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In light of the pressing concerns regarding the inadequacy of transaction security, efficiency, and 

transparency within the financial system, this study endeavors to enhance the security of digital economy 

transactions for small and medium-sized enterprises engaged in cross-border e-commerce through the 

application of blockchain network topology algorithms. Specifically, the research introduces an 

innovative approach to classifying abnormal nodes, leveraging a dynamic update algorithm rooted in 

blockchain network topology. Additionally, it proposes a method for detecting security in digital economy 

transactions, also grounded in blockchain network topology algorithms. Under the conditions of a total 

of 60,000 records of real transactions in Bitcoin and Ethereum and a node scale of 100 to 1,000, the 

experiment uses a combination of cosine and Euclidean distance to calculate the transaction frequency, 

amount and time series characteristics of nodes and complete clustering. Subsequently, a sliding time 

window is used to dynamically update the node similarity threshold to identify anomalies. Compared with 

the three benchmark methods of density clustering, graph convolutional network and autoencoder, the 

proposed blockchain network topology algorithm has a root mean square error of 0.09, a mean absolute 

error of 0.09, an anomaly detection accuracy of 8.6%, and a transaction success rate of 1.1%, which is 

jointly determined by a 1.8-millisecond delay and a throughput of 13.2 transactions per second. All 

indicators are superior to the benchmark methods. The blockchain network topology algorithm can 

significantly improve transaction security and system stability, which is of great significance for 

promoting sustainable economic growth and social stability. 

Povzetek:  

 

1 Introduction 
With the rapid evolution of the digital economy, small and 

medium-sized enterprises operating in the cross-border e-

commerce (CBEC) sector are gaining ever-greater 

prominence in the landscape of global trade. Nevertheless, 

the escalating concerns surrounding transaction security 

within the financial system have emerged as a pivotal 

obstacle, significantly hindering the industry's growth and 

development [1]. The traditional financial system has 

problems such as cumbersome processes, easy errors, low 

efficiency, and insufficient security, which not only 

increase transaction costs, but also may lead to financial 

fraud and data leakage, seriously affecting the stable 

growth of the economy and the sustainable development 

of society [2-3]. The application of blockchain technology 

(BCT) can significantly reduce the risk of financial fraud 

transactions, accelerate trade financial settlement time, 

and improve compliance efficiency. In addition, the 

integration of blockchain with artificial intelligence (AI), 

the Internet of Things (IoT), and cloud computing (CC) 

has further enhanced real-time financial monitoring, trade  

 

authentication, and data security management capabilities, 

promoting the digitalization process of finance [4]. 

However, current research has predominantly centered on 

the theoretical exploration and initial implementation of 

BCT, leaving a conspicuous gap in thorough and 

comprehensive investigations into the effective 

identification and categorization of anomalous nodes 

within digital economic transactions, along with the 

development of efficient algorithms for detecting security 

risks in such transactions [5-6]. 

To address the issue of insufficient transparency in the 

financial system, Abdin et al. systematically explored the 

application trends, challenges, and impacts of BCT in the 

financial sector through case analysis. The results showed 

that the application of BCT significantly reduced financial 

fraud transactions by 42%, accelerated trade finance 

settlement time by 58%, and improved compliance 

efficiency by 49%. In addition, the integration of 

blockchain with AI, the IoT, and CC enhanced real-time 

financial monitoring, trade authentication, and data 

security management capabilities, promoting the 

digitalization process of finance [7]. Mishra et al. 
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proposed a solution using blockchain network technology 

to address the problems of cumbersome processes, easy 

errors, low efficiency, and insufficient security in 

traditional financial systems. The research results 

indicated that compared with traditional systems, BCT 

had the characteristics of lower cost, higher transparency, 

and better efficiency. Especially in the banking industry, 

BCT could significantly improve security, performance, 

and reduce the cost of various business processes, 

providing users with better quality services [8]. In 

response to the issue of storage sustainability in 

blockchain systems, Liu et al. optimized storage structures 

and data management methods to improve storage 

efficiency and encourage users to pay reasonable 

transaction fees to cover storage costs. The research 

results indicated that these mechanisms could effectively 

alleviate storage pressure, enhance the long-term 

feasibility of the system, and provide reference for small 

and medium-sized enterprises to ensure data storage 

security in CBEC business [9]. To address the issues of 

insufficient transparency and lack of public trust in the 

economic field, Cao et al. used a literature review method 

to examine the impact of BCT on improving economic 

transparency and cultivating public assurance. By 

analyzing multiple sources of information and text, the 

study found that BCT, with its high transparency, security, 

and data integrity, became an effective tool for achieving 

economic transparency and enhancing public trust. The 

results indicated that in an increasingly data dependent 

society, BCT was of great significance in promoting 

sustainable economic growth and social stability [10]. The 

application effects and limitations of BCT in the financial 

system are compared in Table 1. 

Table 1: Comparison of the application effects and 

limitations of BCT in the financial system 

References Main findings Limitations 

Abdin et al. 

[7] 

BCT significantly 

reduces financial 

fraud by 42%, 

accelerates 

transaction settlement 

by 58%, and enhances 

compliance efficiency 

by 49% 

There is a lack 

of in-depth 

research on the 

detection and 

classification 

of abnormal 

nodes 

Mishra et 

al. [8] 

BCT reduces the costs 

of the traditional 

financial system and 

enhances 

transparency and 

efficiency 

There is no 

detailed 

application 

involving the 

integration of 

blockchain 

with other 

technologies 

Liu et al. 

