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With the increasing demand for intelligent visual surveillance and autonomous systems, multi-object 

tracking (MOT) has become a critical research focus. To address challenges in identity preservation and 

real-time inference, this paper proposes CTMOT, a novel tracking framework that fuses convolutional 

neural networks (CNN) and vision Transformers via a Two-Way Bridge Module (TBM) for joint detection 

and tracking. The model features a dual-branch CNN-Transformer backbone and a parallel decoder de-

sign with distinct object and track queries, enabling robust appearance modeling and temporal continuity. 

The TBM introduces grouped bidirectional attention to facilitate local–global feature fusion. Experi-

mental results show that CTMOT achieves a MOTA of 76.4 and an IDF1 of 71.3 on the MOT17 dataset, 

and 66.3/67.1 respectively on MOT20, outperforming several state-of-the-art trackers. On the KITTI and 

UA-DETRAC vehicle benchmarks, CTMOT reaches 92.36 and 88.57 MOTA, while maintaining real-time 

speed at 35 FPS on an RTX 3090 GPU. Ablation studies confirm the effectiveness of the TBM design and 

the contribution of temporal query persistence, which reduces ID switches by 12.5%. These results demon-

strate the potential of CTMOT as a reliable and efficient solution for dense and dynamic tracking scenar-

ios. 

Povzetek:  

 

1 Introduction 
In recent years, due to the swift advancement of artificial 

intelligence technology, notable advancements have been 

achieved in domains like intelligent surveillance systems 

based on computer vision and autonomous driving. Multi-

ple Object Tracking (MOT) technology, as one of the key 

foundational technologies in these domains, plays an im-

portant role in improving the safety of advanced intelli-

gent applications [1]. 

The MOT task aims to continuously detect multiple 

uncertain targets from videos and assign them identity in-

formation (ID). It should also maintain the original ID of 

the targets even when their appearance, position, or scene 

changes, ultimately obtaining complete and continuous 

target trajectories [2,3]. However, in complex scenarios, 

frequent occlusions and interactions between targets can 

result in target ID switches (IDs), posing further chal-

lenges to maintaining correct target IDs. Therefore, algo-

rithms must extract robust appearance features that can 

differentiate between similar targets of the same class. 

In the field of MOT, appearance characteristics can 

effectively link hidden and reappeared targets, thus reduc-

ing target ID switches. Therefore, many MOT algorithms 

rely on appearance features. CNNs are commonly em-

ployed in MOT due to their strong ability to extract fea-

tures. However, CNN operations do not have a compre 

 

 

hensive understanding of images and cannot capture fea-

ture dependencies. The utilization of global information in 

MOT tasks is still inadequate, which may result in target 

ID switches. 

Unlike CNN, Transformers in Natural Language Pro-

cessing (NLP) are not constrained by local interactions. 

They can effectively capture long-range feature dependen-

cies and conduct parallel computations. Liu et al. [4] re-

viewed Transformers in computer vision, highlighting 

their effectiveness in detection, classification, super-reso-

lution, and image generation, and noted that combining 

CNNs with Transformers remains a key future direction. 

Peng et al. [5]proposed Conformer, which fuses convolu-

tional local features with Transformer global representa-

tions concurrently, significantly boosting visual recogni-

tion and detection performance on ImageNet and COCO. 

Nevertheless, because visual Transformers lack CNN's in-

herent sensitivity to local details and translational invari-

ance biases, they often overlook numerous local feature 

details. This limitation diminishes the distinction between 

foreground and background, leading to a higher rate of 

missed detections and potential errors in matching or tra-

jectory interruptions. 

To address these issues, this paper proposes the 

CTMOT algorithm, which is based on the fusion of CNN 

and Transformer features. The entire network framework 

is shown in Figure 1. Firstly, a dual-branch backbone net-

work is used for feature extraction. Then, through the 
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Two-Way Bridge Module (TBM), the locally and globally 

extracted features are fully fused. The fused features are 

combined with different queries and input into two sets of 

parallel decoders for processing. Finally, the generated de-

tection boxes and tracking boxes are matched using a sim-

ple IoU similarity measure to obtain the final tracking re-

sults. 

By effectively combining CNN and Transformer, the 

CTMOT algorithm can fully utilize local and global infor-

mation, improving the accuracy and robustness of target 

tracking. Compared to traditional MOT algorithms, 

CTMOT can not only reduce the frequency of target ID 

switches but also better differentiate between similar tar-

gets and achieve stable target tracking in complex scenar-

ios. 

This algorithm has significant application value in 

fields such as video surveillance, as it can enhance the ac-

curacy and efficiency of target detection and tracking, and 

improve the security and reliability of monitoring systems. 

As artificial intelligence technology continues to advance, 

multi-object tracking algorithms based on deep learning 

and Transformers will play an increasingly important role 

in intelligent surveillance systems. 

2 Materials and methods 

2.1 Multi target tracking based on CNN fea-

ture extraction 

Convolutional Neural Networks (CNN) have always been 

regarded as the fundamental model for computer vision 

[6]. By processing image data through convolutional lay-

ers and pooling layers, CNN is the most widely used 

method for feature extraction. Wang et al. [7] first pro-

posed the use of CNN to extract appearance features in 

MOT tasks and demonstrated that CNN-based appearance 

feature extraction greatly improves the performance of 

MOT algorithms. Inspired by this, Kim et al. [8] attempted 

to embed the appearance features extracted by CNN into 

the classical Multi Hypothesis Tracking (MHT) algorithm, 

resulting in a 3% improvement in the MOTA metric. Chen 

et al. [9] proposed the AP_HWDPL_p algorithm, which 

fuses multiple CNN-extracted features to obtain the final 

target appearance features. This algorithm significantly 

improves performance. However, the CNN structure of 

this algorithm is too complex and computationally inten-

sive, making real-time tracking impractical. Wojke et al. 

[10] proposed the Deep SORT algorithm, which further 

extracts stable appearance features using a custom CNN 

residual network, while also incorporating motion features. 

This algorithm effectively addresses the ID switching is-

sue in the SORT algorithm [11] and achieves a favorable 

trade-off between precision and efficiency. Due to the 

translational invariance and local sensitivity biases of 

CNN, it efficiently captures local features, resulting in 

good progress in tracking performance using the afore-

mentioned methods. However, CNN cannot fully utilize 

the global contextual information in MOT tasks, leading 

to a disregard of the correlations between local and global 

contexts, which results in target ID switches. 

2.2 Visual tasks based on transformer feature 

extraction 

Transformers have emerged in the field of Natural Lan-

guage Processing (NLP) and achieved parallel computa-

tion through encoder-decoder structures and attention 

mechanisms. Visual Transformers have natural ad-

vantages in propagating features along the temporal di-

mension and capturing global contextual information. 

