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Breast cancer is one of the most common diseases among women worldwide, which causes high mortality 

in case of late detection. Thermography is a non-invasive imaging technology that can be used to help with 

the early diagnosis of breast cancer. With the development of AI, thermogram-based breast cancer 

screening using deep learning techniques has gained significant value. However, the detection accuracy 

and robustness of current deep learning algorithms are still challenged. To resolve this, we designed a 

hybrid multi-model deep learning framework which combines ROI segmentation by ROISegNet, feature 

extraction with enhanced edge using two edge detectors (Prewits and Roberts), and finally feature 

extraction and classification by a deep network architecture, InceptionResNetV2. The proposed framework 

was tested on the DMR-IR dataset, which is publicly available and includes thermograms of 44 subjects 

(29 breast cancer patients and 15 healthy). The dataset was separated into training (580 affected and 300 

healthy images) and validation (160 affected and 80 healthy images) sets. The proposed model also 

achieved better results than the state-of-the-art 98.78% accuracy, 97.97% precision, 96.52% recall, and 

97.24% F1-score, compared with other base networks, such as VGG19, ResNet50, DenseNet121, and 

InceptionV3. This performance also indicates that the incorporation of edge-enhanced feature maps and 

ROI segmentation in a hybrid deep learning framework is a practical design. The method presented here 

represents a potential direction for reliable non-invasive early detection of breast cancer based on 

thermogram images. 

Povzetek: Predstavljen je hibridni večmodelni pristop za zgodnje odkrivanje raka dojk s termografijo, ki 

združuje segmentacijo ROI, večrobno poudarjanje in globoko učenje. Metoda dosega visoko točnost in 

robustnost na podatkovni zbirki DMR-IR. 

 

 

1  Introduction  

Breast cancer ranks first among all cancers in women 

globally and is the primary cause of years lost to disability-

adjusted life expectancy. Consequently, reducing the 

fatality rate from breast cancer requires early detection. 

Despite being the primary treatment for diagnosing and 

screening for breast cancer, mammography still has certain 

limitations. Two more methods of screening include 

ultrasounds and clinical breast exams. Mammography 

continues to serve as the gold standard for breast cancer 

and stands as a beacon of hope and progress in the pursuit 

of effective detection despite several drawbacks.  

Thermography is a newly developed screening technique. 

Recent technological developments have shown that 

thermography is a superior breast cancer screening method 

to other approaches [1]. Breast cancer diagnosis has 

already significantly benefited from several profound 

learning-based contributions. Rajinikanth et al.'s study [3] 

concentrated on automating breast cancer diagnosis with 

thermograms. Hakim and Awale [5] emphasized the need 

for early and precise detection of breast cancer, pointing 

out the need to reduce false positives and negatives, 

enhance automated interpretation, and explore deep 

learning techniques. To validate the possibility of precise 

breast cancer risk prediction, further investigation is 

required. Mashekova et al. [6] noted that breast cancer is a 

frequent and fatal illness, highlighting the need for further 

investigation and integration with artificial intelligence to 

serve as an additional tool for early detection. Yadav and 

Jadhav [10] demonstrated radiation-free early illness 

detection using thermal cameras and machine learning, 

outperforming conventional techniques, especially 

mammography, and showing potential uses beyond breast 

cancer detection. They also outlined obstacles, including a 

limited dataset and picture similarity, and proposed 

remedies like feature aggregation for future 

improvements. Cauce et al. [15] offered a CNN model with 

several inputs for cancer detection, integrating clinical and 

thermal imaging data. They suggested that future research 

should compare manual feature extraction, explore picture 

segmentation, and consider different classification 
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techniques for better explainability. There is a need to 

optimize deep learning models and hybridize them to 

leverage performance.  

Early, non-invasive breast cancer screening is essential, 

and thermal imaging is a radiation-free alternative that is 

yet to be harnessed to its full potential due to variability in 

image quality, scarcity of annotated datasets, and 

inconsistency in deep learning workflows. Previous works 

typically fail to incorporate ROI-oriented processing and 

edge-aware features, or they directly utilize a single 

backbone with poor generalization. We aim to construct a 

strong and repeatable pipeline that (i) extracts clinically 

valuable regions through ROISegNet, (ii) enhances the 

structural hints with different edge maps (Prewitt, 

Roberts), and (iii) exploits a unified InceptionResNetV2 

backbone for classification. We perform five-fold cross-

validation on the DMR-IR dataset and present the 

accuracy, precision, recall, F1, and AUC with statistically 

significant validation, which indicates the potential 

practical feasibility of thermo-based early screening. 

Here are the things we brought to this study.  

1. To enhance breast cancer diagnosis, we suggested 

a hybrid multi-model deep learning system that 

uses thermogram imaging. The framework comes 

with a hybrid deep learning model called 

InceptionResNetV2 to remove features from the 

photos. 

2.  Building upon a multi-model deep learning 

methodology, we created an algorithm termed 

Learning-based Breast Cancer Detection 

(LbBCD) to diagnose breast cancer efficiently 

using thermogram pictures.  

3. We also developed a prototype application using 

thermogram imaging to evaluate the suggested 

architecture and the underlying algorithm. 

The remainder of the document is arranged according 

to the following framework. Section 2 summarizes 

earlier research on deep-learning models for 

identifying breast cancer. The preliminary 

information needed to comprehend the suggested 

framework is presented in Section 3. The hybrid 

multi-model deep learning framework indicated for 

automatic breast cancer screening is presented in 

Section 4. Our test findings are shown in Section 5. 

Along with outlining the proposed research's 

constraints, Section 6 addresses the research's 

significance. Section 7 concludes our rework aimed at 

early breast cancer screening and offers guidelines for 

more studies in the future.  

 

2  Related work 

Numerous deep-learning methods used for breast cancer 

screening have been documented in the literature. Mishra 

et al. [1] used thermal imaging to predict breast cancer 

using a CNN model. The approach produces excellent 

accuracy with 680 thermograms, surpassing the accuracy 

of 50 thermograms previously used. This illustrates the 

deep learning model suggested for breast cancer prediction 

ability. Ekici and Jawzal [2] indicated that the approach 

uses convolutional neural networks and thermal images to 

achieve colossal accuracy. Future studies should 

investigate the advanced Dynamic Infrared Thermography 

(DIRT) application and thermography's ability to identify 

cancer at a level of detail, using models such as CNN to 

get better results. Rajinikanth et al. [3] focused on 

employing thermal imaging for automated breast cancer 

diagnosis. The technique includes image recording, patch 

extraction, image processing, feature extraction, 

optimization using the Marine Predators Algorithm, and 

two-class classification using the Decision-Tree classifier. 

Mambou et al. [4] emphasized the necessity for 

preventative actions and the worldwide consequences of 

breast cancer. This paper presents a comparative analysis 

combining deep learning and computer vision techniques 

to improve breast cancer diagnosis. Hakim and Awale [5] 

identified breast cancer early and accurately. Reducing 

false positives and negatives, enhancing automated 

interpretation, and investigating deep learning techniques 

are among the challenges. More studies must confirm its 

potential for accurate breast cancer risk prediction. 

