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The rapid growth of the global population and urbanization has made the efficient utilization of land
resources and agricultural investment decision-making critical for sustainable agricultural
development. This study focuses on the application of machine learning, an advanced artificial
intelligence technology, for land use optimization and agricultural investment decision-making, where
its data analysis and prediction capabilities offer significant potential for improving decision-making
processes. Based on machine learning algorithms, this paper studies the construction of land use and
agricultural investment decision-making models, aiming at improving the allocation efficiency of
agricultural resources through data-driven methods and providing scientific basis for agricultural
investment decisions. This paper focuses on the construction and evaluation of a hybrid
CNN-LSTM-Attention model for land use forecasting and agricultural investment decision-making. The
model is compared against traditional machine learning algorithms such as Random Forest, Support
Vector Machine, and Gradient Boosting Machine to evaluate performance. In the experimental part,
multi-dimensional data from agricultural zones of China were collected, including land use type,
climate data, soil conditions, and crop yield (measured as annual crop production per hectare) from
2015 to 2020. The dataset of 10,000 samples spans the Eastern, Southern, and Western agricultural
zones of China and is sourced from national agricultural surveys and publicly available environmental
databases. The performance of the CNN-LSTM-Attention model was evaluated alongside the baseline
models, with results showing that the CNN-LSTM-Attention model outperforms Random Forest, SVM,
and GBM in land use change forecasting, achieving an accuracy of 96.8%. The study demonstrates the
effectiveness of hybrid machine learning models for optimizing land use and making more accurate
agricultural investment decisions. Additionally, the machine learning model predicted an average
annual return of 12% for the best agricultural investment portfolio. In terms of agricultural investment
decision-making, by combining land use forecasting and crop return data, the machine learning model
successfully predicted the expected rate of return under different portfolios, with the best portfolio
having an average annual return of 12%. This study shows that machine learning algorithms can
effectively optimize land use structure and provide accurate predictions for agricultural investment
decisions. The research results not only provide new ideas for the sustainable utilization of land
resources, but also provide data support and decision-making basis for agricultural investors, and
promote the development of agricultural modernization and intelligence.

Povzetek: Studija prikazuje, da hibridni model CNN-LSTM-Attention na vecdimenzionalnih podatkih
(raba tal, klima, tla, pridelki) izboljsa napovedovanje sprememb rabe tal (96,8 % natancnost) in podpira
odlocitve o kmetijskih nalozbah, pri cemer za najboljsi portfelj napove okoli 12 % povprecni letni donos.

Introduction

decision-making mechanism are difficult to meet the

With the continuous growth of the global population and
the acceleration of urbanization, the problem of land
resource management and utilization has become
increasingly prominent. As the cornerstone of
agricultural production, the rational utilization of land
resources occupies a core position in the food security
system and is closely related to the sustainable
development of agriculture [1]. Under the background of
economic transformation and agricultural modernization,
the traditional land use mode and agricultural investment

current development needs. Therefore, the application of
a scientific decision-making model in optimizing the
allocation of land resources and improving agricultural
production efficiency has become a key issue to be
solved urgently.

The primary research question guiding this study is
whether integrating CNN and attention mechanisms into
LSTM architectures improves generalization across
heterogeneous agricultural regions. We aim to develop an
integrated model that enhances prediction accuracy and
decision-making for land wuse optimization and
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agricultural investment across different geographic zones.

Specifically, we explore how the CNN-LSTM-Attention
model compares to existing models, such as ANN and
Random Forest (RF), in terms of performance and
generalization ability in agricultural contexts. The
comparison models (ANN and RF) were selected
because they are well-established techniques that have
been widely used for land use prediction and investment
decision-making, providing a solid benchmark for
evaluating our proposed hybrid model. Random Forest is
chosen due to its strong performance in classification and
regression tasks, while ANN serves as a representative of
deep learning models, albeit without the temporal
modeling capability provided by LSTM and attention
mechanisms.

In recent years, machine learning, as the core
technology in the field of artificial intelligence, has been
widely used in the agricultural field with its excellent
data analysis and modelling capabilities [2]. For
large-scale and complex data sets, this technology shows
efficient processing efficiency, can discover potential
laws and trends in data, and provides strong support for
land use optimization and agricultural investment
decisions. Compared with the traditional land use
decision-making model that relies on expert experience
and rule system, the machine learning algorithm not only
greatly improves the prediction accuracy by virtue of the
learning mechanism of historical data but also has the
function of automatically adjusting the decision-making
model, so as to flexibly respond to diversified
agricultural environment and investment needs.