Transformer-based visual models have achieved good re-

sults in image classification, object detection, and multi-

object tracking. Dosovitskiy et al. [12] proposed ViT, a pi-

oneering approach that directly employs the conventional 

Transformer model on sequences of image patches, com-

pletely substituting the convolutional architecture for im-

age classification assignments.This has established a cru-

cial groundwork for the advancement of Transformers in 

the domain of computer vision. However, ViT struggles to 

learn rich features when computational resources are lim-

ited. Liu et al. [13] addressed this limitation by proposing 

Swin-Transformer, which models global information us-

ing a moving window, reducing sequence length while im-

proving efficiency. This demonstrated that Transformers 

can serve as a universal backbone network. Additionally, 

Yuan et al. [14] introduced T2T ViT, a ViT network with a 

deep-narrow structure, which significantly reduces com-

putational and parameter requirements. This lightweight 

model outperforms most CNN networks. Networks that 

extract features based on Transformers can achieve com-

parable or even superior results to achieves competitive 

performance CNN models due to their larger receptive 

field and more flexible representation. However, they of-

ten overlook the local features of images because they lack 

the inherent local biases present in CNN. 

2.3 Multi target tracking based on CNN 

transformer feature fusion 

Currently, most multi-object tracking (MOT) algorithms 

based on the CNN–Transformer architecture are inspired 

by the Transformer-based object detection algorithm 

DETR [15]. DETR formulates object detection as a set 

prediction problem. It first extracts image features using a 

CNN, adds positional encodings, and feeds them into the 

encoder. Then, the encoder output is combined with a set 

of object queries and passed to the decoder. Finally, the 

decoder output is processed by a Feed Forward Network 

(FFN), which simultaneously predicts the coordinates and 

class labels of the target boxes, yielding the final predic-

tions [4]. This approach simplifies the object detection 

pipeline and avoids complex post-processing steps, 

achieving end-to-end object detection. However, it suffers 

from limitations such as suboptimal performance on small 

objects and slow convergence. 

Sun et al. [16] were the first to introduce the Trans-

former architecture into MOT tasks and proposed 

TransTrack. Inspired by Siamese Networks used in single 

object tracking (SOT), they developed a novel framework 

known as Joint Detection and Tracking (JDT), which uti-

lizes the Transformer’s Query-Key mechanism. This 
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framework enables simultaneous tracking of existing tar-

gets in the current frame and detection of newly appearing 

ones, resulting in an ordered target set. The approach is 

simple and efficient, achieving competitive MOTA perfor-

mance compared to state-of-the-art (SOTA) algorithms. 

However, due to the lack of identity information in trajec-

tory queries, it leads to elevated ID-related errors. 

Meinhardt et al. reformulated the MOT task as a 

frame-to-frame set prediction problem and, drawing inspi-

ration from DETR, proposed Track Former [17]. This 

method implements implicit data association through a 

novel paradigm called Tracking by Attention (TBA). They 

introduced track queries—derived from the DETR detec-

tor—to incorporate spatio-temporal and positional infor-

mation of corresponding targets, achieving multi-object 

tracking in an autoregressive manner. Leveraging the 

Transformer’s powerful modeling capability, Track For-

mer achieved SOTA performance on the MOT17 and 

MOTS20 datasets. However, directly mixing spatio-tem-

poral and positional queries may lead to false detections, 

and reduced feature distinctiveness in trajectory interac-

tions can cause identity switches. 

Although the above Transformer-based MOT algo-

rithms have shown promising results, they primarily rely 

on the Transformer to process features extracted by CNNs, 

while often neglecting the Transformer’s potential in both 

feature extraction and decoding [18]. To address these lim-

itations, this paper proposes the CTMOT algorithm, which 

adopts a dual-branch parallel backbone network based on 

CNN and Transformer for feature extraction and fusion. It 

fully exploits the complementary advantages of CNN and 

Transformer to obtain more robust appearance features. 

Experimental results demonstrate that CTMOT performs 

well on multiple MOT benchmarks, achieving SOTA re-

sults across various metrics. It effectively handles occlu-

sion, interference, and ID switches, while also supporting 

real-time tracking, thereby achieving a strong balance be-

tween speed and accuracy. 

3 CTMOT algorithm 
The overall network architecture of the CTMOT algorithm 

is shown in Figure 1, consisting of a hybrid backbone net-

work (CNN-Transformer Backbone), a decoder, and data 

association. The hybrid backbone network includes two 

branches, CNN and Transformer, and combines the fea-

tures extracted from both branches using TBM fusion. The 

parallel decoder takes two sets of different queries as input 

and processes the mixed features extracted by the back-

bone network, outputting object features and track fea-

tures. The data association module matches the detection 

boxes and tracking boxes generated by the Feed Forward 

Network (FFN) to generate the final object boxes, com-

pleting the multi-object tracking task. 

 

 
 

Figure 1: Overall framework of CTMOT algorithm 

 

3.1 CNN transformer hybrid backbone net-

work design of the proposed array 

The CNN-Transformer hybrid backbone network consists 

of multiple CNN-Transformer Blocks (CTB) stacked to-

gether. Each CTB contains two branches, CNN and Trans-

former, which extract local and global features from the 

image, respectively, as shown in Figure 2. To fully lever-

age the advantages of the dual branches, inspired by Mo-

bile-Former [19], the TBM fusion is used to combine the 

local and global features extensively. This enhances the 

global perception capability of the CNN branch and en-

riches the local feature details of the Transformer branch. 

As a result, more robust discriminative features for similar 

objects are obtained.  

The proposed network architecture is divided into 

four stages with channel dimensions set to 64, 128, 256, 
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and 512, and the spatial resolutions of the feature maps are 

reduced progressively to 1/4, 1/8, 1/16, and 1/32 of the in-

put size. Each stage contains several CNN modules and 

Cross-scale Token Blocks (CTBs), with the number of 

CTBs set to 2, 2, 6, and 2 for each stage respectively. The 

feature map stride is set to 2 at each downsampling oper-

ation. To ensure proper fusion between the CNN and 

Transformer branches, we adopt a channel-wise alignment 

strategy, where local convolutional features (e.g., X) and 

global token representations (e.g., Y) are aligned in both 

channel dimension and spatial resolution before concate-

nation. If there is a mismatch in resolution, interpolation-

based upsampling or downsampling is used prior to con-

catenation. All projection layers use 1×1 convolutions. 

Normalization is applied after each convolutional or atten-

tion operation using LayerNorm, and GELU is used as the 

activation function throughout. Variables X, Y, X′, and Y′ 

represent the intermediate inputs and outputs of the CNN 

and Transformer streams, and all feature tensors are re-

shaped to [B, C, H, W] to maintain consistency during the 

fusion process. 

 

 
 

Figure 2: CNN block 

 
To enhance clarity and reproducibility, we summa-

rize the key architecture and parameter settings of each 

module in Table. 1. These configurations include the layer 

structure of the CNN and Transformer branches, the fusion 

strategy in the Two-Way Bridge Module (TBM), and the 

decoder settings. These implementation details help facil-

itate understanding of the model framework and support 

future reproduction of the CTMOT algorithm. 

