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Breast cancer is one of the most common diseases among women worldwide, which causes high mortality
in case of late detection. Thermography is a non-invasive imaging technology that can be used to help with
the early diagnosis of breast cancer. With the development of Al, thermogram-based breast cancer
screening using deep learning techniques has gained significant value. However, the detection accuracy
and robustness of current deep learning algorithms are still challenged. To resolve this, we designed a
hybrid multi-model deep learning framework which combines ROl segmentation by ROISegNet, feature
extraction with enhanced edge using two edge detectors (Prewits and Roberts), and finally feature
extraction and classification by a deep network architecture, InceptionResNetV2. The proposed framework
was tested on the DMR-IR dataset, which is publicly available and includes thermograms of 44 subjects
(29 breast cancer patients and 15 healthy). The dataset was separated into training (580 affected and 300
healthy images) and validation (160 affected and 80 healthy images) sets. The proposed model also
achieved better results than the state-of-the-art 98.78% accuracy, 97.97% precision, 96.52% recall, and
97.24% F1-score, compared with other base networks, such as VGG19, ResNet50, DenseNet121, and
InceptionV3. This performance also indicates that the incorporation of edge-enhanced feature maps and
ROI segmentation in a hybrid deep learning framework is a practical design. The method presented here
represents a potential direction for reliable non-invasive early detection of breast cancer based on
thermogram images.

Povzetek: Predstavijen je hibridni vecmodelni pristop za zgodnje odkrivanje raka dojk s termografijo, ki
zdruzuje segmentacijo ROI, vecrobno poudarjanje in globoko ucenje. Metoda dosega visoko tocnost in

robustnost na podatkovni zbirki DMR-IR.

1 Introduction

Breast cancer ranks first among all cancers in women
globally and is the primary cause of years lost to disability-
adjusted life expectancy. Consequently, reducing the
fatality rate from breast cancer requires early detection.
Despite being the primary treatment for diagnosing and
screening for breast cancer, mammography still has certain
limitations. Two more methods of screening include
ultrasounds and clinical breast exams. Mammography
continues to serve as the gold standard for breast cancer
and stands as a beacon of hope and progress in the pursuit
of effective detection despite several drawbacks.

Thermography is a newly developed screening technique.
Recent technological developments have shown that
thermography is a superior breast cancer screening method
to other approaches [1]. Breast cancer diagnosis has
already significantly benefited from several profound
learning-based contributions. Rajinikanth et al.'s study [3]
concentrated on automating breast cancer diagnosis with
thermograms. Hakim and Awale [5] emphasized the need

for early and precise detection of breast cancer, pointing
out the need to reduce false positives and negatives,
enhance automated interpretation, and explore deep
learning techniques. To validate the possibility of precise
breast cancer risk prediction, further investigation is
required. Mashekova et al. [6] noted that breast cancer is a
frequent and fatal illness, highlighting the need for further
investigation and integration with artificial intelligence to
serve as an additional tool for early detection. Yadav and
Jadhav [10] demonstrated radiation-free early illness
detection using thermal cameras and machine learning,
outperforming  conventional techniques, especially
mammaography, and showing potential uses beyond breast
cancer detection. They also outlined obstacles, including a
limited dataset and picture similarity, and proposed
remedies like feature aggregation for  future
improvements. Cauce et al. [15] offered a CNN model with
several inputs for cancer detection, integrating clinical and
thermal imaging data. They suggested that future research
should compare manual feature extraction, explore picture
segmentation, and consider different classification
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techniques for better explainability. There is a need to
optimize deep learning models and hybridize them to
leverage performance.

Early, non-invasive breast cancer screening is essential,
and thermal imaging is a radiation-free alternative that is
yet to be harnessed to its full potential due to variability in
image quality, scarcity of annotated datasets, and
inconsistency in deep learning workflows. Previous works
typically fail to incorporate ROIl-oriented processing and
edge-aware features, or they directly utilize a single
backbone with poor generalization. We aim to construct a
strong and repeatable pipeline that (i) extracts clinically
valuable regions through ROISegNet, (ii) enhances the
structural hints with different edge maps (Prewitt,
Roberts), and (iii) exploits a unified InceptionResNetV2
backbone for classification. We perform five-fold cross-
validation on the DMR-IR dataset and present the
accuracy, precision, recall, F1, and AUC with statistically
significant validation, which indicates the potential
practical feasibility of thermo-based early screening.

Here are the things we brought to this study.

1. Toenhance breast cancer diagnosis, we suggested
a hybrid multi-model deep learning system that
uses thermogram imaging. The framework comes
with a hybrid deep learning model called
InceptionResNetV2 to remove features from the
photos.

2. Building upon a multi-model deep learning
methodology, we created an algorithm termed
Learning-based Breast Cancer Detection
(LbBCD) to diagnose breast cancer efficiently
using thermogram pictures.

3. We also developed a prototype application using
thermogram imaging to evaluate the suggested
architecture and the underlying algorithm.

The remainder of the document is arranged according
to the following framework. Section 2 summarizes
earlier research on deep-learning models for
identifying  breast cancer. The preliminary
information needed to comprehend the suggested
framework is presented in Section 3. The hybrid
multi-model deep learning framework indicated for
automatic breast cancer screening is presented in
Section 4. Our test findings are shown in Section 5.
Along with outlining the proposed research's
constraints, Section 6 addresses the research's
significance. Section 7 concludes our rework aimed at
early breast cancer screening and offers guidelines for
more studies in the future.

2 Related work

Numerous deep-learning methods used for breast cancer
screening have been documented in the literature. Mishra
et al. [1] used thermal imaging to predict breast cancer
using a CNN model. The approach produces excellent
accuracy with 680 thermograms, surpassing the accuracy
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of 50 thermograms previously used. This illustrates the
deep learning model suggested for breast cancer prediction
ability. Ekici and Jawzal [2] indicated that the approach
uses convolutional neural networks and thermal images to
achieve colossal accuracy. Future studies should
investigate the advanced Dynamic Infrared Thermography
(DIRT) application and thermography's ability to identify
cancer at a level of detail, using models such as CNN to
get better results. Rajinikanth et al. [3] focused on
employing thermal imaging for automated breast cancer
diagnosis. The technique includes image recording, patch
extraction, image processing, feature extraction,
optimization using the Marine Predators Algorithm, and
two-class classification using the Decision-Tree classifier.
Mambou et al. [4] emphasized the necessity for
preventative actions and the worldwide consequences of
breast cancer. This paper presents a comparative analysis
combining deep learning and computer vision techniques
to improve breast cancer diagnosis. Hakim and Awale [5]
identified breast cancer early and accurately. Reducing
false positives and negatives, enhancing automated
interpretation, and investigating deep learning techniques
are among the challenges. More studies must confirm its
potential for accurate breast cancer risk prediction.
Mashekova et al. [6] observed that a frequent and fatal
iliness is breast cancer. Studies highlight the need for more
investigation and integration with artificial intelligence
while confirming its potential as an additional tool for
early detection. Roslidar et al. [7] developed non-invasive
screening methods essential for breast cancer. The
potential of thermography, CNN use, and better future
research possibilities for precise categorization are
reviewed in this work. Milosevic et al. [8] enhanced the
screening process for breast cancer, which is essential for
early identification. The suggested improvements include
thermography, effective target population identification,
and software-supported mammography analysis. Husaini
et al. [9] found that a novel technique combines cloud
computing, deep neural networks, cellphones, and thermal
imaging to identify breast cancer early. Further
development might increase the tool's diagnostic accuracy
and range of uses. Yadav and Jadhav [10] provided
radiation-free early illness detection through thermal
cameras and machine learning. It performs better than
conventional techniques, particularly mammography, and
has potential uses outside the detection of breast cancer.
Obstacles encompass a limited dataset, picture similarity,
and possible remedies such as feature aggregation for
subsequent enhancements.

