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In response to the dynamic occlusion, lighting changes, and computational efficiency faced by 3D object 

recognition in the intelligent transformation of construction engineering, this study proposes an optimized 

algorithm that integrates the Improved Outdoor Dynamic Scene Graph (ODSG) with a Lightweight 

Transformer. The SFM trajectory decoupling algorithm enhances geometric constraints and utilizes the 

S2DNet network to extract deep features, thereby optimizing the 3D reconstruction process. Additionally, 

a three-stage Lightweight Transformer model is developed, integrating self-supervised depth estimation, 

feature selection, and multimodal fusion mechanisms. The research results showed that on the three-

dimensional benchmark dataset, the optimized outdoor dynamic scene image framework achieved a dense 

reconstruction accuracy of 32.29% at 1cm precision, which was 9.53% higher than that of the traditional 

Collection of COLMAP system. The F1 scores reached 4.23 and 54.34 at 1cm and 5cm precision, 

respectively. In terms of object recognition, the optimized 3D Transformer achieved an average accuracy 

index of 25.33%, 17.68%, and 14.72% for 3D object detection on joint datasets in Easy, Mod, and Hard 

modes, respectively, which was 2.38% higher than that of the Monocular 3D Object Detection with 

Flexible Representations. The average precision for bird's eye view reached 36.15% in Easy mode, 

representing a 36.1% improvement over the conventional M3D-RPN baseline (26.56%). The research 

provides an efficient 3D perception solution for monitoring and safety warning of automated equipment 

in intelligent construction. 

 

Povzetek: 3D prepoznavanje v gradbeništvu je zahtevno zaradi okluzij, svetlobnih sprememb in visokih 

stroškov izračuna. Predlagan je multimodalni ODSG+lahki 3D Transformer z izboljšano SFM 

rekonstrukcijo, samo-nadzorovano globino in selekcijo značilk. 

 

 

1 Introduction 
The construction industry is accelerating its 

transformation and upgrading towards intelligence. 

Intelligent construction has become an important 

breakthrough in breaking through industry development 

bottlenecks such as high energy consumption, low 

efficiency, and safety hazards [1]. Computer vision object 

recognition technology can monitor construction site 

elements in real-time and provide decision support for 

automated equipment [2]. For example, anti-collision 

warning for tower cranes, automatic inspection by drones, 

and intelligent lifting of prefabricated components, etc., 

these technologies achieve full process visualization and 

control through data-driven approaches, which are the 

core support for promoting "lean construction" [3]. Target 

recognition technology has undergone a leapfrog 

development from traditional methods to deep learning. In 

the early days, manual feature extraction combined with 

machine learning is adopted, such as combining 

directional gradient histogram features with support 

vector machine classifiers. Although they can describe 

object contours, they are easily affected by lighting 

interference. The feature matching accuracy of scale 

invariant feature transformation is high, but the 

computational complexity is large and difficult to apply in 

real-time [4]. Although traditional methods are effective  

in specific scenes, they are difficult to cope with complex 

working conditions such as dynamic lighting, dense 

targets, and multi-perspective changes in intelligent 

construction, and their adaptability is clearly insufficient. 

These limitations have driven the development of object 

recognition technology towards 2D recognition methods 

based on deep learning. 

With the breakthrough of deep learning technology, 

2D object recognition technology has achieved a leapfrog 

development from traditional methods to data-driven 

paradigms. This type of technology uses deep 

Convolutional Neural Network (CNN) to automatically 

learn image features, greatly improving recognition 

accuracy and generalization ability [5]. 2D object 

recognition technology includes the You Only Look Once 

(YOLO) series, the Improved Small Object Detection 

Network (ISOD), etc. Ma et al. proposed an improved 

ISOD to meet the demand for fast and accurate target 

recognition in intelligent construction sites, especially the 
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insufficient accuracy in small target recognition. The 

experiment showed that the mAP@0.50.95 of ISOD on 

the traffic sign dataset reached 0.635, which was superior 

to the state-of-the-art YOLOv7 and significantly 

improved the small target recognition performance, 

providing an effective solution for real-time detection of 

intelligent construction sites [6]. Liu et al. proposed a new 

Interaction Attention-enhanced YOLO (IA-YOLO) 

framework to locate targets from low-quality images 

under adverse weather conditions. The experimental 

results showed that IA-YOLO could adaptively process 

images under normal and harsh weather conditions, and 

exhibited excellent detection performance in foggy and 

low light scenes [7]. 

Although 2D object recognition technology performs 

well in planar detection tasks, it still has limitations. 

Firstly, the lack of depth information makes it difficult to 

distinguish visually overlapping objects. Secondly, 

changes in perspective can significantly affect recognition 

performance, resulting in a 20%-30% decrease in 

accuracy when viewed from a top-down perspective. 

Finally, it is difficult to directly interface with 3D 

engineering data such as building information models. 

