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Against the backdrop of global climate change and increasing constraints on agricultural resources, 

developing smart agricultural technologies is a key path to achieving food security and sustainable 

development. This study aims to investigate the development path of rural smart agriculture driven by 

artificial intelligence, with a focus on addressing the bottlenecks in traditional agricultural prediction 

models in terms of accuracy, efficiency, and resource consumption. This study focuses on winter wheat 

and summer corn rotation farmland, and collects environmental data through a Pico W+ESP32-CAM 

sensor network. After wavelet denoising, outlier detection, and Kalman smoothing interpolation 

preprocessing, the soil moisture prediction effects of various models are compared. Based on the 

predicted fruit, rule-based irrigation control is implemented. The core indicators include crop yield, 

protein and vitamin content, water and fertilizer usage, and model performance (response time, error, 

trainable parameters, etc.). Quantum Neural Network-Back Propagation model is constructed by 

combining an IoT multi-sensor data acquisition system. This study innovatively integrates quantum bits 

and parameterized quantum gates into the prediction module. The results showed that in terms of 

prediction, the accuracy of the soil moisture prediction model reached 97.48%, which was 10.29% higher 

than that of the traditional Back Propagation Neural Network (87.19%). The model response time was 

only 1.27 seconds, and the computational resource utilization rate has been reduced to 23.18%, meeting 

the real-time decision-making needs of farmland. The irrigation strategy based on the predicted results 

increased water resource utilization efficiency by 47.57%, reduced fertilizer usage by 19.41%, and 

increased economic benefits per unit area by 28.30%. The research method has achieved high-precision 

dynamic prediction of soil moisture. This research verified the feasibility of artificial intelligence 

algorithms in agricultural edge computing scenarios, provided a closed-loop solution of "perception 

decision execution" for rural smart agriculture, and promoted the transformation of agricultural 

production to precision and low-carbon. 

Povzetek: Raziskava predstavlja pametno kmetijstvo, ki z IoT-senzorji in napovednim modelom (kvantna 

nevronska mreža) omogoča natančno napoved talne vlage ter avtomatizirano namakanje, kar izboljša 

pridelke in kakovost ter hkrati zmanjša porabo vode, gnojil in računske vire. 

 

1 Introduction 
In the process of globalization, climate change and 

agricultural resource constraints have become 

increasingly prominent, posing a serious threat to food 

security and sustainable development [1, 2]. Traditional 

agriculture relies heavily on human and material 

resources, with a relatively extensive production method 

and low resource utilization efficiency, making it difficult 

to adapt to the current complex and ever-changing 

environment [3]. At the same time, population growth has 

led to a continuous growth in the requirement for food and 

agricultural products, and agriculture urgently needs 

transformation [4]. In this context, Smart Agriculture (SA) 

combined with Artificial Intelligence (AI) has emerged. 

SA, with the help of modern information technology, is 

expected to achieve a leapfrog improvement in 

agricultural production efficiency and become a key  

 

breakthrough in solving agricultural difficulties [5, 6]. 

Numerous scholars have conducted extensive research on 

SA. In terms of data collection, Internet of Things (IoT) 

technology has been widely applied. Pincheira et al. 

proposed the use of sensor-based unmanned vehicles to 

collect accurate agricultural data. Practical application 

showed that this method could collect accurate dynamic 

data [7]. Ahmed et al. designed a blockchain-based 

"cluster head sleep scheduling" data aggregation method 

to address multi-sensor data redundancy and energy 

consumption in intelligent agriculture. This method could 

reduce energy consumption, extend network lifespan, and 

achieve efficient data collection and pest attack prevention 

and control [8]. Mohapatra et al. developed an intelligent 

agriculture model to improve the communication 

efficiency of IoT devices and soil monitoring level in 

agriculture. This model could optimize agricultural 

communication and soil monitoring [9]. 
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In terms of decision support, Akhter and Sofi 

proposed an apple disease prediction model to improve 

orchard yield. Introducing this model into traditional 

agricultural production has improved the quality and yield 

of orchards [10]. Ali et al. used the IoT, Wireless Sensor 

Networks (WSN), and Sensor Cloud (SC) to collect and 

analyze agricultural data to provide digital solutions for 

agriculture. The experimental results indicated that this 

method could provide more agricultural development 

plans [11]. Sharma et al. proposed an unmanned weed 

control technology to integrate AI with agricultural 

technology. This method reduced manpower and could 

also be applied in unmanned spraying [12]. 

The current traditional agricultural prediction models 

are prone to local optima, slow convergence, and limited 

accuracy, making it difficult to meet real-time and 

accurate decision-making needs. Most studies focus on 

single technology applications and lack systematic 

solutions, making it difficult to achieve intelligent 

transformation of the entire agricultural production chain. 

To accurately predict agricultural data and explore the 

development path of rural SA driven by AI, a QNN-BP 

model that integrates Quantum Neural Network (QNN) 

and Back Propagation (BP) neural network is proposed. 

Combined with multiple sensors in the IoT, a "perception 

prediction decision execution" loop is formed to address 

the above issues. The research innovations are as follows: 

(1) Key input features such as soil temperature and 

humidity, meteorological data, etc. are transformed into 

quantum state representations, and the model's search for 

the global optimal solution is accelerated by the 

superposition characteristics of quantum bits; (2) By 

parameterizing quantum gates, a shallow quantum 

network structure is constructed, which reduces hardware 

resource requirements while retaining the advantages of 

quantum computing; (3) The quantum annealing 

technique is used to optimize the initial weights of the 

model, and the classical BP algorithm is combined to fine 

tune the parameters, avoiding gradient vanishing and 

balancing the convergence speed and prediction accuracy 

of the model. Summary Table of Review and Methods of 

This Study as shown in Table 1.

Table 1: Summary table of review and methods of this study 

Technology 

Domain 
Researcher Method Key Application Outcomes 

IoT Data 

Collection 

Pincheira et al. 

