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In light of the pressing concerns regarding the inadequacy of transaction security, efficiency, and
transparency within the financial system, this study endeavors to enhance the security of digital economy
transactions for small and medium-sized enterprises engaged in cross-border e-commerce through the
application of blockchain network topology algorithms. Specifically, the research introduces an
innovative approach to classifying abnormal nodes, leveraging a dynamic update algorithm rooted in
blockchain network topology. Additionally, it proposes a method for detecting security in digital economy
transactions, also grounded in blockchain network topology algorithms. Under the conditions of a total
of 60,000 records of real transactions in Bitcoin and Ethereum and a node scale of 100 to 1,000, the
experiment uses a combination of cosine and Euclidean distance to calculate the transaction frequency,
amount and time series characteristics of nodes and complete clustering. Subsequently, a sliding time
window is used to dynamically update the node similarity threshold to identify anomalies. Compared with
the three benchmark methods of density clustering, graph convolutional network and autoencoder, the
proposed blockchain network topology algorithm has a root mean square error of 0.09, a mean absolute
error of 0.09, an anomaly detection accuracy of 8.6%, and a transaction success rate of 1.1%, which is
jointly determined by a 1.8-millisecond delay and a throughput of 13.2 transactions per second. All
indicators are superior to the benchmark methods. The blockchain network topology algorithm can
significantly improve transaction security and system stability, which is of great significance for
promoting sustainable economic growth and social stability.

Povzetek:

authentication, and data security management capabilities,
promoting the digitalization process of finance [4].
However, current research has predominantly centered on

1 Introduction
With the rapid evolution of the digital economy, small and

medium-sized enterprises operating in the cross-border e-
commerce (CBEC) sector are gaining ever-greater
prominence in the landscape of global trade. Nevertheless,
the escalating concerns surrounding transaction security
within the financial system have emerged as a pivotal
obstacle, significantly hindering the industry's growth and
development [1]. The traditional financial system has
problems such as cumbersome processes, easy errors, low
efficiency, and insufficient security, which not only
increase transaction costs, but also may lead to financial
fraud and data leakage, seriously affecting the stable
growth of the economy and the sustainable development
of society [2-3]. The application of blockchain technology
(BCT) can significantly reduce the risk of financial fraud
transactions, accelerate trade financial settlement time,
and improve compliance efficiency. In addition, the
integration of blockchain with artificial intelligence (Al),
the Internet of Things (loT), and cloud computing (CC)
has further enhanced real-time financial monitoring, trade

the theoretical exploration and initial implementation of
BCT, leaving a conspicuous gap in thorough and
comprehensive  investigations into the effective
identification and categorization of anomalous nodes
within digital economic transactions, along with the
development of efficient algorithms for detecting security
risks in such transactions [5-6].

To address the issue of insufficient transparency in the
financial system, Abdin et al. systematically explored the
application trends, challenges, and impacts of BCT in the
financial sector through case analysis. The results showed
that the application of BCT significantly reduced financial
fraud transactions by 42%, accelerated trade finance
settlement time by 58%, and improved compliance
efficiency by 49%. In addition, the integration of
blockchain with Al, the 10T, and CC enhanced real-time
financial monitoring, trade authentication, and data
security management capabilities, promoting the
digitalization process of finance [7]. Mishra et al.
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proposed a solution using blockchain network technology
to address the problems of cumbersome processes, easy
errors, low efficiency, and insufficient security in
traditional financial systems. The research results
indicated that compared with traditional systems, BCT
had the characteristics of lower cost, higher transparency,
and better efficiency. Especially in the banking industry,
BCT could significantly improve security, performance,
and reduce the cost of various business processes,
providing users with better quality services [8]. In
response to the issue of storage sustainability in
blockchain systems, Liu et al. optimized storage structures
and data management methods to improve storage
efficiency and encourage users to pay reasonable
transaction fees to cover storage costs. The research
results indicated that these mechanisms could effectively
alleviate storage pressure, enhance the long-term
feasibility of the system, and provide reference for small
and medium-sized enterprises to ensure data storage
security in CBEC business [9]. To address the issues of
insufficient transparency and lack of public trust in the
economic field, Cao et al. used a literature review method
to examine the impact of BCT on improving economic
transparency and cultivating public assurance. By
analyzing multiple sources of information and text, the
study found that BCT, with its high transparency, security,
and data integrity, became an effective tool for achieving
economic transparency and enhancing public trust. The
results indicated that in an increasingly data dependent
society, BCT was of great significance in promoting
sustainable economic growth and social stability [10]. The
application effects and limitations of BCT in the financial
system are compared in Table 1.

