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With the increasing demand for intelligent visual surveillance and autonomous systems, multi-object
tracking (MOT) has become a critical research focus. To address challenges in identity preservation and
real-time inference, this paper proposes CTMOT, a novel tracking framework that fuses convolutional
neural networks (CNN) and vision Transformers via a Two-Way Bridge Module (TBM) for joint detection
and tracking. The model features a dual-branch CNN-Transformer backbone and a parallel decoder de-
sign with distinct object and track queries, enabling robust appearance modeling and temporal continuity.
The TBM introduces grouped bidirectional attention to facilitate local-global feature fusion. Experi-
mental results show that CTMOT achieves a MOTA of 76.4 and an IDF1 of 71.3 on the MOT17 dataset,
and 66.3/67.1 respectively on MOT20, outperforming several state-of-the-art trackers. On the KITTI and
UA-DETRAC vehicle benchmarks, CTMOT reaches 92.36 and 88.57 MOTA, while maintaining real-time
speed at 35 FPS on an RTX 3090 GPU. Ablation studies confirm the effectiveness of the TBM design and
the contribution of temporal query persistence, which reduces ID switches by 12.5%. These results demon-
strate the potential of CTMOT as a reliable and efficient solution for dense and dynamic tracking scenar-
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1 Introduction

In recent years, due to the swift advancement of artificial
intelligence technology, notable advancements have been
achieved in domains like intelligent surveillance systems
based on computer vision and autonomous driving. Multi-
ple Object Tracking (MOT) technology, as one of the key
foundational technologies in these domains, plays an im-
portant role in improving the safety of advanced intelli-
gent applications [1].

The MOT task aims to continuously detect multiple
uncertain targets from videos and assign them identity in-
formation (ID). It should also maintain the original ID of
the targets even when their appearance, position, or scene
changes, ultimately obtaining complete and continuous
target trajectories [2,3]. However, in complex scenarios,
frequent occlusions and interactions between targets can
result in target ID switches (IDs), posing further chal-
lenges to maintaining correct target IDs. Therefore, algo-
rithms must extract robust appearance features that can
differentiate between similar targets of the same class.

In the field of MOT, appearance characteristics can
effectively link hidden and reappeared targets, thus reduc-
ing target ID switches. Therefore, many MOT algorithms
rely on appearance features. CNNs are commonly em-
ployed in MOT due to their strong ability to extract fea-
tures. However, CNN operations do not have a compre

hensive understanding of images and cannot capture fea-
ture dependencies. The utilization of global information in
MOT tasks is still inadequate, which may result in target
ID switches.

Unlike CNN, Transformers in Natural Language Pro-
cessing (NLP) are not constrained by local interactions.
They can effectively capture long-range feature dependen-
cies and conduct parallel computations. Liu etal. [4] re-
viewed Transformers in computer vision, highlighting
their effectiveness in detection, classification, super-reso-
lution, and image generation, and noted that combining
CNNs with Transformers remains a key future direction.
Peng et al. [S]proposed Conformer, which fuses convolu-
tional local features with Transformer global representa-
tions concurrently, significantly boosting visual recogni-
tion and detection performance on ImageNet and COCO.
Nevertheless, because visual Transformers lack CNN's in-
herent sensitivity to local details and translational invari-
ance biases, they often overlook numerous local feature
details. This limitation diminishes the distinction between
foreground and background, leading to a higher rate of
missed detections and potential errors in matching or tra-
jectory interruptions.

To address these issues, this paper proposes the
CTMOT algorithm, which is based on the fusion of CNN
and Transformer features. The entire network framework
is shown in Figure 1. Firstly, a dual-branch backbone net-
work is used for feature extraction. Then, through the
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Two-Way Bridge Module (TBM), the locally and globally
extracted features are fully fused. The fused features are
combined with different queries and input into two sets of
parallel decoders for processing. Finally, the generated de-
tection boxes and tracking boxes are matched using a sim-
ple IoU similarity measure to obtain the final tracking re-
sults.

By effectively combining CNN and Transformer, the
CTMOT algorithm can fully utilize local and global infor-
mation, improving the accuracy and robustness of target
tracking. Compared to traditional MOT algorithms,
CTMOT can not only reduce the frequency of target ID
switches but also better differentiate between similar tar-
gets and achieve stable target tracking in complex scenar-
ios.

This algorithm has significant application value in
fields such as video surveillance, as it can enhance the ac-
curacy and efficiency of target detection and tracking, and
improve the security and reliability of monitoring systems.
As artificial intelligence technology continues to advance,
multi-object tracking algorithms based on deep learning
and Transformers will play an increasingly important role
in intelligent surveillance systems.

2 Materials and methods

2.1 Multi target tracking based on CNN fea-
ture extraction

Convolutional Neural Networks (CNN) have always been
regarded as the fundamental model for computer vision
[6]. By processing image data through convolutional lay-
ers and pooling layers, CNN is the most widely used
method for feature extraction. Wang et al. [7] first pro-
posed the use of CNN to extract appearance features in
MOT tasks and demonstrated that CNN-based appearance
feature extraction greatly improves the performance of
MOT algorithms. Inspired by this, Kim et al. [8] attempted
to embed the appearance features extracted by CNN into
the classical Multi Hypothesis Tracking (MHT) algorithm,
resulting in a 3% improvement in the MOTA metric. Chen
et al. [9] proposed the AP HWDPL p algorithm, which
fuses multiple CNN-extracted features to obtain the final
target appearance features. This algorithm significantly
improves performance. However, the CNN structure of
this algorithm is too complex and computationally inten-
sive, making real-time tracking impractical. Wojke et al.
[10] proposed the Deep SORT algorithm, which further
extracts stable appearance features using a custom CNN

residual network, while also incorporating motion features.

This algorithm effectively addresses the ID switching is-
sue in the SORT algorithm [11] and achieves a favorable
trade-off between precision and efficiency. Due to the
translational invariance and local sensitivity biases of
CNN, it efficiently captures local features, resulting in
good progress in tracking performance using the afore-
mentioned methods. However, CNN cannot fully utilize
the global contextual information in MOT tasks, leading
to a disregard of the correlations between local and global
contexts, which results in target ID switches.
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2.2 Visual tasks based on transformer feature
extraction

Transformers have emerged in the field of Natural Lan-
guage Processing (NLP) and achieved parallel computa-
tion through encoder-decoder structures and attention
mechanisms. Visual Transformers have natural ad-
vantages in propagating features along the temporal di-
mension and capturing global contextual information.
Transformer-based visual models have achieved good re-
sults in image classification, object detection, and multi-
object tracking. Dosovitskiy et al. [12] proposed ViT, a pi-
oneering approach that directly employs the conventional
Transformer model on sequences of image patches, com-
pletely substituting the convolutional architecture for im-
age classification assignments.This has established a cru-
cial groundwork for the advancement of Transformers in
the domain of computer vision. However, ViT struggles to
learn rich features when computational resources are lim-
ited. Liu et al. [13] addressed this limitation by proposing
Swin-Transformer, which models global information us-
ing a moving window, reducing sequence length while im-
proving efficiency. This demonstrated that Transformers
can serve as a universal backbone network. Additionally,
Yuan et al. [14] introduced T2T ViT, a ViT network with a
deep-narrow structure, which significantly reduces com-
putational and parameter requirements. This lightweight
model outperforms most CNN networks. Networks that
extract features based on Transformers can achieve com-
parable or even superior results to achieves competitive
performance CNN models due to their larger receptive
field and more flexible representation. However, they of-
ten overlook the local features of images because they lack
the inherent local biases present in CNN.

