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This article proposes a dynamic network framework for federal collaboration to address the three major 

challenges of data fragmentation, model lag, and dynamic loss in current financial regulation. The aim is 

to achieve data fusion, sub second real-time response (single prediction<100ms), and auditable 

regulatory decision-making under cross institutional privacy protection; Methodologically, Yahoo 

Finance industry stock prices, FRED macro indicators, and IMF crisis annotation data were integrated. 

A three-layer overflow network of risk/volatility/return was constructed through LASSO-VAR variable 

screening and generalized variance decomposition, and a weighted synthetic network was used to capture 

the risk transmission path. At the same time, this paper designs a lightweight federated learning protocol 

and verifies its effectiveness against baselines including the logit model, random forest, XGBoost, SVM, 

BP neural network, and LSTM by inputting synthetic network metrics and 13 traditional metrics. 

Experimental results show that the dynamic network model achieves an AUC of 0.88 on the IMF dataset 

(an 11.4% improvement over the single-signal XGBoost model) and a crisis recall of 0.82 (a 26.2% 

improvement over the logit model). Furthermore, its prediction latency is reduced to 62.7 ms (meeting a 

high concurrency of 1590 queries per second), the convergence speed of federated training is increased 

by 1.8 times, and communication costs are reduced by 43%. In addition, in data contamination scenarios, 

the F1 decay is only 5.4%, and the response deviation to policy mutations is ±3.4%. Conclusions indicate 

that this framework, through dynamic network reconstruction and federated collaborative optimization, 

achieves an early warning accuracy of 0.923 and a crisis lead time of 32.6 days, providing an efficient 

solution for high-frequency financial risk control. Therefore, future extensions are possible to enhance 

the robustness of adversarial defenses. 

Povzetek:  

 

1 Introduction 
Systemic financial risk refers to an event in which local 

risks are transmitted through the financial system and 

trigger an overall crisis. Traditional financial supervision 

pays more attention to individual institutional risks, while 

systemic risks have the characteristics of cross-market 

contagion and nonlinear outbreak. Therefore, it is 

necessary to establish a dynamic early warning 

mechanism to capture the risk transmission path. At 

present, the global financial risk early warning system is 

built on the basis of a macro-prudential policy framework, 

and its core is to achieve risk identification and prevention 

through the combined use of multi-dimensional regulatory 

tools [1]. 

The problem of data fragmentation essentially stems 

from the institutional obstacles of financial supervision. 

The current "one bank and two commissions" separate 

regulatory framework has objectively created data barriers 

between different industries such as banking, securities, 

and insurance. With the development of financial holding 

companies, cross-infection of risks within the group often  

 

 

bypasses the statistical scope of current regulatory reports, 

forming a monitoring blind spot [2]. 

The model lag reflects the inadaptability of traditional 

econometric methods in the wave of financial innovation. 

For example, classical methods such as Logit regression 

and Probit model rely on the statistical laws of historical 

data, and their implicit linear assumptions are 

fundamentally contradictory to the nonlinear 

characteristics of financial risks. When faced with new 

risk vectors such as crypto assets and carbon financial 

derivatives, these models can neither handle high-

dimensional unstructured data nor capture abrupt changes 

in market participants' behavior patterns. Even if the 

GARCH family model is adopted to improve the volatility 

prediction, it is still limited by the rigid constraint of 

parametric method. More importantly, traditional models 

have insufficient ability to describe tail risks and often 

adopt simple truncation methods in extreme value 

processing, resulting in a significant reduction in the early 

warning sensitivity of "black swan" events [3]. 

The modern financial system is essentially a super-

large-scale complex network composed of countless 
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transaction relationships, and its topological structure 

characteristics directly determine the efficiency of risk 

contagion [4]. By constructing a multi-layer network 

model based on inter-bank exposure, equity cross-holding, 

and common risk exposure, two types of key indicators 

can be accurately quantified. The first is the node 

centrality index (such as eigenvector centrality), which is 

used to identify institutions that not only have a 

systemically important scale (TBTF) but also have a risk 

transmission hub function (TCON) [5]. The second is the 

community discovery index, which is used to reveal 

potential risk contagion sub-networks. The structural 

characteristics of modern financial networks require that 

regulatory models must have the ability to dynamically 

reconstruct networks, so the traditional minimum 

spanning tree method (MST) can no longer meet the needs 

of real-time monitoring [6]. 

The linkage between complex network analysis and 

machine learning is not a simple superposition, but a 

closed-loop enhancement of "network structure 

identification-risk feature extraction-strategy dynamic 

optimization". When the network centrality index and the 

machine learning risk score cross features, the AUC value 

of the model can be increased by more than 0.15 [7]. 

Through stress test conduction chain simulation, the 

difference of policy effects at different intervention time 

points can be measured. 

The dynamic network model proposed in this paper is 

an intelligent computing framework for financial time 

series data analysis. By integrating federated learning and 

adaptive computing technology, it achieves high-

precision, low-latency real-time prediction and decision 

support. The core innovation of this model lies in its 

dynamic architecture design. It uses a cross-modal 

attention mechanism to integrate multi-source 

heterogeneous data and improves modeling accuracy by 

dynamically adjusting feature weights. 

This study aims to address the three major challenges 

of data fragmentation, model lag, and dynamic loss under 

segmented supervision. The core research question is 

whether the federal collaborative framework can improve 

the timeliness and generalization ability of cross 

institutional risk warning while protecting 

privacy. Specific objectives include: (1) building a 

dynamic multi-layer network to integrate banking, 

securities, and insurance risk exposures, and quantifying 

cross-market spillovers through LASSO-VAR screening 

and generalized variance decomposition; (2) developing a 

lightweight federated protocol to achieve sub-second 

response (target latency <100ms); and (3) designing an 

interpretable module to meet GDPR/CCPA regulatory 

review requirements. Expected quantitative results 

include a ≥ 1.5x increase in federated training 

convergence speed, a cross-institutional model AUC 

>0.85, a crisis recall rate >0.80, and a feature visualization 

rate >90%. 

The core contribution of this study lies in: 

(1) Pioneering Federal Dynamic Network 

Architecture 

Breaking through the limitations of a single 

institution, the collaborative training of commercial 

banks, securities companies, and insurance institutions 

under data isolation conditions was achieved through the 

construction of a three-layer overflow network 

(risk/volatility/return) and a weighted synthetic network. 

The measured communication overhead was reduced by 

43%. 

(2) Sub second real-time warning mechanism. 

By adopting a lightweight federated protocol, a single 

prediction delay of 62.7ms was achieved on the IMF 

dataset, which is 2.3 times more efficient than traditional 

static models and meets the risk control requirements for 

high-frequency trading. 

(3) Regulatory auditable decision logic 

Integrating ExShapley's ideas with dynamic attention 

mechanism to achieve a 92% feature visualization rate. 

The complete contribution loop of this article is as 

follows: 

Problem driven (cross institutional data barriers) → 

Method innovation (federated dynamic network) → 

Validation results (AUC 0.88/recall 0.82) → Regulatory 

implementation (feature visualization 92%) 

2 Related work 
(1) Research status of complex network in financial risks 

At present, the research of complex network in the 

field of financial risk early warning mainly presents the 

following characteristics. First, in terms of network 

construction method, the DebtRank algorithm proposed 

by Luo et al [8] creates a systemic risk measurement 

paradigm based on inter-bank asset-liability network, 

which iteratively calculates the impact of risk exposure 

between institutions. Secondly, in terms of dynamic 

monitoring, the time-varying financial network model 

constructed by Lin et al [9] proves that there is a nonlinear 

relationship between network density and risk contagion 

speed. When the correlation degree between financial 

institutions exceeds the critical threshold, small shocks 

may cause cascade failure. 

O'Brien et al [10] proposed a multi-layer network 

coupling model, which improved the accuracy rate of risk 

warning to 82.3% by simultaneously considering the triple 

dimensions of credit linkage, equity control and guarantee 

chain. 

The latest research trend is reflected in the fusion 

application of intelligent algorithms. The Network 

Embedding technology developed by Pehlivanl et al [11] 

combines graph neural network with risk early warning to 

realize the automatic identification of potential 

associations in the shadow banking system. This kind of 

method processes high-dimensional network data by 

dimensionality reduction, so that regulators can intuitively 

discover hidden systemically important nodes. 

(2) Research status of machine learning in financial 

risk early warning 

Deep learning models show significant advantages in 

time series prediction of financial risks. The hybrid 

LSTM-ARIMA model proposed by Purnell et al [12] 

improves the F1-score of banking crisis prediction to 0.91 
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by fusing deep neural network and traditional 

measurement methods. The model is particularly good at 

capturing nonlinear features in the credit cycle. Ran et al 

[13] used expanded convolution kernel to extract multi-

scale risk features, and its prediction window was 6 weeks 

earlier than the traditional method. 

First, the introduction of natural language processing 

technology has expanded the sources of risk signals. 

Sahiner et al [14] constructed forward-looking risk 

indicators by analyzing 100,000 annual report texts of 

listed companies. The empirical results show that the 

predictive power of the "fuzzy expression of 

management" feature extracted by this model to the 

financial risk of the following year is 20% higher than that 

of the traditional financial indicators.  Simsek et al [15] 

showed that the multi-modal learning framework 

combined with public opinion data can reduce the false 

alarm rate of systemic risk early warning by 33%. 

Second, data privacy protection requirements give 

birth to new models. The hierarchical federated learning 

scheme proposed by Awosika et al [16] realizes cross-

departmental collaborative modeling of the banking and 

insurance regulatory system and securities regulatory data. 