Table 1: Comparison of the application effects and
limitations of BCT in the financial system
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In summary, existing research has mostly focused on
theoretical exploration and preliminary applications, and
there remains a notable absence of rigorous investigation
into how to effectively utilize blockchain network
topology to identify and classify abnormal nodes, as well
as how to design efficient transaction security detection
algorithms. The core research question focuses on the
dynamic topology update mechanism of blockchain
networks. It examines whether this mechanism can
effectively improve abnormal node detection accuracy
and enhance transaction security for cross-border small
and medium-sized e-commerce. To delve deeper into the
application of blockchain network topology algorithms for
abnormal node detection and transaction security
enhancement, thereby improving both transaction safety
and system stability, a method is proposed for classifying
abnormal nodes based on a dynamic update algorithm
derived from blockchain network topology. Additionally,
an algorithm is designed for detecting security risks in
digital economy transactions. By analyzing the
hierarchical structure, node clustering, and dynamic
update mechanism of blockchain networks, accurate
identification and classification of abnormal nodes can be
achieved, and network topology analysis and node
behavior characteristics can be used to identify and defend
against various attack behaviors. A method based on
blockchain network topology dynamic update algorithm is
innovatively  proposed, which achieves accurate
identification and classification of abnormal nodes in
digital economy transactions by analyzing the hierarchical
structure of the blockchain network, combining node
clustering analysis and dynamic update mechanism.
Additionally, an efficient digital economy transaction
security detection algorithm was designed, which utilizes
network topology analysis and node behavior
characteristics to accurately detect and defend against
various attack behaviors, significantly improving the
security and system stability of digital economy
transactions for small and medium-sized enterprises in
CBEC. By introducing a dynamic update mechanism for
the blockchain network topology, the research can more
accurately capture the spatio-temporal variation
characteristics of node behavior, thereby achieving
significant improvements in key performance indicators
such as anomaly detection accuracy, transaction
processing delay, and system stability. This method,
grounded in topological dynamics, offers a fresh
perspective and solution for bolstering the security and
robustness of blockchain networks. It effectively bridges
the gap left by existing approaches in anomaly detection
within dynamic network settings, showcasing its distinct
advantages and significant application potential in current
research.
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2 Methods and materials

The study proposes an innovative method based on
blockchain network topology dynamic update algorithm,
aiming to identify and classify abnormal nodes in digital
economic transactions, and designs an efficient digital
economic transaction security detection algorithm.
Through the hierarchical structure and node clustering
analysis of blockchain networks, combined with dynamic
update mechanisms, accurate identification and
classification of abnormal nodes can be achieved.
Meanwhile, network topology analysis and node behavior
characteristics can be used to detect and defend against
various attack behaviors, providing technical support for
improving the security of digital economy transactions for
CBEC small and medium-sized enterprises.

2.1 Classification of abnormal nodes in
digital economy transactions based on
topology dynamic update algorithm

The research selects the design principle based on the
dynamic update algorithm of blockchain network
topology to accurately identify and classify abnormal
nodes in the e-commerce scenarios of cross-border small
and medium-sized enterprises, ensuring transaction
security and system stability. Clustering technology is
chosen because it can effectively identify node groups
with similar behavioral characteristics, laying the
foundation for anomaly detection. Meanwhile, the
research introduces dynamic update thresholds, enabling
the algorithm to adapt in real time to changes in network
topology and ensuring high detection accuracy under
different network conditions. This enhances the accuracy
of anomaly detection and the real-time performance and
adaptability of the system, providing reliable and secure
protection for digital economy transactions. Blockchain is
divided into data layer, network layer, consensus layer,
and application layer. The data layer is mainly responsible
for the storage and management of blockchain data,
including transaction data, block structure, etc. The
network layer is responsible for communication and data
transmission between nodes. The consensus layer ensures
the verification and confirmation of transactions by nodes
in the network through consensus mechanisms. The
application layer provides various blockchain-based
application services. In digital economy transactions, each
layer may become a target of attack, so it is necessary to
comprehensively consider the security of each layer [11-
12]. The blockchain hierarchy is shown in Figure 1.
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Figure 1: Blockchain hierarchy
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In Figure 1, the data layer is accountable for storing
the basic data of the blockchain, including block data, data
storage, chain structure, and timestamps. The network
layer includes peer-to-peer (P2P) networks, broadcasting
mechanisms, and verification mechanisms to ensure the
transmission and verification of data between nodes. The
consensus layer involves various consensus algorithms,
such as Proof of Work (PoW), Directed Acyclic Graph
(DAG), Proof of Stake (PoS), Delegated Proof of Stake
(DPo0S), Proof of Energy (PoE), Proof of X (PoX), and
Byzantine Fault Tolerance (BFT), employed to reach
agreement within distributed networks. The application
layer covers a variety of application scenarios such as the
10T, the Internet of Vehicles, the Industrial Internet, smart
contracts, smart cities and health records, and shows the
extensive application of BCT in different fields. The
architecture of the blockchain node network topology
system is shown in Figure 2. In this architecture, nodes
communicate through the network layer, the data layer
stores transaction information, the consensus layer ensures
the legality of transactions, and the application layer
provides transaction services. Through this hierarchical
architecture, node behavior in the network can be
effectively managed and monitored, providing a
foundation for detecting abnormal nodes [13-14].

