https://doi.org/10.31449/inf.v49i17.9808

Informatica 49 (2025) 205-216 205

Multi-Modal Lightweight 3D Transformer for Target Recognition
and Reconstruction in Intelligent Construction

Meng Jing

Department of Building Engineering, Zibo Vocational Institute, Zibo 255000, China
E-mail: jingmengmeng@163.com

Keywords:

3D transformer model, architectural engineering, target recognition, ODSG, three-dimensional

reconstruction

Received: June 20, 2025

In response to the dynamic occlusion, lighting changes, and computational efficiency faced by 3D object
recognition in the intelligent transformation of construction engineering, this study proposes an optimized
algorithm that integrates the Improved Outdoor Dynamic Scene Graph (ODSG) with a Lightweight
Transformer. The SFM trajectory decoupling algorithm enhances geometric constraints and utilizes the
S2DNet network to extract deep features, thereby optimizing the 3D reconstruction process. Additionally,
a three-stage Lightweight Transformer model is developed, integrating self-supervised depth estimation,
feature selection, and multimodal fusion mechanisms. The research results showed that on the three-
dimensional benchmark dataset, the optimized outdoor dynamic scene image framework achieved a dense
reconstruction accuracy of 32.29% at 1cm precision, which was 9.53% higher than that of the traditional
Collection of COLMAP system. The F1 scores reached 4.23 and 54.34 at 1cm and 5cm precision,
respectively. In terms of object recognition, the optimized 3D Transformer achieved an average accuracy
index of 25.33%, 17.68%, and 14.72% for 3D object detection on joint datasets in Easy, Mod, and Hard
modes, respectively, which was 2.38% higher than that of the Monocular 3D Object Detection with
Flexible Representations. The average precision for bird's eye view reached 36.15% in Easy mode,
representing a 36.1% improvement over the conventional M3D-RPN baseline (26.56%). The research
provides an efficient 3D perception solution for monitoring and safety warning of automated equipment
in intelligent construction.

Povzetek: 3D prepoznavanje v gradbenistvu je zahtevno zaradi okluzij, svetlobnih sprememb in visokih
stroskov izracuna. Predlagan je multimodalni ODSG+lahki 3D Transformer z izboljsano SFM

rekonstrukcijo, samo-nadzorovano globino in selekcijo znacilk.

1 Introduction

The construction industry is accelerating its
transformation and upgrading towards intelligence.
Intelligent construction has become an important

breakthrough in breaking through industry development
bottlenecks such as high energy consumption, low
efficiency, and safety hazards [1]. Computer vision object
recognition technology can monitor construction site
elements in real-time and provide decision support for
automated equipment [2]. For example, anti-collision
warning for tower cranes, automatic inspection by drones,
and intelligent lifting of prefabricated components, etc.,
these technologies achieve full process visualization and
control through data-driven approaches, which are the
core support for promoting "lean construction” [3]. Target
recognition technology has undergone a leapfrog
development from traditional methods to deep learning. In
the early days, manual feature extraction combined with
machine learning is adopted, such as combining
directional gradient histogram features with support
vector machine classifiers. Although they can describe
object contours, they are easily affected by lighting

interference. The feature matching accuracy of scale
invariant feature transformation is high, but the
computational complexity is large and difficult to apply in
real-time [4]. Although traditional methods are effective
in specific scenes, they are difficult to cope with complex
working conditions such as dynamic lighting, dense
targets, and multi-perspective changes in intelligent
construction, and their adaptability is clearly insufficient.
These limitations have driven the development of object
recognition technology towards 2D recognition methods
based on deep learning.

With the breakthrough of deep learning technology,
2D object recognition technology has achieved a leapfrog
development from traditional methods to data-driven
paradigms. This type of technology uses deep
Convolutional Neural Network (CNN) to automatically
learn image features, greatly improving recognition
accuracy and generalization ability [5]. 2D object
recognition technology includes the You Only Look Once
(YOLO) series, the Improved Small Object Detection
Network (ISOD), etc. Ma et al. proposed an improved
ISOD to meet the demand for fast and accurate target
recognition in intelligent construction sites, especially the
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insufficient accuracy in small target recognition. The
experiment showed that the mAP@0.50.95 of ISOD on
the traffic sign dataset reached 0.635, which was superior
to the state-of-the-art YOLOv7 and significantly
improved the small target recognition performance,
providing an effective solution for real-time detection of
intelligent construction sites [6]. Liu et al. proposed a new
Interaction  Attention-enhanced YOLO (IA-YOLO)
framework to locate targets from low-quality images
under adverse weather conditions. The experimental
results showed that IA-YOLO could adaptively process
images under normal and harsh weather conditions, and
exhibited excellent detection performance in foggy and
low light scenes [7].

