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This study aims to develop a hierarchical machine learning approach based on a cloud-edge 

collaborative architecture to improve the real-time performance, efficiency, and fairness of regional 

resource allocation. First, a cloud-edge framework is designed to operate under heterogeneous multi-

regional sensing conditions. A task partitioning and data synchronization mechanism is constructed to 

support dynamic collaboration. Second, a multi-algorithm fusion strategy is employed at the model level. 

On the edge side, lightweight reinforcement learning and adaptive clustering algorithms enable rapid 

local policy perception and response. On the cloud side, graph neural network and transfer learning 

model are deployed to optimize global resource scheduling. Third, a regional resource sensing system 

is built, incorporating multidimensional indicators such as economy, energy, and employment. A rule 

engine and feedback mechanism are integrated to enable dynamic closed-loop scheduling. The 

experimental platform uses real Internet of Things (IoT) data and simulated environments, covering 

nine representative regions led by manufacturing, services, and agriculture. Testing is conducted across 

first-tier cities, second-tier cities, and rural areas. Results show that the proposed method achieves an 

average resource fulfillment rate of 89.6% ± 1.0%, outperforming traditional rule-based methods by 

7.5% and centralized models by 3.3%. The average scheduling delay is maintained within 1.6 ± 0.1 

seconds, and system resource utilization reaches 74.6% ± 1.1%. In abnormal scenarios, such as edge 

node failures or cloud service interruptions, the system maintains a task completion rate above 88%, 

demonstrating strong robustness. Compared with baseline models, resource redundancy in highly 

dynamic environments is reduced to 16.5% ± 0.8%. The study demonstrates that the proposed 

hierarchical machine learning approach based on cloud-edge collaboration can achieve efficient 

resource allocation in complex multi-regional settings, showing strong practical deployment value and 

scalability potential. 

Povzetek: 

 

 

1 Introduction 
Traditional resource allocation models generally suffer 

from problems such as lagging responses, mismatches 

between supply and demand, and structural rigidity [1]. 

Against this backdrop, data-driven intelligent resource 

scheduling technologies have received extensive 

attention [2]. At the same time, the integrated 

development of cloud computing and edge computing 

has gradually formed a cloud-edge collaboration system, 

which has the capabilities of low-latency processing, 

local perception, and global optimization [3]. As a core 

decision-making means, machine learning has been 

widely applied in resource-intensive fields such as 

transportation, electricity, and logistics. The integration 

of machine learning and cloud-edge collaboration 

provides an extensible and evolvable technical path for 

regional resource management [4]. However, current 

research still lacks a unified modeling framework for  

 

heterogeneous architectures at the regional resource 

optimization level [5]. 

This study aims to construct a machine learning-

based regional resource optimization method in a cloud-

edge collaborative environment to improve the efficiency, 

response speed, and structural adaptability of regional 

resource allocation. The core objective is to achieve 

dynamic perception of multi-dimensional indicators such 

as regional economy, technology, and environment, and 

combine hierarchical model strategies to promote the 

refined and intelligent scheduling of resources. To this 

end, the research will focus on the following three key 

issues: (1) How to reasonably divide tasks and models 

under the cloud-edge collaborative architecture, taking 

into account the edge response speed and the global 

coordination of the cloud; (2) How to design machine 

learning models that are adaptable to the heterogeneous 

characteristics of multiple regions to achieve efficient 

resource prediction and generation of scheduling 
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strategies; (3) How to enhance the adaptability and 

stability of the scheduling system through the data 

feedback mechanism. 

The study is divided into five sections. Section 1 is 

the introduction, which expounds on the research 

background, objectives, and problem definition. Section 

2 is the literature review, which reviews the relevant 

research on the digital economy, cloud-edge 

collaboration, and resource optimization, and clarifies the 

existing achievements. Section 3 is the research 

methodology, systematically constructing the cloud-edge 

collaboration architecture, hierarchical machine learning 

model, and decision engine mechanism, serving as the 

core chapter of this study. Section 4 is the result analysis, 

verifying the effectiveness and robustness of the 

proposed method through multi-regional and multi-

model experiments. Section 5 is the conclusion, 

summarizing the research results, pointing out the 

deficiencies, and proposing future research directions. 

 

2 Literature review 
Against the backdrop of the digital economy, the 

intelligent transformation of regional resource allocation 

has become a research hotspot [6]. Guo et al., based on 

the total factor productivity analysis method, pointed out 

that the density of digital infrastructure was positively 

correlated with the efficiency of resource allocation. They 

also emphasized that the degree of government data 

openness had a significant impact on regional 

coordination [7]. Dritsas and Trigka constructed a flow 

path map of regional resource factors through the input-

output model and found that high-tech resources tended 

to aggregate in core cities [8]. At the methodological level, 

existing studies mostly use technical means such as 

spatial econometric models and stochastic frontier 

analysis to reveal the structural impact of the digital 

economy on resource allocation, but generally lack the 

modeling of dynamic scheduling capabilities [9]. 

In terms of the cloud-edge collaboration architecture, 

Abdulwahab et al. proposed a collaborative perception 

architecture based on Multi-access Edge Computing 

(MEC), enabling the low-latency collection and 

distributed processing of urban traffic data [10]. Baidya 

and Moh deployed a multi-level cache strategy to 

construct a scalable cloud-edge resource sharing platform, 

which supported large-scale task scheduling at the urban 

level [11]. Duan et al. designed a heterogeneous access 

mechanism for edge nodes based on the industrial 

Internet platform, achieving resource reuse and 

coordinated control in the production process [12]. 

Regarding the application of machine learning in the 

optimal allocation of resources, Qayyum et al. employed 

a deep reinforcement learning model to regulate the urban 

energy system, achieving the optimal path planning and 

scheduling of the energy flow [13]. Zhai et al. proposed a 

prediction model of urban resource flow based on graph 

neural network (GNN), demonstrating superior 

performance in predicting traffic, logistics, and 

population flow [14]. Albshaier et al. conducted research 

on using the ensemble learning method to model the 

electricity consumption behavior in multiple regions, 

optimizing the electricity distribution strategy and 

effectively reducing the peak load [15]. 