Mashekova et al. [6] observed that a frequent and fatal 

illness is breast cancer. Studies highlight the need for more 

investigation and integration with artificial intelligence 

while confirming its potential as an additional tool for 

early detection. Roslidar et al. [7] developed non-invasive 

screening methods essential for breast cancer. The 

potential of thermography, CNN use, and better future 

research possibilities for precise categorization are 

reviewed in this work. Milosevic et al. [8] enhanced the 

screening process for breast cancer, which is essential for 

early identification. The suggested improvements include 

thermography, effective target population identification, 

and software-supported mammography analysis. Husaini 

et al. [9] found that a novel technique combines cloud 

computing, deep neural networks, cellphones, and thermal 

imaging to identify breast cancer early. Further 

development might increase the tool's diagnostic accuracy 

and range of uses. Yadav and Jadhav [10] provided 

radiation-free early illness detection through thermal 

cameras and machine learning. It performs better than 

conventional techniques, particularly mammography, and 

has potential uses outside the detection of breast cancer. 

Obstacles encompass a limited dataset, picture similarity, 

and possible remedies such as feature aggregation for 

subsequent enhancements. 

Mambo et al. [11] investigated and found that it affected 

2.8 million people with global breast cancer in 2016, 

highlighting the need for early detection. Restrictions in 

mammography drive innovations like InceptionV3-KNN. 

Improved detection using a 3D breast model and a thermal 

sensitivity camera is the goal of future research. Tsietso et 

al. [12] claimed that the primary motivation for the 

economic identification of breast cancer is the fact that it 

is among the leading causes of mortality for females. The 

effectiveness of segmentation is emphasized as the 

research assesses current CADx systems for breast 

thermograms based on deep learning. It underscores the 
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need for more studies on lateral breast thermograms and 

readily available datasets. Salvi and Kadam [13] argue that 

innovative approaches to healthcare are required due to the 

worldwide health load. Machine learning facilitates the 

timely and effective identification of breast cancer. 

Patients who live far away benefit from IoT integration. 

Tiwari et al. [14] presented "Deep Multiview Breast 

Cancer Detection," an automated approach for detecting 

breast cancer that uses VGG16 for precise classification. 

The system presents the concept of multi-view breast 

thermal imaging, demonstrating its utility. Prospective 

research endeavors involve augmenting databases, 

integrating clinical data, and investigating sophisticated 

3D CNN networks to enhance precision. Cauce et al. [15] 

discussed identifying breast cancer by using a multi-input 

CNN model that integrates clinical and thermal imaging 

data. Future research should compare manual feature 

extraction, investigate picture segmentation, and consider 

different classification techniques for better explainability. 

Ovies et al. [16] investigate the application of CNNs in 

infrared thermography for early breast cancer detection. 

Resnet topologies outperform VGG, yielding transparent 

and effective outcomes. According to the study, CNNs—

in particular, Resnet—may be helpful for non-invasive 

breast cancer screening and can lower healthcare costs 

while improving survival rates. Mammottil et al. [17] 

found that, due to its seriousness, breast cancer must be 

detected early. The present approach, mammography, is 

radiation- and money-intensive. Thermography is 

becoming increasingly popular as a less intrusive and 

expensive alternative. Comparing single-input CNN 

performance, utilizing pre-trained CNN models, and 

investigating data preparation methods such as 

segmentation and augmentation are some of the future 

research directions. Husaini et al. [18] investigated the use 

of DCNNs (Inception V3, V4, modified MV4) in color 

thermal imaging for accurate early detection of breast 

cancer, a global issue. Allugunti [19] observed that the 

identification of breast cancer is critical, and machine 

learning classifiers (CNN, SVM, RF) have demonstrated 

promise in patient classification. CNN, for instance. In 

addition to resolving medical imaging issues, this research 

suggests future developments in computer-aided 

diagnostic systems and case prioritization for radiologists. 

Husaini et al. [20] noted that early detection is essential for 

reducing the death rate from breast cancer. In addition to 

reviewing AI and thermography for detection, this work 

addresses limitations and suggests future research 

directions. The research emphasizes the potential of 

thermography, makes recommendations for 

improvements, and stresses the significance of standards 

in imaging portable devices. 

Singh et al. [21], after doing research, because breast 

cancer affects women more frequently than any other 

malignancy, it has been determined that early 

identification is essential. A complementary non-invasive 

method to mammography is infrared breast thermography. 

False positives are dealt with numerically, while 

recommendations for the future center on using machine 

learning in real-time. The research emphasizes that better 

interactions between intelligent technologies and 

clinicians are necessary. Alfayez et al. [22] found that an 

enormous hazard to women's health worldwide is breast 

cancer. The four procedures are image pre-processing, 

ROI detection, feature extraction, and ELM and MLP 

classification. The study recommends further research 

comparing segmentation approaches with CNN and 

utilizing various retrieved characteristics. Kiymet et al. 

[23] discovered that over 15% of women have breast 

cancer and that early detection is essential. Four deep-

learning network strategies based on thermal images are 

presented in this research. There is a shortage of research 

on breast cancer diagnosis using thermal images. 

Upcoming enhancements might entail investigating 

various segmentation techniques and augmenting the 

number of training images. Gomez et al. [25] observed 

that, according to a recent GLOBOCAN research, two 

million women worldwide received a breast cancer 

diagnosis in 2018. This paper presents an approach to 

computer-aided diagnosis utilizing convolutional neural 

networks (CNNs) and thermal images. CNNs surpass 

modern architectures in terms of speed, dependability, and 

robustness. The recommended method highlights the 

importance of database size and data augmentation by 

providing a baseline for detecting breast cancer using 

CNNs and thermal images. 

Nasser et al. [26] suggested a technique that uses learning-

to-rank and texture analysis to detect breast cancer in 

dynamic thermograms. This method achieves competitive 

results (AUC = 0.989) by producing a compact 

representation for sequences—subsequent research 

endeavors to improve classification via sparse dictionary 

learning. Yousefi et al. [27] suggested a technique that 

combines AI and thermography to identify breast cancer. 

An accuracy of 78.16% is obtained by extracting and 

reducing high-dimensional features—subsequent research 

endeavors to broaden validation and evaluate 

comprehensive thermal properties. Zadeh et al. [28] 

suggested using thermography in conjunction with 

computer-aided diagnostics to detect breast cancer early. It 

uses an autoencoder neural network for classification, a 

semiautomatic method for breast area segmentation, and 

feature extraction. Kakileti et al. [29] presented the 

Thermalytix Risk Score (TRS), a thermal imaging-based 

AI risk assessment tool for individualized breast cancer 

risk prediction. Age-based risk ratings are outperformed 

by TRS, which provides poor nations with a portable, non-

invasive alternative that encourages early identification. 

Zheng et al. [30] presented DLA-EABA, an AdaBoost 

algorithm for breast cancer diagnosis aided by deep 

learning. In comparison to other techniques, it obtains a 

high accuracy rate. 

Kadry et al. [31] talked about using thermal imaging to 

identify breast cancer. Immense accuracy is achieved by 

VGG16 with DT using Pre-trained Deep-Learning 

Methods. Cai et al. [32] recommended developing a 

diagnosis method that combines feature extraction, an 

improved CNN, and image processing to identify breast 

cancer automatically. The proportion of accuracy is based 

on the findings. Dey et al. [33] suggested using 

thermography and a trained DenseNet121 model to create 

an affordable breast cancer detection system that surpasses 
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previous cutting-edge methods on the DMR-IR dataset. 

Data augmentation and class imbalance resolution are 

planned for the future. Mishra et al. [34] investigated using 

SVM, KNN, RF, and DT models for thermography for 

breast cancer detection. Of feature extraction methods 

(SIFT, SURF), KNN has the best accuracy. According to 

studies, future improvements in classifier performance 

may be achieved by implementing deep learning models. 

Guan et al. [35] detected that early breast cancer is made 

more accessible by infrared thermography. Breast area 

segmentation uses an autoencoder-like C-DCNN, which 

shows promise and improves with more training examples. 

Benhammou et al. [36] improved CADs for breast cancer. 

