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This article proposes a dynamic network framework for federal collaboration to address the three major
challenges of data fragmentation, model lag, and dynamic loss in current financial regulation. The aim is
to achieve data fusion, sub second real-time response (single prediction<100ms), and auditable
regulatory decision-making under cross institutional privacy protection; Methodologically, Yahoo
Finance industry stock prices, FRED macro indicators, and IMF crisis annotation data were integrated.
A three-layer overflow network of risk/volatility/return was constructed through LASSO-VAR variable
screening and generalized variance decomposition, and a weighted synthetic network was used to capture
the risk transmission path. At the same time, this paper designs a lightweight federated learning protocol
and verifies its effectiveness against baselines including the logit model, random forest, XGBoost, SVM,
BP neural network, and LSTM by inputting synthetic network metrics and 13 traditional metrics.
Experimental results show that the dynamic network model achieves an AUC of 0.88 on the IMF dataset
(an 11.4% improvement over the single-signal XGBoost model) and a crisis recall of 0.82 (a 26.2%
improvement over the logit model). Furthermore, its prediction latency is reduced to 62.7 ms (meeting a
high concurrency of 1590 queries per second), the convergence speed of federated training is increased
by 1.8 times, and communication costs are reduced by 43%. In addition, in data contamination scenarios,
the F1 decay is only 5.4%, and the response deviation to policy mutations is £3.4%. Conclusions indicate
that this framework, through dynamic network reconstruction and federated collaborative optimization,
achieves an early warning accuracy of 0.923 and a crisis lead time of 32.6 days, providing an efficient
solution for high-frequency financial risk control. Therefore, future extensions are possible to enhance

the robustness of adversarial defenses.
Povzetek:

1 Introduction

Systemic financial risk refers to an event in which local
risks are transmitted through the financial system and
trigger an overall crisis. Traditional financial supervision
pays more attention to individual institutional risks, while
systemic risks have the characteristics of cross-market
contagion and nonlinear outbreak. Therefore, it is
necessary to establish a dynamic early warning
mechanism to capture the risk transmission path. At
present, the global financial risk early warning system is
built on the basis of a macro-prudential policy framework,
and its core is to achieve risk identification and prevention
through the combined use of multi-dimensional regulatory
tools [1].

The problem of data fragmentation essentially stems
from the institutional obstacles of financial supervision.
The current "one bank and two commissions” separate
regulatory framework has objectively created data barriers
between different industries such as banking, securities,
and insurance. With the development of financial holding
companies, cross-infection of risks within the group often

bypasses the statistical scope of current regulatory reports,
forming a monitoring blind spot [2].

The model lag reflects the inadaptability of traditional
econometric methods in the wave of financial innovation.
For example, classical methods such as Logit regression
and Probit model rely on the statistical laws of historical
data, and their implicit linear assumptions are
fundamentally  contradictory to  the  nonlinear
characteristics of financial risks. When faced with new
risk vectors such as crypto assets and carbon financial
derivatives, these models can neither handle high-
dimensional unstructured data nor capture abrupt changes
in market participants' behavior patterns. Even if the
GARCH family model is adopted to improve the volatility
prediction, it is still limited by the rigid constraint of
parametric method. More importantly, traditional models
have insufficient ability to describe tail risks and often
adopt simple truncation methods in extreme value
processing, resulting in a significant reduction in the early
warning sensitivity of "black swan" events [3].

The modern financial system is essentially a super-
large-scale complex network composed of countless
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transaction relationships, and its topological structure
characteristics directly determine the efficiency of risk
contagion [4]. By constructing a multi-layer network
model based on inter-bank exposure, equity cross-holding,
and common risk exposure, two types of key indicators
can be accurately quantified. The first is the node
centrality index (such as eigenvector centrality), which is
used to identify institutions that not only have a
systemically important scale (TBTF) but also have a risk
transmission hub function (TCON) [5]. The second is the
community discovery index, which is used to reveal
potential risk contagion sub-networks. The structural
characteristics of modern financial networks require that
regulatory models must have the ability to dynamically
reconstruct networks, so the traditional minimum
spanning tree method (MST) can no longer meet the needs
of real-time monitoring [6].

The linkage between complex network analysis and
machine learning is not a simple superposition, but a
closed-loop enhancement of “"network structure
identification-risk feature extraction-strategy dynamic
optimization™. When the network centrality index and the
machine learning risk score cross features, the AUC value
of the model can be increased by more than 0.15 [7].
Through stress test conduction chain simulation, the
difference of policy effects at different intervention time
points can be measured.

The dynamic network model proposed in this paper is
an intelligent computing framework for financial time
series data analysis. By integrating federated learning and
adaptive computing technology, it achieves high-
precision, low-latency real-time prediction and decision
support. The core innovation of this model lies in its
dynamic architecture design. It uses a cross-modal
attention  mechanism to integrate  multi-source
heterogeneous data and improves modeling accuracy by
dynamically adjusting feature weights.

This study aims to address the three major challenges
of data fragmentation, model lag, and dynamic loss under
segmented supervision. The core research question is
whether the federal collaborative framework can improve
the timeliness and generalization ability of cross
institutional risk warning while protecting
privacy. Specific objectives include: (1) building a
dynamic multi-layer network to integrate banking,
securities, and insurance risk exposures, and quantifying
cross-market spillovers through LASSO-VAR screening
and generalized variance decomposition; (2) developing a
lightweight federated protocol to achieve sub-second
response (target latency <100ms); and (3) designing an
interpretable module to meet GDPR/CCPA regulatory
review requirements. Expected quantitative results
include a = 1.5x increase in federated training
convergence speed, a cross-institutional model AUC
>0.85, a crisis recall rate >0.80, and a feature visualization
rate >90%.

The core contribution of this study lies in:

(1) Pioneering Federal Dynamic
Architecture

Network
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Breaking through the limitations of a single
institution, the collaborative training of commercial
banks, securities companies, and insurance institutions
under data isolation conditions was achieved through the
construction of a three-layer overflow network
(risk/volatility/return) and a weighted synthetic network.
The measured communication overhead was reduced by
43%.

(2) Sub second real-time warning mechanism.

By adopting a lightweight federated protocol, a single
prediction delay of 62.7ms was achieved on the IMF
dataset, which is 2.3 times more efficient than traditional
static models and meets the risk control requirements for
high-frequency trading.

(3) Regulatory auditable decision logic

Integrating ExShapley's ideas with dynamic attention
mechanism to achieve a 92% feature visualization rate.

The complete contribution loop of this article is as
follows:

Problem driven (cross institutional data barriers) —
Method innovation (federated dynamic network) —
Validation results (AUC 0.88/recall 0.82) — Regulatory
implementation (feature visualization 92%)

2 Related work

(1) Research status of complex network in financial risks

At present, the research of complex network in the
field of financial risk early warning mainly presents the
following characteristics. First, in terms of network
construction method, the DebtRank algorithm proposed
by Luo et al [8] creates a systemic risk measurement
paradigm based on inter-bank asset-liability network,
which iteratively calculates the impact of risk exposure
between institutions. Secondly, in terms of dynamic
monitoring, the time-varying financial network model
constructed by Lin et al [9] proves that there is a honlinear
relationship between network density and risk contagion
speed. When the correlation degree between financial
institutions exceeds the critical threshold, small shocks
may cause cascade failure.

O'Brien et al [10] proposed a multi-layer network
coupling model, which improved the accuracy rate of risk
warning to 82.3% by simultaneously considering the triple
dimensions of credit linkage, equity control and guarantee
chain.

The latest research trend is reflected in the fusion
application of intelligent algorithms. The Network
Embedding technology developed by Pehlivanl et al [11]
combines graph neural network with risk early warning to
realize the automatic identification of potential
associations in the shadow banking system. This kind of
method processes high-dimensional network data by
dimensionality reduction, so that regulators can intuitively
discover hidden systemically important nodes.

(2) Research status of machine learning in financial
risk early warning

Deep learning models show significant advantages in
time series prediction of financial risks. The hybrid
LSTM-ARIMA model proposed by Purnell et al [12]
improves the F1-score of banking crisis prediction to 0.91
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by fusing deep neural network and traditional
measurement methods. The model is particularly good at
capturing nonlinear features in the credit cycle. Ran et al
[13] used expanded convolution kernel to extract multi-
scale risk features, and its prediction window was 6 weeks
earlier than the traditional method.

First, the introduction of natural language processing
technology has expanded the sources of risk signals.
Sahiner et al [14] constructed forward-looking risk
indicators by analyzing 100,000 annual report texts of
listed companies. The empirical results show that the
predictive power of the "fuzzy expression of
management" feature extracted by this model to the
financial risk of the following year is 20% higher than that
of the traditional financial indicators. Simsek et al [15]
showed that the multi-modal learning framework
combined with public opinion data can reduce the false
alarm rate of systemic risk early warning by 33%.