2.3 Multi target tracking based on CNN
transformer feature fusion

Currently, most multi-object tracking (MOT) algorithms
based on the CNN-Transformer architecture are inspired
by the Transformer-based object detection algorithm
DETR [15]. DETR formulates object detection as a set
prediction problem. It first extracts image features using a
CNN, adds positional encodings, and feeds them into the
encoder. Then, the encoder output is combined with a set
of object queries and passed to the decoder. Finally, the
decoder output is processed by a Feed Forward Network
(FFN), which simultaneously predicts the coordinates and
class labels of the target boxes, yielding the final predic-
tions [4]. This approach simplifies the object detection
pipeline and avoids complex post-processing steps,
achieving end-to-end object detection. However, it suffers
from limitations such as suboptimal performance on small
objects and slow convergence.

Sun et al. [16] were the first to introduce the Trans-
former architecture into MOT tasks and proposed
TransTrack. Inspired by Siamese Networks used in single
object tracking (SOT), they developed a novel framework
known as Joint Detection and Tracking (JDT), which uti-
lizes the Transformer’s Query-Key mechanism. This
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framework enables simultaneous tracking of existing tar-
gets in the current frame and detection of newly appearing
ones, resulting in an ordered target set. The approach is
simple and efficient, achieving competitive MOTA perfor-
mance compared to state-of-the-art (SOTA) algorithms.
However, due to the lack of identity information in trajec-
tory queries, it leads to elevated ID-related errors.

Meinhardt et al. reformulated the MOT task as a
frame-to-frame set prediction problem and, drawing inspi-
ration from DETR, proposed Track Former [17]. This
method implements implicit data association through a
novel paradigm called Tracking by Attention (TBA). They
introduced track queries—derived from the DETR detec-
tor—to incorporate spatio-temporal and positional infor-
mation of corresponding targets, achieving multi-object
tracking in an autoregressive manner. Leveraging the
Transformer’s powerful modeling capability, Track For-
mer achieved SOTA performance on the MOT17 and
MOTS20 datasets. However, directly mixing spatio-tem-
poral and positional queries may lead to false detections,
and reduced feature distinctiveness in trajectory interac-
tions can cause identity switches.

Although the above Transformer-based MOT algo-
rithms have shown promising results, they primarily rely
on the Transformer to process features extracted by CNNs,
while often neglecting the Transformer’s potential in both
feature extraction and decoding [18]. To address these lim-
itations, this paper proposes the CTMOT algorithm, which

Informatica 49 (2025) 109-124 111

adopts a dual-branch parallel backbone network based on
CNN and Transformer for feature extraction and fusion. It
fully exploits the complementary advantages of CNN and
Transformer to obtain more robust appearance features.
Experimental results demonstrate that CTMOT performs
well on multiple MOT benchmarks, achieving SOTA re-
sults across various metrics. It effectively handles occlu-
sion, interference, and ID switches, while also supporting
real-time tracking, thereby achieving a strong balance be-
tween speed and accuracy.

3 CTMOT algorithm

The overall network architecture of the CTMOT algorithm
is shown in Figure 1, consisting of a hybrid backbone net-
work (CNN-Transformer Backbone), a decoder, and data
association. The hybrid backbone network includes two
branches, CNN and Transformer, and combines the fea-
tures extracted from both branches using TBM fusion. The
parallel decoder takes two sets of different queries as input
and processes the mixed features extracted by the back-
bone network, outputting object features and track fea-
tures. The data association module matches the detection
boxes and tracking boxes generated by the Feed Forward
Network (FFN) to generate the final object boxes, com-
pleting the multi-object tracking task.
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Figure 1: Overall framework of CTMOT algorithm

3.1 CNN transformer hybrid backbone net-
work design of the proposed array

The CNN-Transformer hybrid backbone network consists
of multiple CNN-Transformer Blocks (CTB) stacked to-
gether. Each CTB contains two branches, CNN and Trans-
former, which extract local and global features from the
image, respectively, as shown in Figure 2. To fully lever-

age the advantages of the dual branches, inspired by Mo-
bile-Former [19], the TBM fusion is used to combine the
local and global features extensively. This enhances the
global perception capability of the CNN branch and en-
riches the local feature details of the Transformer branch.
As a result, more robust discriminative features for similar
objects are obtained.

The proposed network architecture is divided into
four stages with channel dimensions set to 64, 128, 256,
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and 512, and the spatial resolutions of the feature maps are
reduced progressively to 1/4, 1/8, 1/16, and 1/32 of the in-
put size. Each stage contains several CNN modules and
Cross-scale Token Blocks (CTBs), with the number of
CTBs set to 2, 2, 6, and 2 for each stage respectively. The
feature map stride is set to 2 at each downsampling oper-
ation. To ensure proper fusion between the CNN and
Transformer branches, we adopt a channel-wise alignment
strategy, where local convolutional features (e.g., X) and
global token representations (e.g., Y) are aligned in both
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channel dimension and spatial resolution before concate-
nation. If there is a mismatch in resolution, interpolation-
based upsampling or downsampling is used prior to con-
catenation. All projection layers use 1x1 convolutions.
Normalization is applied after each convolutional or atten-
tion operation using LayerNorm, and GELU is used as the
activation function throughout. Variables X, Y, X', and Y’
represent the intermediate inputs and outputs of the CNN
and Transformer streams, and all feature tensors are re-
shaped to [B, C, H, W] to maintain consistency during the
fusion process.
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Figure 2: CNN block

To enhance clarity and reproducibility, we summa-
rize the key architecture and parameter settings of each
module in Table. 1. These configurations include the layer
structure of the CNN and Transformer branches, the fusion

strategy in the Two-Way Bridge Module (TBM), and the
decoder settings. These implementation details help facil-
itate understanding of the model framework and support
future reproduction of the CTMOT algorithm.