These shortcomings have driven the development of 2D 

object recognition technology towards 3D recognition 

technology [8]. Zhang et al. developed an anchor free 

detection model based on LiDAR to address the 

insufficient 3D recognition in autonomous building 

equipment. The Transformer block-based multi head self-

attention mechanism was proposed, combined with 3D 

sparse convolution, to achieve efficient feature extraction 

and redundant pruning. The experiment showed that the 

model outperformed the baseline in terms of accuracy and 

regression error, providing precise 3D information for 

building automation and significantly improving 

equipment safety and operational efficiency [9]. Chen et 

al. proposed an efficient recognition algorithm based on 

deformable attention Transformer to address the 

occlusion, multi-scale variations, and small object 

recognition in detecting safety helmets on construction 

sites. The experimental results showed that the 

computational complexity and real-time speed were 

133.35 GFLOPs and 20 FPS, respectively, with mAP@0.5 

reaching 95.4%, making it the best performing solution in 

the current safety helmet detection field [10]. Recent 

studies, such as Pointformer and Voxel-Transformer, have 

shown good performance in point cloud processing. 

However, in dynamic occlusion in building scenes, the 

AP3D of the multi-sensor fusion method CMF-Net is less 

than 12%, while the AP3D of CMF-Net reached 28.9% in 

terms of cost and real-time performance. Table 1 

systematically compares the capabilities of existing 

methods in addressing specific construction challenges. 

This study specifically explores three core research 

questions: (1). Can the multi-modal fusion of ODSG and 

lightweight Transformer improve AP3D by more than 2% 

under occlusion conditions compared to MonoFlex? (2) 

How to achieve both depth estimation accuracy (<15% 

error) and computational efficiency (>20FPS) 

simultaneously? (3) Compared to traditional CNNs, does 

the three-stage architecture reduce feature loss by more 

than 20% in dynamically constructed scenarios? 

In summary, although the Three-Dimensional 

Transformer (3D Transformer) model performs well in 

general scenes, the unique characteristics of the building 

environment, such as dynamic occlusion and lighting 

changes, pose significant challenges, such as large errors 

in monocular depth estimation, significant feature loss in 

dense targets, and the contradiction between real-time 

requirements and computational overhead [11-12]. 

Therefore, a lightweight Transformer method that 

integrates multi-modal information is proposed, which 

integrates semantic and geometric features through an 

improved Outdoor Dynamic Scene Graph (ODSG) 

framework. The reconstruction accuracy of 3D scene 

understanding is optimized by Structure from Motion 

(SFM) and trajectory separation algorithms. At the 

algorithmic level, the research innovatively integrates 

three key technologies to build an unsupervised depth 

estimation module to enhance the deep feature extraction 

ability. A lightweight Transformer architecture is adopted 

to achieve global relationship modeling. Introducing a 

saliency detection network for feature screening 

significantly reduces computational burden while 

ensuring detection accuracy. The research aims to provide 

high-precision 3D spatial perception capability for 

intelligent construction scenes through deep feature 

enhancement and computational efficiency optimization, 

while ensuring real-time performance. The proposed 

system adopts a cascaded multi-modal architecture. The 

first stage employs the improved ODSG framework for 

scene reconstruction, while the second stage utilizes a 

lightweight Transformer for target recognition. The two 

modules collaborate through depth feature transmission. 

Table 1: Comparative analysis of prior works in construction scene understanding. 

Model Dataset 
Key Metrics 

(AP3D/APBEV) 
Strengths Limitations 

Relevance to Our 

Work 

HOG+SVM/SIFT [4] Scene-specific 
Feature matching 
accuracy 

Interpretable, simple 
scenes 

Light-sensitive, 

high compute 

(SIFT) 

Justifies deep 
learning adoption 

YOLOv7 [6] Traffic Sign 
mAP@0.5a:0.95=0.63

5 

Real-time small object 

detection 

No depth 

estimation 

Baseline for 2D 

detection 

IA-YOLO [7] Adverse Weather / 
Robust to fog/low 

light 

Limited 3D 

spatial reasoning 

Weather 

adaptation 
reference 

LiDAR Transformer [9] 
Construction 

LiDAR data 
AP3D: SOTA 

Accurate 3D, sparse 

conv efficiency 

Costly LiDAR, 

slow 

Motivates 

monocular 3D 
(82.1% recall) 
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Deformable DETR [10] Safety helmets APBEV(Mod):95.4% 
Handles occlusion, 20 

FPS 

High compute 
(133 GFLOPs), 

2D-only 

Inspires 70% 

attention reduction 

 

2 Methods and materials 

2.1 Experimental Configuration 

Experiments are performed on an NVIDIA RTX 

4090/Intel i9-13900K system using ETH3D (12 scenes) 

and KITTI (8,008 frames) datasets with a 7:2:1 

train/val/test split. Training employs Adam optimizer 

(lr=3e-4, batch=16, weight decay 1e-4) over 200 epochs 

with cosine scheduling and 3-fold cross-validation. Data 

augmentation included ±15° rotation, horizontal flipping, 

and [0.8,1.2] scale jittering. The PyTorch 2.0 

implementation takes CUDA 11.7/cuDNN 8.5 

acceleration with a Transformer architecture. Datasets are 

rigorously curated: sensitive data removal, balanced 

weather distribution (3:1:1 sunny/rainy/foggy), and 

enhanced annotations for 10 tool categories. Lighting 

variations cause ±2.3% AP3D fluctuations (compensated 

to ±0.7% using equation 15). The results are validated 

through three independent trials, and the statistical 

significance is confirmed by two-tailed t-tests (α=0.05, 

Bonferroni-corrected), 1,000 bootstrap resamples (95% 

CIs), and minimum detectable effect size of 1.2%. 