Second, data privacy protection requirements give
birth to new models. The hierarchical federated learning
scheme proposed by Awosika et al [16] realizes cross-
departmental collaborative modeling of the banking and
insurance regulatory system and securities regulatory data.
Through gradient aggregation under differential privacy
protection, this method improves the identification
accuracy of cross-market risk infection paths to 78% while
maintaining the data isolation of various institutions. It is
particularly noteworthy that the framework supports
dynamic weight adjustment and can automatically adapt
to the increase or decrease of regulatory data sources.
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Third, risk threshold setting has entered the era of
adaptation. The DeepRL regulatory framework developed
by Ahmed et al [17] independently learns the optimal
intervention threshold adjustment strategy by simulating
20 million market scenarios. The application results show
that the dynamic adjustment of the capital adequacy ratio
requirements of commercial banks by this model can
reduce the supervision cost by 18% and increase the risk
coverage by 25%.

Finally, the problem of model transparency has been
substantially solved. The ExShapley algorithm proposed
by Wei et al [18] makes the risk prediction results of deep
learning models regulatory auditability through improved
Shapley value decomposition. In stress testing scenarios,
this method can accurately quantify the contribution of
each input variable to the final risk score.

However, current research still faces three major
bottlenecks. The first is the problem of real-time learning
efficiency under high-frequency data, the second is the
limitation of model generalization caused by insufficient
samples of extreme events, and the third is the adaptation
conflict between regulatory technology (RegTech) and the
existing legal framework. Therefore, future breakthroughs
may focus on areas such as quantum machine learning
acceleration, synthetic data enhancement, and innovation
of regulatory sandbox testing mechanisms. The
comparison of systematic financial risk warning models is
shown in Table 1.

Table 1: Comparison of systematic financial risk warning models

Core methods Key Real time | Cross institutional interoretabilit
Results/Limitations responsiveness universality P Y
Establishing a paradigm . . .
DebtRank algorithm | for measuring interbank | Minute level delay Smg_le - machine | Medium — (network
. applicability topology)
risk exposure
Multi layer network | Warning accuracy rate .NO. . cross
. unreported institutional low
coupling model 82.3% .
collaboration
LSTM-ARIMA Forecast 6 weeks in | Additional
- F1-score 0.91 Centralized training | explanatory  tools
hybrid model advance
are needed
Extended Forecast window 6 Non real time batch
Convolutional weeks ahead of rocessin data silos Black box
Kernel Model schedule P g
Forward looking
Analysis of Annual |nd|c_at9rs have a | Annual report | Not considering Medium (text
predictive power that | release cycle lags | cross market
Report Text . . . features)
exceeds traditional | behind correlation
finance by 20%
The accuracy rate of Hiah Support Cross
Hierarchical identifying cross market g I PP Partially
. e communication departmental .
Federated Learning | transmission pathways . explainable
. delay collaboration
is 78%
Regulatory COStS | o. .
. Simulation
DeepRL Regulatory | reduced by 18%-+risk . . Not adapted to real- -
. calculation time | .. Strategy traceability
Framework coverage increased by - time data streams
2504 consumption
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ExShapley Quan_tltat_lve Explanation Single machine .

. contribution of stress High
algorithm test variables generated>500ms deployment
Federated Dynamic
Network Federal L

AUC 0.88/recall | Sub second . Visualization rate of

Framework 0.82/62.7ms dela response Collaborative 92%
(Method described | ™ ' y P Training 0
in this article)

The existing systematic financial risk warning models
have significant limitations: although the DebtRank
algorithm can quantify interbank risk exposure, it is only
applicable to single institutions and has response delays of
up to minute. The warning accuracy of the multi-layer
network coupling model is 82.3%, but it cannot achieve
cross institutional collaboration. The LSTM-ARIMA
hybrid model has an F1 score of 0.91, but it relies on batch
processing and requires auxiliary interpretation tools. The
expanded convolutional kernel model predicts 6 weeks
ahead of schedule but is limited by data silos; The
forward-looking indicators of annual report text analysis
are 20% better than traditional finance, but are constrained
by the lag of the annual report cycle. Hierarchical
federated learning supports cross departmental training
but has high communication latency. The DeepRL
regulatory framework reduces regulatory costs by 18%
while significantly reducing computation time; Although
the ExShapley algorithm has strong interpretability, its
interpretability generation exceeds 500ms. In contrast, the
federated dynamic network framework proposed in this
paper integrates banking/securities/insurance data through
lightweight federated protocols, achieving sub second
real-time response (single prediction 62.7ms), cross
institutional collaborative training (convergence speed
increased by 1.8 times), and high interpretability decision-
making (feature visualization rate of 92%), achieving core
performance breakthroughs of AUC 0.88 and recall rate
0.82 on the IMF dataset.

3 Early warning model schemes

3.1 Scheme ideas

First, the information spillover relationship is ranked and
presented in the form of a complex network diagram, and
the three-layer network constructed is merged using the
synthetic network method. Traditional statistical models,
single-signal machine learning models, and static network
models are selected to train the data and compare the final
results. Based on the above scheme design, it provides
necessary reference and guidance for regulatory
monitoring of financial risk practices.

The specific operation steps are as follows:

(1) Construction of multi-layer supervised network
(Figure 1)

In the first step, this paper analyzes the yield,
volatility and value-at-risk (VaR) of different industry
indexes by using iconic industry stock price data. Then,
through LASSO-VAR and generalized variance
decomposition technology, the information overflow
network among various industries is established. Through

rolling regression technology, this paper also describes the
dynamic change process of industry information spillover
effect.

In the second step, the cumulative net risk spillover,
cumulative net volatility spillover and cumulative net
yield spillover of each industry are ranked and drawn into
a directed network diagram. Then, the top ten net spillover
relationships between industries are ranked pairwise for
analysis, and the path of crisis contagion is described to
facilitate follow-up early warning.

Multi layer information overflow network generation layer

Network Customization
and Path Analysis

Mult: layer mformation
overflow network
generation layer

Construction of dynamic
overtlow network

LASSO-VAR model

Input data

I Index synthesis

Generalized Varance
Decomposition
Technique

!

Indicator extraction Online expression

dynamic analysis

Figure 1: Construction of multi-layer supervised network

(2) Synthetic network generation (Figure 2)

In this study, a hierarchical information overflow
network is constructed, and a comprehensive network is
formed by grading the sub-networks according to their
importance on stock market yield and giving them
different weights, and the weighted average method is
adopted.

Synthetic network generation

Hierarchical weight
allocation

Supervised learning
warning layer

Classify the degree
of mfluence based on
subnetworks

Input variables

Assign differentiated

; Output variables
weights P

Figure 2: Synthetic network generation
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(3) Verification of scheme effectiveness

The first step is theoretical analysis. Through relevant
literature and theoretical analysis, it demonstrates the
rationality of financial crisis early warning scheme.

In the second step, in order to enable the model to
provide early warning from the daily level, first, the
monthly indicators in the selected early warning indicators
are uniformly converted into daily indicators, then the
feature and target variables are separated, and all the
feature variables are standardized for subsequent machine
learning model training.

The third step is machine learning comparison. Six
types of models, Logit model, random forest (RF),
XGBoost, SVM, LSTM, and BP neural network, are
added for training to verify the robustness of the scheme.

3.2 Theoretical explanation of scheme
planning

3.2.1 LASSO-VAR
First, a k-dimensional time series {x, & R" }Ll that obeys
the VAR(p) process and has a time length of T is defined,
and has the following form [19]:
X = Z ip:1¢ixt—i +é& (1)
Among them, @, isthe k xk -dimensional coefficient
matrix (i=1,2,L ,p), & is the kx1-dimensional error

vector, and ¢, : (OZ ) Z represents the variance

covariance matrix of ¢, . This study improves the original

model by adding a regularization term to it, thereby
deriving the estimation formula of the LASSO-VAR
model:

min{|X - @Z|} + 2]y, } @

In this model, X ={xx,L X} represents the
observations of all time points in a k-dimensional time
series {x} , forming an kxT -dimensional matrix,

D ={D,D,L D} represents the Kxk  -dimensional
parameter matrix to be estimated.

When  z =(X[,X[,L X[ ) is  defined,
Z ={z,7,L z.} represents a kpxT -dimensional matrix

consisting of all lagged values of the matrix X. 1 is a
regularization parameter used to adjust the sparsity of
parameter estimation. This paper uses the rolling cross-
validation method to determine the value of A, that is, a
set of decreasing A values is calculated by the grid
method, and the rolling cross-validation method is used to
select the best one.

3.2.2 Generalized variance decomposition

The generalized variance decomposition method is
used to construct the information overflow network

among industries. The VAR(p) process in formula (4) is
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converted into the following moving average equation
[20]:

X, =2A6H @)

Among them, A is an k xk -dimensional coefficient
matrix and A, is an k xk -dimensional identity matrix. If
i<0 , then A=0 , and if i>1 , then
A=A +D,A ,+L +@ A . The contribution d;’

of variable j to the generalized forecast error variance of
variable i H periods ahead is:

o T EEAYe)
Y (e AA Y )

Among them, o is the element in the j-th row and j-

(4)

th column of the matrix Y , & represents an kx1 -
dimensional vector whose i-th element is 1 and the rest are
0, H represents the forecast period, and A, is the

coefficient in the above formula. In this paper, d;' can be

regarded as the information spillover effect of j on
industry i.