Mambo et al. [11] investigated and found that it affected
2.8 million people with global breast cancer in 2016,
highlighting the need for early detection. Restrictions in
mammography drive innovations like InceptionV3-KNN.
Improved detection using a 3D breast model and a thermal
sensitivity camera is the goal of future research. Tsietso et
al. [12] claimed that the primary motivation for the
economic identification of breast cancer is the fact that it
is among the leading causes of mortality for females. The
effectiveness of segmentation is emphasized as the
research assesses current CADx systems for breast
thermograms based on deep learning. It underscores the



A Hybrid Multi-Model Deep Learning Framework for Breast...

need for more studies on lateral breast thermograms and
readily available datasets. Salvi and Kadam [13] argue that
innovative approaches to healthcare are required due to the
worldwide health load. Machine learning facilitates the
timely and effective identification of breast cancer.
Patients who live far away benefit from 10T integration.
Tiwari et al. [14] presented "Deep Multiview Breast
Cancer Detection," an automated approach for detecting
breast cancer that uses VGG16 for precise classification.
The system presents the concept of multi-view breast
thermal imaging, demonstrating its utility. Prospective
research endeavors involve augmenting databases,
integrating clinical data, and investigating sophisticated
3D CNN networks to enhance precision. Cauce et al. [15]
discussed identifying breast cancer by using a multi-input
CNN model that integrates clinical and thermal imaging
data. Future research should compare manual feature
extraction, investigate picture segmentation, and consider
different classification techniques for better explainability.
Ovies et al. [16] investigate the application of CNNs in
infrared thermography for early breast cancer detection.
Resnet topologies outperform VGG, yielding transparent
and effective outcomes. According to the study, CNNs—
in particular, Resnet—may be helpful for non-invasive
breast cancer screening and can lower healthcare costs
while improving survival rates. Mammottil et al. [17]
found that, due to its seriousness, breast cancer must be
detected early. The present approach, mammography, is
radiation- and money-intensive. Thermography is
becoming increasingly popular as a less intrusive and
expensive alternative. Comparing single-input CNN
performance, utilizing pre-trained CNN models, and
investigating data preparation methods such as
segmentation and augmentation are some of the future
research directions. Husaini et al. [18] investigated the use
of DCNNs (Inception V3, V4, modified MV4) in color
thermal imaging for accurate early detection of breast
cancer, a global issue. Allugunti [19] observed that the
identification of breast cancer is critical, and machine
learning classifiers (CNN, SVM, RF) have demonstrated
promise in patient classification. CNN, for instance. In
addition to resolving medical imaging issues, this research
suggests  future developments in computer-aided
diagnostic systems and case prioritization for radiologists.
Husaini et al. [20] noted that early detection is essential for
reducing the death rate from breast cancer. In addition to
reviewing Al and thermography for detection, this work
addresses limitations and suggests future research
directions. The research emphasizes the potential of
thermography, makes recommendations for
improvements, and stresses the significance of standards
in imaging portable devices.

Singh et al. [21], after doing research, because breast
cancer affects women more frequently than any other
malignancy, it has been determined that early
identification is essential. A complementary non-invasive
method to mammography is infrared breast thermography.
False positives are dealt with numerically, while
recommendations for the future center on using machine
learning in real-time. The research emphasizes that better
interactions  between intelligent technologies and
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clinicians are necessary. Alfayez et al. [22] found that an
enormous hazard to women's health worldwide is breast
cancer. The four procedures are image pre-processing,
ROI detection, feature extraction, and ELM and MLP
classification. The study recommends further research
comparing segmentation approaches with CNN and
utilizing various retrieved characteristics. Kiymet et al.
[23] discovered that over 15% of women have breast
cancer and that early detection is essential. Four deep-
learning network strategies based on thermal images are
presented in this research. There is a shortage of research
on breast cancer diagnosis using thermal images.
Upcoming enhancements might entail investigating
various segmentation techniques and augmenting the
number of training images. Gomez et al. [25] observed
that, according to a recent GLOBOCAN research, two
million women worldwide received a breast cancer
diagnosis in 2018. This paper presents an approach to
computer-aided diagnosis utilizing convolutional neural
networks (CNNs) and thermal images. CNNs surpass
modern architectures in terms of speed, dependability, and
robustness. The recommended method highlights the
importance of database size and data augmentation by
providing a baseline for detecting breast cancer using
CNNs and thermal images.

Nasser et al. [26] suggested a technique that uses learning-
to-rank and texture analysis to detect breast cancer in
dynamic thermograms. This method achieves competitive
results (AUC = 0.989) by producing a compact
representation for sequences—subsequent research
endeavors to improve classification via sparse dictionary
learning. Yousefi et al. [27] suggested a technique that
combines Al and thermography to identify breast cancer.
An accuracy of 78.16% is obtained by extracting and
reducing high-dimensional features—subsequent research
endeavors to broaden validation and evaluate
comprehensive thermal properties. Zadeh et al. [28]
suggested using thermography in conjunction with
computer-aided diagnostics to detect breast cancer early. It
uses an autoencoder neural network for classification, a
semiautomatic method for breast area segmentation, and
feature extraction. Kakileti et al. [29] presented the
Thermalytix Risk Score (TRS), a thermal imaging-based
Al risk assessment tool for individualized breast cancer
risk prediction. Age-based risk ratings are outperformed
by TRS, which provides poor nations with a portable, non-
invasive alternative that encourages early identification.
Zheng et al. [30] presented DLA-EABA, an AdaBoost
algorithm for breast cancer diagnosis aided by deep
learning. In comparison to other techniques, it obtains a
high accuracy rate.

