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This study aims to develop a hierarchical machine learning approach based on a cloud-edge
collaborative architecture to improve the real-time performance, efficiency, and fairness of regional
resource allocation. First, a cloud-edge framework is designed to operate under heterogeneous multi-
regional sensing conditions. A task partitioning and data synchronization mechanism is constructed to
support dynamic collaboration. Second, a multi-algorithm fusion strategy is employed at the model level.
On the edge side, lightweight reinforcement learning and adaptive clustering algorithms enable rapid
local policy perception and response. On the cloud side, graph neural network and transfer learning
model are deployed to optimize global resource scheduling. Third, a regional resource sensing system
is built, incorporating multidimensional indicators such as economy, energy, and employment. A rule
engine and feedback mechanism are integrated to enable dynamic closed-loop scheduling. The
experimental platform uses real Internet of Things (loT) data and simulated environments, covering
nine representative regions led by manufacturing, services, and agriculture. Testing is conducted across
first-tier cities, second-tier cities, and rural areas. Results show that the proposed method achieves an
average resource fulfillment rate of 89.6% + 1.0%, outperforming traditional rule-based methods by
7.5% and centralized models by 3.3%. The average scheduling delay is maintained within 1.6 + 0.1
seconds, and system resource utilization reaches 74.6% + 1.1%. In abnormal scenarios, such as edge
node failures or cloud service interruptions, the system maintains a task completion rate above 88%,
demonstrating strong robustness. Compared with baseline models, resource redundancy in highly
dynamic environments is reduced to 16.5% =+ 0.8%. The study demonstrates that the proposed
hierarchical machine learning approach based on cloud-edge collaboration can achieve efficient
resource allocation in complex multi-regional settings, showing strong practical deployment value and

scalability potential.

Povzetek:

1 Introduction

Traditional resource allocation models generally suffer
from problems such as lagging responses, mismatches
between supply and demand, and structural rigidity [1].
Against this backdrop, data-driven intelligent resource
scheduling technologies have received extensive
attention [2]. At the same time, the integrated
development of cloud computing and edge computing
has gradually formed a cloud-edge collaboration system,
which has the capabilities of low-latency processing,
local perception, and global optimization [3]. As a core
decision-making means, machine learning has been
widely applied in resource-intensive fields such as
transportation, electricity, and logistics. The integration
of machine learning and cloud-edge -collaboration
provides an extensible and evolvable technical path for
regional resource management [4]. However, current
research still lacks a unified modeling framework for

heterogeneous architectures at the regional resource
optimization level [5].

This study aims to construct a machine learning-
based regional resource optimization method in a cloud-
edge collaborative environment to improve the efficiency,
response speed, and structural adaptability of regional
resource allocation. The core objective is to achieve
dynamic perception of multi-dimensional indicators such
as regional economy, technology, and environment, and
combine hierarchical model strategies to promote the
refined and intelligent scheduling of resources. To this
end, the research will focus on the following three key
issues: (1) How to reasonably divide tasks and models
under the cloud-edge collaborative architecture, taking
into account the edge response speed and the global
coordination of the cloud; (2) How to design machine
learning models that are adaptable to the heterogeneous
characteristics of multiple regions to achieve efficient
resource prediction and generation of scheduling
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strategies; (3) How to enhance the adaptability and
stability of the scheduling system through the data
feedback mechanism.

The study is divided into five sections. Section 1 is
the introduction, which expounds on the research
background, objectives, and problem definition. Section
2 is the literature review, which reviews the relevant
resecarch on the digital economy, cloud-edge
collaboration, and resource optimization, and clarifies the
existing achievements. Section 3 is the research
methodology, systematically constructing the cloud-edge
collaboration architecture, hierarchical machine learning
model, and decision engine mechanism, serving as the
core chapter of this study. Section 4 is the result analysis,
verifying the effectiveness and robustness of the
proposed method through multi-regional and multi-
model experiments. Section 5 is the conclusion,
summarizing the research results, pointing out the
deficiencies, and proposing future research directions.

2 Literature review
Against the backdrop of the digital economy, the
intelligent transformation of regional resource allocation
has become a research hotspot [6]. Guo et al., based on
the total factor productivity analysis method, pointed out
that the density of digital infrastructure was positively
correlated with the efficiency of resource allocation. They
also emphasized that the degree of government data
openness had a significant impact on regional
coordination [7]. Dritsas and Trigka constructed a flow
path map of regional resource factors through the input-
output model and found that high-tech resources tended
to aggregate in core cities [8]. At the methodological level,
existing studies mostly use technical means such as
spatial econometric models and stochastic frontier
analysis to reveal the structural impact of the digital
economy on resource allocation, but generally lack the
modeling of dynamic scheduling capabilities [9].

In terms of the cloud-edge collaboration architecture,
Abdulwahab et al. proposed a collaborative perception
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architecture based on Multi-access Edge Computing
(MEC), enabling the low-latency collection and
distributed processing of urban traffic data [10]. Baidya
and Moh deployed a multi-level cache strategy to
construct a scalable cloud-edge resource sharing platform,
which supported large-scale task scheduling at the urban
level [11]. Duan et al. designed a heterogencous access
mechanism for edge nodes based on the industrial
Internet platform, achieving resource reuse and
coordinated control in the production process [12].