[7] 

Sensor-based Unmanned Ground 
Vehicle (UGV) Data Collection 

Method 

Precise dynamic data collection 

Ahmed et al. [8] 
Blockchain-enabled Cluster Head 

Sleep Scheduling 
Reduces energy use; extends network life; aids pest control 

Mohapatra et al. 

[9] 

IoT-Based Agricultural Intelligent 

Monitoring Model 
Improves communication efficiency; enhances soil monitoring 

Agricultural 

Decision Support 

Akhter and Sofi 

[10] 
Apple Disease Prediction Model Improves orchard yield/quality; aids disease control 

Ali et al. [11] IoT, WSN, SC Reveals data correlations; improves digital plans 
Sharma et al. 

[12] 

AI-Integrated Unmanned Weed 

Control Technology 
Reduces labor input; adapts to unmanned spraying 

Data Collection - 
Prediction - 

Decision Loop 

This Study 
QNN-BP + IoT Data Acquisition 

System (DAS) 

Realize high-precision prediction of soil moisture, optimize 
agricultural resource utilization efficiency and unit area 

economic benefits 

2 Methods 

2.1 Rural smart agriculture data collection 

Rural Smart Agriculture (RSA) is a modern 

agricultural model that relies on digital technologies, 

including AI, big data, the IoT, and blockchain, to achieve 

efficient resource allocation and coordinated industrial 

development through intelligent transformation of the 

entire agricultural production, operation, management, 

and service chain [13-15]. Agricultural IoT, through 

sensing, transmitting, and processing agricultural 

production data, helps achieve intelligent monitoring and 

precise management, improving production efficiency and 

resource utilization. The architecture of agricultural IoT is 

shown in Figure  1. 
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Figure  1: Architecture of agricultural IoT 

In Figure  1, the IoT architecture typically consists of 

the layers of perception, transport, service, and 

application. As the bottom layer, the perception layer is 

responsible for sensing and collecting various data in the 
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environment through sensors and other devices, and is the 

data source of the entire IoT. The transport layer mainly 

transmits the data collected by the perception layer to 

ensure a stable flow of data between nodes within the 

system. The service layer is the core part of the IoT, 

responsible for processing large amounts of transmitted 

data, conducting deep mining, and intelligent management 

of the data. The application layer directly faces users and 

integrates IoT technology into SA through interaction with 

the service layer, providing specific application scenarios 

and services, and bringing an intelligent experience and 

value to users. To explore the development path of RSA, 

data analysis is indispensable. Before analyzing 

agricultural data, it is necessary to first collect the data. To 

effectively collect agricultural data, this study combined 

multiple sensors to establish a DAS. Figure  2 shows the 

framework of the hardware structure. 
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Figure 2: Hardware structure of DAS 

In Figure  2, the system hardware structure adopts a 

modular design, including a core control module, a Data 

Acquisition Module (DAM), a communication module, a 

display module, an Irrigation Control Module (ICM), and 

a power module. The DAM integrates multiple sensors, 

such as temperature and humidity sensors, soil 

temperature sensors, soil humidity sensors, etc., for real-

time monitoring of key environmental parameters, 

including soil and air’s temperature and humidity, and 

light intensity. These sensors are connected to the core 

controller through communication protocols including, 

Inter Integrated Circuit (I2C) and Universal 

Asynchronous Receiver/Transmitter (UART), to ensure 

stable data transmission [16]. The communication module 

adopts Wi Fi technology to achieve wireless transmission 

of data to the data management platform. The display 

module utilizes a screen to display real-time 

environmental information, enabling farmers to intuitively 

understand the growth environment of crops. The ICM 

achieves an automatic irrigation function based on soil 

moisture data through a relay control circuit. The entire 

system adopts a low-power design, suitable for long-term 

operation in agricultural environments. The hardware 

shell design focuses on protection, preventing adverse 

weather and human damage, and ensuring stable system 

operation. This system can provide reliable data support 

for agricultural intelligent management, promoting the 

development of agricultural production towards precision 

and intelligence. The hardware settings of the DAS are 

listed in Table 2. 

 

 

Table 2: Hardware module parameters of DAS 

Module Name Model Measuring Accuracy 

Core Control 

Module 

Raspberry Pi Pico 

W 

264 KB memory, 2 MB 

flash memory 
DAM / / 

Air Temperature 

and Humidity 
Sensor 

DHT22 

Temperature accuracy 

±0.5℃, humidity 
accuracy ±3% RH 

Soil 

Temperature 
Sensor 

TempDS18B20 - 

Soil Type 
±0.5℃ 

Soil Moisture 

Sensor 

FDR - Soil 

Moisture Sensor 

±2% VWC (Volumetric 

Water Content) 
Light Intensity 

Sensor 
TSL2591 

±10% (within the range 

of 0.1lx-88,000lx) 

Carbon Dioxide 
Concentration 

Sensor 

MG811 
±50 ppm (within the 

range of 0-5000 ppm) 

Communication 

Module 

ESP32 - CAM - 
Wi-Fi / Bluetooth 

Module 

Supports Wi-Fi and 
Bluetooth dual-mode 

communication 

Display Module 
Pimoroni Hyper - 

OLED Display 

1.3-inch OLED display 
screen with a resolution 

of 128 × 64 pixels 

ICM 
JQC - 3F(T73) - 

5V 
Rated voltage 5 V, rated 

current 10 A 

Electromagnetic 
Valve 

2W025 - 15 
Rated voltage 24 VDC, 

diameter DN15 

Power Module LM2596S - ADJ 

Input voltage 4.5 V-35 V, 

adjustable output voltage 
1.23 V-32 V, maximum 

output current 3 A 

 

The hardware module of DAS can effectively detect 

various environmental data. To achieve automatic data 

collection, this study designs software for DAS. Figure  3 

shows the software architecture of DAS. 
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Figure 3: Software structure of DAS 

In Figure  3, the software part of DAS is developed on 

the open-source Arduino IDE platform, using C/C++ 

language to program and control various functional 

modules [17]. In the main loop, the system is in charge of 

collecting sensor data, uploading data to the cloud 

platform, and receiving remote control commands. The 

specific operation includes real-time collection and 

reading of sensor data such as air temperature and 

humidity, soil temperature and humidity, light intensity, 

CO2 concentration, etc., and converting the data into a 

standard format through preprocessing. The system 

utilizes the message queue telemetry transmission 

protocol to stably transmit data to the cloud platform 

through a Wi-Fi module, achieving remote monitoring and 

management. At the same time, the software supports 

automatic control of irrigation equipment based on soil 

moisture data, accurately adjusting the irrigation amount. 