[9] 

Optimize the storage 

structure and data 

management methods 

to alleviate storage 

pressure 

Anomaly 

detection and 

system stability 

have not been 

fully 

considered 

Cao et al. 

[10] 

BCT enhances 

economic 

transparency and 

public trust 

There is a lack 

of in-depth 

analysis of the 

blockchain 

network 

topology 

 

In summary, existing research has mostly focused on 

theoretical exploration and preliminary applications, and 

there remains a notable absence of rigorous investigation 

into how to effectively utilize blockchain network 

topology to identify and classify abnormal nodes, as well 

as how to design efficient transaction security detection 

algorithms. The core research question focuses on the 

dynamic topology update mechanism of blockchain 

networks. It examines whether this mechanism can 

effectively improve abnormal node detection accuracy 

and enhance transaction security for cross-border small 

and medium-sized e-commerce. To delve deeper into the 

application of blockchain network topology algorithms for 

abnormal node detection and transaction security 

enhancement, thereby improving both transaction safety 

and system stability, a method is proposed for classifying 

abnormal nodes based on a dynamic update algorithm 

derived from blockchain network topology. Additionally, 

an algorithm is designed for detecting security risks in 

digital economy transactions. By analyzing the 

hierarchical structure, node clustering, and dynamic 

update mechanism of blockchain networks, accurate 

identification and classification of abnormal nodes can be 

achieved, and network topology analysis and node 

behavior characteristics can be used to identify and defend 

against various attack behaviors. A method based on 

blockchain network topology dynamic update algorithm is 

innovatively proposed, which achieves accurate 

identification and classification of abnormal nodes in 

digital economy transactions by analyzing the hierarchical 

structure of the blockchain network, combining node 

clustering analysis and dynamic update mechanism. 

Additionally, an efficient digital economy transaction 

security detection algorithm was designed, which utilizes 

network topology analysis and node behavior 

characteristics to accurately detect and defend against 

various attack behaviors, significantly improving the 

security and system stability of digital economy 

transactions for small and medium-sized enterprises in 

CBEC. By introducing a dynamic update mechanism for 

the blockchain network topology, the research can more 

accurately capture the spatio-temporal variation 

characteristics of node behavior, thereby achieving 

significant improvements in key performance indicators 

such as anomaly detection accuracy, transaction 

processing delay, and system stability. This method, 

grounded in topological dynamics, offers a fresh 

perspective and solution for bolstering the security and 

robustness of blockchain networks. It effectively bridges 

the gap left by existing approaches in anomaly detection 

within dynamic network settings, showcasing its distinct 

advantages and significant application potential in current 

research. 
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2 Methods and materials 
The study proposes an innovative method based on 

blockchain network topology dynamic update algorithm, 

aiming to identify and classify abnormal nodes in digital 

economic transactions, and designs an efficient digital 

economic transaction security detection algorithm. 

Through the hierarchical structure and node clustering 

analysis of blockchain networks, combined with dynamic 

update mechanisms, accurate identification and 

classification of abnormal nodes can be achieved. 

Meanwhile, network topology analysis and node behavior 

characteristics can be used to detect and defend against 

various attack behaviors, providing technical support for 

improving the security of digital economy transactions for 

CBEC small and medium-sized enterprises. 

2.1 Classification of abnormal nodes in 

digital economy transactions based on 

topology dynamic update algorithm 

The research selects the design principle based on the 

dynamic update algorithm of blockchain network 

topology to accurately identify and classify abnormal 

nodes in the e-commerce scenarios of cross-border small 

and medium-sized enterprises, ensuring transaction 

security and system stability. Clustering technology is 

chosen because it can effectively identify node groups 

with similar behavioral characteristics, laying the 

foundation for anomaly detection. Meanwhile, the 

research introduces dynamic update thresholds, enabling 

the algorithm to adapt in real time to changes in network 

topology and ensuring high detection accuracy under 

different network conditions. This enhances the accuracy 

of anomaly detection and the real-time performance and 

adaptability of the system, providing reliable and secure 

protection for digital economy transactions. Blockchain is 

divided into data layer, network layer, consensus layer, 

and application layer. The data layer is mainly responsible 

for the storage and management of blockchain data, 

including transaction data, block structure, etc. The 

network layer is responsible for communication and data 

transmission between nodes. The consensus layer ensures 

the verification and confirmation of transactions by nodes 

in the network through consensus mechanisms. The 

application layer provides various blockchain-based 

application services. In digital economy transactions, each 

layer may become a target of attack, so it is necessary to 

comprehensively consider the security of each layer [11-

12]. The blockchain hierarchy is shown in Figure 1. 

 

 

Figure 1: Blockchain hierarchy 

In Figure 1, the data layer is accountable for storing 

the basic data of the blockchain, including block data, data 

storage, chain structure, and timestamps. The network 

layer includes peer-to-peer (P2P) networks, broadcasting 

mechanisms, and verification mechanisms to ensure the 

transmission and verification of data between nodes. The 

consensus layer involves various consensus algorithms, 

such as Proof of Work (PoW), Directed Acyclic Graph 

(DAG), Proof of Stake (PoS), Delegated Proof of Stake 

(DPoS), Proof of Energy (PoE), Proof of X (PoX), and 

Byzantine Fault Tolerance (BFT), employed to reach 

agreement within distributed networks. The application 

layer covers a variety of application scenarios such as the 

IoT, the Internet of Vehicles, the Industrial Internet, smart 

contracts, smart cities and health records, and shows the 

extensive application of BCT in different fields. The 

architecture of the blockchain node network topology 

system is shown in Figure 2. In this architecture, nodes 

communicate through the network layer, the data layer 

stores transaction information, the consensus layer ensures 

the legality of transactions, and the application layer 

provides transaction services. Through this hierarchical 

architecture, node behavior in the network can be 

effectively managed and monitored, providing a 

foundation for detecting abnormal nodes [13-14]. 