Regarding the application of machine learning in the
optimal allocation of resources, Qayyum et al. employed
a deep reinforcement learning model to regulate the urban
energy system, achieving the optimal path planning and
scheduling of the energy flow [13]. Zhai et al. proposed a
prediction model of urban resource flow based on graph
neural network (GNN), demonstrating superior
performance in predicting traffic, logistics, and
population flow [14]. Albshaier et al. conducted research
on using the ensemble learning method to model the
electricity consumption behavior in multiple regions,
optimizing the electricity distribution strategy and
effectively reducing the peak load [15].

In conclusion, existing studies have achieved certain
progress in the driving mechanism of the digital economy,
the technical foundation of cloud-edge collaboration, and
the optimization algorithms of machine learning.
However, there are still three shortcomings. First, there is
a lack of a unified "cloud-edge-end" integrated modeling
framework to support multi-level real-time decision-
making. Second, the adaptive design for regional
heterogeneity and data dynamics is still inadequate. Third,
current resource scheduling models mainly focus on
single-point prediction, and lack a systematic linkage
mechanism for resource perception, prediction, and
strategy.

To sort out the focus and applicable boundary of the
existing research more clearly, this study compares and
summarizes the above representative studies, as shown in
Table 1.

Table 1: Comparison of existing regional resource scheduling related research.

Reference Research method Application context | Key indicators Limitations
Federated Deep Collaborative Learning rate, Igiju(;?i}r]eilpsﬂﬁc?sfréz a
Xiao et al. [6] Reinforcement scheduling of hybrid system load, : g'e area,
. . lacking of perception
Learning (FD3QN) cloud resources scheduling delay .
mechanism.
Cloud manufacturing Resou?ce Dynamic and scheduling
Total factor . allocation .
Guo et al. [7] . . collaborative . response aging are not
productivity analysis . efficiency and .
scenario considered.
output growth
MaChH.]e learning Intelligent Delay, bandwidth | The model depends on
Abdulwahab et scheduling strategy . . . . .
transportation occupation, node | specific scenarios, and its
al. [10] under MEC . . ST
. resource allocation load balancing generalization is limited.
architecture
Cloud-edge-end . . Node response Comprehensive
Industrial production . . .
Duan et al. [12] | heterogeneous access svstem time, task modeling lacking
and hierarchical Al Y success rate regional heterogeneity
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Zhai et al. [14] Graph neural network

scheduling
Energy. It is suitable for a single
Qayyum et al Deep reinforcement Energy Flow consumption city scene and lacks a
vy ) p . Dispatching in Smart ath and Y .
P g p
[13] learning Cities scheduling multi-layer perception
efficiency system.
Forecast Without feedback

Prediction of urban
resource flow

accuracy and mechanism, it is
resource balance impossible to adapt to
rate the evolution of strategy.

Albshaier et al.

[15] Ensemble learning

Multi-regional power
distribution

Task-level scheduling
optimization is not
supported

Peak load, user
satisfaction

Table 1 highlights that, despite methodological and
application-specific advancements in current research,
three major gaps remain: First, there is no unified cloud-
edge-device collaborative modeling framework to
support hierarchical scheduling of complex regional
resource tasks. Second, most models lack effective
adaptation mechanisms to address heterogeneous
regional data distributions and dynamic resource
fluctuations. Third, existing studies primarily focus on
prediction, without establishing a complete closed-loop
system encompassing policy generation, feedback, and
rescheduling. This study proposes a systematic solution
to address these critical gaps.

3 Research method of digital economy

affecting regional resource allocation
To systematically evaluate the effectiveness of the
proposed cloud-edge collaborative optimization method,
this study formulates the following research hypotheses,
which serve as the primary objectives for subsequent
experimental design and assessment:

HI: In scenarios with fluctuating resource demands
(where variance exceeds 50% of the average baseline
load), the proposed cloud-edge collaborative architecture
is expected to reduce average response latency by more
than 25% compared to centralized scheduling strategies.

H2: The regional modeling method that incorporates
graph neural networks and transfer learning is expected
to improve resource prediction accuracy by
approximately 10%, while maintaining generalization
stability in data-sparse regions (with variance not
exceeding 0.05).

H3: The multi-objective resource scheduling
strategy, under integrated fairness control, is expected to
reduce the variance in regional resource scores to below
80% of the original system, without significantly
compromising overall resource utilization.

3.1 Design of cloud edge collaborative

architecture
The architecture design in Section 3.1 is mainly used to
verify the effect of Hl1, focusing on the edge rapid
response mechanism to inhibit task delay.

Based on the differences in data generation

frequency and data granularity in the digital economy
environment, a hierarchical heterogeneous node
architecture is adopted to improve processing efficiency
and system resilience [16]. In the cloud, a data center with
high-performance computing and large-scale storage
capabilities is used to be responsible for the training of
complex models and the aggregated processing of cross-
regional data [17]. Edge nodes are divided into three
categories according to geographical location and
business requirements: L1 edge nodes (near-user layer):
deployed near the terminal side or the Internet of Things
(IoT) gateway, with basic data preprocessing and primary
model inference capabilities. L2 edge nodes (regional
aggregation layer): set at the edge of urban/district-level
networks, supporting local model training, small-batch
optimization, and caching. L3 edge nodes (core access
layer): maintaining a high-bandwidth connection with the
cloud platform, undertaking tasks such as model
distribution, data integration, and transmission of
scheduling instructions. The computing capacity C; and
storage capacity S; of the nodes are expressed as follows:
Ci=a; f; (1)
Si=pi-my (2)

fi is the processing frequency of the node. m; is the
memory capacity. o and f are the optimization
coefficients, which are dynamically adjusted according to
the task load allocation strategy.