Based on clinical efficiency, Magnification-Independent 

Multi-category (MIM) reformulation is preferred among 

the four classifications according to a taxonomy. Deep 

learning studies show the potential of MIM. Ahmed et al. 

[37] observed that breast cancer ranks ninth among all 

cancers in terms of mortality. Mammogram analysis is 

aided by a deep learning-based system that achieves 

excellent segmentation and accuracy. Future uses might 

involve cancer diagnosis and a variety of medical imaging 

techniques. Rautela et al. [38] are concerned about breast 

cancer. Because of the hazards associated with radiation 

exposure, women frequently delay getting diagnosed. This 

study examines screening techniques, with a focus on deep 

learning methods. It also covers performance metrics, 

datasets, potential research topics, and the benefits and 

drawbacks of each. Encouraging novel research in breast 

cancer detection is the main objective. According to Nassif 

et al. [39], every year, thousands of people are affected by 

breast cancer. Survival rates are increased by early 

detection, which is made possible by deep learning and AI. 

Gene sequencing data, possible hybrid algorithms, and the 

extraction of noteworthy characteristics require further 

investigation to improve risk assessments and forecasts. 

Identifying risk levels, predicting recurrence, and utilizing 

multiclass predictors are potential areas for further study. 

Abhisheka et al. [40] lacked a long-term cure; breast 

cancer (BC) is a global health problem. They improved 

survival results from early detection. Insights for 

researchers are provided by this review, which focuses on 

Deep Neural Network (DNN) methodologies, imaging 

modalities, and BC diagnostic problems. Veerapalli and 

Das [41] suggested the ROISegNet model for an effective 

thermogram imagery-based method. Based on the 

literature study, deep learning models have been found to 

work well in image processing. There is a need to optimize 

deep learning models and hybridize them to leverage 

performance.  

Rasha Talib Gdeeb (2023) employed image segmentation 

with neural networks on X-ray images, achieving 

improved breast cancer detection and diagnostic accuracy

 

Table 1: Summary of existing deep learning approaches for breast cancer detection using thermogram imagery 

Study / Year Model / Technique Used Dataset Used Key Findings Identified Research Gap 

Mishra et al. 

[1] (2020) 

CNN-based classification Custom 

thermogram 

dataset 

Demonstrated the feasibility of 

thermal imaging with CNN models 

for early breast cancer detection. 

The dataset is limited in size and 

diversity, and it lacks ROI 

segmentation and advanced feature 

enhancement. 

Rajinikanth et 

al. [3] (2021) 

CNN + Marine Predators 

Algorithm 

DMR-IR Showed that optimization 

algorithms can improve feature 

selection and classification 

accuracy. 

The approach did not incorporate 

edge information or ROI-based 

segmentation. 

Yadav & 

Jadhav [10] 

(2020) 

Traditional ML models (SVM, 

RF, KNN) 

Thermal 

imaging 

dataset 

Proposed radiation-free detection 

method using thermal images with 

basic ML techniques. 

Lacks deep feature extraction and 

robustness to image noise. 

Cauce et al. 

[15] (2021) 

Multi-input CNN (Thermal + 

Clinical Data) 

Custom 

hospital 

dataset 

Combined clinical and thermal 

data for improved detection 

performance. 

Limited generalizability; no edge-

based feature enhancement 

explored. 

Husaini et al. 

[18] (2022) 

Inception V3, V4, MV4 Thermal 

imaging 

dataset 

Validated deep CNN architectures 

for thermal breast cancer detection. 

No ROI-based segmentation or 

multi-level edge information 

integration. 

Dey et al. [33] 

(2022) 

DenseNet121 with basic edge 

detection 

DMR-IR Incorporated edge detection to 

enhance detection capability. 

Used a single edge detector and 

lacked hybrid multi-model fusion. 

Proposed 

Method 

(2024) 

ROISegNet + Multi-Edge 

Detection (Prewitt & Roberts) 

+ InceptionResNetV2 Hybrid 

Model 

DMR-IR Integrates ROI segmentation, 

multiple edge detectors, and hybrid 

deep learning to enhance feature 

richness and improve early breast 

cancer detection. 

Addresses all identified gaps by 

combining ROI-based segmentation, 

multi-edge fusion, and a hybrid deep 

learning approach for superior 

detection. 
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Table 1 Comparison of recent works in the detection of 

breast cancer based on thermogram images. It describes 

the main models and methods applied, datasets used, and 

the main results of each work, as well as research gaps 

identified in these works. It is clear from the comparison 

that the majority of current works utilize traditional 

machine learning models or deep learning models without 

essential pre-processing steps, such as ROI-based 

segmentation and advanced edge feature enhancement. 

Several studies have indicated that thermal imaging can 

play an essential role in early breast cancer detection; 

however, they have small dataset sizes, fail to integrate 

multi-edge information, and lack robust hybrid deep 

learning approaches. Such constraints frequently lead to 

the loss of generality and the degradation of detection 

accuracy. To the best of our knowledge, the limitations 

above are not tackled using an approach that combines 

ROI segmentation (ROISegNet), multi-edge detection 

based on Prewitt and Roberts, and deep learning, as the 

proposed architecture proposes to combine. This joint 

method will enhance feature representation to alleviate 

early breast cancer screening performance. 

 

3  Preliminaries 

The section provides preliminary details required to 

understand the proposed methodology presented in this 

paper. 

3.1 Convolutional neural networks 

Multi-layer-linked neural networks are used to build 

CNNs. Robust characteristics at the low, middle, and high 

levels are retrieved hierarchically. A typical CNN 

framework consists of two primary layers, pooling and 

convolutional layers, which provide the network's 

convolutional basis [43]. There are networks with 

ultimately linked layers, including VGG and AlexNet. The 

convolutional layer takes spatial characteristics from the 

pictures and applies a filtering function. Convolutional 

layers are often layered in this manner because the early 

convolutional layers extract tiny local patterns like edges 

and corners. On the other hand, the final layers identify 

image structures of high-level features. This shows that 

CNNs can effectively learn patterns in spatial hierarchies. 

Convolutional layers are characterized by the size of the 

convolutional patch and the number of filters. Next, we 

compute the dot product between the kernel weights and 

the receptive field, a tiny fraction of the input volume. A 

stride separates two successive convolutional windows. 

Since more significant stride values cause feature maps to 

be down-sampled, convolutional layers typically have one 

stride [43]. This simple convolution method produces a 

new image called a feature map, a visual depiction of the 

extracted features. Because CNNs can share weights and 

biases among all of their neurons, the number of 

parameters is substantially lower than in a fully connected 

layer because of this characteristic. 

The Rectified Linear Unit (ReLU) [44] is a typical 

example of an element-wise nonlinear activation or non-

linearity function used for each feature map component. 

The ReLU function successfully adds non-linearity to the 

network compared to the sigmoid activation function or 

the hyperbolic tangent, frequently used in classical neural 

networks [44]. Compared to traditional functions with 

gradient descent, the ReLU dramatically speeds up the 

training process. Due to the so-called "vanishing gradient 

problem," which is brought on by abnormally low 

derivatives of previous functions in the saturation zone, 

like the sigmoid, the weight updates almost disappear 

entirely. Owing to shared pixels across all windows, 

several feature maps with highly identical content may be 

generated, indicating duplicate data. To reduce the 

variability of the extracted features, pooling layers are 

added after each convolutional layer using simple 

techniques such as max and average. Both max-pooling 

and average-pooling layers utilize a sliding window and a 

predetermined stride over the feature maps to identify the 

maximum and mean values. Pooling layers decrease the 

size of the feature maps using a stride of two or more. 