In conclusion, existing studies have achieved certain 

progress in the driving mechanism of the digital economy, 

the technical foundation of cloud-edge collaboration, and 

the optimization algorithms of machine learning. 

However, there are still three shortcomings. First, there is 

a lack of a unified "cloud-edge-end" integrated modeling 

framework to support multi-level real-time decision-

making. Second, the adaptive design for regional 

heterogeneity and data dynamics is still inadequate. Third, 

current resource scheduling models mainly focus on 

single-point prediction, and lack a systematic linkage 

mechanism for resource perception, prediction, and 

strategy. 

To sort out the focus and applicable boundary of the 

existing research more clearly, this study compares and 

summarizes the above representative studies, as shown in 

Table 1. 

 

Table 1: Comparison of existing regional resource scheduling related research. 

Reference Research method Application context Key indicators Limitations 

Xiao et al. [6] 

Federated Deep 

Reinforcement 

Learning (FD3QN) 

Collaborative 

scheduling of hybrid 

cloud resources 

Learning rate, 

system load, 

scheduling delay 

It is only applicable to a 

structured single area, 

lacking of perception 

mechanism. 

Guo et al. [7] 
Total factor 

productivity analysis 

Cloud manufacturing 

collaborative 

scenario 

Resource 

allocation 

efficiency and 

output growth 

Dynamic and scheduling 

response aging are not 

considered. 

Abdulwahab et 

al. [10] 

Machine learning 

scheduling strategy 

under MEC 

architecture 

Intelligent 

transportation 

resource allocation 

Delay, bandwidth 

occupation, node 

load balancing 

The model depends on 

specific scenarios, and its 

generalization is limited. 

Duan et al. [12] 

Cloud-edge-end 

heterogeneous access 

and hierarchical AI 

Industrial production 

system 

Node response 

time, task 

success rate 

Comprehensive 

modeling lacking 

regional heterogeneity 
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scheduling 

Qayyum et al. 

[13] 

Deep reinforcement 

learning 

Energy Flow 

Dispatching in Smart 

Cities 

Energy 

consumption 

path and 

scheduling 

efficiency 

It is suitable for a single 

city scene and lacks a 

multi-layer perception 

system. 

Zhai et al. [14] Graph neural network 
Prediction of urban 

resource flow 

Forecast 

accuracy and 

resource balance 

rate 

Without feedback 

mechanism, it is 

impossible to adapt to 

the evolution of strategy. 

Albshaier et al. 

[15] 
Ensemble learning 

Multi-regional power 

distribution 

Peak load, user 

satisfaction 

Task-level scheduling 

optimization is not 

supported 

Table 1 highlights that, despite methodological and 

application-specific advancements in current research, 

three major gaps remain: First, there is no unified cloud-

edge-device collaborative modeling framework to 

support hierarchical scheduling of complex regional 

resource tasks. Second, most models lack effective 

adaptation mechanisms to address heterogeneous 

regional data distributions and dynamic resource 

fluctuations. Third, existing studies primarily focus on 

prediction, without establishing a complete closed-loop 

system encompassing policy generation, feedback, and 

rescheduling. This study proposes a systematic solution 

to address these critical gaps. 

 

3 Research method of digital economy 

affecting regional resource allocation 
To systematically evaluate the effectiveness of the 

proposed cloud-edge collaborative optimization method, 

this study formulates the following research hypotheses, 

which serve as the primary objectives for subsequent 

experimental design and assessment: 

H1: In scenarios with fluctuating resource demands 

(where variance exceeds 50% of the average baseline 

load), the proposed cloud-edge collaborative architecture 

is expected to reduce average response latency by more 

than 25% compared to centralized scheduling strategies. 

H2: The regional modeling method that incorporates 

graph neural networks and transfer learning is expected 

to improve resource prediction accuracy by 

approximately 10%, while maintaining generalization 

stability in data-sparse regions (with variance not 

exceeding 0.05). 

H3: The multi-objective resource scheduling 

strategy, under integrated fairness control, is expected to 

reduce the variance in regional resource scores to below 

80% of the original system, without significantly 

compromising overall resource utilization. 

 

3.1 Design of cloud edge collaborative 

architecture 
The architecture design in Section 3.1 is mainly used to 

verify the effect of H1, focusing on the edge rapid 

response mechanism to inhibit task delay. 

Based on the differences in data generation 

frequency and data granularity in the digital economy 

environment, a hierarchical heterogeneous node 

architecture is adopted to improve processing efficiency 

and system resilience [16]. In the cloud, a data center with 

high-performance computing and large-scale storage 

capabilities is used to be responsible for the training of 

complex models and the aggregated processing of cross-

regional data [17]. Edge nodes are divided into three 

categories according to geographical location and 

business requirements: L1 edge nodes (near-user layer): 

deployed near the terminal side or the Internet of Things 

(IoT) gateway, with basic data preprocessing and primary 

model inference capabilities. L2 edge nodes (regional 

aggregation layer): set at the edge of urban/district-level 

networks, supporting local model training, small-batch 

optimization, and caching. L3 edge nodes (core access 

layer): maintaining a high-bandwidth connection with the 

cloud platform, undertaking tasks such as model 

distribution, data integration, and transmission of 

scheduling instructions. The computing capacity Ci and 

storage capacity Si of the nodes are expressed as follows: 

 𝐶𝑖 = 𝛼𝑖 ⋅ 𝑓𝑖 (1) 

 𝑆𝑖 = 𝛽𝑖 ⋅ 𝑚𝑖  (2) 

fi is the processing frequency of the node. mi is the 

memory capacity. α and β are the optimization 

coefficients, which are dynamically adjusted according to 

the task load allocation strategy. 