Although 2D object recognition technology performs
well in planar detection tasks, it still has limitations.
Firstly, the lack of depth information makes it difficult to
distinguish visually overlapping objects. Secondly,
changes in perspective can significantly affect recognition
performance, resulting in a 20%-30% decrease in
accuracy when viewed from a top-down perspective.
Finally, it is difficult to directly interface with 3D
engineering data such as building information models.
These shortcomings have driven the development of 2D
object recognition technology towards 3D recognition
technology [8]. Zhang et al. developed an anchor free
detection model based on LiDAR to address the
insufficient 3D recognition in autonomous building
equipment. The Transformer block-based multi head self-
attention mechanism was proposed, combined with 3D
sparse convolution, to achieve efficient feature extraction
and redundant pruning. The experiment showed that the
model outperformed the baseline in terms of accuracy and
regression error, providing precise 3D information for
building automation and significantly improving
equipment safety and operational efficiency [9]. Chen et
al. proposed an efficient recognition algorithm based on
deformable attention Transformer to address the
occlusion, multi-scale variations, and small object
recognition in detecting safety helmets on construction
sites. The experimental results showed that the
computational complexity and real-time speed were
133.35 GFLOPs and 20 FPS, respectively, with mAP@0.5
reaching 95.4%, making it the best performing solution in
the current safety helmet detection field [10]. Recent
studies, such as Pointformer and Voxel-Transformer, have
shown good performance in point cloud processing.
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However, in dynamic occlusion in building scenes, the
AP3D of the multi-sensor fusion method CMF-Net is less
than 12%, while the AP3D of CMF-Net reached 28.9% in
terms of cost and real-time performance. Table 1
systematically compares the capabilities of existing
methods in addressing specific construction challenges.

This study specifically explores three core research
questions: (1). Can the multi-modal fusion of ODSG and
lightweight Transformer improve AP3D by more than 2%
under occlusion conditions compared to MonoFlex? (2)
How to achieve both depth estimation accuracy (<15%
error) and computational efficiency (>20FPS)
simultaneously? (3) Compared to traditional CNNs, does
the three-stage architecture reduce feature loss by more
than 20% in dynamically constructed scenarios?

In summary, although the Three-Dimensional
Transformer (3D Transformer) model performs well in
general scenes, the unique characteristics of the building
environment, such as dynamic occlusion and lighting
changes, pose significant challenges, such as large errors
in monocular depth estimation, significant feature loss in
dense targets, and the contradiction between real-time
requirements and computational overhead [11-12].
Therefore, a lightweight Transformer method that
integrates multi-modal information is proposed, which
integrates semantic and geometric features through an
improved Outdoor Dynamic Scene Graph (ODSG)
framework. The reconstruction accuracy of 3D scene
understanding is optimized by Structure from Motion
(SFM) and trajectory separation algorithms. At the
algorithmic level, the research innovatively integrates
three key technologies to build an unsupervised depth
estimation module to enhance the deep feature extraction
ability. A lightweight Transformer architecture is adopted
to achieve global relationship modeling. Introducing a
saliency detection network for feature screening
significantly reduces computational burden while
ensuring detection accuracy. The research aims to provide
high-precision 3D spatial perception capability for
intelligent construction scenes through deep feature
enhancement and computational efficiency optimization,
while ensuring real-time performance. The proposed
system adopts a cascaded multi-modal architecture. The
first stage employs the improved ODSG framework for
scene reconstruction, while the second stage utilizes a
lightweight Transformer for target recognition. The two
modules collaborate through depth feature transmission.

Table 1: Comparative analysis of prior works in construction scene understanding.

Key Metrics Lo Relevance to Our
Model Dataset (AP3D/APBEV) Strengths Limitations Work
. . Light-sensitive -
) e Feature matching | Interpretable, simple . ' Justifies deep
HOG+SVM/SIFT [4] Scene-specific accuracy scenes ?é?ET) compute learning adoption
- MAP@0.5a:0.95=0.63 | Real-time small object | No depth | Baseline for 2D
YOLOV7[6] Traffic Sign 5 detection estimation detection
- Weather
IA-YOLO [7] Adverse Weather / :?OE tu st tofog/low IS_IQE;;T?'eaSOHiHSD adaptation
g P Y reference
. . Motivates
. Construction Accurate 3D, sparse | Costly LiDAR,
LiDAR Transformer [9] - AP3D: SOTA - monocular 3D
LiDAR data conv efficiency slow (82.1% recall)
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Deformable DETR [10] Safety helmets

APBEV/(Mod):95.4%

Handles occlusion, 20 High compute Inspires 70%
(133  GFLOPs), ) :

FPS attention reduction
2D-only

2 Methods and materials

2.1 Experimental Configuration

Experiments are performed on an NVIDIA RTX
4090/Intel 19-13900K system using ETH3D (12 scenes)
and KITTI (8,008 frames) datasets with a 7:2:1
train/val/test split. Training employs Adam optimizer
(Ir=3e-4, batch=16, weight decay le-4) over 200 epochs
with cosine scheduling and 3-fold cross-validation. Data
augmentation included +15° rotation, horizontal flipping,
and [0.8,1.2] scale jittering. The PyTorch 2.0
implementation takes CUDA 11.7/cuDNN 85
acceleration with a Transformer architecture. Datasets are
rigorously curated: sensitive data removal, balanced
weather distribution (3:1:1 sunny/rainy/foggy), and
enhanced annotations for 10 tool categories. Lighting
variations cause £2.3% AP3D fluctuations (compensated
to +£0.7% using equation 15). The results are validated
through three independent trials, and the statistical
significance is confirmed by two-tailed t-tests (a=0.05,
Bonferroni-corrected), 1,000 bootstrap resamples (95%
Cls), and minimum detectable effect size of 1.2%.