In the field of agricultural investment
decision-making research, the existing research results
mainly focus on single-crop income analysis and land use
optimization issues in specific regions, but there is still a
lack of systematic in-depth exploration for the
construction of comprehensive models integrating
multi-crop considerations, cross-regional land use and
investment decision-making [3]. Building a
comprehensive decision-making framework based on
machine learning can significantly improve the accuracy
of various land use patterns and agricultural portfolio
income forecasts and provide scientific and accurate
decision-making support for agricultural producers and
investors. With the help of the application of a machine
learning model, the deep-seated mechanism of the impact
of land resources, climatic conditions, soil types, and
other factors on agricultural output can be deeply
analyzed, and comprehensive analysis means can be
provided for the agricultural investment decision-making
process.

The purpose of this study is to develop a
comprehensive, integrated model for land use
optimization and agricultural investment
decision-making using machine learning algorithms. The
primary focus is on the CNN-LSTM-Attention model,
which combines convolutional, recurrent, and attention
mechanisms to improve the accuracy of predictions. This
model is compared with traditional machine learning
algorithms such as Random Forest (RF), Support Vector
Machine (SVM), and Artificial Neural Networks (ANN)
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through a multi-algorithm comparative analysis to
evaluate its effectiveness in land use forecasting and
agricultural investment  decision-making. The
experimental results show that the machine learning
algorithm has high accuracy in predicting land use
change and evaluating the return on agricultural
investment, which provides a new perspective for
agricultural investment decision-making. This study has
both theoretical and practical significance and lays a
solid empirical foundation for scientifically formulating
agricultural resources management strategies and land
use policies.

2 Theoretical basis and related

research

2.1 Machine learning algorithm theory

Machine Learning (ML) is a technical approach based on
data, which enables computers to learn and identify laws
from historical data and then achieve prediction and
decision-making functions without complicated manual
programming [5]. This technology has been widely used
in many fields, such as image recognition, financial
analysis and natural language processing. In agriculture,
machine learning introduces a new analysis dimension
for land use planning and agricultural investment
decision-making [6]. Through in-depth analysis of
large-scale agricultural data sets, machine learning helps
farmers and investors build more accurate
decision-making models, significantly improving the
efficiency of agricultural resource utilization.

In the field of agricultural investment
decision-making, supervised learning algorithm occupies
a core position. Using labelled data set training,
supervised learning is used to build a prediction model,
reveal the correlation between input and output, and
accurately predict new data points [7]. Supervised
learning methods can effectively model to accurately
assess the return on investment for key variables of
agricultural production such as soil type, climatic
conditions and crop yield. Specifically, algorithms such
as linear regression, support vector machine (SVM) and
decision tree deeply analyze the returns and risks of
various crops and provide agricultural investors with
investment suggestions based on scientific and rigorous
analysis, aiming at improving the efficiency of resource
allocation and optimizing the quality of investment
decisions [8, 9].

At the same time, unsupervised learning also
occupies a core position in the field of land use pattern
recognition and optimization. Unlike supervised learning,
unsupervised learning can deeply analyze the internal
structure and similarities of data and then reveal potential
regular characteristics. In land use research, this method
has shown significant effects on identifying diverse land
use types and their spatial distribution patterns [10]. For
example, algorithms such as K-means and hierarchical
clustering can be used to carefully divide land-use areas,
effectively guiding the rational allocation and
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management of agricultural resources. In addition,
unsupervised learning extracts the core features of data
through dimensionality reduction technology, simplifies
complex problems, and provides convenient and efficient
assistance for agricultural decision-making.

While Reinforcement Learning (RL) has shown
great potential in dynamic decision-making problems, it
was not included in the current experimental evaluation.
Future work may explore the integration of RL to
optimize decision-making strategies over time by
simulating dynamic investment environments [11].
Analysis of the advantages of RL compared with
traditional algorithms: RL shows obvious advantages
when dealing with complex decision-making problems
that contain long-term feedback, helping agricultural
investors maximize returns in uncertain market
environments [12]. Research on the application of
reinforcement learning in agricultural production
simulation scenarios: After constructing such scenarios,
RL can flexibly adjust its strategies according to
environmental changes, providing agricultural investors
with highly adaptable decision-making assistance.

land use and
using machine

2.2 Current status of
agricultural investment
learning algorithms

As global agricultural production suffers from multiple
severe challenges, such as environmental changes and
scarcity of land resources, realizing sustainable
utilization of land resources and optimizing agricultural
investment benefits have become the core issues that
need further exploration. The theoretical cornerstone of
traditional land use planning and agricultural investment
decision-making: the limitation analysis of expert
experience and rule reasoning; although it has certain
guiding significance for practice, its limitations have
become increasingly prominent given the complexity and
high uncertainty of the agricultural system [13, 14]. New
perspectives and tool applications of machine learning
algorithms in agricultural research. In recent years, the
introduction of machine learning algorithms has explored

Informatica 50 (2026) 53-66 55

new paths for agricultural research and equipped with
efficient analysis tools. This technology can
independently discover the hidden laws in massive
historical data, promote accurate prediction and scientific
decision-making, improve land use efficiency and
strengthen the rationality of agricultural investment
decisions [15].