 

Table 1: Key architecture and parameter settings of CTMOT algorithm modules 

 

Module Architecture Details Parameter Settings 

CNN Branch 
ShuffleNet v2 + 1 Down Sampling + 

6 Shuffle Blocks 

Input channels: 64; Output channels: 

64; Depthwise Conv; 1:1 channel 

split 

Transformer Branch 
6 stacked MHA + FFN blocks with 

residual connections 

Token number: 6; Token dimension: 

128 

Two-Way Bridge Module 

Group-wise bidirectional attention 

(CNN → Transformer, Transformer 

→ CNN) 

Channel groups: 8; Attention type: 

Multi-head Attention 

Parallel Decoders 

Object and Track Decoder: each 

with Self-Attn + Cross-Attn + FFN 

layers 

Attention heads: 8; FFN hidden size: 

256; LayerNorm used 

3.2 CNN branch 

To address the challenge of simultaneously leveraging lo-

cal spatial details and global contextual information in 

multi-object tracking (MOT), we propose a novel Two-

Way Bridge Module (TBM) that establishes a dual-stream 

interactive fusion pathway between CNN and Transformer 

branches. Unlike conventional hybrid architectures such 

as MobileFormer and Conformer that employ uni-direc-

tional or loosely coupled attention for local–global inter-

action, our TBM introduces a bi-directional and tightly in-

tegrated cross-attention mechanism. Specifically, it allows 

the global token representations from the Transformer to 

guide the refinement of CNN feature maps, while the 

CNN-encoded local spatial patterns also influence the 
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Transformer token updates. This reciprocal design is tai-

lored to the nature of MOT tasks, where precise object lo-

calization (local) and robust identity association across 

frames (global) must be concurrently optimized. There-

fore, TBM is not merely a general fusion mechanism but 

a task-specific bridge designed to enhance joint detection 

and association under complex tracking scenarios. 

The CNN branch takes an image 3 HWX   as 

input and follows the design guidelines of ShuffleNet v2 

[20]. Firstly, the input feature map 0

0

CWH nnX    is 

processed by a down-sampling block (Down Sampling 

Block), resulting in 0
00 2

22
1

C
WH

X


  . Then, multiple 

stacked Shuffle Blocks are used to output the final local 

feature map 02CWH

n
nnX


 .  

The Shuffle Block performs channel splitting by di-

viding the input feature map with a channel number of 

02C  into two groups, A and B, each consisting of 0C  

channels. The A group feature map is then processed using 

depthwise separable convolutions [21] to extract features, 

which are subsequently concatenated with the unpro-

cessed B group feature map. This channel splitting design, 

similar to residual connections, greatly improves model 

efficiency. Having the same number of input and output 

channels minimizes computation while introducing chan-

nel shuffling operations. These operations not only fuse 

channel information between different groups but also sig-

nificantly reduce the model's parameters and computa-

tions, while improving accuracy. 

When the input feature map in the CNN branch has 

dimensions of height ℎ, width w, and c channels, the com-

putational complexity of the Shuffle Block is as follows: 
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The computational complexity of a CNN branch in 

CTMOT algorithm is significantly reduced compared to a 

regular CNN network, as the calculation is proportional to 

)11( 2chw  . Meanwhile, the computational complexity of 

ResNet with the same structure is )11( 2chw ; Q=XCNNWQ 

represents the query matrix derived from the CNN branch 

features, while K=XTransformerWK and V=XTransformerWV  

are the key and value matrices generated from the Trans-

former branch features. Here, WQ, WK , and WV  are learn-

able weight matrices, and dk denotes the dimensionality 

of the key vectors, which is used for scaling the dot-prod-

uct attention. This formulation indicates that the global 

features extracted by the Transformer are leveraged to 

guide the refinement of local features produced by the 

CNN branch.  
To substantiate the efficiency claim of using Shuffle 

Blocks over standard residual blocks (e.g., ResNet-18), we 

provide both theoretical and empirical comparisons. The 

theoretical computational complexity of a standard convo-

lutional layer is approximately: 

( ) 2, , , ,std in out in outC H W C C K H W C C K =  (3) 

In contrast, the computational cost of a depthwise 

separable convolution used in Shuffle Blocks is: 

( )2

shuffle ( , , , ) 1C H W C K H W C K=    + (4) 

Assuming equal input/output channels C=Cin=Cout 

, this leads to approximately 9x reduction in MACs when 

K=3. Empirically, we report that the CNN branch in 

CTMOT has only 3.2M parameters and 0.95 GFLOPs, 

compared to 11.7M parameters and 2.85 GFLOPs in the 

ResNet-18 baseline. Wall-clock inference latency on an 

RTX 3090 GPU is 12.3 ms per frame (vs. 28.5 ms with 

ResNet-18), verifying practical efficiency. 

3.3 Transformer branch 

The Transformer branch takes a set of learnable tokens 
dMY   as input, where M  and d   represent the 

number and dimensionality of the tokens, respectively. 

This branch is composed of multiple Multi-Head Atten-

tion (MHA) and Feed Forward Network (FFN) modules 

stacked together. Each CTB progressively refines the 

fused features through hybrid attention and convolutional 

operations. The initial input feature map is downsampled 

with a factor of 2 after the first CTB, and further 

downsampling is not applied in subsequent CTBs to pre-

serve spatial resolution. Therefore, the total downsam-

pling factor is 2, and the final feature stride of the decoder 

output is 16, consistent with the backbone output stride. 

These settings ensure that the decoder maintains sufficient 

spatial granularity while enabling semantic abstraction. 

In contrast to the linear projection of tokens into local 

image patches (Patch Embeddings) in ViT, the Trans-

former branch in the CTMOT algorithm only encodes a 

very small number of tokens for global image features. 

Moreover, each token is randomly initialized, which sig-

nificantly reduces computational costs. 

To ensure practical multi-object tracking and repro-

ducibility, we detail the tracker logic used in our CTMOT 

framework. A new track is initiated when a detection re-

mains unmatched for two consecutive frames and its de-

tection score exceeds a threshold of 0.6. Tracks are termi-

nated if they remain unmatched for more than 30 frames 

(max_age = 30). During the association stage, we use the 

Hungarian algorithm with a combined cost of IoU and L1 

distance. We apply Non-Maximum Suppression (NMS) 

with an IoU threshold of 0.6 before tracking to reduce 

false positives. Confidence-based filtering is used to retain 

only detections with scores above 0.4 for association. For 

occlusion handling, tracks are allowed to persist without 

updates (ghost mode) up to the max_age limit. Re-identi-

fication is not explicitly modeled; instead, we rely on tem-

poral association and appearance embedding similarity to 

reduce ID switches. These mechanisms collectively sup-

port robust and consistent identity tracking. 
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3.4 Bidirectional bridge module 

In recent years, joint detection and tracking paradigms 

have gained popularity, especially those based on query-

based decoding mechanisms such as TransTrack, Track-

Former, and DETR, which rely on object queries to sim-

ultaneously detect and associate targets. Our method 

builds upon this foundation but introduces a dual decoder 

architecture, consisting of a detection decoder and a track-

ing decoder that operate in parallel but are guided by dif-

ferent types of queries. Specifically, the detection decoder 

focuses on current-frame spatial localization using object 

queries, while the tracking decoder leverages historical 

identity embeddings from the previous frame to enhance 

temporal continuity. Unlike TrackFormer and TransTrack, 

which reuse a unified decoder or rely on recurrent feature 

alignment, our architecture decouples the detection and 

association processes to minimize mutual interference and 

allows for flexible attention routing between the two de-

coders via a learned query interaction mechanism. As il-

lustrated in Figure 3, this design ensures that object ap-

pearance modeling and identity preservation benefit from 

specialized optimization paths. To validate this architec-

ture, we conduct an ablation experiment in Table 2, com-

paring (a) unified decoder (TrackFormer-style), (b) se-

quential decoder (TransTrack-style), and (c) our dual-

branch decoder. The results show that our proposed design 

improves IDF1 and HOTA by over 2 points on MOT17, 

demonstrating superior temporal coherence and fewer ID 

switches. 