2.2 Optimization of ODSG 3D
reconstruction for intelligent
construction

In response to the demand for target recognition in
construction engineering, traditional Scene Graph (SG)
can model the interaction relationship between building
materials and equipment, but its static characteristics are
difficult to capture the spatiotemporal changes of dynamic
construction scenes [13-14]. Therefore, scholars have
proposed the ODSG technology, which integrates

semantic expression and 3D reconstruction technology,
can model dynamic objects and environments uniformly,
improve spatial semantic understanding and real-time
updating capabilities, thereby enhancing the decision
analysis efficiency of intelligent construction systems. In
reconstruction technology,

terms of 3D traditional

Depth feature extraction

N,

Key point adjusfr?’lent

methods rely on traditional techniques such as feature
matching and sparse/dense reconstruction [15-16]. Sparse
reconstruction is based on 2D feature points to restore
camera pose, while dense reconstruction generates a
complete scene representation. However, traditional
methods are susceptible to changes in lighting and
insufficient geometric constraints, leading to a decrease in
reconstruction quality [17]. Therefore, the 3D
reconstruction module is improved within the ODSG
framework by enhancing geometric constraints to improve
the dense reconstruction quality of outdoor scenes and
optimize dynamic environment modeling capabilities. The
improved ODSG framework is shown in Figure 1.

In Figure 1, the input image undergoes SFM sparse
reconstruction to complete feature matching and depth
feature extraction. The SFM module first generates sparse
point clouds through feature matching across views, and
then optimizes keypoint positions using depth features
from S2DNet instead of traditional bundle adjustment.
After optimizing the key point positions through depth
feature measurement, the SFM process is improved and
replaced with traditional beam adjustment to optimize
camera pose. Subsequently, a multi-view stereo vision
method, namely Collection of Large-scale Matching and
Photogrammetry system (COLMAP), is employed to
achieve dense reconstruction based on optimized poses
and sparse point clouds, ultimately constructing a high-
precision ODSG. The research innovatively adopts
trajectory decoupling algorithm and implements multi-
view keypoint trajectory correlation based on greedy
optimization strategy in the motion recovery structure.
The greedy decoupling algorithm builds an L2 feature
distance matrix for cross-view node pairs, iteratively
connecting nodes with minimal distances (threshold:
0.5ximage diagonal) until normalized residuals exceed 0.5.
PyTorch and OpenCV's BFMatcher are used to implement
COLMAP enhancement. The open-source code includes
three core modules: 1) SFM and S2DNet feature
extraction integration; 2) Configurable greedy matcher
(L2 threshold: 0.3-0.7); 3) 3D reconstruction evaluation
tools for reproducibility.

an

Sparse reconstruction Dense reconstruction

Beam adjustment

Figure 1: Improved ODSG framework (The physical image in the picture is sourced from:
https://www.tuituisoft.com/bim/221724.html).
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A set of trajectory nodes V is defined. For any cross-
trajectory node pair (x, y), the trajectory connection is

established only when the corresponding image region
originates from different views, effectively filtering out
mismatches. Firstly, the key points are optimized and the
SuperPoint-like 2D Feature Detection and Description
Network (S2DNet) is used to extract deep features. The
S2DNet extracts 128-D depth features within 16x16 local
regions (max offset=8), pretrained on ETH3D using Adam
optimizer (Ir=3e-4) with triplet loss (margin=0.2). It
achieved 92% matching accuracy on validation data, and
fine-tuned through grid search (keypoint matching
threshold=0.7). generating an L2 normalized feature map

F 0" Based on feature metric consistency, a cost
function Eg, is constructed and the tentative matching

points within trajectory k are adjusted. The calculation is
shown in equation (1).

ko _
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In equation (1), w,, is the confidence level of
matching keypoints. m « is the set of keypoint matching

@

a

pairs. F,, is the source feature transformation function.
Fi(yy is the target feature transformation function. p,

and p, are the coordinates of the feature points. || is the

robust norm. To improve the accuracy of 3D
reconstruction, the feature point has stable detectability.
Therefore, the displacement constraint needs to be applied
to the feature point optimization process, satisfying
px - pox
the feature points. M is the maximum allowable
adjustment distance. Traditional beam adjustment is a
classic optimization method that jointly optimizes camera
pose and 3D point coordinates by minimizing the residual
between the observation point and the reprojection point.
The core lies in establishing a reprojection error function,
iteratively adjusting parameters through nonlinear
optimization, and achieving high-precision 3D
reconstruction research. To overcome matching ambiguity
in repetitive textures, a feature trajectory optimization
framework is introduced in equation (2) that minimizes
the o -norm distance between feature trajectories and
their cluster centers. This geometric consistency constraint
enhances robustness by optimizing the center vector

u<sup>k</sup> for each feature cluster {Sxk} , Where « -

<M. p°, represents the initial coordinates of

norm provides configurable noise resistance.
p=argmin > IS ull, @

ueR® fe{si]
Inequation (2), S isasingle feature sample. u isthe
optimal parameter vector for the k -th iteration, as shown
in equation (3).

f —argmin]u” 1 @)
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In the path optimization stage, the algorithm first
selects the key points closest to the reference vector 4"
from the set of trajectory feature points as the optimal
trajectory. Subsequently, iterative optimization is
performed through the bundle adjustment framework
described in equation (4). This process achieves joint
optimization of pose and structure by minimizing the « -
norm distance between observed features S* and re-
projection points.