The interface design is user-friendly, making it easy for 
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users to intuitively understand the system's operating 

status and configure parameters. 

2.2 Agricultural data preprocessing and 

soil prediction model 

This study establishes RSA-DAS by combining 

multiple sensors and using the open-source Arduino IDE 

as the development platform, laying the foundation for the 

analysis and application of agricultural data. However, 

agricultural environmental data collected using sensors 

may have issues such as noise, missing values, and 

outliers, thus requiring preprocessing. The data 

preprocessing program is shown in Figure  4. 
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Figure 4: Data cleaning process 

In Figure  4, this study first cleans the data by using 

data filtering algorithms to remove obvious errors and 

duplicate data, ensuring the accuracy of the data from the 

source. Then, to address the issue of missing values, a 

combination of time series analysis and spatial 

interpolation methods is used for filling. In the prediction 

of missing values in time series, a Kalman smoother is 

used to fit the trend and periodicity of historical data to fill 

in missing values. The standard formula is shown in 

equation (1) [18]. 

 
1

| | | 1| 1| 1|( ) ( )T

t T t t t t t t t T t tx x P A t P x x−

+ + += + −  (1) 

In equation (1), |t Tx  is the smoothed estimation value 

of the t  time state based on the total observation data (up 

to the upper limit of time T ) (corresponding to the 

prediction result of missing values in the original 

equation). |t tx  is the estimated value of state filtering at 

time t . |t tP  is the covariance matrix of the state filtering 

estimation at time t . ( )TA t  is the transition matrix of 

time t  state, and 1|t tP+  is the one-step prediction 

covariance matrix of time 1t +  state. 1|t Tx +  is the 

smoothed estimation of the state at time 1t + . 1|t tx +  is the 

one-step predicted value of the state at time 1t + . This 

formula improves the accuracy of filling missing values in 

time series by integrating the current filtering result with 

subsequent smoothing information. This study measures 

the interpolation quality by comparing errors and 

backtesting. In terms of spatial interpolation, data 

collected from peripheral sensors is utilized, and the 

missing values are comprehensively estimated using the 

inverse distance weighting method to make the filling 

results closer to the real situation. The formula is shown in 

equation (2) [19]. 
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In equation (2), *z  is the interpolation result of the 

target position. iz  is the observation value of the i -th 

neighboring sensor. id  is the Euclidean distance between 

the target position and the i -th sensor.   is the distance 

attenuation index, 0  , usually 2 = . In inverse 

distance weighted interpolation, it is necessary to adjust 

the sensor geometry based on the spatial shape of the 

target monitoring area to achieve effective coverage, and 

also adjust the power parameters to ensure stable 

transmission of data from each sensor. After adjustment, 

the missing values are estimated comprehensively by 

calculating the Euclidean distance between the target 

position and each sensor, using the reciprocal of the 

distance attenuation index ( , usually 2) as the weight. 

The sensor layout needs to evenly cover the monitoring 

area to reduce sampling bias. If the distance between 

sensors is too large, it will reduce interpolation accuracy, 

and if it is too small, it will easily lead to data redundancy. 

The sensitivity of   is reflected in the sudden increase of 

the weight proportion of neighboring sensors when   

increases (easily affected by local data), and the more 

uniform weight distribution when   decreases 

(smoothness is enhanced but local features may be lost). 

Usually, 2 is taken to balance accuracy and smoothness. 

The outlier handling adopts anomaly detection 

methods based on clustering analysis. Data points that 

deviate significantly from normal data clustering results 

are identified as outliers and corrected or removed based 

on domain knowledge and data context, effectively 

avoiding the interference of outliers on the analysis 

results. The calculation formula is shown in equation (3). 

 
2

 Outlier j j c cx    −    (3) 

In equation (3),  Outlier j  is the j -th data point 

judged as an outlier. jx  is the j -th data point to be 

tested. c  is the centroid position of cluster c . 
2

.  is the 

Euclidean distance. c  is the standard deviation of 

cluster c .   is the anomaly threshold, usually 2.5  . 

The clustering method adopts k-means, which is suitable 

for clustering environmental parameters. The number of 

clusters is set to 3-5 categories (corresponding to different 
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micro environmental feature clusters of farmland), and the 

pollution rate is taken as 1%-5%. The number of 

deleted/adjusted points is about 100-300, which can 

reduce the interference of outliers. Meanwhile, to 

eliminate the influence of dimensionality, improve the 

efficiency and accuracy of model training, this study uses 

a data standardization method based on the wavelet 

transform. Firstly, wavelet multi-resolution denoising is 

performed on the agricultural environmental data 

collected by sensors, such as soil temperature and 

humidity (with the mother wavelet selected as db4, 

decomposition level 3, and a soft threshold used for 

thresholding). Then, the denoised data are standardized 

instead of directly using wavelet coefficients as features. 

This method not only converts data to the same scale but 

also better preserves the detailed features and internal 

structure of the data, offering a solid foundation for data 

analysis and modeling. 

After data preprocessing, the quality can be improved. 