 

 

Figure 2: Architecture of the blockchain node network 

topology system 

In Figure 2, when a node joins the network for the first 

time or needs to establish a connection with another node, 

it sends connection information to the target node. Once 

the connection is established, the nodes will maintain this 

connection state and ensure the validity of the connection 

through continuous communication. The architecture 

displays multi-level connections between nodes, meaning 

that one node can be connected to multiple nodes to form 

a complex network structure. This multi-level connection 

enhances the robustness and decentralization of the 

network. Nodes not only communicate with directly 

connected nodes, but also propagate information through 

indirectly connected nodes, thereby achieving widespread 

dissemination of information in the network. 

Subsequently, an algorithm is developed to group 

nodes in blockchain networks with the aim of categorizing 

them into diverse classes. This process promotes multi-

threaded recognition of network structures. By using 

clustering algorithms, nodes with similar behavioral 

characteristics can be grouped together, which facilitates 
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subsequent anomaly detection. Meanwhile, an algorithm 

is introduced to make real-time adjustments to the network 

structure. The algorithm's objective is to diminish usage of 

network resources required for identifying network 

structures and enhance the rate of network structure 

identification updates [15-16]. The classification process 

of abnormal nodes in digital economy transactions based 

on topology dynamic update algorithm is shown in Figure 

3. 

 

 

 

Figure 3: Flow chart of abnormal node classification in 

digital economy transaction based on topology dynamic 

update algorithm. 

In Figure 3, first, cluster analysis is performed on the 

nodes in the blockchain network. To accurately describe 

the similarity measurement, the study adopts a combined 

method of cosine similarity and Euclidean distance to 

calculate the similarity between nodes. Cosine similarity 

is used to measure the directional similarity of node 

feature vectors, while Euclidean distance is used to 

measure the absolute distance of feature vectors. 

Similarity can be calculated based on features such as 

transaction frequency, transaction amount, and connection 

time between nodes. Specifically, as shown in equation 

(1). 

1
( , )

1 ( , )
S i j

d i j
=

+
                  (1) 

In equation (1), ( , )S i j  represents the similarity 

between node i  and node j , and 
1

1 ( , )d i j+
 represents 

the Euclidean distance or other distance measure between 

node i  and node j . By calculating the similarity between 

all nodes, nodes can be divided into different clusters. A 

dynamic update algorithm is designed based on clustering. 

The dynamic update coefficient of node is defined to 

measure the behavior change of node i  within a 

continuous time window. Specifically, as shown in 

equation (2). 

1

1
( ) | ( , ) ( , 1) |

T

t

U i S i t S i t
T =

= − −              (2) 

In equation (2), ( )U i  represents the dynamic update 

coefficient of the node, T  represents the size of the time 

window, and ( , )S i t  represents the similarity of node i  

over time t . By calculating the dynamic update 

coefficient of nodes, nodes with abnormal behavior can be 

identified. According to the dynamic update coefficient of 

nodes, they are divided into normal nodes and abnormal 

nodes. The study sets a threshold  , when ( )U i  , node i  is 

marked as an abnormal node. The research has refined the 

approach to identifying abnormal nodes by moving away 

from the simplistic method of setting a fixed threshold at 

zero. Instead, it has introduced a dynamic threshold 

mechanism grounded in statistical analysis, which 

carefully considers the normal range of fluctuations 

inherent in network behavior. The threshold of the 

dynamic update coefficient ( )U i  is determined by 

analyzing the distribution of ( )U i  in historical data, 

ensuring that node i  is marked as abnormal only when 

( )U i  exceeds a certain confidence interval within the 

normal fluctuation range. This data-driven threshold 

setting method reduces false alarms caused by normal 

fluctuations and improves the accuracy and robustness of 

anomaly detection. The selection of thresholds in the 

research is based on the statistical analysis and 

experimental verification of the dynamic update 

coefficients of nodes. By analyzing a large amount of node 

behavior data, the distribution characteristics of the 

dynamic update coefficient are determined, and then the 

initial threshold is set based on these distribution 

characteristics. During the experimental stage, the 

anomaly detection performance under different thresholds 

is evaluated. Based on indicators such as detection 

accuracy and false alarm rate, the grid search method is 

used to optimize and adjust the thresholds. Eventually, the 

optimal threshold is determined to achieve precise 

identification and classification of abnormal nodes. In 

terms of abnormal node classification, the study adopts the 

K-means clustering algorithm. The clustering process 

calculates the similarity between nodes based on 

characteristics such as transaction frequency, transaction 

amount and connection time of nodes, and uses the 

Euclidean distance metric, as shown in equation (3). 

exp( )ij ijsimilarity distance= −         (3) 

In equation (3), ijdistance  represents the Euclidean 

distance between node i  and node j . Based on this 

similarity, the K-means algorithm divides nodes into 

different clusters, and the nodes within the clusters have 

similar behavioral characteristics. Subsequently, through 

the dynamic update algorithm, the dynamic update 

coefficient is calculated based on the behavioral changes 

of nodes within the continuous time window to identify 

abnormal nodes. 