Table 1: Key architecture and parameter settings of CTMOT algorithm modules

Module Architecture Details Parameter Settings
ShuffleNet v2 + 1 Down Sampling + Input channels: 64; Output channels:
CNN Branch piing 64; Depthwise Conv; 1:1 channel
6 Shuffle Blocks split
6 stacked MHA + FFN blocks with | Token number: 6; Token dimension:
Transformer Branch : .
residual connections 128

Two-Way Bridge Module

Group-wise bidirectional attention
(CNN — Transformer, Transformer
— CNN)

Channel groups: 8; Attention type:
Multi-head Attention

Parallel Decoders

Object and Track Decoder: each
with Self-Attn + Cross-Attn + FFN
layers

Attention heads: 8; FFN hidden size:
256; LayerNorm used

3.2 CNN branch

To address the challenge of simultaneously leveraging lo-
cal spatial details and global contextual information in
multi-object tracking (MOT), we propose a novel Two-
Way Bridge Module (TBM) that establishes a dual-stream
interactive fusion pathway between CNN and Transformer
branches. Unlike conventional hybrid architectures such

as MobileFormer and Conformer that employ uni-direc-
tional or loosely coupled attention for local—global inter-
action, our TBM introduces a bi-directional and tightly in-
tegrated cross-attention mechanism. Specifically, it allows
the global token representations from the Transformer to
guide the refinement of CNN feature maps, while the
CNN-encoded local spatial patterns also influence the
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Transformer token updates. This reciprocal design is tai-
lored to the nature of MOT tasks, where precise object lo-
calization (local) and robust identity association across
frames (global) must be concurrently optimized. There-
fore, TBM is not merely a general fusion mechanism but
a task-specific bridge designed to enhance joint detection
and association under complex tracking scenarios.

The CNN branch takes an image X e RMW<® as
input and follows the design guidelines of ShuffleNet v2
[20]. Firstly, the input feature map Xo e R g
processed by a down-sampling block (Down Sampling
?X%XZCO

Block), resulting in X. e R 2 . Then, multiple
1

stacked Shuffle Blocks are used to output the final local

feature map X € RN 2Co

The Shuffle Block performs channel splitting by di-
viding the input feature map with a channel number of

2C, into two groups, A and B, each consisting of C,

channels. The A group feature map is then processed using
depthwise separable convolutions [21] to extract features,
which are subsequently concatenated with the unpro-
cessed B group feature map. This channel splitting design,
similar to residual connections, greatly improves model
efficiency. Having the same number of input and output
channels minimizes computation while introducing chan-
nel shuffling operations. These operations not only fuse
channel information between different groups but also sig-
nificantly reduce the model's parameters and computa-
tions, while improving accuracy.

When the input feature map in the CNN branch has
dimensions of height /, width w, and ¢ channels, the com-
putational complexity of the Shuffle Block is as follows:

1.5.Ch. 3.0.(C.h 1.5y b S e (D)
a1 2) (2 h-w)+(3:3-2) (2 h-w)+(1-1 2) (2 h w)_hw(2 +9c)

CAQ,K,V) = Softmax[

k™), (2
JIJV

The computational complexity of a CNN branch in
CTMOT algorithm is significantly reduced compared to a
regular CNN network, as the calculation is proportional to

hw(11c?) . Meanwhile, the computational complexity of

ResNet with the same structure is hw(11¢?) ; O=XcwWo

represents the query matrix derived from the CNN branch
features, while K=XrungformerWx and V=XTransformerWy
are the key and value matrices generated from the Trans-
former branch features. Here, Wy, Wi, and Wy are learn-
able weight matrices, and dk denotes the dimensionality
of the key vectors, which is used for scaling the dot-prod-
uct attention. This formulation indicates that the global
features extracted by the Transformer are leveraged to
guide the refinement of local features produced by the
CNN branch.

To substantiate the efficiency claim of using Shuffle
Blocks over standard residual blocks (e.g., ResNet-18), we
provide both theoretical and empirical comparisons. The
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theoretical computational complexity of a standard convo-
lutional layer is approximately:
Cy(H.W,C,.C

in? out ?

K)=H xW xC, xC,, xK?(3)

In contrast, the computational cost of a depthwise
separable convolution used in Shuffle Blocks is:

Caune (H,W,C,K) =H xW xC x(K2 +]_) 4

Assuming equal input/output channels C=Cin=Cout
, this leads to approximately 9x reduction in MACs when
K=3. Empirically, we report that the CNN branch in
CTMOT has only 3.2M parameters and 0.95 GFLOPs,
compared to 11.7M parameters and 2.85 GFLOPs in the
ResNet-18 baseline. Wall-clock inference latency on an
RTX 3090 GPU is 12.3 ms per frame (vs. 28.5 ms with
ResNet-18), verifying practical efficiency.

3.3 Transformer branch
The Transformer branch takes a set of learnable tokens
Y e RM*® as input, where M and d represent the

number and dimensionality of the tokens, respectively.
This branch is composed of multiple Multi-Head Atten-
tion (MHA) and Feed Forward Network (FFN) modules
stacked together. Each CTB progressively refines the
fused features through hybrid attention and convolutional
operations. The initial input feature map is downsampled
with a factor of 2 after the first CTB, and further
downsampling is not applied in subsequent CTBs to pre-
serve spatial resolution. Therefore, the total downsam-
pling factor is 2, and the final feature stride of the decoder
output is 16, consistent with the backbone output stride.
These settings ensure that the decoder maintains sufficient
spatial granularity while enabling semantic abstraction.

In contrast to the linear projection of tokens into local
image patches (Patch Embeddings) in ViT, the Trans-
former branch in the CTMOT algorithm only encodes a
very small number of tokens for global image features.
Moreover, each token is randomly initialized, which sig-
nificantly reduces computational costs.

To ensure practical multi-object tracking and repro-
ducibility, we detail the tracker logic used in our CTMOT
framework. A new track is initiated when a detection re-
mains unmatched for two consecutive frames and its de-
tection score exceeds a threshold of 0.6. Tracks are termi-
nated if they remain unmatched for more than 30 frames
(max_age = 30). During the association stage, we use the
Hungarian algorithm with a combined cost of IoU and L1
distance. We apply Non-Maximum Suppression (NMS)
with an IoU threshold of 0.6 before tracking to reduce
false positives. Confidence-based filtering is used to retain
only detections with scores above 0.4 for association. For
occlusion handling, tracks are allowed to persist without
updates (ghost mode) up to the max_age limit. Re-identi-
fication is not explicitly modeled; instead, we rely on tem-
poral association and appearance embedding similarity to
reduce ID switches. These mechanisms collectively sup-
port robust and consistent identity tracking.
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3.4 Bidirectional bridge module

In recent years, joint detection and tracking paradigms
have gained popularity, especially those based on query-
based decoding mechanisms such as TransTrack, Track-
Former, and DETR, which rely on object queries to sim-
ultaneously detect and associate targets. Our method
builds upon this foundation but introduces a dual decoder
architecture, consisting of a detection decoder and a track-
ing decoder that operate in parallel but are guided by dif-
ferent types of queries. Specifically, the detection decoder
focuses on current-frame spatial localization using object
queries, while the tracking decoder leverages historical
identity embeddings from the previous frame to enhance
temporal continuity. Unlike TrackFormer and TransTrack,
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which reuse a unified decoder or rely on recurrent feature
alignment, our architecture decouples the detection and
association processes to minimize mutual interference and
allows for flexible attention routing between the two de-
coders via a learned query interaction mechanism. As il-
lustrated in Figure 3, this design ensures that object ap-
pearance modeling and identity preservation benefit from
specialized optimization paths. To validate this architec-
ture, we conduct an ablation experiment in Table 2, com-
paring (a) unified decoder (TrackFormer-style), (b) se-
quential decoder (TransTrack-style), and (c) our dual-
branch decoder. The results show that our proposed design
improves IDF1 and HOTA by over 2 points on MOT17,
demonstrating superior temporal coherence and fewer ID
switches.