Through gradient aggregation under differential privacy 

protection, this method improves the identification 

accuracy of cross-market risk infection paths to 78% while 

maintaining the data isolation of various institutions. It is 

particularly noteworthy that the framework supports 

dynamic weight adjustment and can automatically adapt 

to the increase or decrease of regulatory data sources. 

Third, risk threshold setting has entered the era of 

adaptation. The DeepRL regulatory framework developed 

by Ahmed et al [17] independently learns the optimal 

intervention threshold adjustment strategy by simulating 

20 million market scenarios. The application results show 

that the dynamic adjustment of the capital adequacy ratio 

requirements of commercial banks by this model can 

reduce the supervision cost by 18% and increase the risk 

coverage by 25%. 

Finally, the problem of model transparency has been 

substantially solved. The ExShapley algorithm proposed 

by Wei et al [18] makes the risk prediction results of deep 

learning models regulatory auditability through improved 

Shapley value decomposition. In stress testing scenarios, 

this method can accurately quantify the contribution of 

each input variable to the final risk score. 

However, current research still faces three major 

bottlenecks. The first is the problem of real-time learning 

efficiency under high-frequency data, the second is the 

limitation of model generalization caused by insufficient 

samples of extreme events, and the third is the adaptation 

conflict between regulatory technology (RegTech) and the 

existing legal framework. Therefore, future breakthroughs 

may focus on areas such as quantum machine learning 

acceleration, synthetic data enhancement, and innovation 

of regulatory sandbox testing mechanisms. The 

comparison of systematic financial risk warning models is 

shown in Table 1. 

 

Table 1: Comparison of systematic financial risk warning models 

Core methods 
Key 

Results/Limitations 

Real time 

responsiveness 

Cross institutional 

universality 
interpretability 

DebtRank algorithm 

Establishing a paradigm 

for measuring interbank 

risk exposure 

Minute level delay 
Single machine 

applicability 

Medium (network 

topology) 

Multi layer network 

coupling model 

Warning accuracy rate 

82.3% 
unreported 

No cross 

institutional 

collaboration 

low 

LSTM-ARIMA 

hybrid model 
F1-score 0.91 

Forecast 6 weeks in 

advance 
Centralized training 

Additional 

explanatory tools 

are needed 

Extended 

Convolutional 

Kernel Model 

Forecast window 6 

weeks ahead of 

schedule 

Non real time batch 

processing 
data silos Black box 

Analysis of Annual 

Report Text 

Forward looking 

indicators have a 

predictive power that 

exceeds traditional 

finance by 20% 

Annual report 

release cycle lags 

behind 

Not considering 

cross market 

correlation 

Medium (text 

features) 

Hierarchical 

Federated Learning 

The accuracy rate of 

identifying cross market 

transmission pathways 

is 78% 

High 

communication 

delay 

Support cross 

departmental 

collaboration 

Partially 

explainable 

DeepRL Regulatory 

Framework 

Regulatory costs 

reduced by 18%+risk 

coverage increased by 

25% 

Simulation 

calculation time 

consumption 

Not adapted to real-

time data streams 
Strategy traceability 
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ExShapley 

algorithm 

Quantitative 

contribution of stress 

test variables 

Explanation 

generated>500ms 

Single machine 

deployment 
High 

Federated Dynamic 

Network 

Framework 

(Method described 

in this article) 

AUC 0.88/recall 

0.82/62.7ms delay 

Sub second 

response 

Federal 

Collaborative 

Training 

Visualization rate of 

92% 

 

The existing systematic financial risk warning models 

have significant limitations: although the DebtRank 

algorithm can quantify interbank risk exposure, it is only 

applicable to single institutions and has response delays of 

up to minute. The warning accuracy of the multi-layer 

network coupling model is 82.3%, but it cannot achieve 

cross institutional collaboration. The LSTM-ARIMA 

hybrid model has an F1 score of 0.91, but it relies on batch 

processing and requires auxiliary interpretation tools. The 

expanded convolutional kernel model predicts 6 weeks 

ahead of schedule but is limited by data silos; The 

forward-looking indicators of annual report text analysis 

are 20% better than traditional finance, but are constrained 

by the lag of the annual report cycle. Hierarchical 

federated learning supports cross departmental training 

but has high communication latency. The DeepRL 

regulatory framework reduces regulatory costs by 18% 

while significantly reducing computation time; Although 

the ExShapley algorithm has strong interpretability, its 

interpretability generation exceeds 500ms. In contrast, the 

federated dynamic network framework proposed in this 

paper integrates banking/securities/insurance data through 

lightweight federated protocols, achieving sub second 

real-time response (single prediction 62.7ms), cross 

institutional collaborative training (convergence speed 

increased by 1.8 times), and high interpretability decision-

making (feature visualization rate of 92%), achieving core 

performance breakthroughs of AUC 0.88 and recall rate 

0.82 on the IMF dataset. 

3 Early warning model schemes 

3.1 Scheme ideas 

First, the information spillover relationship is ranked and 

presented in the form of a complex network diagram, and 

the three-layer network constructed is merged using the 

synthetic network method. Traditional statistical models, 

single-signal machine learning models, and static network 

models are selected to train the data and compare the final 

results. Based on the above scheme design, it provides 

necessary reference and guidance for regulatory 

monitoring of financial risk practices. 

The specific operation steps are as follows: 

(1) Construction of multi-layer supervised network 

(Figure 1) 

In the first step, this paper analyzes the yield, 

volatility and value-at-risk (VaR) of different industry 

indexes by using iconic industry stock price data. Then, 

through LASSO-VAR and generalized variance 

decomposition technology, the information overflow 

network among various industries is established. Through 

rolling regression technology, this paper also describes the 

dynamic change process of industry information spillover 

effect. 

In the second step, the cumulative net risk spillover, 

cumulative net volatility spillover and cumulative net 

yield spillover of each industry are ranked and drawn into 

a directed network diagram. Then, the top ten net spillover 

relationships between industries are ranked pairwise for 

analysis, and the path of crisis contagion is described to 

facilitate follow-up early warning. 

 

 

Figure 1: Construction of multi-layer supervised network 

(2) Synthetic network generation (Figure 2) 

In this study, a hierarchical information overflow 

network is constructed, and a comprehensive network is 

formed by grading the sub-networks according to their 

importance on stock market yield and giving them 

different weights, and the weighted average method is 

adopted. 

 

 

Figure 2: Synthetic network generation 
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(3) Verification of scheme effectiveness 

The first step is theoretical analysis. Through relevant 

literature and theoretical analysis, it demonstrates the 

rationality of financial crisis early warning scheme. 

In the second step, in order to enable the model to 

provide early warning from the daily level, first, the 

monthly indicators in the selected early warning indicators 

are uniformly converted into daily indicators, then the 

feature and target variables are separated, and all the 

feature variables are standardized for subsequent machine 

learning model training. 

The third step is machine learning comparison. Six 

types of models, Logit model, random forest (RF), 

XGBoost, SVM, LSTM, and BP neural network, are 

added for training to verify the robustness of the scheme. 

3.2 Theoretical explanation of scheme 

planning 

3.2.1 LASSO-VAR 

First, a k-dimensional time series  
T

k

t t 1
x R

=
  that obeys 

the ( )VAR p  process and has a time length of T is defined, 

and has the following form [19]: 
p

t i 1 i t i tx Φ x ε= −= +                            (1) 

Among them, iΦ  is the k k -dimensional coefficient 

matrix ( )i 1,2, , p= L , tε  is the k 1 -dimensional error 

vector, and ( )tε 0,: ,   represents the variance 

covariance matrix of tε . This study improves the original 

model by adding a regularization term to it, thereby 

deriving the estimation formula of the LASSO-VAR 

model: 

 2

F 1
min X ΦZ λ φ− +                            (2) 

In this model,  1 2 TX x x x= L  represents the 

observations of all time points in a k-dimensional time 

series  tx , forming an k T -dimensional matrix, 

 1 2 PΦ ΦΦ Φ= L  represents the pk k -dimensional 

parameter matrix to be estimated. 

When ( )T T T

t t 1 t 2 t pz X X X− − −= L  is defined, 

 1 2 TZ z z z= L  represents a kp T -dimensional matrix 

consisting of all lagged values of the matrix X. λ  is a 

regularization parameter used to adjust the sparsity of 

parameter estimation. This paper uses the rolling cross-

validation method to determine the value of λ , that is, a 

set of decreasing λ  values is calculated by the grid 

method, and the rolling cross-validation method is used to 

select the best one. 

3.2.2 Generalized variance decomposition 

The generalized variance decomposition method is 

used to construct the information overflow network 

among industries. The ( )VAR p  process in formula (4) is 

converted into the following moving average equation 

[20]: 

t i t i

i 0

X Aε


−

=

=                            (3) 

Among them, iA  is an k k -dimensional coefficient 

matrix and 0A  is an k k -dimensional identity matrix. If 

i 0 , then iA 0= , and if i 1 , then 

i 1 i 1 2 i 2 p i pA Φ A Φ A Φ A− − −= + + +L . The contribution 
H

ijd  

of variable j to the generalized forecast error variance of 

variable i H periods ahead is: 

( )
( )

2
1 H 1 T

jj h 0 i h jH

ij H 1 T T

h 0 i h h i

σ e A e
d

e A A e

− −

=

−

=

=
 

 
                           (4) 

Among them, jjσ  is the element in the j-th row and j-

th column of the matrix  , ie  represents an k 1 -

dimensional vector whose i-th element is 1 and the rest are 

0, H represents the forecast period, and hA  is the 

coefficient in the above formula. In this paper, 
H

ijd  can be 

regarded as the information spillover effect of j on 

industry i. 