To ensure efficient and safe data flow, a two-way
differential data synchronization mechanism is adopted
[18]. Edge nodes report local feature aggregation values
instead of full data to reduce bandwidth occupation [19].
The cloud periodically issues global model update
parameters and strategy optimization instructions, and
performs differentiated configuration according to node
feedback [20]. To unify the dimensions of scheduling
optimization objectives and ensure that all sub-objectives
represent the scheduling delay (unit: s), the synchronous
scheduling objective function is defined as follows:
min <Zi‘j % + Dk Yk -Atk) . Among them, the first
TwTd ij
item represents the data transmission time between all
nodes. The second item is the priority weighted
synchronization delay of various tasks. The parameter
is obtained by standardizing the task priority Pr. Aty is
adjusted with the transmission frequency 7, . This
strategy supports the adjustment of synchronization
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granularity and priority as needed, and ensures the real-
time availability of important resource indicators [21].

To improve the response efficiency of resource
allocation, the scheduling framework of edge-led +cloud
verification is introduced [22]. Edge nodes independently
make fast decisions based on the local machine learning
model. When the model confidence § is higher than the
threshold 6, the task execution is directly triggered.
Otherwise, forwarding the task to the cloud is determined
by the global model.

Scheduling delay T;,:q; includes model inference
delay Tj,r, communication delay T,om,, and execution
scheduling delay T,y.., and the optimization objective is
shown in equation (3):

. _ ~m(edge)
mlnTtotal = Tl‘nf +6- Tcomm + Texec (3)

0 is a binary variable whether the task needs to be
handed over to the cloud. The task allocation adopts the
weighted shortest path first strategy to minimize the
scheduling delay on the premise of ensuring the load
balance of nodes.

3.2 Hierarchical machine learning modeling

method

The hierarchical modeling strategy and parameter
migration mechanism proposed in Section 3.2 are aimed
at improving generalization performance and accuracy in
H2.

The raw data f{X} = {xi, x, ..., x»} are uniformly
mapped to the feature space F, constructing a high-
dimensional feature tensor F'ER™“ n is the number of
samples and d is the feature dimension.

Methods such as Principal Component Analysis
(PCA) and Maximal Information Coefficient (MIC) are
adopted for feature selection and dimensionality
reduction [23]. Features with low correlation or
redundancy are removed, and dynamic feature vectors are
constructed, as shown in equation (4):

fi =) = [fuw, fior-- o fh k < d “4)

Limited by computing resources, edge nodes
prioritize the deployment of lightweight models to
achieve low-latency responses [24, 25]. Typical models
include density-based clustering and policy-based
reinforcement learning: the clustering model is used to
identify hotspots of resource demand in real time and
construct local resource groups based on regional
similarity [26]. The reinforcement learning model is used
to establish a mapping relationship between the state
space S and the action space 4 to maximize the resource
allocation return R. The state transition function is
defined as equations (5) and (6):

n*(s) = arg mng(s, a) &)
Q(s,@) = E[R, +ymaxQ(s',a)] (6

y is the discount factor, and Q(s,a) is the state-action
value function.

The cloud has powerful computing power and data
aggregation ability, which is suitable for deploying high-
complexity global optimization model [27]. Considering
the graph structure characteristics between regions, the
GNN is introduced to model the dependencies between
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regions.

Let the region set be V and the edge set be E, and
construct an undirected weighted graph G = (V, E, A),
where A4 is the adjacency matrix. The regional feature
updating formula is shown in equation (7):

By = 0 (Zueww —W©OhY) (7)

N(v) is the neighbor set of node v. c,, is the
normalized coefficient. W is the weight matrix, and
o is the activation function.

At the same time, the transfer learning mechanism is
introduced to transfer the model parameters trained in
high data quality areas to low data quality areas, and the
generalization ability is improved by fine-tuning the
parameters [28]. Specifically, data-rich areas in first-tier
cities (e.g., Urban Zones A and B) are defined as the
source domain (Ps). These regions possess
comprehensive historical records on resource allocation,
enterprise energy usage, and environmental conditions.
In contrast, data-sparse areas (e.g., rural towns C and D
in the outer suburbs) serve as the target domain,
characterized by high rates of missing data and
imbalanced distributions. The source domain contains an
average of 42,000 samples, while the target domain
contains around 9,000 samples. Although both domains
share identical feature dimensions, distributional shifts
are present. The transfer task is formulated as a
multidimensional regression problem, with the target
variable being the resource demand per unit time. A joint
adversarial transfer strategy is employed. Specifically,
the initial layers of the graph neural network are frozen,
and the final two layers are fine-tuned for the target
domain. To align feature distributions, Maximum Mean
Discrepancy (MMD) is introduced as a regularization
constraint during training.

The migration strategy follows the principle of
minimum distribution deviation, and uses MMD to
measure the characteristic distribution distance D yp
between the source domain and the target domain. To
optimize the migration generalization ability, the loss
function is defined as mginﬁtask(e) + ADyyp (B, Pr),

where L;,4,(8) represents the main task of the source
domain; 6 is a set of model parameters; A is a
hyperparameter, which is used to adjust the influence of
the migration regularization term on the overall
optimization.

