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Image segmentation extracts meaningful structure from images. This study presents a YOLOv8-based 

instance segmentation approach and a web-based system that partitions human images into the head, 

body, right arm, and left arm. We curated 107 manually annotated images of female university students 

aged 19–22, captured under controlled poses; the dataset was split into 92/10/5 images for 

training/validation/testing. To improve robustness, we applied augmentation (rotation, shear, brightness 

and contrast adjustment, darkening, and noise). The model was trained and evaluated, yielding its best 

performance at 200 epochs with mAP@0.50 of 0.979, precision 0.914, recall 0.995, and F1-score 0.95. 

We implemented the system as a web app with a Flask backend and HTML/CSS/JavaScript frontend that 

accepts uploads, runs segmentation, displays masks and confidence scores, and enables downloads. The 

proposed design supports downstream tasks requiring fine-grained human-part analysis. While results 

are strong within this limited and homogeneous cohort, we note reduced reliability for overlapping limbs 

and emphasize the need for broader data—diverse demographics, clothing, and poses—to assess 

generalizability. Training was conducted on Google Colab for reproducibility. 

Povzetek: Predstavljen je YOLOv8-temeljen sistem za segmentacijo delov človeškega telesa s spletno 

aplikacijo, ki dosega visoko natančnost, a zahteva širše podatke za boljšo posplošljivost. 

 

 

1 Introduction 
Health technology innovations that utilize artificial 

intelligence (AI) are growing as multidisciplinary research 

increasingly explores its applications in predictive 

medicine, health services management, and clinical 

decision-making [1, 2], with a growing focus on data-

driven healthcare solutions [1, 3]. Previous studies in 

machine learning models are used to classify stunting 

status and predict children's growth, enabling early 

detection and intervention through algorithms such as 

Random Forest and Extra Trees [4]. More broadly, the 

Rapid development of digital technology has enabled 

computers to perform increasingly sophisticated tasks, 

accelerating progress in AI, particularly in computer 

vision.  

Computer vision is a part of AI that focuses on 

interpreting images or video streams to support decision-

making and perform specific tasks. It encompasses several 

subfields, image segmentation, including image 

classification, and object detection [5]. Image 

segmentation represents a fundamental approach within 

the field of image analysis, wherein an image is 

systematically divided into distinct regions based on 

shared visual characteristics. This process allows 

researchers to extract structured, meaningful, and 

interpretable information from each segmented area, 

thereby supporting deeper analytical insights and 

informed decision-making in various applications. [6]. 

When applied to the segmentation of human body parts, 

this process becomes essential for facilitating more 

detailed recognition and examination of specific 

anatomical regions, such as the head, body, right arm, and 

left arm. 

Human body parts possess distinct geometric 

characteristics that enable precise identification. The 

distinctions can be utilized in computer vision and related 

computational methods to identify and analyze various 

anatomical structures effectively [7]. Segmentation of the 

human body has its own challenges due to the complexity 

of the varied shapes and bodies. Therefore, a method that 

is able to segment accurately and efficiently is needed. 
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Image segmentation is classified into two principal 

categories: semantic segmentation, which assigns a class 

label to every pixel within an image, and instance 

segmentation, which further distinguishes between 

individual objects belonging to the same class, thereby 

enabling more granular analysis [8]. As a part of computer 

vision, Instance segmentation work integrates object 

detection with segmentation techniques. It not only 

identifies and locates objects within an image but also 

generates a pixel-wise segmentation mask for each 

detected entity [8, 9]. 

Instance segmentation not only focus identifies the 

boundaries of objects but also distinguishes between 

instances of the same object. This is very important in the 

analysis of the human body, as it allows the identification 

and analysis of each individual body part in more detail. 

Instance segmentation is useful for measuring the size of 

detected objects, cropping them from their background, 

and more accurately detecting objects. In this study, the 

decomposition of human body parts intends to break down 

the human image into more detailed segments, such as the 

head, body, right arm, and left arm. Human parsing is a 

Fundamental visual comprehension task that requires the 

segmentation of human images into clear body parts [14]. 

Research related to human parsing is often utilized in the 

fashion industry for style analysis [10]. 

The most significant and popular advancement in 

human body segmentation is the You Only Look Once 

(YOLO) framework, a groundbreaking single-stage object 

detection algorithm recognized for its real-time efficiency 

and high accuracy [11]. YOLO establishes a single, 

unified architecture for dividing images into bounding 

boxes and calculating class probabilities for each box 

when compared to previous object identification 

approaches, such as R-CNN [28]. Using YOLO shows 

that execution is much faster and more precise. This 

algorithm can also accurately predict images or 

illustrations [12]. The YOLOv8 method will be 

implemented in this study to divide the human image into 

more detailed parts. YOLOv8 offers object detection 

capabilities with a higher level of speed, accuracy, and 

efficiency compared to previous versions [13, 15, 16].  

Our study, which utilizes the YOLOv8 algorithm, aims 

to detect objects due to its high speed and accuracy and 

then employs the instance segmentation method to 

separate individual objects into distinct segments. The 

first step involves detecting objects using object detection 

algorithms, followed by refining segmentation through 

pixel-level classification; this method is expected to 

achieve accurate and detailed segmentation.  

 

 

 

 

 

 

 

 

This leverages the power of both tasks, improving overall 

performance and resulting in high-quality object masks. 

From the above explanation, this research will produce a 

web-based system to decompose parts of the human body 

into clear segments, such as the head, body, right arm, and 

left arm. 

While significant progress has been achieved in 

instance segmentation for human body parts, the 

effectiveness and robustness of such systems depend 

greatly on the diversity and representativeness of the 

datasets used for training and evaluation. In this study, the 

dataset consists of manually annotated images of female 

students aged 19–22 in controlled poses and clothing. This 

limited scope provides a useful foundation for 

methodological exploration but also restricts the 

generalizability of the findings. The reported results, 

therefore, should be interpreted within the context of this 

specific and homogeneous dataset. 

Consequently, the objective of this research is to 

develop and evaluate a web-based human body 

segmentation system using the YOLOv8 instance 

segmentation model, focusing on the head, body, right 

arm, and left arm. Although promising results are obtained 

within this dataset, future research with more diverse and 

representative datasets is necessary to assess the broader 

applicability and robustness of the proposed framework. 