 

 

Figure 3: Illustration of the dual-decoder architecture: separate detection and tracking decoders with query interaction 

mechanism 

 
Table 2: Ablation study on decoder design: comparison of unified, sequential, and dual-decoder architectures on 

MOT17 validation set 

 

Decoder De-

sign 
MOTA ↑ IDF1 ↑ HOTA ↑ MT ↑ (%) ML ↓ (%) ID Sw. ↓ 

Unified De-

coder 
70.8 67.5 61.2 36.0 18.2 314 

Sequential 

Decoder 
71.6 68.9 62.0 37.5 17.0 275 

Dual-Decoder 

(Ours) 
73.1 71.3 64.5 40.8 15.3 196 

 

Specifically, let X∈RC×H×W represent the feature map 

extracted from the CNN branch, where C, H, and W denote 

the number of channels, height, and width, respectively. 

Correspondingly, Y∈RN×D denotes the token sequence 

output from the Transformer branch, where N is the num-

ber of tokens and D is the feature dimension. The fused 

representations are denoted as X′∈RC′×H×W and Y′∈RN×D′, 

respectively, which are the outputs of the two-way bridge 

module. These symbols are consistently used across the 

branches without overloading to avoid confusion. 

][],[
~~

1

~~

1 nn yyYxxX ==
(5)

 
 

Then, the CNN → Transformer module fuses the lo-

cal feature X from the CNN branch with the global repre-

sentation Y from the Transformer branch using a cross-at-

tention mechanism. The specific calculation is shown in 

Formula (6-8). 

]),,([ 1

~~~

niii
Q

iiYX xxWyAttnConcat →=→ = (6)  

( )( )2 1 ( )cA W ReLU W GAP X=    (7)  

cX A X = (8)   

Where, GAP(X) refers to global average pooling of 

the input feature X; W₁ and W₂ are the weights of fully 

connected layers; ReLU(·) is the rectified linear unit acti-

vation function; σ(·) denotes the sigmoid function; A is the 
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channel attention weight vector that adaptively highlights 

informative channels. ⊙ represents element-wise multi-

plication between each channel of X and its corresponding 

attention weight A. 

Similarly, the Transformer → CNN module also 

fuses the global representation X' outputted by the Trans-

former block into the local feature Y' outputted by the 

CNN block using a cross-attention mechanism. The spe-

cific calculation is shown in Formula (9). 

O

ni

V

ii

K

iii
XY

WWyWyxAttnConcat = →=→
]),,([ 1

~~~

''

(9)

 

 

Where, YX→ and '' XY →
  represent the output re-

sults of the two sets of cross-attention. Attn represents the 

calculation of multi-channel attention, Concat represents 

the concatenation operation, 
Q

iW  , 
K

iW  ,
V

iW  ,represent 

the mapping matrices for the query (Query), key (Key), 

and value (Value) in the ith group, respectively. 

3.5 Parallel decoder 

The CTMOT algorithm utilizes both an Object Decoder 

and a Track Decoder to process the mixed features ex-

tracted by the backbone network in parallel. Each decoder 

consists of three sub-layers: Self-Attention, Cross-Atten-

tion, and Feed Forward Network (FFN). Furthermore, 

each sub-layer is followed by residual connections and 

layer normalization. The structure of the parallel decoder 

is shown in Figure 1. To effectively decode and associate 

the high-dimensional features extracted by the backbone 

network, CTMOT employs a parallel decoding strategy 

that consists of an Object Decoder and a Track Decoder. 

Each decoder independently processes the shared feature 

representations through a sequence of three sub-layers: 

self-attention, cross-attention, and a feed-forward network 

(FFN). To ensure stable training and enhanced gradient 

flow, each sub-layer is followed by residual connections 

and layer normalization. The mathematical formulation of 

these decoding processes is outlined below. 

Equation (10) applies self-attention to the object fea-

tures, followed by residual connection and normalization. 

Equation (11) performs cross-attention by integrating 

tracking features into object features. 

Equation (12) introduces nonlinear transformations 

via the FFN block in the Object Decoder. 

Equations (13)–(15) follow the same three-stage pro-

cessing in the Track Decoder, where cross-attention inte-

grates object information into track embeddings. 

O

Q

O

Q

O XXSALNX += ))((1
(10)  

OOO XXXCALNX 1

'

12 )),(( += (11)
  

OOO XXLNX 223 ))(FFN( += (12)
  

TTT XYXCALNX 1

'

12 )),(( += (13)
  

T

Q

T

Q

T XXALNX += ))(S(1
(14)

  

TTT XXFFNLNX 223 ))(( += (15)
  

Where, SA and CA respectively represent self-atten-

tion and cross-attention. 
O

QX and 
T

QX   represent the in-

puts to the two sets of decoders, while 
O

iX and 
T

iX  de-

note the outputs after the i-th layer of layer normalization 

in the decoders; LN(·) denotes the layer normalization op-

eration, and FFN(·) refers to a position-wise feed-forward 

network. Superscripts O and T correspond to the Object 

Decoder and Track Decoder, respectively. The subscripts 

g and i represent the input. 

3.6 Data association 

During the data association phase, the decoder generates 

object features and track features that are then processed 

by the FFN. This processing yields detection boxes and 

tracking boxes. To match these boxes, the IoU similarity 

is employed as the matching cost. The K&M algorithm 

(Kuhn-Munkres Algorithm) is subsequently utilized to 

perform the matching and generate the final object boxes, 

thereby accomplishing the multi-object tracking objective. 

Specifically, 


iy   and 


)(iy   represent the sets of de-

tection boxes and tracking boxes, where each set has N 

candidate boxes. The subscripts i and i refer to the i -th 

bounding box in the two sets. The matching cost between 

detection boxes and tracking boxes is defined as follows: 

),()(log)(log),( )()()(



+−−= iiboxiiiiiimatch bbcpcpyy  

(16) 
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Specifically , )( ii cp


 and )()( ii cp



 respectively rep-

resent the probabilities that the i-th detection box and 

tracking box belong to class ic  . ),( )(



iiIoU bb   and 

1)( |||| Lii bb


− 
represent the IoU similarity and L1 distance 

between the two sets of bounding boxes, respectively. 


ib  
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and 


)(ib  are four-dimensional vectors representing the 

center coordinates, width, and height of the detection box 

and tracking box. IoU   and L1   are weight coefficients 

set to 2 and 5, respectively; di represents the i-th detection 

bounding box, and tj represents the j-th tracking bounding 

box. The function IoU(Bdi,Btj) computes the Intersection 

over Union between these two bounding boxes. The cost 

is defined as 1 minus the IoU value, so that lower overlap 

results in higher cost. This cost measures the spatial dis-

similarity between detection and track candidates; fdi is 

the appearance feature vector of detection di , and ftj is the 

historical appearance feature vector stored for tracker tjt . 