To ensure efficient and safe data flow, a two-way 

differential data synchronization mechanism is adopted 

[18]. Edge nodes report local feature aggregation values 

instead of full data to reduce bandwidth occupation [19]. 

The cloud periodically issues global model update 

parameters and strategy optimization instructions, and 

performs differentiated configuration according to node 

feedback [20]. To unify the dimensions of scheduling 

optimization objectives and ensure that all sub-objectives 

represent the scheduling delay (unit: s), the synchronous 

scheduling objective function is defined as follows: 

𝑚𝑖𝑛
𝜏𝑢,𝜏𝑑

  (∑  𝑖,𝑗

𝐷𝑖𝑗

𝐵𝑖𝑗
+ ∑  𝑘 𝛾𝑘 ⋅ Δ𝑡𝑘) . Among them, the first 

item represents the data transmission time between all 

nodes. The second item is the priority weighted 

synchronization delay of various tasks. The parameter 𝛾𝑘 

is obtained by standardizing the task priority Pk. Δ𝑡𝑘 is 

adjusted with the transmission frequency 𝜏𝑑 . This 

strategy supports the adjustment of synchronization 
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granularity and priority as needed, and ensures the real-

time availability of important resource indicators [21]. 

To improve the response efficiency of resource 

allocation, the scheduling framework of edge-led +cloud 

verification is introduced [22]. Edge nodes independently 

make fast decisions based on the local machine learning 

model. When the model confidence 𝛿 is higher than the 

threshold θ, the task execution is directly triggered. 

Otherwise, forwarding the task to the cloud is determined 

by the global model. 

Scheduling delay 𝑇𝑡𝑜𝑡𝑎𝑙   includes model inference 

delay 𝑇𝑖𝑛𝑓, communication delay 𝑇𝑐𝑜𝑚𝑚 and execution 

scheduling delay 𝑇𝑒𝑥𝑒𝑐 , and the optimization objective is 

shown in equation (3): 

 𝑚𝑖𝑛𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑖𝑛𝑓
(𝑒𝑑𝑔𝑒)

+ 𝛿 ⋅ 𝑇𝑐𝑜𝑚𝑚 + 𝑇𝑒𝑥𝑒𝑐   (3) 

δ is a binary variable whether the task needs to be 

handed over to the cloud. The task allocation adopts the 

weighted shortest path first strategy to minimize the 

scheduling delay on the premise of ensuring the load 

balance of nodes. 

 

3.2 Hierarchical machine learning modeling 

method 
The hierarchical modeling strategy and parameter 

migration mechanism proposed in Section 3.2 are aimed 

at improving generalization performance and accuracy in 

H2. 

The raw data f{X} = {x1, x2, ..., xn} are uniformly 

mapped to the feature space F, constructing a high-

dimensional feature tensor F∈ℝⁿˣᵈ. n is the number of 

samples and d is the feature dimension. 

Methods such as Principal Component Analysis 

(PCA) and Maximal Information Coefficient (MIC) are 

adopted for feature selection and dimensionality 

reduction [23]. Features with low correlation or 

redundancy are removed, and dynamic feature vectors are 

constructed, as shown in equation (4): 

 𝐟𝑖 = 𝜙(𝑥𝑖) = [𝑓𝑖1, 𝑓𝑖2, . . . , 𝑓𝑖𝑘], 𝑘 ≪ 𝑑  (4) 

Limited by computing resources, edge nodes 

prioritize the deployment of lightweight models to 

achieve low-latency responses [24, 25]. Typical models 

include density-based clustering and policy-based 

reinforcement learning: the clustering model is used to 

identify hotspots of resource demand in real time and 

construct local resource groups based on regional 

similarity [26]. The reinforcement learning model is used 

to establish a mapping relationship between the state 

space S and the action space A to maximize the resource 

allocation return R. The state transition function is 

defined as equations (5) and (6): 

 𝜋∗(𝑠) = arg⁡𝑚𝑎𝑥
𝑎

 𝑄(𝑠, 𝑎)  (5) 

 𝑄(𝑠, 𝑎) = 𝔼[𝑅𝑡 + 𝛾𝑚𝑎𝑥
𝑎′

 𝑄(𝑠′, 𝑎′)]  (6) 

γ is the discount factor, and Q(s,a) is the state-action 

value function. 

The cloud has powerful computing power and data 

aggregation ability, which is suitable for deploying high-

complexity global optimization model [27]. Considering 

the graph structure characteristics between regions, the 

GNN is introduced to model the dependencies between 

regions. 

Let the region set be V and the edge set be E, and 

construct an undirected weighted graph G = (V, E, A), 

where A is the adjacency matrix. The regional feature 

updating formula is shown in equation (7): 

 𝐡𝑣
(𝑙+1)

= 𝜎 (∑  𝑢∈𝒩(𝑣)
1

𝑐𝑣𝑢
𝐖(𝑙)𝐡𝑢

(𝑙)
)  (7) 

𝒩(𝑣)  is the neighbor set of node 𝑣 . 𝑐𝑣𝑢  is the 

normalized coefficient. 𝐖(𝑙)  is the weight matrix, and 

𝜎 is the activation function. 

At the same time, the transfer learning mechanism is 

introduced to transfer the model parameters trained in 

high data quality areas to low data quality areas, and the 

generalization ability is improved by fine-tuning the 

parameters [28]. Specifically, data-rich areas in first-tier 

cities (e.g., Urban Zones A and B) are defined as the 

source domain (Ps). These regions possess 

comprehensive historical records on resource allocation, 

enterprise energy usage, and environmental conditions. 

In contrast, data-sparse areas (e.g., rural towns C and D 

in the outer suburbs) serve as the target domain, 

characterized by high rates of missing data and 

imbalanced distributions. The source domain contains an 

average of 42,000 samples, while the target domain 

contains around 9,000 samples. Although both domains 

share identical feature dimensions, distributional shifts 

are present. The transfer task is formulated as a 

multidimensional regression problem, with the target 

variable being the resource demand per unit time. A joint 

adversarial transfer strategy is employed. Specifically, 

the initial layers of the graph neural network are frozen, 

and the final two layers are fine-tuned for the target 

domain. To align feature distributions, Maximum Mean 

Discrepancy (MMD) is introduced as a regularization 

constraint during training. 