Epa =

Z 2

k (c,x)er(k)

FTT(RR +tc,cc)]—sk||a (4)

In equation (4), (k) is the set of observation pairs.

R el® is the 3D point coordinate. C_ represents the
camera intrinsic parameter. (R_,t.) is the pose of the

camera. Equation (4) establishes a robust bundle
adjustment  framework with a dual summation
architecture. This system employs an outer layer to
traverse 3D road point sets and an inner layer to aggregate
all camera observation frames. By minimizing the o -
norm distance between re-projection points under depth
feature extraction operators and reference features, the
configurable a -norm (e.g.,, L1/L2) combined with
explicit modeling of camera parameter in the projection
model collectively enhances the robustness of the system
to noise and outliers. The scene graph output by ODSG
contains two key data types: (1) 128-dimensional depth
features extracted by S2DNet (used as input for the
transformer's deep module); (2) 3D point cloud
coordinates optimized through formula (4), which serve as
the position encoding reference for DETR. These data are
transmitted via PyTorch tensor shared memory with zero-
copy transfer. Point cloud quality assessment includes
Completeness (COM), Accuracy (ACC), and F1 score
[18]. The F1 score is calculated by taking into account
ACC and COM, as shown in equation (5).
F1— 2% ACCxCOM

—_— ()
ACC+COM

The 3D reconstruction technology optimized by the
ODSG  framework  provides a  high-precision
environmental modeling foundation for construction
scenes, but its dynamic object recognition ability still
needs further improvement.

2.3 Improved 3D transformer target
recognition algorithm for intelligent
construction

The improved ODSG framework enhances 3D
reconstruction accuracy through deep feature fusion, but
its dynamic object recognition capability is still limited by
the local receptive field characteristics and perspective
projection errors of the traditional CNN. The traditional
monocular 3D object recognition method is mainly based
on CNN, taking a three-stage process of "2D center point
prediction - geometric constraint depth estimation - 3D
box reconstruction” [19-20]. There are two key limitations
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to this type of method. The local receptive field
characteristics of CNN, such as 3x3 convolution covering
only 57x57 pixel areas, make it difficult to model long-
range spatial relationships [21]. The scale ambiguity
caused by perspective projection results in depth
estimation errors exceeding 15%. Although visual
transformers solve spatial relationship modeling problems
through self-attention mechanisms, their computational
complexity increases with the square of the number of
labels [22]. To address these issues, a lightweight 3D
Transformer object recognition algorithm is proposed,
which adopts a three-stage optimization strategy. Firstly,
a self-supervised depth estimation network is constructed,
which integrates geometric consistency constraints and
spatial attention mechanisms to generate enhanced
position encoding. Next, a feature importance evaluation
module is developed to screen key feature tokens based on
significance scores. Finally, in the Detection Transformer
(DETR) architecture, visual and depth features are multi-
modal fused, and global spatial relationships are
established through hierarchical encoding and decoding.
The framework is shown in Figure 2.

In Figure 2, the system first inputs the original image
and extracts the basic feature map fs through the backbone

Backbone network

—

ODSG .
Reconstruction
Framework

Attention
characteristic map

1

128-D depth feature (fllfd) characterlstlc map
3D coordinate
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network. The backbone network is a lightweight
Transformer with 6 encoder layers employing deformable
attention for efficient feature extraction. The deep module
processes the attention feature map and the deep feature
map to generate supplementary features fu, taking a three-
stage convolutional-attention-convolutional architecture
with multi-scale skip connections to preserve fine details.
The two features are fused to form a comprehensive
feature map, which is input to the DETR module for deep
parsing. The DETR module adopts the classic
Transformer structure, including encoder and decoder
components. The encoder Es hierarchically integrates
visual-depth features while the decoder Ed generates
position-aware semantic features, which output feature
maps Es and Ed, respectively. The depth module of
Transformer explicitly receives two types of input from
ODSG: (i) f1 corresponds to the 16x16 local features of
S2DNet, and (ii) fd comes from the trajectory optimization
features of ODSG.

The detection head ultimately integrates these
advanced semantic features to complete the target
recognition task. A lightweight dual branch deep feature
extraction module is innovatively constructed, and its
architecture is shown in Figure 3.

Detection head

DETR module —
— ia
I ]
B | .
ed

Figure 2: ODSG reconstruction cascade framework (The physical image in the picture is sourced from:
https://colorhub.me/photos/80aJll).

fl\
fs/ -

Position attention layer

f2 —»@—f—j— fd —»@— fout —i—»ﬁ
N

Depth position
coding

fa

Figure 3: Depth module (Source from: Author's self drawn).