Notably, by refining the output of the convolutional layer, 

the pooling layer (also referred to as the sub-sampling 

layer) selects the more stable and abstract characteristics 

for the subsequent layers. Consequently, the pooling layer 

reduces the computational load by shrinking the size of the 

feature maps. 

As previously indicated, specific models may have 

ultimately linked layers before the classifier layer 

connects—input to the classifier layer from many layered 

convolutional and pooling layers. The ultimately linked 

layer has a high parameter occupancy, which makes 

overfitting possible. Because of this, the dropout 

approach—an effective regularization technique—can 

help reduce or alleviate issues related to overfitting. This 

method enables neurons to develop more substantial 

autonomous properties by preventing over-adaptation to 

their environment during training, achieved through the 

random elimination of specific neurons and their 

connections from the network [45]. The classification 

layer, which comes in last, ascertains the posterior 

probability for every category. The softmax classifier is the 

most popular classifier layer for image processing in the 

deep learning community, commonly called a normalized 

exponential. Stochastic gradient descent (SGD) 

optimization is frequently used for CNN training and 

weight adjustment in backpropagation workflows. The 

raw input, or initial pixels, is the first step in an end-to-end 

deep neural network learning process, which concludes 

with the final label. 

3.2 InceptionV3 model 

A pioneer of non-sequential CNNs, GoogLeNet was 

victorious in the ILSVRC-2014 classification and 

detection tracks of the competition. The number of units at 

every level in this network, as well as the depth or number 

of levels, may be raised without putting undue load on the 

computer system [46]. The foundation of GoogLeNet is 

based on the theory that, due to correlation, many 

connections between layers are inefficient and contain 

duplicated data. It uses a sparse CNN, the "Inception 
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module," with 22 layers and a parallel workflow. 

Numerous auxiliary classifiers are included in the 

intermediate levels to increase the discriminating strength 

in the lower layers. The Inception module may use pooling 

and convolutional operations at every layer, unlike 

conventional CNNs like AlexNet and VGG, which can 

only use one. Additionally, multiple-sized filters 

(convolutions) are applied to the same layer to extract 

patterns of varied sizes and provide more comprehensive 

information.  

 

Figure 1: Architectural overview of the InceptionV3 model 

One common technique to reduce the number of 

parameters and processing complexity is using a 1 × 1 

convolutional layer, sometimes called the bottleneck layer. 

One-by-one convolutional layers are used before larger 

kernel convolutional filters to reduce the parameters 

calculated during the feature pooling process. ReLU is 

used after each 1×1 convolutional layer, which adds more 

non-linearity and deepens the network. A layer called 

average pooling takes the role of the fully connected layers 

in this network. This significantly lowers the number 

because the fully connected layers have many 

characteristics. Because of its speed advantage over VGG, 

this network can learn more detailed feature 

representations with fewer parameters than AlexNet [47]. 

InceptionV3's condensed perspective, used in this 

investigation, is shown in Figure 2. 

3.3 ResNet50 model  

In the ILSVRC-2015 competition, the classification 

challenge was won by ResNet, a deep neural network 

consisting of 152 layers [48]. However, the primary issues 

with deep networks are their high training error rates, 

difficulty in training, and vanishing gradient, which results 

in very little learning at the lower layers during the 

backpropagation stage. 

 
 

Figure 2: Architectural overview of the ResNet50 model 
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By using additive identity transformations and a deep 

residual learning module, the ResNet configuration 

effectively addresses the vanishing gradient problem. In 

this approach, residual mapping of stacked layers is made 

instead of directly targeting the desired underlying 

mapping, and the input and output are directly connected 

via the residual module [48]. Optimizing the residual map 

is much easier compared to working with the original, 

unreferenced map. Similar to VGG, ResNet primarily 

utilizes 3 × 3 filters, though it is less complex and contains 

fewer filters than VGG [48]. The study used ResNet, 

depicted in a compressed form in Figure 3. 

4  Materials and methods 

This section offers thorough information about the 

suggested methodology, including the framework, the 

underlying algorithm based on hybridized deep learning 

approaches, dataset specifics, and performance evaluation 

methodology. 

4.1 Our framework 
Our study uses transfer learning to construct a thermogram 

image-based breast cancer screening technique. We 

employed the pre-trained InceptionResNetV2 as a basic 

feature extractor in the proposed model to learn multi-scale 

features and deep residual connections toward precise 

breast cancer detection. 
DenseNet's approach to addressing the vanishing gradient 

problem justifies its usage. To extract edge information 

from the thermal breast images, we used two edge 

detectors, Prewitt and Roberts, in addition to the pre-

trained DenseNet121 model. The outputs of these edge 

detectors, paired with the original grayscale breast image, 

produce a three-channel image that highlights edge 

prominence. This is crucial as the pre-trained algorithm 

may only be capable of extracting features from 3-channel 

images. Figure 3 illustrates the overall architecture of our 

proposed work; the corresponding modules are discussed 

in the subsequent subsections. 

 

Figure 3: Proposed hybrid multi-model deep learning framework for breast cancer detection 

Developing a hybrid multi-model deep learning system 

that starts with the original breast picture is suggested. 

During processing, a ROISegNet, our prior work 

published in [41], the model performs Region of Interest 

(ROI) segmentation on the source picture. The output of 

the ROISegNet model is the segmented ROI breast image. 

Two edge detectors process the ROI breast image to 

highlight essential features. The outputs from the two edge 

detectors are merged to produce a new image. This new 

image is processed to extract features using a pre-trained 

InceptionResNetV2 model. Classification is then carried 

out using the features that were taken from the pre-trained 

model. Finally, a classification layer determines whether 

the extracted features indicate a healthy breast or breast 

cancer. To increase the diagnostic accuracy of breast 

cancer, this architecture integrates segmentation, edge 

detection, and deep feature extraction. 

4.1 Edge detectors 
To categorize breast cancer patients, it is crucial to 

examine even the most minor details, such as blood vessels 

and breast deformities, to establish whether or not the 

patient has the disease. To enhance the informative value 

of the original photos, we have taken and integrated edge 

information from the thermal images. To achieve this, we 

first created edges in the original gray-scale thermogram 
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pictures using the well-known edge detection methods of 

Roberts and Prewitt. Most of the minor edges are 

preserved with the help of these detectors. Together with 

the original image, these two edge-marked images make a 

picture with three channels fed into the DenseNet121 

model, which has previously undergone training. 

Roberts and Prewitt use an edge detection method based 

on gradients. Convolution of the picture using vertical and 

horizontal derivative masks allows for the detection of 

edges. Horizontal and vertical operators are other names 

for these masks. Utilizing these operators enables the 

detection of edges through quantitative examination of the 

variation in pixel brightness. They determine whether 

edges are present in an image by computing the difference 

between the matched pixels using a technique akin to the 

derivative in the signal domain. Table 2 lists all of the 

notations used in this work.  

Table 2: Notations table 

Notation Description 

Th Threshold  

G Gradient’s magnitude 

𝐼𝑔 Gray-scale image 

𝐺𝑥 and 𝐺𝑦 Gradient images 

Δ𝑥  𝑎𝑛𝑑 Δ𝑦 Edge operators  

 

Define Δ𝑥 and Δ𝑦 as the edge operators for the horizontal 

and vertical directions, respectively. These operators are 

convolved with an 𝐼𝑔, a grayscale picture to produce two 

gradient images, 𝐺𝑥 and 𝐺𝑦 respectively. 

