https://doi.org/10.31449/inf.v49i37.9832

Informatica 49 (2025) 271-286 271
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Image segmentation extracts meaningful structure from images. This study presents a YOLOv8-based
instance segmentation approach and a web-based system that partitions human images into the head,
body, right arm, and left arm. We curated 107 manually annotated images of female university students
aged 19-22, captured under controlled poses; the dataset was split into 92/10/5 images for
training/validation/testing. To improve robustness, we applied augmentation (rotation, shear, brightness
and contrast adjustment, darkening, and noise). The model was trained and evaluated, yielding its best
performance at 200 epochs with mAP@0.50 of 0.979, precision 0.914, recall 0.995, and F1-score 0.95.
We implemented the system as a web app with a Flask backend and HTML/CSS/JavaScript frontend that
accepts uploads, runs segmentation, displays masks and confidence scores, and enables downloads. The
proposed design supports downstream tasks requiring fine-grained human-part analysis. While results
are strong within this limited and homogeneous cohort, we note reduced reliability for overlapping limbs
and emphasize the need for broader data—diverse demographics, clothing, and poses—to assess
generalizability. Training was conducted on Google Colab for reproducibility.

Povzetek: Predstavljen je YOLOV8-temeljen sistem za segmentacijo delov cloveskega telesa s spletno

aplikacijo, ki dosega visoko natancnost, a zahteva Sirse podatke za boljso posploslijivost.

1 Introduction

Health technology innovations that utilize artificial
intelligence (Al) are growing as multidisciplinary research
increasingly explores its applications in predictive
medicine, health services management, and clinical
decision-making [1, 2], with a growing focus on data-
driven healthcare solutions [1, 3]. Previous studies in
machine learning models are used to classify stunting
status and predict children's growth, enabling early
detection and intervention through algorithms such as
Random Forest and Extra Trees [4]. More broadly, the
Rapid development of digital technology has enabled
computers to perform increasingly sophisticated tasks,
accelerating progress in Al, particularly in computer
vision.

Computer vision is a part of Al that focuses on
interpreting images or video streams to support decision-
making and perform specific tasks. It encompasses several
subfields, image segmentation, including image
classification, and object detection [5]. Image

segmentation represents a fundamental approach within
the field of image analysis, wherein an image is
systematically divided into distinct regions based on
shared visual characteristics. This process allows
researchers to extract structured, meaningful, and
interpretable information from each segmented area,
thereby supporting deeper analytical insights and
informed decision-making in various applications. [6].
When applied to the segmentation of human body parts,
this process becomes essential for facilitating more
detailed recognition and examination of specific
anatomical regions, such as the head, body, right arm, and
left arm.

Human body parts possess distinct geometric
characteristics that enable precise identification. The
distinctions can be utilized in computer vision and related
computational methods to identify and analyze various
anatomical structures effectively [7]. Segmentation of the
human body has its own challenges due to the complexity
of the varied shapes and bodies. Therefore, a method that
is able to segment accurately and efficiently is needed.
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Image segmentation is classified into two principal
categories: semantic segmentation, which assigns a class
label to every pixel within an image, and instance
segmentation, which further distinguishes between
individual objects belonging to the same class, thereby
enabling more granular analysis [8]. As a part of computer
vision, Instance segmentation work integrates object
detection with segmentation techniques. It not only
identifies and locates objects within an image but also
generates a pixel-wise segmentation mask for each
detected entity [8, 9].

Instance segmentation not only focus identifies the
boundaries of objects but also distinguishes between
instances of the same object. This is very important in the
analysis of the human body, as it allows the identification
and analysis of each individual body part in more detail.
Instance segmentation is useful for measuring the size of
detected objects, cropping them from their background,
and more accurately detecting objects. In this study, the
decomposition of human body parts intends to break down
the human image into more detailed segments, such as the
head, body, right arm, and left arm. Human parsing is a
Fundamental visual comprehension task that requires the
segmentation of human images into clear body parts [14].
Research related to human parsing is often utilized in the
fashion industry for style analysis [10].

The most significant and popular advancement in
human body segmentation is the You Only Look Once
(YOLO) framework, a groundbreaking single-stage object
detection algorithm recognized for its real-time efficiency
and high accuracy [11]. YOLO establishes a single,
unified architecture for dividing images into bounding
boxes and calculating class probabilities for each box
when compared to previous object identification
approaches, such as R-CNN [28]. Using YOLO shows
that execution is much faster and more precise. This
algorithm can also accurately predict images or
illustrations [12]. The YOLOv8 method will be
implemented in this study to divide the human image into
more detailed parts. YOLOv8 offers object detection
capabilities with a higher level of speed, accuracy, and
efficiency compared to previous versions [13, 15, 16].

Our study, which utilizes the YOLOVv8 algorithm, aims
to detect objects due to its high speed and accuracy and
then employs the instance segmentation method to
separate individual objects into distinct segments. The
first step involves detecting objects using object detection
algorithms, followed by refining segmentation through
pixel-level classification; this method is expected to
achieve  accurate and  detailed  segmentation.
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This leverages the power of both tasks, improving overall
performance and resulting in high-quality object masks.
From the above explanation, this research will produce a
web-based system to decompose parts of the human body
into clear segments, such as the head, body, right arm, and
left arm.

While significant progress has been achieved in
instance segmentation for human body parts, the
effectiveness and robustness of such systems depend
greatly on the diversity and representativeness of the
datasets used for training and evaluation. In this study, the
dataset consists of manually annotated images of female
students aged 19-22 in controlled poses and clothing. This
limited scope provides a wuseful foundation for
methodological exploration but also restricts the
generalizability of the findings. The reported results,
therefore, should be interpreted within the context of this
specific and homogeneous dataset.