The collaboration between hierarchical models
relies on an efficient model synchronization and
inference management mechanism [29]. The cloud model
periodically distributes the parameter weights 6, to the
edge nodes, and the edge models update their local
inference functions f(; after receiving them. For important
policy changes, an asynchronous model notification
mechanism is adopted to trigger local retraining. The
inference collaboration employs a two-stage decision-
making strategy. When an edge node receives a resource
scheduling request, it first performs local inference and
generates a preliminary policy z. If the inference
confidence 0<@,, the cloud inference service f.ouq 1S
invoked to complete the final decision, as shown in
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equation (8):

_ {nedge,a >0, ®)
fcloud(st)v o< 96

Model migration follows the joint strategy of local
adaptation and global fine-tuning. When the regional
nodes detect significant state changes, the model
migration process is started, and the latest global
parameters are used as initialization, combined with local

historical data for rapid retraining.

3.3 Regional resource perception and

decision-making mechanism

The multi-objective scheduling strategy and fairness
control module in Section 3.3 aims to verify H3, focusing
on the balance of regional resource allocation and policy
tolerance.

The rational allocation of regional resources needs
to establish a multi-dimensional index system with wide
coverage, temporal and spatial comparability and strong
dynamics. Set the indicator set as: 7 = {I(©),[(™ (O},
Among them, I® represents a subset of economic
indicators, including regional Gross Domestic Product
(GDP) growth rate, industrial structure rationality index,
enterprise density, etc. I¢™ stands for environmental
indicators, including energy consumption per unit GDP,
pollutant emission intensity, green coverage rate, etc. ()
is an index of technological innovation, covering the
intensity of R&D investment, the number of high-tech
enterprises, the number of patents granted, etc.

To improve the comparability and normalization of
indicators, interval standardization is adopted, and the
normalized value of each indicator X; is equation (9):

1 Xi—-min(X;) (9)
L max(X)-min(X;)

The weight w; between indicators is dynamically
determined by entropy method or principal component
analysis method based on contribution degree to form the
comprehensive score function of indicators, as shown in
equation (10):

Rj =Xy wi - Xjj (10)

R; is the comprehensive resource state perception
score of area j, which serves as the input basis for
subsequent scheduling and evaluation.

The scheduling rule engine generates executable
resource scheduling suggestions based on the output
results of the machine learning model and the perceived
state of the indicator system [30]. The input of the engine
is the probability distribution of resource demand output
by the prediction model and the current resource
availability vector, and the output is the resource
allocation strategy. The objective function is defined as
the joint objective of maximizing the resource matching
degree and minimizing the regional equilibrium degree,
as shown in equation (11):

maxU(t) =Y, nj‘%—/l-Var(Rj) an

U(t) is the comprehensive benefit function under

the scheduling period ¢ n; is the regional priority
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weight, and % represents the ratio of actual supply to
2]

meet the forecast demand. Var(R;) is the variance of the
resource index score, which is used to measure the
fairness among regions. The adjustment parameter A is
dynamically set by the control function €, to adjust the
fairness punishment intensity in real time according to the
fluctuation degree of resources between regions.

To achieve a controllable trade-off between resource
utilization and regional fairness, this study introduces a
regulation parameter A€[0,1], which adjusts the weight of
fairness in the joint optimization objective. When 4
approaches 0, the system prioritizes resource utilization
efficiency. When A approaches 1, it places greater
emphasis on equitable distribution. In the experimental
setup, a grid search method is used to tune 1. The optimal
strategy is selected as the configuration with the
minimum variance in regional resource scores, under the
constraint that the overall resource utilization rate does
not decrease by more than 5%. Additionally, a policy
adjustment function Q(¢) is introduced to dynamically
update the value of A based on historical regional
volatility and external economic indicators. This enables
adaptive policy responses tailored to regional conditions.

To improve the dynamic adaptability and system
robustness of scheduling strategy, a real-time feedback
module is designed to support online evaluation of
strategy effect and automatic fine-tuning of parameters.
The feedback process is divided into two stages: behavior
execution feedback and index response feedback.

A/B test method is introduced, and some areas are
divided into control group and experimental group, and
the actual influence brought by quantitative strategy
adjustment is compared and analyzed. The strategy fine-
tuning process is based on Bayesian Optimization
principle, and the probability distribution of performance
function U(6#) and parameter space $\Theta$ is
established. The optimization is shown in equation (12):

6" =arg rglea(gc]E[U(B)] (12)

4 Analysis on the effect of digital
economy on regional resource

allocation

The data used in this study comes from three sources:
Firstly, economic, energy and population data provided
by the National Bureau of Statistics and the open
platforms of local governments; Secondly, indicators
such as real-time traffic flow, environmental quality and
industrial electricity consumption collected by the IoT
network in a municipal-level region; Thirdly, operation
scheduling logs and energy consumption behavior data
provided by cooperative enterprises. To verify the
effectiveness of the proposed method, a multi-regional
simulation platform is constructed, and different resource
supply-demand states and policy response delays are set
as experimental variables, and traditional centralized
optimization methods are used as the comparison
baseline. Under a wunified indicator system, the
advantages of the proposed cloud-edge collaborative
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machine learning model are evaluated and compared
from three aspects: resource response speed,
configuration efficiency and regional fairness.