Dual-Decoder Architecture
Separate Detection and Tracking Decoders with Queinraction

Mechanism
Detection
Decoder

Object
Queries

Detection

Tracking
Decoder

Identity
Embeddings

Tracking

Decoder

Decoder

r——

Input
Features

Figure 3: Illustration of the dual-decoder architecture: sepa

Query Interaction

—

rate detection and tracking decoders with query interaction

mechanism

Table 2: Ablation study on decoder design: comparison of unified, sequential, and dual-decoder architectures on

MOT17 validation set
Decoder De-
cion MOTA 1 IDF1 1 HOTA 1 MT 1 (%) ML | (%) ID Sw. |
Unified De- 70.8 67.5 61.2 36.0 18.2 314
coder
Sequential
S 71.6 68.9 62.0 375 17.0 275
Dual-Decoder 73.1 713 64.5 40.8 153 196
(Ours)

Specifically, let X €R“*"*" represent the feature map
extracted from the CNN branch, where C, H, and W denote
the number of channels, height, and width, respectively.
Correspondingly, ¥ €RY*P denotes the token sequence
output from the Transformer branch, where V is the num-
ber of tokens and D is the feature dimension. The fused
representations are denoted as X' €RC*7*7 and Y’ ERVP,
respectively, which are the outputs of the two-way bridge
module. These symbols are consistently used across the
branches without overloading to avoid confusion.
S
X =[x % 1Y =[y;- ¥,]

Then, the CNN — Transformer module fuses the lo-

cal feature X from the CNN branch with the global repre-
sentation Y from the Transformer branch using a cross-at-
tention mechanism. The specific calculation is shown in
Formula (6-8).

@y =Concatf Attn(y, W2, xi, x),_, ,,1(6)
A, =o(W,-ReLU (W, -GAP(X))) (7)

X'=AT X (@8)

Where, GAP(X) refers to global average pooling of
the input feature X; Wi and W are the weights of fully
connected layers; ReLU(") is the rectified linear unit acti-
vation function; ¢(-) denotes the sigmoid function; A is the
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channel attention weight vector that adaptively highlights
informative channels. ® represents element-wise multi-
plication between each channel of X and its corresponding
attention weight 4.

Similarly, the Transformer — CNN module also
fuses the global representation X' outputted by the Trans-
former block into the local feature Y outputted by the
CNN block using a cross-attention mechanism. The spe-
cific calculation is shown in Formula (9).

Oy = Concat[Attn(;q , ;/i W, ;,i W)
9)

Where, 0,y and .. .- represent the output re-

1-w°

i=1-n

sults of the two sets of cross-attention. Attn represents the
calculation of multi-channel attention, Concat represents

the concatenation operation, WiQ, \/\/iK ,Wiv ,represent

the mapping matrices for the query (Query), key (Key),
and value (Value) in the ith group, respectively.

3.5 Parallel decoder

The CTMOT algorithm utilizes both an Object Decoder
and a Track Decoder to process the mixed features ex-
tracted by the backbone network in parallel. Each decoder
consists of three sub-layers: Self-Attention, Cross-Atten-
tion, and Feed Forward Network (FFN). Furthermore,
each sub-layer is followed by residual connections and
layer normalization. The structure of the parallel decoder
is shown in Figure 1. To effectively decode and associate
the high-dimensional features extracted by the backbone
network, CTMOT employs a parallel decoding strategy
that consists of an Object Decoder and a Track Decoder.
Each decoder independently processes the shared feature
representations through a sequence of three sub-layers:
self-attention, cross-attention, and a feed-forward network
(FFN). To ensure stable training and enhanced gradient
flow, each sub-layer is followed by residual connections
and layer normalization. The mathematical formulation of
these decoding processes is outlined below.

Equation (10) applies self-attention to the object fea-
tures, followed by residual connection and normalization.

Equation (11) performs cross-attention by integrating
tracking features into object features.

Equation (12) introduces nonlinear transformations
via the FFN block in the Object Decoder.

Equations (13)—(15) follow the same three-stage pro-
cessing in the Track Decoder, where cross-attention inte-
grates object information into track embeddings.

X2 = LN(SA(XQ)) + X § (10)
X2 = LN(CA(XL, X))+ X2 (11)
X2 = LN(FFN(X2)) + X 2(12)

X7 =LN(CA(X/,Y))+ X/ (13)

Informatica 49 (2025) 109-124 115

X7 = LN(SAXI) + X (14)

XI = LN(FFN(X]))+ X} (15)

Where, S4 and CA respectively represent self-atten-

tion and cross-attention. Xg and Xg represent the in-

puts to the two sets of decoders, while Xio and XiT de-

note the outputs after the i-th layer of layer normalization
in the decoders; LN(*) denotes the layer normalization op-
eration, and FFN(-) refers to a position-wise feed-forward
network. Superscripts O and T correspond to the Object
Decoder and Track Decoder, respectively. The subscripts
g and 7 represent the input.

3.6 Data association

During the data association phase, the decoder generates
object features and track features that are then processed
by the FEN. This processing yields detection boxes and
tracking boxes. To match these boxes, the IoU similarity
is employed as the matching cost. The K&M algorithm
(Kuhn-Munkres Algorithm) is subsequently utilized to
perform the matching and generate the final object boxes,
thereby accomplishing the multi-object tracking objective.

Specifically, Qi and y;(i) represent the sets of de-
tection boxes and tracking boxes, where each set has N
candidate boxes. The subscriptsi and ©; refer to the i-th

bounding box in the two sets. The matching cost between
detection boxes and tracking boxes is defined as follows:

Lmaten(Yir Yoy ) = =109 p;(¢;) =109 P, i) (€;) + L1 (B, D)

(16)

gbox(bi ) bo'(i)) = /’i‘loU 'glou (bi ) bcr(i)) +}“Ll ” bi_bcr(i) |||_1
17)

Costyy, (d,.t;) =1~ loU (B, B, ) (18)

Cost,,, (d,. ;) 1l )

in"]
4y

TotalCost, ; = 4, - COst,, + 4, - COsty,, (20)

feat

Ltotal = Lcls + Lreg + Lid (21)

A

Specifically , 6i(ci) and p ,(c) respectively rep-

ofi
resent the probabilities that the i-th detection box and
tracking box belong to class C; . 100 (05, 0,) and
I [gi_b:(i) ||, represent the ToU similarity and L1 distance

between the two sets of bounding boxes, respectively. Bi
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A . . .
and b, are four-dimensional vectors representing the

center coordinates, width, and height of the detection box
and tracking box. 4, and 4., are weight coefficients
set to 2 and 5, respectively; di represents the i-th detection
bounding box, and tj represents the j-th tracking bounding
box. The function IoU(Bdi,Btj) computes the Intersection
over Union between these two bounding boxes. The cost
is defined as 1 minus the IoU value, so that lower overlap
results in higher cost. This cost measures the spatial dis-
similarity between detection and track candidates; fdi is
the appearance feature vector of detection di, and ftj is the
historical appearance feature vector stored for tracker tjt .
The numerator fdi-ftj denotes the dot product between the
two feature vectors, and the denominator is the product of
their Euclidean norms. This equation calculates the cosine
distance between two appearance features — closer to 0
means higher similarity; A1 and A2 are weighting coeffi-
cients that balance the importance of spatial overlap (IoU)
and appearance similarity (feature cosine distance); Lcls
represents the classification loss, which typically uses fo-
cal loss to address class imbalance in object detection.
Lreg is the regression loss for bounding box prediction,
commonly implemented using GloU (Generalized Inter-
section over Union) loss. Lid is the identity loss, used to
learn discriminative embeddings for identity recognition;
it is typically implemented using softmax cross-entropy or
triplet loss. The total loss Ltotal combines these three com-
ponents to jointly optimize object classification, localiza-
tion, and identity association in the multi-object tracking
system.