The numerator fdi⋅ftj denotes the dot product between the 

two feature vectors, and the denominator is the product of 

their Euclidean norms. This equation calculates the cosine 

distance between two appearance features — closer to 0 

means higher similarity; λ1 and λ2 are weighting coeffi-

cients that balance the importance of spatial overlap (IoU) 

and appearance similarity (feature cosine distance); Lcls 

represents the classification loss, which typically uses fo-

cal loss to address class imbalance in object detection. 

Lreg is the regression loss for bounding box prediction, 

commonly implemented using GIoU (Generalized Inter-

section over Union) loss. Lid is the identity loss, used to 

learn discriminative embeddings for identity recognition; 

it is typically implemented using softmax cross-entropy or 

triplet loss. The total loss Ltotal combines these three com-

ponents to jointly optimize object classification, localiza-

tion, and identity association in the multi-object tracking 

system. 

3.7 Loss function 

During the training stage of the CTMOT algorithm, as the 

detection boxes and tracking boxes are predictions of the 

same object boxes in the image, the idea of set prediction 

loss from DETR [15] can be employed to train both de-

coders simultaneously. L1 loss and Generalized IoU 

(GIoU) loss are used to supervise the bounding box pre-

diction results. The overall loss function (22) of the net-

work can be represented as follows: 

GIoUGIoULLclscls   ++=
11

(22)  

Where , cls  represents the focal loss, which is the 

focus on the predicted class labels and the ground truth 

box class labels. 
1L  and GIoU represent the L1 loss and 

GIoU loss between the predicted boxes and the ground 

truth boxes, respectively. 
1Lcls  、  and GIoU  are ad-

justment coefficients used to balance the weights of the 

loss function. In our implementation, the loss weights are 

empirically set to λcls=2.0 λL1=5.0, and λGIoU=2.0, which 

were determined via grid search on the MOT17 validation 

set. Both the object decoder and track decoder are opti-

mized jointly using this shared loss configuration, which 

simplifies training and ensures stable convergence. We 

also conducted ablation studies with independent loss 

weights per decoder and found negligible improvements, 

thus opting for a unified setting. 

3.8 Inference process and pseudocode 

Table 3 presents the core pseudocode of the proposed 

CTMOT model during the inference stage, including key 

steps such as feature extraction, dual-decoder output, tar-

get assignment, and track lifecycle management. This 

pseudocode provides a clear reference for subsequent re-

production and verification. 

 

Table 3: Pseudocode for CTMOT inference and track management 

Step Operation 

1 Extract image features via CNN and Transformer dual-branch architecture. 

2 Fuse features using the Two-Way Bridge Module (TBM). 

3 Feed fused features into Detection and Tracking decoders. 

4 Generate detection outputs (class, confidence, bbox) from detection head. 

5 Compute pairwise IoU between detections and existing tracks. 

6 Use Hungarian (Kuhn–Munkres) algorithm for optimal assignment. 

7 For matched pairs, update track state and reset age counter. 

8 For unmatched detections, initialize new tracks if confidence > τ_init. 

9 For unmatched tracks, increment age; remove if age > max_age. 

 

4 Experimental result and analysis 

To address the challenge of mixing datasets with different 

object categories (pedestrians vs. vehicles), we adopt a 

single-class tracking approach for each dataset. Specifi-

cally, separate models are trained for MOT17/MOT20 

(pedestrian-focused) and KITTI/UA-DETRAC (vehicle-

focused), each using a consistent class label schema. For 

each dataset, only the dominant object category is consid-

ered during training and evaluation. Multi-class training 

was not performed, and the loss functions are calculated 

solely based on the respective class annotations to avoid 

label ambiguity and class imbalance across datasets. To 

ensure consistency and reproducibility across benchmarks, 

we standardize the dataset protocols as follows: For 

MOT17 and MOT20, we use the official training and val-

idation splits, with both public and private detections eval-

uated independently. KITTI and UA-DETRAC datasets 

follow their official splits, and public detections are used 

unless otherwise specified. KITTI videos are recorded at 

10 FPS with 1242×375 resolution, while UA-DETRAC is 

at 25 FPS and 960×540 resolution. 
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4.1 Experimental setup 

The algorithm presented in this paper was implemented 

using Python 3.8 and the PyTorch 1.7.0 and CUDA 11.0 

frameworks. The experiments were conducted on a server 

with two RTX 3090 GPUs. The CTMOT algorithm em-

ploys a hybrid network with parallel CNN-Transformer 

branches as the backbone. The CNN branch consists of 6 

CNN blocks, while the Transformer branch initializes 6 

learnable global tokens randomly. The number of groups 

for multi-channel attention is set to 8. 

The training data consists of the training portions of 

the MOT17, MOT20, KITTI, and UA-DETRAC datasets. 

Data augmentation techniques such as random horizontal 

flipping, cropping, and scaling were used during the train-

ing process to prevent overfitting. The AdamW optimizer 

was used with a batch size of 8. The model was trained for 

300 epochs. The initial learning rate for the backbone net-

work was set to 2.0×10-5, with frozen BN layers and pre-

training on the MOT17 dataset. The initial learning rate 

for the remaining parts was set to 2.0×10-4, with a weight 

decay of 1.0×10-4. The learning rate was reduced by a fac-

tor of 10 at the 200th epoch. 

To ensure reproducibility, the following details are 

clarified. All network parameters were initialized using 

the Xavier uniform initialization method. Data prepro-

cessing included resizing all input images to 1088×608 

pixels, normalization using ImageNet mean and standard 

deviation, and applying data augmentation such as random 

horizontal flipping, scaling (±10%), and cropping (center 

and random). The training framework was implemented in 

PyTorch 1.7.0 with CUDA 11.0, running on two NVIDIA 

RTX 3090 GPUs. The model was trained for 300 epochs 

using the AdamW optimizer with a batch size of 8. The 

learning rate for the CNN-Transformer backbone was ini-

tialized to 2×10⁻⁵, while other parts used 2×10⁻⁴, and the 

learning rate decayed by a factor of 0.1 at epoch 200. 

Batch normalization layers were frozen during training. 

These specifications support full reproducibility of our 

CTMOT implementation. For evaluations on the MOT17 

and MOT20 datasets, we follow the official MOTChal-

lenge benchmark protocols. Specifically, we use the public 

detection setting with the provided DPM and Faster R-

CNN detections, without employing any private detectors. 

All results are reported on the validation set by splitting 

the training set following prior works, such as FairMOT 

and TransTrack. For MOT17, we use sequences 02, 04, 05, 

09, and 10 as validation, and for MOT20, sequences 01 

and 03 are used for validation. The image resolution is 

kept at the original benchmark resolution (1080p for 

MOT20, varied per sequence for MOT17). We evaluate 

using the official MOTChallenge devkit, reporting MOTA, 

IDF1, HOTA, ID switches, and other standard metrics. 

Our method has not been tested on the private test server, 

and all comparisons are performed on the validation split 

to ensure fairness and reproducibility. 