2 Related work 

2.1 Related work summary table 

We summarize key human body-part parsing and 

instance-level human analysis methods in Table 1 to 

position our contribution among prior work. The 

comparison spans task formulation (semantic vs. instance-

level), canonical datasets (e.g., LIP [14], PASCAL-

Person-Part, CIHP [22], MHP-v2.0), reported metrics 

(mIoU/AP), and deployment notes. This overview 

clarifies where prior art excels and where gaps remain for 

body-part instance segmentation suitable for lightweight, 

web-served applications. 

Overall, CE2P, SCHP, PCNet/ACENet deliver strong 

semantic human parsing on LIP/PASCAL-Person-

Part/CIHP, whereas PGN and Parsing R-CNN [22] target 

instance-level human parsing with heavier, often two-

stage pipelines. Prior work seldom reports lightweight, 

web-deployed systems for per-instance body-part masks 

(including explicit left/right hands under occlusion). In 

contrast, our YOLOv8-based system achieves high 

accuracy on a constrained dataset and is implemented as a 

browser-facing application (Flask + HTML/CSS/JS), 

thereby addressing both the instance-level requirement 

and practical deployment considerations. 
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2.1. Human body 

The human body can be classified into two primaries 

sections: the trunk (truncus) and the limbs, which are 

further divided into upper and lower extremities. The part 

of trunk includes head, neck, and torso, with the torso 

itself comprising the chest, abdomen, and waist. Upper 

limbs are connected to the torso through shoulder cuffs, 

which consist of the clavicula (collarbone) and scapula 

(shoulder blades), which move with the torso. Two main 

part of the pelvic girdle composed by pelvic bones and a 

sacrum (lower spine), connecting the lower limbs with the 

torso [17].  

 

 

As a complete biological structure, the human body is  

composed of multiple interconnected parts, including the 

head, neck, torso, arms, and legs. The head is the upper 

part of the body that contains the brain and features such 

as eyes, ears, nose, and mouth. Part of the neck connects 

the head with the torso. The whole trunk includes the chest 

and abdomen, where various vital organs such as the heart, 

lungs, and stomach are located. Two arms are located at 

the sides of the body and serve to perform various 

movements and tasks, while the two legs provide support 

and allow movement. The structure of the human body is 

very complex and diverse, with each part having an 

important role in maintaining overall health and balance. 

 

Table 1: Comparative summary of related work on human body-part parsing and instance-level analysis. 

Method (Year) Task / Output Dataset(s) Metric & Score 

(type) 

Application / 

Deployment 

Limitations / 

Notes 

CE2P (AAAI 

2019) [23] 

Single & multi-person 

human parsing 

(semantic parts) 

LIP, CIHP, 

MHP-v2.0 

56.50% mIoU 

(LIP); 45.31% 

mean APr 

(CIHP); 33.34% 

APp@0.5 (MHP-

v2.0) 

Academic SOTA 

at the time 

Strong parsing; 

instance-aware via 

challenge tracks; no 

web deployment 

discussed. 

Parsing R-CNN 

(CVPR 2019) 

[22] 

Instance-level human 

parsing (two-stage, 

region-based) 

CIHP, MHP-

v2.0, 

DensePose-

COCO 

SOTA on 

CIHP/MHP; 1st 

place DensePose-

COCO (2018) 

High-accuracy, 

region-based 

pipeline 

Heavier two-stage 

design; not targeted 

for real-time web 

serving. 

SCHP (Self-

Correction 

Human Parsing, 

2019) [24] 

Single-person human 

parsing (semantic) 

LIP, PASCAL-

Person-Part 

Best on LIP/PPP 

in paper; 1st in 

CVPR2019 LIP 

Challenge 

Robust to noisy 

labels 

Semantic (not per-

instance masks); no 

web system 

reported. 

PCNet (Part-

Aware Context 

Network, CVPR 

2020) [25] 

Context Network, 

CVPR 2020) 

Human parsing 

(semantic, context-

aware) 

PASCAL-

Person-Part, 

LIP, CIHP 

Reports SOTA 

gains on these 

datasets 

Context modeling 

for parts 

Semantic parsing 

(not instance 

separation); offline 

evaluation. 

ACENet (2020) 

[26] 

Human parsing 

(semantic; affinity-

aware) 

LIP, PASCAL-

Person-Part 

58.1% mIoU 

(LIP) 

Accuracy-oriented Semantic parsing; 

not focused on web 

deployment or per-

instance limbs. 

PGN / Part 

Grouping 

Network 

(ECCV 2018) 

[27] 

Instance-level human 

parsing (detection-

free; parts + instance 

edges) 

CIHP 

(introduced), 

PASCAL-

Person-Part 

Outperforms prior 

methods on PPP; 

strong results on 

CIHP 

Joint parts & 

instance edges 

Earlier instance-

level approach; 

heavier than 

YOLO-style one-

stage; no web 

deployment. 

This Work — 

YOLOv8-seg 

(Web) 

Instance-level human 

body-part 

segmentation (Head, 

Body, Right Hand, 

Left Hand) 

107 images, 

female students 

19–22; split 

92/10/5 

(train/val/test); 

controlled poses 

& clothing 

mAP@0.50 = 

0.979 (all classes) 

at 200 epochs 

Web app (Flask 

backend; 

HTML/CSS/JS 

frontend); ~9–13 

FPS on tested 

setup 

Dataset is 

homogeneous; 

generalization 

limited; remaining 

errors under 

occlusion/overlap 

(hands vs torso) 
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2.2 Image segmentation 

Image segmentation is a core task in the field of computer 

vision, wherein a digital image is divided into multiple 

regions or segments by grouping together areas that share 

similar visual characteristics, such as color, texture, shape, 

or intensity This segmentation process enables the 

extraction of meaningful regions of interest (RoI's), 

facilitating a deeper analysis of an image's structure and 

the information it contains [6, 18]. 

Segmentation plays a critical role in various digital 

image processing tasks, including object identification, 

feature extraction, and visual content analysis. It serves as 

a key preprocessing step in domains such as autonomous 

driving, medical imaging, industrial inspection, and 

augmented reality [18]. The result of segments generally 

consists of non-overlapping pixel groups that are 

homogeneous and represent significant regions based on 

human visual perception. 