AI is widely used in agriculture. Taking farmland 

irrigation as an example, to provide a scientific basis for 

agricultural irrigation decision-making, this study uses BP 

as the basis to predict soil moisture changes. However, BP 

has shortcomings such as easily falling into local optima 

and slow convergence speed. To improve the performance 

of BP in soil moisture prediction, QNN is used to improve 

BP, forming the QNN-BP model. QNN is a novel 

algorithm that combines quantum computing and classical 

neural networks. It utilizes the superposition and 

entanglement properties of quantum bits to perform global 

search and optimization more efficiently. Figure  5 shows 

the QNN-BP’s structure. 

 

Air temperature 
and humidity

Soil temperature

    

Input layer

Bit unit

Quantum layer Hidden layer

Output layerQuantum coding

ReLU

Nonlinear 
transform

Predicting soil 
moisture values

Figure 5: Structure of QNN-BP model 

In Figure  5, the QNN-BP model structure includes an 

input layer, a quantum layer, a hidden layer, and an output 

layer. The input layer receives data on factors affecting 

soil moisture, including air temperature and humidity, soil 

temperature, etc. The quantum layer is composed of 

multiple quantum bit units, which utilize the superposition 

and entanglement properties of quantum bits to perform 

quantum encoding and processing on input data, 

converting the data into quantum state representations to 

enhance data expression capabilities. The quantum state 

encoding calculation is shown in equation (4). 

 
1

in 0| ( ) | 0K
kk yR −

= =   (4) 

In equation (4), in|   is the encoded input quantum 

state. k  is the rotation angle corresponding to the k -th 

feature. (.)yR  is a rotation gate operation around the Y 

axis (single qubit unitary transformation). | 0  is the 

ground state of quantum bits.   is a tensor product that 

combines states of multiple qubits. The corresponding 

upper and lower limits are the starting index and ending 

index. The evolution formula of quantum variational 

circuits is shown in equation (5). 

 
1( ) ( )L

l l lU H ==  (5) 

In equation (5), ( )U   is the global unitary 

transformation of the quantum layer.  1 2, ... l   =  is 

a variational parameter vector (
l  is the l -th layer 

parameter). L  is the depth of the quantum layer, which 

controls the complexity of entanglement. 
lH  is the l -th 

layer Hamiltonian, and   is the interlayer 

transformation product. The hidden layer adopts the ReLU 

function of traditional BP for nonlinear transformation. 

The node output formula is shown in equation (6). 
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In equation (6), mh  is the output of the m -th node in 

the hidden layer. 
q

mW  is the connection weight from the 

quantum layer to the hidden layer, and the superscript q  

indicates that the quantum is correlated. mb  is the hidden 

layer bias term. ( ) max(0, )ReLU x x=  is a modified 

linear activation function. jz  is the measurement value of 

the j -th quantum bit, as shown in equation (7). 

 out in| | ( ) |j jz Z U  =    (7) 

In equation (7), out |  and in|   are the output and 

input state of the quantum layer. jZ  is the Pauli Z 

operator acting on the j -th quantum bit. The quantum 

and the hidden layers are connected through a specific 

weight matrix. Weight initialization combines quantum 

state randomness and classical methods. The output layer 

is designed based on the predicted target to predict the soil 

moisture value, as shown in equation (8). 
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In equation (8), ŷ  is the predicted value of soil 

moisture. 
o

mW  is the weight from the hidden to output 

layer. ob  is the output layer bias. By measuring the 

observability of quantum bits in quantum circuits (Pauli-Z 

operator), the expected value is obtained. After 

normalization preprocessing, it is directly used as the input 

layer feature of the classical BP network to achieve the 

connection between quantum output and the classical 

network. The loss function adopts Mean Squared Error 

(MSE), and the calculation formula is shown in equation 

(9). 

 ( ) ( )
2

MSE

1

1
ˆ, ,

N

i i

i

L W b y y
N


=

= −   (9) 



238 Informatica 49 (2025) 233–246 Q. Zhou 

 

In equation (9), ( )MSE , ,L W b  represents the MSE 

loss function. [ , ]m o

q mW W W=  is the classical layer weight 

matrix.  ,m ob b b=  is the bias vector. N  is the number of 

samples. ˆ
iy  is the predicted value of the i -th sample and 

iy  is the true soil moisture value of the i -th sample. The 

optimization routine of the QNN-BP model is to first 

optimize the initial weights of the model through quantum 

annealing, and then fine-tune the parameters using the 

Adam algorithm. 

The training of the model utilizes quantum annealing 

to optimize the weight matrix, updates the weights through 

quantum state evolution and measurement, and adjusts the 

hidden layer parameters using the Adam algorithm to 

achieve efficient global search and precise local 

optimization. The trained QNN-BP model can receive 

new input data, and after quantum layer processing and 

hidden layer feature extraction, the output layer provides 

soil moisture prediction results, providing accurate 

decision support for agricultural irrigation. The QNN-BP 

model performs 8/16-bit integer quantization, simplifies 

redundant quantum layer and classical layer parameters to 

reduce resource consumption, and uses single-precision 

floating-point numbers to balance prediction accuracy and 

edge device computing storage costs to ensure numerical 

accuracy. The rule-based triggering condition is whether 

the soil moisture predicted by QNN-BP is within the 

appropriate range. The safety constraint is set to suspend 

irrigation when sensor data are abnormal, and the fault 

protection is to cut off the power supply when the solenoid 

valve fails, achieving irrigation control. 

3 Results 
A high-performance experimental platform is 

designed to evaluate the data filtering effect of multiple 

sensors and analyze the performance of the QNN-BP 

model. The CPU adopts Intel Core i7-12700K, with a 

main frequency of 3.6 GHz and a maximum turbo 

frequency of 5.00 GHz. The GPU adopts NVIDIA 

GeForce RTX 3060 12 GB, with 16 GB DDR4 3200 Mhz 

memory and 1 TB SSD hard drive. Qiskit and Cirq are 

quantum backends used to simulate quantum noise. At the 

software level, classical quantum mixing training is 

completed using TensorFlow 2.15.0, and data and 

computational metrics are processed using Scikit learn 

1.3.2. Ansatz is a shallow quantum circuit containing 

Hadamard, Controlled-NOT, and Ry parameterized gates. 