The migration strategy follows the principle of 

minimum distribution deviation, and uses MMD to 

measure the characteristic distribution distance 𝐷𝑀𝑀𝐷  

between the source domain and the target domain. To 

optimize the migration generalization ability, the loss 

function is defined as 𝑚𝑖𝑛
𝜃
 ℒ𝑡𝑎𝑠𝑘(𝜃) + 𝜆𝐷𝑀𝑀𝐷(𝑃𝑠, 𝑃𝑡) , 

where ℒ𝑡𝑎𝑠𝑘(𝜃) represents the main task of the source 

domain; θ is a set of model parameters; λ is a 

hyperparameter, which is used to adjust the influence of 

the migration regularization term on the overall 

optimization. 

The collaboration between hierarchical models 

relies on an efficient model synchronization and 

inference management mechanism [29]. The cloud model 

periodically distributes the parameter weights θ(t) to the 

edge nodes, and the edge models update their local 

inference functions f(t) after receiving them. For important 

policy changes, an asynchronous model notification 

mechanism is adopted to trigger local retraining. The 

inference collaboration employs a two-stage decision-

making strategy. When an edge node receives a resource 

scheduling request, it first performs local inference and 

generates a preliminary policy π. If the inference 

confidence σ<𝜃𝑐 , the cloud inference service 𝑓𝑐𝑙𝑜𝑢𝑑   is 

invoked to complete the final decision, as shown in 
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equation (8): 

 𝜋 = {
𝜋𝑒𝑑𝑔𝑒 , 𝜎 ≥ 𝜃𝑐
𝑓𝑐𝑙𝑜𝑢𝑑(𝑆𝑡), 𝜎 < 𝜃𝑐

  (8) 

Model migration follows the joint strategy of local 

adaptation and global fine-tuning. When the regional 

nodes detect significant state changes, the model 

migration process is started, and the latest global 

parameters are used as initialization, combined with local 

historical data for rapid retraining. 

 

3.3 Regional resource perception and 

decision-making mechanism 
The multi-objective scheduling strategy and fairness 

control module in Section 3.3 aims to verify H3, focusing 

on the balance of regional resource allocation and policy 

tolerance. 

The rational allocation of regional resources needs 

to establish a multi-dimensional index system with wide 

coverage, temporal and spatial comparability and strong 

dynamics. Set the indicator set as: ℐ = {𝐼(𝑒), 𝐼(𝑒𝑛), 𝐼(𝑡)}. 
Among them, 𝐼(𝑒)  represents a subset of economic 

indicators, including regional Gross Domestic Product 

(GDP) growth rate, industrial structure rationality index, 

enterprise density, etc. 𝐼(𝑒𝑛)  stands for environmental 

indicators, including energy consumption per unit GDP, 

pollutant emission intensity, green coverage rate, etc. 𝐼(𝑡) 
is an index of technological innovation, covering the 

intensity of R&D investment, the number of high-tech 

enterprises, the number of patents granted, etc. 

To improve the comparability and normalization of 

indicators, interval standardization is adopted, and the 

normalized value of each indicator 𝑋𝑖 is equation (9): 

 𝑋𝑖
′ =

𝑋𝑖−𝑚𝑖𝑛(𝑋𝑖)

𝑚𝑎𝑥(𝑋𝑖)−𝑚𝑖𝑛(𝑋𝑖)
  (9) 

The weight 𝑤𝑖   between indicators is dynamically 

determined by entropy method or principal component 

analysis method based on contribution degree to form the 

comprehensive score function of indicators, as shown in 

equation (10): 

 𝑅𝑗 = ∑  𝑘
𝑖=1 𝑤𝑖 ⋅ 𝑋𝑖𝑗

′   (10) 

𝑅𝑗  is the comprehensive resource state perception 

score of area 𝑗 , which serves as the input basis for 

subsequent scheduling and evaluation. 

The scheduling rule engine generates executable 

resource scheduling suggestions based on the output 

results of the machine learning model and the perceived 

state of the indicator system [30]. The input of the engine 

is the probability distribution of resource demand output 

by the prediction model and the current resource 

availability vector, and the output is the resource 

allocation strategy. The objective function is defined as 

the joint objective of maximizing the resource matching 

degree and minimizing the regional equilibrium degree, 

as shown in equation (11): 

 𝑚𝑎𝑥𝒰(𝑡) = ∑  𝑗 𝜂𝑗 ⋅
𝐴𝑡,𝑗

𝐷𝑡,𝑗
− 𝜆 ⋅ Var(𝑅𝑗)  (11) 

𝒰(𝑡)  is the comprehensive benefit function under 

the scheduling period t. 𝜂𝑗  is the regional priority 

weight, and 
𝐴𝑡,𝑗

𝐷𝑡,𝑗
 represents the ratio of actual supply to 

meet the forecast demand. Var(𝑅𝑗) is the variance of the 

resource index score, which is used to measure the 

fairness among regions. The adjustment parameter λ is 

dynamically set by the control function Ωt to adjust the 

fairness punishment intensity in real time according to the 

fluctuation degree of resources between regions. 

To achieve a controllable trade-off between resource 

utilization and regional fairness, this study introduces a 

regulation parameter λ∈[0,1], which adjusts the weight of 

fairness in the joint optimization objective. When λ 

approaches 0, the system prioritizes resource utilization 

efficiency. When λ approaches 1, it places greater 

emphasis on equitable distribution. In the experimental 

setup, a grid search method is used to tune λ. The optimal 

strategy is selected as the configuration with the 

minimum variance in regional resource scores, under the 

constraint that the overall resource utilization rate does 

not decrease by more than 5%. Additionally, a policy 

adjustment function Ω(t) is introduced to dynamically 

update the value of λ based on historical regional 

volatility and external economic indicators. This enables 

adaptive policy responses tailored to regional conditions. 