The connection status
between nodes

The node sends the
connection information

s

The node sends the
connection information for
the first time

Figure 2: Architecture of the blockchain node network
topology system

In Figure 2, when a node joins the network for the first
time or needs to establish a connection with another node,
it sends connection information to the target node. Once
the connection is established, the nodes will maintain this
connection state and ensure the validity of the connection
through continuous communication. The architecture
displays multi-level connections between nodes, meaning
that one node can be connected to multiple nodes to form
a complex network structure. This multi-level connection
enhances the robustness and decentralization of the
network. Nodes not only communicate with directly
connected nodes, but also propagate information through
indirectly connected nodes, thereby achieving widespread
dissemination of information in the network.

Subsequently, an algorithm is developed to group
nodes in blockchain networks with the aim of categorizing
them into diverse classes. This process promotes multi-
threaded recognition of network structures. By using
clustering algorithms, nodes with similar behavioral
characteristics can be grouped together, which facilitates
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subsequent anomaly detection. Meanwhile, an algorithm
is introduced to make real-time adjustments to the network
structure. The algorithm's objective is to diminish usage of
network resources required for identifying network
structures and enhance the rate of network structure
identification updates [15-16]. The classification process
of abnormal nodes in digital economy transactions based
on topology dynamic update algorithm is shown in Figure
3.
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Figure 3: Flow chart of abnormal node classification in
digital economy transaction based on topology dynamic
update algorithm.

In Figure 3, first, cluster analysis is performed on the
nodes in the blockchain network. To accurately describe
the similarity measurement, the study adopts a combined
method of cosine similarity and Euclidean distance to
calculate the similarity between nodes. Cosine similarity
is used to measure the directional similarity of node
feature vectors, while Euclidean distance is used to
measure the absolute distance of feature vectors.
Similarity can be calculated based on features such as
transaction frequency, transaction amount, and connection
time between nodes. Specifically, as shown in equation
Q).

1

S(iij)=m @

In equation (1), S(i, J) represents the similarity

between node i and node ], and represents

1
1+d(i, j)
the Euclidean distance or other distance measure between
node i andnode j. By calculating the similarity between
all nodes, nodes can be divided into different clusters. A
dynamic update algorithm is designed based on clustering.
The dynamic update coefficient of node is defined to
measure the behavior change of node i within a
continuous time window. Specifically, as shown in
equation (2).

U(i):%i|8(i,t)—8(i,t—1)| ?
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In equation (2), U (i) represents the dynamic update
coefficient of the node, T represents the size of the time
window, and S(i,t) represents the similarity of node i

over time t . By calculating the dynamic update
coefficient of nodes, nodes with abnormal behavior can be
identified. According to the dynamic update coefficient of
nodes, they are divided into normal nodes and abnormal
nodes. The study sets a threshold @, when , node i is
marked as an abnormal node. The research has refined the
approach to identifying abnormal nodes by moving away
from the simplistic method of setting a fixed threshold at
zero. Instead, it has introduced a dynamic threshold
mechanism grounded in statistical analysis, which
carefully considers the normal range of fluctuations
inherent in network behavior. The threshold of the

dynamic update coefficient U (i) is determined by

analyzing the distribution of U (i) in historical data,
ensuring that node i is marked as abnormal only when
U (i) exceeds a certain confidence interval within the

normal fluctuation range. This data-driven threshold
setting method reduces false alarms caused by normal
fluctuations and improves the accuracy and robustness of
anomaly detection. The selection of thresholds in the
research is based on the statistical analysis and
experimental verification of the dynamic update
coefficients of nodes. By analyzing a large amount of node
behavior data, the distribution characteristics of the
dynamic update coefficient are determined, and then the
initial threshold is set based on these distribution
characteristics. During the experimental stage, the
anomaly detection performance under different thresholds
is evaluated. Based on indicators such as detection
accuracy and false alarm rate, the grid search method is
used to optimize and adjust the thresholds. Eventually, the
optimal threshold is determined to achieve precise
identification and classification of abnormal nodes. In
terms of abnormal node classification, the study adopts the
K-means clustering algorithm. The clustering process
calculates the similarity between nodes based on
characteristics such as transaction frequency, transaction
amount and connection time of nodes, and uses the
Euclidean distance metric, as shown in equation (3).