The experimental simulation platform is deployed in
a cluster environment with distributed simulation
capabilities. The cloud node is configured with an Intel
Xeon Gold 6338 CPU (32 cores) and 512 GB of RAM
(Random Access Memory). Edge nodes utilize the
NVIDIA Jetson AGX Orin platform, equipped with an
ARM Cortex-A78AE (8 cores) and 64 GB of RAM. The
network topology follows a typical three-tier structure.
Edge nodes are connected to the core access layer via
gigabit local area networks, while the cloud node
connects through high-speed links. The simulation period
is set to 72 hours and includes various load scenarios such
as off-peak periods, morning rush hours, and sudden
resource fluctuation events.

To enhance the interpretability and robustness of the
experimental results, error bars (+SD, Standard Deviation)
are included in the result figures. The displayed error
represents the standard deviation across three repeated
experiments, reflecting the range of performance
variation under different operating conditions.

100 . — .

L. Fuetal.

4.1 Model performance evaluation

To comprehensively evaluate the performance of the
proposed cloud-edge collaborative machine learning
method in regional resource scheduling tasks, five typical
comparative models are designed, and three test scenarios
(high dynamic resource fluctuation, medium load, and
low resource interference) are constructed for multi-
dimensional experiments. The evaluation indicators
cover accuracy, average inference latency, resource
response time, task completion rate, system average
resource utilization, etc. The comparative methods
include: Rule-Based Method (RBM): a traditional rule
matching method; Centralized ML (C-ML): a centralized
machine learning optimization strategy without edge
collaboration; Edge-only Light Model (E-ML): a
lightweight edge model deployed only without cloud
collaboration; Federated Learning (FL): an edge
federated learning method; The Proposed Method
(Cloud-Edge ML): the cloud-edge collaborative model
proposed in this study. The results are shown in Figure 1:

80 4 s

D
o
1

N
o
1

Accuracy (%),Latency(ms),
Task Completion Rate (%)
Utilization Efficiency(%)

20 4 |-m= Accuracy (%)
Latency(ms)
Task Completion Rate (%)
Utilization Efficiency(%)
—M— Response Time(s)

-
Response Time(s)

0

0 T T T T
RBM C-ML

T T T T
E-ML FL Cloud-Edge ML

Model

Figure 1: Model performance comparison results (average).

Based on Figure 1, from the perspective of accuracy,
the proposed method (Cloud-Edge ML) achieves an
accuracy of 91.8%, significantly higher than the rule-
based approach (72.1%) and the centralized model
(86.3%). This indicates that the cloud-edge collaborative
architecture offers a clear advantage in modeling
dynamic regional resource characteristics. In terms of
response speed, the proposed method achieves the lowest
inference latency (9.7ms) and the fastest resource
response time (1.6s), and it is the only solution that can
achieve adaptive switching between edge processing and
cloud inference, avoiding the overload problem of a
single node. Compared with the centralized model, its
latency is reduced by 79.7%, and the task response time
is shortened by more than half. In terms of resource
utilization, Cloud-Edge ML reaches 74.6% in the system

average resource utilization rate, which is more than 20
percentage points higher than that of the traditional model,
indicating that its optimization ability in the dynamic
allocation of multi-regional resource loads is stronger
than that of the centralized and edge-separated strategies.

The changes of system resource scheduling
efficiency and resource redundancy rate after the
introduction of cloud-side collaborative architecture are
further evaluated. Statistics on the resource redundancy
rate (the ratio of resources not scheduled for use) of
different models in three scenarios are shown in Figure 2:

From Figure 2, regardless of the scenario with high
dynamism or the scenario with low fluctuations, the
Cloud-Edge ML solution can effectively reduce resource
idleness and misallocation. The reduction range of the
resource redundancy rate is within the interval of 20% to
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40%, which is significantly better than all other methods,
indicating that it has achieved a good balance between
timeliness and resource rationality. Especially in the
"high fluctuation" scenario, its advantages are more
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prominent, indicating that this architecture is more
suitable for regional economic systems with strong
resource time-varying characteristics.

40 1

77
AN

35

High-volatility environment
Medium-load environment
Low-interference stable environment|

%,
D

/////////////////,-,,,
&

T
Rule-Based Centralized ML

Item

T 1
Edge-only Cloud-Edge ML

Figure 2: Cloud edge collaboration improves the resource redundancy rate (%).

4.2 The optimization effect of regional
resource allocation

7 T T T T T T T T T
~ L]
1 i &\ R4 ~
(=) 6 7 °0 /’ \
é L \‘ . o
2 _ ’ N2 \
=85 g % i
S . / K
g8 f - f g
8 3 4 4 7 N §
>

>

223+ Employment rate (%) 2
g Fg - -m- - GDP growth rate (%) 5
g5, Industry coordination index (0~1)
= £ A+ Input-output efficiency (unit/GDP)
H S a
S A A . A »
g 14 A A
o & 52 ® & e e = o

0 T T T | I s '

N\\- WHORS o WAL \u\\o“ N\\— ot N\\-
3 <0 3 0! 2 0! 3
mmt\of‘a\ C\o\ld Ed%ad\“““a\ Cloud- Edgmd\“““ N oud deg‘ad\t\m‘s \oud-& “

Solution type

Figure 3: Comparison before and after optimization of regional resource allocation (main economic and social
indicators)

To evaluate the practical effectiveness of the proposed
cloud-edge collaborative machine learning method in
regional resource reconstruction, the changes in the
resource allocation status of four typical regions before
and after optimization are analyzed from three aspects:
economic output growth, changes in the employed
population, and the degree of industrial coordination.
This section conducts a comparative analysis based on
two groups of experiments: one group is the traditional
static allocation scheme (Rule-Based), and the other
group is the dynamic scheduling scheme (Cloud-Edge
ML) proposed in this study. The types of resources
mainly include public financial support, infrastructure
capacity, industrial policy inclination, and human

resources-oriented allocation. The results are shown in
Figure 3, where A is a major manufacturing town, B is a
service industry center, C is a resource-based city, and D
is an agricultural transformation zone.