In Figure 3, the module uses cascaded convolution
processing of three input features, implements through
three consecutive 3x3 convolutional blocks with ReLU

activation, and combines deep position encoding for
geometric modeling to resolve monocular depth
ambiguity through self-supervised depth estimation. On
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the right side, the feature fa is convolved with the newly
generated feature fd and integrated to output fout, while
the skip-connected feature fl1 maintains fine-grained
details by bypassing two downsampling stages. The three-
stage structure of convolution-attention-convolution
achieves visual depth feature fusion, where the middle
attention layer performs cross-modal feature alignment
using deformable attention kernels, and f1 preserves
details through multi-scale skip connections. Finally, a
lightweight Transformer scheme is proposed, taking a
four-layer fully connected network to predict the
significance score of token Q. The saliency network
employs an adaptive thresholding, where K%=(1-
v)*100%, with y€[0,1] is a learnable parameter initialized
at 0.5 and fine-tuned through backpropagation. This can
dynamically adjust the token retention rate during the
inference process. The final output layer of the model is
optimized using a cross-entropy loss function [23]. The
specific implementation is detailed in equation (6).

Ly, =BCE(T),, S') (6)
In equation (6), T, is the predicted significance
value for the j -th position. S' is the true significance

annotation corresponding to the j -th position. The DETR

model adopts the Transformer architecture to integrate
visual-depth features. Through serialization
preprocessing, K% significant features are selected to
generate token pairs. The 6-layer encoder combines
deformable self-attention and feed-forward network to
process multi-modal features, and injects deep position
encoding to achieve collaborative modeling. The
prediction accuracy is evaluated using loss functions such
as mean square error, L1/L.2, and cross-entropy [24-25].
The mean square error loss function is shown in equation

™
LYT £ = (Y~ F (%)) ™

i=1
In equation (7), Y is the true value. f(x) is the
predicted value. N is the sample size. Y, is the true value

of the i -th sample. f (x;) is the predicted value of the i
-th sample. The L1 loss function is shown in equation (8).

L(Y| f(x) = Z'Yi —f(x)| (8)
The L2 loss function is shown in equation (9).
L) = (- 1)) @

The cross-entropy loss function is shown in equation
(10).

L(Y] f(x)) =—§:Yi log ()

The detection head undergoes supervised training
through a multi-task loss function, and its calculation
method is shown in equation (11).

L=L, +L, +L

orien
+Lgepmn + Lsig + L

(10)

class size

(1)

deptl dmap
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In equation (11), L, represents the classification
loss. L, represents the 3D dimensional loss. L,

represents the direction of loss. L, represents the

epth
depth information loss. L, represents the significant loss
of tokens. L, represents the depth map loss. The

category prediction error is optimized using the focus loss
function, as shown in equation (12).

—a(l— h')y logh’
~(1-a)h” log(1-h") h=0

h=1
Lclass = (12)

In equation (12), h" represents the prediction
probability, with a value between 0-1. a=0.25, and
y =2 . The regression error of the target 3D size is

constrained by the loU optimization loss function, and the
specific implementation is detailed in equation (13).

(r-r)

r

ize T

(13)

1
In equation (13), |, represents the L1 norm. r'is
the actual size value. I' is the predicted size value. The
target orientation prediction error is optimized through a
multi-box loss function, as shown in equation (14).

1 N
L, =—n—2cos(6 —cj—Aej) (14)
R

In equation (14), n . is the number of effective angle
samples. 8" is the true angle value. ¢; is the reference
angle of the j-th category. Ag; is the angular offset of
the j -th category. The depth estimation task is optimized
using the loss function defined by equation (15), which is

specifically designed to constrain the difference between
predicted depth values and true values.

Ldepth = Depth(dgt _dpred ) (15)
In equation (15), d, is the true depth value. d ., is
the target predicted depth value.

3 Results

3.1 Analysis of ODSG 3D reconstruction
effect for intelligent construction

To verify the performance of optimized ODSG 3D
reconstruction, the S2Dnet network extracts 128-D depth
features within 16x16 local regions (max offset=8).
Training requires 18+2 hours per model on RTX 4090
GPU, with evaluation focusing on AP3D (IoU>0.7),
lcm/5¢cm  reconstruction  accuracy (ACC) and
completeness (COM) using F1 scores (Equation 5), and
real-time FPS. All quantitative results are marked with
95% confidence interval, and statistical significance is
verified by double-tailed t-test (p<0.05). The ACC
difference between ODSG and baseline method reached
p=0.032 and p=0.041 respectively at 1cm/5cm precision,
and the effect size of F1 score improvement was d>1.2
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(Cohen's criterion for large effect threshold: d=0.8).
Three-fold cross-validation against five SOTA methods
(COLMAP, Gipuma, MonoFlex, GUPNet, and
DEVIANT) confirmed these findings. The results are
shown in Figure 4.

In Figure 4 (a), the ODSG 3D reconstruction
optimization method performed similarly to COLMAP,
with ACC of 76.47% and 76.12% at 1cm precision and
94.30% and 93.08% at 5¢cm precision, both significantly
better than that of Gipuma. The ACC at 1cm precision was
only 64.55%. In Figure 4 (b), the ODSG 3D reconstruction
optimization method achieved 32.29% and 45.56% at 1cm
and 2cm, respectively, surpassing that of COLMAP
(22.76% and 45.35%). In Figure 4 (c), the ODSG 3D
reconstruction optimization method was slightly better
than COLMAP in both 1cm and 2cm precision, but
slightly worse at only 5cm, with a decrease of 0.44%.
Meanwhile, to verify the visualization performance of the
ODSG 3D reconstruction optimization method, typical
outdoor scenes are selected for testing. The result is shown
in Figure 5.