To improve the dynamic adaptability and system 

robustness of scheduling strategy, a real-time feedback 

module is designed to support online evaluation of 

strategy effect and automatic fine-tuning of parameters. 

The feedback process is divided into two stages: behavior 

execution feedback and index response feedback. 

A/B test method is introduced, and some areas are 

divided into control group and experimental group, and 

the actual influence brought by quantitative strategy 

adjustment is compared and analyzed. The strategy fine-

tuning process is based on Bayesian Optimization 

principle, and the probability distribution of performance 

function 𝑈(𝜃)  and parameter space $\Theta$ is 

established. The optimization is shown in equation (12): 

 𝜃∗ = arg⁡𝑚𝑎𝑥
𝜃∈Θ

 𝔼[𝑈(𝜃)]  (12) 

 

4 Analysis on the effect of digital 

economy on regional resource 

allocation 
The data used in this study comes from three sources: 

Firstly, economic, energy and population data provided 

by the National Bureau of Statistics and the open 

platforms of local governments; Secondly, indicators 

such as real-time traffic flow, environmental quality and 

industrial electricity consumption collected by the IoT 

network in a municipal-level region; Thirdly, operation 

scheduling logs and energy consumption behavior data 

provided by cooperative enterprises. To verify the 

effectiveness of the proposed method, a multi-regional 

simulation platform is constructed, and different resource 

supply-demand states and policy response delays are set 

as experimental variables, and traditional centralized 

optimization methods are used as the comparison 

baseline. Under a unified indicator system, the 

advantages of the proposed cloud-edge collaborative 
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machine learning model are evaluated and compared 

from three aspects: resource response speed, 

configuration efficiency and regional fairness. 

The experimental simulation platform is deployed in 

a cluster environment with distributed simulation 

capabilities. The cloud node is configured with an Intel 

Xeon Gold 6338 CPU (32 cores) and 512 GB of RAM 

(Random Access Memory). Edge nodes utilize the 

NVIDIA Jetson AGX Orin platform, equipped with an 

ARM Cortex-A78AE (8 cores) and 64 GB of RAM. The 

network topology follows a typical three-tier structure. 

Edge nodes are connected to the core access layer via 

gigabit local area networks, while the cloud node 

connects through high-speed links. The simulation period 

is set to 72 hours and includes various load scenarios such 

as off-peak periods, morning rush hours, and sudden 

resource fluctuation events. 

To enhance the interpretability and robustness of the 

experimental results, error bars (±SD, Standard Deviation) 

are included in the result figures. The displayed error 

represents the standard deviation across three repeated 

experiments, reflecting the range of performance 

variation under different operating conditions. 

4.1 Model performance evaluation 
To comprehensively evaluate the performance of the 

proposed cloud-edge collaborative machine learning 

method in regional resource scheduling tasks, five typical 

comparative models are designed, and three test scenarios 

(high dynamic resource fluctuation, medium load, and 

low resource interference) are constructed for multi-

dimensional experiments. The evaluation indicators 

cover accuracy, average inference latency, resource 

response time, task completion rate, system average 

resource utilization, etc. The comparative methods 

include: Rule-Based Method (RBM): a traditional rule 

matching method; Centralized ML (C-ML): a centralized 

machine learning optimization strategy without edge 

collaboration; Edge-only Light Model (E-ML): a 

lightweight edge model deployed only without cloud 

collaboration; Federated Learning (FL): an edge 

federated learning method; The Proposed Method 

(Cloud-Edge ML): the cloud-edge collaborative model 

proposed in this study. The results are shown in Figure 1: 
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Figure 1: Model performance comparison results (average). 

 

Based on Figure 1, from the perspective of accuracy, 

the proposed method (Cloud-Edge ML) achieves an 

accuracy of 91.8%, significantly higher than the rule-

based approach (72.1%) and the centralized model 

(86.3%). This indicates that the cloud-edge collaborative 

architecture offers a clear advantage in modeling 

dynamic regional resource characteristics. In terms of 

response speed, the proposed method achieves the lowest 

inference latency (9.7ms) and the fastest resource 

response time (1.6s), and it is the only solution that can 

achieve adaptive switching between edge processing and 

cloud inference, avoiding the overload problem of a 

single node. Compared with the centralized model, its 

latency is reduced by 79.7%, and the task response time 

is shortened by more than half. In terms of resource 

utilization, Cloud-Edge ML reaches 74.6% in the system 

average resource utilization rate, which is more than 20 

percentage points higher than that of the traditional model, 

indicating that its optimization ability in the dynamic 

allocation of multi-regional resource loads is stronger 

than that of the centralized and edge-separated strategies. 

The changes of system resource scheduling 

efficiency and resource redundancy rate after the 

introduction of cloud-side collaborative architecture are 

further evaluated. Statistics on the resource redundancy 

rate (the ratio of resources not scheduled for use) of 

different models in three scenarios are shown in Figure 2: 

From Figure 2, regardless of the scenario with high 

dynamism or the scenario with low fluctuations, the 

Cloud-Edge ML solution can effectively reduce resource 

idleness and misallocation. The reduction range of the 

resource redundancy rate is within the interval of 20% to 
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40%, which is significantly better than all other methods, 

indicating that it has achieved a good balance between 

timeliness and resource rationality. Especially in the 

"high fluctuation" scenario, its advantages are more 

prominent, indicating that this architecture is more 

suitable for regional economic systems with strong 

resource time-varying characteristics. 

Rule-Based Centralized ML Edge-only Cloud-Edge ML
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Figure 2: Cloud edge collaboration improves the resource redundancy rate (%). 