Initialize the node data of 

the blockchain network

Input the transaction records and 

connection information of the node

Preprocess transaction frequency, 

transaction amount and connection 

time

Output the preprocessed node feature 

data set

Calculate the similarity 

between nodes

Input the preprocessed node feature 

data set

Output the similarity matrix between 

nodes

1
( , )

1 ( , )
S i j

d i j
=

+

Calculate the dynamic update 

coefficient of the node

Input the clustering results of nodes 

and the similarity matrix between 

nodes

Output the dynamic update 

coefficient of each node

1

1
( ) | ( , ) ( , 1) |

T

t

U i S i t S i t
T =

= − −

Output the classification results of 

abnormal nodes

Input the classification result of abnormal nodes

Visual classification results

Output the visual classification results of abnormal nodes

Set thresholds and classify abnormal nodes

Input the dynamic update coefficient of each node

If the dynamic update coefficient is greater than the 

threshold, mark the node as an abnormal node. Otherwise, 

mark it as a normal node

Output the classification results of abnormal nodes



Abnormal Node Classification and Security Detection for Cross… Informatica 49 (2025) 39–50 43 

 

2.2 Digital economy transaction security 

detection based on blockchain network 

topology algorithm 

The classification method of abnormal nodes in digital 

economy transactions based on topology dynamic update 

algorithm can effectively identify and classify abnormal 

nodes in transactions. On this basis, further research is 

conducted to design a digital economy transaction security 

detection method based on blockchain network topology 

algorithm, which utilizes network topology structure and 

node behavior characteristics to identify and defend 

against various attack behaviors, thereby enhancing the 

security of the entire transaction system. This algorithm 

utilizes network topology analysis and combines node 

behavior characteristics to achieve accurate detection of 

abnormal behavior [17-18]. Figure 4 shows how attackers 

can control multiple malicious nodes to send a large 

number of requests to the target node, causing the target 

node to exhaust its resources and unable to process 

legitimate transaction requests. 

 

 

 

Figure 4: Schematic diagram of network denial-of-

service attack. 

In Figure 4, puppet cluster refers to a collection of 

nodes that are manipulated by attackers and used to launch 

a large number of malicious requests to exhaust the 

resources of the target node. The Normal server cluster 

represents the collection of normal nodes in the 

blockchain network that are responsible for processing 

legitimate transactions. The intelligence information 

section shows that the attacker first collects intelligence 

information and then uses this information to organize a 

puppet cluster to make malicious requests to the normal 

server cluster. These malicious requests cause the server 

to respond to malicious requests while ignoring requests 

from normal nodes, ultimately resulting in requests from 

normal nodes being unresponsive, and the normal server 

cluster being unable to provide services normally. The 

schematic diagram of the network topology structure is 

shown in Figure 5, depicting the connection relationships 

of nodes in the blockchain network. By analyzing these 

connection relationships, abnormal patterns in the network 

can be identified, such as abnormal transaction 

frequencies or unusual connection patterns. 

 

Figure 5: Schematic diagram of the network topology 

structure. 

Figure 5 shows a network model consisting of nodes 

and edges. The starting node is marked as s, the ending 

node is marked as t, and there are several nodes numbered 

0 to 10 in between. The connections between nodes 

represent their connectivity relationships, forming a 

complex network. Node 0 is directly connected to nodes 1 

to 4, while nodes 5 and 6 are connected to multiple other 

nodes, further expanding the coverage of the network. 

Nodes 8 to 11 form another part of the network, connected 

to the starting and intermediate nodes through multiple 

paths. The flowchart of the digital economy transaction 

security detection algorithm based on blockchain network 

topology algorithm is shown in Figure 6. 

 

 

Figure 6: Flowchart of the digital economy transaction 

security detection algorithm based on blockchain 

network topology algorithm. 

In Figure 6, the algorithm first collects transaction 

data and node connection data in the blockchain network, 

and preprocesses these data to remove noise and fill in 

missing values. Next, the algorithm analyzes the 

connection relationships between nodes and quantifies the 

transaction interactions between node i  and node j  by 

calculating the connection strength, as shown in equation 

(4). 
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In equation (4), ( , )C i j  is the ratio of the total 

number of transactions between node i  to the number of 

transactions between node i  and node j , N ij  represents 

the number of transactions between node i  and node j , 

and TNi  represents the total number of transactions 

participated by node i . The transaction frequency is used 

to measure the trading activity of node i  within a given 

time window T , as shown in equation (5). 

 N
( )

 T

iF i =                                 (5) 

In equation (5), ( )F i  represents the total number of 

transactions that node i  participates in within the time 

window T , and Ni  represents the total number of 

transactions of node i . The node behavior feature vector 

is a comprehensive description of node behavior, 

including transaction frequency, connection strength with 

another node, and historical anomaly records, as shown in 

equation (6). The historical anomaly record in the feature 

vector represents the number of times a node has been 

marked as an anomaly within a certain period of time in 

the past. 
( ) [ ( ), ( , ), Historical Anomaly Records ]iB i F i C i j=    (6) 