similarity; =exp(—distance; ) (3)
In equation (3), diS’[anceij represents the Euclidean

distance between node i and node j . Based on this
similarity, the K-means algorithm divides nodes into
different clusters, and the nodes within the clusters have
similar behavioral characteristics. Subsequently, through
the dynamic update algorithm, the dynamic update
coefficient is calculated based on the behavioral changes
of nodes within the continuous time window to identify
abnormal nodes.
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2.2 Digital economy transaction security
detection based on blockchain network
topology algorithm

The classification method of abnormal nodes in digital
economy transactions based on topology dynamic update
algorithm can effectively identify and classify abnormal
nodes in transactions. On this basis, further research is
conducted to design a digital economy transaction security
detection method based on blockchain network topology
algorithm, which utilizes network topology structure and
node behavior characteristics to identify and defend
against various attack behaviors, thereby enhancing the
security of the entire transaction system. This algorithm
utilizes network topology analysis and combines node
behavior characteristics to achieve accurate detection of
abnormal behavior [17-18]. Figure 4 shows how attackers
can control multiple malicious nodes to send a large
number of requests to the target node, causing the target
node to exhaust its resources and unable to process
legitimate transaction requests.

pm (= -
@ = | Ce) |
Cellkg: Attacker
intelligence Puppet cluster
Normal
request A
<_
Normal node Unable to Normal server
respond cluster

Figure 4: Schematic diagram of network denial-of-
service attack.

In Figure 4, puppet cluster refers to a collection of
nodes that are manipulated by attackers and used to launch
a large number of malicious requests to exhaust the
resources of the target node. The Normal server cluster
represents the collection of normal nodes in the
blockchain network that are responsible for processing
legitimate transactions. The intelligence information
section shows that the attacker first collects intelligence
information and then uses this information to organize a
puppet cluster to make malicious requests to the normal
server cluster. These malicious requests cause the server
to respond to malicious requests while ignoring requests
from normal nodes, ultimately resulting in requests from
normal nodes being unresponsive, and the normal server
cluster being unable to provide services normally. The
schematic diagram of the network topology structure is
shown in Figure 5, depicting the connection relationships
of nodes in the blockchain network. By analyzing these
connection relationships, abnormal patterns in the network
can be identified, such as abnormal transaction
frequencies or unusual connection patterns.
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Figure 5: Schematic diagram of the network topology
structure.

Figure 5 shows a network model consisting of nodes
and edges. The starting node is marked as s, the ending
node is marked as t, and there are several nodes numbered
0 to 10 in between. The connections between nodes
represent their connectivity relationships, forming a
complex network. Node 0 is directly connected to nodes 1
to 4, while nodes 5 and 6 are connected to multiple other
nodes, further expanding the coverage of the network.
Nodes 8 to 11 form another part of the network, connected
to the starting and intermediate nodes through multiple
paths. The flowchart of the digital economy transaction
security detection algorithm based on blockchain network
topology algorithm is shown in Figure 6.
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Figure 6: Flowchart of the digital economy transaction
security detection algorithm based on blockchain
network topology algorithm.

In Figure 6, the algorithm first collects transaction
data and node connection data in the blockchain network,
and preprocesses these data to remove noise and fill in
missing values. Next, the algorithm analyzes the
connection relationships between nodes and quantifies the
transaction interactions between node i and node ] by

calculating the connection strength, as shown in equation

(4).

N,
C(I,J)=T—,\;_ 4)



44 Informatica 49 (2025) 39-50

In equation (4), C(i, j) is the ratio of the total
number of transactions between node i to the number of

transactions between node i and node j Nij represents
the number of transactions between node i and node j,
and TN, represents the total number of transactions

participated by node i . The transaction frequency is used
to measure the trading activity of node I within a given
time window T, as shown in equation (5).

LN,
F(i)=— 5
== (5)

In equation (5), F (i) represents the total number of
transactions that node i participates in within the time

window T , and Ni represents the total number of

transactions of node i. The node behavior feature vector
is a comprehensive description of node behavior,
including transaction frequency, connection strength with
another node, and historical anomaly records, as shown in
equation (6). The historical anomaly record in the feature
vector represents the number of times a node has been
marked as an anomaly within a certain period of time in
the past.

B(i) =[F(i),C(i, j), Historical Anomaly Records;] (6)

In equation (6), B(i) represents the behavior feature
vector of node i and Historical Anomaly Records,

represents the historical abnormal behavior records related
to node i . Historical abnormal behavior is quantified by
tallying the frequency with which a computing node has
been flagged as anomalous over a designated past time
frame, and this count is then incorporated as a constituent
element of the feature vector. This quantization method
provides a clear numerical representation of the feature
vectors, which helps capture the historical behavior
patterns of nodes in the model and thereby enhances the
accuracy of anomaly detection. Subsequently, a
transaction frequency threshold is set to detect abnormal
traffic. If the transaction frequency of node i exceeds the
threshold within time window T, the node is marked as
abnormal. In addition, random forests are used to classify
node behavior based on node behavior feature vectors,
including transaction frequency, connection strength, and
historical anomaly records. The algorithm further
identifies specific types of attacks, with denial-of-service
attacks identified by detecting abnormal transaction
frequencies, witch attacks and solar eclipse attacks
identified by analyzing the connection strength and
transaction flow between nodes, and network
segmentation attacks identified by detecting the presence
of isolated subgraphs in the network [19-20]. Finally,
based on the detection results, corresponding security
strategies will be deployed to isolate abnormal nodes,
strengthen monitoring and defense of potential attack
paths, effectively detect and defend against attack
behaviors in CBEC small and medium-sized enterprise
digital economy transactions, and ensure transaction