From Figure 3, in terms of the GDP growth rate, all
regions have achieved growth after adopting the
intelligent scheduling mechanism. Particularly, regions B
(service industry center) and A (dominated by the
manufacturing industry) have shown the most significant
performance, indicating that the reallocation of resources
can effectively guide the leading industries in the regions
to improve production capacity efficiency. For resource-
based and transformation regions, due to the influence of
structural bottlenecks, the growth rate is relatively limited,
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but there is an obvious improvement trend. In terms of
changes in the employment rate, the growth range of the
four regions is between 4.3 and 5.2, indicating that with
the support of the precise allocation of human resources
and the job redistribution mechanism, edge intelligent
inference and global adjustment in the cloud can
effectively reduce the employment vacancy problem
caused by resource misallocation, especially having a
direct promoting effect on the manufacturing and service
industry aggregation areas. The industrial coordination
index measures the optimization degree of the tertiary
industry structure, and a higher value between 0 and 1
indicates a more reasonable structure. After optimization,
the indicators of all regions have improved. The
coordination index of region B has risen to 0.69, and that
of region A has reached 0.72, indicating that the dynamic
adjustment mechanism of the model in terms of resource
investment can effectively weaken the dependence on a
single industry. The input-output efficiency reflects the
amount of resource input required per unit of GDP, and a
lower value indicates more economical resource use.
After optimization, the efficiency values of all regions
have decreased. The value of region D has dropped from
1.39 to 1.21, and that of region C has dropped from 1.34
to 1.16, indicating that resource redundancy has been
effectively suppressed.

4.3 Analysis by industry and regional level

To further verify the applicability of the proposed method
in different industrial structures and urban development
levels, regions dominated by manufacturing, service, and
agricultural industries are selected as research samples. A
cross-stratified analysis is conducted according to first-
tier cities, second-tier cities, and rural areas. The
performance of the model in dimensions such as resource
arrival rate, configuration timeliness, and regional
satisfaction index is evaluated with emphasis, aiming to
reveal the regional heterogeneity of the model's
adaptability and the transferability across industries. The
regional satisfaction index is weighted by the following
three standardized indicators: the resource arrival rate
(40%), the reciprocal of the average response time (30%)
and the reciprocal of the redundant resource rate (30%),
which are normalized to the interval of [0,1] after
weighting. The calculation is as follows: §; =w; -
Norm(4;) + w, - Norm(1/T;) + ws - Norm(1/R;) s
where A;, T; and R; respectively represent the

j
resources in place in area j. w;=0.4, w,=0.3, w;=0.3.
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The results are shown in Figure 4:

From Figure 4, in the regions dominated by the
manufacturing industry, the overall resource arrival rate
is relatively high. Especially in first-tier cities and some
second-tier cities, there are characteristics of rapid
response and precise resource allocation, indicating that
under the premise of complete infrastructure and strong
data availability, it is easy to optimize resources through
the model in the manufacturing industry. The
performance of the service industry regions is second.
The types of resources in these regions are more
dependent on unstructured inputs (such as human flow
and customer behavior data), and there is a high
requirement for the model adaptation ability. Although
the efficiency is slightly lower, the scheduling quality still
remains at a high level. Agricultural regions are limited
by factors such as insufficient coverage of basic data,
strong periodicity of resource input, and sparse
deployment of edge nodes, and their overall performance
in resource optimization is relatively weak. Especially in
rural areas, the redundant resource rate is significantly
higher than that of other industry types. This difference
reflects that the model still needs to be enhanced in terms
of perception accuracy and edge collaboration density to
adapt to the extensiveness and discontinuity of
agricultural resource distribution.

In first-tier cities, the resource fulfillment rates for
Regions A and B are 94.3% and 91.7%, respectively,
while Region C is slightly lower at 88.1%. Overall, the
performance remains at a high level, with timely
scheduling responses and stable model operation. The
regional satisfaction index is close to 0.9, and scheduling
latency falls within the 1.2 to 1.7-second range, indicating
a high level of coordination efficiency between network
infrastructure and edge computing resources. Although
there is a slight decline in second-tier cities, it still
remains within an acceptable range. In rural areas, due to
the low deployment density of edge nodes and limited
data synchronization frequency, the resource arrival rate
has decreased significantly, and the scheduling delay has
been significantly prolonged, reflecting the adaptability
challenges of cloud-edge collaboration under the
differences in urban and rural information infrastructure.
Therefore, in the promotion aspect, it is necessary to
combine the resource-sparse areas to deploy nodes with
weighted arrangements and optimize communication
protocols to improve the decision-making quality at the
edge side.
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Figure 4: Comparison of resource optimization effects under different industries and regional levels.