In land use optimization, many scholars adopt
machine learning models to achieve accurate prediction
and optimization goals of land resource allocation and
utilization. For example, algorithms such as SVM,
random forest and gradient lifting trees have been widely
used in various tasks such as land use change prediction,
land suitability evaluation and optimal allocation of land
resources [16]. Such models can process large-scale
geographic information data and can comprehensively
consider climate, soil, crop types and other factors so as
to formulate more accurate land use planning schemes.
Existing research results show that the accuracy rate of
machine learning models in land use prediction is
generally higher than 80%, and its prediction accuracy is
improved by 20%-30% compared with traditional
methods.

In agricultural investment decision-making,
although machine learning is still in the initial stage of
exploration, it has gradually shown great application
potential. Many studies have used machine learning
algorithms to construct agricultural ROI prediction
models covering land use, climate change, market
demand and other multi-variables, aiming at optimizing
investment portfolios and improving decision-making
processes [17]. Specifically, decision trees, regression
analyses, neural networks and other models have been
widely used to predict the returns of different investment
schemes, thus assisting investors in identifying the
optimal strategies for diversified agricultural projects.
Research shows that according to historical data,
machine learning models can accurately predict crop
yield and market demand and provide investors with a
more rational decision-making basis [18]. The technical
summary table is shown in Table 1.

Table 1: Technical summary table

Author(s) Year Dataset Method(s) Used | Accuracy/RMSE Key Limitations
. Random Forest, . .
Smithetal. | 2020 | Agrieultural | Coiy s Neural | 85% (Accuracy) | Ack of model integration and
Data (USA) cross-regional application
Networks
Zhang and Crop Yield SVM, Decision o Focus on single crop, lacks
Liu 2021 Data (China) Trees 83% (RMSE) multi-crop model integration
Global Limited to a specific region
Patel et al. 2022 Agricultural | XGBoost, ANN | 87% (Accuracy) pectiic region,
Data lacks generalization
Johnson Soil Quality | LSTM, Random o Does not incorporate climate
and White 2023 Data (Europe) Forest 89% (Accuracy) data or investment prediction

Although machine learning algorithms have shown
the potential for wide application in land use and
agricultural investment decision-making, the existing
research still faces several challenges [19]. The primary

challenge is that the diversity and complexity of
agricultural fields limit models' adaptability and
generalization ability, resulting in significant differences
in decision-making models among different regions and
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crops. Secondly, data quality and integrity directly affect
the performance of machine learning models, especially
in the agricultural field, where data acquisition and
processing are highly dependent on manual operations.
In addition, the current research focuses on the model
construction of a single crop or a specific region and has
not yet developed a unified, comprehensive
decision-making model suitable for various agricultural
production and investment situations. Therefore, the core
trend of future research will be to develop robust
machine-learning models that adapt to multivariate data
and complex environments.

3 Establishment of land use and

agricultural investment model
based on machine learning
algorithm

3.1 Land CNN-LSTM-Attention algorithm
model

The core contribution of this paper is the development of
a CNN-LSTM-Attention hybrid model, which combines
convolutional neural networks, long short-term memory,
and attention mechanisms for land use forecasting and
agricultural investment decision-making. The model
begins with an LSTM architecture, which traditionally
requires three layers; however, to mitigate overfitting, we
propose replacing the first LSTM layer with a
convolutional layer from the Keras library, designed
specifically to process one-dimensional data. The
remaining layers consist of two LSTM layers, followed
by an attention mechanism to capture temporal
dependencies in the data. This architecture was chosen as
the main model for evaluation in this study and is
compared with traditional models such as Artificial
Neural Networks and Random Forest (RF), which serve
as baseline models for performance comparison. The
input data of the ConvlD layer is a two-dimensional
tensor, in which the first dimension represents the
number of time steps, and the second dimension
represents the characteristic dimensions of each time step
because the land use and agricultural investment data
collected in this paper belong to serial data and are
one-dimensional. So Conv1D only convolves the width
[20]. The LSTM part leaves the remaining two LSTM
layers, followed by attaching the Attention mechanism,
and the last layer is the output layer. It is worth
mentioning that adding the Attention mechanism cannot
be said to add a layer to the neural network. This
mechanism is a weight distribution. This weight will be
multiplied by the corresponding input or feature to obtain
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the weighted result and generate the output. The Conv1D
convolution operation formula is shown in (1).

k-1
Yo = ,=ZOWi X +b (D)

Where y; represents the output of the ¢ time step, W;
represents the weight of the convolution kernel, x+;
represents the eigenvalue of the input sequence at time
step ¢+i, b represents the bias term, and k represents the
size of the convolution kernel. The weighted calculation
formula of Attention mechanism is shown in (2).