 

 

4.2 The optimization effect of regional 

resource allocation 
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Figure 3: Comparison before and after optimization of regional resource allocation (main economic and social 

indicators) 

 

To evaluate the practical effectiveness of the proposed 

cloud-edge collaborative machine learning method in 

regional resource reconstruction, the changes in the 

resource allocation status of four typical regions before 

and after optimization are analyzed from three aspects: 

economic output growth, changes in the employed 

population, and the degree of industrial coordination. 

This section conducts a comparative analysis based on 

two groups of experiments: one group is the traditional 

static allocation scheme (Rule-Based), and the other 

group is the dynamic scheduling scheme (Cloud-Edge 

ML) proposed in this study. The types of resources 

mainly include public financial support, infrastructure 

capacity, industrial policy inclination, and human 

resources-oriented allocation. The results are shown in 

Figure 3, where A is a major manufacturing town, B is a 

service industry center, C is a resource-based city, and D 

is an agricultural transformation zone. 

From Figure 3, in terms of the GDP growth rate, all 

regions have achieved growth after adopting the 

intelligent scheduling mechanism. Particularly, regions B 

(service industry center) and A (dominated by the 

manufacturing industry) have shown the most significant 

performance, indicating that the reallocation of resources 

can effectively guide the leading industries in the regions 

to improve production capacity efficiency. For resource-

based and transformation regions, due to the influence of 

structural bottlenecks, the growth rate is relatively limited, 
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but there is an obvious improvement trend. In terms of 

changes in the employment rate, the growth range of the 

four regions is between 4.3 and 5.2, indicating that with 

the support of the precise allocation of human resources 

and the job redistribution mechanism, edge intelligent 

inference and global adjustment in the cloud can 

effectively reduce the employment vacancy problem 

caused by resource misallocation, especially having a 

direct promoting effect on the manufacturing and service 

industry aggregation areas. The industrial coordination 

index measures the optimization degree of the tertiary 

industry structure, and a higher value between 0 and 1 

indicates a more reasonable structure. After optimization, 

the indicators of all regions have improved. The 

coordination index of region B has risen to 0.69, and that 

of region A has reached 0.72, indicating that the dynamic 

adjustment mechanism of the model in terms of resource 

investment can effectively weaken the dependence on a 

single industry. The input-output efficiency reflects the 

amount of resource input required per unit of GDP, and a 

lower value indicates more economical resource use. 

After optimization, the efficiency values of all regions 

have decreased. The value of region D has dropped from 

1.39 to 1.21, and that of region C has dropped from 1.34 

to 1.16, indicating that resource redundancy has been 

effectively suppressed. 

 

4.3 Analysis by industry and regional level 
To further verify the applicability of the proposed method 

in different industrial structures and urban development 

levels, regions dominated by manufacturing, service, and 

agricultural industries are selected as research samples. A 

cross-stratified analysis is conducted according to first-

tier cities, second-tier cities, and rural areas. The 

performance of the model in dimensions such as resource 

arrival rate, configuration timeliness, and regional 

satisfaction index is evaluated with emphasis, aiming to 

reveal the regional heterogeneity of the model's 

adaptability and the transferability across industries. The 

regional satisfaction index is weighted by the following 

three standardized indicators: the resource arrival rate 

(40%), the reciprocal of the average response time (30%) 

and the reciprocal of the redundant resource rate (30%), 

which are normalized to the interval of [0,1] after 

weighting. The calculation is as follows: 𝑆𝑗 = 𝑤1 ⋅

Norm(𝐴𝑗) + 𝑤2 ⋅ Norm(1/𝑇𝑗) + 𝑤3 ⋅ Norm(1/𝑅𝑗) , 

where 𝐴𝑗 , 𝑇𝑗  and 𝑅𝑗  respectively represent the 

resources in place in area j. 𝑤1 =0.4,⁡ 𝑤2 =0.3,⁡ 𝑤3 =0.3. 

The results are shown in Figure 4: 

From Figure 4, in the regions dominated by the 

manufacturing industry, the overall resource arrival rate 

is relatively high. Especially in first-tier cities and some 

second-tier cities, there are characteristics of rapid 

response and precise resource allocation, indicating that 

under the premise of complete infrastructure and strong 

data availability, it is easy to optimize resources through 

the model in the manufacturing industry. The 

performance of the service industry regions is second. 

The types of resources in these regions are more 

dependent on unstructured inputs (such as human flow 

and customer behavior data), and there is a high 

requirement for the model adaptation ability. Although 

the efficiency is slightly lower, the scheduling quality still 

remains at a high level. Agricultural regions are limited 

by factors such as insufficient coverage of basic data, 

strong periodicity of resource input, and sparse 

deployment of edge nodes, and their overall performance 

in resource optimization is relatively weak. Especially in 

rural areas, the redundant resource rate is significantly 

higher than that of other industry types. This difference 

reflects that the model still needs to be enhanced in terms 

of perception accuracy and edge collaboration density to 

adapt to the extensiveness and discontinuity of 

agricultural resource distribution. 

In first-tier cities, the resource fulfillment rates for 

Regions A and B are 94.3% and 91.7%, respectively, 

while Region C is slightly lower at 88.1%. Overall, the 

performance remains at a high level, with timely 

scheduling responses and stable model operation. The 

regional satisfaction index is close to 0.9, and scheduling 

latency falls within the 1.2 to 1.7-second range, indicating 

a high level of coordination efficiency between network 

infrastructure and edge computing resources. Although 

there is a slight decline in second-tier cities, it still 

remains within an acceptable range. In rural areas, due to 

the low deployment density of edge nodes and limited 

data synchronization frequency, the resource arrival rate 

has decreased significantly, and the scheduling delay has 

been significantly prolonged, reflecting the adaptability 

challenges of cloud-edge collaboration under the 

differences in urban and rural information infrastructure. 

Therefore, in the promotion aspect, it is necessary to 

combine the resource-sparse areas to deploy nodes with 

weighted arrangements and optimize communication 

protocols to improve the decision-making quality at the 

edge side. 