Then, this paper further standardizes the information 

spillover effect 
H

ijd
 and constructs the information 

spillover network among industries based on it: 

±
H

ijH

ij N H

j 1 ij

d
d

d=

=


                           (5) 

From this, the net information spillover effect of 

industry i is defined: 

± ±( )H H H

ij ji ijD d d 100= −                             (6) 

The information spillover effect of industry i and the 

information spillover effect on other industries are defined 

separately: 
±N H

j 1, j i ijH

i .

d
C 100

N

= 

 = 
                            (7) 

±N H

j 1, j i jiH

. i

d
C 100

N

= 

 = 
                            (8) 

The net information spillover effect of industry i is 

defined as: 
H H H

i . i i .C C C = −                            (9) 

The overall information spillover effect between 

industries is defined as: 

±
N

H H

ij

j 1, j i

C d 100
= 

=                             (10) 

3.2.3 Synthetic network 

The key to the superiority of Transfer Entropy over mutual 

information or Granger causality in systemic financial risk 

warning lies in its ability to capture directional and 

nonlinear risk transmission. The risk contagion in 

financial markets often presents asymmetric 

characteristics (such as the risk spillover intensity during 

stock price crashes being much higher than during 

stationary periods), and traditional Granger causality is 
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based on linear VAR models, making it difficult to 

quantify nonlinear correlations. Although mutual 

information can measure dependency relationships, it 

cannot distinguish the flow of information. Transfer 

entropy calculates directional information flow directly 

through conditional probability, accurately identifying 

crisis transmission paths (such as the leading impact of 

insurance industry volatility on securities industry 

returns). 

The introduction of the Maximum Entropy principle 

solves the objective weight allocation problem in multi 

network layer fusion. The three-layer overflow network of 

the financial system (risk/volatility/return) has complex 

interactions (such as the volatility layer dominating 

contagion in bear markets and the return layer being more 

active in bull markets). The maximum entropy is obtained 

by constraining the sum of weights to 1, while preserving 

the original topology of each layer (without setting 

subjective weights), to find the synthetic network with the 

minimum information loss. The essence of this principle 

is to find the distribution that is the most uncertain but 

compatible with all layers of information, avoiding bias 

caused by manually setting weights (such as static 

weighting may overestimate the contribution of historical 

volatility). 

Actual value: This design enables the synthetic 

network to dynamically reflect market state transitions and 

capture the nonlinear transmission of tail risks through 

transfer entropy. 

For the construction of spatial weight matrix, this 

paper uses the transfer entropy method to construct the 

market correlation network of the industry for the yield 

series, volatility series and VaR series of the industry stock 

price data, respectively, and uses the maximum entropy 

method to construct the three-layer transfer entropy 

market correlation network of the industry, which are 

expressed as follows [21]: 
return return return

1 2 1 3 1 N

return return return

2 1 2 3 2 N

return return return return

3 1 3 2 3 N

return return return

N 1 N 2 N 3

0 TE TE TE

TE 0 TE TE

W TE TE 0 TE

TE TE TE 0

→ → →

→ → →

→ → →

→ → →

 
 
 
 =
 
 
 
 

L

L

L

M M M O M

L

  (11) 

Vol Vol Vol

1 2 1 3 1 N

Vol Vol Vol

2 1 2 3 2 N

Vol Vol Vol Vol

3 1 3 2 3 N

Vol Vol Vol

N 1 N 2 N 3

0 TE TE TE

TE 0 TE TE

W TE TE 0 TE

TE TE TE 0

→ → →

→ → →

→ → →

→ → →

 
 
 
 =
 
 
 
 

L

L

L

M M M O M

L

     (12) 

VaR VaR VaR

1 2 1 3 1 N

VaR VaR VaR

2 1 2 3 2 N

VaR VaR VaR VaR

3 1 3 2 3 N

VaR VaR VaR

N 1 N 2 N 3

0 TE TE TE

TE 0 TE TE

W TE TE 0 TE

TE TE TE 0

→ → →

→ → →

→ → →

→ → →

 
 
 
 =
 
 
 
 

L

L

L

M M M O M

L

      (13) 

In this model, the stock market return satisfies the 

following equation: 

 ( )t t t tA R E R βF η− = +                            (14) 

Among them, tR  represents the stock return sequence 

at time t,  tE R  is the expected value of the return 

sequence, A represents the contemporaneous correlation 

of the stock return sequences, tF  is the common factor of 

the stock return sequences, β  is the coefficient 

corresponding to each factor, and tη  represents the 

covariance matrix. 

When the matrix A is assumed to be invertible, the 

above linear factor model can be transformed into a 

standard multi-factor model: 

   1 1 * *

t t t t t t tR E R A βF A η E R β F η− −= + + = + +       (15) 

From the above formula, we can see that the 

determining variables 
*β  and 

*

tη  of the correlation 

between the stock return rate sequences are related to the 

matrix A. The affine function of the matrix A is expressed 

as follows: 
d

j j

j 1

A I ρ W
=

= −                            (16) 

Among them, jρ  is the influence of each layer of 

network jW  on the stock return rate. Therefore, a model 

with d layers is as follows: 

( )
d

j j t t t t t

j 1

I R ρ W R AR E R βF η
=

  
− = = + +  

   
         (17) 

Among them, R is a diagonal matrix, and the other 

symbols are as shown above. In order to correctly solve 

the weight jρ  of each layer of the network, some 

parameters are restricted: (1) The network matrix of each 

layer is a non-zero matrix; (2) The networks of different 

layers are different; (3) The sum of the weights of each 

layer of the network is 1. Through the iterative maximum 

likelihood estimation method, 
j

ρ$  can be solved, and the 

synthetic network can be expressed as: 

µ
d*

jj

j 1

W ρ W
=

=$
                           (18) 

Through the above steps, the market correlation 

synthesis network based on transfer entropy is obtained. 

The topology embedding feature graphH  generated by 

the synthetic network µ
*

W  will serve as the input for the 

cross modal attention layer (see the next section for 

details), and will be fused with the temporal feature timeH  

and text feature textH  to form the core input of the 

dynamic warning model. 

3.2.4 Machine learning model 

The classic Logit model and three machine learning and 

two deep learning models: Logit, Random Forest (RF), 

XGBoost, SVM, and LSTM were selected to train the 

early warning indicators to compare different early 

warning models. The output variables generated by 

different early warning models are consistent, all of which 

are 
( )ts 0,1=

, while the input variables are determined 

according to the selected early warning indicators. The 
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division method of these models on the training and test 

data sets is consistent. Grid search is used to optimize the 

machine learning model parameters, and the results are 

comprehensively compared with performance evaluation 

indicators such as confusion matrix, F1-Score, and 

Accuracy. The model is introduced as follows: 

(1) Logit model: 

( ) ( )g x

1
P y 1 X

1 e
−

= =
+

                        (19) 

( ) ( ) ( )g x

1
P y 0 X 1 P y 1 X

1 e
= = − = =

+
          (20) 

( ) 0 1 1 n nG x w w x w x= + + +L                      (21) 

(2) Random forest (RF) model: 

The idea of ensemble learning is to combine multiple 

weak learners into a new learning model. For any A with 

label y, the r feature vectors  1 2 rt ,t , ,tL  of A are 

extracted using the historical transaction records of the 

blockchain. The random forest consists of a set of decision 

tree classifiers ( ) kh x,θ ,k 1,2,3, ,I= L , where l 

represents the decision tree. The final classification 

formula is: 

( ) ( )( )l

i 1 iH x arg max I h x,θ y== =         (22) 

(3) XGBoost model: 

( ) ( )n K

i 1 i k 1 kl l
y l y , y Ω f= == + % %               (23) 

( ) 2

k j

1
Ω f γT λ w

2
= +                            (24) 

In this model, iy  represents the predicted value, and 

the true value or label is also represented by iy . The 

regularization part is responsible for limiting the 

complexity of the tree model, which is achieved by 

summing the complexity of each decision tree. The model 

of each tree is represented by kif , T represents the number 

of leaf nodes in the tree, w is the classification of each leaf 

node, and γ  and λ  represent coefficients to control the 

score and number of leaf nodes to prevent them from being 

too large, thereby avoiding overfitting. This regularization 

method ensures the generalization ability of the model 

during the tree construction process. 

(4) SVM model: 

It assumes that there is a set of sample data sets: 

( ) ( ) ( )   1 1 2 2 n n iD x ,y , x , y , , x , y , y 1, 1=  − +L       (25) 

The decision function is expressed as: 

( ) ( )TG x w Φ x b= +                            (26) 

Among them, ( )Φ x  represents the mapping of 

samples from the input space to the high-dimensional 

feature space, ( )1 2 iω ω ,ω , ,ω= L  is the vector method, 

and b is the displacement term. 

The optimal values of the normal vector ω  and 

displacement b are obtained by solving the optimization 

function, and the minimization function is: 

( )
2 N

i 1 iG ω,ξ ω C ξ== +                             (27) 

The constraint is: 

( )( )( )i i iy ω,Φ x b 1 ξ ,ξ 0+  −                             (28) 

Among them, i ix y  is the number of training samples, 

C is the regularization parameter, and iξ  is the slack 

variable. 

There are many kernel functions to choose from in 

SVM model. In nonlinear classification problems, radial 

basis kernel functions usually get better results than other 

kernel functions. 

(5) LSTM model: 

The basic LSTM unit is shown in Figure 3. The LSTM 

network is an optimization of the traditional RNN, and the 

model is enhanced by introducing LSTM units. The 

forgetting gate is responsible for filtering which 

information should be removed from the cell state, the 

input gate decides whether new information is added to 

the cell state, and the output gate creates new hidden states 

and outputs based on the current input, the previous hidden 

state and the updated cell state, thus reacting to the input 

data. Such a design allows each LSTM unit to efficiently 

retain information across long time intervals. 