Kadry et al. [31] talked about using thermal imaging to
identify breast cancer. Immense accuracy is achieved by
VGG16 with DT using Pre-trained Deep-Learning
Methods. Cai et al. [32] recommended developing a
diagnosis method that combines feature extraction, an
improved CNN, and image processing to identify breast
cancer automatically. The proportion of accuracy is based
on the findings. Dey et al. [33] suggested using
thermography and a trained DenseNet121 model to create
an affordable breast cancer detection system that surpasses
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previous cutting-edge methods on the DMR-IR dataset.
Data augmentation and class imbalance resolution are
planned for the future. Mishra et al. [34] investigated using
SVM, KNN, RF, and DT models for thermography for
breast cancer detection. Of feature extraction methods
(SIFT, SURF), KNN has the best accuracy. According to
studies, future improvements in classifier performance
may be achieved by implementing deep learning models.
Guan et al. [35] detected that early breast cancer is made
more accessible by infrared thermography. Breast area
segmentation uses an autoencoder-like C-DCNN, which
shows promise and improves with more training examples.
Benhammou et al. [36] improved CADs for breast cancer.
Based on clinical efficiency, Magnification-Independent
Multi-category (MIM) reformulation is preferred among
the four classifications according to a taxonomy. Deep
learning studies show the potential of MIM. Ahmed et al.
[37] observed that breast cancer ranks ninth among all
cancers in terms of mortality. Mammogram analysis is
aided by a deep learning-based system that achieves
excellent segmentation and accuracy. Future uses might
involve cancer diagnosis and a variety of medical imaging
techniques. Rautela et al. [38] are concerned about breast
cancer. Because of the hazards associated with radiation
exposure, women frequently delay getting diagnosed. This
study examines screening techniques, with a focus on deep
learning methods. It also covers performance metrics,
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datasets, potential research topics, and the benefits and
drawbacks of each. Encouraging novel research in breast
cancer detection is the main objective. According to Nassif
et al. [39], every year, thousands of people are affected by
breast cancer. Survival rates are increased by early
detection, which is made possible by deep learning and Al.
Gene sequencing data, possible hybrid algorithms, and the
extraction of noteworthy characteristics require further
investigation to improve risk assessments and forecasts.
Identifying risk levels, predicting recurrence, and utilizing
multiclass predictors are potential areas for further study.
Abhisheka et al. [40] lacked a long-term cure; breast
cancer (BC) is a global health problem. They improved
survival results from early detection. Insights for
researchers are provided by this review, which focuses on
Deep Neural Network (DNN) methodologies, imaging
modalities, and BC diagnostic problems. Veerapalli and
Das [41] suggested the ROISegNet model for an effective
thermogram imagery-based method. Based on the
literature study, deep learning models have been found to
work well in image processing. There is a heed to optimize
deep learning models and hybridize them to leverage
performance.

Rasha Talib Gdeeb (2023) employed image segmentation
with neural networks on X-ray images, achieving
improved breast cancer detection and diagnostic accuracy

Table 1: Summary of existing deep learning approaches for breast cancer detection using thermogram imagery

Study / Year | Model / Technique Used Dataset Used | Key Findings Identified Research Gap
Mishra et al. | CNN-based classification Custom Demonstrated the feasibility of | The dataset is limited in size and
[1] (2020) thermogram thermal imaging with CNN models | diversity, and it lacks ROI
dataset for early breast cancer detection. segmentation and advanced feature
enhancement.
Rajinikanth et | CNN + Marine Predators | DMR-IR Showed that optimization | The approach did not incorporate
al. [3] (2021) | Algorithm algorithms can improve feature | edge information or ROI-based
selection and classification | segmentation.
accuracy.
Yadav & | Traditional ML models (SVM, | Thermal Proposed radiation-free detection | Lacks deep feature extraction and
Jadhav  [10] | RF, KNN) imaging method using thermal images with | robustness to image noise.
(2020) dataset basic ML techniques.
Cauce et al. | Multi-input CNN (Thermal + | Custom Combined clinical and thermal | Limited generalizability; no edge-
[15] (2021) Clinical Data) hospital data for improved detection | based feature enhancement
dataset performance. explored.
Husaini et al. | Inception V3, V4, MV4 Thermal Validated deep CNN architectures | No ROl-based segmentation or
[18] (2022) imaging for thermal breast cancer detection. | multi-level edge information
dataset integration.
Dey etal. [33] | DenseNetl121 with basic edge | DMR-IR Incorporated edge detection to | Used a single edge detector and
(2022) detection enhance detection capability. lacked hybrid multi-model fusion.
Proposed ROISegNet + Multi-Edge | DMR-IR Integrates ROl  segmentation, | Addresses all identified gaps by
Method Detection (Prewitt & Roberts) multiple edge detectors, and hybrid | combining ROI-based segmentation,
(2024) + InceptionResNetV2 Hybrid deep learning to enhance feature | multi-edge fusion, and a hybrid deep
Model richness and improve early breast | learning approach for superior
cancer detection. detection.
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Table 1 Comparison of recent works in the detection of
breast cancer based on thermogram images. It describes
the main models and methods applied, datasets used, and
the main results of each work, as well as research gaps
identified in these works. It is clear from the comparison
that the majority of current works utilize traditional
machine learning models or deep learning models without
essential pre-processing steps, such as ROI-based
segmentation and advanced edge feature enhancement.
Several studies have indicated that thermal imaging can
play an essential role in early breast cancer detection;
however, they have small dataset sizes, fail to integrate
multi-edge information, and lack robust hybrid deep
learning approaches. Such constraints frequently lead to
the loss of generality and the degradation of detection
accuracy. To the best of our knowledge, the limitations
above are not tackled using an approach that combines
ROI segmentation (ROISegNet), multi-edge detection
based on Prewitt and Roberts, and deep learning, as the
proposed architecture proposes to combine. This joint
method will enhance feature representation to alleviate
early breast cancer screening performance.

3 Preliminaries

The section provides preliminary details required to
understand the proposed methodology presented in this

paper.
3.1 Convolutional neural networks

Multi-layer-linked neural networks are used to build
CNNs. Robust characteristics at the low, middle, and high
levels are retrieved hierarchically. A typical CNN
framework consists of two primary layers, pooling and
convolutional layers, which provide the network's
convolutional basis [43]. There are networks with
ultimately linked layers, including VGG and AlexNet. The
convolutional layer takes spatial characteristics from the
pictures and applies a filtering function. Convolutional
layers are often layered in this manner because the early
convolutional layers extract tiny local patterns like edges
and corners. On the other hand, the final layers identify
image structures of high-level features. This shows that
CNNs can effectively learn patterns in spatial hierarchies.
Convolutional layers are characterized by the size of the
convolutional patch and the number of filters. Next, we
compute the dot product between the kernel weights and
the receptive field, a tiny fraction of the input volume. A
stride separates two successive convolutional windows.
Since more significant stride values cause feature maps to
be down-sampled, convolutional layers typically have one
stride [43]. This simple convolution method produces a
new image called a feature map, a visual depiction of the
extracted features. Because CNNs can share weights and
biases among all of their neurons, the number of
parameters is substantially lower than in a fully connected
layer because of this characteristic.

The Rectified Linear Unit (ReLU) [44] is a typical
example of an element-wise nonlinear activation or non-
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linearity function used for each feature map component.
The ReLU function successfully adds non-linearity to the
network compared to the sigmoid activation function or
the hyperbolic tangent, frequently used in classical neural
networks [44]. Compared to traditional functions with
gradient descent, the ReLU dramatically speeds up the
training process. Due to the so-called "vanishing gradient
problem," which is brought on by abnormally low
derivatives of previous functions in the saturation zone,
like the sigmoid, the weight updates almost disappear
entirely. Owing to shared pixels across all windows,
several feature maps with highly identical content may be
generated, indicating duplicate data. To reduce the
variability of the extracted features, pooling layers are
added after each convolutional layer using simple
techniques such as max and average. Both max-pooling
and average-pooling layers utilize a sliding window and a
predetermined stride over the feature maps to identify the
maximum and mean values. Pooling layers decrease the
size of the feature maps using a stride of two or more.
Notably, by refining the output of the convolutional layer,
the pooling layer (also referred to as the sub-sampling
layer) selects the more stable and abstract characteristics
for the subsequent layers. Consequently, the pooling layer
reduces the computational load by shrinking the size of the
feature maps.