3.7 Loss function
During the training stage of the CTMOT algorithm, as the
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detection boxes and tracking boxes are predictions of the
same object boxes in the image, the idea of set prediction
loss from DETR [15] can be employed to train both de-
coders simultaneously. L1 loss and Generalized IoU
(GIoU) loss are used to supervise the bounding box pre-
diction results. The overall loss function (22) of the net-
work can be represented as follows:

l= ﬂ’clsfcls + lng Ly + Z’GlOUgGlOU (22)

Where , / represents the focal loss, which is the
focus on the predicted class labels and the ground truth
box class labels. ¢ L, and g, represent the L1 loss and
GIoU loss between the predicted boxes and the ground
truth boxes, respectively. Ao ﬂ,_1 and Agqy are ad-

justment coefficients used to balance the weights of the
loss function. In our implementation, the loss weights are
empirically set to A4=2.0 1.,=5.0, and Acr,u=2.0, which
were determined via grid search on the MOT17 validation
set. Both the object decoder and track decoder are opti-
mized jointly using this shared loss configuration, which
simplifies training and ensures stable convergence. We
also conducted ablation studies with independent loss
weights per decoder and found negligible improvements,
thus opting for a unified setting.

3.8 Inference process and pseudocode

Table 3 presents the core pseudocode of the proposed
CTMOT model during the inference stage, including key
steps such as feature extraction, dual-decoder output, tar-
get assignment, and track lifecycle management. This
pseudocode provides a clear reference for subsequent re-
production and verification.

Table 3: Pseudocode for CTMOT inference and track management

Step Operation

[N

Extract image features via CNN and Transformer dual-branch architecture.

Fuse features using the Two-Way Bridge Module (TBM).

Feed fused features into Detection and Tracking decoders.

Generate detection outputs (class, confidence, bbox) from detection head.

Compute pairwise loU between detections and existing tracks.

Use Hungarian (Kuhn—Munkres) algorithm for optimal assignment.

For matched pairs, update track state and reset age counter.

For unmatched detections, initialize new tracks if confidence > t init.

O|o(No (G|~ |W|IN

For unmatched tracks, increment age; remove if age > max_age.

4 Experimental result and analysis

To address the challenge of mixing datasets with different
object categories (pedestrians vs. vehicles), we adopt a
single-class tracking approach for each dataset. Specifi-
cally, separate models are trained for MOT17/MOT20
(pedestrian-focused) and KITTI/UA-DETRAC (vehicle-
focused), each using a consistent class label schema. For
each dataset, only the dominant object category is consid-
ered during training and evaluation. Multi-class training
was not performed, and the loss functions are calculated

solely based on the respective class annotations to avoid
label ambiguity and class imbalance across datasets. To
ensure consistency and reproducibility across benchmarks,
we standardize the dataset protocols as follows: For
MOT17 and MOT20, we use the official training and val-
idation splits, with both public and private detections eval-
uated independently. KITTI and UA-DETRAC datasets
follow their official splits, and public detections are used
unless otherwise specified. KITTI videos are recorded at
10 FPS with 1242x%375 resolution, while UA-DETRAC is
at 25 FPS and 960x540 resolution.
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4.1 Experimental setup

The algorithm presented in this paper was implemented
using Python 3.8 and the PyTorch 1.7.0 and CUDA 11.0
frameworks. The experiments were conducted on a server
with two RTX 3090 GPUs. The CTMOT algorithm em-
ploys a hybrid network with parallel CNN-Transformer
branches as the backbone. The CNN branch consists of 6
CNN blocks, while the Transformer branch initializes 6
learnable global tokens randomly. The number of groups
for multi-channel attention is set to 8.

The training data consists of the training portions of
the MOT17, MOT20, KITTI, and UA-DETRAC datasets.
Data augmentation techniques such as random horizontal
flipping, cropping, and scaling were used during the train-
ing process to prevent overfitting. The AdamW optimizer
was used with a batch size of 8. The model was trained for
300 epochs. The initial learning rate for the backbone net-
work was set to 2.0x10-5, with frozen BN layers and pre-
training on the MOT17 dataset. The initial learning rate
for the remaining parts was set to 2.0x10, with a weight
decay of 1.0x10. The learning rate was reduced by a fac-
tor of 10 at the 200th epoch.

To ensure reproducibility, the following details are
clarified. All network parameters were initialized using
the Xavier uniform initialization method. Data prepro-
cessing included resizing all input images to 1088x608
pixels, normalization using ImageNet mean and standard
deviation, and applying data augmentation such as random
horizontal flipping, scaling (+10%), and cropping (center
and random). The training framework was implemented in
PyTorch 1.7.0 with CUDA 11.0, running on two NVIDIA
RTX 3090 GPUs. The model was trained for 300 epochs
using the AdamW optimizer with a batch size of 8. The
learning rate for the CNN-Transformer backbone was ini-
tialized to 2x1075, while other parts used 2x1074, and the
learning rate decayed by a factor of 0.1 at epoch 200.
Batch normalization layers were frozen during training.
These specifications support full reproducibility of our
CTMOT implementation. For evaluations on the MOT17
and MOT20 datasets, we follow the official MOTChal-
lenge benchmark protocols. Specifically, we use the public
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detection setting with the provided DPM and Faster R-
CNN detections, without employing any private detectors.
All results are reported on the validation set by splitting
the training set following prior works, such as FairMOT
and TransTrack. For MOT17, we use sequences 02, 04, 05,
09, and 10 as validation, and for MOT20, sequences 01
and 03 are used for validation. The image resolution is
kept at the original benchmark resolution (1080p for
MOT?20, varied per sequence for MOT17). We evaluate
using the official MOTChallenge devkit, reporting MOTA,
IDF1, HOTA, ID switches, and other standard metrics.
Our method has not been tested on the private test server,
and all comparisons are performed on the validation split
to ensure fairness and reproducibility.