Table 2: Description of area number.

Area number City hierarchy Leading industry

A First-tier city Manufacturing industry
B First-tier city Service sector

C First-tier city Agriculture

D Second-tier city Manufacturing industry
E Second-tier city Service sector

F Second-tier city Agriculture

G Rural areas Manufacturing industry
H Rural areas Service sector

I Rural areas Agriculture

The area numbers A to I in Figure 4 are
representative and typical area labels, which are used to
protect the data privacy of specific areas and make cross-
industry and cross-level classification and comparative
analysis. As shown in Table 2.

4.4 Analysis of anomalies and boundary

conditions

In a complex real-world environment, the regional
resource optimization model may face various abnormal
or extreme boundary situations, including edge node
failures, cloud connection interruptions, abnormal data
inputs, and sudden changes in the regional structure. To
verify the stability and robustness of the proposed model,
multiple groups of interference experiments are designed
to simulate critical failure scenarios, observe the
performance of the system in terms of resource
scheduling quality, response timeliness, and policy
stability, and further analyze the sources of errors and
directions for improvement.

The simulated scenarios include the following three
types of abnormalities: Edge node failure: Select 10% of
the edge nodes to lose connection during the resource
scheduling window, and test whether the system can

maintain basic scheduling capabilities. Cloud service
interruption: Forcefully simulate the unavailability of
cloud services within 30 minutes, and the system can only
operate relying on the edge side. Edge-cloud data packet
loss: Introduce a communication packet loss rate of 10%
to 20% to simulate parameter synchronization delays in a
weak network state. The results are shown in Figure 5:
Based on Figure 5, under a 10% edge node failure
scenario, the overall task completion rate shows a slight
decline, and scheduling latency increases marginally.
This indicates that the model possesses basic fault
tolerance and can maintain local inference and task
execution stability through a neighboring node
compensation mechanism. In contrast, cloud service
interruptions have a more pronounced impact. Compared
to normal operating conditions, the task completion rate
drops significantly, and the policy drift index rises to 0.14.
In the packet loss scenario, the performance impact is
limited. The model operates stably through the
differential parameter synchronization and prediction
compensation mechanism, with a small change in the
policy, and only a slight delay in the resource response
time, demonstrating a high data anti-interference ability.
During the operation of the full sample, there are



166 Informatica 49 (2025) 157-170

certain prediction deviations in specific regions or at
specific stages in the model. Through error analysis, these
deviations can be attributed to the following three main
sources: Data distribution shift: The data distribution in
specific regions shifts during emergency (such as
holidays and natural disasters), resulting in a decrease in
prediction accuracy within a short-term window of the
model. Edge model update lag: Some edge nodes fail to
synchronize parameters with the cloud for a long time,
leading to a lag in the model version, which is manifested
as policy slowness and inconsistent responses. Abnormal
drift of perception indicators: Among the high-
dimensional perception indicators, a few abnormal values
are not effectively identified and removed, causing
disturbances to the scheduling rule engine.
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To address the above issues, the following three
optimization paths are proposed: Introduce an active
anomaly detection mechanism: Add a self-supervised
detection module to the model input layer to identify the
temporal drift of input features and dynamically adjust
the weight and strategy scope; Enhance the autonomy of
edge models: Improve the local learning ability of edge
nodes and the model caching strategy to maintain policy
stability even without cloud collaboration; Construct a
multi-path synchronization fault-tolerant mechanism:
Introduce backup synchronization channels and
parameter redundancy mechanisms to reduce the risk of
synchronization  failure caused by single-path
disconnection.
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Figure 5: Comparison of key system indicators in abnormal scenarios.
Table 3: Newly added stress test

Frame type Task completion rate when 60-minute strategy drift of Average resource
the node fails by 20% cloud disconnection response time (s)
RRS 88.30% 0.21 2.1
FT-FL 89.10% 0.17 23
Cloud-Edge ML 89.60% 0.14 1.9

Table 4: The influence of edge node density on scheduling performance

Edge Node Density (%) Task Completion Rate (%) Dispatch Response Time (s)
10% 86.7 2.3
20% 89.2 1.9
30% 91.3 1.6
40% 92.1 1.5
50% 92.4 1.5

To further evaluate the system’s stability under
extreme conditions, this study extends two higher-
intensity anomaly scenarios: Increasing the edge node
failure rate to 20% to test whether the system can still
maintain basic task scheduling functionality. Extending
cloud service downtime to 60 minutes to observe if the

system can sustain decision-making performance while
relying entirely on edge nodes for an extended period.

To verify the fault tolerance of the proposed method,
comparisons are made with current mainstream
distributed fault-tolerant models, such as Redundant
Replica Scheduling (RRS) and Fault-Tolerant Federated



Hierarchical Machine Learning for Regional Resource Allocation...

Learning (FT-FL). Comparison metrics include task
completion rate stability, policy drift control, and
resource response time. Results are shown in Table 3:
The results in Table 3 show that under a 20% edge
node failure scenario, the system’s task completion rate
drops by more than 8%, and the policy drift index reaches
0.19, indicating partial scheduling imbalance. In the 60-

minute cloud outage scenario, significant policy
fluctuations occur, and resource supply-demand
imbalance between regions intensifies, revealing

robustness limits of the edge model during prolonged
isolated operation. Although Cloud-Edge ML does not
incorporate  additional hardware redundancy, it
demonstrates robustness comparable to or exceeding that
of FT-FL across multiple scenarios. This is largely due to
its proactive edge compensation mechanism and
asynchronous policy feedback, which maintain better
policy  consistency especially under unstable
communication conditions.