Y. Lyuetal.

security and stability. The pseudo-code of the algorithm is
shown in Table 2.

Table 2; Pseudo-code of the Algorithm.

1. Initialize the set of abnormal nodes A as an empty set
2. For each time window t € {1, 2, ..., T}

a. Calculate the similarity matrix S between nodes
using a combination of cosine similarity and Euclidean
distance:

SHIGT = o * cos(V[i], V[]) + (1 - @) * exp(-
distance(V[i], VIiD)

b. Perform clustering on nodes using the K-means
algorithm to obtain clustering result C

c. For each node i:

i. Calculate the dynamic update coefficient DUCI]
of node i based on its similarity changes within time
window t:

DUCIi] = (S[i][i] - S[fi-11) /T

ii. If DUCJi] > 0, then mark node i as an abnormal
node and add it to set A
3. Return the set of abnormal nodes A

The research proposes an abnormal node
classification method based on the dynamic update
algorithm of blockchain network topology. This method
first collects and preprocesses the transaction data of the
Bitcoin and Ethereum networks, then extracts node
features including transaction frequency, transaction
amount, connection time and historical abnormal records,
and standardizes these features to eliminate dimensional
influence.  Subsequently, the K-means clustering
algorithm is applied to conduct cluster analysis based on
the similarity of node feature vectors. The dynamic update
coefficient of each node is calculated to reflect the change
of its behavior over time. A threshold is set to identify
abnormal nodes whose dynamic update coefficient
exceeds this threshold. Finally, the performance of the
algorithm is evaluated by analyzing the detection results.
The parameters are adjusted based on the feedback from
the validation set to optimize the model.

3 Results

The performance of the proposed blockchain network
topology algorithm was evaluated through experiments,
and its application effect in the digital economy
transaction security of small and medium-sized
enterprises in CBEC was analyzed. The experiment
selected multiple blockchain network datasets and
compared the performance of this algorithm with other
advanced algorithms in terms of performance indicators.
Meanwhile, the actual application effect of this algorithm
in digital economy transaction security was analyzed from
multiple dimensions such as transaction processing
latency, network throughput, node discovery time, and
anomaly detection accuracy.
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3.1 Performance evaluation of blockchain
network topology algorithms

To ensure the reproducibility and transparency of the
research, the study provided detailed model parameters,
training procedures and validation details. The model
parameters included a time window size set at 12 hours,
the parameters of the clustering algorithm optimized to 5
based on the elbow rule, and the threshold determined
through grid search within the range of 0.05 to 0.15. In
terms of the training program, the dataset was divided into
a training set and a validation set in a 7:3 ratio. The model
was trained based on the training set, and the optimal
parameters were selected according to the performance of
the validation set. To comprehensively evaluate the
model's performance, the study comprehensively
considered multiple dimensions of indicators such as
precision, recall rate, F1 score, system stability, and
resource utilization. Precision and recall respectively
measured the accuracy and completeness of the model in
predicting abnormal nodes, while the F1 score
comprehensively considered both precision and recall,
providing a balanced performance evaluation. In addition,
system stability was measured by the percentage of
uptime, while resource utilization assessed the model's
occupation of computing resources in practical
applications, ensuring that the model could efficiently
detect anomalies while also operating stably in resource-
constrained environments. The Bitcoin dataset contained
transaction records from 2010 to 2020, totaling over 5
million transactions. The Ethereum dataset covers
transaction data from 2015 to 2020, totaling
approximately 3 million records. The sampling method
adopted stratified random sampling, ensuring the
representativeness and diversity of the data. The
preprocessing steps included data cleaning, outlier
removal, standardization processing, and feature
extraction, etc., to improve data quality and the accuracy
of the algorithm. To verify the effectiveness and
superiority of the proposed blockchain network topology
algorithm, a series of experiments were designed and
compared with several other advanced algorithms.
Comparative algorithms included Density-Based Spatial
Clustering of Applications with Noise (DBSCAN), Graph
Convolutional Networks (GCNs), and Autoencoders. The
accuracy of anomaly detection reflected the algorithm's
ability to identify abnormal nodes and was a key indicator
for measuring the algorithm's performance. Transaction
processing latency and transaction verification time were
directly related to the system's response speed and user
experience. Network throughput and concurrent
processing capacity reflected the system's ability to handle
transactions within a unit of time and were important bases
for evaluating system scalability and handling large-scale
transactions. The system stability and resource utilization
rate demonstrated the reliability and resource utilization
efficiency of the algorithm in actual operation. The root
means square error (RMSE) and mean absolute error
(MAE) of several algorithms are shown in Figure 7.
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Figure 7: RMSE and MAE of several algorithms.