In equation (6), ( )B i  represents the behavior feature 

vector of node i  and Historical Anomaly Recordsi  

represents the historical abnormal behavior records related 

to node i . Historical abnormal behavior is quantified by 

tallying the frequency with which a computing node has 

been flagged as anomalous over a designated past time 

frame, and this count is then incorporated as a constituent 

element of the feature vector. This quantization method 

provides a clear numerical representation of the feature 

vectors, which helps capture the historical behavior 

patterns of nodes in the model and thereby enhances the 

accuracy of anomaly detection. Subsequently, a 

transaction frequency threshold is set to detect abnormal 

traffic. If the transaction frequency of node i  exceeds the 

threshold within time window T , the node is marked as 

abnormal. In addition, random forests are used to classify 

node behavior based on node behavior feature vectors, 

including transaction frequency, connection strength, and 

historical anomaly records. The algorithm further 

identifies specific types of attacks, with denial-of-service 

attacks identified by detecting abnormal transaction 

frequencies, witch attacks and solar eclipse attacks 

identified by analyzing the connection strength and 

transaction flow between nodes, and network 

segmentation attacks identified by detecting the presence 

of isolated subgraphs in the network [19-20]. Finally, 

based on the detection results, corresponding security 

strategies will be deployed to isolate abnormal nodes, 

strengthen monitoring and defense of potential attack 

paths, effectively detect and defend against attack 

behaviors in CBEC small and medium-sized enterprise 

digital economy transactions, and ensure transaction 

security and stability. The pseudo-code of the algorithm is 

shown in Table 2. 

Table 2: Pseudo-code of the Algorithm. 

1. Initialize the set of abnormal nodes A as an empty set 

2. For each time window t ∈ {1, 2, ..., T}: 

   a. Calculate the similarity matrix S between nodes 

using a combination of cosine similarity and Euclidean 

distance: 

      S[i][j] = α * cos(V[i], V[j]) + (1 - α) * exp(-

distance(V[i], V[j])) 

   b. Perform clustering on nodes using the K-means 

algorithm to obtain clustering result C 

   c. For each node i: 

      i. Calculate the dynamic update coefficient DUC[i] 

of node i based on its similarity changes within time 

window t: 

         DUC[i] = (S[i][j] - S[i][j-1]) / T 

      ii. If DUC[i] > θ, then mark node i as an abnormal 

node and add it to set A 

3. Return the set of abnormal nodes A 

 

The research proposes an abnormal node 

classification method based on the dynamic update 

algorithm of blockchain network topology. This method 

first collects and preprocesses the transaction data of the 

Bitcoin and Ethereum networks, then extracts node 

features including transaction frequency, transaction 

amount, connection time and historical abnormal records, 

and standardizes these features to eliminate dimensional 

influence. Subsequently, the K-means clustering 

algorithm is applied to conduct cluster analysis based on 

the similarity of node feature vectors. The dynamic update 

coefficient of each node is calculated to reflect the change 

of its behavior over time. A threshold is set to identify 

abnormal nodes whose dynamic update coefficient 

exceeds this threshold. Finally, the performance of the 

algorithm is evaluated by analyzing the detection results. 

The parameters are adjusted based on the feedback from 

the validation set to optimize the model. 

3 Results 
The performance of the proposed blockchain network 

topology algorithm was evaluated through experiments, 

and its application effect in the digital economy 

transaction security of small and medium-sized 

enterprises in CBEC was analyzed. The experiment 

selected multiple blockchain network datasets and 

compared the performance of this algorithm with other 

advanced algorithms in terms of performance indicators. 

Meanwhile, the actual application effect of this algorithm 

in digital economy transaction security was analyzed from 

multiple dimensions such as transaction processing 

latency, network throughput, node discovery time, and 

anomaly detection accuracy. 
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3.1 Performance evaluation of blockchain 

network topology algorithms 

To ensure the reproducibility and transparency of the 

research, the study provided detailed model parameters, 

training procedures and validation details. The model 

parameters included a time window size set at 12 hours, 

the parameters of the clustering algorithm optimized to 5 

based on the elbow rule, and the threshold determined 

through grid search within the range of 0.05 to 0.15. In 

terms of the training program, the dataset was divided into 

a training set and a validation set in a 7:3 ratio. The model 

was trained based on the training set, and the optimal 

parameters were selected according to the performance of 

the validation set. To comprehensively evaluate the 

model's performance, the study comprehensively 

considered multiple dimensions of indicators such as 

precision, recall rate, F1 score, system stability, and 

resource utilization. Precision and recall respectively 

measured the accuracy and completeness of the model in 

predicting abnormal nodes, while the F1 score 

comprehensively considered both precision and recall, 

providing a balanced performance evaluation. In addition, 

system stability was measured by the percentage of 

uptime, while resource utilization assessed the model's 

occupation of computing resources in practical 

applications, ensuring that the model could efficiently 

detect anomalies while also operating stably in resource-

constrained environments. The Bitcoin dataset contained 

transaction records from 2010 to 2020, totaling over 5 

million transactions. The Ethereum dataset covers 

transaction data from 2015 to 2020, totaling 

approximately 3 million records. The sampling method 

adopted stratified random sampling, ensuring the 

representativeness and diversity of the data. The 

preprocessing steps included data cleaning, outlier 

removal, standardization processing, and feature 

extraction, etc., to improve data quality and the accuracy 

of the algorithm. To verify the effectiveness and 

superiority of the proposed blockchain network topology 

algorithm, a series of experiments were designed and 

compared with several other advanced algorithms. 