 

 

Figure 3: Cell structure of LSTM unit 

The XGBoost, LSTM, and other models introduced in 

this section are general-purpose architectures. In practice, 

they can be adapted to different scenarios by adjusting the 

input feature size. In the subsequent comparative 

experiments, to highlight the multi-source data advantages 

of dynamic networks, the baseline models all use a single 

signal input (such as a stock price time series or text-based 

public opinion). 

 

 

Figure 4: Federated collaboration framework. 

The federal collaborative framework is shown in 

Figure 4: The analysis of Figure 4 is as follows: 

Local training layer: Banks, securities, and insurance 

institutions train private models (LSTM time series 
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branch+CNN public opinion branch) separately in a data 

isolated environment 

Gradient encryption transmission: Exchange 

encrypted gradients through lightweight protocols 

(aggregate once every 2 batches, differential privacy noise 

σ=0.5) 

Dynamic weight aggregation: The central server 

weights the average gradient based on attention weights 

The model introduces a cross modal attention 

mechanism, with input modalities: time series data (stock 

price/volatility) → LSTM encoder, text public opinion 

(annual report/news) → BERT fine-tuning, network 

topology (risk overflow matrix) → GNN embedding 

The calculation of multi head attention is as follows: 

( )
T

k

QK
Attention Q,K ,V soft max

d

 
=  

 
 

   (29) 

Q,K ,V  are feature projections from different 

modalities, with a head count of h 8=  and a hidden layer 

dimension of kd 64= . 

This architecture breaks through data silos through 

federated collaboration, utilizing cross modal attention to 

capture nonlinear correlations, and dynamic networks to 

achieve real-time tracking of risk transmission paths. 

The federated learning protocol used in this article is 

based on an improved FedAvg architecture, and achieves 

collaborative optimization of privacy protection and 

communication efficiency through the following design: 

The core mechanism of the architecture adopts a 

hierarchical federated architecture, with banks, securities, 

and insurance institutions as local nodes, independently 

training private models (including LSTM temporal 

branches and CNN public opinion branches) in a data 

isolated environment. The central server integrates 

encrypted gradients through a dynamic weight 

aggregation module, and performs global aggregation 

every 2 local training batches. 

Differential privacy protection: Laplacian noise 

(noise scale σ=0.5) is injected during the gradient 

transmission stage to meet the privacy budget 

requirements of GDPR (ε=2.0). The specific 

implementation formula is: 

( )t tg g Laplace 0,Δf / ε= +%                             (30) 

tg  is the original gradient, and Δf  is the gradient 

sensitivity (trimmed to the [-1,1] interval) 

Lightweight protocol: It uses gradient sparsity and 

quantization compression (8-bit precision). Asynchronous 

compensation mechanism: It allows slow nodes to delay 

updates (up to 5 batches) and avoids parameter drift 

through momentum correction. Dynamic aggregation 

weight: It assigns weights based on the quality of node 

data. 

To integrate multi-source heterogeneous data, this 

scheme designs a dynamic cross-modal attention 

mechanism: 

(1) Definition of multimodal input: 
Temporal modality: Structured data such as stock 

prices/volatility → LSTM encoder extracts temporal 

features timeH . 

Text modality: Annual report/news text → BERT 

fine-tuning to generate semantic features textH . 

Topology mode: Risk spillover matrix → GNN-

generated graph embedding features graphH . 

"The cross-modal attention layer receives LSTM 

temporal features textH , textual features textH , and 

topological features graphH  as inputs, and computes cross-

modal correlation weights through multi-head attention. 

The input projection is as follows: 
i i i

i time q i text k i graph vQ H W ,K H W ,V H W= = =         (31) 

Single-head attention: 

t

i i

i i

k

Q K
head soft max V

d

 
=  

 
 

                             (32) 

The fused output is: 

( )fused 1 2 8 oH Concat head ,head ,...,head W=     (33) 

i

qW ,
i

kW i

vW  represents the query projection matrix, 

kd represents the hidden layer dimension, oW  represents 

the output fusion matrix, fusedH  and represents the fused 

output vector of the cross-modal attention mechanism 

To integrate multi-source heterogeneous data, this 

scheme designs a dynamic cross-modal attention 

mechanism: 

(1) Definition of multimodal input: 

Temporal modality: Structured data such as stock 

prices/volatility → LSTM encoder extracts temporal 

features timeH . 

Text modality: Annual report/news text → BERT 

fine-tuning to generate semantic features textH . 

Topology mode: Risk spillover matrix → GNN-

generated graph embedding features graphH . 

"The cross-modal attention layer receives LSTM 

temporal features timeH , textual features textH , and 

topological features graphH  as inputs, and computes cross-

modal correlation weights through multi-head attention. 

The input projection is as follows: 
i i i

i time q i text k i graph vQ H W ,K H W ,V H W= = =         (31) 

Single-head attention: 

t

i i

i i

k

Q K
head soft max V

d

 
=  

 
 

                                (32) 

The fused output is: 

( )fused 1 2 8 oH Concat head ,head ,...,head W=         (33) 

i

qW ,
i

kW i

vW  represents the query projection matrix, 

kd represents the hidden layer dimension, oW  represents 

the output fusion matrix, fusedH  and represents the fused 

output vector of the cross-modal attention mechanism 
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4 Test 

4.1 Test methods 

The core of the dataset comes from three main channels: 

Yahoo Finance (which includes daily stock price data of 

10 GICS primary industries from 2006 to 2024 and a total 

of 45,000 sample points, and covers key indicators such as 

yield, volatility, and VaR), FRED macroeconomic 

indicators (which include six core indicators such as GDP 

growth, unemployment rate, and CPI, and are unified into 

daily panel data through linear interpolation or spline 

interpolation), and IMF crisis annotations (which include 

26 global systemic crisis events based on the Laeven & 

Valencia standard annotations, and positive samples are 

defined as 6 months before the crisis and 3 months after 

the crisis). 

In the feature engineering stage, multi-dimensional 

processing is performed on the raw data: 

(1) Basic indicator calculation: The calculation 

indicators include logarithmic return, volatility, and VaR 

(99% confidence historical simulation method, rolling 

window 252 trading days); 

(2) Dynamic network indicator generation: Based on 

industry level return, volatility, and VR sequences, a 

three-layer risk spillover network is constructed. Key 

variables are screened through LASSO-VAR, and then 

generalized variance decomposition is used to synthesize 

network weighted indicators (such as node centrality, 

community modularity, and network density); 

(3) Multimodal fusion: In the Risklabs framework, 

profit conference audio and text, news and public opinion, 

and time series data are integrated to extract cross modal 

features through multi head attention mechanism and 

additive multimodal fusion technology, enhancing the 

robustness of risk prediction. 

The preprocessing and alignment process follows a 

strict procedure: 

Missing value handling: Numerical features are filled 

with mean values, categorical features are filled with new 

values, and extreme values are truncated by 3 

σ; Frequency uniformity: Low frequency macro indicators 

are converted into daily data through interpolation and 

aligned with stock price time. 

Label balance: SMOTE oversampling achieves a 

crisis/non crisis sample ratio of 1:15, solving the problem 

of data imbalance. 

The federated learning adaptation mechanism ensures 

data compliance: cross institutional data (such as 

commercial bank loan to deposit ratios, securities firm 

proprietary positions, insurance coverage rates, and other 

private features) is physically isolated through localized 

storage, sharing only the 8-dimensional encrypted 

network gradient; Introducing differential privacy (noise 

scale 0=0.5) in the gradient aggregation stage to meet 

GDPR's privacy budget requirement of ε=2.0. 

This study sets up three types of comparative baseline 

models: 1) Traditional statistical model (Logistic 

regression + fuzzy mathematics comprehensive 

evaluation), which uses the IMF standard crisis indicator 

as the dependent variable; 2) Single signal machine 

learning model (XGBoost/LSTM), which only inputs 

market volatility, industry yield or risk spillover 

indicators; 3) Static network model (Granger causal 

network based on fixed time window). At the same time, 

all baseline models use the same training set (2006-2018) 

and standardized preprocessing process, and this paper 

focuses on comparing the improvement effect of dynamic 

network models on recall rate (crisis detection rate) and 

false alarm rate (number of non-crisis false alarms). 

This test uses a high-performance computing cluster 

configuration: the hardware uses NVIDIA A100 (40GB 

video memory) GPU accelerated computing and is 

equipped with Intel Xeon Gold 6248R processor (48 

cores) and 256GB DDR4 memory. The software 

environment is Ubuntu 20.04 LTS system, which uses 

CUDA 11.7 driver and mainly relies on PyTorch 1.13 

(including Geometric extension library) to build dynamic 

network models, and XGBoost 1.7 is used for baseline 

model comparison. Data preprocessing uses Pandas 1.5 

and Numba 0.56 for acceleration. All experiments are 

isolated through Docker containers (version 24.0), and 

task scheduling uses the Slurm cluster management 

system to ensure efficient allocation of computing 

resources. 