Despite its importance, image segmentation presents 

challenges, particularly in defining what constitutes a 

"meaningful region" due to subjective visual 

interpretation, as well as in representing complex objects 

based solely on low-level features [18]. Generally, 

segmentation techniques are categorized into two types: 

(i) semantic segmentation, which labels each pixel 

according to its corresponding class, and (ii) instance 

segmentation, which differentiates between distinct 

objects belonging to the same class. 

2.3 Instance segmentation 

This segmentation is related to the precise identification of 

all objects present in a single image. Therefore, combining 

object detection, object location, and object classification 

is key elements in instance segmentation. In other words, 

this segmentation approach is focused on the goal of 

clearly distinguishing between each object that is 

categorized as a similar instance.  
The main objective of instance segmentation is to 

recognize and delineate individual objects within an image 

[19]. Implementing this method is expected to enhance 

accuracy and efficiency while minimizing potential errors 

arising from the intricate nature of human body structures. 

 

Instance segmentation has gained considerable 

attention in computer vision research, particularly for 

complex applications such as robotics, autonomous 

vehicles, and surveillance. Several instance segmentation 

frameworks have been proposed, and most of them 

leverage deep learning to improve segmentation accuracy 

exponentially. Generally, instance segmentation 

techniques can be classified into three broad categories: 

multi-stage approaches, single-stage approaches, and 

methods utilizing semi-supervised or weakly supervised 

learning [20]. 

2.4 You only look once (YOLO) 

YOLO was initially proposed by Joseph Redmon et al in 

2015 as an integrated, real-time object detection 

framework that treats detection as a single-stage 

regression task, directly mapping image pixels to 

bounding box coordinates and class probabilities. The 

original model demonstrated impressive speed, processing 

images at up to 155 fps, albeit with relatively lower 

localization accuracy compared to its contemporaries [21]. 

Since its first introduction, YOLO has undergone several 

iterations, with improvements in accuracy, speed, and 

features. Popular versions include YOLOv1, YOLOv2 

(also known as YOLO9000), YOLOv3, YOLOv4, 

YOLOv5, YOLOv6, YOLOv7 and the latest variants such 

as YOLOv8, as well as community-created 

implementations [29, 30, 31]. 

Overall, the YOLO framework functions by 

partitioning an image into a grid-like structure, where each 

grid cell is responsible for making several bounding box 

predictions along with a confidence score. This score 

represents the model's certainty regarding the presence of 

an object in the respective cell while also estimating the 

precision of the generated bounding box. In addition to 

generating bounding boxes and associated confidence 

scores, each grid cell in the YOLO framework is also 

tasked with predicting the class of the object it contains. 

However, one inherent limitation of this approach is that 

each cell is restricted to predicting only a single object 

class, which may reduce accuracy in scenarios involving  

 

 
Figure 1: Proposed method using YOLOv8 
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overlapping or closely positioned objects of different 

types. The model produces its output in the form of a 

multidimensional tensor that represents the entire grid 

structure superimposed on the input image. This tensor 

encapsulates the predicted class labels, bounding box 

coordinates, and confidence scores for each individual 

grid cell [11, 21]. A visual representation of the YOLO 

architecture, encompassing these components, is provided 

in Figure 1. 

To assess whether an object is present in a predicted 

bounding box, the YOLO algorithm calculates a 

confidence score by multiplying the likelihood that an 

object exists in the box by the Intersection over Union 

(IoU) value. The IoU measures the extent of overlap 

between the predicted bounding box and the 

corresponding ground truth annotation used during 

training. As a standard evaluation metric in object 

detection tasks, IoU provides a quantitative measure of 

how accurately the model localizes objects within the 

image. 

Moreover, the class confidence score obtained by 

combining the conditional probability of the object class 

with the bounding box's confidence score—plays a pivotal 

role in the model's final prediction. This score reflects both 

the probability of a specific class being present in the box 

and the degree of alignment between the predicted box and 

the actual object, offering a comprehensive indication of 

prediction reliability. This score reflects the level of 

confidence in a particular class for each bounding box, 

indicates the likelihood of a specific class in that box, and 

how well the prediction box matches the actual object. 

3 Method 

This study's methodological approach focuses on 

developing a human body segmentation system through 

YOLO-based instance segmentation. This methodology 

includes the stages of problem analysis, needs analysis, 

system architecture, and user interface design. Each stage 

is explained systematically to ensure seamless integration  

 

between the concepts used and the system's 

implementation. 

3.1 Problem analysis 

 In this study, we used Problem analysis to identify the 

primary source of the problem; then, an in-depth 

examination was carried out on the issue that needs to be 

solved so that an efficient system can be developed. In this 

context, body recognition and analysis through images by 

means of segmentation is the primary focus, allowing the 

decomposition of human body parts for more accurate 

detection and recognition. The analysis of this problem 

helps to identify the main obstacles in the recognition and 

analysis of the human body through imagery, where one 

of the proposed approaches is to utilize Instance 

Segmentation using YOLO with the aim that each 

segment of the human body can be identified individually, 

allowing separation between parts such as the head, body, 

right arm, and left arm. Consequently, this technique 

offers valuable applications across various domains, 

including medical image processing and anthropometric 

assessments, as it enhances structural detail and contextual 

understanding of the human body. 

3.2 Need analysis 

A needs analysis is carried out to ensure that the system 

can meet user expectations. This analysis includes the 

functional and non-functional needs that must be fulfilled 

to ensure the system's development meets its intended 

objectives. 

Functional needs analysis involves an explanation of 

the procedures that must be carried out by the system to 

meet the requirements. The functional requirements 

required in this system include: (i)The system can separate 

objects of the human body. (ii)Detects and highlights the 

head, body, right arm, and left arm. (iii) Generate 

segmentation results that can be used for further 

calculations. 

 

 

 
Figure 2: Research methodology 
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Non-functional needs refer to features, characteristics, 

or limitations related to the functions or services provided 

by the system. Below are the essential functional 

requirements for this system: (i)The interface of this 

system is designed to be easy to understand so it can be 

used easily. (ii)To operate the system, the device must be 

connected to the internet. (iii)The limitations of the parts 

of the human body that can be detected are the head, body, 

right arm, and left arm. 