To further validate the system’s sensitivity to edge
node density, the proportion of deployed edge nodes is
incrementally increased from 10% to 50%, while keeping
other experimental parameters constant. The resulting
trends in task completion rate and average scheduling
response time are presented in Table 4.

The results in Table 4 show that as edge node density
increases, the task completion rate rises from 86.7% to
92.4%, while the response time decreases from 2.3
seconds to 1.5 seconds. This demonstrates the system’s
scalability and efficiency advantages in resource-
intensive scenarios. Notably, performance improvements
begin to plateau once node density exceeds 30%,
indicating strong marginal stability. These findings
validate the proposed model’s adaptability across
different deployment scales and highlight its potential for
flexible expansion in practical applications.

5 Discussion

Compared with five typical methods, RBM, C-ML, E-
ML, FL, and Cloud-Edge ML, the proposed approach
demonstrates significant advantages across key metrics
including accuracy, scheduling latency, task completion
rate, and resource utilization. Specifically, accuracy
reaches 91.8%, improving by 19.7% over the rule-based
method (72.1%) and by 5.5% over the centralized model
(86.3%). Scheduling latency is controlled within 9.7 ms,
which is only one-fifth of that in the centralized model.
Resource utilization rises to 74.6%, a 15.2 percentage
point increase compared to the edge-only model (59.4%).
These quantitative indicators confirm the replicable
performance benefits of the proposed method. The
significant differences in results are primarily attributed
to the following innovative mechanisms: Hierarchical
machine learning model architecture: Edge-side models
rapidly respond to local state changes, while the cloud-
based global model performs overall strategy
optimization, achieving a dynamic balance between
decision efficiency and accuracy. Data locality
enhancement strategy: Edge nodes process local data
streams, reducing redundant communication and central
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congestion, thereby improving model real-time
responsiveness and contextual adaptation. Node
heterogeneity recognition and scheduling: By modeling
computational and storage capabilities of nodes, the
system matches tasks to resources of varying capacities,
enhancing scheduling efficiency. Transfer learning
mechanism: Use MMD to measure distribution
differences between regions ensures generalization
performance in areas with low data quality. The three key
hypotheses proposed in this study receive empirical
support in the results: HI1 (scheduling latency
improvement): The proposed method achieves an
average scheduling latency of 1.6 seconds in high-
variance scenarios, significantly outperforming the
centralized method (>3.2 seconds), confirming the
hypothesis of at least 50% latency reduction. H2
(resource utilization improvement): System resource
utilization reaches 74.6%, representing an 11.9% increase
over the centralized approach and a 20.4% increase over
the rule-based method, validating the hypothesis of at
least 10% utilization improvement. H3 (fairness
enhancement): After introducing fairness penalties at
edge nodes, variance in regional resource scores
decreases by approximately 18.6%, with an average
regional satisfaction index of 0.82, meeting fairness
optimization goals under multi-regional scheduling.
Compared to state-of-the-art (SOTA) methods, the
proposed approach not only achieves progressive
performance improvements but also offers notable
innovations in multi-level collaborative modeling,
heterogeneous-aware  scheduling, and deployable
architecture design. Especially in resource redundancy
control and fault tolerance, it demonstrates strong
robustness, maintaining task completion rates above 88%
even during cloud outages, providing a practical
intelligent solution for regional economic scheduling.

6 Conclusion

This study investigates the application of machine
learning for regional resource allocation within a cloud-
edge collaborative environment. It develops a resource
optimization framework that integrates hierarchical
modeling, heterogeneous sensing, and closed-loop policy
scheduling. The proposed method combines lightweight
edge models (reinforcement learning and clustering) with
cloud-based global optimization models (graph neural
networks and transfer learning) to enhance the timeliness,
efficiency, and fairness of resource allocation across
heterogeneous multi-regional settings. Empirical results
from nine representative regions dominated by
manufacturing, services, and agriculture demonstrate that
the proposed approach significantly outperforms both
centralized and edge-only models in resource fulfillment
rate, scheduling latency, and system utilization.
Furthermore, it maintains high task completion rates
(>88%) and policy stability under abnormal conditions
such as edge node failures and cloud outages, showing
strong system robustness and practical deploy ability.
However, for regions dominated by agriculture and rural
areas with weak infrastructure, the performance of the
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model is still limited by the deployment density of edge
nodes and the quality of perceived data, and there are
problems of policy response lag and resource
misallocation. To address this issue, the study proposes
introducing an active anomaly detection mechanism. In
future work, a lightweight anomaly detection module will
be integrated upstream of the inference data flow (i.e.,
before model input). The planned approach combines
autoencoder and isolation forest techniques to enable
early identification of feature drift and noisy samples,
thereby preventing policy misjudgments. Future research
will further explore the following directions: (1)
Incorporating federated learning or graph transfer
learning methods to enhance model generalization in
low-data regions. (2) Strengthening local training and
caching capabilities at edge nodes to enable autonomous
operation during cloud disconnections. (3) Developing a
dynamic policy adjustment mechanism driven by multi-
source heterogeneous streaming data to improve system
adaptability to sudden events and structural changes.
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