As previously indicated, specific models may have
ultimately linked layers before the classifier layer
connects—input to the classifier layer from many layered
convolutional and pooling layers. The ultimately linked
layer has a high parameter occupancy, which makes
overfitting possible. Because of this, the dropout
approach—an effective regularization technique—can
help reduce or alleviate issues related to overfitting. This
method enables neurons to develop more substantial
autonomous properties by preventing over-adaptation to
their environment during training, achieved through the
random elimination of specific neurons and their
connections from the network [45]. The classification
layer, which comes in last, ascertains the posterior
probability for every category. The softmax classifier is the
most popular classifier layer for image processing in the
deep learning community, commonly called a normalized
exponential.  Stochastic  gradient descent (SGD)
optimization is frequently used for CNN training and
weight adjustment in backpropagation workflows. The
raw input, or initial pixels, is the first step in an end-to-end
deep neural network learning process, which concludes
with the final label.

3.2 InceptionV3 model

A pioneer of non-sequential CNNs, GooglLeNet was
victorious in the ILSVRC-2014 classification and
detection tracks of the competition. The number of units at
every level in this network, as well as the depth or number
of levels, may be raised without putting undue load on the
computer system [46]. The foundation of GoogLeNet is
based on the theory that, due to correlation, many
connections between layers are inefficient and contain
duplicated data. It uses a sparse CNN, the "Inception
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module,” with 22 layers and a parallel workflow.
Numerous auxiliary classifiers are included in the
intermediate levels to increase the discriminating strength
in the lower layers. The Inception module may use pooling
and convolutional operations at every layer, unlike

3x 4x
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conventional CNNs like AlexNet and VGG, which can
only wuse one. Additionally, multiple-sized filters
(convolutions) are applied to the same layer to extract
patterns of varied sizes and provide more comprehensive
information.

i

e

IConvqutio Maxpool = Avgpool lConcat lFuIIy Connected

Softmax  Dropout

Figure 1: Architectural overview of the InceptionVV3 model

One common technique to reduce the number of
parameters and processing complexity is using a 1 x 1
convolutional layer, sometimes called the bottleneck layer.
One-by-one convolutional layers are used before larger
kernel convolutional filters to reduce the parameters
calculated during the feature pooling process. ReLU is
used after each 1x1 convolutional layer, which adds more
non-linearity and deepens the network. A layer called
average pooling takes the role of the fully connected layers
in this network. This significantly lowers the number
because the fully connected layers have many
characteristics. Because of its speed advantage over VGG,
this network can learn more detailed feature

2x 3x

representations with fewer parameters than AlexNet [47].
InceptionV3's condensed perspective, used in this
investigation, is shown in Figure 2.

3.3 ResNet50 model

In the ILSVRC-2015 competition, the classification
challenge was won by ResNet, a deep neural network
consisting of 152 layers [48]. However, the primary issues
with deep networks are their high training error rates,
difficulty in training, and vanishing gradient, which results
in very little learning at the lower layers during the
backpropagation stage.

3x 2x

Avivivivivivivave

.C onvolution Maxpool

Sotmax l Fully Connected () Residual

Figure 2: Architectural overview of the ResNet50 model
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By using additive identity transformations and a deep
residual learning module, the ResNet configuration
effectively addresses the vanishing gradient problem. In
this approach, residual mapping of stacked layers is made
instead of directly targeting the desired underlying
mapping, and the input and output are directly connected
via the residual module [48]. Optimizing the residual map
is much easier compared to working with the original,
unreferenced map. Similar to VGG, ResNet primarily
utilizes 3 x 3 filters, though it is less complex and contains
fewer filters than VGG [48]. The study used ResNet,
depicted in a compressed form in Figure 3.

4 Materials and methods

This section offers thorough information about the
suggested methodology, including the framework, the
underlying algorithm based on hybridized deep learning
approaches, dataset specifics, and performance evaluation
methodology.
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4.1 Our framework

Our study uses transfer learning to construct a thermogram
image-based breast cancer screening technique. We
employed the pre-trained InceptionResNetV2 as a basic
feature extractor in the proposed model to learn multi-scale
features and deep residual connections toward precise
breast cancer detection.

DenseNet's approach to addressing the vanishing gradient
problem justifies its usage. To extract edge information
from the thermal breast images, we used two edge
detectors, Prewitt and Roberts, in addition to the pre-
trained DenseNet121 model. The outputs of these edge
detectors, paired with the original grayscale breast image,
produce a three-channel image that highlights edge
prominence. This is crucial as the pre-trained algorithm
may only be capable of extracting features from 3-channel
images. Figure 3 illustrates the overall architecture of our
proposed work; the corresponding modules are discussed
in the subsequent subsections.

—>| Edge
detector [~
InceptionResNetV/2 Extracte I I
ROI Edge (Iir?]r;zzt "l Pre-trained Model [~ d K %Ié”
Features
Breast detector
Image || -
i Health Breast
cancer
L y
—— il

Original
Breast
Thermogram

.C onvolution Maxpool

Softmax

Dropout

s 4 e

Avgpool 'Cuncat (O Residual . Fully Connected

Figure 3: Proposed hybrid multi-model deep learning framework for breast cancer detection

Developing a hybrid multi-model deep learning system
that starts with the original breast picture is suggested.
During processing, a ROISegNet, our prior work
published in [41], the model performs Region of Interest
(ROI) segmentation on the source picture. The output of
the ROISegNet model is the segmented ROI breast image.
Two edge detectors process the ROI breast image to
highlight essential features. The outputs from the two edge
detectors are merged to produce a new image. This new
image is processed to extract features using a pre-trained
InceptionResNetV2 model. Classification is then carried
out using the features that were taken from the pre-trained
model. Finally, a classification layer determines whether

the extracted features indicate a healthy breast or breast
cancer. To increase the diagnostic accuracy of breast
cancer, this architecture integrates segmentation, edge
detection, and deep feature extraction.

4.1 Edge detectors

To categorize breast cancer patients, it is crucial to
examine even the most minor details, such as blood vessels
and breast deformities, to establish whether or not the
patient has the disease. To enhance the informative value
of the original photos, we have taken and integrated edge
information from the thermal images. To achieve this, we
first created edges in the original gray-scale thermogram
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pictures using the well-known edge detection methods of
Roberts and Prewitt. Most of the minor edges are
preserved with the help of these detectors. Together with
the original image, these two edge-marked images make a
picture with three channels fed into the DenseNet121
model, which has previously undergone training.