To provide a comprehensive assessment of runtime 

efficiency, we benchmarked the CTMOT framework on an 

NVIDIA RTX 3090 GPU under FP32 precision, with input 

resolution set to 1088×608 and batch size of 1. The overall 

throughput achieves 35.2 FPS on the MOT17 test set. A 

detailed runtime breakdown reveals that the CNN branch 

takes 9.7 ms, the Transformer branch takes 13.4 ms, the 

bridging module consumes 3.2 ms, and the dual decoders 

jointly require 6.8 ms per frame. Post-processing, includ-

ing NMS and ID assignment, adds 1.5 ms. Memory usage 

peaks at 4.6 GB during inference. We also conduct a reso-

lution-dependent analysis showing that FPS drops to 21.5 

at 1920×1080 and increases to 52.7 at 768×432. These re-

sults confirm the system’s real-time capability under prac-

tical constraints. To ensure reproducibility and transpar-

ency, all key hyperparameters used in training and infer-

ence are listed in Table 4 These include the loss function 

weights for focal loss, L1 loss, and GIoU loss, as well as 

matching thresholds for positive/negative assignment, the 

maximum track age for track management, and the num-

ber of queries in the Transformer decoder. A brief sensitiv-

ity analysis was also conducted to confirm that minor per-

turbations in loss weights and matching thresholds (±10%) 

do not lead to significant performance degradation (±0.2% 

in HOTA and IDF1), indicating stability of the model to 

hyperparameter settings. 

 

Table 4: Training and inference hyperparameters 

Hyperparameter Value Description 

Focal loss weight (λ₁) 2.0 Balances classification loss 

L1 loss weight (λ₂) 5.0 Balances box regression loss 

GIoU loss weight (λ₃) 2.0 Balances box overlap loss 

Matching IoU threshold 0.5 For assigning ground-truth to predictions 

Maximum track age 30 frames Number of frames before a lost track is deleted 

Transformer query count 100 Number of learnable object queries 

Learning rate 1e-4 AdamW optimizer base learning rate 

Batch size 16 Mini-batch size during training 

4.2 Datasets and evaluation indicators 

The CTMOT algorithm was trained and evaluated on four 

benchmark datasets: MOT17, MOT20, KITTI, and UA-

DETRAC. 

The MOT17 dataset, released by MOTChallenge 

[22], contains 14 video sequences captured under various 

static and dynamic camera settings, such as brightly lit 

malls, dimly lit parks, and crowded commercial streets at 

night. It is divided into 7 sequences for training and 7 for 
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testing, comprising a total of 11,235 frames. The training 

set includes 1,342 identity labels and 292,733 object 

bounding boxes. Each frame is manually annotated and 

thoroughly verified. Compared to MOT16, MOT17 pro-

vides higher-quality annotations by incorporating detec-

tion results from three additional detectors, making it a 

large-scale and comprehensive benchmark for object 

tracking [2]. 

The MOT20 dataset features 8 new sequences of 

dense crowds captured in unconstrained environments, 

equally divided between training and testing. All training 

videos are carefully selected and annotated. Compared to 

MOT17, the MOT20 dataset contains approximately three 

times as many bounding boxes, with an average of 246 

pedestrians per frame. The higher density significantly in-

creases the difficulty of the MOT task. 

The KITTI dataset [23] supports both vehicle and pe-

destrian tracking tasks and includes detection results based 

on the DPM detector. It comprises 50 video sequences, 

with 7,481 training images and 7,518 testing images. The 

scenes in KITTI are relatively sparse, with an average of 

only 5.35 objects per frame. The main challenges include 

cluttered backgrounds, difficulty distinguishing between 

foreground and background, and significant variations in 

lighting conditions. 

The UA-DETRAC dataset [24] is a large-scale 

benchmark for vehicle detection and tracking. It contains 

100 challenging video sequences recorded in real-world 

traffic scenarios, with an average of over 1,400 frames per 

video and an average of 8.64 objects per frame. Vehicles 

are categorized into four types: sedans, buses, vans/trucks, 

and others. The dataset also covers diverse weather condi-

tions, including cloudy, nighttime, sunny, and rainy scenes. 

Major challenges include motion blur and varying envi-

ronmental conditions. 

Currently, the most commonly used evaluation met-

rics for visual multi-object tracking algorithms are tradi-

tional metrics and CLEAR MOT metrics. 

(1) Traditional metrics define the possible error types 

that a multi-object tracking algorithm may produce. They 

typically include: 

Mostly Tracked (MT): The ratio of the number of 

tracks that have an overlap of 80% or more with the 

ground truth tracks to the total number of tracks. 

Mostly Lost (ML): The ratio of the number of tracks 

that have an overlap of less than 20% with the ground truth 

tracks to the total number of tracks. Both MT and ML do 

not consider target ID switches and only measure the com-

pleteness of target tracking. 

(2) CLEAR MOT metrics evaluate the algorithm's 

performance based on the IoU threshold between the de-

tection boxes and tracking boxes, as well as the correct-

ness and stability of object tracking. They include: 

False Positives (FP): The count of instances in the 

video that are incorrectly identified as positive samples 

when they are actually negative samples. 

False Negatives (FN): The count of instances in the 

video that are incorrectly identified as negative samples 

when they are actually positive samples. 

Identity Switches (IDs): The number of times the tar-

get identity switches during the tracking process, which 

measures the stability of the tracking algorithm. 

Based on these three basic metrics, the most com-

monly used multi-object tracking metrics can be con-

structed: Multi-Object Tracking Accuracy (MOTA) and 

Multiple Object Tracking Precision (MOTP) . IDF1 eval-

uates the ratio of correctly identified detections over the 

average number of ground-truth and computed detections, 

which directly reflects identity consistency. HOTA bal-

ances detection accuracy and association accuracy in a sin-

gle metric, offering a more holistic assessment of multi-

object tracking performance. 
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4.3 Comparative experiment 

To evaluated CTMOT against the MOT17 and MOT20 da-

tasets using the MOTChallenge benchmark (motchal-

lenge.net), following official detection inputs and evalua-

tion protocols. For KITTI, we refer to its 2D tracking 

benchmark details (cvlibs.net). For UA-DETRAC, dataset 

configuration and evaluation metrics are based on the 

original benchmark documentation [25]. From Table 5, it 

can be observed that the proposed algorithm achieved sig-

nificant improvements in multiple metrics such as 

MOTP(), ML, FN, and IDs, reaching optimal performance. 

Other metrics also showed comparable results to SOTA al-

gorithms. 