The parameter vector corresponds to the rotation angle of 

the Ry gate, and the cost function takes the prediction error. 

The optimizer first uses quantum annealing (optimizing 

initial weights) and then fine-tunes with Adam. The 

measurement strategy is to read the probability 

distribution of quantum bits and convert it into classical 

features. The network weights are transformed into a 

Quantum Unconstrained Binary Optimization 

Hamiltonian through linear mapping, and run on the Qiskit 

Aer simulator. The annealing plan is set to linearly reduce 

the temperature from 1,000 to 10 and iterate 200 times. 

Classic features are encoded using angle encoding. Adam 

has a learning rate of 0.001, batch size of 32, QNN-BP 

population size of 50, crossover rate of 0.8, mutation rate 

of 0.02, and termination condition of 200 iterations. QNN-

BP has 150-200 trainable parameters and infers FLOP of 

1e3-1e4 per inference. BP has 100-150 trainable 

parameters and FLOP of 800-1200. GA-BPNN has 120-

180 trainable parameters and FLOP of 900-1500. The 

GPU-accelerated version framework is TensorFlow 

2.15.0+Qiskit/Cirq. Table 3 shows the QNN-BP’s 

parameters. 

Table 3: QNN-BP model parameters 

Parameter 

Category 

Parameter 

Name 
Value 

BP 

Input Layer 

Neurons 

4 (Air Temperature and Humidity, 

Soil Temperature, Light Intensity) 
Hidden 

Layer Nodes 
10 

Output Layer 
Nodes 

1 (Soil Moisture) 

Activation 

Function 
ReLU 

Training 

Function 
Adam 

Maximum 
Iterations 

200 

Minimum 

Error 
Threshold 

0.001 

QNN 

Qubits 4 

Quantum 
Layer Depth 

3 

Quantum 

Gates Used 
Hadamard, CNOT 

 

The experimental data come from multi-sensor 

detection parameters of cultivated land in a certain village, 

and are processed using research methods. The processed 

data are the dataset used to analyze the performance of the 

QNN-BP model. The ratio of training to testing set is 

80%:20%. The dataset includes parameters such as soil 

temperature and humidity, air temperature and humidity, 

and light intensity, covering the entire crop growth cycle. 

During the data preprocessing process, the amount of data 

and file size before and after each step are shown in Figure  

6.
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Figure 6: Data volume and file size before and after data preprocessing

In Figure  6 (a), the data cleaning step removed 

obvious errors and duplicate data, reducing the data 

volume from 15,000 to 14,200, a decrease of 800, and 

improving data quality. After the loss value filling 

process, the data volume only increased by 100 entries. 

After handling outliers, the data volume decreased from 

14,300 to 13,800, a decrease of 500. After data 

standardization, the amount of data remained unchanged 

at 13,800, as standardization only involved scaling and 

other operations on the data, and did not change the 

quantity of data. In Figure  6 (b), the file size after data 

processing decreased from 25.88 MB to 24.15 MB, 

indicating that the standardization process optimized the 

data’s storage efficiency. The data preprocessing process 

effectively improved data quality, reasonably reduced 

redundant and abnormal data, optimized storage space, 

and laid a solid foundation for subsequent analysis tasks. 

In terms of performance analysis of the QNN-BP model, 

this study compared the traditional BP and the Genetic 

Algorithm-optimized BP Neural Network (GA-BPNN) 

model [20]. This study compares calculations under the 

same code path. The experimental results of 5-fold 

forward cross-validation based on time sequence 

segmentation are shown in Table 4. 

Table 4: Results of 5-fold forward cross-validation 

experiment based on time sequence segmentation 

Method Cross validation folds 
Accuracy 

(%) 
F1 value 

BP 

1 86.12 0.87 

2 87.56 0.88 

3 88.01 0.89 

4 86.89 0.87 
5 87.42 0.88 

Mean ± standard 

deviation 
87.20±1.25 0.88±0.01 

GA-
BPNN 

1 94.05 0.94 

2 95.32 0.95 
3 95.68 0.96 

4 94.71 0.95 

5 94.74 0.95 
Mean ± standard 

deviation 
94.90±0.85 0.95±0.01 

QNN-BP 

1 97.02 0.97 
2 97.85 0.98 

3 97.91 0.99 

4 97.33 0.98 
5 97.49 0.98 

Mean ± standard 

deviation 
97.50±0.45 0.98±0.01 

 

As shown in Table 4, this study adopts a time 

sequential forward validation method, dividing the 

agricultural data collection time series into 5 continuous 

intervals. The k-th fold of the training set is the cumulative 

data of the first k-1 intervals. The test set is the subsequent 

data of the k-th interval (such as fold 1: training set=1-20% 

time data, test set=21-25% time data; fold 5: training 

set=1-80% time data, test set=81-100% time data). The 

purpose is to avoid future data leaks and meet the time 

prediction needs of agricultural scenarios. The accuracy of 

QNN-BP and the standard deviation of F1 values (0.45, 

0.01) are both lower than BP (1.25, 0.01) and GA-BPNN 

(0.85, 0.01), indicating stronger temporal prediction 

stability. This study uses Qiskit Aer's qasm_Simulator 

backend with double precision. The simulation cost is 

calculated by recording the product of CPU/GPU resource 

usage time and real-time hardware power, while also 

calculating the proportion of time spent on compiling and 

measuring quantum circuits. The CPU usage and 

computation time of each method for predicting data are 

shown in Figure  7.
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Figure 7: CPU usage and computation time when predicting data using various methods

In Figure  7 (a), the average CPU usage of QNN-BP 

is 23.18%, which is much lower than BP (44.21%) and 

GA-BPNN (32.92%). This is because QNN-BP quantum 

encodes the input data, reducing computational 

complexity. In Figure  7 (b), the average response time of 

QNN-BP for data prediction is 1.27 seconds, which is 3.22 

seconds and 2.48 seconds lower than BP (4.49 seconds) 

and GA-BPNN (2.51 seconds). This is because the QNN-

BP model combines the efficiency of quantum computing 

with the powerful fitting ability of neural networks, which 

can process data and optimize parameters more 

efficiently. QNN-BP exhibits lower CPU usage and 

shorter computation time in prediction tasks, with overall 

performance superior to traditional BP and GA-BPNN. 