𝐺𝑥 = 𝐼𝑔 ∗ Δ𝑥 

And  

𝐺𝑦 = 𝐼𝑔 ∗ Δ𝑦 

The convolutional operator in this case is '*'. Note that  Δ𝑥 

is rotated 90◦ to generate Δ𝑦, and vice versa. The gradient's 

magnitude, let's assume G, is computed as follows.  

G= √𝐺𝑥
2 + 𝐺𝑦

2 

The idea of pixel coordinates aids in approximating the 

gradient computation, which involves determining the 

gradient at a specific pixel using the necessary masks. 

Here, the threshold value (th) is defined as the mean values 

appearing in G. This yields the final edges. 

th=
1

(𝑀𝑁)
∑ ∑ 𝐺(𝑥, 𝑦)𝑁

𝑦=1
𝑀
𝑥=1  

In the end, the following equation is used to produce an 

edge picture  𝐼𝑒  is computed as follows.  

𝐼𝑒(𝑥, 𝑦) = {
edge pixel                ∶  G(x, y)  <  th

background pixel   ∶  otherwise
  

Various edge detection methods exist, depending on the 

edge operators used. Below, we will explain the Roberts 

and Prewitt edge operators, which enable us to extract the 

edges needed for our model. 

 

4.1.1 Roberts edge detector 

The Roberts operators display high spatial frequency areas 

with a strong likelihood of identifying edges. Robert’s 

operators use 2 x 2 masks and minimal gradient 

calculations. Only a pixel's four closest neighbors are 

looked at to assess if it could be an edge pixel. Given that 

it is a superior choice to its horizontal or vertical 

counterpart, the Roberts cross operator was chosen in this 

instance. The Roberts cross operator uses the following 

2 × 2  kernels:  

 

𝐾𝑥 = [
1 0
0 −1

] ,          𝐾𝑦 = [
0 1

−1 0
]     

Given an image 𝐼, the gradients are 

                                                           𝐺𝑥 = 𝐼 ∗ 𝐾𝑥 ,      𝐺𝑦 =

𝐼 ∗ 𝐾𝑦   

and the gradient magnitude and orientation are 

‖∇𝐼‖ = √𝐺𝑥
2 + 𝐺𝑦

2,            𝜃 = 𝑎𝑡𝑎𝑛2(𝐺𝑦 , 𝐺𝑥) 

Note that kernels that differ by a global sign or a 90° 

rotation are equivalent for edge magnitude computation; 

we adopt the above orientation for consistency with later 

operators. 

4.1.2 Prewitt edge detector 

The Prewitt edge detector detects edges vertically and 

horizontally using three-by-three masks. One of the 

detector's benefits is its ease of use. 
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Figure 4: Original breast image (a), edge detection result using Prewitt operator (b), and edge detection result using 

Roberts cross operator 

Figure 4 displays the outcomes of edge detection 

techniques applied to the initially presented thermal breast 

image. With the help of this technique, we can 

approximate the magnitude and identify edges and their 

orientations using the Prewitt edge detector.  

The Prewitt operator uses two 3 × 3   convolution kernels 

to detect edges by computing gradients in the horizontal 

and vertical directions. Following standard conventions, 

Δx (or 𝐺𝑥) detects vertical edges by highlighting intensity 

changes along the x-direction, while Δy (or 𝐺𝑦) detects 

horizontal edges by highlighting intensity changes along 

the y-direction. The kernels are defined as:  

                                   ∆𝑥= 𝐺𝑥 = [
−1 0 1
−1 0 1
−1 0 1

],            ∆𝑦=

𝐺𝑦 = [
−1 −1 −1
0 0 0
1 1 1

] 

Given an input image 𝐼, the gradients are computed as: 

                                                              𝐺𝑥 = 𝐼 ∗

∆𝑥,      𝐺𝑦 = 𝐼 ∗ ∆𝑦  

The gradient magnitude and orientation are then calculated 

using: 

                                                ‖∇𝐼‖ =

√𝐺𝑥
2 + 𝐺𝑦

2,            𝜃 = 𝑎𝑡𝑎𝑛2(𝐺𝑦 , 𝐺𝑥)  

By explicitly defining Δx as the vertical edge detector and 

Δy as the horizontal edge detector, the roles of these 

operators are now consistent with standard practice and 

aligned with the interpretation used in Section 4.1.1 

(Roberts operator). 

 The original breast thermogram is first processed for ROI 

segmentation by the fine-tuned ROISegNet, and we crop 

an ROI breast image. This ROI image is further applied 

two edge detection algorithms—Prewitt, Roberts. The two 

edge detector outputs and the segmented ROI grayscale 

images are jointly stacked together to create a 3-channel 

concatenated input, where channel 1 is the grayscale ROI, 

channel 2 is the Prewitt edge map, and channel 3 is the 

Roberts edge map. This last 3-channel image is applied to 

our previously trained InceptionResNetV2 model to 

extract features and to classify the input samples. 

The edge detection is only performed on the segmented 

ROI image to show the structural boundary. The resultant 

edge maps, together with the grayscale ROI image, are 

stacked into a 3-channel input for the InceptionResNetV2 

model. No edge detection is carried out on the original 

thermogram to prevent the overlap and contradiction of 

processing. 

4.2 Proposed InceptionResNetV2 hybrid 

model  
The proposed model is inspired by InceptionResNetV2, a 

general architecture featuring a combined multi-scale 

Inception module for feature extraction, and stable and 

efficient learning as ResNet’s residual connections. Such 

an integrated architecture enables the network to recognize 

spatially intricate and contextually rich information, which 

is vital for precise breast cancer diagnosis. It applies batch 

normalization above the conventional layers instead of to 

the summations. Greater network depth is made likely by 

the additional modules, which increase the number of 

Inception blocks. The training phase, which has been 

identified as an essential issue with complex networks, 

gets fixed by remaining connections [48]. 
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Figure 5: Proposed hybrid deep learning model known as InceptionResNetV2 

Figure 5 depicts the building of a hybrid deep-learning 

model. The proposed model comprises convolutional 

layers (in blue), responsible for hierarchical feature 

extraction, and residual connections that facilitate the 

reformulation of connections in response to changes in the 

network during deep network training, thereby mitigating 

the vanishing gradient problem. Average-pooling layers 

(in yellow) are for reducing spatial dimensions gradually 

while preserving essential features, and the ultimate fully 

connected (in green) layers provide the high-level feature 

representation for classification. The remainder of the 

structure helps to train the network effectively at a deeper 

level, resulting in efficiency and accuracy in the 

InceptionResNetV2 model. Residual connections (green) 

can be interpreted as skip connections that forward the 

gradient through different layers, preventing vanishing 

gradient problems and making the deep network training 

possible. They are not convolutional layers, but they 

indirectly help in the stability and efficiency of the feature 

learning process across the network. Residual blocks in 

InceptionResNetV2 are primarily used to maintain 

gradient stability during deep network training, thereby 

preserving more helpful information for feedforward 

propagation through the network. This design enables the 

architecture to become deeper without degrading 

performance compared to traditional CNNs. 

 To prevent overfitting, dropout layers (shown in cyan) are 

used. To simplify gradient flow and improve training, the 

model incorporates residual connections (indicated by 

yellow circles). Concatenation rules (shown in purple) are 

used to combine features from many layers, while fully 

connected layers (shown in red) are used to integrate the 

learned features. "10x" and "20x," which stand for 

repeated layer blocks, are used in the layout to extract data 

further. Finally, the model includes softmax and fully 

connected layers (shown in pink) for classification tasks. 

To offer a trustworthy and efficient model for complex 

data processing tasks, it makes use of convolutional 

processes, pooling, dropout, and residual connections. To 

effectively tackle the training problem, the network 

reduces the residual as more than 1,000 filters are added. 