The evaluation framework of this experiment covers 

three major dimensions: 

Predictive performance: Crisis warning accuracy 

(Accuracy/F1 score), false positive rate (FPR), crisis 

detection lead time (Lead Time), AUC value, dynamic 

network topology indicators (node average 

degree/clustering coefficient), model training time; 

System engineering: throughput (TPS), latency (P99 

Latency), error rate peak (Error Rate Peak), resource 

utilization (memory/CPU), robustness (F1 attenuation 

under data pollution); 

Regulatory compliance: feature visualization rate, 

decision logic traceability, policy mutation response 

deviation, regulatory testing pass rate. ” 

This study determined the optimal combination of 

core hyperparameters through grid search and cross 

validation. The scrolling window size is set with three 

gradients based on the cyclical characteristics of financial 

data (63/126/252 trading days), and stress testing has 

verified that the 126-day window achieves the optimal 

balance between timeliness and stability (F1 score 

fluctuation range 0.81-0.83). The LASSO-VAR 

regularization parameter λ is dynamically optimized using 

rolling cross validation, with a value range of [0.01, 1.0] 

and a step size of 0.05. The optimal λ=0.2 is selected based 

on AUC as the evaluation metric. The SVM kernel 

function was compared and tested using radial basis 

function (RBF). The penalty coefficient C was determined 

to be 1.0 through grid search, and the kernel coefficient γ 

was 0.1. The federated learning protocol sets the local 

iteration count to 5 rounds, the aggregation frequency to 

be executed every 2 batches, and the differential privacy 

noise scale σ=0.5. Other model parameters were 

optimized through 5-fold time series cross validation, with 

specific configurations shown in Table 2. 
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Table 2: Hyperparameter configuration table. 

Parameter category Parameter items Search scope/options Selected value Optimization basis 

Temporal processing 
Rolling window 

size 

[63, 126, 252] Trading 

Day 
126 

F1 score fluctuation 

minimization 

Network construction 

LASSO 

regularization λ 

[0.01, 1.0] (Step size 

0.05) 
0.2 

Maximizing AUC 

through cross validation 

Granger causality 

significance 

threshold 

[0.01, 0.05] 0.01 
34% reduction in false 

alarm rate 

Machine Learning 

SVM kernel 

function 

[Linear, Polynomial, 

RBF] 
RBF 

Nonlinear classification 

accuracy improved by 

12% 

XGBoost Tree 

Depth 
[3, 5, 7, 9] 5 

Early stop method 

verification 

Number of hidden 

units in LSTM 
[64, 128, 256] 128 

Minimize validation set 

loss 

Federated Learning 

Local iteration 

times 
[3, 5, 10] 5 

Balance between 

convergence speed and 

accuracy 

Aggregation 

frequency 

[Every batch, every 2 

batches, every 5 

batches] 

Every 2 batches 

43% reduction in 

communication 

expenses 

Differential 

privacy noise scale 

σ 

[0.1, 0.3, 0.5, 1.0] 0.5 

Privacy budget ε=2.0 

meets GDPR 

requirements 

In the implementation of 50% time series cross 

validation (TS-CV), a strict temporal segmentation 

strategy is adopted to avoid information leakage caused by 

time overlap in time series data. The specific process is as 

follows: 

(1) Time series segmentation principle: The training 

period from 2006 to 2018 is strictly divided into five 

consecutive, non-overlapping time periods based on the 

original timestamps (such as fold 1: 20 June to 2009, fold 

2: 20 October to 2012, fold 3: 20 November to 2015, and 

fold 4: 20 November to 2016). The validation set is always 

placed after the training set time period, ensuring that the 

training data timestamps are strictly earlier than the 

validation set timestamps (e.g., the training set in the first 

fold was 2006 to 2012, and the validation set was 2013 to 

2015).  

(2) Rolling window constraint: When calculating 

dynamic network metrics (such as LASSO-VAR, 

generalized variance decomposition) within the training 

set, the right boundary of the rolling window is 

constrained before the starting point of the validation 

set. For example, if the validation set consists of data from 

2013, the termination time of all rolling windows in the 

training set should not exceed the end of 2012 to prevent 

future information infiltration. 

(3) Federated learning collaborative mechanism: 

Cross institutional data is isolated during the local training 

phase through lightweight federated protocols, and nodes 

only exchange encrypted gradients instead of raw 

data. Differential privacy (noise scale σ=0.5) is used in 

gradient aggregation to further block potential leaks across 

time periods. 

Compression testing refers to verifying the 

communication optimization capability of federated 

learning frameworks by simulating gradient transmission 

loads, including a dual compression mechanism 

(1) Gradient sparsity: retaining only significant 

parameters (lgrad |>0.01) and filtering out small gradient 

noise; 

(2) Quantization encoding: 8-bit precision 

quantization using Huffman encoding to achieve gradient 

volume compression. 

Inject 300% benchmark traffic during testing 

(simulating distributed denial of service attacks), measure 

the system's survival rate (0.946) and recovery time (5.3 

seconds) under extreme loads. 

The maximum throughput (TPS) is defined as the 

number of encrypted gradients switching transactions that 

the federated framework can process per second, and its 

technical formula is: 

client size

encrypt transmit aggregate

N B
TPS

T T T


=

+ +
                      (34) 

Where clientN  is the number of participants 

(bank/securities/insurance), sizeB  is the batch size, and the 

denominator is encryption ( encryptT )+transmission ( transmitT

)+total aggregation time ( aggregateT ). 
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 The measured peak value of 79800 TPS indicates that 

the system can handle nearly 80000 safety gradient 

interactions per second, meeting the concurrent 

requirements of high-frequency risk control scenarios 

(such as 1590 QPS warning requests). 

Value closed loop: Compression testing quantifies 

communication efficiency and robustness, verifying the 

text support capability of lightweight federated protocols 

for real-time warning. 

The time consumption of a single prediction is 

measured in a simulated production environment (8-core 

CPU/32GB memory cluster) to ensure real-time decision-

making capabilities. The test covered 100,000 requests, 

and the results are shown in Table 3: 

Table 3: Results of calculation efficiency evaluation. 

Paramet

er 

combina

tion 

Average 

time 

consumed 

(ms) 

Peak time 

consumpti

on (ms) 

Throug

hput 

(QPS) 

Complia

nce (< 

100ms) 

63-day 

window 
48.2 89.5 1850 Yes 

252-day 

window 
76.3 142.1 1210 

No (peak 

> 

100ms) 

Adaptive 

combina

tion 

62.7 95.8 1590 Yes 

 

 

In Table 3, the adaptive combination optimizes the 

computing load through the federated learning 

architecture, and 98.2% of the requests take less than 

90ms, meeting the financial real-time transaction response 

standards (such as high-frequency risk control decisions). 

However, due to the high-dimensional feature calculation 

redundancy, the peak time consumption exceeds the 

threshold in the 252-day window, so model pruning or 

hardware acceleration (such as GPU inference) is required 

to compress the delay. Although all combinations achieve 

high throughput under normal load, it is necessary to be 

vigilant about the delay fluctuations in data peak 

scenarios. This evaluation shows that in financial practice 

scenarios, the model needs to take into account both 

explainable regulatory compliance and low-latency real-

time response, among which the comprehensive 

robustness of the adaptive solution is leading. 

 

4.2  Test results 
The comparison results of core performance indicators are 

shown in Table 4 below.

 

Table 4: Comparison results of core performance indicators. 

Model Type Accuracy Precision Recall F1-score 
AUC 

(Benchmark) 

AUC 

(Peak value) 
False alarm rate Average Lead Time (days) 

Logistic 
regression 

0.72 0.68 0.65 0.66 0.71 0.752 0.31 14.2 

XGBoost 

(single 

signal) 

0.78 0.73 0.71 0.72 0.79 0.823 0.25 21.5 

LSTM 
(single 

signal) 

0.81 0.76 0.74 0.75 0.82 0.852 0.22 25.8 

Static 

network 
(126-day 

window) 

0.83 0.79 0.77 0.78 0.84 0.871 0.19 28.3 

Dynamic 

Network 
(Method) 

0.87 0.83 0.82 0.82 0.88 9.923 0.15 32.6 

Note: 'Single signal' in the table refers to the model receiving only a single data source input (such as one of the 

temporal/texts/topological modalities), in contrast to the multimodal input of dynamic networks

The parameter optimization analysis results of 

financial risk control models are shown in Table 5:

Table 5: Parameter optimization analysis results of financial risk control model. 

Parameter 

combination 

Network 

density 

Feature 

dimension 

F1-score 

fluctuation range 

Peak 

AUC 

Applicable scenario 

analysis 

63-day window 

+0.05 significance 
0.28 15 0.79-0.81 - 

High-frequency trading 

scenarios 

126-day window 

+0.01 significance 
0.35 23 0.81-0.83 0.882 Balanced risk control 

252-day window 

+0.01 significance 
0.41 37 0.80-0.82 0.913 

Long-term trend 

analysis 

Adaptive threshold 

+ macro features 
0.32 31 0.82-0.84 0.923 

Policy sensitive 

decision-making 
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Overall, the dynamic network model is significantly 

better than the baseline method in all six indicators. 

Among them, the crisis detection recall rate increased by 

5-17 percentage points, which verifies the ability of the 

network's dynamic evolution characteristics to capture 

risk transmission. The 126-day rolling window performs 

best in most scenarios. However, a too short window (63 

days) increases the noise of the network structure, and a 

too long window (252 days) reduces the response speed to 

market changes. When the significance threshold is 

adjusted from 0.05 to 0.01, the false alarm rate decreases 

by 34% but the recall rate only decreases by 8%, 

indicating that strict causal testing can effectively filter 

noise signals. In addition, the contribution rate of network 

topology indicators (node centrality/clustering 

coefficient) is 42%, which is significantly higher than 

traditional market indicators (28%) and macro indicators 

(30%). Furthermore, the single training time of the 

dynamic network model (average 38 minutes) is 

significantly higher than XGBoost (4 minutes), but the 

time consumed in the inference phase is only increased by 

15%, meeting the real-time warning needs. 

Then, the model stress test is carried out, and the stress 

test results are shown in Table 6. 

Table 6: Compression test results. 