Consequently, the objective of this research is to
develop and evaluate a web-based human body
segmentation system using the YOLOvV8 instance
segmentation model, focusing on the head, body, right
arm, and left arm. Although promising results are obtained
within this dataset, future research with more diverse and
representative datasets is necessary to assess the broader
applicability and robustness of the proposed framework.

2 Related work

2.1 Related work summary table

We summarize key human body-part parsing and
instance-level human analysis methods in Table 1 to
position our contribution among prior work. The
comparison spans task formulation (semantic vs. instance-
level), canonical datasets (e.g., LIP [14], PASCAL-
Person-Part, CIHP [22], MHP-v2.0), reported metrics
(mloU/AP), and deployment notes. This overview
clarifies where prior art excels and where gaps remain for
body-part instance segmentation suitable for lightweight,
web-served applications.

Overall, CE2P, SCHP, PCNet/ACENet deliver strong
semantic human parsing on LIP/PASCAL-Person-
Part/CIHP, whereas PGN and Parsing R-CNN [22] target
instance-level human parsing with heavier, often two-
stage pipelines. Prior work seldom reports lightweight,
web-deployed systems for per-instance body-part masks
(including explicit left/right hands under occlusion). In
contrast, our YOLOv8-based system achieves high
accuracy on a constrained dataset and is implemented as a
browser-facing application (Flask + HTML/CSS/S),
thereby addressing both the instance-level requirement
and practical deployment considerations.



Instance Segmentation of Human Body Parts Using YOLOVS...

Informatica 49 (2025) 271-286 273

Table 1: Comparative summary of related work on human body-part parsing and instance-level analysis.

Method (Year) Task / Output Dataset(s) Metric & Score Application / Limitations /
(type) Deployment Notes
CE2P (AAAI Single & multi-person LIP, CIHP, 56.50% miloU Academic SOTA Strong parsing;
2019) [23] human parsing MHP-v2.0 (LIP); 45.31% at the time instance-aware via
(semantic parts) mean APr challenge tracks; no
(CIHP); 33.34% web deployment
APp@0.5 (MHP- discussed.
v2.0)
Parsing R-CNN | Instance-level human CIHP, MHP- SOTA on High-accuracy, Heavier two-stage
(CVPR 2019) parsing (two-stage, v2.0, CIHP/MHP; 1st region-based design; not targeted
[22] region-based) DensePose- place DensePose- pipeline for real-time web
COCO COCO (2018) serving.
SCHP (Self- Single-person human LIP, PASCAL- Best on LIP/PPP Robust to noisy Semantic (not per-
Correction parsing (semantic) Person-Part in paper; 1stin labels instance masks); no
Human Parsing, CVPR2019 LIP web system
2019) [24] Challenge reported.
PCNet (Part- Context Network, PASCAL- Reports SOTA Context modeling Semantic parsing
Aware Context CVPR 2020) Person-Part, gains on these for parts (not instance
Network, CVPR Human parsing LIP, CIHP datasets separation); offline
2020) [25] (semantic, context- evaluation.
aware)
ACENEet (2020) Human parsing LIP, PASCAL- 58.1% mloU Accuracy-oriented | Semantic parsing;
[26] (semantic; affinity- Person-Part (LIP) not focused on web
aware) deployment or per-
instance limbs.
PGN / Part Instance-level human CIHP Outperforms prior Joint parts & Earlier instance-
Grouping parsing (detection- (introduced), methods on PPP; instance edges level approach;
Network free; parts + instance PASCAL- strong results on heavier than
(ECCV 2018) edges) Person-Part CIHP YOLO-style one-
[27] stage; no web
deployment.
This Work — Instance-level human 107 images, mAP@0.50 = Web app (Flask Dataset is
YOLOV8-seg body-part female students | 0.979 (all classes) backend; homogeneous;
(Web) segmentation (Head, 19-22; split at 200 epochs HTML/CSS/IS generalization
Body, Right Hand, 92/10/5 frontend); ~9-13 limited; remaining
Left Hand) (train/val/test); FPS on tested errors under
controlled poses setup occlusion/overlap
& clothing (hands vs torso)

2.1. Human body

The human body can be classified into two primaries
sections: the trunk (truncus) and the limbs, which are
further divided into upper and lower extremities. The part
of trunk includes head, neck, and torso, with the torso
itself comprising the chest, abdomen, and waist. Upper
limbs are connected to the torso through shoulder cuffs,
which consist of the clavicula (collarbone) and scapula
(shoulder blades), which move with the torso. Two main
part of the pelvic girdle composed by pelvic bones and a
sacrum (lower spine), connecting the lower limbs with the
torso [17].

As a complete biological structure, the human body is
composed of multiple interconnected parts, including the
head, neck, torso, arms, and legs. The head is the upper
part of the body that contains the brain and features such
as eyes, ears, nose, and mouth. Part of the neck connects
the head with the torso. The whole trunk includes the chest
and abdomen, where various vital organs such as the heart,
lungs, and stomach are located. Two arms are located at
the sides of the body and serve to perform various
movements and tasks, while the two legs provide support
and allow movement. The structure of the human body is
very complex and diverse, with each part having an
important role in maintaining overall health and balance.
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2.2 Image segmentation
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Figure 1: Proposed method using YOLOV8

Image segmentation is a core task in the field of computer
vision, wherein a digital image is divided into multiple
regions or segments by grouping together areas that share
similar visual characteristics, such as color, texture, shape,
or intensity This segmentation process enables the
extraction of meaningful regions of interest (Rol's),
facilitating a deeper analysis of an image's structure and
the information it contains [6, 18].

Segmentation plays a critical role in various digital
image processing tasks, including object identification,
feature extraction, and visual content analysis. It serves as
a key preprocessing step in domains such as autonomous
driving, medical imaging, industrial inspection, and
augmented reality [18]. The result of segments generally
consists of non-overlapping pixel groups that are
homogeneous and represent significant regions based on
human visual perception.