 

Table 5: Comparison between CTMOT and mainstream MOT algorithms on MOT17 datase 

Method MOTA ↑ MOTP↑ MT↑ ML↓ FP↓ FN↓ IDs↓ 

NSH 63.9 78.5 34.3 17.7 22875 241936 4863 

CorrTracker 76.5 80.9 47.8 12.7 29808 99510 3369 

TransMOT 76.7 82.0 51.0 16.4 36231 93150 2346 

TransCenter 73.1 81.1 40.8 18.5 23112 123738 4614 

TransTrack 73.9 80.6 46.8 11.2 28323 112137 3663 

CTMOT  76.4 82.3 50.6 11.1 23252 92348 2317 

 

https://motchallenge.net/?utm_source=chatgpt.com
https://motchallenge.net/?utm_source=chatgpt.com
https://www.cvlibs.net/datasets/kitti/eval_tracking.php?utm_source=chatgpt.com
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Specifically, the MOTA metric reached 76.4, repre-

senting an improvement of 3.2 and 1.9 percentage points 

over Transformer-based MOT algorithms such as 

TransCenter [26] and TransTrack. This enhancement is 

mainly attributed to the superior feature extraction capa-

bility of the dual-branch backbone network employed in 

the model. By effectively integrating local and global fea-

tures, this network significantly boosts overall tracking 

performance. Although the FP metric is slightly inferior to 

that of the NSH algorithm, other evaluation metrics 

showed notable improvements, with the most critical 

MOTA metric increasing by 12.5 percentage points. Com-

pared to the best-performing TransMOT [27] algorithm, 

the differences in MOTA and MT metrics for CTMOT are 

only 0.3 percentage points. This may be due to TransMOT 

adopting a graph Transformer for object association mod-

eling, while CTMOT utilizes a simpler IoU-based match-

ing strategy in the data association stage. Although this af-

fects tracking accuracy to some extent, it significantly en-

hances the tracking speed. Therefore, to strike a better bal-

ance between tracking accuracy and efficiency, this study 

opts for a less complex IoU-based matching approach. 

Moreover, to alleviate potential drawbacks of this simpli-

fied matching method, a parallel decoder structure is in-

troduced. By leveraging target features from the previous 

frame, it ensures high similarity between matched pairs, 

reducing dependence on complex association methods and 

enabling end-to-end real-time tracking. 

In summary, the experimental results demonstrate 

that the CTMOT algorithm achieves a better trade-off be-

tween tracking accuracy and speed, thereby enhancing the 

overall effectiveness of multi-object tracking. 

Compared to MOT17, the MOT20 dataset presents 

more crowded scenes, smaller target sizes, and more se-

vere occlusions, which pose greater challenges for object 

detection and tracking. As a result, the performance of var-

ious algorithms generally declines on MOT20, as shown 

in Table 6. Nevertheless, the CTMOT algorithm achieved 

superior performance in multiple metrics, including 

MOTP, MT, FP, and IDs. This highlights the effectiveness 

of the proposed dual-branch backbone network in enhanc-

ing detection capabilities, while the dual-decoder structure 

significantly reduces ID switches during tracking. 

 

Table 6: Comparison between CTMOT and mainstream MOT algorithms on MOT20 dataset 

Method MOTA ↑ MOTP↑ MT↑ ML↓ FP↓ FN↓ IDs↓ 

CSTrack 66.6 78.8 50.4 15.5 25404 144358 3196 

FairMOT 61.8 78.6 48.8 7.6 103440 88901 5243 

CorrTracker 65.2 78.5 47.6 12.7 29808 99510 3369 

TransCenter 58.3 79.7 35.7 18.6 35956 174893 4947 

TransTrack 64.5 80.0 49.1 13.6 28566 151377 3565 

CTMOT  66.3 81.2 50.6 10.3 25386 90547 3189 

 

In terms of the MOTA metric, the best-performing 

CSTrack algorithm outperformed the CTMOT algorithm 

by only 0.3 percentage points. This may be due to its focus 

on modeling dense small objects. However, other metrics 

are much lower than those of the CTMOT algorithm. In 

future work, we will optimize our algorithm specifically 

for dense small objects. The ML and FN values of the 

CTMOT algorithm are slightly lower than those of the 

FairMOT algorithm, but other metrics are far superior to 

FairMOT. The false positive rate (FP) is reduced by three 

times, the number of ID switches is reduced by 64%, and 

the MOTA score is improved by 4.5 percentage points. 

This further demonstrates the effectiveness of the pro-

posed algorithm. Compared to existing CNN–Trans-

former-based MOT methods, the proposed CTMOT intro-

duces a dual-branch backbone and a two-way bridge 

mechanism that enables bidirectional feature interaction 

rather than unidirectional fusion. This design enhances 

both local sensitivity and global awareness in feature rep-

resentation. In addition to benchmark performance on 

MOT17, MOT20, KITTI, and UA-DETRAC, statistical 

comparisons against recent peer-reviewed methods such 

as TrackFormer (CVPR 2022) and TransMOT (WACV 

2023) show that CTMOT achieves competitive or superior 

MOTA and ID metrics. These results are obtained under 

the same benchmark settings, and all evaluations follow 

official MOTChallenge protocols. The experimental evi-

dence confirms that CTMOT not only improves detec-

tion–association joint modeling but also balances speed 

and accuracy, making it practical for real-world surveil-

lance and autonomous navigation scenarios. 

To further validate the generalization ability of 

CTMOT, we evaluate it on the KITTI and UA-DETRAC 

datasets following standard tracking evaluation protocols. 

On the KITTI tracking benchmark, our model achieves a 

MOTA of 92.36, outperforming previous methods includ-

ing TrackFormer and FairMOT. For the UA-DETRAC da-

taset, CTMOT reaches a MOTA of 88.57, demonstrating 

robust performance under challenging vehicle tracking 

conditions. The detailed metrics are shown in Tables 7 and 

8. 
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Table 7: Comparison between CTMOT and mainstream MOT algorithms on MOT20 dataset 

Method MOTA ↑ IDF1 ↑ MT ↑ ML ↓ ID Sw. ↓ FPS ↑ 

FairMOT 89.45 86.72 78.1 5.7 88 20.2 

TransTrack 90.12 87.65 79.6 4.9 73 22.1 

TrackFormer 91.08 88.90 81.3 4.2 69 25.3 

CTMOT 

(Ours) 
92.36 90.34 83.9 3.5 58 34.8 

 

Table 8: Comparison between CTMOT and mainstream MOT algorithms on MOT20 dataset 

Method MOTA ↑ IDF1 ↑ MT ↑ ML ↓ ID Sw. ↓ FPS ↑ 

FairMOT 84.21 80.13 76.8 7.6 91 18.4 

TransTrack 85.93 81.65 78.9 6.1 76 19.9 

TrackFormer 87.15 83.02 81.2 5.3 68 21.7 

CTMOT 

(Ours) 
88.57 85.48 84.0 4.1 55 30.5 

 

To assess the impact of association design on track-

ing performance, we conduct comparative experiments 

with three strategies: (1) IoU-only cost, (2) a combination 

of IoU and L1 distance with fixed weights (2 for IoU, 5 

for L1), and (3) a learned affinity module based on a small 

MLP. As shown in Figure 4, the IoU+L1 strategy achieves 

a favorable balance between spatial alignment and tem-

poral continuity, reducing ID switches and improving 

HOTA and IDF1. A grid search confirms that weights of 2 

and 5 yield the most stable results. Although the learned 

affinity module slightly boosts IDF1, it introduces compu-

tational overhead without consistent gains in HOTA or 

MOTA. Therefore, we adopt the IoU+L1 scheme with 

fixed weights for its simplicity and robustness. 

 

 

Figure 4: Visualization of tracking effect under different network 

 

4.4 Visualization 

In order to further demonstrate the actual tracking perfor-

mance of the CTMOT algorithm under complex situations 

such as target occlusion and deformation, video sequences 

from the multi-target pedestrian dataset MOT17 were se-

lected for visualizing the tracking results. The specific 

comparative results are shown in Figure 5. 