Comparative algorithms included Density-Based Spatial 

Clustering of Applications with Noise (DBSCAN), Graph 

Convolutional Networks (GCNs), and Autoencoders. The 

accuracy of anomaly detection reflected the algorithm's 

ability to identify abnormal nodes and was a key indicator 

for measuring the algorithm's performance. Transaction 

processing latency and transaction verification time were 

directly related to the system's response speed and user 

experience. Network throughput and concurrent 

processing capacity reflected the system's ability to handle 

transactions within a unit of time and were important bases 

for evaluating system scalability and handling large-scale 

transactions. The system stability and resource utilization 

rate demonstrated the reliability and resource utilization 

efficiency of the algorithm in actual operation. The root 

means square error (RMSE) and mean absolute error 

(MAE) of several algorithms are shown in Figure 7. 
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Figure 7: RMSE and MAE of several algorithms. 

In Figure 7 (a), the blockchain network topology 

algorithm exhibited the lowest RMSE at all data volumes, 

especially when the data volume was small. Finally, when 

the data volume reached 60000, the RMSE dropped to 

about 0.09. The RMSE of the DBSCAN algorithm did not 

vary significantly throughout the entire range of data 

volume, remaining at around 0.11. This indicated that 

blockchain network topology algorithms had better 

prediction accuracy and stability when processing data of 

different scales. In Figure 7 (b), the blockchain network 

topology algorithm exhibited the lowest MAE at all data 

volumes, especially when the data volume was small. 

Finally, when the data volume reached 60000, the MAE 

dropped to about 0.09. This further confirmed that 

blockchain network topology algorithms not only had 

better prediction accuracy when processing data of 

different scales but also performed well in error control, 

demonstrating their potential and advantages in practical 

applications. The node activity and node revenue of 

several algorithms are shown in Figure 8. Node Revenue 

referred to the economic benefits obtained by nodes 

during their participation in transactions. It was used to 

measure the economic contribution and revenue of nodes 

in the network, reflecting the activity and economic 

benefits of nodes in the blockchain network. High node 

returns usually meant more transactions were successfully 

processed, which was closely related to transaction 

security and system stability, because only in a safe and 

stable environment could nodes continuously earn returns. 
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Figure 8: Node activity and node revenue of several 

algorithms. 

In Figure 8 (a), with the increase of data volume, the 

node activity ratio of the blockchain network topology 

algorithm significantly increased, from about 40% when 

the data volume was 0 to nearly 90% when the data 

volume was 10000. This indicated that it could effectively 

improve node activity when processing large-scale data. 
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The blockchain network topology algorithm had 

significant advantages in improving node activity. 

Especially when processing large-scale data, it could 

effectively stimulate node participation, thereby 

improving the efficiency and performance of the entire 

network. In Figure 8 (b), the node revenue of the 

blockchain network topology algorithm significantly 

increased with the increase of data volume, from about 8 

units when the data volume was 0 to nearly 20 units when 

the data volume was 10000. Units referred tao the amount 

of revenue accumulated by a node through participating in 

transaction verification within a specific time window, 

which was measured by the product of the number of valid 

transactions processed by the node and the corresponding 

transaction fees. This indicated that it could bring higher 

revenue to nodes when processing large-scale data. The 

transmission rate and concurrency rate of several 

algorithms are shown in Figure 9. 
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Figure 9: Transmission rate and concurrency rate of 

several algorithms. 

In Figure 9 (a), the blockchain network topology 

algorithm quickly reached the peak transmission rate of 

nearly 11 MB/s when the dataset size was about 1000, and 

remained relatively stable when the dataset size increased 

to 10000. The blockchain network topology algorithm had 

significant transmission rate advantages when processing 

small datasets; it could quickly achieve high transmission 

rates and still maintain high transmission efficiency when 

processing larger datasets. In Figure 9 (b), the concurrency 

of the blockchain network topology algorithm gradually 

decreased with the increase of dataset size, from about 55 

groups when the dataset size was 0 to about 45 groups 

when the dataset size was 10000, indicating a decrease in 

its concurrency processing ability when dealing with 

large-scale datasets. Although blockchain network 

topology algorithms performed well in terms of 

transmission speed, further optimization might have been 

needed in terms of concurrent processing capabilities to 

meet the concurrent processing requirements of large-

scale datasets. 

3.2 Analysis of the security effectiveness of 

digital economy transactions for small 

and medium-sized enterprises in 

CBEC 

To accurately simulate and detect specific attack 

behaviors, such as denial-of-service attacks (DoS) and 

eclipse attacks, corresponding attack models were studied 

and constructed, and targeted detection mechanisms were 

designed. In the context of DoS attacks, the detection 

mechanism operated by simulating scenarios where an 

attacker gained control over multiple malicious nodes, 

which then flooded the target node with a vast number of 

requests. This onslaught depleted the target node's 

resources, rendering it incapable of processing legitimate 

transaction requests. The mechanism subsequently 

identified attack behaviors by scrutinizing abnormal 

fluctuations in both the transaction frequency and 

connection strength of the nodes involved. For solar 

eclipse attacks, it simulated that the attacker used the 

controlled node to isolate the target node from the rest of 

the network, making the target node communicate only 

with the node controlled by the attacker. The detection 

mechanism identified such attacks by analyzing abnormal 

patterns in the connection relationships between nodes, 

such as the appearance of isolated subgraphs. To evaluate 

the performance of the proposed blockchain network 

topology algorithm more comprehensively, the study 

introduced multiple baseline methods for comparison, 

including not only DBSCAN, GCN, and Autoencoder, but 

also Isolation Forest and LSTM-based detectors.The 

comparison results are shown in Table 3. 

Table 3: Performance comparison of different baseline 

methods and blockchain network topology algorithms. 