Then, this paper further standardizes the information
H

spillover effect d; and constructs the information
spillover network among industries based on it:
d’
Besmar ®
j=1ij
From this, the net information spillover effect of
industry i is defined:

D! :(a‘ﬁ' —(ff')xlOO (6)

The information spillover effect of industry i and the
information spillover effect on other industries are defined
separately:

N
j=1,j=i ij

cH = x100 ()

N
itz i

cH. = x100 (8)

The net information spillover effect of industry i is
defined as:
CiH = C.Hu _Ciil. 9)
The overall information spillover effect between
industries is defined as:

Cc" =

J

M=

d}f <100 (10)

j#i

Il
=

3.2.3 Synthetic network

The key to the superiority of Transfer Entropy over mutual
information or Granger causality in systemic financial risk
warning lies in its ability to capture directional and
nonlinear risk transmission. The risk contagion in
financial markets  often  presents  asymmetric
characteristics (such as the risk spillover intensity during
stock price crashes being much higher than during
stationary periods), and traditional Granger causality is
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based on linear VAR models, making it difficult to
quantify nonlinear correlations. Although mutual
information can measure dependency relationships, it
cannot distinguish the flow of information. Transfer
entropy calculates directional information flow directly
through conditional probability, accurately identifying
crisis transmission paths (such as the leading impact of
insurance industry volatility on securities industry
returns).

The introduction of the Maximum Entropy principle
solves the objective weight allocation problem in multi
network layer fusion. The three-layer overflow network of
the financial system (risk/volatility/return) has complex
interactions (such as the volatility layer dominating
contagion in bear markets and the return layer being more
active in bull markets). The maximum entropy is obtained
by constraining the sum of weights to 1, while preserving
the original topology of each layer (without setting
subjective weights), to find the synthetic network with the
minimum information loss. The essence of this principle
is to find the distribution that is the most uncertain but
compatible with all layers of information, avoiding bias
caused by manually setting weights (such as static
weighting may overestimate the contribution of historical
volatility).

Actual value: This design enables the synthetic
network to dynamically reflect market state transitions and
capture the nonlinear transmission of tail risks through
transfer entropy.

For the construction of spatial weight matrix, this
paper uses the transfer entropy method to construct the
market correlation network of the industry for the yield
series, volatility series and VaR series of the industry stock
price data, respectively, and uses the maximum entropy
method to construct the three-layer transfer entropy
market correlation network of the industry, which are
expressed as follows [21]:

0 TEMP TEM L TER
TERT 0 TER L TE[
W | TEmn TERP 0 L TERD | ()
M M M O M
TEM TEM TERT L0
0 TEM, TEM, L TEY,
TEM, 0 TEN, L TEP,
we - TER, TER, 0 L TEN, | (12)
M M M O M
TEY, TEV, TEX, L0
0 TEM TEM L TEN,

TS 0 TEM L TES,
wer o TES TER 0 L TES, | ()
M M M O M
TES, TES, TES, L0

In this model, the stock market return satisfies the
following equation:

A(R —E[R])=BF +n, (14)

B. Li

Among them, R, represents the stock return sequence
at time t, E[R] is the expected value of the return

sequence, A represents the contemporaneous correlation
of the stock return sequences, F, is the common factor of

the stock

corresponding to each factor, and # represents the
covariance matrix.

When the matrix A is assumed to be invertible, the
above linear factor model can be transformed into a
standard multi-factor model:

R=E[R]+A*SR+A'y =E[R]+fF+7 (15

From the above formula, we can see that the
determining variables A~ and # of the correlation
between the stock return rate sequences are related to the

matrix A. The affine function of the matrix A is expressed
as follows:

return sequences, 4 is the coefficient

d
A=1-> pW, (16)
=

Among them, p; is the influence of each layer of

network W; on the stock return rate. Therefore, a model
with d layers is as follows:

{' —R[ipjwjﬂa =AR =E(R)+pF+n (17

Among them, R is a diagonal matrix, and the other
symbols are as shown above. In order to correctly solve

the weight p; of each layer of the network, some

parameters are restricted: (1) The network matrix of each
layer is a non-zero matrix; (2) The networks of different
layers are different; (3) The sum of the weights of each
layer of the network is 1. Through the iterative maximum

likelihood estimation method, ﬁj can be solved, and the
synthetic network can be expressed as:

* d
Wt :Z%jwi
j=1

Through the above steps, the market correlation
synthesis network based on transfer entropy is obtained.

The topology embedding feature H ., generated by

(18)

the synthetic network WL will serve as the input for the

cross modal attention layer (see the next section for
details), and will be fused with the temporal feature Hy,,

and text feature H,, to form the core input of the
dynamic warning model.

3.2.4 Machine learning model

The classic Logit model and three machine learning and
two deep learning models: Logit, Random Forest (RF),
XGBoost, SVM, and LSTM were selected to train the
early warning indicators to compare different early
warning models. The output variables generated by
different early warning models are consistent, all of which

are ™ :(0‘1), while the input variables are determined
according to the selected early warning indicators. The
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division method of these models on the training and test
data sets is consistent. Grid search is used to optimize the
machine learning model parameters, and the results are
comprehensively compared with performance evaluation
indicators such as confusion matrix, F1-Score, and
Accuracy. The model is introduced as follows:

(1) Logit model:

1
P(y=0|X)=1—P(y=l|X):l+eg(x) (20)
G(X) =W, + WX, +L +W, X, (21)

(2) Random forest (RF) model:
The idea of ensemble learning is to combine multiple
weak learners into a new learning model. For any A with

label y, the r feature vectors {tl,tz,L ,t,} of A are

extracted using the historical transaction records of the
blockchain. The random forest consists of a set of decision

tree classifiers {h(x.6,).k=123L 1} , where I

represents the decision tree. The final classification
formulais:

H(x)=argmax>_ |, I(h(x.60)=y)  (22)

(3) XGBoost model:
Y=Ly )+ 2 ne(f) (23)
.Q(fk)=yT+i%Wj2 (24)

In this model, Y, represents the predicted value, and

the true value or label is also represented by Y, . The
regularization part is responsible for limiting the
complexity of the tree model, which is achieved by
summing the complexity of each decision tree. The model
of each tree is represented by f,; , T represents the number
of leaf nodes in the tree, w is the classification of each leaf
node, and 7 and 1 represent coefficients to control the
score and number of leaf nodes to prevent them from being
too large, thereby avoiding overfitting. This regularization
method ensures the generalization ability of the model
during the tree construction process.

(4) SVM model:

It assumes that there is a set of sample data sets:

D= {(Xl’)ﬁ) ’(Xz Yo ) L ’(Xn Yo )} Y € {_1v+1} (25)
The decision function is expressed as:
G(x)=w'®(x)+b (26)

Among them, @(X) represents the mapping of
samples from the input space to the high-dimensional
feature space, w=(a)1,a)2 L ,wi) is the vector method,

and b is the displacement term.

The optimal values of the normal vector @ and
displacement b are obtained by solving the optimization
function, and the minimization function is:

G(@¢)=[ef +CE i

The constraint is:

(27)

Informatica 49 (2025) 75-94 81

Yi ((a)’¢(x))+b)21_§i 6 20 (28)
Among them, X;y; is the number of training samples,

C is the regularization parameter, and ¢ is the slack

variable.

There are many kernel functions to choose from in
SVM model. In nonlinear classification problems, radial
basis kernel functions usually get better results than other
kernel functions.

(5) LSTM model:

The basic LSTM unit is shown in Figure 3. The LSTM
network is an optimization of the traditional RNN, and the
model is enhanced by introducing LSTM units. The
forgetting gate is responsible for filtering which
information should be removed from the cell state, the
input gate decides whether new information is added to
the cell state, and the output gate creates new hidden states
and outputs based on the current input, the previous hidden
state and the updated cell state, thus reacting to the input
data. Such a design allows each LSTM unit to efficiently
retain information across long time intervals.

P -
C

Ci1

i[
Update gate
o

hi.y I

Xt

Figure 3: Cell structure of LSTM unit

Output gate
o

Forget gate o

LSTM call

The XGBoost, LSTM, and other models introduced in
this section are general-purpose architectures. In practice,
they can be adapted to different scenarios by adjusting the
input feature size. In the subsequent comparative
experiments, to highlight the multi-source data advantages
of dynamic networks, the baseline models all use a single
signal input (such as a stock price time series or text-based
public opinion).

LSTM
Local data of 3
- —{ temporal —
institutions :
encoding
; BERT Federal
Text public A Cross modal e
% semantic 5 gradient
opinion ; attention laye = ¢
encoding aggregation
NN
Risk 1 loG()lo - Global model
Network P lgy FIODAEII0CO
encoding update

Figure 4: Federated collaboration framework.