2.2 Optimization of ODSG 3D 

reconstruction for intelligent 

construction 

In response to the demand for target recognition in 

construction engineering, traditional Scene Graph (SG) 

can model the interaction relationship between building 

materials and equipment, but its static characteristics are 

difficult to capture the spatiotemporal changes of dynamic 

construction scenes [13-14]. Therefore, scholars have 

proposed the ODSG technology, which integrates 

semantic expression and 3D reconstruction technology, 

can model dynamic objects and environments uniformly, 

improve spatial semantic understanding and real-time 

updating capabilities, thereby enhancing the decision 

analysis efficiency of intelligent construction systems. In 

terms of 3D reconstruction technology, traditional 

methods rely on traditional techniques such as feature 

matching and sparse/dense reconstruction [15-16]. Sparse 

reconstruction is based on 2D feature points to restore 

camera pose, while dense reconstruction generates a 

complete scene representation. However, traditional 

methods are susceptible to changes in lighting and 

insufficient geometric constraints, leading to a decrease in 

reconstruction quality [17]. Therefore, the 3D 

reconstruction module is improved within the ODSG 

framework by enhancing geometric constraints to improve 

the dense reconstruction quality of outdoor scenes and 

optimize dynamic environment modeling capabilities. The 

improved ODSG framework is shown in Figure 1. 

In Figure 1, the input image undergoes SFM sparse 

reconstruction to complete feature matching and depth 

feature extraction. The SFM module first generates sparse 

point clouds through feature matching across views, and 

then optimizes keypoint positions using depth features 

from S2DNet instead of traditional bundle adjustment. 

After optimizing the key point positions through depth 

feature measurement, the SFM process is improved and 

replaced with traditional beam adjustment to optimize 

camera pose. Subsequently, a multi-view stereo vision 

method, namely Collection of Large-scale Matching and 

Photogrammetry system (COLMAP), is employed to 

achieve dense reconstruction based on optimized poses 

and sparse point clouds, ultimately constructing a high-

precision ODSG. The research innovatively adopts 

trajectory decoupling algorithm and implements multi-

view keypoint trajectory correlation based on greedy 

optimization strategy in the motion recovery structure. 

The greedy decoupling algorithm builds an L2 feature 

distance matrix for cross-view node pairs, iteratively 

connecting nodes with minimal distances (threshold: 

0.5×image diagonal) until normalized residuals exceed 0.5. 

PyTorch and OpenCV's BFMatcher are used to implement 

COLMAP enhancement. The open-source code includes 

three core modules: 1) SFM and S2DNet feature 

extraction integration; 2) Configurable greedy matcher 

(L2 threshold: 0.3-0.7); 3) 3D reconstruction evaluation 

tools for reproducibility. 

Sparse matching Sparse reconstruction Dense reconstruction

Depth feature extraction Key point adjustment Beam adjustment ODSG

conv1
conv2

conv3

conv4

conv5

fc6

fc7

 

Figure 1: Improved ODSG framework (The physical image in the picture is sourced from: 

https://www.tuituisoft.com/bim/221724.html). 
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A set of trajectory nodes V is defined. For any cross-

trajectory node pair ( )x y， , the trajectory connection is 

established only when the corresponding image region 

originates from different views, effectively filtering out 

mismatches. Firstly, the key points are optimized and the 

SuperPoint-like 2D Feature Detection and Description 

Network (S2DNet) is used to extract deep features. The 

S2DNet extracts 128-D depth features within 16×16 local 

regions (max offset=8), pretrained on ETH3D using Adam 

optimizer (lr=3e-4) with triplet loss (margin=0.2). It 

achieved 92% matching accuracy on validation data, and 

fine-tuned through grid search (keypoint matching 

threshold=0.7). generating an L2 normalized feature map 
W H D

IF   . Based on feature metric consistency, a cost 

function 
k

KAE  is constructed and the tentative matching 

points within trajectory k  are adjusted. The calculation is 

shown in equation (1). 

 ( ) ( )

( , ) ( )

c x x d y y

x y k

k

KA

xy

E

w F p F p




=

 −  
M

 (1) 

In equation (1), xyw  is the confidence level of 

matching keypoints. ( )kM  is the set of keypoint matching 

pairs. ( )c xF  is the source feature transformation function. 

( )d yF  is the target feature transformation function. xp  

and yp  are the coordinates of the feature points. 


is the 

robust norm. To improve the accuracy of 3D 

reconstruction, the feature point has stable detectability. 

Therefore, the displacement constraint needs to be applied 

to the feature point optimization process, satisfying 

0

x xp Mp−  .
 

0

xp
 
represents the initial coordinates of 

the feature points. M  is the maximum allowable 

adjustment distance. Traditional beam adjustment is a 

classic optimization method that jointly optimizes camera 

pose and 3D point coordinates by minimizing the residual 

between the observation point and the reprojection point. 