QNN-BP relies on shallow quantum layers to simplify the 

calculation process, and the delay can be controlled within 

1.27 seconds when simulating edge deployment to adapt 

to real-time decision-making in farmland. At the same 

time, the lightweight design reduces the energy 

consumption of edge devices by more than 30% compared 

to BP, achieving a balance between delay and energy 

consumption. The binary classification framework of 

"suitable (15% -25%)/unsuitable (<15% or>25%)" for soil 

moisture has been introduced, and the class threshold is 

set based on the water demand characteristics of the key 

growth period of winter wheat summer maize rotation. 

The accuracy of the model's classification of moisture 

suitability is measured by the F1 value, which is suitable 

for agricultural irrigation decision-making scenarios. In 

the process of predicting soil moisture, the prediction 

accuracy and F1 value are shown in Figure  8.
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Figure 8: Accuracy and F1 value of soil moisture prediction

In Figure  8 (a), the prediction accuracy of the QNN-

BP model reaches 97.48%, significantly higher than BP's 

87.19% and GA-BPNN's 94.87%. This indicates that 

QNN-BP has higher accuracy and reliability in predicting 

soil moisture and can more accurately reflect the actual 

changes in soil moisture. In Figure  8 (b), the F1 value of 

QNN-BP is 0.98, which is better than BP's 0.88 and GA-

BPNN's 0.95. This indicates that QNN-BP not only has 

high accuracy in the prediction process but also has a good 

balance between precision and recall, and can identify 

positive and negative samples more evenly, effectively 

capturing subtle features of soil moisture changes. The 

superposition and entanglement of quantum bits in QNN-

BP enable the model to perform more efficient global 

search when processing complex data, avoiding getting 

stuck in local optima. The prediction accuracy and F1 

value of QNN-BP model are superior to BP and GA-

BPNN, demonstrating stronger soil moisture prediction 

ability and more stable performance. The comparison of 

soil moisture prediction error indicators between QNN-BP, 

Long Short-Term Memory (LSTM), and Convolutional 

Neural Network-Long Short-Term Memory (CNN-LSTM) 

is shown in Table 5. 

Table 5: Comparison table of error indicators for soil 

moisture prediction between QNN-BP, LSTM, and 

CNN-LSTM 

Method RMSE (%VWC) MAE (%VWC) R² 

LSTM 1.85 1.28 0.92 

CNN-LSTM 1.52 1.01 0.95 
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QNN-BP 1.03 0.72 0.98 

 

As shown in Table 5, the Root Mean Square Error 

(RMSE) and Mean Absolute Error (MAE) are both 

measured in units of soil Volumetric Water Content (% 

VWC), which is in line with the actual scenario of soil 

moisture monitoring. QNN-BP relies on quantum state 

feature encoding and hybrid optimization strategy, with 

RMSE and MAE lower than LSTM and CNN-LSTM, and 

R² closer to 1, reflecting better soil moisture prediction 

fitting and error control ability. To analyze the 

interpretability of QNN-BP, additional QNN-BP ablation 

experiments are conducted, and the results are shown in 

Table 6. 

Table 6: Results of QNN-BP ablation experiment and 

interpretability analysis 

Experimental 
group 

RMSE 

 

(%VW

C) 

MAE 

 

(%VW

C) 

R² 

SHAP Feature 

Importance Ranking 

(Top3) 

QNN-BP 1.03 0.72 
0.9

8 

1. Soil temperature 
(0.32) 

2. Air humidity 

(0.28) 
3. Light intensity 

(0.21 

A. Classic BP 

control group 
1.89 1.35 

0.9

1 

1. Soil temperature 
(0.25) 

2. Air humidity 

(0.21) 
3. Light intensity 

(0.16) 

B. Triangle 

feature 

mapping 
group 

1.56 1.08 
0.9

4 

1. Soil temperature 
(0.28) 

2. Air humidity 

(0.24) 
3. Light intensity 

(0.18 

C. Remove 

quantum 
entanglement 

group 

1.32 0.95 
0.9
6 

1.Soil temperature 

(0.30) 

2. Air humidity 
(0.26) 

3. Light intensity 

(0.19) 

D1. Quantum 
depth=1 

1.45 1.02 
0.9
5 

1. Soil temperature 

(0.29) 

2. Air humidity 
(0.25) 

3. Light intensity 

(0.18 

D2. Quantum 

depth=3 
(original 

configuration) 

1.03 0.72 
0.9
8 

1. Soil temperature 

(0.32) 

2. Air humidity 
(0.28) 

3. Light intensity 

(0.21 

D3. Quantum 
depth=5 

1.11 0.78 
0.9
7 

1. Soil temperature 

(0.31) 

2. Air humidity 
(0.27) 

3. Light intensity 

(0.20 

 

In Table 6, the SHAP values show that soil 

temperature is the core feature driving soil moisture 

prediction (with the highest SHAP value), and the 

quantum layer (including entanglement) further 

strengthens the correlation weights between features (the 

SHAP values of the top 3 features in the original model 

are higher than those of the classical control group A). The 

RMSE of group C (no entanglement) increases by 0.29% 

VWC compared to the original model, proving the 

necessity of quantum entanglement for feature correlation 

encoding. The RMSE of group B (simulated angle 

encoding) decreases by 0.33% VWC compared to group 

A (pure classical BP), but still higher than the original 

model, indicating that quantum encoding is superior to 

classical feature mapping. When the quantum depth is 3, 

the model performs the best (with the minimum RMSE 

and the highest R²). When the depth increases to 5, there 

is a slight overfitting (with an increase in RMSE), 

verifying the rationality of the original model depth 

configuration. 