The federal collaborative framework is shown in
Figure 4: The analysis of Figure 4 is as follows:

Local training layer: Banks, securities, and insurance
institutions train private models (LSTM time series
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branch+CNN public opinion branch) separately in a data
isolated environment

Gradient  encryption  transmission:  Exchange
encrypted gradients through lightweight protocols
(aggregate once every 2 batches, differential privacy noise
6=0.5)

Dynamic weight aggregation: The central server
weights the average gradient based on attention weights

The model introduces a cross modal attention
mechanism, with input modalities: time series data (stock
price/volatility) — LSTM encoder, text public opinion
(annual report/news) — BERT fine-tuning, network
topology (risk overflow matrix) — GNN embedding

The calculation of multi head attention is as follows:

. QKT
Attention(Q,K V) = soft max{\/d_J (29)
k

Q.K\V are feature projections from different
modalities, with a head count of h =8 and a hidden layer
dimension of d, =64 .

This architecture breaks through data silos through
federated collaboration, utilizing cross modal attention to
capture nonlinear correlations, and dynamic networks to
achieve real-time tracking of risk transmission paths.

The federated learning protocol used in this article is
based on an improved FedAvg architecture, and achieves
collaborative optimization of privacy protection and
communication efficiency through the following design:

The core mechanism of the architecture adopts a
hierarchical federated architecture, with banks, securities,
and insurance institutions as local nodes, independently
training private models (including LSTM temporal
branches and CNN public opinion branches) in a data
isolated environment. The central server integrates
encrypted gradients through a dynamic weight
aggregation module, and performs global aggregation
every 2 local training batches.

Differential privacy protection: Laplacian noise
(noise scale 0=0.5) is injected during the gradient
transmission stage to meet the privacy budget

requirements of GDPR  (e=2.0). The  specific
implementation formula is:
&p =g, + Laplace(0,4f / ¢) (30)

g, is the original gradient, and A4f is the gradient

sensitivity (trimmed to the [-1,1] interval)

Lightweight protocol: It uses gradient sparsity and
guantization compression (8-bit precision). Asynchronous
compensation mechanism: It allows slow nodes to delay
updates (up to 5 batches) and avoids parameter drift
through momentum correction. Dynamic aggregation
weight: It assigns weights based on the quality of node
data.

To integrate multi-source heterogeneous data, this
scheme designs a dynamic cross-modal attention
mechanism:

(1) Definition of multimodal input:

Temporal modality: Structured data such as stock
prices/volatility — LSTM encoder extracts temporal

features Hy;,e .
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Text modality: Annual report/news text — BERT
fine-tuning to generate semantic features H,, .

Topology mode: Risk spillover matrix — GNN-
generated graph embedding features H .., .

"The cross-modal attention layer receives LSTM
temporal features H,, , textual features H,, , and
topological features H,, as inputs, and computes cross-

modal correlation weights through multi-head attention.
The input projection is as follows:

Qi = Htimqui ’Ki = Htexthi ’Vi = ngapthi (31)
Single-head attention:
t
head, = soft max{%lvi (32)
k
The fused output is:
H 1a = Concat(head, head, ,...,head, )W, (33)

qu ,Wk‘ WVi represents the query projection matrix,
d, represents the hidden layer dimension, W, represents

the output fusion matrix, H s and represents the fused

output vector of the cross-modal attention mechanism

To integrate multi-source heterogeneous data, this
scheme designs a dynamic cross-modal attention
mechanism:

(1) Definition of multimodal input:

Temporal modality: Structured data such as stock
prices/volatility — LSTM encoder extracts temporal

features Hy;, .

Text modality: Annual report/news text — BERT
fine-tuning to generate semantic features H,, .

Topology mode: Risk spillover matrix — GNN-
generated graph embedding features H .., .

"The cross-modal attention layer receives LSTM
temporal features H,,. , textual features H,, , and

topological features H,, as inputs, and computes cross-

modal correlation weights through multi-head attention.
The input projection is as follows:

Qi = Htimqui ’Ki = Htexthi ’Vi = ngapthi (31)
Single-head attention:
t
head, = soft max [Q'—\/?JV. (32)
k
The fused output is:
H .q =Concat(head,,head, ,....head, )W, (33)

W, W, W,' represents the query projection matrix,
d, represents the hidden layer dimension, W, represents

the output fusion matrix, H s and represents the fused
output vector of the cross-modal attention mechanism
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4 Test

4.1 Test methods

The core of the dataset comes from three main channels:
Yahoo Finance (which includes daily stock price data of
10 GICS primary industries from 2006 to 2024 and a total
of 45,000 sample points, and covers key indicators such as
yield, volatility, and VaR), FRED macroeconomic
indicators (which include six core indicators such as GDP
growth, unemployment rate, and CPI, and are unified into
daily panel data through linear interpolation or spline
interpolation), and IMF crisis annotations (which include
26 global systemic crisis events based on the Laeven &
Valencia standard annotations, and positive samples are
defined as 6 months before the crisis and 3 months after
the crisis).

In the feature engineering stage, multi-dimensional
processing is performed on the raw data:

(1) Basic indicator calculation: The calculation
indicators include logarithmic return, volatility, and VaR
(99% confidence historical simulation method, rolling
window 252 trading days);

(2) Dynamic network indicator generation: Based on
industry level return, volatility, and VR sequences, a
three-layer risk spillover network is constructed. Key
variables are screened through LASSO-VAR, and then
generalized variance decomposition is used to synthesize
network weighted indicators (such as node centrality,
community modularity, and network density);

(3) Multimodal fusion: In the Risklabs framework,
profit conference audio and text, news and public opinion,
and time series data are integrated to extract cross modal
features through multi head attention mechanism and
additive multimodal fusion technology, enhancing the
robustness of risk prediction.

The preprocessing and alignment process follows a
strict procedure:

Missing value handling: Numerical features are filled
with mean values, categorical features are filled with new
values, and extreme values are truncated by 3
o; Frequency uniformity: Low frequency macro indicators
are converted into daily data through interpolation and
aligned with stock price time.

Label balance: SMOTE oversampling achieves a
crisis/non crisis sample ratio of 1:15, solving the problem
of data imbalance.

The federated learning adaptation mechanism ensures
data compliance: cross institutional data (such as
commercial bank loan to deposit ratios, securities firm
proprietary positions, insurance coverage rates, and other
private features) is physically isolated through localized
storage, sharing only the 8-dimensional encrypted
network gradient; Introducing differential privacy (noise
scale 0=0.5) in the gradient aggregation stage to meet
GDPR's privacy budget requirement of £=2.0.

This study sets up three types of comparative baseline
models: 1) Traditional statistical model (Logistic
regression + fuzzy ~mathematics comprehensive
evaluation), which uses the IMF standard crisis indicator
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as the dependent variable; 2) Single signal machine
learning model (XGBoost/LSTM), which only inputs
market volatility, industry vyield or risk spillover
indicators; 3) Static network model (Granger causal
network based on fixed time window). At the same time,
all baseline models use the same training set (2006-2018)
and standardized preprocessing process, and this paper
focuses on comparing the improvement effect of dynamic
network models on recall rate (crisis detection rate) and
false alarm rate (number of non-crisis false alarms).

This test uses a high-performance computing cluster
configuration; the hardware uses NVIDIA A100 (40GB
video memory) GPU accelerated computing and is
equipped with Intel Xeon Gold 6248R processor (48
cores) and 256GB DDR4 memory. The software
environment is Ubuntu 20.04 LTS system, which uses
CUDA 11.7 driver and mainly relies on PyTorch 1.13
(including Geometric extension library) to build dynamic
network models, and XGBoost 1.7 is used for baseline
model comparison. Data preprocessing uses Pandas 1.5
and Numba 0.56 for acceleration. All experiments are
isolated through Docker containers (version 24.0), and
task scheduling uses the Slurm cluster management
system to ensure efficient allocation of computing
resources.

The evaluation framework of this experiment covers
three major dimensions:

Predictive performance: Crisis warning accuracy
(Accuracy/F1 score), false positive rate (FPR), crisis
detection lead time (Lead Time), AUC value, dynamic
network  topology indicators  (node  average
degree/clustering coefficient), model training time;

System engineering: throughput (TPS), latency (P99
Latency), error rate peak (Error Rate Peak), resource
utilization (memory/CPU), robustness (F1 attenuation
under data pollution);

Regulatory compliance: feature visualization rate,
decision logic traceability, policy mutation response
deviation, regulatory testing pass rate.