The core lies in establishing a reprojection error function, 

iteratively adjusting parameters through nonlinear 

optimization, and achieving high-precision 3D 

reconstruction research. To overcome matching ambiguity 

in repetitive textures, a feature trajectory optimization 

framework is introduced in equation (2) that minimizes 

the  -norm distance between feature trajectories and 

their cluster centers. This geometric consistency constraint 

enhances robustness by optimizing the center vector 

μ<sup>k</sup> for each feature cluster  k

xS , where  -

norm provides configurable noise resistance. 

 
arg min

D
k
x

R f S

k S 


 
 

= −‖ ‖
 (2) 

In equation (2), S  is a single feature sample.   is the 

optimal parameter vector for the k -th iteration, as shown 

in equation (3). 

 
arg min

k
xf

k k

f

f f


= −
 (3) 

In the path optimization stage, the algorithm first 

selects the key points closest to the reference vector 
k  

from the set of trajectory feature points as the optimal 

trajectory. Subsequently, iterative optimization is 

performed through the bundle adjustment framework 

described in equation (4). This process achieves joint 

optimization of pose and structure by minimizing the  -

norm distance between observed features kS  and re-

projection points. 

( )
( )( , )

,

BA

c c c

c x k

k

c k

k

E

F R P t C S




=

 + −    (4) 

In equation (4), ( )k  is the set of observation pairs. 

3

kP   is the 3D point coordinate. 
cC  represents the 

camera intrinsic parameter. ( ),c cR t  is the pose of the 

camera. Equation (4) establishes a robust bundle 

adjustment framework with a dual summation 

architecture. This system employs an outer layer to 

traverse 3D road point sets and an inner layer to aggregate 

all camera observation frames. By minimizing the  -

norm distance between re-projection points under depth 

feature extraction operators and reference features, the 

configurable  -norm (e.g., L1/L2) combined with 

explicit modeling of camera parameter in the projection 

model collectively enhances the robustness of the system 

to noise and outliers. The scene graph output by ODSG 

contains two key data types: (1) 128-dimensional depth 

features extracted by S2DNet (used as input for the 

transformer's deep module); (2) 3D point cloud 

coordinates optimized through formula (4), which serve as 

the position encoding reference for DETR. These data are 

transmitted via PyTorch tensor shared memory with zero-

copy transfer. Point cloud quality assessment includes 

Completeness (COM), Accuracy (ACC), and F1 score 

[18]. The F1 score is calculated by taking into account 

ACC and COM, as shown in equation (5). 

1 2
ACC COM

F
ACC COM


= 

+
 (5) 

The 3D reconstruction technology optimized by the 

ODSG framework provides a high-precision 

environmental modeling foundation for construction 

scenes, but its dynamic object recognition ability still 

needs further improvement. 

2.3 Improved 3D transformer target 

recognition algorithm for intelligent 

construction 

The improved ODSG framework enhances 3D 

reconstruction accuracy through deep feature fusion, but 

its dynamic object recognition capability is still limited by 

the local receptive field characteristics and perspective 

projection errors of the traditional CNN. The traditional 

monocular 3D object recognition method is mainly based 

on CNN, taking a three-stage process of "2D center point 

prediction - geometric constraint depth estimation - 3D 

box reconstruction" [19-20]. There are two key limitations 
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to this type of method. The local receptive field 

characteristics of CNN, such as 3×3 convolution covering 

only 57×57 pixel areas, make it difficult to model long-

range spatial relationships [21]. The scale ambiguity 

caused by perspective projection results in depth 

estimation errors exceeding 15%. Although visual 

transformers solve spatial relationship modeling problems 

through self-attention mechanisms, their computational 

complexity increases with the square of the number of 

labels [22]. To address these issues, a lightweight 3D 

Transformer object recognition algorithm is proposed, 

which adopts a three-stage optimization strategy. Firstly, 

a self-supervised depth estimation network is constructed, 

which integrates geometric consistency constraints and 

spatial attention mechanisms to generate enhanced 

position encoding. Next, a feature importance evaluation 

module is developed to screen key feature tokens based on 

significance scores. Finally, in the Detection Transformer 

(DETR) architecture, visual and depth features are multi-

modal fused, and global spatial relationships are 

established through hierarchical encoding and decoding. 

The framework is shown in Figure 2. 

In Figure 2, the system first inputs the original image 

and extracts the basic feature map fs through the backbone 

network. The backbone network is a lightweight 

Transformer with 6 encoder layers employing deformable 

attention for efficient feature extraction. The deep module 

processes the attention feature map and the deep feature 

map to generate supplementary features fu, taking a three-

stage convolutional-attention-convolutional architecture 

with multi-scale skip connections to preserve fine details. 

The two features are fused to form a comprehensive 

feature map, which is input to the DETR module for deep 

parsing. The DETR module adopts the classic 

Transformer structure, including encoder and decoder 

components. The encoder Es hierarchically integrates 

visual-depth features while the decoder Ed generates 

position-aware semantic features, which output feature 

maps Es and Ed, respectively. The depth module of 

Transformer explicitly receives two types of input from 

ODSG: (i) f1 corresponds to the 16×16 local features of 

S2DNet, and (ii) fd comes from the trajectory optimization 

features of ODSG. 

The detection head ultimately integrates these 

advanced semantic features to complete the target 

recognition task. A lightweight dual branch deep feature 

extraction module is innovatively constructed, and its 

architecture is shown in Figure 3. 

fs

fu

es

ed

Attention 
characteristic map

Depth 
characteristic map

Backbone network

DETR module
Detection head

Saliency network

ODSG 
Reconstruction 

Framework

128-D depth feature (f1/fd)

3D coordinate 
 

Figure 2: ODSG reconstruction cascade framework (The physical image in the picture is sourced from: 

https://colorhub.me/photos/8OaJ1). 

f1

f2

f3

fd fout

fa

Position attention layer

Depth position 

coding

 

Figure 3: Depth module (Source from: Author's self drawn). 