3.3 Dataset & annotations 

Dataset splits. We curated 107 manually annotated images 

and split them into 92 / 10 / 5 images for train / validation 

/ test, respectively (Table 2). Each image contains exactly 

one instance of each annotated part (Head, Body, Right 

Hand, Left Hand), so the per-split instance counts equal 

the number of images per part, yielding a total of 428 

instances (368/40/20 for train/val/test). 

Primary evaluation scope. Because the test split is 

small (5 images; 20 instances), our primary reported 

metrics are computed on the aggregated validation+test 

split (15 images; 60 instances), unless otherwise specified. 

Test-only results are provided in Supplementary Table 2. 

3.4 Research method 

The methodology of this research begins by taking human 

images, which are then used as a dataset. After being 

collected, the images go through a sorting process (data 

cleaning) to determine the images that are suitable for use 

in research. Before the dataset is used for model training, 

a preparation process is carried out that includes manual 

labeling using the Roboflow platform. In addition to 

manual labeling, there is also a preprocessing stage, which 

includes resizing the image to 640×640 pixels. At this 

stage, various data augmentation techniques are applied, 

such as rotation, shear, adjustments in brightness, 

darkening, and the addition of noise. To ensure effective 

learning despite dataset limitations, the images are divided 

into three subsets: 92 images for training, 10 images for 

validation, and 5 images for testing. The dataset used in 

this study is limited in both size and diversity, consisting 

of 107 images of female students aged 19–22, 

photographed under controlled conditions with uniform 

poses and clothing. These constraints limit the model’s 

ability to generalize beyond the specific context of this 

dataset. 

Upon completion of the preparation process is 

completed, the dataset is trained using Google Colab. 

During training, hyperparameter tuning and model 

performance evaluation are conducted to determine the 

optimal configuration. Following the model achieves 

optimal results, further testing is carried out to ensure the 

performance of the resulting segmentation. The model that 

has been obtained is then implemented into a web-based 

system. The output of this system is in the form of 

segmented images that can be used for further analysis. 

The overall research process, covering data acquisition, 

preprocessing, training, evaluation, and deployment, is 

illustrated in Figure 2. 

3.5 Ethics & consent 

Ethics approval. This study involved prospectively 

collected photographs of adult volunteers (female students 

aged 19–22) at the Faculty of Public Health, Universitas 

Sumatera Utara. The protocol was reviewed and approved 

by the [Name of Ethics Committee/IRB] (Approval No.: 

[XXXX], Date: [DD Mon YYYY]). All procedures 

complied with the Declaration of Helsinki and relevant 

institutional guidelines. 

Participant consent. Prior to image capture, 

participants were informed about the study aims, 

procedures, risks, and data handling. Written informed 

consent was obtained for image collection and for the use 

of de-identified images and derived annotations for 

research and publication purposes, including illustrative 

figures in this article. Participants were informed that 

participation was voluntary and could be withdrawn at any 

time without penalty. 

Privacy and anonymization. To minimize the risk of 

re-identification, all images used outside the core research 

team are de-identified. When faces or potentially 

identifying features are visible, they are obfuscated (e.g., 

face blurring) before any sharing beyond the research 

team or inclusion in figures. 

Data-sharing policy. Due to privacy and consent 

restrictions, raw images will not be made publicly 

available. We will share derived, non-identifiable 

artifacts—including pixel-wise masks, bounding boxes, 

class labels, and per-image metadata (age range, pose 

category)—under a simple Data Use Agreement (DUA) 

for bona fide research. Requests should be sent to 

[nainggolan@usu.ac.id]. The complete 

training/evaluation code and the dataset configuration 

(YAML) with class definitions and split indices (92/10/5) 

will be released in a public repository; instructions will 

allow qualified researchers to reproduce our results using 

Table 2: Annotated instances per split. Each image contains one instance of each part, yielding the following instance 

counts: 

Split Images Head Body Right Hand Left Hand Total 

instances 

Train 92 92 92 92 92 368 

Val 10 10 10 10 10 40 

Test 5 5 5 5 5 20 

Total 107 107 107 107 107 428 
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their own data or upon DUA-approved access to the 

derived artifacts. 

Consent for publication. Participants provided 

consent for the publication of de-identified sample outputs 

and figures illustrating the segmentation results. 

3.6 Training configuration and 

hyperparameters 

We trained the model using the Ultralytics YOLOv8 

instance-segmentation implementation. The main settings 

were: input size = 640×640 (imgsz=640), batch size = 4 

(batch=4), number of epochs = 200 (epochs=200), and 

early stopping disabled (patience=0). We used the 

Ultralytics default optimizer, i.e., SGD with momentum 

0.937 and weight decay 5×10⁻⁴ (no manual override). 

Unless otherwise noted, all other optimization and 

augmentation knobs followed the Ultralytics defaults 

(including the library’s learning-rate schedule). The 

dataset was provided via a standard Ultralytics YAML 

configuration file. 

Rationale for the 640×640 input resolution. We 

adopted 640×640 for three reasons. (i) Architectural 

efficiency. 640 is a multiple of the model’s stride, yielding 

clean feature-map sizes and fast convolutional blocks. (ii) 

Compute constraints. With our available GPU memory, 

640×640 allowed stable training at batch size 4 without 

out-of-memory errors; higher resolutions substantially 

increase memory and latency roughly with pixel count. 

(iii) Task fit. In our images, the person occupies a 

relatively large portion of the frame; 640×640 preserves 

sufficient detail for fine structures (e.g., hands) while 

maintaining throughput. During preprocessing we use the 

framework’s standard letterbox resizing, which preserves 

aspect ratio by padding as needed. 

3.7 Hardware and software 

Hardware. All experiments were run on Google Colab 

using a single NVIDIA T4 (16 GB VRAM) GPU. The host 

machine was a Google Compute Engine VM on Linux 

(Colab environment) with Intel Xeon-family vCPUs and 

system RAM provisioned by Colab. We archived the GPU 

and CPU specs (driver, memory, core count) in the run 

logs to support reproducibility. 