Test 

Dimensio

n 

63-day 

window 

126-day 

window 

252-day 

window 

Adaptive 

combinatio

n 

Maximum 

throughpu

t 

82,000 

TPS 

76,500 

TPS 

68,200 

TPS 
79,800 TPS 

99% delay 143ms 167ms 211ms 158ms 

Peak error 

rate 
0.0012 0.0008 0.0005 0.0009 

Memory 

footprint 
38GB 52GB 71GB 63GB 

F1-score 

attenuatio

n 

-0.072 -0.048 -0.031 -0.054 

 

The extreme test scenario design is shown in Table 7, 

and the key test data results are shown in Table 8 below. 

Table 7: Extreme test scenario design. 

Test type 
Simulation 

conditions 

Trigger 

mechanism 

Expected failure 

index 

Discharge 

peak 

300% 

benchmark TPS 
for 5 minutes 

Distributed 

DDOS attack 
simulation 6 

Error rate > 5% 

or delay > 1s 

Data 

contamina

tion 

Inject 30% 
noise feature 

Adversarial 

sample 

generator 9 

F1-score 
decrease > 15% 

Hardware 

failure 

Randomly shut 
down 50% of 

compute nodes 

Kubernetes 

Pod eviction 6 

Service 
interruption > 10 

seconds 

Policy 

mutation 

Macroscopic 

eigenvalues 
fluctuate 

beyond 

threshold 

Real-time data 
stream 

tampering 4 

Decision delay > 

500ms 

 

Table 8: Critical test data results. 

Parame

ter 

combin

ation 

Discharg

e peak 

survival 

rate 

Data 

contaminat

ion F1 

attenuation 

Hardware 

failure 

recovery 

time(S) 

Policy 

abrupt 

response 

bias 

63-day 

windo

w 

0.723 -0.187 23.4 ±12.6% 

126-

day 

windo

w 

0.885 -0.092 14.7 ±7.3% 

252-

day 

windo

w 

0.911 -0.068 8.2 ±5.9% 

Adapti

ve 

combin

ation 

0.946 -0.051 5.3 ±3.4% 

 

Table 9 below shows the data missing test scheme and 

result analysis for the model, which is verified by a three-

level missing mechanism. The data of the scenario test 

results are shown in Table 10   

Table 9: Scenario test design. 

Missing 

Type 

Analog 

mode 

Proportion of test 

samples 

Key monitoring 

indicators 

Complete

ly 

randomiz

ed 
missing 

Randoml

y discard 

feature 

dimensio
ns 

15%-30% 

Feature 

reconstruction 

error rate 

Randomi

zed 
missing 

Discard 

data by 

user ID 
hash 

value 

20%-40% 
Predictive stability 

index 

Non-

randomiz

ed 
deletion 

Targeted 

deletion 
for high-

value 

samples 

10%-25% 
Decision offset 

ΔP99 

 

Table 10: Scenario test results. 

Paramet

er 

combin
ation 

MCAR 
scenario F1 

attenuation 

MAR 

scenario 

RMSE 
rises 

MNAR 

scenari
o AUC 

decreas

es 

Deci
sion 

devia

tion 
Δ 

P99 

Self-

healing 

success 
rate 

63-day 

window 
-0.224 0.387 -0.192 

12.6

% 
0.613 

126-day 
window 

-0.148 0.215 -0.126 9.1% 0.789 

252-day 

window 
-0.093 0.152 -0.081 7.9% 0.857 

Adaptiv

e 
combin

ation 

-0.067 0.098 -0.054 7.2% 0.921 
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Based on the deployment requirements of financial 

scenarios, regulatory compliance is verified through three-

level quantitative testing, in accordance with Article 15 of 

the GDPR "Data Subject's Right to Know" and Article 

1798.100 of the CCPA "Information Transparency". The 

core indicators are shown in Table 11 below: 

Table 11: Core indicators of interpretability 

requirements. 

Test project 

Regulator

y 

threshold 

Actual 

measuremen

t results 

Complianc

e status 

Feature 

visualizatio

n rate 

>80% 92% 

Exceeding 

the 

standard 

Decision 

logic 

traceability 

The stress 

test 

variables 

are 

auditable 

95% 

variable 

contribution 

can be 

quantified 

(ExShapley) 

reach the 

standard 

User data 

deletion 

response 

<15 

seconds 
9.2 seconds 

reach the 

standard 

 

In terms of the realization of interpretability, 92% of 

the feature weight visualization rate was calculated by the 

improved ExShapley algorithm (based on SHAP theory), 

which fused the three-modal data of temporal features 

(LSTM coding), text public opinion (BERT fine-tuning), 

and network topology (GNN embedding), and generated 

interpretable basis vectors through multi head attentional 

projection. 

The stress test scenarios for regulatory authorities are 

shown in Table 12 below: 

Table 12: Stress Test Scenarios for Regulatory 

Authorities. 

Test 

scenario 

Regulatory 

Basis 

Key 

indicators 

Actual 

measureme

nt results 

Cross-

domain 

data 

leakage 

GDPR 

Article 32: 

Response to 

Security 

Vulnerabilitie

s 

k-anonymity 

≥5 

(measured 

value: 6.2) 

Interest rate 

surges by 

300 basis 

points 

FED SR 11-7 

Policy Stress 

Test 

Response 

deviation 
±3.4% 

Cross-

border data 

transmissio

n 

Article 31 of 

China's Data 

Security Law 

Homomorphi

c encryption 

strength 

Paillier 

2048-bit 

Real-time 

audit and 

traceability 

Section 165 

of the Dodd-

Frank Act 

Blockchain 

certificate 

storage 

coverage 

100% 

 

 

The quantitative assessment matrix for regulatory 

compliance is shown in Table 13 below: 

Table 13: Quantitative assessment matrix for regulatory 

compliance. 

Evaluatio

n 

dimensio

n 

Regulat

ory 

standar

ds 

Test 

method 

"Frame

work 

results" 

"Compli

ance 

status" 

Explainab

ility 

coverage 

EBA 

TRIM 

3.2.1 

Visualizati

on of 

dynamic 

attention 

weights 

92% √(>80%) 

Privacy 

budget 

control 

EDPB 

ε≤2.0 

Differential 

privacy 

consumptio

n rate 

monitoring 

ε=1.8 √ 

Stress test 

deviation 

FED 

SR 15-

19  

Response 

to sudden 

changes in 

macroecon

omic 

policies 

±3.4% √ (<10%) 

data-local 

Article 

31 of 

China's 

Data 

Securit

y Law 

Federated 

gradient 

isolation 

verification 

100% 

isolation 
√ 

Audit 

response 

timeliness 

SEC 

Rule 

17a-

4(f) 

Blockchain 

query 

latency test 

108 

minutes 

√ (<2 

hours) 

 

The federal framework is responsible for data fusion 

under cross institutional privacy protection. The attention 

mechanism achieves a feature visualization rate of 92% 

through dynamic attention, and dynamic network 

reconstruction uses LASSO-VAR and rolling windows to 

capture risk transmission paths. The aim of this 

experiment is to isolate these components through an 

ablation study and independently evaluate the impact of 

each component on warning accuracy (AUC), crisis 

detection rate (recall), real-time performance (prediction 

delay), and robustness (F1 decay). 

The experimental design includes a baseline model 

and three ablation variants, with each variant removing 

one target component. All models use the same dataset, 

preprocessing process, and evaluation metrics to isolate 

the effects of variables. The experimental process is 

divided into three stages: data preparation, model variant 

definition, and training evaluation. 

The dataset is consistent with the previous text, and 

the benchmark model is a complete federated dynamic 

network framework. The ablation variant is created by 

removing specific components. 

The benchmark model (complete framework) 

includes a federated framework, attention mechanism, and 

dynamic network reconstruction. 
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Federated framework: Lightweight protocol enables 

cross institutional collaborative training. 

Attention mechanism: Cross modal attention layer, 

used for dynamic adjustment of feature weights. 

Dynamic network reconstruction: LASSO-VAR 

variable screening+generalized variance decomposition to 

construct a three-layer overflow network 

(risk/volatility/return), and synthesize a weighted 

network. 

Output layer: XGBoost or LSTM classifier, 

outputting crisis probability. 

Ablation variant 1: Remove federated framework 

(centralized training), ablation variant 2: Remove 

attention mechanism (basic interpretable module), 

ablation variant 3: Remove dynamic network 

reconstruction (static network). 

Obtain the ablation test results shown in Table 14 

below. 

Table 14: PerformanceAblation test results. 

Indicator 

Benchm

ark 

model 

Variant 1 

(No 

Federation) 

Variant 2 

(No 

Attention) 

Variant 3 

(without 

dynamic 

reconstruction

) 

Peak AUC 
Contribution 

decomposition 

AUC 

zero 

point 

eight 

eight 

0.83 (-

5.7%) 
0.85 (-3.4%) 0.82 (-6.8%) 0.862 

Dynamic 

Reconstruction>Federated

>Attention 

Recall 

rate 

zero 

point 

eight 

two 

0.78 (-

4.9%) 
0.79 (-3.7%) 0.75 (-8.5%) 68.9 

Dynamic reconstruction 

contributes the most 

(network topology captures 

risk transmission) 

Prediction 

delay (ms) 

sixty-

two 

point 

seven 

58.1 (-

7.3%) 

70.2 

(+11.9%) 
65.3 (+4.1%) 6839 

Attention increases latency 

(interpretable 

computation), federated 

reduces latency (distributed 

optimization) 

F1 

attenuatio

n (data 

pollution) 

-5.40% 
-8.1% 

(+50%) 

-7.2% 

(+33%) 
-9.8% (+81%) -3.2% 

Dynamic reconstruction 

enhances robustness 

(rolling update noise 

resistance) 

Feature 

visualizati

on rate 

92% 
90% (-

2.2%) 
85% (-7.6%) 89% (-3.3%) - 

Attention mechanism 

dominates interpretability 

Converge

nce speed 

(federal) 

1.8 x 

benchma

rk 

1.0 × 

(centralized

) 

1.7× 1.8× - 

Federated framework 

improves convergence by 

1.8 times 

Peak 

achievem

ent 

conditions 

- - - - 

Full 

component 

collaboratio

n 

Federated+Attention+Dyna

mic Network 

 

 

Further design and use parameter sensitivity analysis, 

with the following test parameters and ranges: rolling 

window length: 63/126/252 trading days (covering high-

frequency/mid frequency/low-frequency strategies), 

network construction threshold: Granger causality 

significance level [0.01, 0.05], federated aggregation 

frequency: per batch/every 2 batches/every 5 batches 

aggregation, LASSO regularization λ: [0.05, 0.2, 0.5] 

(sparsity gradient test). 

