
backend with double precision. The simulation cost is
calculated by recording the product of CPU/GPU resource
usage time and real-time hardware power, while also
calculating the proportion of time spent on compiling and
measuring quantum circuits. The CPU usage and
computation time of each method for predicting data are
shown in Figure 7.
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Figure 7: CPU usage and computation time when predicting data using various methods

In Figure 7 (a), the average CPU usage of QNN-BP
is 23.18%, which is much lower than BP (44.21%) and
GA-BPNN (32.92%). This is because QNN-BP quantum
encodes the input data, reducing computational
complexity. In Figure 7 (b), the average response time of
QNN-BP for data prediction is 1.27 seconds, which is 3.22
seconds and 2.48 seconds lower than BP (4.49 seconds)
and GA-BPNN (2.51 seconds). This is because the QNN-
BP model combines the efficiency of quantum computing
with the powerful fitting ability of neural networks, which
can process data and optimize parameters more
efficiently. QNN-BP exhibits lower CPU usage and
shorter computation time in prediction tasks, with overall
performance superior to traditional BP and GA-BPNN.
QNN-BP relies on shallow quantum layers to simplify the
calculation process, and the delay can be controlled within

100
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>
S
5 85
L QNN-BP
sl — — GA-BPNN
— BP
O 1 1 1 I I
0 40 80 120 160 200

Iterations
(@) Accuracy of soil moisture prediction

1.27 seconds when simulating edge deployment to adapt
to real-time decision-making in farmland. At the same
time, the lightweight design reduces the energy
consumption of edge devices by more than 30% compared
to BP, achieving a balance between delay and energy
consumption. The binary classification framework of
"suitable (15% -25%)/unsuitable (<15% or>25%)" for soil
moisture has been introduced, and the class threshold is
set based on the water demand characteristics of the key
growth period of winter wheat summer maize rotation.
The accuracy of the model's classification of moisture
suitability is measured by the F1 value, which is suitable
for agricultural irrigation decision-making scenarios. In
the process of predicting soil moisture, the prediction
accuracy and F1 value are shown in Figure 8.
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Figure 8: Accuracy and F1 value of soil moisture prediction

In Figure 8 (a), the prediction accuracy of the QNN-
BP model reaches 97.48%, significantly higher than BP's
87.19% and GA-BPNN's 94.87%. This indicates that
QNN-BP has higher accuracy and reliability in predicting
soil moisture and can more accurately reflect the actual
changes in soil moisture. In Figure 8 (b), the F1 value of
QNN-BP is 0.98, which is better than BP's 0.88 and GA-
BPNN's 0.95. This indicates that QNN-BP not only has
high accuracy in the prediction process but also has a good
balance between precision and recall, and can identify
positive and negative samples more evenly, effectively
capturing subtle features of soil moisture changes. The
superposition and entanglement of quantum bits in QNN-
BP enable the model to perform more efficient global
search when processing complex data, avoiding getting

stuck in local optima. The prediction accuracy and F1
value of QNN-BP model are superior to BP and GA-
BPNN, demonstrating stronger soil moisture prediction
ability and more stable performance. The comparison of
soil moisture prediction error indicators between QNN-BP,
Long Short-Term Memory (LSTM), and Convolutional
Neural Network-Long Short-Term Memory (CNN-LSTM)
is shown in Table 5.

Table 5: Comparison table of error indicators for soil
moisture prediction between QNN-BP, LSTM, and

CNN-LSTM
Method RMSE (%VWC) MAE (%VWC) R2
LSTM 1.85 1.28 0.92

CNN-LSTM 1.52 1.01 0.95
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QNN-BP 1.03 0.72 0.98

As shown in Table 5, the Root Mean Square Error
(RMSE) and Mean Absolute Error (MAE) are both
measured in units of soil Volumetric Water Content (%
VWC), which is in line with the actual scenario of soil
moisture monitoring. QNN-BP relies on quantum state
feature encoding and hybrid optimization strategy, with
RMSE and MAE lower than LSTM and CNN-LSTM, and
Rz closer to 1, reflecting better soil moisture prediction
fitting and error control ability. To analyze the
interpretability of QNN-BP, additional QNN-BP ablation
experiments are conducted, and the results are shown in
Table 6.