In Figure 3, the module uses cascaded convolution 

processing of three input features, implements through 

three consecutive 3×3 convolutional blocks with ReLU 

activation, and combines deep position encoding for 

geometric modeling to resolve monocular depth 

ambiguity through self-supervised depth estimation. On 
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the right side, the feature fa is convolved with the newly 

generated feature fd and integrated to output fout, while 

the skip-connected feature f1 maintains fine-grained 

details by bypassing two downsampling stages. The three-

stage structure of convolution-attention-convolution 

achieves visual depth feature fusion, where the middle 

attention layer performs cross-modal feature alignment 

using deformable attention kernels, and f1 preserves 

details through multi-scale skip connections. Finally, a 

lightweight Transformer scheme is proposed, taking a 

four-layer fully connected network to predict the 

significance score of token Q. The saliency network 

employs an adaptive thresholding, where K%=(1-

γ)*100%, with γ∈[0,1] is a learnable parameter initialized 

at 0.5 and fine-tuned through backpropagation. This can 

dynamically adjust the token retention rate during the 

inference process. The final output layer of the model is 

optimized using a cross-entropy loss function [23]. The 

specific implementation is detailed in equation (6). 

( ),sig pre

j jL BCE T S=  (6) 

In equation (6), j

preT  is the predicted significance 

value for the j -th position. jS  is the true significance 

annotation corresponding to the j -th position. The DETR 

model adopts the Transformer architecture to integrate 

visual-depth features. Through serialization 

preprocessing, K% significant features are selected to 

generate token pairs. The 6-layer encoder combines 

deformable self-attention and feed-forward network to 

process multi-modal features, and injects deep position 

encoding to achieve collaborative modeling. The 

prediction accuracy is evaluated using loss functions such 

as mean square error, L1/L2, and cross-entropy [24-25]. 

The mean square error loss function is shown in equation 

(7). 

( )( )
2

1

1
( ( ))

N

i i

i

L Y f x Y f x
n =

= −∣  (7) 

In equation (7), Y  is the true value. ( )f x  is the 

predicted value. N  is the sample size. iY  is the true value 

of the i -th sample. ( )if x  is the predicted value of the i

-th sample. The L1 loss function is shown in equation (8). 

( )
1

( ( ))
N

i i

i

L Y f x Y f x
=

= −∣  (8) 

The L2 loss function is shown in equation (9). 

( )( )
2

1

1
( ( ))

N

i i

i

L Y f x Y f x
n =

= −∣  (9) 

The cross-entropy loss function is shown in equation 

(10). 

( )
1

( ( )) log
N

i i

i

L Y f x Y f x
=

= −∣  (10) 

The detection head undergoes supervised training 

through a multi-task loss function, and its calculation 

method is shown in equation (11). 

  

 

class size orien

depth dmapsig

L L L L

L L L+ +

= + +

+
 (11) 

In equation (11), 
 classL
 
represents the classification 

loss. 
 sizeL

 
represents the 3D dimensional loss. 

orienL
 

represents the direction of loss.  depthL
 
represents the 

depth information loss. sigL
 
represents the significant loss 

of tokens. dmapL
 
represents the depth map loss. The 

category prediction error is optimized using the focus loss 

function, as shown in equation (12). 

( )

( )
 

1 h log 1

(1 ) log 1 0
class

a h h
L

a h h h





 

 

 − − =
= 

− − − =

 (12) 

In equation (12), h  represents the prediction 

probability, with a value between 0-1. 0.25a = , and 

2 = . The regression error of the target 3D size is 

constrained by the IoU optimization loss function, and the 

specific implementation is detailed in equation (13). 

( )*

 

1

size

r r
L

r

−
=   (13) 

In equation (13), 
1
 represents the L1 norm. 

*r  is 

the actual size value. r  is the predicted size value. The 

target orientation prediction error is optimized through a 

multi-box loss function, as shown in equation (14). 

( )
*

*1
coso j jL c

n


 = − − −   (14) 

In equation (14), *n


 is the number of effective angle 

samples. *  is the true angle value. jc  is the reference 

angle of the j -th category. j  is the angular offset of 

the j -th category. The depth estimation task is optimized 

using the loss function defined by equation (15), which is 

specifically designed to constrain the difference between 

predicted depth values and true values. 

( )  depth gt predL Depth d d= −  (15) 

In equation (15), gtd  is the true depth value.  predd  is 

the target predicted depth value. 

3 Results 

3.1 Analysis of ODSG 3D reconstruction 

effect for intelligent construction 

To verify the performance of optimized ODSG 3D 

reconstruction, the S2Dnet network extracts 128-D depth 

features within 16×16 local regions (max offset=8). 