This study determined the optimal combination of
core hyperparameters through grid search and cross
validation. The scrolling window size is set with three
gradients based on the cyclical characteristics of financial
data (63/126/252 trading days), and stress testing has
verified that the 126-day window achieves the optimal
balance between timeliness and stability (F1 score
fluctuation  range  0.81-0.83). The  LASSO-VAR
regularization parameter A is dynamically optimized using
rolling cross validation, with a value range of [0.01, 1.0]
and a step size of 0.05. The optimal A=0.2 is selected based
on AUC as the evaluation metric. The SVM kernel
function was compared and tested using radial basis
function (RBF). The penalty coefficient C was determined
to be 1.0 through grid search, and the kernel coefficient y
was 0.1. The federated learning protocol sets the local
iteration count to 5 rounds, the aggregation frequency to
be executed every 2 batches, and the differential privacy
noise scale 0=0.5.Other model parameters were
optimized through 5-fold time series cross validation, with
specific configurations shown in Table 2.
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Table 2: Hyperparameter configuration table.
Parameter category Parameter items Search scope/options Selected value | Optimization basis
Temporal processing Rpllmg window | [63, 126, 252] Trading 126 Fl' _score fluctuation
size Day minimization
LASSO [0.01, 1.0] (Step size 0.2 Maximizing AUC
regularization A 0.05) ' through cross validation
Network construction Granger Causa”ty
0 L
significance [0.01, 0.05] 0.01 34% reduction in false
alarm rate
threshold
. . Nonlinear classification
SVM kernel | [Linear,  Polynomial, .
function RBF] RBF accuracy improved by
12%
Machine Learning XGBoost Tree [3,5,7,9] 5 Early stop  method
Depth T verification
Number of hidden Minimize validation set
units in LSTM [64, 128, 256] 128 loss
. . Balance between
{_n?nce{ﬂ Iteration [3, 5, 10] 5 convergence speed and
accuracy
Agareaation [Every batch, every 2 43%  reduction in
Federated Learning f ggreg batches, every 5 | Every 2 batches | communication
requency
batches] expenses
Differential Privacy budget &=2.0
privacy noise scale | [0.1, 0.3, 0.5, 1.0] 0.5 meets GDPR
o requirements

In the implementation of 50% time series cross
validation (TS-CV), a strict temporal segmentation
strategy is adopted to avoid information leakage caused by
time overlap in time series data. The specific process is as
follows:

(1) Time series segmentation principle: The training
period from 2006 to 2018 is strictly divided into five
consecutive, non-overlapping time periods based on the
original timestamps (such as fold 1: 20 June to 2009, fold
2: 20 October to 2012, fold 3: 20 November to 2015, and
fold 4: 20 November to 2016). The validation set is always
placed after the training set time period, ensuring that the
training data timestamps are strictly earlier than the
validation set timestamps (e.g., the training set in the first
fold was 2006 to 2012, and the validation set was 2013 to
2015).

(2) Rolling window constraint: When calculating
dynamic network metrics (such as LASSO-VAR,
generalized variance decomposition) within the training
set, the right boundary of the rolling window is
constrained before the starting point of the validation
set. For example, if the validation set consists of data from
2013, the termination time of all rolling windows in the
training set should not exceed the end of 2012 to prevent
future information infiltration.

(3) Federated learning collaborative mechanism:
Cross institutional data is isolated during the local training
phase through lightweight federated protocols, and nodes
only exchange encrypted gradients instead of raw
data. Differential privacy (noise scale 6=0.5) is used in

gradient aggregation to further block potential leaks across
time periods.

Compression testing refers to verifying the
communication optimization capability of federated
learning frameworks by simulating gradient transmission
loads, including a dual compression mechanism

(1) Gradient sparsity: retaining only significant
parameters (Igrad |[>0.01) and filtering out small gradient
noise;

(2) Quantization encoding:  8-bit  precision
quantization using Huffman encoding to achieve gradient
volume compression.

Inject 300% benchmark traffic during testing
(simulating distributed denial of service attacks), measure
the system's survival rate (0.946) and recovery time (5.3
seconds) under extreme loads.

The maximum throughput (TPS) is defined as the
number of encrypted gradients switching transactions that
the federated framework can process per second, and its
technical formula is:

TPS = Nclient
T +T

encrypt transmit aggregate
Where N, is the number of participants
(bank/securities/insurance), By, is the batch size, and the

X Bsize

+T

(34)

denominator is encryption ( Tecyy )+transmission ( Tyanemit

)+total aggregation time ( Taggregere )-
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The measured peak value of 79800 TPS indicates that
the system can handle nearly 80000 safety gradient
interactions per second, meeting the concurrent
requirements of high-frequency risk control scenarios
(such as 1590 QPS warning requests).

Value closed loop: Compression testing quantifies
communication efficiency and robustness, verifying the
text support capability of lightweight federated protocols
for real-time warning.

The time consumption of a single prediction is
measured in a simulated production environment (8-core
CPU/32GB memory cluster) to ensure real-time decision-
making capabilities. The test covered 100,000 requests,
and the results are shown in Table 3:

In Table 3, the adaptive combination optimizes the
computing load through the federated learning
architecture, and 98.2% of the requests take less than
90ms, meeting the financial real-time transaction response
standards (such as high-frequency risk control decisions).
However, due to the high-dimensional feature calculation
redundancy, the peak time consumption exceeds the
threshold in the 252-day window, so model pruning or
hardware acceleration (such as GPU inference) is required
to compress the delay. Although all combinations achieve
high throughput under normal load, it is necessary to be
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Table 3: Results of calculation efficiency evaluation.

Paramet | Average

; Peak time | Throug | Complia
er time -
combina | consumed consumpti | hput nce (<
tion (ms) on (ms) (QPS) | 100ms)
63-day | 45, 89.5 1850 | Yes
window
No (peak
@?ﬁd‘éﬁ’ 76.3 142.1 1210 |>
100ms)
Adaptive
combina | 62.7 95.8 1590 Yes
tion

vigilant about the delay fluctuations in data peak
scenarios. This evaluation shows that in financial practice
scenarios, the model needs to take into account both
explainable regulatory compliance and low-latency real-
time response, among which the comprehensive
robustness of the adaptive solution is leading.

4.2 Test results
The comparison results of core performance indicators are
shown in Table 4 below.

Table 4: Comparison results of core performance indicators.

AUC

Model Type | Accuracy | Precision | Recall | F1-score

(Benchmark)

AUC

(Peak value) False alarm rate

Average Lead Time (days)

Logistic

: 0.72
regression

0.68 0.65 0.66 0.71

0.752 0.31 14.2

XGBoost
(single
signal)

0.78 0.73 0.71 0.72 0.79

0.823 0.25 215

LSTM
(single
signal)

0.81 0.76 0.74 0.75 0.82

0.852 0.22 25.8

Static
network
(126-day
window)

0.83 0.79 0.77 0.78 0.84

0.871 0.19 28.3

Dynamic
Network
(Method)

0.87 0.83 0.82 0.82 0.88

9.923 0.15 32.6

Note: 'Single signal’ in the table refers to the model receiving only a single data source input (such as one of the
temporal/texts/topological modalities), in contrast to the multimodal input of dynamic networks

The parameter optimization analysis results of
financial risk control models are shown in Table 5:

Table 5: Parameter optimization analysis results of financial risk control model.

Parameter Network Feature F1-score Peak Applicable scenario
combination density dimension fluctuation range AUC analysis

63—day_ _ _Wlndow 0.28 15 0.79-0.81 i ngh-f_requency trading
+0.05 significance scenarios

126-day  window 0.35 23 0.81-0.83 0.882 Balanced risk control
+0.01 significance

252-da3_/ __Wlndow 0.41 37 0.80-0.82 0.913 Long-t_erm trend
+0.01 significance analysis

Adaptive threshold 0.32 31 0.82-0.84 0.923 Poll_cy _ sensitive
+ macro features decision-making
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Overall, the dynamic network model is significantly
better than the baseline method in all six indicators.
Among them, the crisis detection recall rate increased by
5-17 percentage points, which verifies the ability of the
network's dynamic evolution characteristics to capture
risk transmission. The 126-day rolling window performs
best in most scenarios. However, a too short window (63
days) increases the noise of the network structure, and a
too long window (252 days) reduces the response speed to
market changes. When the significance threshold is
adjusted from 0.05 to 0.01, the false alarm rate decreases
by 34% but the recall rate only decreases by 8%,
indicating that strict causal testing can effectively filter
noise signals. In addition, the contribution rate of network
topology  indicators  (node  centrality/clustering
coefficient) is 42%, which is significantly higher than
traditional market indicators (28%) and macro indicators
(30%). Furthermore, the single training time of the
dynamic network model (average 38 minutes) is
significantly higher than XGBoost (4 minutes), but the
time consumed in the inference phase is only increased by
15%, meeting the real-time warning needs.

Then, the model stress test is carried out, and the stress
test results are shown in Table 6.

Table 6: Compression test results.
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Table 8: Critical test data results.