Roberts and Prewitt use an edge detection method based
on gradients. Convolution of the picture using vertical and
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horizontal derivative masks allows for the detection of
edges. Horizontal and vertical operators are other names
for these masks. Utilizing these operators enables the
detection of edges through quantitative examination of the
variation in pixel brightness. They determine whether
edges are present in an image by computing the difference
between the matched pixels using a technique akin to the
derivative in the signal domain. Table 2 lists all of the
notations used in this work.

Table 2: Notations table

Notation Description

Th Threshold

G Gradient’s magnitude
I, Gray-scale image

G, and G, Gradient images

A, and A, Edge operators

Define A, and A,, as the edge operators for the horizontal
and vertical directions, respectively. These operators are
convolved with an I, a grayscale picture to produce two
gradient images, G, and G,, respectively.

Gy =1y * Ay
And
Gy, =1, * A,

The convolutional operator in this case is "*'. Note that A,
is rotated 90 to generate A,,, and vice versa. The gradient's
magnitude, let's assume G, is computed as follows.

G=GI+ G}
The idea of pixel coordinates aids in approximating the
gradient computation, which involves determining the
gradient at a specific pixel using the necessary masks.
Here, the threshold value (th) is defined as the mean values
appearing in G. This yields the final edges.

1
th:m Tre1 Xy=1G(x,y)
In the end, the following equation is used to produce an
edge picture I, is computed as follows.

: G(x,y) < th
: otherwise

edge pixel

L(x,y) = { background pixel

Various edge detection methods exist, depending on the
edge operators used. Below, we will explain the Roberts
and Prewitt edge operators, which enable us to extract the
edges needed for our model.

4.1.1 Roberts edge detector

The Roberts operators display high spatial frequency areas
with a strong likelihood of identifying edges. Robert’s
operators use 2 X 2 masks and minimal gradient
calculations. Only a pixel's four closest neighbors are
looked at to assess if it could be an edge pixel. Given that
it is a superior choice to its horizontal or vertical
counterpart, the Roberts cross operator was chosen in this
instance. The Roberts cross operator uses the following
2 % 2 kernels:

_ o _[0 1
k=l Sl =15l
Given an image I, the gradients are

Gy =1*K, G,=
I +K,

and the gradient magnitude and orientation are

VIl = /G;? + Gy,

Note that kernels that differ by a global sign or a 90°
rotation are equivalent for edge magnitude computation;
we adopt the above orientation for consistency with later
operators.

0= atanZ(Gy, Gx)

4.1.2 Prewitt edge detector

The Prewitt edge detector detects edges vertically and
horizontally using three-by-three masks. One of the
detector's benefits is its ease of use.
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Figure 4: Original breast image (a), edge detection result using Prewitt operator (b), and edge detection result using
Roberts cross operator

Figure 4 displays the outcomes of edge detection
techniques applied to the initially presented thermal breast
image. With the help of this technique, we can
approximate the magnitude and identify edges and their
orientations using the Prewitt edge detector.

The Prewitt operator uses two 3 x 3 convolution kernels
to detect edges by computing gradients in the horizontal
and vertical directions. Following standard conventions,
Ax (or G,) detects vertical edges by highlighting intensity
changes along the x-direction, while Ay (or G,) detects
horizontal edges by highlighting intensity changes along
the y-direction. The kernels are defined as:

-1 0 1
=G =[-1 0 1f, A=

-1 0 1

Given an input image I, the gradients are computed as:

Gx = I *
Ay, Gy =1xA,
The gradient magnitude and orientation are then calculated
using:

Il =
JGZ + G2, 6 = atan2(G,, G,)
By explicitly defining Ax as the vertical edge detector and
Ay as the horizontal edge detector, the roles of these
operators are now consistent with standard practice and
aligned with the interpretation used in Section 4.1.1
(Roberts operator).

The original breast thermogram is first processed for ROI
segmentation by the fine-tuned ROISegNet, and we crop
an ROI breast image. This ROI image is further applied
two edge detection algorithms—~Prewitt, Roberts. The two
edge detector outputs and the segmented ROI grayscale
images are jointly stacked together to create a 3-channel
concatenated input, where channel 1 is the grayscale ROI,
channel 2 is the Prewitt edge map, and channel 3 is the
Roberts edge map. This last 3-channel image is applied to
our previously trained InceptionResNetV2 model to
extract features and to classify the input samples.

The edge detection is only performed on the segmented
ROI image to show the structural boundary. The resultant
edge maps, together with the grayscale ROI image, are
stacked into a 3-channel input for the InceptionResNetV2
model. No edge detection is carried out on the original
thermogram to prevent the overlap and contradiction of
processing.

4.2 Proposed

model

The proposed model is inspired by InceptionResNetV2, a
general architecture featuring a combined multi-scale
Inception module for feature extraction, and stable and
efficient learning as ResNet’s residual connections. Such
an integrated architecture enables the network to recognize
spatially intricate and contextually rich information, which
is vital for precise breast cancer diagnosis. It applies batch
normalization above the conventional layers instead of to
the summations. Greater network depth is made likely by
the additional modules, which increase the number of
Inception blocks. The training phase, which has been
identified as an essential issue with complex networks,
gets fixed by remaining connections [48].

InceptionResNetVV2 hybrid
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Figure 5: Proposed hybrid deep learning model known as InceptionResNetV2

Figure 5 depicts the building of a hybrid deep-learning
model. The proposed model comprises convolutional
layers (in blue), responsible for hierarchical feature
extraction, and residual connections that facilitate the
reformulation of connections in response to changes in the
network during deep network training, thereby mitigating
the vanishing gradient problem. Average-pooling layers
(in yellow) are for reducing spatial dimensions gradually
while preserving essential features, and the ultimate fully
connected (in green) layers provide the high-level feature
representation for classification. The remainder of the
structure helps to train the network effectively at a deeper
level, resulting in efficiency and accuracy in the
InceptionResNetV2 model. Residual connections (green)
can be interpreted as skip connections that forward the
gradient through different layers, preventing vanishing
gradient problems and making the deep network training
possible. They are not convolutional layers, but they
indirectly help in the stability and efficiency of the feature
learning process across the network. Residual blocks in
InceptionResNetV2 are primarily used to maintain
gradient stability during deep network training, thereby
preserving more helpful information for feedforward
propagation through the network. This design enables the
architecture to become deeper without degrading
performance compared to traditional CNNs.

To prevent overfitting, dropout layers (shown in cyan) are
used. To simplify gradient flow and improve training, the
model incorporates residual connections (indicated by
yellow circles). Concatenation rules (shown in purple) are
used to combine features from many layers, while fully
connected layers (shown in red) are used to integrate the
learned features. "10x" and "20x," which stand for
repeated layer blocks, are used in the layout to extract data
further. Finally, the model includes softmax and fully
connected layers (shown in pink) for classification tasks.
To offer a trustworthy and efficient model for complex
data processing tasks, it makes use of convolutional
processes, pooling, dropout, and residual connections. To
effectively tackle the training problem, the network
reduces the residual as more than 1,000 filters are added.
When the number of filters exceeds approximately 1,000,
these residual connections become unstable, making it
challenging to train the network. Residual scaling was
proposed to overcome this by Szegedy et al. in the
InceptionResNetVV2 model. (2016), which ensures the
training of intense and wide models.