Training requires 18±2 hours per model on RTX 4090 

GPU, with evaluation focusing on AP3D (IoU≥0.7), 

1cm/5cm reconstruction accuracy (ACC) and 

completeness (COM) using F1 scores (Equation 5), and 

real-time FPS. All quantitative results are marked with 

95% confidence interval, and statistical significance is 

verified by double-tailed t-test (p<0.05). The ACC 

difference between ODSG and baseline method reached 

p=0.032 and p=0.041 respectively at 1cm/5cm precision, 

and the effect size of F1 score improvement was d>1.2 
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(Cohen's criterion for large effect threshold: d=0.8). 

Three-fold cross-validation against five SOTA methods 

(COLMAP, Gipuma, MonoFlex, GUPNet, and 

DEVIANT) confirmed these findings. The results are 

shown in Figure 4. 

In Figure 4 (a), the ODSG 3D reconstruction 

optimization method performed similarly to COLMAP, 

with ACC of 76.47% and 76.12% at 1cm precision and 

94.30% and 93.08% at 5cm precision, both significantly 

better than that of Gipuma. The ACC at 1cm precision was 

only 64.55%. In Figure 4 (b), the ODSG 3D reconstruction 

optimization method achieved 32.29% and 45.56% at 1cm 

and 2cm, respectively, surpassing that of COLMAP 

(22.76% and 45.35%). In Figure 4 (c), the ODSG 3D 

reconstruction optimization method was slightly better 

than COLMAP in both 1cm and 2cm precision, but 

slightly worse at only 5cm, with a decrease of 0.44%. 

Meanwhile, to verify the visualization performance of the 

ODSG 3D reconstruction optimization method, typical 

outdoor scenes are selected for testing. The result is shown 

in Figure 5. 

In Figure 5, although COLMAP can fully model 

outdoor scene reconstruction, feature matching errors may 

occur under repeated texture and noise interference, 

resulting in geometric distortion and voids. The ODSG 3D 

reconstruction optimization method enhances the 

robustness of feature extraction through neural networks, 

effectively eliminates erroneous matches, and achieves 

better reconstruction results than COLMAP. Meanwhile, 

the research evaluates the effectiveness of the ODSG 3D 

reconstruction optimization method through ablation 

experiments, with a focus on analyzing the beam 

adjustment and keypoint matching modules. The 

experiment tests the influence of depth feature 

measurement on sparse and dense reconstruction stages 

separately. Firstly, the quantitative results of sparse 

reconstruction are shown in Figure 6. 

According to Figure 6 (a), the ACC at 1cm precision 

was only 56.18%, and the COM was as low as 0.21%. 

After introducing optimization measures, the ACC 

showed a stable growth trend. The 1cm precision 

increased from 56.18% to 72.55%. The 2cm precision 

increased from 64.21% to 82.34%. The 5cm precision 

increased from 83.922% to 93.21%. In Figure 6 (b), the 

5cm precision increased from 4.23% to 5.25%, with an 

increase of 22.2%. The COM at 1cm precision increased 

from 0.12% to 0.18%, with an increase of 54.5%. 

Meanwhile, the experimental results of dense 

reconstruction are shown in Figure 7. 
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Figure 4: Quantitative evaluation of dense reconstruction (Source from: Author's self drawn). 

(b) COLMAP(a) Original drawing (c) Optimized 3D Reconstruction 

under ODSG Framework
 

Figure 5: Qualitative comparison of eth3d data sets (The physical image in the picture is sourced from: 

https://colorhub.me/photos/Zware). 
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Figure 6: Quantitative results of sparse reconstruction (Source from: Author's self drawn). 
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Figure 7: Comparative analysis of different optimization schemes in multi-distance scenes (Source from: Author's self 

drawn). 

(a) MonoFlex (b) MonoDETR (c) Optimized 3D Transformer
 

Figure 8: Visualization results of 3D object detection algorithm in construction scene (The physical image in the 

picture is sourced from: https://colorhub.me/photos/pv77X). 

According to Figure 7, the F1 score increased by 

106% to 4.84 at 1cm precision, and the COM increased by 

22.5% to 46.32% at 5cm precision. The overall F1 score 

reached 55.51, with an increase of 23.8% compared to the 

baseline. Although EBA alone resulted in a peak ACC of 

71.02% at 5cm precision, it caused a decrease in 1cm 

precision COM to 2.35%. The final combination scheme 

maintained F1 scores of 4.23 and 54.34 at 1cm precision 

and 5cm precision, respectively, verifying the synergistic 

effect of dual optimization. 

3.2 Effect analysis of improved 3D 

transformer recognition algorithm for 

intelligent construction 

To verify the visualization performance of the optimized 

3D Transformer, Monocular 3D Object Detection with 

Flexible Representations (MonoFlex) and Monocular 

Detection Transformer (MonoDETR) are compared on the 

same construction site test set. The experimental results 

are shown in Figure 8. 

In Figure 8, compared to MonoFlex and MonoDETR, 

the optimized 3D Transformer had the best fit between its 

detection box and the abandoned car pose, especially with 

no significant drift at the front and rear corners. However, 

MonoFlex and MonoDETR methods exhibited frame jitter 

under dynamic interference such as remote high-speed 

rail. Meanwhile, to evaluate the performance of the 

optimized 3D Transformer, a Intersection over Union 

(IoU) threshold of 0.7 is selected as the standard for the 

study. Comparative algorithms include Monocular 3D 

Region Proposal Network (M3D-RPN), Real-time 

Monocular 3D Detection (RTM3D), Monocular 3D 

Object Detection via Depth-aware Energy-based Learning 

(MonoDLE), MonoFlex, Geometric and Relation-aware 

Oriented NMS (GrooMeD-NMS), Geometry Uncertainty 

Projection Network (GUPNet), and Depth-Enhanced 

Video-based 3D Object Detection (DEVIANT). The 
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comparison content includes 3D Average Precision 

(AP3D) and Average Precision for Bird's Eye View 

(APBEV). The comparison results are shown in Table 2. 