Parame | Discharg | Data Hardware Policy
ter e peak | contaminat | failure abrupt
combin | survival ion F1 | recovery response
ation rate attenuation | time(S) bias
63-day
windo | 0.723 -0.187 23.4 +12.6%
w
126-
day 10885 | -0.092 147 +7.3%
windo
w
252-
da}y 0.911 -0.068 8.2 +5.9%
windo
w
Adapti
ve . |0946 | -0051 5.3 +3.4%
combin
ation

Table 9 below shows the data missing test scheme and
result analysis for the model, which is verified by a three-
level missing mechanism. The data of the scenario test
results are shown in Table 10

Table 9: Scenario test design.

Test Adaptive
Dimensio 63-day 12_6-day 25_2'day comzinatio Missing Analog Proportion of test | Key  monitoring
n window | window | window n Type mode samples indicators
Maximum Complete | Randoml
82,000 76,500 68,200 ly y discard Feature
throughpu | +5¢ TPS TPs 79,800 TPS randomiz | feature 15%-30% reconstruction
t ed dimensio error rate
99% delay | 143ms | 167ms | 211ms | 158ms missing | ns
Peak error Discard
0.0012 [ 0.0008 | 0.0005 | 0.0009 Randomi | data by icti il
rate zed user 1D | 20%-40% predictive stability
Memory missing hash
footprint 38GB 52GB 71GB 63GB value
F1-score Non- galrgtgted
attenuatio | -0.072 | -0.048 | -0.031 | -0.054 i eletion isi
: L:i‘ndomlz for high- | 10%-25% 2;(9)I9SIOH offset
. value
deletion
. o . samples
The extreme test scenario design is shown in Table 7,
and the key test data results are shown in Table 8 below. .
) _ Table 10: Scenario test results.
Table 7: Extreme test scenario design. —
eci
- - - - MNAR .
Test type Slmu'lgtlon Trlgger_ !Expected failure Paramet MCAR MAR ) scenari sion Selff
conditions mechanism index er ioF1 | Scenario AUC devia | healing
300% Distributed combin | S¢enaro RMSE ° tion success
Discharge benchmark TPS | DDOS attack Error rate > 5% ation attenuation rises decreas A rate
peak for 5 minutes simulation 6 or delay > 1s & P99
i 63-da; 12.6
Data | oct 300 | Adversarial gy e 0 0,204 0.387 0192 | 0.613
contamina p sample window %
tion noise feature generator 9 decrease > 15% 126-day
- - -0.148 0.215 -0.126 9.1% | 0.789
Randomly shut Service window
oree | doun 50% of | S EOTEE | interruption > 10 252-0ay | 4 493 0152 | -0081 | 7.9% | 0857
Y compute nodes seconds window ' ) ) 970 '
Macroscopic Adaptiv
: eigenvalues Real-time data ‘o e . ) o
E}czjl;;:tygon fluctuate stream SDS((J:rIr?Ison delay > combin 0.067 0.098 0.054 7.2% | 0.921
beyond tampering 4 ation

threshold
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Based on the deployment requirements of financial
scenarios, regulatory compliance is verified through three-
level quantitative testing, in accordance with Article 15 of
the GDPR "Data Subject's Right to Know" and Article
1798.100 of the CCPA "Information Transparency". The
core indicators are shown in Table 11 below:

Table 11: Core indicators of interpretability
requirements.

Regulator | Actual Complianc
Test project |y measuremen estat?Js
threshold | t results
Feature Exceeding
visualizatio | >80% 92% the
n rate standard
0,
The stress 95(0
.. variable
Decision test o
; . contribution | reach the
logic variables
- can be | standard
traceability | are ifi
auditable quantified
(ExShapley)
User_ data <15 reach the
deletion 9.2 seconds
seconds standard
response

In terms of the realization of interpretability, 92% of
the feature weight visualization rate was calculated by the
improved ExShapley algorithm (based on SHAP theory),
which fused the three-modal data of temporal features
(LSTM coding), text public opinion (BERT fine-tuning),
and network topology (GNN embedding), and generated
interpretable basis vectors through multi head attentional
projection.

The stress test scenarios for regulatory authorities are
shown in Table 12 below:

Table 12: Stress Test Scenarios for Regulatory

Authorities.
Test Regulatory Key Actual
. . L measureme
scenario Basis indicators
nt results
GDPR
Cross- Article  32:
. >5
domain Response to . -
. k-anonymity | (measured
data Security value: 6.2)
leakage Vulnerabilitie T
S
l,ﬂtrereesst rege FED SR 11-7') posnonse
9 y Policy Stress por +3.4%
300 basis deviation
. Test
points
Cross- . .
border data AI’t_IC|(‘3 31 of Homomorphl Paillier
L China's Data | ¢ encryption .
transmissio - 2048-hit
n Security Law | strength
Real-time Section 165 E’;?;ﬁggﬁ; n
audit and | of the Dodd- storage 100%
traceability | Frank Act g
coverage

Informatica 49 (2025) 75-94 87

The quantitative assessment matrix for regulatory
compliance is shown in Table 13 below:

Table 13: Quantitative assessment matrix for regulatory

compliance.
Evaluatio | Regulat "Erame “Compli
n ory Test work ance
dimensio | standar | method " "
results status
n ds
Visualizati
Explainab | EBA on of
ility TRIM | dynamic 92% N(E>80%)
coverage | 3.2.1 attention
weights
Differential
Privacy privacy
budget EDPB consumptio | ¢=1.8 \/
2.0
control n rate
monitoring
Response
Stress test FED E:%anzté(sjdeiz
- 0, 0,
deviation fg 15 macroecon +3.4% V(<10%)
omic
policies
Acrticle
31 of | Federated
China's | gradient 100%
data-local | b isolation isolation v
Securit | verification
y Law
. SEC .
Audit Rule Blockchain 108 N (<2
response query .
o 17a- minutes | hours)
timeliness A(F) latency test

The federal framework is responsible for data fusion
under cross institutional privacy protection. The attention
mechanism achieves a feature visualization rate of 92%
through dynamic attention, and dynamic network
reconstruction uses LASSO-VAR and rolling windows to
capture risk transmission paths. The aim of this
experiment is to isolate these components through an
ablation study and independently evaluate the impact of
each component on warning accuracy (AUC), crisis
detection rate (recall), real-time performance (prediction
delay), and robustness (F1 decay).

The experimental design includes a baseline model
and three ablation variants, with each variant removing
one target component. All models use the same dataset,
preprocessing process, and evaluation metrics to isolate
the effects of variables. The experimental process is
divided into three stages: data preparation, model variant
definition, and training evaluation.

The dataset is consistent with the previous text, and
the benchmark model is a complete federated dynamic
network framework. The ablation variant is created by
removing specific components.

The benchmark model (complete framework)
includes a federated framework, attention mechanism, and
dynamic network reconstruction.
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Federated framework: Lightweight protocol enables
cross institutional collaborative training.

Attention mechanism: Cross modal attention layer,
used for dynamic adjustment of feature weights.

Dynamic network reconstruction: LASSO-VAR
variable screening+generalized variance decomposition to
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Output layer: XGBoost or LSTM classifier,
outputting crisis probability.

Ablation variant 1: Remove federated framework

(centralized training), ablation variant 2: Remove
attention mechanism (basic interpretable module),
ablation wvariant 3: Remove dynamic network

construct a three-layer overflow network  reconstruction (static network).
(risk/volatility/return), and synthesize a weighted Obtain the ablation test results shown in Table 14
network. below.
Table 14: PerformanceAblation test results.
Variant 3
Benchm | Variant 1 | Variant 2 | (without Contribution
Indicator | ark (No (No dynamic Peak AUC decomposition
model Federation) | Attention) reconstruction
)
zero .
- 0.83 (- Dynamic _
AUC Po Int 0.85 (-3.4%) | 0.82 (-6.8%) 0.862 Reconstruction>Federated
eight 5.7%) -
. >Attention
eight
zero Dynamic  reconstruction
Recall point 0.78 (- contributes  the  most
rate eight 4.9%) 0.79(-3.7%) | 0.75(-8.5%) | 68.9 (network topology captures
two risk transmission)
. Attention increases latency
prediction | two | 56.4 - | 702 (interpretable
delay (ms) | point 7 3;%) (+i1 9%) 65.3 (+4.1%) | 6839 computation), federated
' ' reduces latency (distributed
seven A
optimization)
F1 Dynamic  reconstruction
attenuatio -8.1% -1.2% enhances robustness
n (data -5.40% (+50%) (+33%) -9.8% (+81%) | -3.2% (rolling  update  noise
pollution) resistance)
Feature . .
visualizati | 92% | Sor O | 859% (-7.6%) | 89% (:3.3%) | - Atiention  mechanism
on rate .2%) dominates interpretability
Converge | 1.8 x| 1.0 X Federated framework
nce speed | benchma | (centralized | 1.7x 1.8x - improves convergence by
(federal) rk ) 1.8 times
Peak Full
achievem component | Federated+Attention+Dyna
ent i i i i collaboratio | mic Network
conditions n

Further design and use parameter sensitivity analysis,
with the following test parameters and ranges: rolling
window length: 63/126/252 trading days (covering high-
frequency/mid  frequency/low-frequency  strategies),
network construction threshold: Granger causality
significance level [0.01, 0.05], federated aggregation
frequency: per batch/every 2 batches/every 5 batches
aggregation, LASSO regularization A: [0.05, 0.2, 0.5]
(sparsity gradient test).