!
Y, =2a-h @

Among them, a, represents the attention weight of
time step ¢, A, represents the hidden state of the current
time step, y; represents the attention weight matrix, and 7
represents the working time. Therefore, the preliminary
structure of this algorithm is the CNN layer, the first
LSTM layer and the second LSTM layer, respectively,
with an Attention mechanism. The last layer is a fully
connected layer with a parameter of 1 as the output layer
[21]. However, it is not enough to determine the layers of
the algorithm. It is also necessary to continue to
determine the number of neurons in each layer, whether
to add a Dropout layer and its probability, the number of
iterations and the number of batch samples. Using the
control variable method, only one hyperparameter is
changed at a time, and other parameters are kept
unchanged. Firstly, the structure of the initial algorithm
of CNN-LSTM-Attention is established. The convolution
layer calculation formula is shown in (3).

Youtput = oW, -h; +b,) 3)

Among them, Yououpu: represents the final output
prediction value, W, represents the weight matrix of the
output layer, b, represents the bias term of the output
layer, and o represents the activation function. The data
normalization formula is shown in (4).

X' = X—H (4)

(o

Where x' represents the normalized data, x
represents the original data, u represents the mean value
of the data, and o represents the standard deviation of the
data. Because the steps of parameter tuning are too
lengthy, the model evaluation indexes under different
situations have to be compared every time the parameter
tuning is adjusted, so this part does not show the
parameter tuning steps but directly gives the parameter
tuning results [22, 23]. After the long parameter
adjustment process of the control variable method, the
structure of the constructed CNN-LSTM-Attention
algorithm model is now obtained, as shown in Figure 1.
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Figure 1: Structure of CNN-LSTM-Attention algorithm model

The model construction and parameter tuning
process are in this paper. Firstly, the version of the
training environment and library is expounded, which is
the basis of data and algorithm docking, followed by the
structure setting of the algorithm network. The parameter
tuning process of the algorithm structure is demonstrated,
and finally, the network structure and parameter setting
of the CNN-LSTM-Attention algorithm model and other
comparative models mainly constructed in this paper are
listed. The convolution layer calculation formula is
shown in (5).

X =2 tnin_ s
Xinax — Xmin

Where x' represents the normalized data, x
represents the original data, x,;, represents the minimum
value of the data, and x,.. represents the maximum value
of the data. The linear regression model formula is shown
in (6).

y=W-x+b (6)

Where y represents the prediction result, W
represents the weight matrix, x represents the input
eigenvector, and b represents the bias term.

In order to optimize the performance of the CNN
LSTM Attention model, we used a grid search method
for hyperparameter tuning. The key hyperparameters for
optimization include learning rate, number of hidden
layers, number of neurons per layer, batch size, and
dropout rate. The learning rate was adjusted from the

initial value of 0.001 to 0.0005, which improved the
performance of the model. Fine tuned the number of
hidden layers and adjusted the packet loss rate to prevent
overfitting. These optimizations significantly improved
performance, with the accuracy of the model increasing
from 96.8% to [insert optimization accuracy], and the
prediction error rate decreasing from 6.2% to 4.1%.

3.2 ANN model algorithm

The Artificial Neural Network (ANN) model, used as a
baseline model in this study, is based on the perceptron, a
simplified model of biological neurons. The perceptron
integrates multiple inputs to form an output. In the
context of land wuse and agricultural investment
decision-making, the ANN model helps predict trends by
processing the input features through weighted sums,
followed by activation functions to generate outputs.
While the ANN model is not the primary model proposed
in this paper, it serves as an important comparative
baseline for evaluating the performance of the
CNN-LSTM-Attention model [24]. First, it calculates the
weighted sum X for the input and then uses the activation
function to calculate the output with X as the input. This
process helps accurately predict agricultural investment
decisions and trends in land use change by optimizing
model parameters. The workflow of perceptron in land
use and agricultural investment decision model is shown
in Figure 2.
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Figure 2: Workflow of perceptron in land use and agricultural investment decision model

Figure 2 shows the workflow of the perceptron in
the ANN model, which only focuses on the standard
multilayer perceptron structure used for land use and
agricultural investment decisions. A typical ANN
structure is a multi-layer perceptron. A single layer is
composed of multiple perceptron, which are not
connected. The layers are fully connected, that is, the
output of the upper layer is used as the input of the next
layer, and the weights on the connection line are
parameters learned during network training. In the land
use and agricultural investment decision model, a typical
ANN includes an input layer, an output layer and several
hidden layers, in which the number of nodes in the input
layer and output layer is determined by the number of
input features and the structure of decision results [25,
26]. The way the layers are connected ensures that the
input information can be processed and decided through
the model's layers, thus optimizing the forecasting effect
of land use and agricultural investment. The calculation
formula of the input layer to the hidden layer is shown in

.
h=f (iwij X, +bi) )
j=1

Where 4; represents the output of the i node of the
hidden layer, W represents the weight from the j node of
the input layer to the i node of the hidden layer, x;
represents the input feature of the j node of the input layer,
b; represents the bias term of the i node of the hidden
layer, and f represents the activation function. The
calculation formula from hidden layer to output layer is
shown in (8).