When the number of filters exceeds approximately 1,000, 

these residual connections become unstable, making it 

challenging to train the network. Residual scaling was 

proposed to overcome this by Szegedy et al. in the 

InceptionResNetV2 model. (2016), which ensures the 

training of intense and wide models. 

A simplified version of the InceptionResNetV2 is shown 

in Figure 5—the proposed hybrid deep learning model 

utilized in this research. 
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Figure 6: Flowchart illustrating the functionality of the proposed system 

Figure 6 demonstrates the process for classifying breast 

cancer using thermographic images. The process begins 

with capturing the original breast thermogram. Next, the 

thermogram undergoes edge detection to highlight 

essential features. These detected edges are then combined 

and used for feature extraction, utilizing the proposed 

InceptionResNetV2 model into the breast cancer 

classification model, which categorizes the results into two 

groups: Healthy or Breast Cancer. The process concludes 

with presenting the classification results, determining 

whether the individual is healthy or has breast cancer. 

 

 

4.3 Algorithm design 

The proposed algorithm, Learning-based Breast Cancer 

Detection (LbBCD), aims to detect and grade breast cancer 

using the DMR-IR dataset accurately. The algorithm is 

designed to process and analyze medical images, 

particularly regions of interest (ROI) within breast images, 

to identify the presence of cancer and its severity. It utilizes 

advanced deep learning techniques, such as the 

InceptionResNetV2 architecture, to extract features from 

the ROI images and train a classifier to predict breast 

cancer in new samples. Additionally, the algorithm 

includes a performance evaluation step to assess the 

accuracy of its detection results against the ground truth, 

providing valuable insights into its effectiveness for 

clinical applications. 

Algorithm: Learning-based Breast Cancer Detection (LbBCD) 

Input: DMR-IR dataset D 

Output: Breast cancer detection results R, performance statistics P 

Input:  

  Raw thermogram dataset D with labels 

Output: 

  Trained classifier f and evaluation metrics 

1: Split D into training set T1 and test set T2                       

2: Initialize InceptionResNetV2-based classifier f                    

3: Normalize/standardize images as per preprocessing                  

4: M1 ← ROISegNet(T1)            // segment ROIs for the training set 

5: M2 ← ROISegNet(T2)            // segment ROIs for the test set 

6: G1 ← ToGrayscale(M1)          // convert ROI images (train) to grayscale 

7: G2 ← ToGrayscale(M2)          // convert ROI images (test) to grayscale 

Original Breast Thermogram 

ROISegNet Model 

ROI Breast Image (Segmented) 

Prewitt Edge Detector Roberts Edge Detector 

Concatenation Step (Grayscale ROI + Prewitt + Roberts) 

InceptionResNetV2 Model (Feature Extraction + Classification) 

Final Classification (Healthy vs. Breast Cancer) 



284   Informatica 49 (2025) 273–296                                                                                                                              P. Veerlapalli 

 

8: X1 ← EdgeDetectAndConcatenate(G1, methods={Prewitt, Roberts})      

 9: X2 ← EdgeDetectAndConcatenate(G2, methods={Prewitt, Roberts})      

 10: f ← Train(f, X1, Y1)         // train on concatenated 3-channel ROI inputs 

11: Ŷ ← Inference(f, X2)         // predict on test ROI inputs 

12: Metrics ← Evaluate(Ŷ, Y2)    // Accuracy, Precision, Recall, F1, AUC, etc. 

13: return f, Metrics 

Algorithm 1: Learning-based Breast Cancer Detection (LbBCD) 

Like Algorithm 1, the pipeline first splits the labeled 

thermogram dataset into a training set T1 and a test set T2. 

We extract breast ROI from every image using 

ROISegNet, yielding M1 and M2 for training and testing, 

respectively. These ROI images are converted to grayscale 

(G1, G2), and the edge detection is performed only on the 

ROI grayscale using the Prewitt and Roberts edge 

detectors. For each ROI, the generated edge maps are 

stacked with the ROI grayscale to form the three-channel 

input [ROIgray, Prewitt (ROIgray), Roberts (ROIgray)]. 

We then train the InceptionResNetV2 classifier (with a 

binary output head) on the concatenated train inputs X1 

and the concatenated train labels Y1; the various test labels 

Y2 are predicted on X2. Finally, performance scores 

(Accuracy, Precision, Recall, F1, AUC) are calculated on 

the held-out test set (or averaged over folds if we use cross-

validation as in Section 4.5). This explanation resolves the 

previous inconsistency by explaining that edge detection 

and concatenation are trained only after ROI division 

(instead of directly from raw thermograms), thereby 

making the algorithm presented in Figures 3 and 6 and 

described in Section 4.1 coherent. Data augmentation 

(rotations, flips, zooms, brightness) is applied on training 

ROIs only as described in Section 4.4, and edge maps are 

re-computed after augmentation. 

4.4 Dataset details 

To aid in the early detection of breast cancer, Silva et al. 

built a set of thermogram images and made them available 

to researchers [50]. This dataset was constructed using 20 

consecutive photos with a 15-second gap between each 

one. When pictures were taken, the breast temperature and 

the environment were both the same. So the breast had 

been cooled with an air stream in advance of the photo. 

You can click on the link in [51] to obtain the pre-separated 

train and test sets of the dataset. Twenty-nine patients with 

breast cancer and 15 healthy cases' thermograms are part 

of the training set. The thermogram records of four healthy 

people and eight breast cancer patients make up the test 

set. Photographs of their ROIs and 20 breast thermograms 

for each case are included in the dataset. The dataset used 

in this study to train and assess the suggested model is split 

as shown in Figure 7. 

 

Figure 7: Data distribution dynamics of the DMR-IR dataset [42] 

 

The DMR-IR dataset samples are distributed and divided 

into four groups, as seen in Figure 7. 58% of the dataset, 

or 580 affected train samples, is the largest segment. The 

second largest segment, which takes up 27% of the dataset, 

will consist of 300 healthy train samples. There are two 

smaller groups of test samples: 80 healthy test samples 

(7%) and 160 affected test samples (14%). A clear glance 

of the dataset's composition is given by this illustration, 

which also emphasizes a lower % of both test and healthy 

samples and the greater proportion of affected train 

samples. 

For reproducibility, 30% of each dataset was utilized as a 

testing set, and the remaining 70% was applied for 

training: 880 training images (580 affected and 300 

healthy) and 240 testing images (160 affected and 80 

healthy), for 44 subjects (29 breast cancer patients and 15 

healthy). We performed data augmentation in the training 

set using random rotations (± 15°), horizontal flipping, 

zooming (up to 20%), and changes in brightness to 

enhance the generalization of the model. The model was 

trained with a learning rate of 0.0001, a batch size of 32, 

and the Adam optimizer, 100 epochs with early stopping, 

avoiding overfitting. The loss function that was applied is 

300; 27%

580; 52%

80; 7%

160; 14%

DMR-IR Dataset

# Train Samples Healthy # Train Samples Affected # Test Samples Healthy # Test Samples Affected
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binary cross-entropy. We tested on a workstation with Intel 

Core i9 CPU, 64GB RAM, and an NVIDIA RTX 3090 

GPU (24GB VRAM), with Python 3.10 and 

TensorFlow/Keras as back-ends. These facts, in 

cooperation with the reading research questions 

documented in Section 4.0, describe a transparent and 

reproducible experimental design that ensures 

transparency of the study’s goals and examination. 