Table 6: Results of QNN-BP ablation experiment and
interpretability analysis

RMSE MAE

SHAP Feature
R2  Importance Ranking
(Top3)

Experimental
group (%VW (%VW

C) C)

1. Soil temperature
(0.32)
0.9 2. Air humidity
8 (0.28)
3. Light intensity
(0.21
1. Soil temperature
(0.25)
2. Air humidity
(0.21)
3. Light intensity
(0.16)
1. Soil temperature
(0.28)
2. Air humidity
(0.24)
3. Light intensity
0.18
1.Soil temperature
(0.30)
2. Air humidity
(0.26)
3. Light intensity
(0.19)
1. Soil temperature
(0.29)
2. Air humidity
(0.25)
3. Light intensity
0.18
1. Soil temperature
(0.32)
2. Air humidity
(0.28)
3. Light intensity
(0.21
1. Soil temperature
(0.31)
2. Air humidity
0.27)
3. Light intensity
(0.20

QNN-BP 1.03 0.72

A. Classic BP 1.89 135 0.9
control group

[En

B. Triangle
featu_re 156 1.08 0.9
mapping 4

group

C. Remove
quantum 132 095 0.9
entanglement

group

o

D1. Quantum 0.9
depth=1 1.45 1.02

]

D2. Quantum

depth=3 0.9
(original 103 0.72 8

configuration)

D3. Quantum 0.9
depth=5 L 0.78 7

In Table 6, the SHAP values show that soil
temperature is the core feature driving soil moisture
prediction (with the highest SHAP value), and the
qguantum layer (including entanglement) further
strengthens the correlation weights between features (the
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SHAP values of the top 3 features in the original model
are higher than those of the classical control group A). The
RMSE of group C (no entanglement) increases by 0.29%
VWC compared to the original model, proving the
necessity of quantum entanglement for feature correlation
encoding. The RMSE of group B (simulated angle
encoding) decreases by 0.33% VWC compared to group
A (pure classical BP), but still higher than the original
model, indicating that quantum encoding is superior to
classical feature mapping. When the quantum depth is 3,
the model performs the best (with the minimum RMSE
and the highest R2). When the depth increases to 5, there
is a slight overfitting (with an increase in RMSE),
verifying the rationality of the original model depth
configuration.

To verify the practical application capability of QNN-
BP, it isapplied in the cultivated land of the data collection
site, and irrigation strategies are planned based on the
predicted soil moisture. 10 sets of Pico W+ESP32-CAM
sensors are actually deployed, with soil monitoring depths
set at 10-20 cm. The calibration procedure is to compare
sensor data with a standard soil temperature and humidity
meter every 2 weeks and correct deviations. The plot
covers an area of 100-200 m?*, with n=3 repetitions.
Random plots are divided according to soil fertility, with
soil being loam. Management methods include
conventional fertilization and weeding, seasonal coverage
throughout the entire growth cycle (120-150 days), and
real-time monitoring of weather confounding factors
through multiple sensors. Statistical analysis is used to
verify the significance of the results through analysis of
variance, and the mean is obtained as the result. The
protein content is measured using a Kjeldahl nitrogen
analyzer (according to GB 5009.5-2016). The vitamin
content is measured using a high-performance liquid
chromatography (HPLC, according to GB 5009.82-2016).
The pesticide residue is measured using a gas
chromatography-mass spectrometry (GC-MS, according
to GB 23200.113-2018). The sampling frequency is once
every 15 days during the critical growth period of crops,
and the error bars are set as + 5%, + 8%, and + 10%,
respectively. The laboratory standards are based on the
corresponding national first-class standard substances.
The crop growth and economic benefits before and after
the application of the model in the area are shown in Table
7.

Table 7: Crop growth and economic benefits before

and after applying the model

Growth Percentage
Unit Before After
Indicator Change (%)
Yield t/ha 15.32 17.85 +16.51%
Protein
% 10.20 11.08 +8.63%
Content
Vitamin
ma/kg 42.75 46.30 +8.30%
Content
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Water Use