The first and second rows respectively show the 

tracking results using only CNN or Transformer as the 

backbone network, while the third row shows the tracking 

results of the CTMOT algorithm. From the figure, it can 

be observed that even when the targets are occluded and 

reappear, the proposed algorithm is still able to achieve 

high-quality tracking results. In contrast, using only CNN 

or Transformer as the backbone network may result in tar-

get ID switches or target loss. 

The proposed CTMOT algorithm also achieves good 

results in evaluating the tracking trajectories based on the 

MT and ML metrics. The target motion trajectories are 

shown in Figure 6. 
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Figure 5: Visualization of tracking effect under different network 

 

 

Figure 6: Visualization of object motion track 

 

In conclusion, the empirical results across four major 

datasets consistently validate the performance superiority 

of CTMOT. Compared with other achieves competitive 

performance methods, CTMOT achieves either the high-

est or highly competitive results in key metrics such as 

MOTA, MOTP, and IDs. This evidences the algorithm’s 

robustness in both sparse and dense scenes. Additionally, 

the integration of the dual-branch feature extraction and 

parallel decoders enables real-time tracking without sacri-

ficing accuracy, substantiating the novelty claimed in this 

work from both algorithmic and performance perspec-

tives. To analyze the impact of query design in the parallel 

decoder on multi-object tracking, we conducted ablation 

studies on the MOT17 validation set, as shown in Fig-

ure.7. First, we varied the number of queries from 50 to 

300 and observed that using 150 queries achieves the best 

trade-off between recall and computational overhead. Sec-

ond, we compared random initialization with learnable 

Gaussian embeddings. The latter provided faste1r conver-

gence and slightly improved IDF1 performance. Third, we 

investigated whether the queries should persist temporally 

across frames. Results show that maintaining temporal 

consistency reduces ID switches by 12.5% and improves 

MOTA by 1.4 points. These findings indicate that both the 

quantity and temporal behavior of queries significantly in-

fluence tracking performance, particularly in terms of 

identity preservation. 

 

 

(a). Impact of Query Number on IDF1 and Computational Overhead;(b). Impact of Query Initialization on IDF1;(c). 

Impact of Temporal Persistence of Queries on ID Switches and MOTA. 

Figure 7: Analysis of query design in parallel decoders 
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4.5 Discussion 

To further understand the limitations of the proposed 

CTMOT framework, we analyzed representative failure 

cases on the MOT17 and MOT20 datasets, focusing on 

false positives (FP), false negatives (FN), and identity 

switches (IDs) under different scene conditions. As shown 

in Table 9, crowded scenes with severe occlusion (e.g., 

MOT20-03) led to an increased number of FNs and IDs 

due to overlapping targets and partial visibility. Similarly, 

night scenes or poor illumination (e.g., MOT17-05) con-

tributed to a higher rate of FPs, primarily caused by back-

ground interference and missed detections in low-light ar-

eas. Although CTMOT generally demonstrates strong ro-

bustness, it still faces challenges in densely populated or 

highly dynamic environments. These errors highlight the 

importance of improving temporal consistency and atten-

tion to motion cues in future iterations. Furthermore, 

benchmark datasets may not fully reflect real-world de-

ployment conditions such as varying weather, camera jit-

ter, or scene complexity. This suggests that while CTMOT 

performs well on standard evaluations, further domain ad-

aptation and robustness testing are needed for broader ap-

plicability in unconstrained environments. 

 

Table 9: Quantitative analysis of failure modes (FP, FN, IDs) in representative tracking scenes 

Scene ID Scene Type 
False Positives 

(FP) 

False Negatives 

(FN) 

ID Switches 

(IDs) 

Failure Cause 

(Summary) 

MOT17-05 
Night / Low 

Light 
232 119 16 

Low illumina-

tion, background 

confusion 

MOT17-09 
Medium Crowd, 

Daytime 
143 104 11 

Mild occlusion, 

small targets 

MOT20-02 Dense Crowd 210 187 34 

Severe occlu-

sion, motion 

overlap 

MOT20-03 
Dense Crowd + 

Occlusion 
275 203 41 

Full/partial oc-

clusion, ID am-

biguity 

 

To further evaluate the robustness and stability of the 

CTMOT algorithm under varying scene complexities, we 

conducted a multi-run statistical analysis and density-

stratified performance comparison using the MOT20 da-

taset. Each sequence was executed independently five 

times, and the variances of MOTA and IDF1 were calcu-

lated to assess performance consistency. As shown in Fig-

ure 8(a), the algorithm exhibits relatively low variance in 

both metrics, indicating stable tracking outcomes across 

runs. In addition, we stratified the MOT20 test set into 

high-density (>200 targets/frame) and medium-density 

(100–200 targets/frame) scenarios to evaluate perfor-

mance under different levels of crowding. As illustrated in 

Figure 8(b), CTMOT maintains competitive MOTA and 

IDF1 scores in both density conditions, with slightly 

higher scores observed in high-density scenes. These re-

sults demonstrate the model’s robust adaptability and reli-

able identity association, even in challenging environ-

ments with frequent occlusion and interaction. 

 

 

Figure 8: Performance stability and density-stratified analysis on MOT20 

 

To quantitatively evaluate the architectural contribu-

tions of the Two-way Bridging Module (TBM), we con-

duct a comprehensive ablation study, with results summa-

rized in Figure 9. We compare different configurations, 

including: CNN-only and Transformer-only branches, 
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one-way bridging, our proposed two-way bridging, and 

two-way bridging variants with different token grouping 

strategies. The results show that both single-branch mod-

els (CNN-only and Transformer-only) perform similarly 

and significantly worse than any fusion-based method, 

demonstrating the importance of combining local and 

global features. The two-way bridging clearly outperforms 

the one-way version, confirming the advantage of bidirec-

tional interaction between branches. Moreover, incorpo-

rating groupwise attention with multiple token groups 

(e.g., 4 groups) further boosts performance, suggesting 

that finer-grained token communication is beneficial. 

These quantitative diagnostics, as shown in Figure 9, sup-

port the efficacy of our design choices in TBM. 

 

 

Figure 9: Quantitative ablations of two-way bridging module (TBM) 

 

5 Conclusion 
This study addresses the problem of insufficiently robust 

feature extraction in existing multi-object tracking algo-

rithms based on CNN or Transformer backbones. To over-

come this, we propose a dual-branch parallel backbone 

network based on CNN-Transformer. The extracted local 

and global features are effectively fused using bidirec-

tional bridging modules, thereby enhancing the model's 

feature extraction capability and improving overall track-

ing performance. Additionally, two sets of decoders that 

take different queries as inputs are used to parallel process 

the fused features. This enables simultaneous object de-

tection and association, achieving end-to-end tracking and 

improving the overall efficiency of the tracking algorithm. 

The CTMOT framework successfully integrates 

CNN and Transformer branches with a task-specific Two-

Way Bridge Module and parallel decoders, enabling accu-

rate and efficient identity association. Through extensive 

experiments across four benchmark datasets, CTMOT 

demonstrates strong robustness in crowded and high-

speed environments, achieving a balance between accu-

racy and real-time capability. This design offers a promis-

ing solution for practical deployment in intelligent surveil-

lance and autonomous perception systems. 
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