In Figure 5, although COLMAP can fully model
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reconstruction optimization method enhances the
robustness of feature extraction through neural networks,
effectively eliminates erroneous matches, and achieves
better reconstruction results than COLMAP. Meanwhile,
the research evaluates the effectiveness of the ODSG 3D
reconstruction optimization method through ablation
experiments, with a focus on analyzing the beam
adjustment and keypoint matching modules. The
experiment tests the influence of depth feature
measurement on sparse and dense reconstruction stages
separately. Firstly, the quantitative results of sparse
reconstruction are shown in Figure 6.

According to Figure 6 (a), the ACC at 1cm precision
was only 56.18%, and the COM was as low as 0.21%.
After introducing optimization measures, the ACC
showed a stable growth trend. The 1cm precision
increased from 56.18% to 72.55%. The 2cm precision
increased from 64.21% to 82.34%. The 5cm precision
increased from 83.922% to 93.21%. In Figure 6 (b), the
5cm precision increased from 4.23% to 5.25%, with an
increase of 22.2%. The COM at 1cm precision increased
from 0.12% to 0.18%, with an increase of 54.5%.

outdoor scene reconstruction, feature matching errorsmay ~ Meanwhile, the experimental results of dense
occur under repeated texture and noise interference, reconstruction are shown in Figure 7.
resulting in geometric distortion and voids. The ODSG 3D
---=--- COLMAP ---e--- COLMAP ------ COLMAP
100.009|—* glggrga 80.004|—= ngpgrga 80.001|—=— Gipuma
95.001| """ optimization 70.001 optimization 70.007 - = 8 I?i?nGization
A p
<2 90.00- P I 60.00- ; 2 60.00- .
O 85.001 e < 50.00 e 5 50.00 PPt
- - - pr o PR g
£80.004 -~ 040.00q o-.---- -2 2 40004 - -7 .
75.00- 30.00q0  -- A H30004 ¢
70.00- 20.00+ R = 20.00+ “
65.004 « 10.00- 10.004 =
. . . 0.00 v v . . v v r
lcm 2cm 5cm lcm 2cm 5cm T 2cm 5cm
Precision Precision Precision

(a) ACC of different methods

(b) COM with different methods

(c) F1 scores of different methods

Figure 4: Quantitative evaluation of dense reconstruction (Source from: Author's self drawn).

(a) Original drawing

(b) COLMAP

(c) Optimized 3D Reconstruction
under ODSG Framework

Figure 5: Qualitative comparison of eth3d data sets (The physical image in the picture is sourced from:
https://colorhub.me/photos/Zware).
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Figure 6: Quantitative results of sparse reconstruction (Source from:

Z. Jiao

=—NO
EE1Eka
EEE Epp
7.00q | OOIEKa+Ega
6.00+
& 5.00-
= i
o4.00
O 3.00-
2.004
1.00-
000 —Tm™ 2em  5em
Precision

(b) COM under different
optimization measures

Author's self drawn).

70.001 [em@NO = NO
I NO
60.004 E;: 60.00- 60.001 | == Exa
o\\o 50.004 EKA+EBA o 50.001 9 50.00-
O 40.001 - < 40.00 £ 40.00-
(@) o
< 30.00- 5 30.00- 30.00-
20.00- ©20.00 L 20.00-
10.00- 10.00- 10.004

0.00-

Precision
(a) ACC under different
optimization schemes

Precision
(b) COM under different
optimization schemes

0.00- e

Precision
(c) F1 scores under different

optimization schemes

Figure 7: Comparative analysis of different optimization schemes in multi-distance scenes (Source from: Author's self
drawn).
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Figure 8: Visualization results of 3D object detection algorithm in construction scene (The physical image in the
picture is sourced from: https://colorhub.me/photos/pv77X).

According to Figure 7, the F1 score increased by
106% to 4.84 at 1cm precision, and the COM increased by
22.5% to 46.32% at 5cm precision. The overall F1 score
reached 55.51, with an increase of 23.8% compared to the
baseline. Although EBA alone resulted in a peak ACC of
71.02% at 5cm precision, it caused a decrease in 1cm
precision COM to 2.35%. The final combination scheme
maintained F1 scores of 4.23 and 54.34 at 1cm precision
and 5cm precision, respectively, verifying the synergistic
effect of dual optimization.

3.2 Effect analysis of improved 3D
transformer recognition algorithm for
intelligent construction

To verify the visualization performance of the optimized

3D Transformer, Monocular 3D Object Detection with

Flexible Representations (MonoFlex) and Monocular
Detection Transformer (MonoDETR) are compared on the

same construction site test set. The experimental results
are shown in Figure 8.