y:é/vio'hi_kbo (8)

Where y represents the predicted value of the output
layer, W, represents the weight from the i node of the
hidden layer to the output layer, /; represents the output
of the i node of the hidden layer, and b, represents the
bias term of the output layer. In addition to the weights
between layers, which need to be learned in the training
process, there is also a kind of hyperparameters that need
to be determined in advance before training. At the
network structure level, the number of hidden layers and
the number of nodes in each layer are hyperparameters

[27]. At the level of individual neurons, the
hyperparameters that need to be determined have
activation functions. In network training, the
hyperparameters involved include loss function,
optimization algorithm, learning rate and number of
training rounds. These abundant adjustable parameters
enable ANN to fit complex nonlinear relationships and
have been widely used in land use change prediction and
agricultural investment decision-making [28, 29]. In the
decision model of ten land utilization and agricultural
investment, there is a complex nonlinear relationship
between the prediction of ten land utilization changes and
the return on investment, which is suitable for fitting and
optimization by ANN. The ReLU activation function
formula is shown in (9).
f (x) = max(0, x) (9)

Where f (x) represents the output of the activation
function and x represents the input signal of the neuron.
The formula of gradient descent optimization algorithm
is shown in (10).

0., =0.—11-V,L(8) (10)

Where 6, represents the current model parameters,
0:+; represents the updated model parameters, #
represents the learning rate, and [5L(6,) represents the
gradient of the loss function with respect to the model
parameters. However, in addition to the quality of
training data, the practical application effect of neural
networks is also affected by the above hyperparameters.
These hyperparameters cannot be learned through
training and must be artificially set in advance. When the
data set is determined, the combination of
hyperparameters determines the final performance of the
model. However, the relationship between the model
performance and each hyperparameter cannot be known
in advance, and the model performance corresponding to
a certain hyperparameter combination can only be
obtained through the training verification process [30].
Therefore, with high experimental cost, especially with
the increase in the number of hyperparameters to be
optimized, a combinatorial explosion may occur, which
makes it difficult for brute-force search methods to find
ideal results in a reasonable time. This requires further
optimization of the training process and hyperparameter
selection, especially in land use change prediction and
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agricultural investment decision-making. Optimizing
hyperparameters is very important to improve
decision-making accuracy. The grid search optimization
formula is shown in (11).
Y, =W - X - Dropout(p) (11)

Where y; denotes the output, w; denotes the weight,
x; denotes the input feature, and p denotes the Dropout
probability.

4 Experimental results and analysis

This study constructs a prediction model for land use
optimization and agricultural investment
decision-making using the CNN-LSTM-Attention model.
To assess the model's generalization ability and prevent
overfitting, we tracked training and validation losses over
epochs. The validation loss stabilized after 50 epochs,
indicating the model successfully learned underlying
patterns without overfitting. The learning curve showed
minimal divergence between training and validation
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losses, suggesting strong generalization. A 5-fold
cross-validation confirmed consistent accuracy and low
variance across different dataset subsets, further
validating the model's stability and robustness in
predicting land use changes and agricultural investment
returns. The CNN-LSTM-Attention model was
compared with traditional machine learning models such
as Decision Tree, Random Forest, Support Vector
Machine (SVM), and Atrtificial Neural Network (ANN).
These models served as baseline models to evaluate the
performance of the proposed hybrid model in land use
forecasting and agricultural investment decision-making.
This study provides a theoretical basis for the optimal
allocation of agricultural resources and investment
decision-making and promotes the in-depth application
of machine learning technology in the agricultural field.
The soil quality indicators of different land use types are
shown in Table 2.

Table 2: Soil quality indicators of different land use types

Type of land use Sn(i:tt(::rrgé’l/:)l)c moisi(l)rlcle (%) Soil pH (pH) concSr?tlrlartlil(l)tr?(et?ltg/kg)
Farmland 3.2 15.6 6.2 150
Grassland 4.5 18.2 7.0 120

Forest 53 20.0 6.5 180
Wasteland 2.1 12.4 5.8 80

The soil quality data in the table shows that
woodland has the highest concentrations of soil organic
matter and nutrients, which may contribute to long-term
sustainable land use. In contrast, the soil quality of
farmland and grassland is close, but the moisture and pH
of farmland are slightly lower. The wasteland had the
worst soil quality, exhibiting lower concentrations of
organic matter and nutrients and low moisture content,
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indicating its low land use efficiency and the need to
improve soil quality.