A simplified version of the InceptionResNetV2 is shown
in Figure 5—the proposed hybrid deep learning model
utilized in this research.
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Figure 6: Flowchart illustrating the functionality of the proposed system

Figure 6 demonstrates the process for classifying breast
cancer using thermographic images. The process begins
with capturing the original breast thermogram. Next, the
thermogram undergoes edge detection to highlight
essential features. These detected edges are then combined
and used for feature extraction, utilizing the proposed
InceptionResNetV2 model into the breast cancer
classification model, which categorizes the results into two
groups: Healthy or Breast Cancer. The process concludes
with presenting the classification results, determining
whether the individual is healthy or has breast cancer.

4.3 Algorithm design

The proposed algorithm, Learning-based Breast Cancer
Detection (LbBCD), aims to detect and grade breast cancer
using the DMR-IR dataset accurately. The algorithm is
designed to process and analyze medical images,
particularly regions of interest (ROI) within breast images,
to identify the presence of cancer and its severity. It utilizes
advanced deep learning techniques, such as the
InceptionResNetV2 architecture, to extract features from
the ROI images and train a classifier to predict breast
cancer in new samples. Additionally, the algorithm
includes a performance evaluation step to assess the
accuracy of its detection results against the ground truth,
providing valuable insights into its effectiveness for
clinical applications.

Input: DMR-IR dataset D

Input:
Raw thermogram dataset D with labels

Output:

Trained classifier f and evaluation metrics

: Split D into training set T1 and test set T2

- Initialize InceptionResNetV2-based classifier

: Normalize/standardize images as per preprocessing

: M1 « ROISegNet(T1)

: M2 < ROISegNet(T2)

: G1 < ToGrayscale(M1)

: G2 < ToGrayscale(M2)

~N NN WN

Algorithm: Learning-based Breast Cancer Detection (LbBCD)

Output: Breast cancer detection results R, performance statistics P

/I segment ROIs for the training set

/I segment ROIs for the test set

// convert ROI images (train) to grayscale
// convert ROI images (test) to grayscale
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10: f<— Train(f, X1, Y1)
11: Y « Inference(f, X2)

13: return f, Metrics

8: X1 « EdgeDetectAndConcatenate(G1, methods={Prewitt, Roberts})

9: X2 « EdgeDetectAndConcatenate(G2, methods={Prewitt, Roberts})

/[ train on concatenated 3-channel ROI inputs
/[ predict on test ROI inputs

12: Metrics «— Evaluate(Y, Y2) // Accuracy, Precision, Recall, F1, AUC, etc.

Algorithm 1: Learning-based Breast Cancer Detection (LbBCD)

Like Algorithm 1, the pipeline first splits the labeled
thermogram dataset into a training set T1 and a test set T2.
We extract breast ROl from every image using
ROISegNet, yielding M1 and M2 for training and testing,
respectively. These ROI images are converted to grayscale
(G1, G2), and the edge detection is performed only on the
ROI grayscale using the Prewitt and Roberts edge
detectors. For each ROI, the generated edge maps are
stacked with the ROI grayscale to form the three-channel
input [ROIgray, Prewitt (ROIgray), Roberts (ROlgray)].
We then train the InceptionResNetV2 classifier (with a
binary output head) on the concatenated train inputs X1
and the concatenated train labels Y1, the various test labels
Y2 are predicted on X2. Finally, performance scores
(Accuracy, Precision, Recall, F1, AUC) are calculated on
the held-out test set (or averaged over folds if we use cross-
validation as in Section 4.5). This explanation resolves the
previous inconsistency by explaining that edge detection
and concatenation are trained only after ROI division
(instead of directly from raw thermograms), thereby
making the algorithm presented in Figures 3 and 6 and
described in Section 4.1 coherent. Data augmentation

(rotations, flips, zooms, brightness) is applied on training
ROIs only as described in Section 4.4, and edge maps are
re-computed after augmentation.

4.4 Dataset details

To aid in the early detection of breast cancer, Silva et al.
built a set of thermogram images and made them available
to researchers [50]. This dataset was constructed using 20
consecutive photos with a 15-second gap between each
one. When pictures were taken, the breast temperature and
the environment were both the same. So the breast had
been cooled with an air stream in advance of the photo.
You can click on the link in [51] to obtain the pre-separated
train and test sets of the dataset. Twenty-nine patients with
breast cancer and 15 healthy cases' thermograms are part
of the training set. The thermogram records of four healthy
people and eight breast cancer patients make up the test
set. Photographs of their ROIs and 20 breast thermograms
for each case are included in the dataset. The dataset used
in this study to train and assess the suggested model is split
as shown in Figure 7.

DMR-IR Dataset

B # Train Samples Healthy B # Train Samples Affected | # Test Samples Healthy i # Test Samples Affected

Figure 7: Data distribution dynamics of the DMR-IR dataset [42]

The DMR-IR dataset samples are distributed and divided
into four groups, as seen in Figure 7. 58% of the dataset,
or 580 affected train samples, is the largest segment. The
second largest segment, which takes up 27% of the dataset,
will consist of 300 healthy train samples. There are two
smaller groups of test samples: 80 healthy test samples
(7%) and 160 affected test samples (14%). A clear glance
of the dataset's composition is given by this illustration,
which also emphasizes a lower % of both test and healthy
samples and the greater proportion of affected train
samples.

For reproducibility, 30% of each dataset was utilized as a
testing set, and the remaining 70% was applied for
training: 880 training images (580 affected and 300
healthy) and 240 testing images (160 affected and 80
healthy), for 44 subjects (29 breast cancer patients and 15
healthy). We performed data augmentation in the training
set using random rotations (+ 15°), horizontal flipping,
zooming (up to 20%), and changes in brightness to
enhance the generalization of the model. The model was
trained with a learning rate of 0.0001, a batch size of 32,
and the Adam optimizer, 100 epochs with early stopping,
avoiding overfitting. The loss function that was applied is
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binary cross-entropy. We tested on a workstation with Intel
Core i9 CPU, 64GB RAM, and an NVIDIA RTX 3090
GPU (24GB VRAM), with Python 3.10 and
TensorFlow/Keras as back-ends. These facts, in
cooperation with the reading research questions
documented in Section 4.0, describe a transparent and
reproducible  experimental  design that  ensures
transparency of the study’s goals and examination.

Because of the small scale of the DMR-IR dataset and
potential overfitting risk, we performed various data
augmentations on the training set. These transformations
included random rotations (+15°), a horizontal flip, zooms
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up to 20%, and brightness changes. These augmentations
increased the variety of images in the dataset, thus
emulating thermogram capturing health fluctuations that
occur during everyday practices. These augmentations
artificially increased the dataset's size, which brought
about an increase in the model’s ability to generalise to
new data.

4.5 Evaluation methodology

Since our approach was learning-based, the metrics
obtained from our technique are assessed using the
confusion matrix, as seen in Figure 8.

Classified as

False Positive

True Positive False Negative

True Negative

Positive
Really is

Negative

Figure 8: Confusion matrix

Performance statistics are derived from the predicted
labels of our algorithm, compared to the ground truth,
as indicated by the confusion matrix. The many tracks
utilized in the performance evaluation are given in
Equations 1 to 4.