The control variable settings are shown in Table 15
below:

Table 15: Control variable settings.

Fixed parameters | Value Basis

Prediction period IMF  Crisis  Labelin

H i 10 Days Standards ’

Differential GDPR compliance

privacy  noise | 0.5 requirements (£=2.0)

scale o

Attention  head Section 4.1

count h 8 Hyperparameter
Configuration
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The effect of scrolling window length is shown in

Table 16 below:

Table 16: Effects of Rolling Window Length on Test
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0.05

0.22

78.30%

8.2/10

0.01

0.15

85.6%

9.1/10

Results. The impact of federal aggregation frequency is shown
Windowle | AU | Rec | Singlede | Flattenuation(30% in Table 18 below:
ngth c_|al lay noise) Table 18: Impact of Federal Aggregation Frequency.
63d 0.8 0.75 | 48 0.187
ays 2 ' ms - Aggregatio | Convergenc | Communicatio | Global
0.8 n frequency | e speed n overhead AUC
126days 8 0.82 | 62ms -0.092 100%
Each batch | 1.0x 0.85
0.8 benchmark
252days 5 0.8 142ms -0.068 Ever 2
y 1.8x 57% 0.88
batches
The network threshold sensitivity is shown in Table | Every 51,54, 41% 083
17: batches
Table 17: Network Threshold Sensitivity. .
False Identification rate | Number _of The performance verification results of federated
Threshold | alarm of community risk | critical path training are shown in Table 19 below:
rate transmission captures
Table 19: Results of federated training performance validation.
Traditional centralized This article presents Increase
Index - the federal . Test method
training amplitude
framework
Converaence The number of epochs required
g 38 rounds 21 rounds 1.81x to reduce the loss function to
speed
0.01
Communicati
on 42MB 2 AMB -42.9% Engry_pﬂon gradient traffic
expenses/rou statistics
nds
ﬁ}rsc'zistsutional Bank —  Securities —
. 89ms 51ms -42.7% Insurance Gradient
data  fusion
Synchronous Measurement
latency
Privacy
budget _ £=3.5 per wheel ¢=1.8 per wheel -48.6% GDPR compliance monitoring
consumption (e<2.0)
rate

The contribution analysis of multimodal features is

shown in Table 20:

Table 20: Multimodal feature contribution analysis.

Feature Type

Single
modal
AUC

Enhanced AUC after
fusion

Examples  of
Features

Key

Contribution of Crisis Recall Rate

Time series data (LSTM)

0.82

Sudden  change in
volatility A>3 ¢

Basic contribution 58%

Text
(BERT)

Public

Opinion

0.79

+0.07

The frequency of the
term  ‘'debt  default'
exceeds 5 times per day
(warning 2 weeks in
advance)

Increase by 11%

Network
(GNN)

Topology

0.81

0.05

Bank insurance risk
transmission  pathway
intensity>0.35

Increase by 7%

Cross modal fusion

0.88

Sudden change in
volatility+accumulation
of negative
news+activation of
transmission pathways

Overall increase of 26%
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4.2 Analysis and discussion

In Table 4, the dynamic network leads in all aspects. In
terms of the three core indicators of Accuracy (overall
accuracy), Precision (positive example prediction
accuracy), and Recall (positive example recognition
coverage), the dynamic network is 20.8%, 22.1%, and
26.2% higher than the basic Logistic regression,
respectively. At the same time, the dynamic network AUC
reaches 0.88, which is close to the 0.9 threshold of the
perfect classifier and significantly higher than XGBoost's
0.79, proving that it maintains an excellent balance
between the true positive rate and the false positive rate
under different decision thresholds. Moreover, the
dynamic network false alarm rate (0.15) is 51.6% lower
than that of Logistic regression (0.31), greatly reducing
the waste of resources caused by false alarms. In addition,
the average lead time of the dynamic network is 32.6 days,
which is 2.3 times that of Logistic regression, thus
providing a more adequate risk disposal window. This
result shows that the model has good warning timeliness.

Although XGBoost improves Accuracy to 0.78
through gradient boosting tree, single-signal modeling is
difficult to capture the complex correlation characteristics
of the market, resulting in Recall 11 percentage points
lower than the dynamic network. With long short-term
memory units, LSTM has the highest Recall (0.74) in the
single-signal model, but it is still weaker than the
modeling ability of network topology methods for risk
transmission paths. However, the dynamic network breaks
through the static network window limitation through real-
time topology updates, which improves Recall by 5.2%.
At the same time, the dynamic network F1-score (0.82) is
the highest among all models. This reflects that its
reconciliation balance between Precision and Recall is
optimal, so it is particularly suitable for financial risk
control fields that are sensitive to both false positives and
false negatives.

In Table 5, as the window days increase, the network
density and feature dimensions both show an upward
trend, and the F1-score fluctuation range is slightly
different, indicating that each parameter combination has
different performance in different scenarios. Among them,
high-frequency trading scenarios are suitable for lower
network density and feature dimensions, while long-term
trend analysis requires higher network density and feature
dimensions. In addition, balanced risk control and policy-
sensitive decision-making have their own specific
applicable combinations. In general, choosing the right
parameter combination is crucial to improving model
performance and application scenario adaptability.

Through comprehensive analysis of the tabular data,
the following key conclusions can be drawn: different
parameter combinations show obvious differentiation
characteristics in model performance. Although the 63-
day window combination has the lowest network density
(0.28) and the fewest feature dimensions (15), its F1-score
fluctuation range (0.79-0.81) shows that this combination
has a response speed advantage in high-frequency trading
scenarios. The 126-day window combination achieves the
best balance between network density (0.35) and feature

B. Li

dimensions (23), and its Fl-score range of 0.81-0.83
shows that it is the best choice for conventional risk
control scenarios. The 252-day window combination
exhibits the highest network density (0.41) and the most
feature dimensions (37), which is suitable for capturing
long-term trends but has a high computational cost. The
most groundbreaking is the adaptive threshold
combination, which achieves an optimal F1-score
performance of 0.82-0.84 by introducing macro features.
It is particularly suitable for policy-sensitive decision-
making, but its implementation requires real-time data
stream support. In general, parameter selection needs to
balance computational efficiency, feature richness, and
model stability according to specific business scenarios.
Among them, the 126-day window combination can be
used as the basic configuration, while the adaptive
solution is suitable for enhanced deployment in special
periods.

The data in Table 6 show that different parameter
combinations show significant differences in performance
indicators. Among them, the 63-day window combination
has the best throughput (82,000 TPS) and the lowest
latency (143ms), but the Fl-score decay is the most
obvious (-7.2%). Although the 252-day window
combination has the lowest throughput (68,200 TPS), it
has the best error rate peak (0.05%) and F1-score decay (-
3.1%). The adaptive combination strikes a balance
between latency (158ms) and throughput (79,800 TPS),
which is suitable for the dynamic adjustment needs of
policy-sensitive scenarios.

In Table 8, the adaptive combination still maintains a
94.6% request success rate under 300% load, and its
dynamic sampling rate adjustment mechanism effectively
avoids system overload. However, due to insufficient
feature dimensions, a large number of requests were
dropped during the peak period for the 63-day window
combination. In terms of robustness performance, the 252-
day window combination has the best tolerance to data
pollution (F1 only decays by 6.8%), which is due to the
noise dispersion effect of its high-dimensional feature
space. However, its hardware failure recovery time is
relatively long, which is related to its complex model
structure. In terms of real-time decision-making ability, in
the policy mutation scenario, the macro feature perception
module of the adaptive combination controls the response
deviation within £3.4%, which is significantly better than
other combinations. Moreover, its federated learning
architecture ensures that the service can be restored within
5.3 seconds when 50% of the nodes fail. The test results
show that the adaptive combination has the best
comprehensive performance in extreme scenarios, and its
dynamic adjustment ability and federated learning
architecture show strong system resilience.

In Table 10, the adaptive combination realizes the
reconstruction of missing features through the cross-
modal attention layer, and controls the RMSE increase
within 9.8% in the MAR scenario, which is significantly
better than other combinations. Its dynamic sampling
strategy can automatically identify non-random missing
patterns and reduce the AUC drop caused by MNAR. The
252-day window combination performs best in the MCAR
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scenario (F1 only decays by 9.3%) because it contains
richer time series patterns, proving that long-term
historical data can improve the tolerance of random
missing. However, when the non-random missing exceeds
30%, the decision offset AP99 of the 63-day window
combination reaches 12.6%, exceeding the safety
threshold (10%), while the adaptive combination still
maintains a 7.2% offset through the coordination of
federated learning nodes. The test results show that the
impact of data missing on the model shows obvious
nonlinear characteristics, among which the performance
degradation caused by non-random missing (MNAR) is
the most significant. The adaptive combination shows the
strongest missing tolerance through multimodal fusion
and dynamic sampling.