In Figure 7 (a), the blockchain network topology
algorithm exhibited the lowest RMSE at all data volumes,
especially when the data volume was small. Finally, when
the data volume reached 60000, the RMSE dropped to
about 0.09. The RMSE of the DBSCAN algorithm did not
vary significantly throughout the entire range of data
volume, remaining at around 0.11. This indicated that
blockchain network topology algorithms had better
prediction accuracy and stability when processing data of
different scales. In Figure 7 (b), the blockchain network
topology algorithm exhibited the lowest MAE at all data
volumes, especially when the data volume was small.
Finally, when the data volume reached 60000, the MAE
dropped to about 0.09. This further confirmed that
blockchain network topology algorithms not only had
better prediction accuracy when processing data of
different scales but also performed well in error control,
demonstrating their potential and advantages in practical
applications. The node activity and node revenue of
several algorithms are shown in Figure 8. Node Revenue
referred to the economic benefits obtained by nodes
during their participation in transactions. It was used to
measure the economic contribution and revenue of nodes
in the network, reflecting the activity and economic
benefits of nodes in the blockchain network. High node
returns usually meant more transactions were successfully
processed, which was closely related to transaction
security and system stability, because only in a safe and
stable environment could nodes continuously earn returns.
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Figure 8: Node activity and node revenue of several
algorithms.
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In Figure 8 (a), with the increase of data volume, the
node activity ratio of the blockchain network topology
algorithm significantly increased, from about 40% when
the data volume was O to nearly 90% when the data
volume was 10000. This indicated that it could effectively
improve node activity when processing large-scale data.
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The blockchain network topology algorithm had
significant advantages in improving node activity.
Especially when processing large-scale data, it could
effectively stimulate node participation, thereby
improving the efficiency and performance of the entire
network. In Figure 8 (b), the node revenue of the
blockchain network topology algorithm significantly
increased with the increase of data volume, from about 8
units when the data volume was 0 to nearly 20 units when
the data volume was 10000. Units referred tao the amount
of revenue accumulated by a node through participating in
transaction verification within a specific time window,
which was measured by the product of the number of valid
transactions processed by the node and the corresponding
transaction fees. This indicated that it could bring higher
revenue to nodes when processing large-scale data. The
transmission rate and concurrency rate of several
algorithms are shown in Figure 9.
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Figure 9: Transmission rate and concurrency rate of
several algorithms.
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In Figure 9 (a), the blockchain network topology
algorithm quickly reached the peak transmission rate of
nearly 11 MB/s when the dataset size was about 1000, and
remained relatively stable when the dataset size increased
to 10000. The blockchain network topology algorithm had
significant transmission rate advantages when processing
small datasets; it could quickly achieve high transmission
rates and still maintain high transmission efficiency when
processing larger datasets. In Figure 9 (b), the concurrency
of the blockchain network topology algorithm gradually
decreased with the increase of dataset size, from about 55
groups when the dataset size was 0 to about 45 groups
when the dataset size was 10000, indicating a decrease in
its concurrency processing ability when dealing with
large-scale datasets. Although blockchain network
topology algorithms performed well in terms of
transmission speed, further optimization might have been
needed in terms of concurrent processing capabilities to
meet the concurrent processing requirements of large-
scale datasets.

3.2 Analysis of the security effectiveness of
digital economy transactions for small
and medium-sized enterprises in
CBEC

To accurately simulate and detect specific attack

behaviors, such as denial-of-service attacks (DoS) and
eclipse attacks, corresponding attack models were studied
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and constructed, and targeted detection mechanisms were
designed. In the context of DoS attacks, the detection
mechanism operated by simulating scenarios where an
attacker gained control over multiple malicious nodes,
which then flooded the target node with a vast number of
requests. This onslaught depleted the target node's
resources, rendering it incapable of processing legitimate
transaction requests. The mechanism subsequently
identified attack behaviors by scrutinizing abnormal
fluctuations in both the transaction frequency and
connection strength of the nodes involved. For solar
eclipse attacks, it simulated that the attacker used the
controlled node to isolate the target node from the rest of
the network, making the target node communicate only
with the node controlled by the attacker. The detection
mechanism identified such attacks by analyzing abnormal
patterns in the connection relationships between nodes,
such as the appearance of isolated subgraphs. To evaluate
the performance of the proposed blockchain network
topology algorithm more comprehensively, the study
introduced multiple baseline methods for comparison,
including not only DBSCAN, GCN, and Autoencoder, but
also Isolation Forest and LSTM-based detectors.The
comparison results are shown in Table 3.