Despite its importance, image segmentation presents
challenges, particularly in defining what constitutes a
"meaningful  region” due to subjective visual
interpretation, as well as in representing complex objects
based solely on low-level features [18]. Generally,
segmentation techniques are categorized into two types:
(i) semantic segmentation, which labels each pixel
according to its corresponding class, and (ii) instance
segmentation, which differentiates between distinct
objects belonging to the same class.

2.3 Instance segmentation

This segmentation is related to the precise identification of
all objects present in a single image. Therefore, combining
object detection, object location, and object classification
is key elements in instance segmentation. In other words,
this segmentation approach is focused on the goal of
clearly distinguishing between each object that is
categorized as a similar instance.

The main objective of instance segmentation is to
recognize and delineate individual objects within an image
[19]. Implementing this method is expected to enhance
accuracy and efficiency while minimizing potential errors
arising from the intricate nature of human body structures.

Instance segmentation has gained considerable
attention in computer vision research, particularly for
complex applications such as robotics, autonomous
vehicles, and surveillance. Several instance segmentation
frameworks have been proposed, and most of them
leverage deep learning to improve segmentation accuracy
exponentially.  Generally, instance  segmentation
techniques can be classified into three broad categories:
multi-stage approaches, single-stage approaches, and
methods utilizing semi-supervised or weakly supervised
learning [20].

2.4 You only look once (YOLO)

YOLO was initially proposed by Joseph Redmon et al in
2015 as an integrated, real-time object detection
framework that treats detection as a single-stage
regression task, directly mapping image pixels to
bounding box coordinates and class probabilities. The
original model demonstrated impressive speed, processing
images at up to 155 fps, albeit with relatively lower
localization accuracy compared to its contemporaries [21].
Since its first introduction, YOLO has undergone several
iterations, with improvements in accuracy, speed, and
features. Popular versions include YOLOv1, YOLOv2
(also known as YOLO9000), YOLOv3, YOLOv4,
YOLOVS5, YOLOvV6, YOLOV7? and the latest variants such
as YOLOv8, as well as community-created
implementations [29, 30, 31].

Overall, the YOLO framework functions by
partitioning an image into a grid-like structure, where each
grid cell is responsible for making several bounding box
predictions along with a confidence score. This score
represents the model's certainty regarding the presence of
an object in the respective cell while also estimating the
precision of the generated bounding box. In addition to
generating bounding boxes and associated confidence
scores, each grid cell in the YOLO framework is also
tasked with predicting the class of the object it contains.
However, one inherent limitation of this approach is that
each cell is restricted to predicting only a single object
class, which may reduce accuracy in scenarios involving
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Figure 2: Research methodology

overlapping or closely positioned objects of different
types. The model produces its output in the form of a
multidimensional tensor that represents the entire grid
structure superimposed on the input image. This tensor
encapsulates the predicted class labels, bounding box
coordinates, and confidence scores for each individual
grid cell [11, 21]. A visual representation of the YOLO
architecture, encompassing these components, is provided
in Figure 1.

To assess whether an object is present in a predicted
bounding box, the YOLO algorithm calculates a
confidence score by multiplying the likelihood that an
object exists in the box by the Intersection over Union
(loU) value. The loU measures the extent of overlap
between the predicted bounding box and the
corresponding ground truth annotation used during
training. As a standard evaluation metric in object
detection tasks, loU provides a quantitative measure of
how accurately the model localizes objects within the
image.

Moreover, the class confidence score obtained by
combining the conditional probability of the object class
with the bounding box's confidence score—plays a pivotal
role in the model's final prediction. This score reflects both
the probability of a specific class being present in the box
and the degree of alignment between the predicted box and
the actual object, offering a comprehensive indication of
prediction reliability. This score reflects the level of
confidence in a particular class for each bounding box,
indicates the likelihood of a specific class in that box, and
how well the prediction box matches the actual object.

3 Method

This study's methodological approach focuses on
developing a human body segmentation system through
YOLO-based instance segmentation. This methodology
includes the stages of problem analysis, needs analysis,
system architecture, and user interface design. Each stage
is explained systematically to ensure seamless integration

the

between the used and

implementation.

concepts system's

3.1 Problem analysis

In this study, we used Problem analysis to identify the
primary source of the problem; then, an in-depth
examination was carried out on the issue that needs to be
solved so that an efficient system can be developed. In this
context, body recognition and analysis through images by
means of segmentation is the primary focus, allowing the
decomposition of human body parts for more accurate
detection and recognition. The analysis of this problem
helps to identify the main obstacles in the recognition and
analysis of the human body through imagery, where one
of the proposed approaches is to utilize Instance
Segmentation using YOLO with the aim that each
segment of the human body can be identified individually,
allowing separation between parts such as the head, body,
right arm, and left arm. Consequently, this technique
offers valuable applications across various domains,
including medical image processing and anthropometric
assessments, as it enhances structural detail and contextual
understanding of the human body.

3.2 Need analysis

A needs analysis is carried out to ensure that the system
can meet user expectations. This analysis includes the
functional and non-functional needs that must be fulfilled
to ensure the system's development meets its intended
objectives.

Functional needs analysis involves an explanation of
the procedures that must be carried out by the system to
meet the requirements. The functional requirements
required in this system include: (i) The system can separate
objects of the human body. (ii)Detects and highlights the
head, body, right arm, and left arm. (iii) Generate
segmentation results that can be used for further
calculations.
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Table 2: Annotated instances per split. Each image contains one instance of each part, yielding the following instance

counts:
Split Images Head Body Right Hand Left Hand Total
instances
Train 92 92 92 92 92 368
Val 10 10 10 10 10 40
Test 5 5 5 5 5 20
Total 107 107 107 107 107 428

Non-functional needs refer to features, characteristics,
or limitations related to the functions or services provided
by the system. Below are the essential functional
requirements for this system: (i)The interface of this
system is designed to be easy to understand so it can be
used easily. (ii)To operate the system, the device must be
connected to the internet. (iii)The limitations of the parts
of the human body that can be detected are the head, body,
right arm, and left arm.