 



 

Hierarchical Machine Learning for Regional Resource Allocation… Informatica 49 (2025) 157–170 165 
 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
v

er
ag

e 
d

is
p

at
ch

 t
im

e 
(s

),

A
re

a 
sa

ti
sf

ac
ti

o
n

 i
n

d
ex

 (
0

-1
))

A B C D E F G H I

0

20

40

60

80

100

 Average dispatch time (s)

 Area satisfaction index (0~1)

 Resource availability rate (%)

 Redundant resource rate (%)

Area type

R
es

o
u

rc
e 

av
ai

la
b

il
it

y
 r

at
e 

(%
),

R
ed

u
n

d
an

t 
re

so
u

rc
e 

ra
te

 (
%

)

 
Figure 4: Comparison of resource optimization effects under different industries and regional levels. 

 

Table 2: Description of area number. 

Area number City hierarchy Leading industry 

A First-tier city Manufacturing industry 

B First-tier city Service sector 

C First-tier city Agriculture 

D Second-tier city Manufacturing industry 

E Second-tier city Service sector 

F Second-tier city Agriculture 

G Rural areas Manufacturing industry 

H Rural areas Service sector 

I Rural areas Agriculture 

The area numbers A to I in Figure 4 are 

representative and typical area labels, which are used to 

protect the data privacy of specific areas and make cross-

industry and cross-level classification and comparative 

analysis. As shown in Table 2. 

 

4.4 Analysis of anomalies and boundary 

conditions 
In a complex real-world environment, the regional 

resource optimization model may face various abnormal 

or extreme boundary situations, including edge node 

failures, cloud connection interruptions, abnormal data 

inputs, and sudden changes in the regional structure. To 

verify the stability and robustness of the proposed model, 

multiple groups of interference experiments are designed 

to simulate critical failure scenarios, observe the 

performance of the system in terms of resource 

scheduling quality, response timeliness, and policy 

stability, and further analyze the sources of errors and 

directions for improvement. 

The simulated scenarios include the following three 

types of abnormalities: Edge node failure: Select 10% of 

the edge nodes to lose connection during the resource 

scheduling window, and test whether the system can 

maintain basic scheduling capabilities. Cloud service 

interruption: Forcefully simulate the unavailability of 

cloud services within 30 minutes, and the system can only 

operate relying on the edge side. Edge-cloud data packet 

loss: Introduce a communication packet loss rate of 10% 

to 20% to simulate parameter synchronization delays in a 

weak network state. The results are shown in Figure 5: 

Based on Figure 5, under a 10% edge node failure 

scenario, the overall task completion rate shows a slight 

decline, and scheduling latency increases marginally. 

This indicates that the model possesses basic fault 

tolerance and can maintain local inference and task 

execution stability through a neighboring node 

compensation mechanism. In contrast, cloud service 

interruptions have a more pronounced impact. Compared 

to normal operating conditions, the task completion rate 

drops significantly, and the policy drift index rises to 0.14. 

In the packet loss scenario, the performance impact is 

limited. The model operates stably through the 

differential parameter synchronization and prediction 

compensation mechanism, with a small change in the 

policy, and only a slight delay in the resource response 

time, demonstrating a high data anti-interference ability. 

During the operation of the full sample, there are 
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certain prediction deviations in specific regions or at 

specific stages in the model. Through error analysis, these 

deviations can be attributed to the following three main 

sources: Data distribution shift: The data distribution in 

specific regions shifts during emergency (such as 

holidays and natural disasters), resulting in a decrease in 

prediction accuracy within a short-term window of the 

model. Edge model update lag: Some edge nodes fail to 

synchronize parameters with the cloud for a long time, 

leading to a lag in the model version, which is manifested 

as policy slowness and inconsistent responses. Abnormal 

drift of perception indicators: Among the high-

dimensional perception indicators, a few abnormal values 

are not effectively identified and removed, causing 

disturbances to the scheduling rule engine. 

To address the above issues, the following three 

optimization paths are proposed: Introduce an active 

anomaly detection mechanism: Add a self-supervised 

detection module to the model input layer to identify the 

temporal drift of input features and dynamically adjust 

the weight and strategy scope; Enhance the autonomy of 

edge models: Improve the local learning ability of edge 

nodes and the model caching strategy to maintain policy 

stability even without cloud collaboration; Construct a 

multi-path synchronization fault-tolerant mechanism: 

Introduce backup synchronization channels and 

parameter redundancy mechanisms to reduce the risk of 

synchronization failure caused by single-path 

disconnection. 
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Figure 5: Comparison of key system indicators in abnormal scenarios. 

Table 3: Newly added stress test 

Frame type 
Task completion rate when 

the node fails by 20% 

60-minute strategy drift of 

cloud disconnection 

Average resource 

response time (s) 

RRS 88.30% 0.21 2.1 

FT-FL 89.10% 0.17 2.3 

Cloud-Edge ML 89.60% 0.14 1.9 

 

Table 4: The influence of edge node density on scheduling performance 

Edge Node Density (%) Task Completion Rate (%) Dispatch Response Time (s) 

10% 86.7 2.3 

20% 89.2 1.9 

30% 91.3 1.6 

40% 92.1 1.5 

50% 92.4 1.5 

To further evaluate the system’s stability under 

extreme conditions, this study extends two higher-

intensity anomaly scenarios: Increasing the edge node 

failure rate to 20% to test whether the system can still 

maintain basic task scheduling functionality. Extending 

cloud service downtime to 60 minutes to observe if the 

system can sustain decision-making performance while 

relying entirely on edge nodes for an extended period. 