The control variable settings are shown in Table 15 

below: 

 

 

 

 

Table 15: Control variable settings. 

Fixed parameters Value Basis 

Prediction period 

H 
10 Days 

IMF Crisis Labeling 

Standards 

Differential 

privacy noise 

scale σ 

0.5 

GDPR compliance 

requirements (ε=2.0) 

Attention head 

count h 8 

Section 4.1 

Hyperparameter 

Configuration 
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The effect of scrolling window length is shown in 

Table 16 below: 

Table 16: Effects of Rolling Window Length on Test 

Results. 

Windowle

ngth 

AU

C 

Rec

all 

Singlede

lay 

F1attenuation(30%

noise) 

63days 
0.8

2 
0.75 48ms -0.187 

126days 
0.8

8 
0.82 62ms -0.092 

252days 
0.8

5 
0.8 142ms -0.068 

 

The network threshold sensitivity is shown in Table 

17: 

Table 17: Network Threshold Sensitivity. 

Threshold 

False 

alarm 

rate 

Identification rate 

of community risk 

transmission 

Number of 

critical path 

captures 

0.05 0.22 78.30% 8.2/10 

0.01 0.15 85.6% 9.1/10 

 

The impact of federal aggregation frequency is shown 

in Table 18 below: 

Table 18: Impact of Federal Aggregation Frequency. 

Aggregatio

n frequency 

Convergenc

e speed 

Communicatio

n overhead 

Global 

AUC 

Each batch 1.0x 
100% 

benchmark 
0.85 

Every 2 

batches 
1.8x 57% 0.88 

Every 5 

batches 
2.1x 41% 0.83 

 

The performance verification results of federated 

training are shown in Table 19 below: 

 

Table 19: Results of federated training performance validation. 

Index 
Traditional centralized 

training 

This article presents 

the federal 

framework 

Increase 

amplitude 
Test method 

Convergence 

speed 
38 rounds 21 rounds 1.81x 

The number of epochs required 

to reduce the loss function to 

0.01 

Communicati

on 

expenses/rou

nds 

4.2MB 2.4MB -42.9% 
Encryption gradient traffic 

statistics 

Cross 

institutional 

data fusion 

latency 

89ms 51ms -42.7% 

Bank → Securities → 

Insurance Gradient 

Synchronous Measurement 

Privacy 

budget 

consumption 

rate 

ε=3.5 per wheel ε=1.8 per wheel -48.6% 
GDPR compliance monitoring 

(ε≤ 2.0) 

The contribution analysis of multimodal features is 

shown in Table 20:

Table 20: Multimodal feature contribution analysis. 

Feature Type 

Single 

modal 
AUC 

 Enhanced AUC after 

fusion 

Examples of Key 

Features 
Contribution of Crisis Recall Rate 

Time series data (LSTM) 0.82 - 
Sudden change in 

volatility Δ σ>3 σ 
Basic contribution 58% 

Text Public Opinion 
(BERT) 

0.79 +0.07 

The frequency of the 
term 'debt default' 

exceeds 5 times per day 

(warning 2 weeks in 
advance) 

Increase by 11% 

Network Topology 
(GNN) 

0.81 0.05 

Bank insurance risk 

transmission pathway 
intensity>0.35 

Increase by 7% 

Cross modal fusion - 0.88 

Sudden change in 

volatility+accumulation 

of negative 
news+activation of 

transmission pathways 

Overall increase of 26% 
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4.2 Analysis and discussion 

In Table 4, the dynamic network leads in all aspects. In 

terms of the three core indicators of Accuracy (overall 

accuracy), Precision (positive example prediction 

accuracy), and Recall (positive example recognition 

coverage), the dynamic network is 20.8%, 22.1%, and 

26.2% higher than the basic Logistic regression, 

respectively. At the same time, the dynamic network AUC 

reaches 0.88, which is close to the 0.9 threshold of the 

perfect classifier and significantly higher than XGBoost's 

0.79, proving that it maintains an excellent balance 

between the true positive rate and the false positive rate 

under different decision thresholds. Moreover, the 

dynamic network false alarm rate (0.15) is 51.6% lower 

than that of Logistic regression (0.31), greatly reducing 

the waste of resources caused by false alarms. In addition, 

the average lead time of the dynamic network is 32.6 days, 

which is 2.3 times that of Logistic regression, thus 

providing a more adequate risk disposal window. This 

result shows that the model has good warning timeliness. 

Although XGBoost improves Accuracy to 0.78 

through gradient boosting tree, single-signal modeling is 

difficult to capture the complex correlation characteristics 

of the market, resulting in Recall 11 percentage points 

lower than the dynamic network. With long short-term 

memory units, LSTM has the highest Recall (0.74) in the 

single-signal model, but it is still weaker than the 

modeling ability of network topology methods for risk 

transmission paths. However, the dynamic network breaks 

through the static network window limitation through real-

time topology updates, which improves Recall by 5.2%. 

At the same time, the dynamic network F1-score (0.82) is 

the highest among all models. This reflects that its 

reconciliation balance between Precision and Recall is 

optimal, so it is particularly suitable for financial risk 

control fields that are sensitive to both false positives and 

false negatives. 

In Table 5, as the window days increase, the network 

density and feature dimensions both show an upward 

trend, and the F1-score fluctuation range is slightly 

different, indicating that each parameter combination has 

different performance in different scenarios. Among them, 

high-frequency trading scenarios are suitable for lower 

network density and feature dimensions, while long-term 

trend analysis requires higher network density and feature 

dimensions. In addition, balanced risk control and policy-

sensitive decision-making have their own specific 

applicable combinations. In general, choosing the right 

parameter combination is crucial to improving model 

performance and application scenario adaptability. 

Through comprehensive analysis of the tabular data, 

the following key conclusions can be drawn: different 

parameter combinations show obvious differentiation 

characteristics in model performance. Although the 63-

day window combination has the lowest network density 

(0.28) and the fewest feature dimensions (15), its F1-score 

fluctuation range (0.79-0.81) shows that this combination 

has a response speed advantage in high-frequency trading 

scenarios. The 126-day window combination achieves the 

best balance between network density (0.35) and feature 

dimensions (23), and its F1-score range of 0.81-0.83 

shows that it is the best choice for conventional risk 

control scenarios. The 252-day window combination 

exhibits the highest network density (0.41) and the most 

feature dimensions (37), which is suitable for capturing 

long-term trends but has a high computational cost. The 

most groundbreaking is the adaptive threshold 

combination, which achieves an optimal F1-score 

performance of 0.82-0.84 by introducing macro features. 

It is particularly suitable for policy-sensitive decision-

making, but its implementation requires real-time data 

stream support. In general, parameter selection needs to 

balance computational efficiency, feature richness, and 

model stability according to specific business scenarios. 

Among them, the 126-day window combination can be 

used as the basic configuration, while the adaptive 

solution is suitable for enhanced deployment in special 

periods. 

The data in Table 6 show that different parameter 

combinations show significant differences in performance 

indicators. Among them, the 63-day window combination 

has the best throughput (82,000 TPS) and the lowest 

latency (143ms), but the F1-score decay is the most 

obvious (-7.2%). Although the 252-day window 

combination has the lowest throughput (68,200 TPS), it 

has the best error rate peak (0.05%) and F1-score decay (-

3.1%). The adaptive combination strikes a balance 

between latency (158ms) and throughput (79,800 TPS), 

which is suitable for the dynamic adjustment needs of 

policy-sensitive scenarios. 

In Table 8, the adaptive combination still maintains a 

94.6% request success rate under 300% load, and its 

dynamic sampling rate adjustment mechanism effectively 

avoids system overload. However, due to insufficient 

feature dimensions, a large number of requests were 

dropped during the peak period for the 63-day window 

combination. In terms of robustness performance, the 252-

day window combination has the best tolerance to data 

pollution (F1 only decays by 6.8%), which is due to the 

noise dispersion effect of its high-dimensional feature 

space. However, its hardware failure recovery time is 

relatively long, which is related to its complex model 

structure. In terms of real-time decision-making ability, in 

the policy mutation scenario, the macro feature perception 

module of the adaptive combination controls the response 

deviation within ±3.4%, which is significantly better than 

other combinations. Moreover, its federated learning 

architecture ensures that the service can be restored within 

5.3 seconds when 50% of the nodes fail. The test results 

show that the adaptive combination has the best 

comprehensive performance in extreme scenarios, and its 

dynamic adjustment ability and federated learning 

architecture show strong system resilience. 

In Table 10, the adaptive combination realizes the 

reconstruction of missing features through the cross-

modal attention layer, and controls the RMSE increase 

within 9.8% in the MAR scenario, which is significantly 

better than other combinations. Its dynamic sampling 

strategy can automatically identify non-random missing 

patterns and reduce the AUC drop caused by MNAR. The 

252-day window combination performs best in the MCAR 
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scenario (F1 only decays by 9.3%) because it contains 

richer time series patterns, proving that long-term 

historical data can improve the tolerance of random 

missing. However, when the non-random missing exceeds 

30%, the decision offset ΔP99 of the 63-day window 

combination reaches 12.6%, exceeding the safety 

threshold (10%), while the adaptive combination still 

maintains a 7.2% offset through the coordination of 

federated learning nodes. The test results show that the 

impact of data missing on the model shows obvious 

nonlinear characteristics, among which the performance 

degradation caused by non-random missing (MNAR) is 

the most significant. The adaptive combination shows the 

strongest missing tolerance through multimodal fusion 

and dynamic sampling. 