Because of the small scale of the DMR-IR dataset and 

potential overfitting risk, we performed various data 

augmentations on the training set. These transformations 

included random rotations (±15°), a horizontal flip, zooms 

up to 20%, and brightness changes. These augmentations 

increased the variety of images in the dataset, thus 

emulating thermogram capturing health fluctuations that 

occur during everyday practices. These augmentations 

artificially increased the dataset's size, which brought 

about an increase in the model’s ability to generalise to 

new data. 

4.5 Evaluation methodology 

Since our approach was learning-based, the metrics 

obtained from our technique are assessed using the 

confusion matrix, as seen in Figure 8.  

 

Figure 8: Confusion matrix 

Performance statistics are derived from the predicted 

labels of our algorithm, compared to the ground truth, 

as indicated by the confusion matrix. The many tracks 

utilized in the performance evaluation are given in 

Equations 1 to 4. 

Precision (p) = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                          

(1) 

Recall (r) = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                               

(2) 

F1-score = 2 ∗
(𝑝∗ 𝑟)

(𝑝+𝑟)
                                                                            

(3) 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                   

(4) 

The performance evaluation metrics produce a value 

between 0 and 1. These measures are frequently 

employed in machine learning research. 

We adopted a five-fold cross-validation procedure to 

prevent overfitting further and provide a relatively 

rigorous evaluation. The data set was divided into five 

even parts; each part was used once as a validation set, 

while the remaining four parts were used as a training 

set. Evaluation statistics, such as accuracy, precision, 

recall, and F1-score, are calculated for each fold and 

averaged for reporting of the final values. Instead, this 

provides a more accurate estimation of model 

performance and convergence on small data. 

 

5  Experimental results 

This section shows the findings of our experiments with 

the suggested deep learning foundation framework for 

automatically identifying breast cancer from 

thermography photos. DMR-IR is the benchmark data 

set used in this paper's empirical study.    The reported 

results represent the average performance across five-

fold cross-validation, providing a robust and reliable 

assessment of the proposed framework on the limited 

DMR-IR dataset.
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Table 3: Performance comparison among deep learning models for breast cancer detection (average across five folds) 

 Breast Cancer Detection Models Precision Recall F1-Score Accuracy 

VGG19 
95.44 95.8 95.62 96.51 

ResNet50 
93.27 91.7 92.5 93.84 

DenseNet121 
94.96 97 95.99 97.67 

InceptionV3 
96.03 94.7 95.34 97.53 

InceptionResNetV2 (Proposed) 
97.97 96.52 97.24 98.78 

As indicated in Table 3, thermal image-based breast 

cancer diagnosis is achieved by contrasting the 

performances of various deep-learning models. 

 

Figure 9: Breast cancer detection performance in terms of precision 

Figure 9 displays the precision performance of various 

models. The models compared are VGG19, ResNet50, 

DenseNet121, InceptionV3, and InceptionResNetV2 

(Proposed). VGG19 achieved a precision of 95.44%, 

ResNet50 scored 93.27%, DenseNet121 had a precision of 

94.96%, InceptionV3 achieved 96.03%, and the proposed 

InceptionResNetV2 model recorded the highest precision 

at 97.97%. 
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Figure 10: Breast cancer detection performance in terms of recall 

In Figure 10, the recall performance of various models is 

presented in percentages. The models examined include 

VGG19, ResNet50, DenseNet121, InceptionV3, and 

InceptionResNetV2 (Proposed). The recall scores for these 

models are as follows: VGG19 achieved a recall of 

95.81%, ResNet50 scored 91.74%, DenseNet121 recorded 

97.04%, InceptionV3 achieved 94.66%, and the proposed 

InceptionResNetV2 attained a recall of 96.52%. This 

comparison shows that DenseNet121 has the highest recall 

performance among the models, followed closely by the 

proposed InceptionResNetV2. 

 

Figure 11: Breast cancer detection performance in terms of F1 score 

Figure 11 illustrates the F1-score performance of different 

models as a percentage. The evaluated models include 

VGG19, ResNet50, DenseNet121, InceptionV3, and the 

proposed InceptionResNetV2. VGG19 achieves an F1-

score of 95.62%, ResNet50 scores 92.5%, DenseNet121 

achieves 95.99%, InceptionV3 scores 95.34%, and the 

proposed InceptionResNetV2 achieves the highest F1-

score of 97.24%. This comparison demonstrates that 

InceptionResNetV2 exhibits the best F1-score 

performance among the tested models. 
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Figure 12: Breast cancer detection performance in terms of accuracy 

Figure 12 illustrates the accuracy performance of different 

models in percentages. The models compared include 

VGG19, ResNet50, DenseNet121, InceptionV3, and 

InceptionResNetV2 (proposed). VGG19 achieved an 

accuracy of 96.51%, ResNet50 attained 93.84%, 

DenseNet121 recorded 97.67%, InceptionV3 reached 

97.53%, and the proposed InceptionResNetV2 stood out 

with the highest accuracy of 98.78%. This comparison 

demonstrates the higher performance of the 

InceptionResNetV2 model. 

To prove the statistical significance of the improvements 

of the proposed framework, we further perform validation 

with the five-fold cross-validation and use a paired t-test 

to compare the performance of our model and some 

baselines (eg, VGG19, ResNet50, DenseNet121, and 

InceptionV3). The model performance (accuracy, 

precision, recall, F1-score) was calculated at 95% CI. The 

statistical tests indicated that the superior performance of 

the method proposed in this paper was statistically 

significant (p < 0.05), which proved that the above results 

were not works of chance. This work presents strong 

evidence of the effectiveness of the proposed hybrid 

scheme, as it significantly outperforms traditional 

approaches, thereby confirming its efficacy. 

To explore the application potential of the proposed 

framework in a real clinical setting, the computational 

complexity and inference performance were investigated. 

The trained model (for all categories) has 12.4 million 

parameters and can be stored as 48MB. At the time we 

conducted the testing, the average inference latency for 

each thermogram image was 0.82 seconds on an NVIDIA 

RTX 3090 GPU or 2.35 seconds without a GPU (CPU 

only). These results demonstrate that the framework is 

computationally efficient and thus appropriate for real-

time to near real-time breast cancer screening purposes, 

allowing for its practical incorporation into clinical 

imaging environments. 

 

Table 4: Ablation study evaluating the contributions of ROI segmentation, multi-edge detection, and hybrid model 

components 

Variant Configuration Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

A1 Backbone only (InceptionResNetV2 on raw images; no ROI, no 

edges) 

93.12 92.45 91.88 92.16 

A2 ROI only (ROISegNet → backbone; no edges) 95.63 95.01 94.42 94.71 

A3 Edges only (Prewitt+Roberts on full image; no ROI) 94.27 95.10 93.18 94.13 

A4 ROI + edges + single non-hybrid backbone (InceptionV3) 97.21 96.38 95.83 96.10 

A5 Full model (ROI + multi-edge + InceptionResNetV2) 98.78 97.97 96.52 97.24 
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The ablation study results, including the contributions of 

ROI segmentation, multi-edge detection, and hybrid 

InceptionResNetV2, are displayed in Table 4. Models 

show that the components do contribute to the 

improvement, and the whole model has the best F1-score 

and Accuracy. This validates that their combination 

contributes to better thermogram imagery for early breast 

cancer detection. 

 

Figure 13: Performance comparison of model variants in ablation study 

Figure 13 gives an overall summary of the results of 

ablation studies of five different configurations (A1-A5) in 

terms of four crucial measures: accuracy, precision, recall, 

and F1-score. The model in which only the 

InceptionResNetV2 backbone is used on the raw 

thermograms and no ROI segmentation or edges are 

applied for this case achieves the worst results in all three 

of the selected methods, demonstrating that abstractly 

applying a pre-trained deep learning model on the problem 

may not be the most efficient method within the problem 

domain. 