Precision (p) = TPT-:JFP

1)

Recall 0] = e

2

F1-score = * %

(3)

Accurac = _ TPHTN
y - TP+TN+FP+FN

4)

The performance evaluation metrics produce a value
between 0 and 1. These measures are frequently
employed in  machine  learning research.
We adopted a five-fold cross-validation procedure to
prevent overfitting further and provide a relatively

rigorous evaluation. The data set was divided into five
even parts; each part was used once as a validation set,
while the remaining four parts were used as a training
set. Evaluation statistics, such as accuracy, precision,
recall, and F1-score, are calculated for each fold and
averaged for reporting of the final values. Instead, this
provides a more accurate estimation of model
performance and convergence on small data.

5 Experimental results

This section shows the findings of our experiments with
the suggested deep learning foundation framework for
automatically  identifying breast cancer from
thermography photos. DMR-IR is the benchmark data
set used in this paper's empirical study. The reported
results represent the average performance across five-
fold cross-validation, providing a robust and reliable
assessment of the proposed framework on the limited
DMR-IR dataset.
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Table 3: Performance comparison among deep learning models for breast cancer detection (average across five folds)

Breast Cancer Detection Models Precision Recall F1-Score | Accuracy
VGGI9 95.44 95.8 95.62 96.51
ResNet50 93.27 91.7 92.5 93.84
DenseNet121 94.96 97 95.99 97.67
InceptionV3 96.03 94.7 95.34 97.53
InceptionResNetV2 (Proposed) 97.97 96.52 97.24 98.78

As indicated in Table 3, thermal image-based breast
cancer diagnosis is achieved by contrasting the
performances of various deep-learning models.

PRECISION COMPARISON
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Figure 9: Breast cancer detection performance in terms of precision

Figure 9 displays the precision performance of various ResNet50 scored 93.27%, DenseNet121 had a precision of
models. The models compared are VGG19, ResNet50, 94.96%, InceptionV3 achieved 96.03%, and the proposed
DenseNet121, InceptionV3, and InceptionResNetV2 InceptionResNetV2 model recorded the highest precision
(Proposed). VGG19 achieved a precision of 95.44%, at97.97%.
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Figure 10: Breast cancer detection performance in terms of recall

In Figure 10, the recall performance of various models is
presented in percentages. The models examined include
VGG19, ResNet50, DenseNetl21, InceptionV3, and
InceptionResNetV2 (Proposed). The recall scores for these
models are as follows: VGG19 achieved a recall of
95.81%, ResNet50 scored 91.74%, DenseNet121 recorded

97.04%, InceptionV3 achieved 94.66%, and the proposed
InceptionResNetV2 attained a recall of 96.52%. This
comparison shows that DenseNet121 has the highest recall
performance among the models, followed closely by the
proposed InceptionResNetV2.
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Figure 11: Breast cancer detection performance in terms of F1 score

Figure 11 illustrates the F1-score performance of different
models as a percentage. The evaluated models include
VGG19, ResNet50, DenseNet121, InceptionV3, and the
proposed InceptionResNetV2. VGG19 achieves an F1-
score of 95.62%, ResNet50 scores 92.5%, DenseNet121

achieves 95.99%, InceptionVV3 scores 95.34%, and the
proposed InceptionResNetVV2 achieves the highest F1-
score of 97.24%. This comparison demonstrates that
InceptionResNetVV2  exhibits the best F1-score
performance among the tested models.
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Figure 12: Breast cancer detection performance in terms of accuracy

Figure 12 illustrates the accuracy performance of different
models in percentages. The models compared include
VGG19, ResNet50, DenseNet121, InceptionV3, and
InceptionResNetV2 (proposed). VGG19 achieved an
accuracy of 96.51%, ResNet50 attained 93.84%,
DenseNet121 recorded 97.67%, InceptionV3 reached
97.53%, and the proposed InceptionResNetV2 stood out
with the highest accuracy of 98.78%. This comparison
demonstrates the higher performance of the
InceptionResNetV2 model.

To prove the statistical significance of the improvements
of the proposed framework, we further perform validation
with the five-fold cross-validation and use a paired t-test
to compare the performance of our model and some
baselines (eg, VGG19, ResNet50, DenseNet121, and
InceptionV3). The model performance (accuracy,
precision, recall, F1-score) was calculated at 95% CI. The
statistical tests indicated that the superior performance of
the method proposed in this paper was statistically

significant (p < 0.05), which proved that the above results
were not works of chance. This work presents strong
evidence of the effectiveness of the proposed hybrid
scheme, as it significantly outperforms traditional
approaches, thereby confirming its efficacy.

To explore the application potential of the proposed
framework in a real clinical setting, the computational
complexity and inference performance were investigated.
The trained model (for all categories) has 12.4 million
parameters and can be stored as 48MB. At the time we
conducted the testing, the average inference latency for
each thermogram image was 0.82 seconds on an NVIDIA
RTX 3090 GPU or 2.35 seconds without a GPU (CPU
only). These results demonstrate that the framework is
computationally efficient and thus appropriate for real-
time to near real-time breast cancer screening purposes,
allowing for its practical incorporation into clinical
imaging environments.

Table 4: Ablation study evaluating the contributions of ROl segmentation, multi-edge detection, and hybrid model

components
Variant | Configuration Accuracy Precision Recall F1-Score
(%) (%) (%) (%)
Al Backbone only (InceptionResNetV2 on raw images; no ROI, no | 93.12 92.45 91.88 92.16
edges)
A2 ROI only (ROISegNet — backbone; no edges) 95.63 95.01 94.42 94.71
A3 Edges only (Prewitt+Roberts on full image; no ROI) 94.27 95.10 93.18 94.13
A4 ROI + edges + single non-hybrid backbone (InceptionV/3) 97.21 96.38 95.83 96.10
A5 Full model (ROI + multi-edge + InceptionResNetV2) 98.78 97.97 96.52 97.24
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The ablation study results, including the contributions of
ROI segmentation, multi-edge detection, and hybrid
InceptionResNetV2, are displayed in Table 4. Models
show that the components do contribute to the
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improvement, and the whole model has the best F1-score
and Accuracy. This validates that their combination
contributes to better thermogram imagery for early breast
cancer detection.

Ablation Study Results for Model Components
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Figure 13: Performance comparison of model variants in ablation study

Figure 13 gives an overall summary of the results of
ablation studies of five different configurations (A1-A5) in
terms of four crucial measures: accuracy, precision, recall,
and Fl-score. The model in which only the
InceptionResNetV2 backbone is used on the raw
thermograms and no ROI segmentation or edges are
applied for this case achieves the worst results in all three
of the selected methods, demonstrating that abstractly
applying a pre-trained deep learning model on the problem
may not be the most efficient method within the problem
domain.

By including just, the ROI segmenting (A2), we can
already achieve similar results to those with the CNN,
showing that the added relevant breast region resulting
from segmentation favours a higher accuracy and F1-score
compared to a baseline. It is also noteworthy that when
multi-edge detection is used without ROI segmentation
(A3), its performance surpasses the baseline, indicating
that edge features are effective in capturing main structural
and temperature variations. Non-hybrid backbone (A4)
combined with both ROI segmentation and edge detection
leads to additional improvements, suggesting the

advantage of incorporating pre-processing with deep
learning.