In Figure 8, compared to MonoFlex and MonoDETR,
the optimized 3D Transformer had the best fit between its
detection box and the abandoned car pose, especially with
no significant drift at the front and rear corners. However,
MonoFlex and MonoDETR methods exhibited frame jitter
under dynamic interference such as remote high-speed
rail. Meanwhile, to evaluate the performance of the
optimized 3D Transformer, a Intersection over Union
(loV) threshold of 0.7 is selected as the standard for the
study. Comparative algorithms include Monocular 3D
Region Proposal Network (M3D-RPN), Real-time
Monocular 3D Detection (RTM3D), Monocular 3D
Object Detection via Depth-aware Energy-based Learning
(MonoDLE), MonoFlex, Geometric and Relation-aware
Oriented NMS (GrooMeD-NMS), Geometry Uncertainty
Projection Network (GUPNet), and Depth-Enhanced
Video-based 3D Object Detection (DEVIANT). The
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comparison content includes 3D Average Precision
(AP3D) and Average Precision for Bird's Eye View
(APBEV). The comparison results are shown in Table 2.
In Table 2, the AP3D index reached 25.33%, 17.68%,
and 14.72% in Easy, Mod, and Hard modes, respectively,
leading other methods comprehensively. APBEV was
more outstanding, with Easy mode performing 36.15%
better than DEVIANT and M3D-RPN. Statistical
validation was conducted through three independent
experiments (p=0.032, two-tailed t-test; 95% CI [32.1%,
39.7%]). This improvement stems from ODSG geometric
constraints reducing perspective errors by 18.2%
(Equation 4) and the multi-head attention mechanism
enhancing feature alignment accuracy by 41% (Figure
8(c)). Mod mode improved by 29.2% compared to
GrooMeD, and the APBEV at all difficulty levels exceed
20%. To verify the effectiveness of the proposed modules,
ablation experiments are conducted on a benchmark
validation set. The experiment takes IOU > 0.7 as the
performance evaluation criterion, and focuses on
analyzing the specific effects of deep modules, saliency
networks, and fusion DETR modules on 3D detection
performance. For the convenience of comparing results,
each module is tested separately. The token retention
threshold (K%=50%) was determined through grid search
on validation set with 10% intervals (20%-100%), where
50% achieved optimal trade-off between accuracy (AP3D
drop <0.5%) and computation reduction (42.4% FLOPs).
Other test thresholds show accuracy loss>1% (K%<40%)
or computational savings<30% (K%>60%). Figure 9
shows the detailed results of the ablation experiment.
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In Figure 9 (a), when only the attention module was
enabled, the AP3D was 23.29%, 18.57%, and 15.19% in
Easy, Mod, and Hard difficulty levels, respectively. When
only the depth module was enabled, the corresponding
values decreased to 20.17%, 15.10%, and 14.94%. When
two modules were added simultaneously, the AP3D in the
Easy mode increased to 26.38%. Mod mode reached
17.56%, and Hard mode was 15.69%. In Figure 9 (b), the
detection performance was most ideal in complex scenes
when 100% of the tokens were fully retained. When the
number of tokens was reduced to 50%, the model
performed best in Easy and Mod difficulty tasks, while the
performance of Hard difficulty tasks only slightly
decreased by 0.06%, and the computational load was
significantly reduced by 42.4%. In Figure 9 (c), the visual
feature DETR module without integrated deep feature
encoding and decoding mechanism showed a decrease in
recognition accuracy of 4.55%, 2.22%, and 0.56% at three
difficulty levels, respectively. The results indicate that the
deep feature processing unit, attention optimization
network, and improved DETR architecture can effectively
enhance the 3D object recognition capability of monocular
vision systems. To verify the robustness of the optimized
3D Transformer in building scenes, the experiment takes
the extended Karlsruhe Institute of Technology and
Toyota Technological Institute Dataset (KITTI) as a
benchmark. The MonoFlex, MonoDETR, and optimized
3D Transformer are compared. Indicators such as Average
Precision (AP), occlusion recall, and Cross-View
Consistency Score (CVCS) are quantitatively evaluated.
The results are shown in Table 3.

Table 2: Comparative experiment of I0U>0.7.

. AP3D|R40[%] (IoU>0.7) APBEV|R40[%] (I0U>0.7)

Algorithm Model Easy Mod Hard Easy Mod Hard
M3D-RPN 14.32 10.87 8.23 26.56 21.15 18.15
RTM3D 18.15 13.23 11.78 24.84 22.73 18.63
MonoFlex 22.34 16.59 14.34 / / /
MonoDLE CNN 18.42 13.21 11.56 24.38 19.51 17.15
GrooMeD NMS 17.61 14.87 11.44 27.93 19.84 15.73
GUPNet 20.10 15.45 12.84 28.27 20.52 17.15
DEVIANT 24.23 16.76 14.27 32.16 23.74 19.16
Optimized 3D Transformer | Transformer | 25.33 17.68 14.72 36.15 25.64 21.99
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Figure 9: Experimental results of ablation for different modules (Source from: Author's self drawn).



214  Informatica 49 (2025) 205-216 Z. Jiao
Table 3: Comparative analysis results of various algorithms in multi-view scenes.
. Visual angle AP Occlusion  grading  recall
Algorithm Model Look straight ahead | Squint | Overlook | rate/% CVCS | FPS
MonoFlex CNN 18.2 15.2 9.8 32.5% 0.61 28
MonoDETR Hybrid 20.1 125 10.3 36.1% 0.62 27
Optimized 3D Transformer | Transformer 25.3 21.7 16.4 45.2% 9.73 22

Table 4: Comparison of comprehensive performance of 3D target detection models in building scenes.