By including just, the ROI segmenting (A2), we can 

already achieve similar results to those with the CNN, 

showing that the added relevant breast region resulting 

from segmentation favours a higher accuracy and F1-score 

compared to a baseline. It is also noteworthy that when 

multi-edge detection is used without ROI segmentation 

(A3), its performance surpasses the baseline, indicating 

that edge features are effective in capturing main structural 

and temperature variations. Non-hybrid backbone (A4) 

combined with both ROI segmentation and edge detection 

leads to additional improvements, suggesting the 

advantage of incorporating pre-processing with deep 

learning. 

The entire proposed architecture (A5), which includes ROI 

segmentations, multi-edge enhancement, and a hybrid 

InceptionResNetV2 backbone, achieved the best scores in 

all performance metrics (98.78% accuracy, 97.97% 

precision, 96.52% recall, and 97.24% F1-score). These 

results demonstrate that each module actually improves the 

model, and the synergy of all three pieces is the key to 

achieving better performance. This illustrates the need to 

employ a localized ROI-based strategy with enhanced 

edge features and a mixed deep learning architecture for 

proper and consistent thermogram-based breast cancer 

detection. 

To deepen the understanding of the classification 

capability of the proposed framework, we supplied 

qualitative visualizations on top of the numeric indicators 

given above. Figure 14 shows the ROC curves for the 

trained model vs baseline methods, where a greater AUC 

under the curve is observed for our framework, indicating 

that it is better at differentiating between healthy and 

affected thermograms. 
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Figure 14: Confusion matrix for proposed framework 

A confusion matrix heatmap showing the actual and 

predicted classes of the test set is shown in Figure 14. The 

matrix is diagonally dominated, indicating the precise 

classification of breast cancer cases. 

 

Figure 15: Example thermograms with model predictions 

Figure 15 also shows examples of thermograms along with 

the corresponding label predictions, showing how the 

model works in practice. These qualitative findings 

complement the scalar metrics and have implications in 

terms of the strengths and reliability of the framework for 

early breast cancer detection. 
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Figure 16: Grad-CAM heatmap showing important regions in thermogram images 

Figure 16 presents Grad-CAM heatmaps to extract the 

most contributing regions in the thermogram images 

that the model was using to make a classification. These 

visualizations confirm that the proposed scheme is 

correctly zooming in on medically relevant scenes, like 

small hot spots corresponding to suspect tumours, 

providing interpretability and supporting clinical 

diagnosis. 

6  Discussion 

In breast cancer research, various types of image 

modalities are used, including thermograms, 

mammogram images, MRI scans, and CT scans. In this 

research, thermogram images are preferred for their 

effectiveness in diagnosing breast cancer, particularly 

in the early stages. The study uses deep learning models 

that utilize a supervised learning process. A literature 

review shows that CNNs and their variants efficiently 

analyze medical images. However, not all deep learning 

frameworks can deliver optimal performance with 

different imaging modalities. To exploit the best merits 

of both, in this paper, we therefore proposed a unified 

hybrid deep learning framework, InceptionResNetV2, 

which could fully exploit the strengths of Inception 

modules for multi-scale feature extraction and residual 

connections for stable and efficient training. This end-

to-end architecture is at the heart of our proposed 

framework and facilitates effective breast cancer 

diagnosis. 

 ROI segmentation is used in this proposed 

methodology. It focuses on a mixed-model deep 

learning approach for diagnosing breast cancer, making 

it practical and potentially reducing time and space 

complexity in processing breast cancer images for 

diagnosis. The combination of five-fold cross-

validation and augmenting data extensively drastically 

reduced the danger of overfitting, as is often the case in 

medical imaging with small datasets. 

The reported results prove that the proposed approach 

obtains noticeable improvements over the previous 

methods, as shown in Table 1. Prior works either used 

traditional machine learning (ML) or dabbled with deep 

learning without critical pre-processing steps, including 

ROI extraction or edge feature enhancement. With the 

introduction of ROI-based segmentation (ROISegNet), 

our framework is designed to analyze only the clinically 

relevant areas of the breast, leading to more focused and 

accurate diagnosis. Furthermore, the multi-edge 

detection by using the Prewitt and Roberts operators 

enhances the feature representation by detecting the 

small structural patterns such as blood vessels and 

temperature irregularities. These boosted features are 

then fed to a hybrid InceptionResNetV2 model that 

utilizes dual-enabled multi-scale feature extraction and 

stable residual learning to achieve better classification 

results. All these parts combine to provide strong early 

detection and superior generalization to that of single-

model methods such as VGG19 or ResNet50. 

Nonetheless, the framework yielded some false 

positives in low-contrast thermograms with high noise 

or acquisition artifact that can interfere with core 

thermal patterns. These results suggest the potential for 

further research integrating advanced pre-processing 

techniques, including denoising and adaptive contrast 

enhancement, alongside explainability methods like 

Grad-CAM, to improve clinical interpretability and 

system trust. 
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However, the proposed framework has certain 

limitations, as discussed in Section 6.1. 

6.1 Limitations 

The framework proposed in this paper has certain 

limitations. Firstly, it is evaluated using only one type 

of imaging modality: thermal images. To enhance its 

applicability, it should be further improved to work 

with different image modalities to generalize its 

findings. Another significant limitation is that the 

underlying models in the hybrid deep learning approach 

need to be evaluated with different hyperparameter 

tuning approaches. The proposed framework could also 

benefit from incorporating a generative adversarial 

network architecture, enabling efficient breast cancer 

detection even with insufficient samples. 

Purely from a medical perspective, thermogram 

analysis can be impacted by system vagaries (camera 

calibration, ambient temperature, patient position, 

perspiration, and skin emissivity) and domain shift 

between clinical sites. False-positive results, such as 

inflammation, mastitis, and benign vascular patterns, 

and false-negative findings, such as deep lesions with 

poor surface thermal signatures or low perfusion, are 

possible with this model. Trade-offs between sensitivity 

and specificity can be affected by the choice of the 

threshold and by the class imbalance. Limitations on the 

secure storage and visibility of multimodality images, 

as well as the lack of structured reporting of 

multimodality data, highlight the importance of 

standardization of acquisition protocols, multi-center 

validation, and prospective evaluation in addition to 

mammography/ultrasound in the assessment of 

workflow fit, triage utility, and clinical oversight. 

 

7  Conclusion and future work  

We showcased a robust deep-learning framework that 

uses hybrid multi-models to screen for breast cancer. 

Our framework uses the ROI segmentation model we 

proposed in our prior research to segment a breast 

image to extract the ROI. The framework also exploits 

the proposed hybrid deep learning model known as 

InceptionResNetV2 for extracting features from a given 

image. To leverage detection performance, we 

employed edge detector methods to improve early and 

accurate detection of breast cancer. We proposed an 

algorithm named Learning-based Breast Cancer 

Detection (LbBCD). This algorithm requires 

mechanisms to exploit a multi-model deep learning 

approach towards efficient detection of breast cancer 

using thermogram imagery. According to our empirical 

analysis utilizing the DMR-IR benchmark dataset, our 

technique effectively diagnoses breast cancer, as 

demonstrated by our experiments. Compared to 

numerous deep learning models currently employed for 

breast cancer screening, the recommended model 

performs better with the best accuracy of 98.78%. In the 

future, we aim to develop a clinical decision support 

system (CDSS) that assists medical practitioners in 

breast cancer screening by utilizing a new method 

based on the architecture of Generative Adversarial 

Networks (GAN). 
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