 

 

Table 3: Summary training (100 epochs, learning rate = 0.01) 

Class 
Box Mask 

Precision Recall mAP@0.50 Precision Recall mAP@0.50 

All 0.913 0.913 0.913 0.913 0.913 0.913 

Body 0.996 0.996 0.996 0.996 0.996 0.996 

Head 0.972 0.972 0.972 0.972 0.972 0.972 

Right 
Hand 

0.913 0.913 0.913 0.913 0.913 0.913 

Left 
Hand 

0.996 0.996 0.996 0.996 0.996 0.996 

Table 4: Summary training (150 epochs, learning rate = 0.01) 

Class 
Box Mask 

Precision Recall mAP@0.50 Precision Recall mAP@0.50 

All 0.946 0.952 0.977 0.946 0.952 0.977 

Body 0.993 1 0.995 0.993 1 0.995 

Head 0.992 1 0.995 0.992 1 0.995 

Right 
Hand 

0.897 0.9 0.957 0.897 0.9 0.957 

Left 
Hand 

0.901 0.907 0.959 0.901 0.907 0.959 

Table 5: Summary training (200 epochs, learning rate = 0.01) 

Class 
Box Mask 

Precision Recall mAP@0.50 Precision Recall mAP@0.50 

All 0.914 0.995 0.979 0.914 0.995 0.979 

Body 0.92 1 0.995 0.92 1 0.995 

Head 0.921 1 0.995 0.921 1 0.995 

Right 
Hand 

0.908 0.986 0.977 0.908 0.986 0.977 

Left 
Hand 

0.909 0.994 0.95 0.909 0.994 0.95 

Table 6: Summary training (250 epochs, learning rate = 0.01) 

Class 
Box Mask 

Precision Recall mAP@0.50 Precision Recall mAP@0.50 

All 0.931 0.974 0.973 0.931 0.974 0.973 

Body 0.916 1 0.995 0.916 1 0.995 

Head 1 1 0.995 1 1 0.995 

Right Hand 0.9 0.9 0.934 0.9 0.9 0.934 

Left Hand 0.909 0.994 0.968 0.909 0.994 0.968 
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Software; The software stack consisted of Python 3.10.12, 

PyTorch 2.3.0+cu121 with CUDA 12.1, and  

 

Ultralytics YOLOv8 8.2.25, running on Linux (Colab). 

 

3.8 Research questions, hypotheses, and 

intended outcomes 

Research Questions (RQs). 

• RQ1. Can a YOLOv8-based instance segmentation 

model trained on a small, controlled dataset 

accurately segment four human body parts (head, 

body, right arm, left arm)?  

• RQ2. How consistent is the model’s performance 

across classes and under challenging poses (e.g., 

partial occlusions or overlap between limbs)?  

• RQ3. What training configuration (e.g., number of 

epochs around 100–250 at LR = 0.01) yields the best 

trade-off among mAP@0.50, precision, recall, and F1 

on this dataset?  

• RQ4. Does a lightweight web application (Flask + 

HTML/CSS/JS) that wraps the trained model deliver  

outputs (segmentation masks and confidence scores) 

suitable for downstream use in constrained scenarios? 

Hypotheses. 

• H1 (Accuracy target). On the held-out test set, the 

model will achieve mAP@0.50 ≥ 0.95, precision ≥ 

0.90, and recall ≥ 0.95 averaged over the four classes  

 

 

(consistent with the performance envelope we aim for 

on this dataset).  

• H2 (Classwise robustness). Body and head will 

reach per-class AP@0.50 ≈ 0.99, while the hands may  

exhibit slightly lower AP@0.50 due to 

occlusion/overlap; nevertheless, overall recall will  

remain ≥ 0.95.  

• H3 (Training efficiency). Within the explored 

schedule (100–250 epochs at LR = 0.01), 

performance will saturate by ~200 epochs, yielding 

the best balance among mAP@0.50 precision, recall, 

and F1. 

• H4 (System deliverable). A browser-based interface 

that supports upload → segmentation → mask 

visualization/download will enable practical adoption 

and reproducible end-to-end evaluation in controlled 

settings. 

Intended outcomes and success criteria. 

• Primary outcome (accuracy). Achieve mAP@0.50 

≥ 0.95, precision ≥ 0.90, recall ≥ 0.95, and report F1; 

provide per-class and overall metrics on the held-out 

test set, with the IoU threshold specification stated 

explicitly. 

• Secondary outcomes (robustness & analysis). (a) 

Document performance under occlusion/overlap 

cases and quantify any class-specific degradation; (b) 

summarize the effect of training epochs on 

mAP@0.50/precision/recall/F1 to justify the chosen 

configuration. 

 

 

Figure 4: Model performance graph 

Table 7: Summary training (200 epochs, learning rate = 0.01) — no augmentation 

Class 
Box Mask 

Precision Recall mAP@0.50 Precision Recall mAP 

All 0.943 0.955 0.974 0.943 0.955 0.974 

Body 0.986 1 0.995 0.986 1 0.995 

Head 0.99 1 0.995 0.99 1 0.995 

Right 
Hand 

0.894 0.9 0.928 0.894 0.9 0.928 

Left 
Hand 

0.902 0.919 0.977 0.902 0.919 0.977 
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• System outcome (deliverable). Provide a web 

application (Flask backend; HTML/CSS/JS frontend) 

that accepts uploads, runs segmentation, displays 

masks with confidence scores, and supports 

downloadable outputs for downstream tasks. 

• Application use cases (scope). Target constrained 

scenarios such as in-clinic assessment, 

training/rehabilitation tracking, or structured 

educational/anthropometric analyses, acknowledging 

that generalization beyond the current cohort requires 

broader, more diverse data. 

3.9 Data collection 

The dataset was collected at the Faculty of Public Health, 

Universitas Sumatera Utara. To standardize conditions for 

segmentation, all images were captured with participants 

standing in an upright posture: the left arm raised to 

approximately 45°, and the right arm positioned 

downward alongside the body. Participants wore fitted 

clothing or—when wearing a hijab—fitted sleeves 

provided by the study to ensure clear upper-limb contours 

for segmentation. An example of the dataset used in this 

study is shown in Figure 3. 

 
 

Figure 3: Sample of Images from the dataset 

The dataset is relatively homogeneous, comprising 

predominantly young adult females in a limited set of 

poses, clothing styles, and viewing angles. While this 

standardization simplifies annotation and improves 

labeling consistency, it introduces sampling bias and 

limits the external validity of our findings. Accordingly, 

the reported performance should be interpreted as domain-

specific rather than population-level generalization. We 

applied common geometric and photometric 

augmentations, but these cannot substitute for true 

diversity across demographics, poses, and environments. 