In Table 2, the AP3D index reached 25.33%, 17.68%, 

and 14.72% in Easy, Mod, and Hard modes, respectively, 

leading other methods comprehensively. APBEV was 

more outstanding, with Easy mode performing 36.15% 

better than DEVIANT and M3D-RPN. Statistical 

validation was conducted through three independent 

experiments (p=0.032, two-tailed t-test; 95% CI [32.1%, 

39.7%]). This improvement stems from ODSG geometric 

constraints reducing perspective errors by 18.2% 

(Equation 4) and the multi-head attention mechanism 

enhancing feature alignment accuracy by 41% (Figure 

8(c)). Mod mode improved by 29.2% compared to 

GrooMeD, and the APBEV at all difficulty levels exceed 

20%. To verify the effectiveness of the proposed modules, 

ablation experiments are conducted on a benchmark 

validation set. The experiment takes IOU ≥ 0.7 as the 

performance evaluation criterion, and focuses on 

analyzing the specific effects of deep modules, saliency 

networks, and fusion DETR modules on 3D detection 

performance. For the convenience of comparing results, 

each module is tested separately. The token retention 

threshold (K%=50%) was determined through grid search 

on validation set with 10% intervals (20%-100%), where 

50% achieved optimal trade-off between accuracy (AP3D 

drop <0.5%) and computation reduction (42.4% FLOPs). 

Other test thresholds show accuracy loss>1% (K%≤40%) 

or computational savings<30% (K%≥60%). Figure 9 

shows the detailed results of the ablation experiment. 

In Figure 9 (a), when only the attention module was 

enabled, the AP3D was 23.29%, 18.57%, and 15.19% in 

Easy, Mod, and Hard difficulty levels, respectively. When 

only the depth module was enabled, the corresponding 

values decreased to 20.17%, 15.10%, and 14.94%. When 

two modules were added simultaneously, the AP3D in the 

Easy mode increased to 26.38%. Mod mode reached 

17.56%, and Hard mode was 15.69%. In Figure 9 (b), the 

detection performance was most ideal in complex scenes 

when 100% of the tokens were fully retained. When the 

number of tokens was reduced to 50%, the model 

performed best in Easy and Mod difficulty tasks, while the 

performance of Hard difficulty tasks only slightly 

decreased by 0.06%, and the computational load was 

significantly reduced by 42.4%. In Figure 9 (c), the visual 

feature DETR module without integrated deep feature 

encoding and decoding mechanism showed a decrease in 

recognition accuracy of 4.55%, 2.22%, and 0.56% at three 

difficulty levels, respectively. The results indicate that the 

deep feature processing unit, attention optimization 

network, and improved DETR architecture can effectively 

enhance the 3D object recognition capability of monocular 

vision systems. To verify the robustness of the optimized 

3D Transformer in building scenes, the experiment takes 

the extended Karlsruhe Institute of Technology and 

Toyota Technological Institute Dataset (KITTI) as a 

benchmark. The MonoFlex, MonoDETR, and optimized 

3D Transformer are compared. Indicators such as Average 

Precision (AP), occlusion recall, and Cross-View 

Consistency Score (CVCS) are quantitatively evaluated. 

The results are shown in Table 3. 

Table 2: Comparative experiment of IOU≥0.7. 

Algorithm Model 
AP3D|R40[%] (IoU≥0.7) APBEV|R40[%] (IoU≥0.7) 

Easy Mod Hard Easy Mod Hard 

M3D-RPN 

CNN 

14.32 10.87 8.23 26.56 21.15 18.15 

RTM3D 18.15 13.23 11.78 24.84 22.73 18.63 

MonoFlex 22.34 16.59 14.34 / / / 

MonoDLE 18.42 13.21 11.56 24.38 19.51 17.15 

GrooMeD NMS 17.61 14.87 11.44 27.93 19.84 15.73 

GUPNet 20.10 15.45 12.84 28.27 20.52 17.15 

DEVIANT 24.23 16.76 14.27 32.16 23.74 19.16 

Optimized 3D Transformer Transformer 25.33 17.68 14.72 36.15 25.64 21.99 
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Figure 9: Experimental results of ablation for different modules (Source from: Author's self drawn). 
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Table 3: Comparative analysis results of various algorithms in multi-view scenes. 

Algorithm Model 
Visual angle AP Occlusion grading recall 

rate/% 
CVCS FPS 

Look straight ahead Squint Overlook 

MonoFlex CNN 18.2 15.2 9.8 32.5% 0.61 28 

MonoDETR Hybrid 20.1 12.5 10.3 36.1% 0.62 27 

Optimized 3D Transformer Transformer 25.3 21.7 16.4 45.2% 9.73 22 

Table 4: Comparison of comprehensive performance of 3D target detection models in building scenes. 