Test scene Index Optimized 3D MonoFlex MonoDETR Baseline 3D Transformer
Transformer
Outdoor AP3D@IoU>0.7(Easy) | 25.33% 23.95% 22.18% 24.91%
construction APBEV(Easy) 36.15% 30.25% 28.70% 34.80%
Interior decorating AP3D@IoU>0.7(Mod) 18.42% 15.67% 15.03% 17.89%
Occlusion recall rate 82.10% 75.30% 78.45% 80.25%
Real-time index FPS 22 28 25 18
GPU memory (GB) 5.2 3.8 4.1 6.0

Note: Baseline 3D Transformer: The control model does not include depth module, saliency network and DETR fusion. Other hyperparameters are

consistent with the optimized model.

According to Table 3, the optimized 3D Transformer
significantly outperformed MonoFlex and MonoDETR on
visual angle AP and occlusion recall, with a CVCS of
9.73, far exceeding other algorithms and verifying the
effectiveness of multi-modal fusion. However, the FPS
was only 22, slightly lower than the baseline model,
reflecting the trade-off between performance and
efficiency. To verify the generalization ability and real-
time performance of the lightweight 3D Transformer
model in various building scenes, such as indoor
decoration and outdoor construction, by adding new
modal data and environmental parameter labels, the
baseline model is compared with MonoFlex and other
methods to test cross-scene AP3D, APBEV, occlusion
recall, and edge device latency indicators. The experiment
is divided into three stages: static scene, dynamic video
stream, and edge deployment, to analyze the performance
degradation and computational efficiency under complex
conditions such as dust and low light. The experimental
results are shown in Table 4.

According to Table 4, the optimized 3D Transformer
achieved an AP3D (Easy) of 25.33% in outdoor
construction scenes, an APBEV of 36.15%, and an
occlusion recall rate of 82.1% in indoor decoration scenes,
all significantly ahead of the comparative model,
demonstrating the advantage of multi-scene adaptation.
The GPU memory usage of the optimized model is
reduced to 5.2GB, which is 13.3% less than that of the
baseline model, mainly due to the memory sharing
mechanism of the three-stage architecture.

4 Discussion

4.1 Performance comparison with SOTA

The proposed method demonstrates superior performance
compared to state-of-the-art methods, achieving a 2.38%
higher AP3D (Easy) than MonoFlex and 20.8% better
occlusion recall. Key innovations include geometric
constraints for ODSG, reducing depth estimation error to
12.5% (traditional methods are 15-20%), and a saliency
network that maintains 99.94% accuracy while reducing
computational complexity by 42.4% through token

reduction. The depth-DETR fusion achieves CVCS=9.73
by resolving scale ambiguity and enabling 82.1% recall in
low-light  conditions  through dynamic lighting
compensation. While operating at 22 FPS (slightly below
MonoFlex's 25), the proposed approach reduces GPU
memory by 37.6% and attention computation by 70%
through hierarchical encoding, with <5% performance
degradation in challenging environments. Statistical
validation (power=0.8, @=0.05) confirms significant
improvements (d=1.53 effect size, p<0.01). Compared to
Pointformer, the method achieves 3.4% better Hard-mode
AP3D at just 38% of multi-sensor hardware costs,
demonstrating superior performance-cost balance for
architectural applications.

4.2 Limitations

Despite the progress made, the proposed method still has
significant limitations. The multi-modal fusion introduces
an 11.3% computational overhead (148.2 vs. 133.35
GFLOPs), reducing frame rates to 22 FPS (vs. 25 in
MonoFlex), with additional latency (18+2ms/frame)
during dynamic occlusion handling. While AP3D
improves by 2.38% in Easy mode, the gain drops sharply
to just 0.06% in Hard mode due to residual 12.5% depth
estimation errors, particularly affecting small or heavily
occluded objects (e.g., bolts). The scalability for large-
scale scenes (>1km?) remains unverified, as ODSG’s O(n?)
L2 feature matching may degrade 5cm-accuracy
completeness from 46.32% to ~30%, and the 6-layer
Transformer may struggle with long-range spatial
dependencies. Statistical power may be insufficient in
extreme occlusion cases (<50 frames), although the full
test set (n=8,008) reliably detects >1.2% differences.
Future work will explore millimeter-wave radar fusion
(<15% cost increase) to address the 9.2% performance gap
in low-light conditions.

5 Conclusion

The proposed multi-modal lightweight 3D Transformer
demonstrates superior performance in intelligent
construction scenarios, achieving 25.33% AP3D in Easy
mode and 32.29% reconstruction accuracy at 1lcm
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precision. The integration of ODSG geometric constraints
with self-supervised depth estimation reduces depth errors
by 37.5% compared to traditional methods, while the
saliency network maintains an accuracy of 99.94% and
reduces computational complexity by 42.4%. The three-
stage architecture enables robust performance in
challenging conditions with <5% degradation in
dust/vibration environments. Future work will focus on
modules for compensating dynamic lighting to enhance
robustness under extreme illumination variations. This
solution provides an effective balance between accuracy
and efficiency for real-world construction applications.
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