See Limitations and Next Steps for planned mitigation via 

broader data collection and cross-dataset validation. 

4 Implementation and result  
Hyperparameter tuning was conducted by exploring 

various combinations of the number of epochs, namely 

100, 150, 200, and 250, with a learning rate of 0.01. The 

detailed results for each configuration are presented in 

separate tables: results for 100 epochs can be found in  

Table 3, 150 epochs in Table 4, 200 epochs in Table 5, 

and 250 epochs in Table 6. 

Tuning the hyperparameters results show that the 

optimal combination was obtained at epoch 200 with a 

learning rate of 0.01. This combination results in the 

highest mAP@0.50 value of the other combinations, 

which is 0.979 for all classes, as shown in Table 5. 
Therefore, resulting from training with this configuration 

is chosen as the primary model for the system. 

Table 7 summarizes the model’s behavior without data 

augmentation. At the aggregate level, the model maintains 

strong precision and recall for both boxes and masks; 

Body and Head perform consistently well, whereas the 

hands remain comparatively more challenging. Relative to 

the augmented 200-epoch setting in Table 5, removing 

augmentation tends to increase precision but reduce recall 

and leads to a slight decrease in overall mAP. These trends 

highlight a precision–recall trade-off and support 

choosing the augmented 200-epoch configuration as the 

primary model, while documenting the no-augmentation 

variant for completeness. 

Based on the model training process at epoch 200 and 

a learning rate of 0.01, the evaluation results of the model 

that was successfully built were presented. The evaluation 

results graph provides a visual representation of the 

 
Figure 5: Model testing performance 
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overall performance of the model, which includes 

important metrics such as box loss, class loss, and dfl loss, 

as well as performance evaluation metrics: precision and 

recall in Fig 4. 

The graph shows that the model has a high 

performance with metrics we use and mAP showing good 

performance. When we evaluate the results for each class 

specifically, variations are not much different from other 

classes. The results show relatively similar to the mAP 

values. mAP is an important metric that provides an idea 

of how well the model can recognize objects in all classes. 

After obtaining the highest mAP value, further 

evaluation of the precision and recall of the model training 

results was carried out. Furthermore, F1 Score is used as 

an additional metric to evaluate the model's performance 

more comprehensively. The F1 Score calculated using the 

formula presented in (1):  

 

𝐹1 = 2 𝑥 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
  (1) 

𝑭𝟏 = 𝟐 𝒙 
𝟎. 𝟗𝟏𝟒 𝒙 𝟎. 𝟗𝟗𝟓

𝟎. 𝟗𝟏𝟒 +  𝟎. 𝟗𝟗𝟓
 

𝑭𝟏 = 𝟐 𝒙 
𝟎. 𝟗𝟎𝟗𝟒

𝟏. 𝟗𝟎𝟗
 

𝑭𝟏 = 𝟎. 𝟗𝟓 
 

Results of model testing show excellent segmentation 

performance. The model is able to accurately identify and 

separate objects in the image so that the boundaries of the 

object can be recognized with more precision. Precision of 

segmentation capabilities is a crucial aspect of computer 

image processing, as it ensures that the model can better 

understand the spatial context of objects in the image. The 

segmentation results obtained from the model testing are 

depicted Figure 5. 

To complement the aggregate metrics, we report a 

class-wise confusion matrix computed on the unseen hold-

out (validation + test, see Figure 6) because the pure test 

split is small, ensuring sufficient support. Values are raw 

instance counts (not normalized), and post-processing 

uses Ultralytics’ default IoU and NMS. The diagonal 

shows perfect separation for Body and Head (15/15 each). 

Errors appear only as left–right hand swaps, with Right-

Hand → Left-Hand = 2 and Left-Hand → Right-Hand = 

2, yielding 13/15 correct for each hand. Overall, the model 

achieves 56/60 = 93.3% accuracy; per-class 

precision/recall are 100% for Body and Head, and 86.7% 

for both hands. These patterns are consistent with 

boundary ambiguity and partial occlusion around the 

torso, and align with the qualitative results shown next in 

Figs. 7–8. 

As the next step, the model evaluation is completed on 

the Google Colab platform; the next step is to develop a 

web-based application as a user interface to make it easy 

to use this model. The main application consists of two 

main parts: the front end and the back end. The backend 

part is developed using the Flask framework, while the 

front end uses HTML, CSS, and JavaScript. The app runs 

on a local server for further testing. 

Fig 7(a), 7(b), and 8 is a display of the results of the 

images that have been segmented. On the left side of the 

system page, there is an original image uploaded by the 

user, and on the right, there is an image that has been 

segmented or a segmented image, along with a button to 

download the segmented image. In the middle, there is the 

value of the prediction result. At the bottom, there is a 

button to return to the main page. 

After the development of the application is completed, 

the system is tested to assess the reliability of the model in 

accurately recognizing human body parts. The evaluation 

was performed using 30 images representing distinct 

sections of the human body. This evaluation aims to verify 

the extent to which the system can recognize and segment 

 
Figure 6: Confusion Matrix (raw counts, classes only) on the unseen hold‑out split (validation + test). Post‑processing uses 

Ultralytics default IoU/NMS settings. Rows denote ground‑truth classes and columns denote predicted classes; values are 

raw instance counts (not normalized). 
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with high accuracy. 

Figure 7(a). The model segments the head and left 

hand clearly (Head = 0.96, Left Hand = 0.95) with a 

reasonable body score (0.82). The right hand is missed 

(0.00), likely due to occlusion and overlap with the torso, 

so it is absorbed into the body region. Inference time: 74.8 

ms total (preprocess 2.6 ms, inference 66.1 ms, 

postprocess 6.1 ms), ≈ 13.4 FPS. Figure 7(b). The right 

hand is segmented with good confidence (0.87), while the 

left hand is not detected (0.00) because it lies flush against 

the torso, reducing boundary contrast and leading the 

model to treat it as part of the body. Head and body remain 

confident (0.96 and 0.84). Inference time: 100.5 ms total 

(preprocess 4.0 ms, inference 87.8 ms, postprocess 8.7 

ms), ≈ 10.0 FPS. 