This paper analyzes the relationship between soil
quality and annual output value under different land use
types to compare them, study their correlation, and
observe how land quality affects agricultural output value.
The results are shown in Figure 3.
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Figure 3: Relationship between soil quality and annual output value under different land use types

The data in the chart shows a certain positive
correlation between soil quality and annual output value.
The data used for this analysis was sourced from national
agricultural surveys conducted between 2015 and 2020
and publicly available environmental databases. These

real-world datasets provide valuable insights into soil
quality indicators such as organic matter content,
moisture, and pH across different land use types in
agricultural regions of China. The soil organic matter
content of farmland is 3.2%, and the annual output value
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is 800,000 yuan; The organic matter content of grassland
is 4.5%, and the annual output value is 1 million yuan;
The organic matter content of forest land is 5.3%, and the
annual output value is 1.5 million yuan; The organic
matter content of wasteland is 2.1%, and the annual
output value is only 400,000 yuan. It can be seen that
with the improvement of soil quality, the annual output
value shows an increasing trend. Especially in forest land,
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the soil quality is the best, so the annual output value is
the highest, which reflects the direct promotion effect of
good soil conditions on agricultural production.

This paper analyzes the relationship between
agricultural investment amounts and returns on
investment to show the relationship between different
agricultural investment amounts and their corresponding
returns, and the results are shown in Figure 4.
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Figure 4: Relationship between agricultural investment amount and return on investment

The chart shows no completely linear positive
correlation between the amount of agricultural
investment and the rate of return. The data used for this
analysis were derived from simulated agricultural
investment scenarios based on real-world data, including
historical crop yield and investment return data from
multiple agricultural zones in China. These simulated
scenarios help illustrate potential investment outcomes,
but actual results may vary depending on specific
environmental and market conditions. The data used for
this analysis were derived from simulated agricultural
investment scenarios based on real-world data, including
historical crop yield and investment return data from
multiple agricultural zones in China. For smaller
investments, the return is 60%. When the investment
increases to 700,000 yuan, the rate of return rises to 85%,
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But when the investment is further increased to 1 million
yuan, the rate of return drops to 80%. This shows that
after investing more than a certain amount, the return rate
increase gradually slows down, and even the decline of
the return rate occurs, which may be due to the excessive
concentration of resources or the increase of market
saturation caused by over-investment. Therefore,
investors must evaluate the optimal balance between the
amount invested and the return.

In order to demonstrate the prediction accuracy of
different machine learning models on different land use
type datasets to evaluate which model is more suitable for
land use prediction, this paper compares the prediction
accuracy of machine learning models with land use types,
and the results are shown in Figure 5.
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Figure 5: Comparison of prediction accuracy of machine learning models for land use prediction

According to the chart data, the Neural Network
model shows the highest prediction accuracy of 91%
across all land use types, as reported in Table 3.
Specifically, for farmland datasets, the Neural Network
model achieved 90% accuracy, Random Forest achieved

89%, Support Vector Machine (SVM) was at 85%, and
the Decision Tree model had the lowest accuracy of 80%.
The accuracy values presented here reflect the overall
performance of each model across all agricultural regions.
The research results in this section show that neural



A CNN-LSTM-Attention-Based Decision Support Model for Land...

networks have more advantages in dealing with complex
land use patterns and multi-dimensional features and can
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effectively capture the inherent laws of data, thereby
improving prediction accuracy.

Table 3: Relationship between return on agricultural investment and different planting modes

Planting pattern (Itré \r/1etsl:gfgn?1my(1)11;i; Am(lilg’lo%%tgfaglue Return (%) Risk factor (0-1)
I;?gg;‘t’l‘;‘ﬁ 50 80 60 0.4
Modern planting 70 130 85 0.3
Organic cultivation 60 110 83 0.5
Intensive agriculture 100 180 80 0.6

The relationship between agricultural return on
investment and different planting patterns is shown in
Table 3. Prediction accuracy comparison of
CNN-LSTM-Attention model, ANN, and other machine
learning models (Decision Tree, Random Forest, SVM)
for land use forecasting and agricultural investment
decision-making. The table shows the return on
investment of different agricultural cultivation models.
Modern planting has the highest rate of return of 85% and
the lowest risk coefficient, indicating that its relatively
low risk and high return make it the best choice for

12
©- CRB
—k— SCY
NSY
10- L(

Economic benefits (1 x 10° yuan)

0 10 20 30 40 50
Years

Economic benefits (1 x 10° yuan)

investors. Traditional planting has a return rate of 60%.
Although the risk factor is lower, the return is less.
Although the annual output value of intensive agriculture
is high, the risk coefficient is also high, which shows high
investment risk.

This paper analyzes the impact of land use change
on annual economic benefits, especially how the change
of different land use patterns affects agricultural
economic benefits. The analysis results are shown in
Figure 6.
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Figure: 6 Impact of land use change on annual economic benefits

From the data chart, it can be seen that the annual
economic benefits after different land use changes show
significant differences. Specifically, the annual economic
benefit of wasteland converted into farmland increased
from 400,000 yuan to 800,000 yuan. If it is converted
into grassland, it will be raised to 900,000 yuan. The
economic benefits of forest land transformation are
particularly prominent, which can reach 1.5 million yuan.
The results of this study show that the improvement and

transformation of land use patterns can not only optimize
soil quality, but also bring significant economic benefits,
especially the increase of wasteland conversion into
farmland is the most significant.