Table 3: Performance comparison of different baseline
methods and blockchain network topology algorithms.
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From Table 3, the proposed blockchain network
topology algorithm achieved 86.0% accuracy in anomaly
detection, which was significantly higher than other
baseline methods. This indicated that it had higher
precision in identifying abnormal nodes. In terms of
transaction processing latency and transaction verification
time, this algorithrm was only 1.8ms and 2.5ms
respectively. Compared with other algorithms, it could
complete transaction processing and verification more
quickly. The network throughput of this algorithm was
13.2TPS, and its concurrent processing capacity was as
high as 800TPS, far exceeding other baseline methods.
This indicated that it could handle a large number of
transactions more efficiently and had a stronger
concurrent processing capacity. In addition, in terms of
indicators such as network scalability, system stability,
resource utilization rate, and transaction success rate, this
algorithm also demonstrated excellent performance. The
network scalability was 10 nodes per second, the system
stability was as high as 97.0%, the resource utilization rate
was 93.0%, and the transaction success rate was 91.1%.
These data indicated that this algorithm ensured
transaction security while maintaining the stable operation
of the system and the efficient utilization of resources. The
standard deviation of all data was within 1.2%, indicating
that the algorithm had high stability and reliability in
multiple experiments. The CPU usage and response time
of the algorithm in actual CBEC small business digital
economy transactions are shown in Figure 10.
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Figure 10: CPU occupancy and response time of the
algorithm.
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In Figure 10 (a), the blockchain network topology
algorithm maintained the lowest CPU usage throughout
the entire runtime, with a fluctuation range of
approximately 10% to 30%, demonstrating high stability
and efficiency. This indicated that blockchain network
topology algorithms could more effectively utilize CPU
resources and reduce the consumption of computing
resources when processing the same tasks. In Figure 10
(b), as the amount of data increased, the response time of
all algorithms also increased, but the response time growth
of blockchain network topology algorithms was the
smoothest, increasing from about 20 milliseconds to
around 100 milliseconds. This indicated that blockchain
network topology algorithms had better scalability and
responsiveness when processing large-scale data, and
could effectively handle a large number of concurrent
requests while maintaining low latency.

3.3 The practical application results of
blockchain network topology
algorithms

To further verify the effectiveness of the proposed
blockchain network topology algorithm, the experimental
results were elaborated in detail through the Receiver
Operating Characteristic Curve (ROC), confusion matrix
and time series graph. The ROC curve of the blockchain
network topology algorithm is shown in Figure 11.

1.0 -

o o o
N (=] oo
1 1 1

True Positive Rate (TPR)

o
N
1

0.0 T T T
0.4 0.6 0.8

False Positive Rate (FPR)

0.0 0.2

Figure 11: ROC curve of blockchain network topology
algorithm.
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In Figure 11, the Area under the Curve (AUC) of the
blockchain network topology algorithm was 0.92,
demonstrating its superior performance in anomaly
detection. The actual classification confusion matrix of the
blockchain network topology algorithm is shown in Figure
12.
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Figure 12: Actual classification confusion matrix of
blockchain network topology algorithm.

In Figure 12, the TPR of the blockchain network
topology algorithm on the test dataset reached 86.0%,
further demonstrating its high precision and low false
alarm rate. The curve of the actual transaction processing
delay varying with time is shown in Figure 13.
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In Figure 13, the proposed algorithm maintained a
transaction processing delay of approximately 1.8
milliseconds within 24 consecutive hours of operation
without significant fluctuations, demonstrating the high
stability and reliability of the algorithm in practical
applications.