To verify the practical application capability of QNN-

BP, it is applied in the cultivated land of the data collection 

site, and irrigation strategies are planned based on the 

predicted soil moisture. 10 sets of Pico W+ESP32-CAM 

sensors are actually deployed, with soil monitoring depths 

set at 10-20 cm. The calibration procedure is to compare 

sensor data with a standard soil temperature and humidity 

meter every 2 weeks and correct deviations. The plot 

covers an area of 100-200 m ² , with n=3 repetitions. 

Random plots are divided according to soil fertility, with 

soil being loam. Management methods include 

conventional fertilization and weeding, seasonal coverage 

throughout the entire growth cycle (120-150 days), and 

real-time monitoring of weather confounding factors 

through multiple sensors. Statistical analysis is used to 

verify the significance of the results through analysis of 

variance, and the mean is obtained as the result. The 

protein content is measured using a Kjeldahl nitrogen 

analyzer (according to GB 5009.5-2016). The vitamin 

content is measured using a high-performance liquid 

chromatography (HPLC, according to GB 5009.82-2016). 

The pesticide residue is measured using a gas 

chromatography-mass spectrometry (GC-MS, according 

to GB 23200.113-2018). The sampling frequency is once 

every 15 days during the critical growth period of crops, 

and the error bars are set as ± 5%, ± 8%, and ± 10%, 

respectively. The laboratory standards are based on the 

corresponding national first-class standard substances. 

The crop growth and economic benefits before and after 

the application of the model in the area are shown in Table 

7. 

Table 7: Crop growth and economic benefits before 

and after applying the model 

Growth 

Indicator 
Unit Before After 

Percentage 

Change (%) 

Yield t/ha 15.32 17.85 +16.51% 

Protein 

Content 
% 10.20 11.08 +8.63% 

Vitamin 

Content 
mg/kg 42.75 46.30 +8.30% 
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Water Use 

Efficiency 
kg/m³ 1.85 2.73 +47.57% 

Fertilizer 

Usage 
t/ha 0.0345 0.0278 -19.41% 

Pesticide 

Usage 
kg/ha 5.2080 4.1525 -20.28% 

Economic 

Benefit 
USD/ha 87.6030 112.4060 +28.30% 

Labor 

Input 
h/ha 12 9.8050 

-

18.29% 

 

Table 7 shows the changes in crop growth and 

economic benefits before and after applying the QNN-BP 

model. The yield increased from 15.32 t/ha to 17.85 t/ha, 

an increase of 16.51%, reflecting the model’s 

effectiveness in improving crop yield. The water resource 

utilization efficiency has significantly improved, 

increasing from 1.85 kg/m³ to 2.73 kg/m³ (+47.57%), and 

highlighting the advantages of the model in optimizing 

irrigation strategies. At the same time, the use of fertilizers 

and pesticides has decreased by 19.41% and 20.28%, 

which not only reduced the environmental burden but also 

lowered production costs. The economic benefits 

increased from 87.6030 USD/ha to 112.4060 USD/ha, a 

significant increase of 28.30%. The labor input decreased 

by 18.29%, from 12 h/ha to 9.8050 h/ha, further 

demonstrating the value of the model in improving 

agricultural efficiency. Overall, QNN-BP has shown 

excellent performance in improving crop growth 

indicators and economic benefits, and has good practical 

application potential. The assumptions of economic 

analysis (market prices, input costs, labor prices) and 

sensitivity analysis are shown in Tables 8 and 9. 

Table 8: Economic analysis assumptions 

Type Specific content 

Market 

price 
assumption 

Winter wheat 1.8 yuan/kg, summer corn 1.6 

yuan/kg;  
Urea 2.8 yuan/kg, compound fertilizer 3.5 yuan/kg;  

Pesticide (high efficiency and low toxicity) 25 

yuan/100mL;  
Agricultural labor force 120 yuan/day 

Assumption 

of input cost 

Seed cost: 600 yuan/ha for winter wheat and 450 

yuan/ha for summer corn; Equipment cost 
(sensor+controller) is shared at 2000 yuan/ha per 

year;  

Irrigation electricity fee of 80 yuan/ha per season 

Other 

Assumption

s 

The equipment has a service life of 5 years and no 

residual value;  

The utilization rate of fertilizers and pesticides has 
increased by 15% due to precision irrigation;  

Production loss caused by no extreme weather 

conditions 

 

Table 9: Sensitivity analysis 

Influencing factors 

Fluctuat

ion 

range 

Net 

income 
(USD/ha

) 

Net 

income 
change 

rate 

Sensiti

vity 

level 

Comprehensive 

grain price 
-20% 8992.48 -20.00% High 

 -10% 
10116.5

4 
-10.00% High 

 
Benchm

ark 
11240.6 0.00% - 

 10% 
12364.6

6 
10.00% High 

 20% 
13488.7

2 
20.00% High 

Cost of fertilizers 
and pesticides 

-20% 
11505.4

1 
2.36% Low 

 -10% 
11373.0

1 
1.18% Low 

 
Benchm

ark 
11240.6 0.00% - 

 10% 11108.2 -1.18% Low 

 20% 10975.8 -2.36% Low 

Agricultural labor 
prices 

-20% 
11465.4

1 
2.00% 

Mediu
m 

 -10% 
11353.0

1 
1.00% 

Mediu

m 

 
Benchm

ark 
11240.6 0.00% - 

 10% 11128.2 -1.00% 
Mediu

m 

 20% 11015.8 -2.00% 
Mediu

m 

 

In addition to predicting soil moisture, QNN-BP can 

also be applied in other agricultural data prediction areas. 