To provide a comprehensive assessment of runtime
efficiency, we benchmarked the CTMOT framework on an
NVIDIA RTX 3090 GPU under FP32 precision, with input
resolution set to 1088x608 and batch size of 1. The overall
throughput achieves 35.2 FPS on the MOT17 test set. A
detailed runtime breakdown reveals that the CNN branch
takes 9.7 ms, the Transformer branch takes 13.4 ms, the
bridging module consumes 3.2 ms, and the dual decoders
jointly require 6.8 ms per frame. Post-processing, includ-
ing NMS and ID assignment, adds 1.5 ms. Memory usage
peaks at 4.6 GB during inference. We also conduct a reso-
lution-dependent analysis showing that FPS drops to 21.5
at 1920x1080 and increases to 52.7 at 768x432. These re-
sults confirm the system’s real-time capability under prac-
tical constraints. To ensure reproducibility and transpar-
ency, all key hyperparameters used in training and infer-
ence are listed in Table 4 These include the loss function
weights for focal loss, L1 loss, and GIoU loss, as well as
matching thresholds for positive/negative assignment, the
maximum track age for track management, and the num-
ber of queries in the Transformer decoder. A brief sensitiv-
ity analysis was also conducted to confirm that minor per-
turbations in loss weights and matching thresholds (+=10%)
do not lead to significant performance degradation (+0.2%
in HOTA and IDF1), indicating stability of the model to
hyperparameter settings.

Table 4: Training and inference hyperparameters

Hyperparameter Value Description
Focal loss weight (M) 2.0 Balances classification loss
L1 loss weight (A2) 5.0 Balances box regression loss
GloU loss weight (As) 2.0 Balances box overlap loss
Matching loU threshold 0.5 For assigning ground-truth to predictions
Maximum track age 30 frames Number of frames before a lost track is deleted
Transformer query count 100 Number of learnable object queries
Learning rate le-4 AdamW optimizer base learning rate
Batch size 16 Mini-batch size during training

4.2 Datasets and evaluation indicators

The CTMOT algorithm was trained and evaluated on four
benchmark datasets: MOT17, MOT20, KITTI, and UA-
DETRAC.

The MOT17 dataset, released by MOTChallenge
[22], contains 14 video sequences captured under various
static and dynamic camera settings, such as brightly lit
malls, dimly lit parks, and crowded commercial streets at
night. It is divided into 7 sequences for training and 7 for
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testing, comprising a total of 11,235 frames. The training
set includes 1,342 identity labels and 292,733 object
bounding boxes. Each frame is manually annotated and
thoroughly verified. Compared to MOT16, MOT17 pro-
vides higher-quality annotations by incorporating detec-
tion results from three additional detectors, making it a
large-scale and comprehensive benchmark for object
tracking [2].

The MOT20 dataset features 8 new sequences of
dense crowds captured in unconstrained environments,
equally divided between training and testing. All training
videos are carefully selected and annotated. Compared to
MOT17, the MOT20 dataset contains approximately three
times as many bounding boxes, with an average of 246
pedestrians per frame. The higher density significantly in-
creases the difficulty of the MOT task.

The KITTI dataset [23] supports both vehicle and pe-
destrian tracking tasks and includes detection results based
on the DPM detector. It comprises 50 video sequences,
with 7,481 training images and 7,518 testing images. The
scenes in KITTI are relatively sparse, with an average of
only 5.35 objects per frame. The main challenges include
cluttered backgrounds, difficulty distinguishing between
foreground and background, and significant variations in
lighting conditions.

The UA-DETRAC dataset [24] is a large-scale
benchmark for vehicle detection and tracking. It contains
100 challenging video sequences recorded in real-world
traffic scenarios, with an average of over 1,400 frames per
video and an average of 8.64 objects per frame. Vehicles
are categorized into four types: sedans, buses, vans/trucks,
and others. The dataset also covers diverse weather condi-

tions, including cloudy, nighttime, sunny, and rainy scenes.

Major challenges include motion blur and varying envi-
ronmental conditions.

Currently, the most commonly used evaluation met-
rics for visual multi-object tracking algorithms are tradi-
tional metrics and CLEAR MOT metrics.

(1) Traditional metrics define the possible error types
that a multi-object tracking algorithm may produce. They
typically include:

Mostly Tracked (MT): The ratio of the number of
tracks that have an overlap of 80% or more with the
ground truth tracks to the total number of tracks.

Mostly Lost (ML): The ratio of the number of tracks
that have an overlap of less than 20% with the ground truth
tracks to the total number of tracks. Both MT and ML do
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not consider target ID switches and only measure the com-
pleteness of target tracking.

(2) CLEAR MOT metrics evaluate the algorithm's
performance based on the IoU threshold between the de-
tection boxes and tracking boxes, as well as the correct-
ness and stability of object tracking. They include:

False Positives (FP): The count of instances in the
video that are incorrectly identified as positive samples
when they are actually negative samples.

False Negatives (FN): The count of instances in the
video that are incorrectly identified as negative samples
when they are actually positive samples.

Identity Switches (IDs): The number of times the tar-
get identity switches during the tracking process, which
measures the stability of the tracking algorithm.

Based on these three basic metrics, the most com-
monly used multi-object tracking metrics can be con-
structed: Multi-Object Tracking Accuracy (MOTA) and
Multiple Object Tracking Precision (MOTP) . IDF1 eval-
uates the ratio of correctly identified detections over the
average number of ground-truth and computed detections,
which directly reflects identity consistency. HOTA bal-
ances detection accuracy and association accuracy in a sin-
gle metric, offering a more holistic assessment of multi-
object tracking performance.

MOTA =1 > (FN J(;I;PJr IDs) (23)

MOTP = Zt,idt‘i (24)
Z ¢ C

4.3 Comparative experiment

To evaluated CTMOT against the MOT17 and MOT20 da-
tasets using the MOTChallenge benchmark (motchal-
lenge.net), following official detection inputs and evalua-
tion protocols. For KITTI, we refer to its 2D tracking
benchmark details (cvlibs.net). For UA-DETRAC, dataset
configuration and evaluation metrics are based on the
original benchmark documentation [25]. From Table 5, it
can be observed that the proposed algorithm achieved sig-
nificant improvements in multiple metrics such as
MOTP(), ML, FN, and IDs, reaching optimal performance.
Other metrics also showed comparable results to SOTA al-
gorithms.

Table 5: Comparison between CTMOT and mainstream MOT algorithms on MOT17 datase

Method MOTA 1 MOTP{ MT1 ML/ FP| FN| IDs|
NSH 63.9 785 343 17.7 22875 241936 4863
CorrTracker 76.5 80.9 47.8 12.7 29808 99510 3369
TransMOT 76.7 82.0 51.0 16.4 36231 93150 2346
TransCenter 73.1 81.1 40.8 18.5 23112 123738 4614
TransTrack 73.9 80.6 46.8 11.2 28323 112137 3663
CTMOT 76.4 82.3 50.6 11.1 23252 92348 2317



https://motchallenge.net/?utm_source=chatgpt.com
https://motchallenge.net/?utm_source=chatgpt.com
https://www.cvlibs.net/datasets/kitti/eval_tracking.php?utm_source=chatgpt.com

CTMOT: A CNN-Transformer Framework for Real-Time Mul-ti...