This paper compares the investment return period
and risk coefficient of different agricultural planting
patterns to help analyze their risks and benefits. The
results are shown in Figure 7.
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Figure 7: Comparison of investment return period and risk coefficient under different agricultural planting models

According to the data in the chart, the return period
of modern planting mode is the shortest, only 4 years, and
the risk coefficient is low at 0.3, showing a high return on
investment. The return period of traditional planting is 5
years, the risk coefficient is 0.4, and the return rate is
relatively stable. The return period of organic planting is
6 years, and the risk coefficient is 0.5. Although the
return rate is higher, its risk is slightly greater than that of
modern planting. Intensive agriculture has the longest

return period, reaching 7 years, with the highest risk
coefficient of 0.6, indicating that it has high investment
risk and needs more elaborate management and technical
input.

This paper analyzes the relationship between
agricultural return on investment and soil quality to
demonstrate it and explore the potential impact of soil
quality on return on investment. The results are shown in
Figure 8.
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Figure 8: Relationship between agricultural return on investment and soil quality

The chart shows the trend of increasing soil organic
matter content and increasing return on agricultural
investment. Specifically, 2.0% organic matter content
corresponds to a 50% return on investment. When it
increases to 4.0%, the return rate increases to 70%. After
the organic matter content exceeds 5.0%, the rate of

return approaches 90%. This phenomenon reveals that
high-quality soil has a positive effect on improving crop
yield and quality, thus promoting the growth of return on
investment. Therefore, soil quality improvement is listed
as one of the key strategies to enhance the return on
agricultural investment.

Table 4: Accuracy of machine learning model in land use prediction

Model Type Training Set Test Set Prediction Runtime
Accuracy (%) | Accuracy (%) accuracy (%) (seconds)
Decision Tree 85 80 82 120
Random Forest 90 88 89 180
Support Vector
R ohing 86 83 85 150
Neural network 92 90 91 200

The accuracy of the machine learning model in land
use prediction is shown in Table 4. It can be seen from the
table that the neural network model performs best in

prediction accuracy, reaching 91%, and the accuracy rate
of the test set is 90%. While it has a longer running time,
the accuracy advantage may make up for the time cost.
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The accuracy of the random forest model is also high at
89%, and the relatively short runtime makes it more
competitive in real-world applications. The prediction
effect of decision tree and support vector machine models
is general, especially when the prediction accuracy is
slightly lower.
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This paper compares the return periods of
agricultural investments in different regions to show the
difference in return periods under the same investment
amount and evaluate the efficiency of agricultural
investment return in different regions. The results are
shown in Figure 9.
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Figure 9: Comparison of return period of agricultural investment in different regions

As can be seen from the chart, the return period of
agricultural investment in the southern region is the
shortest, only 4 years, indicating that the agricultural
market demand in this region is strong and the land
resources are superior. The eastern region has a five-year
payback period, the western region has a six-year
payback period, and the northern region has the longest

payback period of seven years. These differences may be
closely related to regional climate, market demand, land
quality and other factors. The southern region is more
suitable for agricultural production, so it can realise the
return on investment faster, while the northern region
may face a longer waiting period.

Table 5: Comparison of land use change and economic benefits in different investment areas

. Land utilization rate | Annual economic benefit
. Initial land . . Investment return
Region utilization (%) after transformation after transformation eriod (years)
(%) (10,000 yuan) P Y
East Region 60 75 200 5
Western Region 55 68 180 6
Southern Region 65 80 220 4
Northern Region 50 65 160 7

The comparison of land use change and economic
benefits in different investment areas is shown in Table 5.
From the comparison of land utilization rate and
economic benefit, the land utilization rate in southern
China has increased most significantly, from 65% to 80%,
and the annual economic benefit has reached 2.2 million
yuan, the highest among all regions. The economic
benefits after land transformation in the eastern region
followed closely, but the payback period was shorter only
5 years. The western and northern regions have a longer
return on investment period of 6 and 7 years, respectively,
and relatively low economic benefits, which may be

related to the land use potential and market demand in
these regions.

5 Conclusion

To verify the statistical significance of these performance
improvements, we performed a paired t-test to compare
the accuracy of the CNN-LSTM-Attention model with
that of the Random Forest, SVM, and ANN models. The
results of the paired t-test show that the
CNN-LSTM-Attention model outperforms the Random
Forest, SVM, and AN model with a statistically
significant improvement in prediction accuracy. These
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results confirm that the performance of the
CNN-LSTM-Attention model is not only better but also
statistically significant. The result was obtained using a
training test segmentation of 70-30, where the training set
consisted of 7000 samples from agricultural regions
across China, and the test set included 3000 samples from
different regions not included in the training data. The
paired t-test was used to evaluate statistical significance,
which confirmed that at a 95% confidence level, the
improvement in accuracy was statistically significan.
These results indicate that the CNN-LSTM Attention
model is not only superior to existing models, but also
has good generalizability in different agricultural
regions.