Algori

thms 

DBS

CAN 

G

C

N 

Autoe

ncoder 

Isola

tion 

Fore

st 

LST

M-

base

d 

Dete

ctor 

Block

chain 

netwo

rk 

topol

ogy 

algori

thm 

Anom

aly 

detecti

on 

accura

cy (%) 

79.0 
83

.0 
78.0 80.5 82.0 86.0 

Trans

action 

Proces

sing 

Delay 

(ms) 

2.2 
2.

1 
2.5 2.3 2.0 1.8 

Trans

action 

Verifi

cation 

Time 

(ms) 

2.9 
2.

7 
3.0 2.8 2.6 2.5 

Netwo

rk 

Throu

ghput 

(TPS) 

8.5 
11

.0 
7.8 9.0 10.5 13.2 

Concu

rrent 
546 

51

0 
680 560 580 800 



Abnormal Node Classification and Security Detection for Cross… Informatica 49 (2025) 39–50 47 

 

Proces

sing 

Capab

ility 

(TPS) 

Netwo

rk 

scalab

ility 

(nodes 

per 

secon

d) 

5 2 4 3 3 10 

Syste

m 

stabili

ty (%) 

94.1 
95

.0 
93.0 94.5 95.5 97.0 

Resou

rce 

utiliza

tion 

rate 

(%) 

89.0 
91

.0 
86.0 88.0 90.0 93.0 

 

From Table 3, the proposed blockchain network 

topology algorithm achieved 86.0% accuracy in anomaly 

detection, which was significantly higher than other 

baseline methods. This indicated that it had higher 

precision in identifying abnormal nodes. In terms of 

transaction processing latency and transaction verification 

time, this algorithm was only 1.8ms and 2.5ms 

respectively. Compared with other algorithms, it could 

complete transaction processing and verification more 

quickly. The network throughput of this algorithm was 

13.2TPS, and its concurrent processing capacity was as 

high as 800TPS, far exceeding other baseline methods. 

This indicated that it could handle a large number of 

transactions more efficiently and had a stronger 

concurrent processing capacity. In addition, in terms of 

indicators such as network scalability, system stability, 

resource utilization rate, and transaction success rate, this 

algorithm also demonstrated excellent performance. The 

network scalability was 10 nodes per second, the system 

stability was as high as 97.0%, the resource utilization rate 

was 93.0%, and the transaction success rate was 91.1%. 

These data indicated that this algorithm ensured 

transaction security while maintaining the stable operation 

of the system and the efficient utilization of resources. The 

standard deviation of all data was within 1.2%, indicating 

that the algorithm had high stability and reliability in 

multiple experiments. The CPU usage and response time 

of the algorithm in actual CBEC small business digital 

economy transactions are shown in Figure 10. 
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Figure 10: CPU occupancy and response time of the 

algorithm. 

In Figure 10 (a), the blockchain network topology 

algorithm maintained the lowest CPU usage throughout 

the entire runtime, with a fluctuation range of 

approximately 10% to 30%, demonstrating high stability 

and efficiency. This indicated that blockchain network 

topology algorithms could more effectively utilize CPU 

resources and reduce the consumption of computing 

resources when processing the same tasks. In Figure 10 

(b), as the amount of data increased, the response time of 

all algorithms also increased, but the response time growth 

of blockchain network topology algorithms was the 

smoothest, increasing from about 20 milliseconds to 

around 100 milliseconds. This indicated that blockchain 

network topology algorithms had better scalability and 

responsiveness when processing large-scale data, and 

could effectively handle a large number of concurrent 

requests while maintaining low latency. 

3.3 The practical application results of 

blockchain network topology 

algorithms 

To further verify the effectiveness of the proposed 

blockchain network topology algorithm, the experimental 

results were elaborated in detail through the Receiver 

Operating Characteristic Curve (ROC), confusion matrix 

and time series graph. The ROC curve of the blockchain 

network topology algorithm is shown in Figure 11. 
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Figure 11: ROC curve of blockchain network topology 

algorithm. 
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In Figure 11, the Area under the Curve (AUC) of the 

blockchain network topology algorithm was 0.92, 

demonstrating its superior performance in anomaly 

detection. The actual classification confusion matrix of the 

blockchain network topology algorithm is shown in Figure 

12. 

20

0

40

60

80

100

True Positive Rate (TPR)

T
ru

e 
P

o
si

ti
v

e 
R

a
te

 (
T

P
R

)

 

Figure 12: Actual classification confusion matrix of 

blockchain network topology algorithm. 

In Figure 12, the TPR of the blockchain network 

topology algorithm on the test dataset reached 86.0%, 

further demonstrating its high precision and low false 

alarm rate. The curve of the actual transaction processing 

delay varying with time is shown in Figure 13. 
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Figure 13: Curve of actual transaction processing delay 

over time. 

In Figure 13, the proposed algorithm maintained a 

transaction processing delay of approximately 1.8 

milliseconds within 24 consecutive hours of operation 

without significant fluctuations, demonstrating the high 

stability and reliability of the algorithm in practical 

applications. 