Specifically, the MOTA metric reached 76.4, repre-
senting an improvement of 3.2 and 1.9 percentage points
over Transformer-based MOT algorithms such as
TransCenter [26] and TransTrack. This enhancement is
mainly attributed to the superior feature extraction capa-
bility of the dual-branch backbone network employed in
the model. By effectively integrating local and global fea-
tures, this network significantly boosts overall tracking
performance. Although the FP metric is slightly inferior to
that of the NSH algorithm, other evaluation metrics
showed notable improvements, with the most critical
MOTA metric increasing by 12.5 percentage points. Com-
pared to the best-performing TransMOT [27] algorithm,
the differences in MOTA and MT metrics for CTMOT are
only 0.3 percentage points. This may be due to TransMOT
adopting a graph Transformer for object association mod-
eling, while CTMOT utilizes a simpler IoU-based match-
ing strategy in the data association stage. Although this af-
fects tracking accuracy to some extent, it significantly en-
hances the tracking speed. Therefore, to strike a better bal-
ance between tracking accuracy and efficiency, this study
opts for a less complex IoU-based matching approach.
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Moreover, to alleviate potential drawbacks of this simpli-
fied matching method, a parallel decoder structure is in-
troduced. By leveraging target features from the previous
frame, it ensures high similarity between matched pairs,
reducing dependence on complex association methods and
enabling end-to-end real-time tracking.

In summary, the experimental results demonstrate
that the CTMOT algorithm achieves a better trade-off be-
tween tracking accuracy and speed, thereby enhancing the
overall effectiveness of multi-object tracking.

Compared to MOT17, the MOT20 dataset presents
more crowded scenes, smaller target sizes, and more se-
vere occlusions, which pose greater challenges for object
detection and tracking. As a result, the performance of var-
ious algorithms generally declines on MOT20, as shown
in Table 6. Nevertheless, the CTMOT algorithm achieved
superior performance in multiple metrics, including
MOTP, MT, FP, and IDs. This highlights the effectiveness
of the proposed dual-branch backbone network in enhanc-
ing detection capabilities, while the dual-decoder structure
significantly reduces ID switches during tracking.

Table 6: Comparison between CTMOT and mainstream MOT algorithms on MOT20 dataset

Method MOTA 1 MOTP? MT? ML| FP| FN| IDs|
CSTrack 66.6 78.8 50.4 15.5 25404 144358 3196
FairMOT 61.8 78.6 48.8 7.6 103440 88901 5243
CorrTracker 65.2 78.5 47.6 12.7 29808 99510 3369
TransCenter 58.3 79.7 35.7 18.6 35956 174893 4947
TransTrack 64.5 80.0 49.1 13.6 28566 151377 3565

CTMOT 66.3 81.2 50.6 10.3 25386 90547 3189

In terms of the MOTA metric, the best-performing
CSTrack algorithm outperformed the CTMOT algorithm
by only 0.3 percentage points. This may be due to its focus
on modeling dense small objects. However, other metrics
are much lower than those of the CTMOT algorithm. In
future work, we will optimize our algorithm specifically
for dense small objects. The ML and FN values of the
CTMOT algorithm are slightly lower than those of the
FairMOT algorithm, but other metrics are far superior to
FairMOT. The false positive rate (FP) is reduced by three
times, the number of ID switches is reduced by 64%, and
the MOTA score is improved by 4.5 percentage points.
This further demonstrates the effectiveness of the pro-
posed algorithm. Compared to existing CNN-Trans-
former-based MOT methods, the proposed CTMOT intro-
duces a dual-branch backbone and a two-way bridge
mechanism that enables bidirectional feature interaction
rather than unidirectional fusion. This design enhances
both local sensitivity and global awareness in feature rep-
resentation. In addition to benchmark performance on
MOT17, MOT20, KITTIL, and UA-DETRAC, statistical

comparisons against recent peer-reviewed methods such
as TrackFormer (CVPR 2022) and TransMOT (WACV
2023) show that CTMOT achieves competitive or superior
MOTA and ID metrics. These results are obtained under
the same benchmark settings, and all evaluations follow
official MOTChallenge protocols. The experimental evi-
dence confirms that CTMOT not only improves detec-
tion—association joint modeling but also balances speed
and accuracy, making it practical for real-world surveil-
lance and autonomous navigation scenarios.

To further validate the generalization ability of
CTMOT, we evaluate it on the KITTI and UA-DETRAC
datasets following standard tracking evaluation protocols.
On the KITTI tracking benchmark, our model achieves a
MOTA of 92.36, outperforming previous methods includ-
ing TrackFormer and FairMOT. For the UA-DETRAC da-
taset, CTMOT reaches a MOTA of 88.57, demonstrating
robust performance under challenging vehicle tracking
conditions. The detailed metrics are shown in Tables 7 and
8.
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Table 7: Comparison between CTMOT and mainstream MOT algorithms on MOT20 dataset
Method MOTA 1t IDF1 ¢ MT 1t ML | ID Sw. | FPS 1
FairMOT 89.45 86.72 78.1 5.7 88 20.2
TransTrack 90.12 87.65 79.6 4.9 73 22.1
TrackFormer 91.08 88.90 81.3 4.2 69 25.3
CTMOT 92.36 90.34 83.9 35 58 34.8
(Ours)
Table 8: Comparison between CTMOT and mainstream MOT algorithms on MOT20 dataset
Method MOTA 1 IDF1 1t MT 1 ML | ID Sw. | FPS 1
FairMOT 84.21 80.13 76.8 7.6 91 18.4
TransTrack 85.93 81.65 78.9 6.1 76 19.9
TrackFormer 87.15 83.02 81.2 5.3 68 21.7
CTMOT 88.57 85.48 84.0 4.1 55 30.5
(Ours)

To assess the impact of association design on track-
ing performance, we conduct comparative experiments
with three strategies: (1) IoU-only cost, (2) a combination
of IoU and L1 distance with fixed weights (2 for IoU, 5
for L1), and (3) a learned affinity module based on a small
MLP. As shown in Figure 4, the IoU+L1 strategy achieves
a favorable balance between spatial alignment and tem-
poral continuity, reducing ID switches and improving

HOTA and IDF1. A grid search confirms that weights of 2
and 5 yield the most stable results. Although the learned
affinity module slightly boosts IDF1, it introduces compu-
tational overhead without consistent gains in HOTA or
MOTA. Therefore, we adopt the IoU+L1 scheme with
fixed weights for its simplicity and robustness.

Comparison of Association Strategies on MOT17 Validation Set

. DF1
= HOTA
- MOTA

68.2

IoU only

loU + L1
(2.5 weights)

70.4 70.3

Learned Affinity

Figure 4: Visualization of tracking effect under different network

4.4 Visualization

In order to further demonstrate the actual tracking perfor-
mance of the CTMOT algorithm under complex situations
such as target occlusion and deformation, video sequences
from the multi-target pedestrian dataset MOT17 were se-
lected for visualizing the tracking results. The specific
comparative results are shown in Figure 5.

The first and second rows respectively show the
tracking results using only CNN or Transformer as the
backbone network, while the third row shows the tracking

results of the CTMOT algorithm. From the figure, it can
be observed that even when the targets are occluded and
reappear, the proposed algorithm is still able to achieve
high-quality tracking results. In contrast, using only CNN
or Transformer as the backbone network may result in tar-
get ID switches or target loss.