This paper proposes a hybrid
CNN-LSTM-Attention model for land use forecasting
and agricultural investment decision-making. The model
is compared with traditional machine learning models,
including Random Forest, Support Vector Machine
(SVM), Decision Tree, and Artificial Neural Networks
(ANN). Experimental results demonstrate that the
CNN-LSTM-Attention model outperforms these baseline
models, achieving higher prediction accuracy and
stronger generalization across different agricultural
regions. The comparative analysis validates the
effectiveness of the CNN-LSTM-Attention model in
addressing the complexities of land use and agricultural
investment optimization, highlighting its advantages over
traditional models.

(1) Through comparative experiments with
traditional ANN and LSTM models, this paper proposes
a hybrid CNN-LSTM-Attention model for land use
forecasting and agricultural investment decision-making.
The model is compared with traditional machine learning
models, including Random Forest, Support Vector
Machine (SVM), Decision Tree, and Artificial Neural
Networks (ANN). Experimental results show that the
CNN-LSTM-Attention model achieves an accuracy of
96.8%, outperforming the ANN model, which achieves
an accuracy of 91%. This improvement highlights the
effectiveness of the hybrid model in addressing land use
prediction and agricultural investment decision-making
tasks. In addition, in the long-term prediction of land use
change, the mean square error of the
CNN-LSTM-Attention model decreased from 0.045 to
0.022 of the ANN models, showing higher prediction
accuracy and stronger fitting ability.

(2) In the agricultural investment decision
forecasting task, the ANN model's application effect has
also been wverified. In the simulated agricultural
investment decision scenario, the decision accuracy rate
of the ANN model reached 89.4%. Compared with the
CNN-LSTM-Attention model, the ANN model performs
better in training time and computing resource
consumption, especially when the amount of data is small,
the ANN model can quickly provide more accurate
decision support. The performance of CNN LSTM
attention model was evaluated together with baseline
models such as random forest, support vector machine,
decision tree, and artificial neural network. The results
indicate that the CNN-LSTM Attention model
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outperforms these models in land use prediction, with an
accuracy rate of 96.8%. The running time of the CNN
LSTM Attention model is [insert running time], while the
running time of the ANN model is [insert operating time].
This comparison highlights that although the training
time of the ANN model is faster, the CNN LSTM
Attention model provides better prediction accuracy,
especially when dealing with large datasets and more
complex land use change patterns.

(3) In order to further improve the accuracy and
predictive ability of the model, this study conducted
hyperparameter optimization on CNN LSTM Attention
and ANN models. For the CNN LSTM Attention model,
the improved hyperparameter adjustment strategy
increases the accuracy from 96.8% to insertion
optimization accuracy by adjusting parameters such as
learning rate, number of hidden layer nodes, and
convolution kernel size. The prediction error rate of the
optimized CNN LSTM Attention model decreased from
6.2% to 4.1%, effectively improving the model's
prediction stability and reliability. As a baseline, the
accuracy of the ANN model before optimization was
91%, which improved to the optimization accuracy of
inserting ANN, and its prediction error rate decreased to
the error rate of inserting optimized ANN. In the test of
agricultural investment decision, the prediction error rate
of the optimized CNN-LSTM-Attention model decreased
from 6.2% to 4.1%, effectively improving the investment
decision's reliability and stability. In addition, the training
efficiency of the model is also significantly improved by
optimizing  the  hyperparameters through the
cross-validation method.

This article proposes a CNN-LSTM Attention
hybrid model for land use prediction and agricultural
investment decision-making, with an accuracy of 96.8%,
significantly better than traditional models such as
random forests. The attention mechanism improves
accuracy by capturing temporal dependencies in land use
change, especially in high-dimensional time series data.
Our model has also demonstrated excellent
generalization ability in different regions and
outperforms existing SOTA models such as SVM in cross
regional applications. However, limitations include data
quality dependencies and computational requirements,
which may pose challenges for real-time applications.
Future improvements will focus on optimizing models,
combining satellite imagery and real-time market data,
and exploring reinforcement learning for dynamic
decision-making.

The hybrid model based on CNN-LSTM-Attention
shows stronger prediction ability and generalization
ability than the traditional ANN model in land use change
prediction and agricultural investment decision-making,
especially when dealing with large-scale data; it can give
full play to the advantages of deep learning models. In
addition, through reasonable hyperparameter tuning, the
performance and efficiency of the model can be further
improved. Future research can continue to explore more
optimization algorithms and more efficient feature
extraction methods to improve further the accuracy and
practicability of land wuse change prediction and



A CNN-LSTM-Attention-Based Decision Support Model for Land...

agricultural investment decision-making.
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