The accuracy and error of predicting different types of 

data are shown in Figure  9.
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Figure 9: Prediction accuracy and error of different types of data

Figure  9 (a) shows the differences in performance of 

QNN-BP in predicting different agricultural data. Among 

them, the accuracy of predicting air temperature and 

humidity is relatively high, reaching 98.34% (air 

temperature) and 94.56% (air humidity), which is related 

to the relatively stable and easy-to-measure temperature 

and humidity data. The prediction accuracy of pest related 

data (such as pest infection rate, disease incidence rate) is 

low, at 82.34% and 81.23%, because the factors affecting 

pests and diseases are complex, and data acquisition is 

difficult. In Figure  9 (b), there is a significant difference 

in the MSE predicted by different data. The predicted 

MSE of air temperature is the smallest, at 0.0032, 

indicating that its predicted value has the smallest 

deviation from the true value. The predicted MSE of the 

disease incidence rate is the largest, at 0.0081, which 

means that the prediction error is large. Other data 

including, soil moisture, air humidity, and light intensity, 

have relatively moderate MSE values, ranging from 

0.0041 to 0.0062. Therefore, QNN-BP performs 

differently in predicting different agricultural data, and 

performs better in predicting easily accessible data that is 

affected by a single factor. 

4 Discussion 
The proposed QNN-BP model showed significant 

advantages in soil moisture prediction (accuracy 97.48%, 

F1 value 0.98). This study solved the problem of 

conventional BP models easily falling into local optima 

and slow convergence speed through the superposition 

and entanglement characteristics of quantum bits. The 

encoding ability of the quantum layer on input data 

enhanced the analytical power of the model for nonlinear 

agricultural environmental relationships, realizing the 

application of AI in agriculture. Compared with traditional 

BP, QNN-BP had a prediction accuracy of 97.48%, an 

improvement of 10.29% compared to BP (87.19%), and 

an F1 value of 0.98, which was better than BP's 0.88. BP 

had limitations in nonlinear agricultural data fitting due to 

issues such as gradient vanishing. The average CPU usage 

of QNN-BP was only 23.18%, far lower than BP's 

44.21%, and the response time was shortened to 1.27 

seconds, which was 3.22 seconds less than BP's 4.49 

seconds. The soil moisture prediction accuracy of GA-

BPNN was 94.87%, lower than QNN-BP's 97.48%, while 

the irrigation strategy driven by QNN-BP improved water 

use efficiency by 47.57%. These results indicated that AI 

technology could promote the development of RSA. This 

result was consistent with the research conclusions of 

relevant literature. For example, in reference [11], Ali et 

al. proposed more agricultural development plans through 

data analysis, but did not focus on the key indicator of soil 

moisture. This study focused on soil moisture prediction, 

which not only made breakthroughs in accuracy but also 

solved the limitations of traditional models through 

quantum computing properties. In addition, compared 

with the unmanned weed control technology proposed by 

Sharma et al., this study also performed well in reducing 

manpower input, and further expanded to application 

scenarios such as precision irrigation, reflecting the 

diverse value of SA [12]. 

The quantum entanglement property in QNN can 

achieve high-dimensional correlation encoding of soil 

moisture-related features (such as temperature, humidity, 

and light). Quantum superposition accelerates the model's 

search for the global optimal solution, effectively avoiding 

the traditional BP gradient vanishing and local optimal 

problems, thereby improving convergence speed and 

prediction accuracy. However, quantum computing 

requires specialized hardware support, and current edge 

farmland equipment is difficult to meet deployment 

requirements. This model is based on single-crop-

cultivated land data and has not been optimized for the 

differences in soil moisture requirements of different 

crops (such as rice and wheat). Its universality needs to be 

improved. Future research will optimize classical 

algorithms to simulate quantum properties, develop multi-
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crop adaptation models, reduce hardware costs, and 

deepen "federated learning+blockchain" data security 

solutions. Future work will integrate multiple agricultural 

models into the SA cloud, comprehensively enhancing 

model deployment and application capabilities. 

5 Conclusion 
To explore the development path of AI driven RSA 

and solve the bottlenecks of traditional agricultural 

prediction models in accuracy, efficiency, and resource 

consumption, this study combined the parallel 

optimization capability of quantum computing with the 

nonlinear mapping capability of traditional BP, and 

proposed the QNN-BP model. In the task of soil moisture 

prediction, the accuracy of QNN-BP model reached 

97.48%, significantly higher than traditional BP (87.19%) 

and GA-BPNN (94.87%). Its CPU usage was only 

23.18%, with a response time of 1.27 seconds, which was 

more efficient than traditional BP (44.21%, 4.49 seconds). 

The irrigation strategy based on QNN-BP prediction 

increased water use efficiency by 47.57% and reduced 

fertilizer and pesticide usage by 20.28%. The QNN-BP 

model confirmed the potential for efficiency enhancement 

of AI algorithms in SA. The "perception decision 

execution" closed-loop system driven by it provided a new 

paradigm for the digital and low-carbon transformation of 

rural agriculture. However, there are certain shortcomings 

in current research: (1) The experimental data are limited 

to a single-cultivated land and need to be expanded to 

diverse environments such as mountainous and arid areas 

to validate the model and improve scene scalability; (2) 

Quantum computing relies on hardware, and in the short 

term, classical algorithms need to be optimized to simulate 

quantum characteristics and lower hardware barriers to 

adapt to edge deployment; (3) The hardware cost of the 

system is relatively high, which can be reduced through 

subsidies from the Smart Agriculture Special Fund or 

equipment sharing models; (4) The privacy risk of 

farmland data storage rights. In the future, improvements 

will be made in multiple aspects: (1) The data collection 

is extended to multiple geographical environments and 

crop types, and cross-regional validation is conducted to 

enhance the scalability of the model; (2) Classical 

algorithms are optimized to simulate quantum properties, 

and lightweight modules are developed to adapt to edge 

deployment; (3) Low-cost open-source hardware is 

selected, combined with special subsidies and regional 

device sharing to reduce the burden; (4) The decentralized 

architecture of ''federated learning+blockchain'' is built to 

ensure data security. 
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