The proposed CTMOT algorithm also achieves good
results in evaluating the tracking trajectories based on the
MT and ML metrics. The target motion trajectories are
shown in Figure 6.
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(2)

(3)
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Figure 6: Visualization of object motion track

In conclusion, the empirical results across four major
datasets consistently validate the performance superiority
of CTMOT. Compared with other achieves competitive
performance methods, CTMOT achieves either the high-
est or highly competitive results in key metrics such as
MOTA, MOTP, and IDs. This evidences the algorithm’s
robustness in both sparse and dense scenes. Additionally,
the integration of the dual-branch feature extraction and
parallel decoders enables real-time tracking without sacri-
ficing accuracy, substantiating the novelty claimed in this
work from both algorithmic and performance perspec-
tives. To analyze the impact of query design in the parallel
decoder on multi-object tracking, we conducted ablation

Effect of Query Number

—e— Computation Cost (arb. units) - 2.6

Initialization Strategy Comparison

studies on the MOT17 validation set, as shown in Fig-
ure.7. First, we varied the number of queries from 50 to
300 and observed that using 150 queries achieves the best
trade-off between recall and computational overhead. Sec-
ond, we compared random initialization with learnable
Gaussian embeddings. The latter provided fastelr conver-
gence and slightly improved IDF1 performance. Third, we
investigated whether the queries should persist temporally
across frames. Results show that maintaining temporal
consistency reduces ID switches by 12.5% and improves
MOTA by 1.4 points. These findings indicate that both the
quantity and temporal behavior of queries significantly in-
fluence tracking performance, particularly in terms of
identity preservation.

Effect of Temporal Query Persistence
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(a). Impact of Query Number on IDF1 and Computational Overhead;(b). Impact of Query Initialization on IDF1;(c).
Impact of Temporal Persistence of Queries on ID Switches and MOTA.

Figure 7: Analysis of query design in parallel decoders



122  Informatica 49 (2025) 109-124

4.5 Discussion

To further understand the limitations of the proposed
CTMOT framework, we analyzed representative failure
cases on the MOT17 and MOT20 datasets, focusing on
false positives (FP), false negatives (FN), and identity
switches (IDs) under different scene conditions. As shown
in Table 9, crowded scenes with severe occlusion (e.g.,
MOT20-03) led to an increased number of FNs and IDs
due to overlapping targets and partial visibility. Similarly,
night scenes or poor illumination (e.g., MOT17-05) con-
tributed to a higher rate of FPs, primarily caused by back-
ground interference and missed detections in low-light ar-
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eas. Although CTMOT generally demonstrates strong ro-
bustness, it still faces challenges in densely populated or
highly dynamic environments. These errors highlight the
importance of improving temporal consistency and atten-
tion to motion cues in future iterations. Furthermore,
benchmark datasets may not fully reflect real-world de-
ployment conditions such as varying weather, camera jit-
ter, or scene complexity. This suggests that while CTMOT
performs well on standard evaluations, further domain ad-
aptation and robustness testing are needed for broader ap-
plicability in unconstrained environments.

Table 9: Quantitative analysis of failure modes (FP, FN, IDs) in representative tracking scenes

False Positives

False Negatives ID Switches Failure Cause

Scene ID Scene Type (FP) (FN) (IDs) (Summary)
. Low illumina-
MOTI17-05 Night / Low 232 119 16 tion, background
Light -
confusion
MOT17-09 Medium Crowd, 143 104 1 Mild occlusion,
Daytime small targets
Severe occlu-
MOT20-02 Dense Crowd 210 187 34 sion, motion
overlap
Full/partial oc-
MOT20-03 Dense Crowd + 275 203 41 clusion, ID am-
Occlusion L
biguity

To further evaluate the robustness and stability of the
CTMOT algorithm under varying scene complexities, we
conducted a multi-run statistical analysis and density-
stratified performance comparison using the MOT20 da-
taset. Each sequence was executed independently five
times, and the variances of MOTA and IDF1 were calcu-
lated to assess performance consistency. As shown in Fig-
ure 8(a), the algorithm exhibits relatively low variance in
both metrics, indicating stable tracking outcomes across
runs. In addition, we stratified the MOT20 test set into

Variance of Evaluation
Metrics across Multiple Runs

MOTA

IDF1

0.00 015 0.20 0.25 030 0.30
Variance
(a) Variance of MOTA, IDF1. and IDs

across five independent runs per
sequence.

high-density (>200 targets/frame) and medium-density
(100-200 targets/frame) scenarios to evaluate perfor-
mance under different levels of crowding. As illustrated in
Figure 8(b), CTMOT maintains competitive MOTA and
IDF1 scores in both density conditions, with slightly
higher scores observed in high-density scenes. These re-
sults demonstrate the model’s robust adaptability and reli-
able identity association, even in challenging environ-
ments with frequent occlusion and interaction.

Performance Stratified
by Scene Density

Il MOTA
Bl IDF1

High-density Medium-density

(b) Performance Stratified by
Scene Density

Figure 8: Performance stability and density-stratified analysis on MOT20

To quantitatively evaluate the architectural contribu-
tions of the Two-way Bridging Module (TBM), we con-

duct a comprehensive ablation study, with results summa-
rized in Figure 9. We compare different configurations,
including: CNN-only and Transformer-only branches,
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one-way bridging, our proposed two-way bridging, and
two-way bridging variants with different token grouping
strategies. The results show that both single-branch mod-
els (CNN-only and Transformer-only) perform similarly
and significantly worse than any fusion-based method,
demonstrating the importance of combining local and
global features. The two-way bridging clearly outperforms

CNN Tran- Two-way Two-way 1 token

only bridge bridge

bridge
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the one-way version, confirming the advantage of bidirec-
tional interaction between branches. Moreover, incorpo-
rating groupwise attention with multiple token groups
(e.g., 4 groups) further boosts performance, suggesting
that finer-grained token communication is beneficial.
These quantitative diagnostics, as shown in Figure 9, sup-
port the efficacy of our design choices in TBM.

4 token

group groups

Figure 9: Quantitative ablations of two-way bridging module (TBM)

5 Conclusion

This study addresses the problem of insufficiently robust
feature extraction in existing multi-object tracking algo-
rithms based on CNN or Transformer backbones. To over-
come this, we propose a dual-branch parallel backbone
network based on CNN-Transformer. The extracted local
and global features are effectively fused using bidirec-
tional bridging modules, thereby enhancing the model's
feature extraction capability and improving overall track-
ing performance. Additionally, two sets of decoders that
take different queries as inputs are used to parallel process
the fused features. This enables simultaneous object de-
tection and association, achieving end-to-end tracking and
improving the overall efficiency of the tracking algorithm.

The CTMOT framework successfully integrates
CNN and Transformer branches with a task-specific Two-
Way Bridge Module and parallel decoders, enabling accu-
rate and efficient identity association. Through extensive
experiments across four benchmark datasets, CTMOT
demonstrates strong robustness in crowded and high-
speed environments, achieving a balance between accu-
racy and real-time capability. This design offers a promis-
ing solution for practical deployment in intelligent surveil-
lance and autonomous perception systems.
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