3.3 Dataset & annotations

Dataset splits. We curated 107 manually annotated images
and split them into 92 / 10 / 5 images for train / validation
/ test, respectively (Table 2). Each image contains exactly
one instance of each annotated part (Head, Body, Right
Hand, Left Hand), so the per-split instance counts equal
the number of images per part, yielding a total of 428
instances (368/40/20 for train/val/test).

Primary evaluation scope. Because the test split is
small (5 images; 20 instances), our primary reported
metrics are computed on the aggregated validation+test
split (15 images; 60 instances), unless otherwise specified.
Test-only results are provided in Supplementary Table 2.

3.4 Research method

The methodology of this research begins by taking human
images, which are then used as a dataset. After being
collected, the images go through a sorting process (data
cleaning) to determine the images that are suitable for use
in research. Before the dataset is used for model training,
a preparation process is carried out that includes manual
labeling using the Roboflow platform. In addition to
manual labeling, there is also a preprocessing stage, which
includes resizing the image to 640x640 pixels. At this
stage, various data augmentation techniques are applied,
such as rotation, shear, adjustments in brightness,
darkening, and the addition of noise. To ensure effective
learning despite dataset limitations, the images are divided
into three subsets: 92 images for training, 10 images for
validation, and 5 images for testing. The dataset used in
this study is limited in both size and diversity, consisting
of 107 images of female students aged 19-22,
photographed under controlled conditions with uniform
poses and clothing. These constraints limit the model’s
ability to generalize beyond the specific context of this
dataset.

Upon completion of the preparation process is
completed, the dataset is trained using Google Colab.

During training, hyperparameter tuning and model
performance evaluation are conducted to determine the
optimal configuration. Following the model achieves
optimal results, further testing is carried out to ensure the
performance of the resulting segmentation. The model that
has been obtained is then implemented into a web-based
system. The output of this system is in the form of
segmented images that can be used for further analysis.
The overall research process, covering data acquisition,
preprocessing, training, evaluation, and deployment, is
illustrated in Figure 2.

3.5 Ethics & consent

Ethics approval. This study involved prospectively
collected photographs of adult volunteers (female students
aged 19-22) at the Faculty of Public Health, Universitas
Sumatera Utara. The protocol was reviewed and approved
by the [Name of Ethics Committee/IRB] (Approval No.:
[XXXX], Date: [DD Mon YYYY]). All procedures
complied with the Declaration of Helsinki and relevant
institutional guidelines.

Participant consent. Prior to image capture,
participants were informed about the study aims,
procedures, risks, and data handling. Written informed
consent was obtained for image collection and for the use
of de-identified images and derived annotations for
research and publication purposes, including illustrative
figures in this article. Participants were informed that
participation was voluntary and could be withdrawn at any
time without penalty.

Privacy and anonymization. To minimize the risk of
re-identification, all images used outside the core research
team are de-identified. When faces or potentially
identifying features are visible, they are obfuscated (e.g.,
face blurring) before any sharing beyond the research
team or inclusion in figures.

Data-sharing policy. Due to privacy and consent
restrictions, raw images will not be made publicly
available. We will share derived, non-identifiable
artifacts—including pixel-wise masks, bounding boxes,
class labels, and per-image metadata (age range, pose
category)—under a simple Data Use Agreement (DUA)
for bona fide research. Requests should be sent to
[nainggolan@usu.ac.id]. The complete
training/evaluation code and the dataset configuration
(YAML) with class definitions and split indices (92/10/5)
will be released in a public repository; instructions will
allow qualified researchers to reproduce our results using
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their own data or upon DUA-approved access to the
derived artifacts.

Consent for publication. Participants provided
consent for the publication of de-identified sample outputs
and figures illustrating the segmentation results.

3.6 Training configuration and
hyperparameters

We trained the model using the Ultralytics YOLOv8
instance-segmentation implementation. The main settings
were: input size = 640x640 (imgsz=640), batch size = 4
(batch=4), number of epochs = 200 (epochs=200), and
early stopping disabled (patience=0). We used the
Ultralytics default optimizer, i.e., SGD with momentum
0.937 and weight decay 5x10* (no manual override).
Unless otherwise noted, all other optimization and
augmentation knobs followed the Ultralytics defaults
(including the library’s learning-rate schedule). The
dataset was provided via a standard Ultralytics YAML
configuration file.

Rationale for the 640x640 input resolution. We
adopted 640x640 for three reasons. (i) Architectural
efficiency. 640 is a multiple of the model’s stride, yielding
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clean feature-map sizes and fast convolutional blocks. (ii)
Compute constraints. With our available GPU memory,
640x%640 allowed stable training at batch size 4 without
out-of-memory errors; higher resolutions substantially
increase memory and latency roughly with pixel count.
(iii) Task fit. In our images, the person occupies a
relatively large portion of the frame; 640x640 preserves
sufficient detail for fine structures (e.g., hands) while
maintaining throughput. During preprocessing we use the
framework’s standard letterbox resizing, which preserves
aspect ratio by padding as needed.

3.7 Hardware and software

Hardware. All experiments were run on Google Colab
using a single NVIDIA T4 (16 GB VRAM) GPU. The host
machine was a Google Compute Engine VM on Linux
(Colab environment) with Intel Xeon-family vCPUs and
system RAM provisioned by Colab. We archived the GPU
and CPU specs (driver, memory, core count) in the run
logs to support reproducibility.