kg/m3 1.85 2.73 +47.57%
Efficiency
Fertilizer

t/ha 0.0345 0.0278 -19.41%
Usage
Pesticide

kg/ha 5.2080 4.1525 -20.28%
Usage
Economic

USD/ha  87.6030 112.4060 +28.30%
Benefit

Labor -

Input h/ha 12 9.8050 18.29%

Table 7 shows the changes in crop growth and
economic benefits before and after applying the QNN-BP
model. The yield increased from 15.32 t/ha to 17.85 t/ha,
an increase of 16.51%, reflecting the model’s
effectiveness in improving crop yield. The water resource
utilization efficiency has significantly improved,
increasing from 1.85 kg/m? to 2.73 kg/m?3 (+47.57%), and
highlighting the advantages of the model in optimizing
irrigation strategies. At the same time, the use of fertilizers
and pesticides has decreased by 19.41% and 20.28%,
which not only reduced the environmental burden but also
lowered production costs. The economic benefits
increased from 87.6030 USD/ha to 112.4060 USD/ha, a
significant increase of 28.30%. The labor input decreased
by 18.29%, from 12 h/ha to 9.8050 h/ha, further
demonstrating the value of the model in improving
agricultural efficiency. Overall, QNN-BP has shown
excellent performance in improving crop growth
indicators and economic benefits, and has good practical
application potential. The assumptions of economic
analysis (market prices, input costs, labor prices) and
sensitivity analysis are shown in Tables 8 and 9.

Table 8: Economic analysis assumptions

Type Specific content
Winter wheat 1.8 yuan/kg, summer corn 1.6
yuan/kg;
Ma:irE:t Urea 2.8 yuan/kg, compound fertilizer 3.5 yuan/kg;
price. Pesticide (high efficiency and low toxicity) 25
assumption

yuan/100mL;
Agricultural labor force 120 yuan/day

Seed cost: 600 yuan/ha for winter wheat and 450
yuan/ha for summer corn; Equipment cost
(sensor+controller) is shared at 2000 yuan/ha per
year,

Irrigation electricity fee of 80 yuan/ha per season
The equipment has a service life of 5 years and no
residual value;

Assumption
of input cost

Ass(atmhe;ion The utilization rate of fertilizers and pesticides has
s P increased by 15% due to precision irrigation;
Production loss caused by no extreme weather
conditions
Table 9: Sensitivity analysis
Fluctuat . Net . Net Sensiti
Influencing factors ion income income vity
(USD/ha change
range ) rate level
Comprehensive -20% 899248 -2000%  High
grain price
-10% 101:'6'5 -10.00% High
Benchm 112406 0.00% -
ark
10% 12324'6 10.00% High
20% 134288'7 20.00% High
Cost of fel_'tllllzers 20% 11505.4 236% Low
and pesticides 1
-10% 113ZS'O 1.18% Low
Benchm o
ark 11240.6 0.00% -
10% 11108.2 -1.18% Low
20% 10975.8 -2.36% Low
Agrlcult_ural labor 20% 11465.4 2.00% Mediu
prices 1 m
10% 11353.0 1.00% Mediu
1 m
Benchm o
ark 11240.6 0.00% -
0% 11282 100k MM
200 110158 200% Ve

In addition to predicting soil moisture, QNN-BP can
also be applied in other agricultural data prediction areas.
The accuracy and error of predicting different types of
data are shown in Figure 9.
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Figure 9: Prediction accuracy and error of different types of data

Figure 9 (a) shows the differences in performance of
QNN-BP in predicting different agricultural data. Among
them, the accuracy of predicting air temperature and
humidity is relatively high, reaching 98.34% (air
temperature) and 94.56% (air humidity), which is related
to the relatively stable and easy-to-measure temperature
and humidity data. The prediction accuracy of pest related
data (such as pest infection rate, disease incidence rate) is
low, at 82.34% and 81.23%, because the factors affecting
pests and diseases are complex, and data acquisition is
difficult. In Figure 9 (b), there is a significant difference
in the MSE predicted by different data. The predicted
MSE of air temperature is the smallest, at 0.0032,
indicating that its predicted value has the smallest
deviation from the true value. The predicted MSE of the
disease incidence rate is the largest, at 0.0081, which
means that the prediction error is large. Other data
including, soil moisture, air humidity, and light intensity,
have relatively moderate MSE values, ranging from
0.0041 to 0.0062. Therefore, QNN-BP performs
differently in predicting different agricultural data, and
performs better in predicting easily accessible data that is
affected by a single factor.