Table 11 verifies the interpretability of the model
based on Article 15 of GDPR and Article 1798.100 of
CCPA, with a feature visualization rate of 92% (exceeding
the regulatory threshold of 80%). The decision logic
traceability achieves quantification of 95% variable
contribution in stress testing (ExShapley algorithm), and
the user data deletion response time of 9.2 seconds meets
CCPA's timeliness requirements. Table 12: Based on
international regulatory standards, this paper designed
stress testing scenarios. In a cross-domain data leakage
test, the k-anonymity reaches 6.2 (above the 5 threshold),
and the response deviation in a sudden 300bps interest rate
hike scenario is £3.4% (lower than the Federal Reserve's
10% tolerance).Cross border data transmission met the
requirements of Article 31 of China's Data Security Law
through Paillier 2048 bit encryption, and the blockchain
certificate coverage rate of 100% supported the Dodd
Frank Act audit requirements; The regulatory compliance
quantification matrix constructed in Table 13 shows that
the five dimensional indicators are fully met:
interpretability coverage rate of 92% (EBA TRIM 3.2.1
standard), privacy budget £=1.8 (better than GDPR's ¢ <
2.0), stress test deviation + 3.4% (FED SR 15-19
Appendix A), data localization with 100% gradient
isolation (China's Data Security Law), audit response time
of 108 minutes (SEC Rule 17a-4 (f)), forming a
"technology regulation" closed loop - dynamic attention
layer (Figure 4 Module C) driving visualization
implementation, differential privacy module (D)
controlling privacy budget, federal architecture supporting
cross-border compliance, actual testing has compressed
the regulatory audit cycle from 6 months to 72 hours, and
EU SRB estimates can reduce the system. The cost of
sexual risk regulation is 37%.

In Table 14, Federal framework impact: After
removal, AUC and recall rates decreased by 43% (-5.7%/-
4.9%), but prediction latency slightly decreased (-7.3%)
due to the absence of federal protocol overhead. Attention
mechanism impact: After removal, the feature
visualization rate significantly decreased (-7.6%), the
recall rate slightly decreased (-3.7%), but the prediction
delay increased (+11.9%) due to slow ExShapley
interpretation generation. In the scenario of policy
mutation, the response deviation may increase from +
3.4% to+5.0%. The impact of dynamic network
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reconstruction is that after removal (using static
networks), the recall rate decreases significantly (-8.5%),
and F1 attenuation intensifies (+81%) due to the inability
to capture risk transmission in real time. The crisis lead
time has been reduced from 32.6 days to about 25 days.

The experimental design is directly based on the
model proposed in this article (such as three-layer
overflow network and federated protocol), ensuring that
the results are consistent with the theme of "dynamic
warning mechanism". The ablation research fills the gap
of "model selection influence not decomposed”, and
although the attention mechanism improves visualization,
it increases latency and is suitable for interpretability
priority scenarios. Dynamic network reconstruction is a
key performance driver, especially during market
mutations. Improvement suggestions: If the results show
that the attention mechanism has a significant impact on
latency, it can be optimized to lightweight attention (such
as linear attention); if the computational cost of dynamic
reconstruction is high, incremental learning can be
explored.

Based on the parameter sensitivity analysis in Table
16-18, the optimized combination of rolling window
length, network construction threshold, and federated
aggregation frequency significantly improves warning
performance. The 126-day window length achieves the
optimal balance between accuracy and timeliness (AUC
0.88/recall 0.82), with an accuracy improvement of 7.3%
compared to the 63-day window and a delay reduction of
56% compared to the 252-day window (62ms vs 142ms),
but its noise resistance is weaker than the 252-day window
(F1 attenuation -0.092 vs -0.068). The strict network
threshold (0.01) reduces the false alarm rate by 31.8%
(0.15 vs 0.22) by filtering out noisy edges, and increases
the number of critical risk paths captured to 9.1/10
(+11%), but requires a 14% increase in computational
overhead. Federated aggregation achieves collaborative
optimization of communication efficiency and accuracy
every 2 batches, reducing communication overhead to the
benchmark of 57% and increasing convergence speed by
1.8 times. The global AUC (0.88) is significantly higher
than that of high-frequency/low-frequency aggregation
(0.85/0.83).

There is a dynamic coupling effect between
parameters: when the market volatility (EWMA o) is
greater than 0.03, switching to a 63 day window can
compress the delay to 48ms; in high-dimensional feature
scenarios (>30 dimensions), a 0.01 threshold is forcibly
enabled to avoid overfitting; The gradient synchronization
frequency in federated collaboration needs to match the
heterogeneity of institutional data (such as high-frequency
securities trading data that is subject to more frequent
aggregation). The adaptive strategy (using a 252-day
window during the crisis period+0.01 threshold) can
further reduce the deviation of policy mutation response
to + 34% (Table 6), verifying the accurate
characterization ability of dynamic parameter adjustment
on the risk transmission path.

Table 19 quantitatively verifies the performance
breakthrough of the federated learning framework through
four-dimensional indicators: the convergence speed is
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improved by 1.81 times (the number of rounds with loss
reduced to 0.01 is reduced from 38 rounds to 21 rounds),
due to the dynamic weight aggregation mechanism.
Communication overhead reduced by 42.9% (single round
transmission volume of 4.2MB-2.4MB), achieved through
gradient three-stage compression (8-bit quantization —
sparsification to preserve significant parameters —
Huffman coding): cross institutional latency reduced by
42.7% (bank — securities — insurance closed-loop
synchronization compressed from 89ms to 51ms), relying
on lightweight protocols and asynchronous compensation
mechanisms (allowing insurance nodes to delay 5 batches
of updates). The privacy budget consumption decreased
by 48.6% (e increased from 3.5/round to 1.8/round), due
to adaptive noise injection meeting GDPR requirements,
while supporting high-frequency transaction risk control
(1590 QPS) and cross-border regulatory collaboration
(China Europe gradient aggregation delay of 53ms).

Table 20 shows that cross modal fusion achieves
triple breakthroughs in crisis warning performance

(1) The forward-looking advantages of text modality:
The public opinion features extracted by BERT (such as
"debt default” word frequency>5 times/day) are 2 weeks
ahead of financial indicators for early warning, with a
single modality AUC of 0.79. After fusion, it contributes
1% recall rate improvement (crisis sample recognition rate
from 0.71-0.82), and the key mechanism captures policy
expectation changes in dry semantic features (such as the
sharp increase in central bank statement words indicating
liquidity tightening);

(2) The transmission value of topological modes: The
bank insurance risk contagion path generated by GNN
(triggering warnings when the intensity>0.35) accurately
locates cross market risk and insurance hubs, contributing
to a 7% recall rate increase. Empirical evidence shows that
the activation intensity of the crisis period path is 2.3 times
that of the normal value;

(3) The fundamental role of temporal mode: LSTM
temporal features (volatility mutation A 0>30) provide
58% of the basic risk signal, but in policy mutation
scenarios, it relies on text mode supplementation
(attention weight ratio increases to 68%);

(4) Integration synergy: the three-mode dynamic
weighting makes the comprehensive AUC reach 0.88
(0.09 higher than the optimal single mode), and the recall
rate rise by 26%, especially in the compound scenario of
"sudden  change in  volatility+negative  news
superposition+infection path activation”, F1 score reaches
0.91.

Technical attribution: The cross-modal attention
mechanism achieves nonlinear feature interaction through
multi head weight allocation (8 heads), such as the
dominance of text weight in the early stage of crisis (over
60%), the leap of topological weight in the risk
transmission period (over 55%), and a dynamic
adjustment ability that improves AUC by 0.07 compared
to static fusion strategies (such as feature concatenation).
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5 Conclusion

The dynamic network model proposed in this paper is an
intelligent computing framework for financial time series
data analysis. By integrating federated learning and
adaptive computing technology, it achieves high-
precision, low-latency real-time prediction and decision
support. The core innovation of this model lies in its
dynamic architecture design. It uses a cross-modal
attention  mechanism to integrate  multi-source
heterogeneous data and improves modeling accuracy by
dynamically adjusting feature weights. The measured
results show that its prediction accuracy in anti-fraud
scenarios is 23% higher than that of traditional models. In
addition, this paper introduces a lightweight federated
learning protocol to increase the model convergence speed
by 1.8 times while ensuring data privacy. Finally, a 92%
feature visualization rate is achieved through the
interpretability enhancement module, meeting the
stringent requirements of financial supervision on model
transparency. In terms of efficiency, the model's single
prediction time is stable within 62.7ms, and it supports
high concurrent processing of 1,590 QPS. In the future,
the adversarial sample defense capability can be further
optimized and expanded to 10T edge computing scenarios.
In short, the model provides a solution that balances
performance and compliance for time-sensitive tasks such
as financial risk control and high-frequency trading.
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