Table 3: Summary training (100 epochs, learning rate = 0.01)

Class — Box — Mask
Precision | Recall | mAP@0.50 | Precision | Recall | mAP@0.50
All 0.913 0.913 0.913 0.913 0.913 0.913
Body 0.996 0.996 0.996 0.996 0.996 0.996
Head 0.972 0.972 0.972 0.972 0.972 0.972
Right
Hagnd 0.913 0.913 0.913 0.913 0.913 0.913
Left 0.996 0.996 0.996 0.996 0.996 0.996
Hand
Table 4: Summary training (150 epochs, learning rate = 0.01)
Class — Box — Mask
Precision | Recall | mAP@0.50 | Precision | Recall | mAP@0.50
All 0.946 0.952 0.977 0.946 0.952 0.977
Body 0.993 1 0.995 0.993 1 0.995
Head 0.992 1 0.995 0.992 1 0.995
Right 0.897 0.9 0.957 0.897 0.9 0.957
Hand
Left 0.901 0.907 0.959 0.901 0.907 0.959
Hand
Table 5: Summary training (200 epochs, learning rate = 0.01)
Class — Box — Mask
Precision | Recall | mAP@0.50 | Precision | Recall | mAP@0.50
All 0.914 0.995 0.979 0.914 0.995 0.979
Body 0.92 1 0.995 0.92 1 0.995
Head 0.921 1 0.995 0.921 1 0.995
Right 0.908 0.986 0.977 0.908 0.986 0.977
Hand
Left 0.909 0.994 0.95 0.909 0.994 0.95
Hand
Table 6: Summary training (250 epochs, learning rate = 0.01)
Class Box Mask
Precision Recall mAP@0.50 Precision Recall mAP@0.50
All 0.931 0.974 0.973 0.931 0.974 0.973
Body 0.916 1 0.995 0.916 1 0.995
Head 1 1 0.995 1 1 0.995
Right Hand 0.9 0.9 0.934 0.9 0.9 0.934
Left Hand 0.909 0.994 0.968 0.909 0.994 0.968
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Figure 4: Model performance graph

Table 7: Summary training (200 epochs, learning rate = 0.01) — no augmentation

Class Box Mask
Precision | Recall | mMAP@0.50 | Precision | Recall | mAP
All 0.943 0.955 0.974 0.943 0.955 | 0.974
Body 0.986 1 0.995 0.986 1 0.995
Head 0.99 1 0.995 0.99 1 0.995
Right 1 9894 | 0.9 0.928 0894 | 09 |0.928
Hand
Left
Hand 0.902 0.919 0.977 0.902 0.919 | 0.977
Software; The software stack consisted of Python 3.10.12,
PyTorch 2.3.0+cul2l with CUDA 12.1, and (consistent with the performance envelope we aim for

Ultralytics YOLOV8 8.2.25, running on Linux (Colab).

3.8 Research questions, hypotheses, and
intended outcomes

Research Questions (RQs).

e RQL. Can a YOLOv8-based instance segmentation
model trained on a small, controlled dataset
accurately segment four human body parts (head,
body, right arm, left arm)?

e RQ2. How consistent is the model’s performance
across classes and under challenging poses (e.g.,
partial occlusions or overlap between limbs)?

e RQ3. What training configuration (e.g., number of
epochs around 100-250 at LR = 0.01) yields the best
trade-off among mAP@0.50, precision, recall, and F1
on this dataset?

e RQ4. Does a lightweight web application (Flask +
HTML/CSS/JS) that wraps the trained model deliver
outputs (segmentation masks and confidence scores)
suitable for downstream use in constrained scenarios?

Hypotheses.

e H1 (Accuracy target). On the held-out test set, the
model will achieve mAP@0.50 > 0.95, precision >
0.90, and recall > 0.95 averaged over the four classes

on this dataset).

e H2 (Classwise robustness). Body and head will
reach per-class AP@0.50 =~ 0.99, while the hands may
exhibit ~ slightly lower AP@0.50 due to
occlusion/overlap; nevertheless, overall recall will
remain > (0.95.

e H3 (Training efficiency). Within the explored
schedule (100-250 epochs at LR = 0.01),
performance will saturate by ~200 epochs, yielding
the best balance among mAP@0.50 precision, recall,
and F1.

e H4 (System deliverable). A browser-based interface
that supports upload — segmentation — mask
visualization/download will enable practical adoption
and reproducible end-to-end evaluation in controlled
settings.

Intended outcomes and success criteria.

e Primary outcome (accuracy). Achieve mAP@0.50
> (.95, precision > 0.90, recall > 0.95, and report F1;
provide per-class and overall metrics on the held-out
test set, with the loU threshold specification stated
explicitly.

e Secondary outcomes (robustness & analysis). (a)
Document performance under occlusion/overlap
cases and quantify any class-specific degradation; (b)
summarize the effect of training epochs on
mAP@0.50/precision/recall/F1 to justify the chosen
configuration.
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System outcome (deliverable). Provide a web
application (Flask backend; HTML/CSS/JS frontend)
that accepts uploads, runs segmentation, displays
masks with confidence scores, and supports
downloadable outputs for downstream tasks.
Application use cases (scope). Target constrained
scenarios  such as  in-clinic  assessment,
training/rehabilitation  tracking, or  structured
educational/anthropometric analyses, acknowledging
that generalization beyond the current cohort requires
broader, more diverse data.

3.9 Data collection

The dataset was collected at the Faculty of Public Health,
Universitas Sumatera Utara. To standardize conditions for
segmentation, all images were captured with participants
standing in an upright posture: the left arm raised to
approximately 45°, and the right arm positioned
downward alongside the body. Participants wore fitted
clothing or—when wearing a hijab—fitted sleeves
provided by the study to ensure clear upper-limb contours
for segmentation. An example of the dataset used in this
study is shown in Figure 3.