Test scene Index 
Optimized 3D 

Transformer 
MonoFlex MonoDETR Baseline 3D Transformer 

Outdoor 

construction 

AP3D@IoU≥0.7(Easy) 25.33% 23.95% 22.18% 24.91% 

APBEV(Easy) 36.15% 30.25% 28.70% 34.80% 

Interior decorating 
AP3D@IoU≥0.7(Mod) 18.42% 15.67% 15.03% 17.89% 

Occlusion recall rate 82.10% 75.30% 78.45% 80.25% 

Real-time index 
FPS 22 28 25 18 

GPU memory (GB) 5.2 3.8 4.1 6.0 

Note: Baseline 3D Transformer: The control model does not include depth module, saliency network and DETR fusion. Other hyperparameters are 

consistent with the optimized model. 

 

According to Table 3, the optimized 3D Transformer 

significantly outperformed MonoFlex and MonoDETR on 

visual angle AP and occlusion recall, with a CVCS of 

9.73, far exceeding other algorithms and verifying the 

effectiveness of multi-modal fusion. However, the FPS 

was only 22, slightly lower than the baseline model, 

reflecting the trade-off between performance and 

efficiency. To verify the generalization ability and real-

time performance of the lightweight 3D Transformer 

model in various building scenes, such as indoor 

decoration and outdoor construction, by adding new 

modal data and environmental parameter labels, the 

baseline model is compared with MonoFlex and other 

methods to test cross-scene AP3D, APBEV, occlusion 

recall, and edge device latency indicators. The experiment 

is divided into three stages: static scene, dynamic video 

stream, and edge deployment, to analyze the performance 

degradation and computational efficiency under complex 

conditions such as dust and low light. The experimental 

results are shown in Table 4. 

According to Table 4, the optimized 3D Transformer 

achieved an AP3D (Easy) of 25.33% in outdoor 

construction scenes, an APBEV of 36.15%, and an 

occlusion recall rate of 82.1% in indoor decoration scenes, 

all significantly ahead of the comparative model, 

demonstrating the advantage of multi-scene adaptation. 

The GPU memory usage of the optimized model is 

reduced to 5.2GB, which is 13.3% less than that of the 

baseline model, mainly due to the memory sharing 

mechanism of the three-stage architecture. 

4 Discussion 

4.1 Performance comparison with SOTA 

The proposed method demonstrates superior performance 

compared to state-of-the-art methods, achieving a 2.38% 

higher AP3D (Easy) than MonoFlex and 20.8% better 

occlusion recall. Key innovations include geometric 

constraints for ODSG, reducing depth estimation error to 

12.5% (traditional methods are 15-20%), and a saliency 

network that maintains 99.94% accuracy while reducing 

computational complexity by 42.4% through token 

reduction. The depth-DETR fusion achieves CVCS=9.73 

by resolving scale ambiguity and enabling 82.1% recall in 

low-light conditions through dynamic lighting 

compensation. While operating at 22 FPS (slightly below 

MonoFlex's 25), the proposed approach reduces GPU 

memory by 37.6% and attention computation by 70% 

through hierarchical encoding, with <5% performance 

degradation in challenging environments. Statistical 

validation (power=0.8, α=0.05) confirms significant 

improvements (d=1.53 effect size, p<0.01). Compared to 

Pointformer, the method achieves 3.4% better Hard-mode 

AP3D at just 38% of multi-sensor hardware costs, 

demonstrating superior performance-cost balance for 

architectural applications. 

4.2 Limitations 

Despite the progress made, the proposed method still has 

significant limitations. The multi-modal fusion introduces 

an 11.3% computational overhead (148.2 vs. 133.35 

GFLOPs), reducing frame rates to 22 FPS (vs. 25 in 

MonoFlex), with additional latency (18±2ms/frame) 

during dynamic occlusion handling. While AP3D 

improves by 2.38% in Easy mode, the gain drops sharply 

to just 0.06% in Hard mode due to residual 12.5% depth 

estimation errors, particularly affecting small or heavily 

occluded objects (e.g., bolts). The scalability for large-

scale scenes (>1km²) remains unverified, as ODSG’s O(n²) 

L2 feature matching may degrade 5cm-accuracy 

completeness from 46.32% to ~30%, and the 6-layer 

Transformer may struggle with long-range spatial 

dependencies. Statistical power may be insufficient in 

extreme occlusion cases (<50 frames), although the full 

test set (n=8,008) reliably detects >1.2% differences. 

Future work will explore millimeter-wave radar fusion 

(<15% cost increase) to address the 9.2% performance gap 

in low-light conditions. 

5 Conclusion 
The proposed multi-modal lightweight 3D Transformer 

demonstrates superior performance in intelligent 

construction scenarios, achieving 25.33% AP3D in Easy 

mode and 32.29% reconstruction accuracy at 1cm 
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precision. The integration of ODSG geometric constraints 

with self-supervised depth estimation reduces depth errors 

by 37.5% compared to traditional methods, while the 

saliency network maintains an accuracy of 99.94% and 

reduces computational complexity by 42.4%. The three-

stage architecture enables robust performance in 

challenging conditions with <5% degradation in 

dust/vibration environments. Future work will focus on 

modules for compensating dynamic lighting to enhance 

robustness under extreme illumination variations. This 

solution provides an effective balance between accuracy 

and efficiency for real-world construction applications. 
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