The entire proposed architecture (A5), which includes ROI
segmentations, multi-edge enhancement, and a hybrid
InceptionResNetV2 backbone, achieved the best scores in
all performance metrics (98.78% accuracy, 97.97%
precision, 96.52% recall, and 97.24% F1-score). These
results demonstrate that each module actually improves the
model, and the synergy of all three pieces is the key to
achieving better performance. This illustrates the need to
employ a localized ROI-based strategy with enhanced
edge features and a mixed deep learning architecture for
proper and consistent thermogram-based breast cancer
detection.

To deepen the understanding of the classification
capability of the proposed framework, we supplied
qualitative visualizations on top of the numeric indicators
given above. Figure 14 shows the ROC curves for the
trained model vs baseline methods, where a greater AUC
under the curve is observed for our framework, indicating
that it is better at differentiating between healthy and
affected thermograms.
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Confusion Matrix for Proposed Framework

True Label
Healthy

Breast Cancer

Healthy Breast Cancer
Predicted Label

Figure 14: Confusion matrix for proposed framework

A confusion matrix heatmap showing the actual and matrix is diagonally dominated, indicating the precise
predicted classes of the test set is shown in Figure 14. The classification of breast cancer cases.

Example Thermograms with Model Predictions

Thermogram 1 Thermogram 2 Thermogram 3
Predicted: Healthy Predicted: Breast Cancer Predicted: Breast Cancer

Figure 15: Example thermograms with model predictions

Figure 15 also shows examples of thermograms along with  complement the scalar metrics and have implications in
the corresponding label predictions, showing how the terms of the strengths and reliability of the framework for
model works in practice. These qualitative findings early breast cancer detection.
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Grad-CAM Heatmap Showing Important Regions

Original Thermogram

Grad-CAM Visualization

Figure 16: Grad-CAM heatmap showing important regions in thermogram images

Figure 16 presents Grad-CAM heatmaps to extract the
most contributing regions in the thermogram images
that the model was using to make a classification. These
visualizations confirm that the proposed scheme is
correctly zooming in on medically relevant scenes, like
small hot spots corresponding to suspect tumours,
providing interpretability and supporting clinical
diagnosis.

6 Discussion

In breast cancer research, various types of image
modalities are used, including thermograms,
mammogram images, MRI scans, and CT scans. In this
research, thermogram images are preferred for their
effectiveness in diagnosing breast cancer, particularly
in the early stages. The study uses deep learning models
that utilize a supervised learning process. A literature
review shows that CNNs and their variants efficiently
analyze medical images. However, not all deep learning
frameworks can deliver optimal performance with
different imaging modalities. To exploit the best merits
of both, in this paper, we therefore proposed a unified
hybrid deep learning framework, InceptionResNetV2,
which could fully exploit the strengths of Inception
modules for multi-scale feature extraction and residual
connections for stable and efficient training. This end-
to-end architecture is at the heart of our proposed
framework and facilitates effective breast cancer
diagnosis.

ROl segmentation is used in this proposed
methodology. It focuses on a mixed-model deep
learning approach for diagnosing breast cancer, making
it practical and potentially reducing time and space

complexity in processing breast cancer images for
diagnosis. The combination of five-fold cross-
validation and augmenting data extensively drastically
reduced the danger of overfitting, as is often the case in
medical imaging with small datasets.

The reported results prove that the proposed approach
obtains noticeable improvements over the previous
methods, as shown in Table 1. Prior works either used
traditional machine learning (ML) or dabbled with deep
learning without critical pre-processing steps, including
ROI extraction or edge feature enhancement. With the
introduction of ROI-based segmentation (ROISegNet),
our framework is designed to analyze only the clinically
relevant areas of the breast, leading to more focused and
accurate diagnosis. Furthermore, the multi-edge
detection by using the Prewitt and Roberts operators
enhances the feature representation by detecting the
small structural patterns such as blood vessels and
temperature irregularities. These boosted features are
then fed to a hybrid InceptionResNetV2 model that
utilizes dual-enabled multi-scale feature extraction and
stable residual learning to achieve better classification
results. All these parts combine to provide strong early
detection and superior generalization to that of single-
model methods such as VGG19 or ResNet50.
Nonetheless, the framework yielded some false
positives in low-contrast thermograms with high noise
or acquisition artifact that can interfere with core
thermal patterns. These results suggest the potential for
further research integrating advanced pre-processing
techniques, including denoising and adaptive contrast
enhancement, alongside explainability methods like
Grad-CAM, to improve clinical interpretability and
system trust.
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However, the proposed framework has certain
limitations, as discussed in Section 6.1.

6.1 Limitations

The framework proposed in this paper has certain
limitations. Firstly, it is evaluated using only one type
of imaging modality: thermal images. To enhance its
applicability, it should be further improved to work
with different image modalities to generalize its
findings. Another significant limitation is that the
underlying models in the hybrid deep learning approach
need to be evaluated with different hyperparameter
tuning approaches. The proposed framework could also
benefit from incorporating a generative adversarial
network architecture, enabling efficient breast cancer
detection even with insufficient samples.

Purely from a medical perspective, thermogram
analysis can be impacted by system vagaries (camera
calibration, ambient temperature, patient position,
perspiration, and skin emissivity) and domain shift
between clinical sites. False-positive results, such as
inflammation, mastitis, and benign vascular patterns,
and false-negative findings, such as deep lesions with
poor surface thermal signatures or low perfusion, are
possible with this model. Trade-offs between sensitivity
and specificity can be affected by the choice of the
threshold and by the class imbalance. Limitations on the
secure storage and visibility of multimodality images,
as well as the lack of structured reporting of
multimodality data, highlight the importance of
standardization of acquisition protocols, multi-center
validation, and prospective evaluation in addition to
mammography/ultrasound in the assessment of
workflow fit, triage utility, and clinical oversight.

7 Conclusion and future work

We showcased a robust deep-learning framework that
uses hybrid multi-models to screen for breast cancer.
Our framework uses the ROI segmentation model we
proposed in our prior research to segment a breast
image to extract the ROI. The framework also exploits
the proposed hybrid deep learning model known as
InceptionResNetV2 for extracting features from a given
image. To leverage detection performance, we
employed edge detector methods to improve early and
accurate detection of breast cancer. We proposed an
algorithm named Learning-based Breast Cancer
Detection (LbBCD). This algorithm  requires
mechanisms to exploit a multi-model deep learning
approach towards efficient detection of breast cancer
using thermogram imagery. According to our empirical
analysis utilizing the DMR-IR benchmark dataset, our
technique effectively diagnoses breast cancer, as
demonstrated by our experiments. Compared to
numerous deep learning models currently employed for
breast cancer screening, the recommended model
performs better with the best accuracy of 98.78%. In the
future, we aim to develop a clinical decision support
system (CDSS) that assists medical practitioners in

P. Veerlapalli

breast cancer screening by utilizing a new method
based on the architecture of Generative Adversarial
Networks (GAN).
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