4 Discussion

The proposed QNN-BP model showed significant
advantages in soil moisture prediction (accuracy 97.48%,
F1 value 0.98). This study solved the problem of
conventional BP models easily falling into local optima
and slow convergence speed through the superposition
and entanglement characteristics of quantum bits. The
encoding ability of the quantum layer on input data
enhanced the analytical power of the model for nonlinear
agricultural environmental relationships, realizing the
application of Al in agriculture. Compared with traditional
BP, QNN-BP had a prediction accuracy of 97.48%, an
improvement of 10.29% compared to BP (87.19%), and
an F1 value of 0.98, which was better than BP's 0.88. BP

had limitations in nonlinear agricultural data fitting due to
issues such as gradient vanishing. The average CPU usage
of QNN-BP was only 23.18%, far lower than BP's
44.21%, and the response time was shortened to 1.27
seconds, which was 3.22 seconds less than BP's 4.49
seconds. The soil moisture prediction accuracy of GA-
BPNN was 94.87%, lower than QNN-BP's 97.48%, while
the irrigation strategy driven by QNN-BP improved water
use efficiency by 47.57%. These results indicated that Al
technology could promote the development of RSA. This
result was consistent with the research conclusions of
relevant literature. For example, in reference [11], Ali et
al. proposed more agricultural development plans through
data analysis, but did not focus on the key indicator of soil
moisture. This study focused on soil moisture prediction,
which not only made breakthroughs in accuracy but also
solved the limitations of traditional models through
quantum computing properties. In addition, compared
with the unmanned weed control technology proposed by
Sharma et al., this study also performed well in reducing
manpower input, and further expanded to application
scenarios such as precision irrigation, reflecting the
diverse value of SA [12].

The quantum entanglement property in QNN can
achieve high-dimensional correlation encoding of soil
moisture-related features (such as temperature, humidity,
and light). Quantum superposition accelerates the model's
search for the global optimal solution, effectively avoiding
the traditional BP gradient vanishing and local optimal
problems, thereby improving convergence speed and
prediction accuracy. However, quantum computing
requires specialized hardware support, and current edge
farmland equipment is difficult to meet deployment
requirements. This model is based on single-crop-
cultivated land data and has not been optimized for the
differences in soil moisture requirements of different
crops (such as rice and wheat). Its universality needs to be
improved. Future research will optimize classical
algorithms to simulate quantum properties, develop multi-
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crop adaptation models, reduce hardware costs, and
deepen "federated learning+blockchain" data security
solutions. Future work will integrate multiple agricultural
models into the SA cloud, comprehensively enhancing
model deployment and application capabilities.

5 Conclusion

To explore the development path of Al driven RSA
and solve the bottlenecks of traditional agricultural
prediction models in accuracy, efficiency, and resource
consumption, this study combined the parallel
optimization capability of quantum computing with the
nonlinear mapping capability of traditional BP, and
proposed the QNN-BP model. In the task of soil moisture
prediction, the accuracy of QNN-BP model reached
97.48%, significantly higher than traditional BP (87.19%)
and GA-BPNN (94.87%). Its CPU usage was only
23.18%, with a response time of 1.27 seconds, which was
more efficient than traditional BP (44.21%, 4.49 seconds).
The irrigation strategy based on QNN-BP prediction
increased water use efficiency by 47.57% and reduced
fertilizer and pesticide usage by 20.28%. The QNN-BP
model confirmed the potential for efficiency enhancement
of Al algorithms in SA. The "perception decision
execution" closed-loop system driven by it provided a new
paradigm for the digital and low-carbon transformation of
rural agriculture. However, there are certain shortcomings
in current research: (1) The experimental data are limited
to a single-cultivated land and need to be expanded to
diverse environments such as mountainous and arid areas
to validate the model and improve scene scalability; (2)
Quantum computing relies on hardware, and in the short
term, classical algorithms need to be optimized to simulate
quantum characteristics and lower hardware barriers to
adapt to edge deployment; (3) The hardware cost of the
system is relatively high, which can be reduced through
subsidies from the Smart Agriculture Special Fund or
equipment sharing models; (4) The privacy risk of
farmland data storage rights. In the future, improvements
will be made in multiple aspects: (1) The data collection
is extended to multiple geographical environments and
crop types, and cross-regional validation is conducted to
enhance the scalability of the model; (2) Classical
algorithms are optimized to simulate quantum properties,
and lightweight modules are developed to adapt to edge
deployment; (3) Low-cost open-source hardware is
selected, combined with special subsidies and regional
device sharing to reduce the burden; (4) The decentralized
architecture of "federated learning+blockchain” is built to
ensure data security.
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