Figure 8. All parts are segmented consistently with 

high confidence (Body = 0.98, Head = 0.94, Right Hand = 

0.93, Left Hand = 0.97), indicating good separation of the 

hands from the torso across the scene. Inference time: 

109.7 ms total (preprocess 2.7 ms, inference 101.1 ms, 

postprocess 5.8 ms), ≈ 9.1 FPS. 

Note on inference time. The latency is dominated by 

the inference step (≈ 88–92% of total). Preprocess covers 

resizing/normalization, and postprocess includes 

decoding, thresholding, and mask/box handling. Across 

the three samples the system runs at ~9–13 FPS, which is 

near real-time for single-image processing on the tested 

setup. 

 
Table 8: System test results

The testing results show that the model works well on 

most images but still faces challenges under certain 

conditions, such as objects having unclear boundaries. The 

detailed results of the segmentation for all tested images 

are presented in Table 8. 

 

No 
Data 

Test 

Actual 

Classes 
Test Results 

Confidence 

Score 

1 Data1 Body Body 0.98 

Head Head 0.94 

Right Hand Right Hand 0.93 

Left Hand Left Hand 0.97 

2 Data2 Body Body 0.99 

Head Head 0.93 

Right Hand Right Hand 0.92 

   

                       (a)                                                                     (b) 
Figure 7: Model performance on web system 

 

 

 

Figure 8: Model performance on web system (some part defined, not detected) 
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Left Hand Left Hand 0.95 

3 Data3 Body Body 0.89 

Head Head 0.95 

Right Hand Right Hand 0.93 

Left Hand Left Hand 0.98 

4 Data4 Body Body 0.85 

Head Head 0.95 

Right Hand Right Hand 0.93 

Left Hand Left Hand 0.99 

5 Data5 Body Body 0.98 

Head Head 0.93 

Right Hand Right Hand 0.9 

Left Hand Left Hand 0.98 

6 Data6 Body Body 0.96 

Head Head 0.93 

Right Hand Right Hand 0.97 

Left Hand Left Hand 0.99 

7 Data7 Body Body 0.9 

Head Head 0.94 

Right Hand Right Hand 0.87 

Left Hand Left Hand 0.93 

8 Data8 Body Body 0.98 

Head Head 0.97 

Right Hand Right Hand 0.92 

Left Hand Left Hand 0.96 

9 Data9 Body Body 0.98 

Head Head 0.97 

Right Hand Right Hand 0.99 

Left Hand Left Hand 0.89 

10 Data10 Body Body 0.84 

Head Head 0.95 

Right Hand Right Hand 0.83 

Left Hand Left Hand 0.86 

11 Data11 Body Body 0.84 

Head Head 0.96 

Right Hand Right Hand 0.87 

Left Hand Undetected 0 

12 Data12 Body Body 0.97 

Head Head 0.94 

Right Hand Right Hand 0.96 

Left Hand Left Hand 0.93 

13 Data13 Body Body 0.95 

Head Head 0.95 

Right Hand Right Hand 0.92 

Left Hand Left Hand 0.9 

14 Data14 Body Body 0.99 

Head Head 0.94 

Right Hand Right Hand 0.86 

Left Hand Left Hand 0.92 

15 Data15 Body Body 0.88 

Head Head 0.95 

Right Hand Right Hand 0.95 

Left Hand Left Hand 0.97 

16 Data16 Body Body 0.93 

Head Head 0.97 

Right Hand Right Hand 0.69 

Left Hand Left Hand 0.91 

17 Data17 Body Body 0.87 

Head Head 0.93 

Right Hand Right Hand 0.9 

Left Hand Left Hand 0.89 

18 Data18 Body Body 0.97 

Head Head 0.98 

Right Hand Right Hand 0.96 

Left Hand Left Hand 0.88 

19 Data19 Body Body 0.97 

Head Head 0.93 

Right Hand Right Hand 0.91 

Left Hand Left Hand 0.59 

20 Data20 Body Body 0.98 

Head Head 0.92 

Right Hand Right Hand 0.92 

Left Hand Left Hand 0.94 

21 Data21 Body Body 0.85 

Head Head 0.96 

Right Hand Right Hand 0.9 

Left Hand Left Hand 0.84 

22 Data22 Body Body 0.82 

Head Head 0.96 

Right Hand Undetected 0 

Left Hand Left Hand 0.95 

23 Data23 Body Body 0.98 

Head Head 0.98 

Right Hand Right Hand 0.92 

Left Hand Left Hand 0.77 

24 Data24 Body Body 0.99 

Head Head 0.96 

Right Hand Right Hand 0.9 

Left Hand Left Hand 0.87 

25 Data25 Body Body 0.87 

Head Head 0.95 

Right Hand Right Hand 0.89 

Left Hand Left Hand 0.96 

26 Data26 Body Body 0.81 

Head Head 0.96 

Right Hand Right Hand 0.5 

Left Hand Left Hand 0.99 

27 Data27 Body Body 0.96 

Head Head 0.92 

Right Hand Right Hand 0.93 

Left Hand Left Hand 0.97 

28 Data28 Body Body 0.93 

Head Head 0.91 

Right Hand Right Hand 0.89 

Left Hand Left Hand 0.96 

29 Data29 Body Body 0.96 

Head Head 0.95 

Right Hand Right Hand 0.87 

Left Hand Left Hand 0.93 

30 Data30 Body Body 0.94 

Head Head 0.96 

Right Hand Right Hand 0.95 

Left Hand Left Hand 0.96 

Referring to the test outcomes above, it is evident that 

the model performs exceptionally well in identifying 

objects within images. The result is supported by high 

confidence scores. Confidence score is a measure that 

indicates the level of confidence or certainty in the results 

provided by a prediction system or model. This score is 

usually expressed in the form of numbers between 0 and 1 

or in the form of percentages between 0% and 100%. The 

higher the confidence score, the more confident the system 

or model is in the results or predictions made. 

In the test results with this test data, we can also see 

some shortcomings or challenges faced by the model. One 

of the main challenges is in recognizing body parts that 

overlap with other body parts. This is clearly seen in data 

numbers 11 and 22. When the body parts overlap each 

other, the model has difficulty recognizing and identifying 

each part accurately. 