Figure 3: Sample of Images from the dataset

The dataset is relatively homogeneous, comprising
predominantly young adult females in a limited set of
poses, clothing styles, and viewing angles. While this
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standardization simplifies annotation and improves
labeling consistency, it introduces sampling bias and
limits the external validity of our findings. Accordingly,
the reported performance should be interpreted as domain-
specific rather than population-level generalization. We
applied common  geometric and  photometric
augmentations, but these cannot substitute for true
diversity across demographics, poses, and environments.
See Limitations and Next Steps for planned mitigation via
broader data collection and cross-dataset validation.

4 Implementation and result

Hyperparameter tuning was conducted by exploring
various combinations of the number of epochs, namely
100, 150, 200, and 250, with a learning rate of 0.01. The
detailed results for each configuration are presented in
separate tables: results for 100 epochs can be found in
Table 3, 150 epochs in Table 4, 200 epochs in Table 5,
and 250 epochs in Table 6.

Tuning the hyperparameters results show that the
optimal combination was obtained at epoch 200 with a
learning rate of 0.01. This combination results in the
highest mAP@0.50 value of the other combinations,
which is 0.979 for all classes, as shown in Table 5.
Therefore, resulting from training with this configuration
is chosen as the primary model for the system.

Table 7 summarizes the model’s behavior without data
augmentation. At the aggregate level, the model maintains
strong precision and recall for both boxes and masks;
Body and Head perform consistently well, whereas the
hands remain comparatively more challenging. Relative to
the augmented 200-epoch setting in Table 5, removing
augmentation tends to increase precision but reduce recall
and leads to a slight decrease in overall mAP. These trends
highlight a precision—recall trade-off and support
choosing the augmented 200-epoch configuration as the
primary model, while documenting the no-augmentation
variant for completeness.

Based on the model training process at epoch 200 and
a learning rate of 0.01, the evaluation results of the model
that was successfully built were presented. The evaluation
results graph provides a visual representation of the
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Figure 5: Model testing performance
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overall performance of the model, which includes
important metrics such as box loss, class loss, and dfl loss,
as well as performance evaluation metrics: precision and
recall in Fig 4.

The graph shows that the model has a high
performance with metrics we use and mAP showing good
performance. When we evaluate the results for each class
specifically, variations are not much different from other
classes. The results show relatively similar to the mAP
values. mAP is an important metric that provides an idea
of how well the model can recognize objects in all classes.

After obtaining the highest mAP value, further
evaluation of the precision and recall of the model training
results was carried out. Furthermore, F1 Score is used as
an additional metric to evaluate the model's performance
more comprehensively. The F1 Score calculated using the
formula presented in (1):

precision x recall

Fl=2x precision+recall )
Fl=2x 0.914 x 0.995
0.914 + 0.995
Fl=2x 0.9094
1.909
F1=10.95

Results of model testing show excellent segmentation
performance. The model is able to accurately identify and
separate objects in the image so that the boundaries of the
object can be recognized with more precision. Precision of
segmentation capabilities is a crucial aspect of computer
image processing, as it ensures that the model can better
understand the spatial context of objects in the image. The
segmentation results obtained from the model testing are
depicted Figure 5.

To complement the aggregate metrics, we report a

M.S. Lydia et al.

class-wise confusion matrix computed on the unseen hold-
out (validation + test, see Figure 6) because the pure test
split is small, ensuring sufficient support. Values are raw
instance counts (not normalized), and post-processing
uses Ultralytics’ default IoU and NMS. The diagonal
shows perfect separation for Body and Head (15/15 each).
Errors appear only as left-right hand swaps, with Right-
Hand — Left-Hand = 2 and Left-Hand — Right-Hand =
2, yielding 13/15 correct for each hand. Overall, the model
achieves  56/60 93.3% accuracy; per-class
precision/recall are 100% for Body and Head, and 86.7%
for both hands. These patterns are consistent with
boundary ambiguity and partial occlusion around the
torso, and align with the qualitative results shown next in
Figs. 7-8.

As the next step, the model evaluation is completed on
the Google Colab platform; the next step is to develop a
web-based application as a user interface to make it easy
to use this model. The main application consists of two
main parts: the front end and the back end. The backend
part is developed using the Flask framework, while the
front end uses HTML, CSS, and JavaScript. The app runs
on a local server for further testing.

Fig 7(a), 7(b), and 8 is a display of the results of the
images that have been segmented. On the left side of the
system page, there is an original image uploaded by the
user, and on the right, there is an image that has been
segmented or a segmented image, along with a button to
download the segmented image. In the middle, there is the
value of the prediction result. At the bottom, there is a
button to return to the main page.

After the development of the application is completed,
the system is tested to assess the reliability of the model in
accurately recognizing human body parts. The evaluation
was performed using 30 images representing distinct
sections of the human body. This evaluation aims to verify
the extent to which the system can recognize and segment

Confusion Matrix (raw counts, classes only, B/W)
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Figure 6: Confusion Matrix (raw counts, classes only) on the unseen hold-out split (validation + test). Post-processing uses
Ultralytics default loU/NMS settings. Rows denote ground-truth classes and columns denote predicted classes; values are
raw instance counts (not normalized).
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with high accuracy.

Segmentation Results
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Figure 8. All parts are segmented consistently with
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Figure 7: Model performance on web system
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Figure 8: Model performance on web system (some part defined, not detected)

Figure 7(a). The model segments the head and left
hand clearly (Head = 0.96, Left Hand = 0.95) with a
reasonable body score (0.82). The right hand is missed
(0.00), likely due to occlusion and overlap with the torso,
so it is absorbed into the body region. Inference time: 74.8
ms total (preprocess 2.6 ms, inference 66.1 ms,
postprocess 6.1 ms), = 13.4 FPS. Figure 7(b). The right
hand is segmented with good confidence (0.87), while the
left hand is not detected (0.00) because it lies flush against
the torso, reducing boundary contrast and leading the
model to treat it as part of the body. Head and body remain
confident (0.96 and 0.84). Inference time: 100.5 ms total
(preprocess 4.0 ms, inference 87.8 ms, postprocess 8.7
ms), ~ 10.0 FPS.