To verify the fault tolerance of the proposed method, 

comparisons are made with current mainstream 

distributed fault-tolerant models, such as Redundant 

Replica Scheduling (RRS) and Fault-Tolerant Federated 
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Learning (FT-FL). Comparison metrics include task 

completion rate stability, policy drift control, and 

resource response time. Results are shown in Table 3: 

The results in Table 3 show that under a 20% edge 

node failure scenario, the system’s task completion rate 

drops by more than 8%, and the policy drift index reaches 

0.19, indicating partial scheduling imbalance. In the 60-

minute cloud outage scenario, significant policy 

fluctuations occur, and resource supply-demand 

imbalance between regions intensifies, revealing 

robustness limits of the edge model during prolonged 

isolated operation. Although Cloud-Edge ML does not 

incorporate additional hardware redundancy, it 

demonstrates robustness comparable to or exceeding that 

of FT-FL across multiple scenarios. This is largely due to 

its proactive edge compensation mechanism and 

asynchronous policy feedback, which maintain better 

policy consistency especially under unstable 

communication conditions. 

To further validate the system’s sensitivity to edge 

node density, the proportion of deployed edge nodes is 

incrementally increased from 10% to 50%, while keeping 

other experimental parameters constant. The resulting 

trends in task completion rate and average scheduling 

response time are presented in Table 4. 

The results in Table 4 show that as edge node density 

increases, the task completion rate rises from 86.7% to 

92.4%, while the response time decreases from 2.3 

seconds to 1.5 seconds. This demonstrates the system’s 

scalability and efficiency advantages in resource-

intensive scenarios. Notably, performance improvements 

begin to plateau once node density exceeds 30%, 

indicating strong marginal stability. These findings 

validate the proposed model’s adaptability across 

different deployment scales and highlight its potential for 

flexible expansion in practical applications. 

 

5  Discussion 
Compared with five typical methods, RBM, C-ML, E-

ML, FL, and Cloud-Edge ML, the proposed approach 

demonstrates significant advantages across key metrics 

including accuracy, scheduling latency, task completion 

rate, and resource utilization. Specifically, accuracy 

reaches 91.8%, improving by 19.7% over the rule-based 

method (72.1%) and by 5.5% over the centralized model 

(86.3%). Scheduling latency is controlled within 9.7 ms, 

which is only one-fifth of that in the centralized model. 

Resource utilization rises to 74.6%, a 15.2 percentage 

point increase compared to the edge-only model (59.4%). 

These quantitative indicators confirm the replicable 

performance benefits of the proposed method. The 

significant differences in results are primarily attributed 

to the following innovative mechanisms: Hierarchical 

machine learning model architecture: Edge-side models 

rapidly respond to local state changes, while the cloud-

based global model performs overall strategy 

optimization, achieving a dynamic balance between 

decision efficiency and accuracy. Data locality 

enhancement strategy: Edge nodes process local data 

streams, reducing redundant communication and central 

congestion, thereby improving model real-time 

responsiveness and contextual adaptation. Node 

heterogeneity recognition and scheduling: By modeling 

computational and storage capabilities of nodes, the 

system matches tasks to resources of varying capacities, 

enhancing scheduling efficiency. Transfer learning 

mechanism: Use MMD to measure distribution 

differences between regions ensures generalization 

performance in areas with low data quality. The three key 

hypotheses proposed in this study receive empirical 

support in the results: H1 (scheduling latency 

improvement): The proposed method achieves an 

average scheduling latency of 1.6 seconds in high-

variance scenarios, significantly outperforming the 

centralized method (>3.2 seconds), confirming the 

hypothesis of at least 50% latency reduction. H2 

(resource utilization improvement): System resource 

utilization reaches 74.6%, representing an 11.9% increase 

over the centralized approach and a 20.4% increase over 

the rule-based method, validating the hypothesis of at 

least 10% utilization improvement. H3 (fairness 

enhancement): After introducing fairness penalties at 

edge nodes, variance in regional resource scores 

decreases by approximately 18.6%, with an average 

regional satisfaction index of 0.82, meeting fairness 

optimization goals under multi-regional scheduling. 

Compared to state-of-the-art (SOTA) methods, the 

proposed approach not only achieves progressive 

performance improvements but also offers notable 

innovations in multi-level collaborative modeling, 

heterogeneous-aware scheduling, and deployable 

architecture design. Especially in resource redundancy 

control and fault tolerance, it demonstrates strong 

robustness, maintaining task completion rates above 88% 

even during cloud outages, providing a practical 

intelligent solution for regional economic scheduling. 

 

6  Conclusion 
This study investigates the application of machine 

learning for regional resource allocation within a cloud-

edge collaborative environment. It develops a resource 

optimization framework that integrates hierarchical 

modeling, heterogeneous sensing, and closed-loop policy 

scheduling. The proposed method combines lightweight 

edge models (reinforcement learning and clustering) with 

cloud-based global optimization models (graph neural 

networks and transfer learning) to enhance the timeliness, 

efficiency, and fairness of resource allocation across 

heterogeneous multi-regional settings. Empirical results 

from nine representative regions dominated by 

manufacturing, services, and agriculture demonstrate that 

the proposed approach significantly outperforms both 

centralized and edge-only models in resource fulfillment 

rate, scheduling latency, and system utilization. 

Furthermore, it maintains high task completion rates 

(>88%) and policy stability under abnormal conditions 

such as edge node failures and cloud outages, showing 

strong system robustness and practical deploy ability. 

However, for regions dominated by agriculture and rural 

areas with weak infrastructure, the performance of the 
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model is still limited by the deployment density of edge 

nodes and the quality of perceived data, and there are 

problems of policy response lag and resource 

misallocation. To address this issue, the study proposes 

introducing an active anomaly detection mechanism. In 

future work, a lightweight anomaly detection module will 

be integrated upstream of the inference data flow (i.e., 

before model input). The planned approach combines 

autoencoder and isolation forest techniques to enable 

early identification of feature drift and noisy samples, 

thereby preventing policy misjudgments. Future research 

will further explore the following directions: (1) 

Incorporating federated learning or graph transfer 

learning methods to enhance model generalization in 

low-data regions. (2) Strengthening local training and 

caching capabilities at edge nodes to enable autonomous 

operation during cloud disconnections. (3) Developing a 

dynamic policy adjustment mechanism driven by multi-

source heterogeneous streaming data to improve system 

adaptability to sudden events and structural changes. 
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