4 Discussion

The algorithm proposed by the research achieved an
anomaly detection accuracy of 86.0%, which was
significantly higher than the 79.0% reported by DBSCAN,
83.0% by GCN, and 78.0% by Autoencoder. This
improvement was mainly attributed to the fact that the
algorithm proposed by the research utilized the multi-layer
structure and node behavior characteristics of the
blockchain network, and adjusted the similarity threshold
in real time through a dynamic update mechanism, thereby
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more accurately identifying abnormal nodes. Although the
research by Abdin Z et al. [7] made significant progress in
reducing financial fraud, their methods were mainly based
on macro transaction data and lack fine-grained analysis
of node behavior. Although the research by Liu Y etal. [9]
optimized the storage structure and improved the system
stability, there is still room for improvement in the
accuracy of anomaly detection. In terms of latency, the
transaction processing latency of the algorithm proposed
by the research was only 1.8 milliseconds, which was
much lower than the latencies reported by other
algorithms. This advantage was attributed to the dynamic
update mechanism of the algorithm proposed by the
research, which could quickly identify and handle
abnormal nodes within a short period of time, thereby
significantly reducing transaction processing time.
Furthermore, the algorithm proposed by the research also
performed well in terms of system stability, reaching
97.0%, which was higher than the system stabilities
reported by other algorithms. This result indicated that the
algorithm proposed by the research not only had an
advantage in the accuracy of anomaly detection, but also
performed well in system stability and real-time
performance, and could better meet the needs of cross-
border small and medium-sized enterprises for transaction
security and system stability in e-commerce. Compared
with the research of Mishra et al. [8], although Mishra et
al. emphasized the potential of BCT in reducing the cost
of the traditional financial system and improving
transparency, they did not provide specific anomaly
detection indicators. The research proposed that by
implementing a dynamic update algorithm for the
blockchain network topology, not only was the accuracy
of anomaly detection enhanced, but significant
improvements were also achieved in latency and system
stability. This, in turn, provided a more secure and
efficient transaction environment for cross-border e-
commerce among small and medium-sized enterprises.
Furthermore, although the research by Cao et al. [10]
explored the application of BCT from the perspective of
economic transparency, it lacked in-depth analysis in
terms of anomaly detection and system stability. The
research proposed that through detailed experimental
verification, the advantages of the proposed algorithm in
these key performance indicators were proved.

The hardware environment used in the research was a
server equipped with an Intel Xeon E5-2690 v4 processor
and 128GB DDR4 memory. The runtime performance test
showed that when processing the e-commerce transaction
data of cross-border small and medium-sized enterprises,
the average CPU usage rate of the proposed blockchain
network topology algorithm was 35% and the memory
usage rate was 45%. The average processing time for a
single transaction was 1.8 milliseconds. In the scalability
test, this algorithm could add 10 new nodes per second in
a single-server environment. When extended to a
distributed cluster environment, the number of new nodes
per second could reach 100. However, as the number of
nodes further increased, the rate of new nodes slightly
decreased due to the influence of network latency and data
synchronization mechanisms. This indicated that in large-
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scale distributed scenarios, the scalability of the algorithm
had certain limitations. It is necessary to further optimize
the network communication and data synchronization
strategies to enhance its applicability in ultra-large-scale
networks. In the field of cross-border small and medium-
sized enterprise e-commerce, privacy protection,
regulatory compliance and deployment implementation
are the key factors to ensure the effective application of
BCT. In terms of privacy protection, cross-border
transactions involve the flow of data from multiple
countries. It is essential to ensure compliance with the
privacy regulations of each country, prevent data leakage,
and at the same time guarantee the anonymity and security
of user information. In terms of regulatory compliance,
financial regulatory requirements vary among different
countries. The proposed blockchain network topology
algorithm needs to adapt to and meet these norms to ensure
legal and compliant operation. During the deployment and
implementation process, it is necessary to consider the
compatibility of the system with the existing e-commerce
architecture, operation and maintenance costs, as well as
technical feasibility, to ensure that the solution can be
smoothly integrated into the existing business processes.

5 Conclusion

The research aimed to enhance the security of small and
medium-sized enterprises in CBEC in digital economy
transactions, and proposed an abnormal node
classification method and digital economy transaction
security detection algorithm based on blockchain network
topology dynamic update algorithm. The research
designed efficient network topology dynamic update
algorithms and node clustering algorithms to achieve
accurate identification and classification of abnormal
nodes. Meanwhile, The research used network topology
analysis combined with node behavior characteristics to
detect and defend against various attack behaviors. The
research results showed that the blockchain network
topology algorithm only took 2.5 milliseconds for
transaction verification time, had a node verification
success rate of 8.9%, a transaction conflict rate of only
1.7%, 3 security vulnerabilities, an attack detection delay
of 0.8 milliseconds, a recovery time of 0.7 seconds, and a
failure rate of 7.2%. These data were all superior to the
comparison algorithms, demonstrating the superiority of
the algorithm in terms of security and stability. The
blockchain network topology algorithm could effectively
enhance the security and stability of digital economic
transactions, providing a reliable security solution for
small and medium-sized enterprises in CBEC. However,
the concurrent processing capability of the algorithm
decreased when dealing with large-scale datasets, and
further optimization is needed to adapt to the concurrent
processing requirements of larger datasets. To quantify the
limitation of insufficient concurrency of the algorithm
when dealing with large datasets, subsequent experiments
should cover different data loads, including small-scale,
medium-scale and large-scale datasets, and test the
concurrent processing capacity, response time and
resource consumption of the algorithm under each load
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respectively. Through comparative analysis, the changing
trend of algorithm performance with the growth of data
scale can be clearly identified, providing empirical basis
for optimizing the algorithm and enhancing its
applicability in the big data environment.
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