The testing results show that the model works well on
most images but still faces challenges under certain
conditions, such as objects having unclear boundaries. The
detailed results of the segmentation for all tested images
are presented in Table 8.

high confidence (Body = 0.98, Head = 0.94, Right Hand =
0.93, Left Hand = 0.97), indicating good separation of the
hands from the torso across the scene. Inference time:
109.7 ms total (preprocess 2.7 ms, inference 101.1 ms,
postprocess 5.8 ms), =~ 9.1 FPS.

Note on inference time. The latency is dominated by
the inference step (= 88—92% of total). Preprocess covers
resizing/normalization, and  postprocess includes
decoding, thresholding, and mask/box handling. Across
the three samples the system runs at ~9-13 FPS, which is
near real-time for single-image processing on the tested

setup.

Table 8: System test results

Data Actual Confidence
No [Test Classes Test Results Score
1 |Datal Body Body 0.98
Head Head 0.94
Right Hand Right Hand 0.93
Left Hand Left Hand 0.97
2 |Data2 Body Body 0.99
Head Head 0.93
Right Hand Right Hand 0.92
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Left Hand Left Hand 0.95 Left Hand Left Hand 0.94
3 |Data3 Body Body 0.89 21 |Data2l Body Body 0.85
Head Head 0.95 Head Head 0.96
Right Hand Right Hand 0.93 Right Hand Right Hand 0.9
Left Hand Left Hand 0.98 Left Hand Left Hand 0.84
4 |Data4 Body Body 0.85 22 |Data22 Body Body 0.82
Head Head 0.95 Head Head 0.96
Right Hand Right Hand 0.93 Right Hand Undetected 0
Left Hand Left Hand 0.99 Left Hand Left Hand 0.95
5 |Datab Body Body 0.98 23 |Data23 Body Body 0.98
Head Head 0.93 Head Head 0.98
Right Hand Right Hand 0.9 Right Hand Right Hand 0.92
Left Hand Left Hand 0.98 Left Hand Left Hand 0.77
6 |Datab Body Body 0.96 24 |Data24 Body Body 0.99
Head Head 0.93 Head Head 0.96
Right Hand Right Hand 0.97 Right Hand Right Hand 0.9
Left Hand Left Hand 0.99 Left Hand Left Hand 0.87
7 |Data7 Body Body 0.9 25 |Data25 Body Body 0.87
Head Head 0.94 Head Head 0.95
Right Hand Right Hand 0.87 Right Hand Right Hand 0.89
Left Hand Left Hand 0.93 Left Hand Left Hand 0.96
8 |Data8 Body Body 0.98 26 |Data26 Body Body 0.81
Head Head 0.97 Head Head 0.96
Right Hand Right Hand 0.92 Right Hand Right Hand 05
Left Hand Left Hand 0.96 Left Hand Left Hand 0.99
9 |Datad Body Body 0.98 27 [Data27 Body Body 0.96
Head Head 0.97 Head Head 0.92
Right Hand Right Hand 0.99 Right Hand Right Hand 0.93
Left Hand Left Hand 0.89 Left Hand Left Hand 0.97
10 |Datal0 Body Body 0.84 28 |[Data28 Body Body 0.93
Head Head 0.95 Head Head 0.91
Right Hand Right Hand 0.83 Right Hand Right Hand 0.89
Left Hand Left Hand 0.86 Left Hand Left Hand 0.96
11 |Datall Body Body 0.84 29 |Data29 Body Body 0.96
Head Head 0.96 Head Head 0.95
Right Hand Right Hand 0.87 Right Hand Right Hand 0.87
Left Hand Undetected 0 Left Hand Left Hand 0.93
12 |Datal2 Body Body 0.97 30 |Data30 Body Body 0.94
Head Head 0.94 Head Head 0.96
Right Hand Right Hand 0.96 Right Hand Right Hand 0.95
Left Hand Left Hand 0.93 Left Hand Left Hand 0.96
13 |Datal3 Body Body 0.95 . o i
Head Head 0.95 Referring to the test outcomes above, it is evident that
Right Hand Right Hand 0.92 the model performs exceptionally well in identifying
e Ee‘;t Hand Eeg Hand 00999 objects within images. The result is supported by high
aa Hgaé' Hgag 094 confidence scores. Confidence score is a measure that
Right Hand Right Hand 0.86 indicates the level of confidence or certainty in the results
Left Hand Left Hand 0.92 provided by a prediction system or model. This score is
15 Patals BOdé’ BOdé’ 8-28 usually expressed in the form of numbers between 0 and 1
E'fgaht — :f;ht — 0'92 or in the form of percentages between 0% and 100%. The
Left Hand Left Hand 0.97 higher the confidence score, the more confident the system
16 |Datal6 Body Body 0.93 or model is in the results or predictions made.
Head Head 0.97 In the test results with this test data, we can also see
Eé%th}_::sgd Eé%thhg:gd 8‘8? some shortcomings or challenges faced by the model. One
17 Datal? Body Body 0.87 of the main challenges is in recognizing body parts that
Head Head 0.93 overlap with other body parts. This is clearly seen in data
Ri%ht Hagd Ri%ht Hagd 00-99 numbers 11 and 22. When the body parts overlap each
Left Han Left Han .8 P s : P
5 aais Body Body 097 other, the model has difficulty recognizing and identifying
Head Head 098 each part accurately.
Right Hand Right Hand 0.96 This difficulty may be due to the increased visual
Left Hand Left Hand 0.88 complexity when objects overlap each other, resulting in
19 Patald Eggé’ Eggé’ g'g; important features becoming less clear or distorted.
Right Hand Right Hand 0.1 Overall (_:onfid(?nce score is good, but the result _for the
Left Hand Left Hand 0.59 overlapping objects may be lower or even unpredictable,
20 |Data20 | Body Body 0.98 suggesting that the model is less confident in its
Head Head 0.92 predictions
Right Hand Right Hand 0.92 '
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5 Discussion

This section is organized into four parts: accuracy—
efficiency context (5.1), error analysis under occlusion
(5.2), domain scope and application (5.3), and limitations
with next steps (5.4).