This difficulty may be due to the increased visual 

complexity when objects overlap each other, resulting in 

important features becoming less clear or distorted. 

Overall confidence score is good, but the result for the 

overlapping objects may be lower or even unpredictable, 

suggesting that the model is less confident in its 

predictions. 
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5 Discussion 
This section is organized into four parts: accuracy–

efficiency context (5.1), error analysis under occlusion 

(5.2), domain scope and application (5.3), and limitations 

with next steps (5.4). 

5.1 Accuracy–efficiency context 

Our system achieves strong within-domain performance 

(mAP@0.50 = 0.979, precision = 0.914, recall = 0.995 at 

200 epochs) on a four-class human-part segmentation 

task, substantially higher than the AP reported by recent 

real-time or proposal-based instance segmentation 

methods on broad benchmarks. For example, Sem2Ins 

paired with fast semantic backbones yields 14.5–16.9 AP 

at ~20–20.8 FPS on Cityscapes, while proposal-based 

Mask R-CNN–style pipelines are typically <2 FPS at HD 

resolution [8]; Sem2Ins can reach ~54.7 FPS with ~19.1 

AP under different settings. These contrasts are 

informative but not strictly comparable because (i) metrics 

are reported on different datasets and operating points and 

(ii) our task involves only four anatomically constrained 

classes in controlled scenes, whereas Cityscapes/COCO 

involve many object categories and diverse imagery. Still, 

they contextualize our accuracy–efficiency profile relative 

to state-of-the-art designs that trade speed for AP or vice 

versa. 

Comparisons with instance segmentation on 

synthetic-to-real aerial imagery similarly illustrate task 

difficulty effects. A Mask R-CNN model refined on a 

simulator-derived dataset reports ~5 FPS on a single GPU 

and COCO-style AP values around 36.25 (ResNet-50-

FPN) [9], which are far lower than our mAP—again 

reflecting the broader class set, cluttered backgrounds, and 

viewpoint variability in aerial scenes versus our narrow, 

structured domain. The one-shot human parsing literature 

(e.g., EOP-Net) focuses on a different objective: open-set, 

support-guided parsing evaluated primarily with mean 

IoU rather than AP/mAP, making direct numerical 

comparison inappropriate [10]. OSHP methods parse a 

query image into classes defined by a single support 

example and report k-way/1-way mIoU across base and 

novel classes; this episodic formulation targets 

generalization to novel labels rather than instance-level 

detection. Our result profile (very high recall on a fixed 

label set) complements rather than competes with that 

goal. 

5.2 Error analysis under occlusion 

The confidence scores reported in Table 8 reveal a 

consistently high certainty for most predictions (>0.9), but 

lower scores and misdetections occur primarily in 

scenarios with overlapping body parts or minimal visible 

separation between segments. For example, in test cases 

11 and 22, the model failed to detect the left or right hand 

entirely when it overlapped closely with the torso, 

producing confidence scores as low as 0.0 for the missed 

parts. This suggests that the YOLOv8 segmentation head 

struggles when the spatial boundaries are ambiguous or 

when limb positions cause occlusion. The visual 

complexity in such conditions leads to degraded feature 

clarity, making it harder for the model to differentiate 

class-specific contours. These findings are consistent with 

prior observations in instance segmentation literature [9], 

where occlusion and inter-class overlap significantly 

reduce per-instance AP. 

5.3 Domain scope and application 

We attribute our higher mAP@0.50 and recall 

primarily to dataset scope and homogeneity: 107 images 

of female students (ages 19–22) captured under 

standardized poses and clothing in a controlled 

environment. This reduces appearance variance and 

occlusions, simplifies class boundaries, and limits cross-

domain generalization demands, all of which are known to 

inflate in-domain accuracy relative to open-world settings. 

These choices align with our intended application—fine-

grained, body-part analysis in constrained scenarios—and 

are embodied in a lightweight web implementation that 

accepts uploads, runs YOLOv8-based instance 

segmentation, and returns labeled masks for downstream 

use. Nevertheless, these findings should be interpreted 

within our dataset constraints; we next discuss limitations 

and directions for future work. 

5.4 Limitations and next steps 

The primary limitation of this work is dataset 

homogeneity: most images depict young adult females in 

a constrained set of poses and capture conditions. As a 

result, generalization to other demographics (e.g., 

different age groups and genders), body types, clothing 

styles, viewpoints, occlusions, and environments remains 

uncertain. To address this, we plan the following steps: (i) 

Data diversification — collect a larger and more diverse 

corpus that balances demographics, poses, camera 

viewpoints, backgrounds, and lighting; (ii) Cross-dataset 

validation — train on our dataset and evaluate on 

independent, external datasets to estimate out-of-

distribution performance; (iii) Stratified evaluation — 

report subgroup-specific metrics (e.g., by demographic 

and pose) and conduct leave-one-group-out validation to 

quantify potential biases; and (iv) Transfer and adaptation 

— when deploying to new domains, apply fine-tuning or 

domain adaptation rather than assuming zero-shot 

transfer. 

6 Conclusion 
This study empirically demonstrates that YOLOv8 

instance segmentation can accurately segment human 

body parts in a constrained setting, achieving an 

mAP@0.50 of 0.979 after 200 training epochs (precision 

0.914, recall 0.995, F1-score 0.95). The novelty of our 

work is threefold: (i) curating and annotating a controlled-

pose dataset of young adult females with pixel-level 

masks for four parts (head, torso, right hand, left hand); 

(ii) documenting a reproducible YOLOv8 training recipe 

with an epoch ablation that identifies 200 epochs as the 

best trade-off; and (iii) delivering a lightweight web-based 

inference interface that accepts image uploads and returns 

per-part masks with confidence scores. While 

mailto:mAP@0.50
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performance is strong under homogeneous conditions, 

generalizability remains untested due to the dataset’s 

narrow demographics and controlled clothing/poses, and 

the model still struggles with overlapping parts/occlusion. 

Future work will broaden data diversity (subjects, 

clothing, poses, viewpoints, backgrounds), incorporate 

explicit occlusion handling and more complex spatial 

reasoning, and benchmark against alternative instance-

segmentation methods to improve robustness for real-

world applications such as body-part recognition, 

rehabilitation monitoring, and clinical pre-processing. 
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