Table 11 verifies the interpretability of the model 

based on Article 15 of GDPR and Article 1798.100 of 

CCPA, with a feature visualization rate of 92% (exceeding 

the regulatory threshold of 80%). The decision logic 

traceability achieves quantification of 95% variable 

contribution in stress testing (ExShapley algorithm), and 

the user data deletion response time of 9.2 seconds meets 

CCPA's timeliness requirements. Table 12: Based on 

international regulatory standards, this paper designed 

stress testing scenarios. In a cross-domain data leakage 

test, the k-anonymity reaches 6.2 (above the 5 threshold), 

and the response deviation in a sudden 300bps interest rate 

hike scenario is ±3.4% (lower than the Federal Reserve's 

10% tolerance).Cross border data transmission met the 

requirements of Article 31 of China's Data Security Law 

through Paillier 2048 bit encryption, and the blockchain 

certificate coverage rate of 100% supported the Dodd 

Frank Act audit requirements; The regulatory compliance 

quantification matrix constructed in Table 13 shows that 

the five dimensional indicators are fully met: 

interpretability coverage rate of 92% (EBA TRIM 3.2.1 

standard), privacy budget ε=1.8 (better than GDPR's ε ≤ 

2.0), stress test deviation ±  3.4% (FED SR 15-19 

Appendix A), data localization with 100% gradient 

isolation (China's Data Security Law), audit response time 

of 108 minutes (SEC Rule 17a-4 (f)), forming a 

"technology regulation" closed loop - dynamic attention 

layer (Figure 4 Module C) driving visualization 

implementation, differential privacy module (D) 

controlling privacy budget, federal architecture supporting 

cross-border compliance, actual testing has compressed 

the regulatory audit cycle from 6 months to 72 hours, and 

EU SRB estimates can reduce the system. The cost of 

sexual risk regulation is 37%. 

In Table 14, Federal framework impact: After 

removal, AUC and recall rates decreased by 43% (-5.7%/-

4.9%), but prediction latency slightly decreased (-7.3%) 

due to the absence of federal protocol overhead. Attention 

mechanism impact: After removal, the feature 

visualization rate significantly decreased (-7.6%), the 

recall rate slightly decreased (-3.7%), but the prediction 

delay increased (+11.9%) due to slow ExShapley 

interpretation generation. In the scenario of policy 

mutation, the response deviation may increase from ± 

3.4% to+5.0%. The impact of dynamic network 

reconstruction is that after removal (using static 

networks), the recall rate decreases significantly (-8.5%), 

and F1 attenuation intensifies (+81%) due to the inability 

to capture risk transmission in real time. The crisis lead 

time has been reduced from 32.6 days to about 25 days. 

The experimental design is directly based on the 

model proposed in this article (such as three-layer 

overflow network and federated protocol), ensuring that 

the results are consistent with the theme of "dynamic 

warning mechanism". The ablation research fills the gap 

of "model selection influence not decomposed", and 

although the attention mechanism improves visualization, 

it increases latency and is suitable for interpretability 

priority scenarios. Dynamic network reconstruction is a 

key performance driver, especially during market 

mutations. Improvement suggestions: If the results show 

that the attention mechanism has a significant impact on 

latency, it can be optimized to lightweight attention (such 

as linear attention); if the computational cost of dynamic 

reconstruction is high, incremental learning can be 

explored. 

Based on the parameter sensitivity analysis in Table 

16-18, the optimized combination of rolling window 

length, network construction threshold, and federated 

aggregation frequency significantly improves warning 

performance. The 126-day window length achieves the 

optimal balance between accuracy and timeliness (AUC 

0.88/recall 0.82), with an accuracy improvement of 7.3% 

compared to the 63-day window and a delay reduction of 

56% compared to the 252-day window (62ms vs 142ms), 

but its noise resistance is weaker than the 252-day window 

(F1 attenuation -0.092 vs -0.068). The strict network 

threshold (0.01) reduces the false alarm rate by 31.8% 

(0.15 vs 0.22) by filtering out noisy edges, and increases 

the number of critical risk paths captured to 9.1/10 

(+11%), but requires a 14% increase in computational 

overhead. Federated aggregation achieves collaborative 

optimization of communication efficiency and accuracy 

every 2 batches, reducing communication overhead to the 

benchmark of 57% and increasing convergence speed by 

1.8 times. The global AUC (0.88) is significantly higher 

than that of high-frequency/low-frequency aggregation 

(0.85/0.83). 

There is a dynamic coupling effect between 

parameters: when the market volatility (EWMA σ) is 

greater than 0.03, switching to a 63 day window can 

compress the delay to 48ms; in high-dimensional feature 

scenarios (>30 dimensions), a 0.01 threshold is forcibly 

enabled to avoid overfitting; The gradient synchronization 

frequency in federated collaboration needs to match the 

heterogeneity of institutional data (such as high-frequency 

securities trading data that is subject to more frequent 

aggregation). The adaptive strategy (using a 252-day 

window during the crisis period+0.01 threshold) can 

further reduce the deviation of policy mutation response 

to ± 3.4% (Table 6), verifying the accurate 

characterization ability of dynamic parameter adjustment 

on the risk transmission path. 

Table 19 quantitatively verifies the performance 

breakthrough of the federated learning framework through 

four-dimensional indicators: the convergence speed is 
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improved by 1.81 times (the number of rounds with loss 

reduced to 0.01 is reduced from 38 rounds to 21 rounds), 

due to the dynamic weight aggregation mechanism. 

Communication overhead reduced by 42.9% (single round 

transmission volume of 4.2MB-2.4MB), achieved through 

gradient three-stage compression (8-bit quantization → 

sparsification to preserve significant parameters → 

Huffman coding): cross institutional latency reduced by 

42.7% (bank → securities → insurance closed-loop 

synchronization compressed from 89ms to 51ms), relying 

on lightweight protocols and asynchronous compensation 

mechanisms (allowing insurance nodes to delay 5 batches 

of updates). The privacy budget consumption decreased 

by 48.6% (e increased from 3.5/round to 1.8/round), due 

to adaptive noise injection meeting GDPR requirements, 

while supporting high-frequency transaction risk control 

(1590 QPS) and cross-border regulatory collaboration 

(China Europe gradient aggregation delay of 53ms). 

Table 20 shows that cross modal fusion achieves 

triple breakthroughs in crisis warning performance 

(1) The forward-looking advantages of text modality: 

The public opinion features extracted by BERT (such as 

"debt default" word frequency>5 times/day) are 2 weeks 

ahead of financial indicators for early warning, with a 

single modality AUC of 0.79. After fusion, it contributes 

1% recall rate improvement (crisis sample recognition rate 

from 0.71-0.82), and the key mechanism captures policy 

expectation changes in dry semantic features (such as the 

sharp increase in central bank statement words indicating 

liquidity tightening); 

(2) The transmission value of topological modes: The 

bank insurance risk contagion path generated by GNN 

(triggering warnings when the intensity>0.35) accurately 

locates cross market risk and insurance hubs, contributing 

to a 7% recall rate increase. Empirical evidence shows that 

the activation intensity of the crisis period path is 2.3 times 

that of the normal value; 

(3) The fundamental role of temporal mode: LSTM 

temporal features (volatility mutation Δ 0>30) provide 

58% of the basic risk signal, but in policy mutation 

scenarios, it relies on text mode supplementation 

(attention weight ratio increases to 68%); 

(4) Integration synergy: the three-mode dynamic 

weighting makes the comprehensive AUC reach 0.88 

(0.09 higher than the optimal single mode), and the recall 

rate rise by 26%, especially in the compound scenario of 

"sudden change in volatility+negative news 

superposition+infection path activation", F1 score reaches 

0.91. 

Technical attribution: The cross-modal attention 

mechanism achieves nonlinear feature interaction through 

multi head weight allocation (8 heads), such as the 

dominance of text weight in the early stage of crisis (over 

60%), the leap of topological weight in the risk 

transmission period (over 55%), and a dynamic 

adjustment ability that improves AUC by 0.07 compared 

to static fusion strategies (such as feature concatenation). 

 

5 Conclusion 
The dynamic network model proposed in this paper is an 

intelligent computing framework for financial time series 

data analysis. By integrating federated learning and 

adaptive computing technology, it achieves high-

precision, low-latency real-time prediction and decision 

support. The core innovation of this model lies in its 

dynamic architecture design. It uses a cross-modal 

attention mechanism to integrate multi-source 

heterogeneous data and improves modeling accuracy by 

dynamically adjusting feature weights. The measured 

results show that its prediction accuracy in anti-fraud 

scenarios is 23% higher than that of traditional models. In 

addition, this paper introduces a lightweight federated 

learning protocol to increase the model convergence speed 

by 1.8 times while ensuring data privacy. Finally, a 92% 

feature visualization rate is achieved through the 

interpretability enhancement module, meeting the 

stringent requirements of financial supervision on model 

transparency. In terms of efficiency, the model's single 

prediction time is stable within 62.7ms, and it supports 

high concurrent processing of 1,590 QPS. In the future, 

the adversarial sample defense capability can be further 

optimized and expanded to IoT edge computing scenarios. 

In short, the model provides a solution that balances 

performance and compliance for time-sensitive tasks such 

as financial risk control and high-frequency trading. 
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