5.1 Accuracy-efficiency context

Our system achieves strong within-domain performance
(mAP@0.50 = 0.979, precision = 0.914, recall = 0.995 at
200 epochs) on a four-class human-part segmentation
task, substantially higher than the AP reported by recent
real-time or proposal-based instance segmentation
methods on broad benchmarks. For example, Sem2Ins
paired with fast semantic backbones yields 14.5-16.9 AP
at ~20-20.8 FPS on Cityscapes, while proposal-based
Mask R-CNN-style pipelines are typically <2 FPS at HD
resolution [8]; Sem2Ins can reach ~54.7 FPS with ~19.1
AP under different settings. These contrasts are
informative but not strictly comparable because (i) metrics
are reported on different datasets and operating points and
(i) our task involves only four anatomically constrained
classes in controlled scenes, whereas Cityscapes/COCO
involve many object categories and diverse imagery. Still,
they contextualize our accuracy—efficiency profile relative
to state-of-the-art designs that trade speed for AP or vice
versa.

Comparisons with instance segmentation on
synthetic-to-real aerial imagery similarly illustrate task
difficulty effects. A Mask R-CNN model refined on a
simulator-derived dataset reports ~5 FPS on a single GPU
and COCO-style AP values around 36.25 (ResNet-50-
FPN) [9], which are far lower than our mAP—again
reflecting the broader class set, cluttered backgrounds, and
viewpoint variability in aerial scenes versus our narrow,
structured domain. The one-shot human parsing literature
(e.g., EOP-Net) focuses on a different objective: open-set,
support-guided parsing evaluated primarily with mean
loU rather than AP/mAP, making direct numerical
comparison inappropriate [10]. OSHP methods parse a
query image into classes defined by a single support
example and report k-way/1-way mloU across base and
novel classes; this episodic formulation targets
generalization to novel labels rather than instance-level
detection. Our result profile (very high recall on a fixed
label set) complements rather than competes with that
goal.

5.2 Error analysis under occlusion

The confidence scores reported in Table 8 reveal a
consistently high certainty for most predictions (>0.9), but
lower scores and misdetections occur primarily in
scenarios with overlapping body parts or minimal visible
separation between segments. For example, in test cases
11 and 22, the model failed to detect the left or right hand
entirely when it overlapped closely with the torso,
producing confidence scores as low as 0.0 for the missed
parts. This suggests that the YOLOvV8 segmentation head
struggles when the spatial boundaries are ambiguous or
when limb positions cause occlusion. The visual
complexity in such conditions leads to degraded feature
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clarity, making it harder for the model to differentiate
class-specific contours. These findings are consistent with
prior observations in instance segmentation literature [9],
where occlusion and inter-class overlap significantly
reduce per-instance AP.

5.3 Domain scope and application

We attribute our higher mAP@0.50 and recall
primarily to dataset scope and homogeneity: 107 images
of female students (ages 19-22) captured under
standardized poses and clothing in a controlled
environment. This reduces appearance variance and
occlusions, simplifies class boundaries, and limits cross-
domain generalization demands, all of which are known to
inflate in-domain accuracy relative to open-world settings.
These choices align with our intended application—fine-
grained, body-part analysis in constrained scenarios—and
are embodied in a lightweight web implementation that
accepts uploads, runs YOLOv8-based instance
segmentation, and returns labeled masks for downstream
use. Nevertheless, these findings should be interpreted
within our dataset constraints; we next discuss limitations
and directions for future work.

5.4 Limitations and next steps

The primary limitation of this work is dataset
homogeneity: most images depict young adult females in
a constrained set of poses and capture conditions. As a
result, generalization to other demographics (e.g.,
different age groups and genders), body types, clothing
styles, viewpoints, occlusions, and environments remains
uncertain. To address this, we plan the following steps: (i)
Data diversification — collect a larger and more diverse
corpus that balances demographics, poses, camera
viewpoints, backgrounds, and lighting; (ii) Cross-dataset
validation — train on our dataset and evaluate on
independent, external datasets to estimate out-of-
distribution performance; (iii) Stratified evaluation —
report subgroup-specific metrics (e.g., by demographic
and pose) and conduct leave-one-group-out validation to
quantify potential biases; and (iv) Transfer and adaptation
— when deploying to new domains, apply fine-tuning or
domain adaptation rather than assuming zero-shot
transfer.

6 Conclusion

This study empirically demonstrates that YOLOv8
instance segmentation can accurately segment human
body parts in a constrained setting, achieving an
mMAP@0.50 of 0.979 after 200 training epochs (precision
0.914, recall 0.995, Fl1-score 0.95). The novelty of our
work is threefold: (i) curating and annotating a controlled-
pose dataset of young adult females with pixel-level
masks for four parts (head, torso, right hand, left hand);
(i) documenting a reproducible YOLOVS training recipe
with an epoch ablation that identifies 200 epochs as the
best trade-off; and (iii) delivering a lightweight web-based
inference interface that accepts image uploads and returns
per-part masks with confidence scores. While
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performance is strong under homogeneous conditions,
generalizability remains untested due to the dataset’s
narrow demographics and controlled clothing/poses, and
the model still struggles with overlapping parts/occlusion.
Future work will broaden data diversity (subjects,
clothing, poses, viewpoints, backgrounds), incorporate
explicit occlusion handling and more complex spatial
reasoning, and benchmark against alternative instance-
segmentation methods to improve robustness for real-
world applications such as body-part recognition,
rehabilitation monitoring, and clinical pre-processing.
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