4 Discussion 
The algorithm proposed by the research achieved an 

anomaly detection accuracy of 86.0%, which was 

significantly higher than the 79.0% reported by DBSCAN, 

83.0% by GCN, and 78.0% by Autoencoder. This 

improvement was mainly attributed to the fact that the 

algorithm proposed by the research utilized the multi-layer 

structure and node behavior characteristics of the 

blockchain network, and adjusted the similarity threshold 

in real time through a dynamic update mechanism, thereby 

more accurately identifying abnormal nodes. Although the 

research by Abdin Z et al. [7] made significant progress in 

reducing financial fraud, their methods were mainly based 

on macro transaction data and lack fine-grained analysis 

of node behavior. Although the research by Liu Y et al. [9] 

optimized the storage structure and improved the system 

stability, there is still room for improvement in the 

accuracy of anomaly detection. In terms of latency, the 

transaction processing latency of the algorithm proposed 

by the research was only 1.8 milliseconds, which was 

much lower than the latencies reported by other 

algorithms. This advantage was attributed to the dynamic 

update mechanism of the algorithm proposed by the 

research, which could quickly identify and handle 

abnormal nodes within a short period of time, thereby 

significantly reducing transaction processing time. 

Furthermore, the algorithm proposed by the research also 

performed well in terms of system stability, reaching 

97.0%, which was higher than the system stabilities 

reported by other algorithms. This result indicated that the 

algorithm proposed by the research not only had an 

advantage in the accuracy of anomaly detection, but also 

performed well in system stability and real-time 

performance, and could better meet the needs of cross-

border small and medium-sized enterprises for transaction 

security and system stability in e-commerce. Compared 

with the research of Mishra et al. [8], although Mishra et 

al. emphasized the potential of BCT in reducing the cost 

of the traditional financial system and improving 

transparency, they did not provide specific anomaly 

detection indicators. The research proposed that by 

implementing a dynamic update algorithm for the 

blockchain network topology, not only was the accuracy 

of anomaly detection enhanced, but significant 

improvements were also achieved in latency and system 

stability. This, in turn, provided a more secure and 

efficient transaction environment for cross-border e-

commerce among small and medium-sized enterprises. 

Furthermore, although the research by Cao et al. [10] 

explored the application of BCT from the perspective of 

economic transparency, it lacked in-depth analysis in 

terms of anomaly detection and system stability. The 

research proposed that through detailed experimental 

verification, the advantages of the proposed algorithm in 

these key performance indicators were proved. 

The hardware environment used in the research was a 

server equipped with an Intel Xeon E5-2690 v4 processor 

and 128GB DDR4 memory. The runtime performance test 

showed that when processing the e-commerce transaction 

data of cross-border small and medium-sized enterprises, 

the average CPU usage rate of the proposed blockchain 

network topology algorithm was 35% and the memory 

usage rate was 45%. The average processing time for a 

single transaction was 1.8 milliseconds. In the scalability 

test, this algorithm could add 10 new nodes per second in 

a single-server environment. When extended to a 

distributed cluster environment, the number of new nodes 

per second could reach 100. However, as the number of 

nodes further increased, the rate of new nodes slightly 

decreased due to the influence of network latency and data 

synchronization mechanisms. This indicated that in large-
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scale distributed scenarios, the scalability of the algorithm 

had certain limitations. It is necessary to further optimize 

the network communication and data synchronization 

strategies to enhance its applicability in ultra-large-scale 

networks. In the field of cross-border small and medium-

sized enterprise e-commerce, privacy protection, 

regulatory compliance and deployment implementation 

are the key factors to ensure the effective application of 

BCT. In terms of privacy protection, cross-border 

transactions involve the flow of data from multiple 

countries. It is essential to ensure compliance with the 

privacy regulations of each country, prevent data leakage, 

and at the same time guarantee the anonymity and security 

of user information. In terms of regulatory compliance, 

financial regulatory requirements vary among different 

countries. The proposed blockchain network topology 

algorithm needs to adapt to and meet these norms to ensure 

legal and compliant operation. During the deployment and 

implementation process, it is necessary to consider the 

compatibility of the system with the existing e-commerce 

architecture, operation and maintenance costs, as well as 

technical feasibility, to ensure that the solution can be 

smoothly integrated into the existing business processes. 

5 Conclusion 
The research aimed to enhance the security of small and 

medium-sized enterprises in CBEC in digital economy 

transactions, and proposed an abnormal node 

classification method and digital economy transaction 

security detection algorithm based on blockchain network 

topology dynamic update algorithm. The research 

designed efficient network topology dynamic update 

algorithms and node clustering algorithms to achieve 

accurate identification and classification of abnormal 

nodes. Meanwhile, The research used network topology 

analysis combined with node behavior characteristics to 

detect and defend against various attack behaviors. The 

research results showed that the blockchain network 

topology algorithm only took 2.5 milliseconds for 

transaction verification time, had a node verification 

success rate of 8.9%, a transaction conflict rate of only 

1.7%, 3 security vulnerabilities, an attack detection delay 

of 0.8 milliseconds, a recovery time of 0.7 seconds, and a 

failure rate of 7.2%. These data were all superior to the 

comparison algorithms, demonstrating the superiority of 

the algorithm in terms of security and stability. The 

blockchain network topology algorithm could effectively 

enhance the security and stability of digital economic 

transactions, providing a reliable security solution for 

small and medium-sized enterprises in CBEC. However, 

the concurrent processing capability of the algorithm 

decreased when dealing with large-scale datasets, and 

further optimization is needed to adapt to the concurrent 

processing requirements of larger datasets. To quantify the 

limitation of insufficient concurrency of the algorithm 

when dealing with large datasets, subsequent experiments 

should cover different data loads, including small-scale, 

medium-scale and large-scale datasets, and test the 

concurrent processing capacity, response time and 

resource consumption of the algorithm under each load 

respectively. Through comparative analysis, the changing 

trend of algorithm performance with the growth of data 

scale can be clearly identified, providing empirical basis 

for optimizing the algorithm and enhancing its 

applicability in the big data environment. 
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